-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkitti_pytorch.py
147 lines (99 loc) · 4.08 KB
/
kitti_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding:UTF-8 -*-
import os
import yaml
import argparse
import torch
import numpy as np
import torch.utils.data as data
from tools.points_process import aug_matrix
"""
Reading data from KITTI
"""
class points_dataset(data.Dataset):
def __init__(self, is_training: int = 1, num_point: int = 24000, data_dir_list: list = [0, 1, 2, 3, 4, 5, 6],
config: argparse.Namespace = None):
"""
:param data_dir_list
:param config
"""
self.args = config
data_dir_list.sort()
self.num_point = num_point
self.is_training = is_training
self.data_list = data_dir_list
self.lidar_root = config.lidar_root
self.data_len_sequence = [4540, 1100, 4660, 800, 270, 2760, 1100, 1100, 4070, 1590, 1200]
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
Tr_tmp = []
data_sum = [0]
vel_to_cam_Tr = []
with open('./tools/calib.yaml', "r") as f:
con = yaml.load(f, Loader=yaml.FullLoader)
for i in range(11):
vel_to_cam_Tr.append(np.array(con['Tr{}'.format(i)]))
for i in self.data_list:
data_sum.append(data_sum[-1] + self.data_len_sequence[i] + 1)
Tr_tmp.append(vel_to_cam_Tr[i])
self.Tr_list = Tr_tmp
self.data_sum = data_sum
self.lidar_path = self.lidar_root
def se3_transform(self, pose, xyz):
"""Apply rigid transformation to points
Args:
pose: ([B,] 3, 4)
xyz: ([B,] N, 3)
Returns:
"""
assert xyz.shape[-1] == 3 and pose.shape[:-2] == xyz.shape[:-2]
rot, trans = pose[..., :3, :3], pose[..., :3, 3:4]
transformed = np.einsum('...ij,...bj->...bi', rot, xyz) + trans.transpose(-1, -2) # Rx + t
return transformed
def __len__(self):
return self.data_sum[-1]
def __getitem__(self, index):
sequence_str_list = []
for item in self.data_list:
sequence_str_list.append('{:02d}'.format(item))
if index in self.data_sum:
index_index = self.data_sum.index(index)
index_ = 0
fn1 = index_
fn2 = index_
sample_id = index_
# data sequence
else:
index_index, data_begin, data_end = self.get_index(index, self.data_sum)
index_ = index - data_begin
fn1 = index_ - 1
fn2 = index_
sample_id = index_
pose_path = 'pose/' + sequence_str_list[index_index] + '_diff.npy'
pose = np.load(pose_path)
lidar_path = os.path.join(self.lidar_path, sequence_str_list[index_index], 'velodyne')
fn1_dir = os.path.join(lidar_path, '{:06d}.bin'.format(fn1))
fn2_dir = os.path.join(lidar_path, '{:06d}.bin'.format(fn2))
point1 = np.fromfile(fn1_dir, dtype=np.float32).reshape(-1, 4)
point2 = np.fromfile(fn2_dir, dtype=np.float32).reshape(-1, 4)
T_diff = pose[index_:index_ + 1, :]
T_diff = T_diff.reshape(3, 4)
filler = np.array([0.0, 0.0, 0.0, 1.0])
filler = np.expand_dims(filler, axis=0) #1*4
T_diff_add = np.concatenate([T_diff, filler], axis=0) # 4*4
Tr = self.Tr_list[index_index]
Tr_inv = np.linalg.inv(Tr)
T_gt = np.matmul(Tr_inv, T_diff_add)
T_gt = np.matmul(T_gt, Tr)
if self.is_training:
T_trans = aug_matrix()
else:
T_trans = np.eye(4).astype(np.float32)
T_trans_inv = np.linalg.inv(T_trans)
pos1 = point1[:, :3].astype(np.float32)
pos2 = point2[:, :3].astype(np.float32)
return torch.from_numpy(pos2).float(), torch.from_numpy(pos1).float(), sample_id, T_gt, T_trans, T_trans_inv, Tr
def get_index(self, value, mylist):
mylist.sort()
for i, num in enumerate(mylist):
if num > value:
return i - 1, mylist[i - 1], num