-
Notifications
You must be signed in to change notification settings - Fork 4
/
README.html
212 lines (204 loc) · 20.4 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>README.md</title><link href='http://fonts.googleapis.com/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}html { font-size: 14px; background-color: rgb(255, 255, 255); color: rgb(51, 51, 51); }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { background: rgb(181, 214, 252); text-shadow: none; }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; word-wrap: break-word; position: relative; padding-bottom: 70px; white-space: pre-wrap; overflow-x: visible; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
.typora-export #write { margin: 0px auto; }
#write > p:first-child, #write > ul:first-child, #write > ol:first-child, #write > pre:first-child, #write > blockquote:first-child, #write > div:first-child, #write > table:first-child { margin-top: 30px; }
#write li > table:first-child { margin-top: -20px; }
img { max-width: 100%; vertical-align: middle; }
input, button, select, textarea { color: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit; font-stretch: inherit; font-size: inherit; line-height: inherit; font-family: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
::before, ::after, * { box-sizing: border-box; }
#write p, #write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write div, #write pre { width: inherit; }
#write p, #write h1, #write h2, #write h3, #write h4, #write h5, #write h6 { position: relative; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
p { -webkit-margin-before: 1rem; -webkit-margin-after: 1rem; -webkit-margin-start: 0px; -webkit-margin-end: 0px; }
.mathjax-block { margin-top: 0px; margin-bottom: 0px; -webkit-margin-before: 0rem; -webkit-margin-after: 0rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: bold; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.701961); color: rgb(85, 85, 85); border-radius: 4px; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; margin: 4px 0px 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 80px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
pre { white-space: pre-wrap; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
.md-fences .CodeMirror.CodeMirror-wrap { top: -1.6em; margin-bottom: -1.6em; }
.md-fences.mock-cm { white-space: pre-wrap; }
.show-fences-line-number .md-fences { padding-left: 0px; }
.show-fences-line-number .md-fences.mock-cm { padding-left: 40px; }
.footnotes { opacity: 0.8; font-size: 0.9rem; padding-top: 1em; padding-bottom: 1em; }
.footnotes + .footnotes { margin-top: -1em; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: transparent; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: normal; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li p, li .mathjax-block { margin: 0.5rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; }
@media print {
html, body { height: 100%; }
.typora-export * { -webkit-print-color-adjust: exact; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; orphans: 2; }
p { orphans: 4; }
html.blink-to-pdf { font-size: 13px; }
.typora-export #write { padding-left: 1cm; padding-right: 1cm; }
.typora-export #write::after { height: 0px; }
@page { margin: 20mm 0mm; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 2.86rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p .md-image:only-child { display: inline-block; width: 100%; text-align: center; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.mathjax-block { white-space: pre; overflow: hidden; width: 100%; }
p + .mathjax-block { margin-top: -1.143rem; }
.mathjax-block:not(:empty)::after { display: none; }
[contenteditable="true"]:active, [contenteditable="true"]:focus { outline: none; box-shadow: none; }
.task-list { list-style-type: none; }
.task-list-item { position: relative; padding-left: 1em; }
.task-list-item input { position: absolute; top: 0px; left: 0px; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc::after, .md-toc-content::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); text-decoration: none; }
.md-toc-inner:hover { }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: bold; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
.md-tag { opacity: 0.5; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: monospace; }
code { text-align: left; }
h1 .md-tag, h2 .md-tag, h3 .md-tag, h4 .md-tag, h5 .md-tag, h6 .md-tag { font-weight: initial; opacity: 0.35; }
a.md-print-anchor { border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: none !important; background: transparent !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.mathjax-block .MathJax_SVG_Display { text-align: center; margin: 1em 0em; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: monospace; }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: normal; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none; }
@font-face { font-family: "Open Sans"; font-style: normal; font-weight: normal; src: local("Open Sans Regular"), url("./github/400.woff") format("woff"); }
@font-face { font-family: "Open Sans"; font-style: italic; font-weight: normal; src: local("Open Sans Italic"), url("./github/400i.woff") format("woff"); }
@font-face { font-family: "Open Sans"; font-style: normal; font-weight: bold; src: local("Open Sans Bold"), url("./github/700.woff") format("woff"); }
@font-face { font-family: "Open Sans"; font-style: italic; font-weight: bold; src: local("Open Sans Bold Italic"), url("./github/700i.woff") format("woff"); }
html { font-size: 16px; }
body { font-family: "Open Sans", "Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; color: rgb(51, 51, 51); line-height: 1.6; }
#write { max-width: 860px; margin: 0px auto; padding: 20px 30px 100px; }
#write > ul:first-child, #write > ol:first-child { margin-top: 30px; }
body > :first-child { margin-top: 0px !important; }
body > :last-child { margin-bottom: 0px !important; }
a { color: rgb(65, 131, 196); }
h1, h2, h3, h4, h5, h6 { position: relative; margin-top: 1rem; margin-bottom: 1rem; font-weight: bold; line-height: 1.4; cursor: text; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor { text-decoration: none; }
h1 tt, h1 code { font-size: inherit; }
h2 tt, h2 code { font-size: inherit; }
h3 tt, h3 code { font-size: inherit; }
h4 tt, h4 code { font-size: inherit; }
h5 tt, h5 code { font-size: inherit; }
h6 tt, h6 code { font-size: inherit; }
h1 { padding-bottom: 0.3em; font-size: 2.25em; line-height: 1.2; border-bottom: 1px solid rgb(238, 238, 238); }
h2 { padding-bottom: 0.3em; font-size: 1.75em; line-height: 1.225; border-bottom: 1px solid rgb(238, 238, 238); }
h3 { font-size: 1.5em; line-height: 1.43; }
h4 { font-size: 1.25em; }
h5 { font-size: 1em; }
h6 { font-size: 1em; color: rgb(119, 119, 119); }
p, blockquote, ul, ol, dl, table { margin: 0.8em 0px; }
li > ol, li > ul { margin: 0px; }
hr { height: 4px; padding: 0px; margin: 16px 0px; background-color: rgb(231, 231, 231); border-width: 0px 0px 1px; border-style: none none solid; border-top-color: initial; border-right-color: initial; border-left-color: initial; border-image: initial; overflow: hidden; box-sizing: content-box; border-bottom-color: rgb(221, 221, 221); }
body > h2:first-child { margin-top: 0px; padding-top: 0px; }
body > h1:first-child { margin-top: 0px; padding-top: 0px; }
body > h1:first-child + h2 { margin-top: 0px; padding-top: 0px; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child { margin-top: 0px; padding-top: 0px; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 { margin-top: 0px; padding-top: 0px; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p { margin-top: 0px; }
li p.first { display: inline-block; }
ul, ol { padding-left: 30px; }
ul:first-child, ol:first-child { margin-top: 0px; }
ul:last-child, ol:last-child { margin-bottom: 0px; }
blockquote { border-left: 4px solid rgb(221, 221, 221); padding: 0px 15px; color: rgb(119, 119, 119); }
blockquote blockquote { padding-right: 0px; }
table { padding: 0px; word-break: initial; }
table tr { border-top: 1px solid rgb(204, 204, 204); background-color: white; margin: 0px; padding: 0px; }
table tr:nth-child(2n) { background-color: rgb(248, 248, 248); }
table tr th { font-weight: bold; border: 1px solid rgb(204, 204, 204); text-align: left; margin: 0px; padding: 6px 13px; }
table tr td { border: 1px solid rgb(204, 204, 204); text-align: left; margin: 0px; padding: 6px 13px; }
table tr th:first-child, table tr td:first-child { margin-top: 0px; }
table tr th:last-child, table tr td:last-child { margin-bottom: 0px; }
.CodeMirror-gutters { border-right: 1px solid rgb(221, 221, 221); }
.md-fences, code, tt { border: 1px solid rgb(221, 221, 221); background-color: rgb(248, 248, 248); border-radius: 3px; font-family: Consolas, "Liberation Mono", Courier, monospace; padding: 2px 4px 0px; font-size: 0.9em; }
.md-fences { margin-bottom: 15px; margin-top: 15px; padding: 8px 1em 6px; }
.task-list { padding-left: 0px; }
.task-list-item { padding-left: 32px; }
.task-list-item input { top: 3px; left: 8px; }
@media screen and (min-width: 914px) {
}
@media print {
html { font-size: 13px; }
table, pre { break-inside: avoid; }
pre { word-wrap: break-word; }
}
.md-fences { background-color: rgb(248, 248, 248); }
#write pre.md-meta-block { padding: 1rem; font-size: 85%; line-height: 1.45; background-color: rgb(247, 247, 247); border: 0px; border-radius: 3px; color: rgb(119, 119, 119); margin-top: 0px !important; }
.mathjax-block > .code-tooltip { bottom: 0.375rem; }
#write > h3.md-focus::before { left: -1.5625rem; top: 0.375rem; }
#write > h4.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
#write > h5.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
#write > h6.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
.md-image > .md-meta { border: 1px solid rgb(221, 221, 221); border-radius: 3px; font-family: Consolas, "Liberation Mono", Courier, monospace; padding: 2px 4px 0px; font-size: 0.9em; color: inherit; }
.md-tag { color: inherit; }
.md-toc { margin-top: 20px; padding-bottom: 20px; }
#typora-quick-open { border: 1px solid rgb(221, 221, 221); background-color: rgb(248, 248, 248); }
#typora-quick-open-item { background-color: rgb(250, 250, 250); border-color: rgb(254, 254, 254) rgb(229, 229, 229) rgb(229, 229, 229) rgb(238, 238, 238); border-style: solid; border-width: 1px; }
#md-notification::before { top: 10px; }
.on-focus-mode blockquote { border-left-color: rgba(85, 85, 85, 0.117647); }
header, .context-menu, .megamenu-content, footer { font-family: "Segoe UI", Arial, sans-serif; }
</style>
</head>
<body class='typora-export' >
<div id='write' class = 'is-node'><h1><a name='header-n0' class='md-header-anchor '></a>Motion Artifact Detection in Wrist-Measured Electrodermal Activity Data</h1><p>This repository contains the Python code and data to reproduce the experiments in our <a href='https://arxiv.org/abs/1707.08287'>ISWC 2017 paper "Unsupervised Motion Artifact Detection in Wrist-Measured Electrodermal Activity Data"</a>. We evaluate 5 supervised and 3 unsupervised machine learning algorithms for motion artifact (MA) detection on electrodermal activity (EDA) and 3-axis accelerometer data. Our experiments are performed on two publicly available data sets:</p><ul><li>UT Dallas Stress (UTD) Data: 20 college students performed a sequence of tasks subjecting them to physical, cognitive, and emotional stress in a lab environment. It contains about 13 hours of data total (Birjandtalab et al., 2016). We include only the pre-processed feature matrices. The raw data is available at <a href='http://www.utdallas.edu/~nourani/Bioinformatics/Biosensor_Data/'>http://www.utdallas.edu/~nourani/Bioinformatics/Biosensor_Data/</a></li><li>Alan Walks Wales (AWW) Data: collected by Alan Dix while he walked around Wales from mid-April to July 2013. We extracted segments of data over 10 different days resulting in 10 hours of data in total (5 hours walking, 5 hours resting). We include both the feature matrices and the raw data for the 10 hours we extracted. The raw data over Alan's entire journey is available at <a href='http://alanwalks.wales/data/' target='_blank' >http://alanwalks.wales/data/</a></li></ul><p>Refer to the <a href='https://arxiv.org/abs/1707.08287'>paper</a> for more details. The code requires the <a href='http://scikit-learn.org/'>scikit-learn</a> Python package.</p><h2><a name='header-n13' class='md-header-anchor '></a>Contents</h2><p>In the root directory:</p><ul><li><code>Feature Details.txt</code>: Description of all features constructed from EDA and accelerometer data.</li><li><code>FeatureMatrix_AWW.py</code>: Script to compute feature matrix from Alan Walks Wales raw data. This script does not need to be executed to reproduce our experiments because we also include the pre-processed feature matrix.</li><li><code>LICENSE.txt</code>: License for this software.</li><li><code>MachineLearning_InSample7_AWW.py</code>: Script to perform in-sample MA prediction (using leave-one-segment-out cross-validation) on AWW resting and walking data separately using all algorithms aside from the multi-layer Perceptron (MLP).</li><li><code>MachineLearning_InSample7_UTD.py</code>: Script to perform in-sample MA prediction (using leave-one-subject-out cross-validation) on UTD data using all algorithms aside from the multi-layer Perceptron (MLP).</li><li><code>MachineLearning_OutofSample7.py</code>: Script to perform out-of-sample MA prediction (both train on AWW/test on UTD and train on UTD/test on AWW) using all algorithms aside from the multi-layer Perceptron (MLP).</li><li><code>MLP_inSample_AWW.py</code>: Script to perform in-sample MA prediction (using leave-one-segment-out cross-validation) on AWW resting and walking data separately using the multi-layer Perceptron (MLP). This is the most time-consuming algorithm so we separated it into its own script.</li><li><code>MLP_InSample_UTD.py</code>: Script to perform in-sample MA prediction (using leave-one-subject-out cross-validation) on UTD data using the multi-layer Perceptron (MLP).</li><li><code>MLP_OutSample.py</code>: Script to perform out-of-sample MA prediction (both train on AWW/test on UTD and train on UTD/test on AWW) using the multi-layer Perceptron (MLP).</li></ul><p>Each subdirectory (either <code>AlanWalksWales</code> or <code>UTDallas</code>) contains the data files. For example, for the AWW resting data, the following files are included:</p><ul><li><code>AWW_rest_acc.csv</code>: Feature matrix for AWW resting data using only accelerometer features. Each row is a 5-second time window, and each column is a feature.</li><li><code>AWW_rest_all.csv</code>: Feature matrix for AWW resting data using all (EDA and accelerometer) features</li><li><code>AWW_rest_eda.csv</code>: Feature matrix for AWW resting data using only EDA features</li><li><code>AWW_rest_groups.csv</code>: Mapping of 5-second time windows to groups for leave-one-group-out cross-validation. The value on the <em>i</em>th row indicates which group (extracted segment of data) the <em>i</em>th second time window belongs to.</li><li><code>AWW_rest_label_All3</code>.csv: Labels of each time window as clean (0) or MA (1) by 3 EDA experts.</li><li><code>AWW_rest_label.csv</code>: Majority vote over 3 EDA expert labels for each time window.</li></ul><p>Each file is also available for the AWW walking data and for the UTD data. For the AWW data, we also include the raw CSV files, e.g. <code>2013_05_14_40mins_eating.csv</code>, from the Affectiva Q sensor, as well as the CSV files exported from <a href='http://eda-explorer.media.mit.edu/'>EDA Explorer</a> containing our expert labels, e.g. <code>2013_05_14_40mins_eating_Epochs.csv</code> in the subdirectory <code>Raw</code>.</p><h2><a name='header-n67' class='md-header-anchor '></a>References</h2><p>Birjandtalab, J., Cogan, D., Pouyan, M. B., & Nourani, M. (2016). A non-EEG biosignals dataset for assessment and visualization of neurological status. In Proceedings of the IEEE International Workshop on Signal Processing Systems (pp. 110–114). IEEE. <a href='https://doi.org/10.1109/SiPS.2016.27' target='_blank' >https://doi.org/10.1109/SiPS.2016.27</a></p><p>Zhang, Y., Haghdan, M., & Xu, K. S. (2017). Unsupervised motion artifact detection in wrist-measured electrodermal activity data. In Proceedings of the 21st International Symposium on Wearable Computers (to appear). Retrieved from <a href='http://arxiv.org/abs/1707.08287' target='_blank' >http://arxiv.org/abs/1707.08287</a></p><h2><a name='header-n72' class='md-header-anchor '></a>License</h2><p>Distributed with a BSD license; see <code>LICENSE.txt</code></p></div>
</body>
</html>