-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathlogger.py
177 lines (149 loc) · 8.72 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""Logging class. Handles records of a single simulation run. Can save and reload. """
import numpy as np
import pdb
import listify
LOG_DEFAULT = (
'total_cash total_excess_capital total_profitslosses total_contracts '
'total_operational total_reincash total_reinexcess_capital total_reinprofitslosses '
'total_reincontracts total_reinoperational total_catbondsoperational market_premium '
'market_reinpremium cumulative_bankruptcies cumulative_market_exits cumulative_unrecovered_claims '
'cumulative_claims insurance_firms_cash reinsurance_firms_cash market_diffvar '
'rc_event_schedule_initial rc_event_damage_initial number_riskmodels'
).split(' ')
class Logger():
def __init__(self, no_riskmodels=None, rc_event_schedule_initial=None, rc_event_damage_initial=None):
"""Constructor. Prepares history_logs atribute as dict for the logs. Records initial event schedule of
simulation run.
Arguments
no_categories: Type int. number of peril regions.
rc_event_schedule_initial: list of lists of int. Times of risk events by category
rc_event_damage_initial: list of arrays (or lists) of float. Damage by peril for each category
as share of total possible damage (maximum insured or excess).
Returns class instance."""
"""Record number of riskmodels"""
self.number_riskmodels = no_riskmodels
"""Record initial event schedule"""
self.rc_event_schedule_initial = rc_event_schedule_initial
self.rc_event_damage_initial = rc_event_damage_initial
"""Prepare history log dict"""
self.history_logs = {}
"""Variables pertaining to insurance sector"""
# TODO: should we not have `cumulative_bankruptcies` and
# `cumulative_market_exits` for both insurance firms and reinsurance firms?
# `cumulative_claims`: Here are stored the total cumulative claims received
# by the whole insurance sector until a certain time.
insurance_sector = ('total_cash total_excess_capital total_profitslosses '
'total_contracts total_operational cumulative_bankruptcies '
'cumulative_market_exits cumulative_claims cumulative_unrecovered_claims').split(' ')
for _v in insurance_sector:
self.history_logs[_v] = []
"""Variables pertaining to individual insurance firms"""
self.history_logs['individual_contracts'] = [] # TODO: Should there not be a similar record for reinsurance
self.history_logs['insurance_firms_cash'] = []
"""Variables pertaining to reinsurance sector"""
self.history_logs['total_reincash'] = []
self.history_logs['total_reinexcess_capital'] = []
self.history_logs['total_reinprofitslosses'] = []
self.history_logs['total_reincontracts'] = []
self.history_logs['total_reinoperational'] = []
"""Variables pertaining to individual reinsurance firms"""
self.history_logs['reinsurance_firms_cash'] = []
"""Variables pertaining to cat bonds"""
self.history_logs['total_catbondsoperational'] = []
"""Variables pertaining to premiums"""
self.history_logs['market_premium'] = []
self.history_logs['market_reinpremium'] = []
self.history_logs['market_diffvar'] = []
def record_data(self, data_dict):
"""Method to record data for one period
Arguments
data_dict: Type dict. Data with the same keys as are used in self.history_log().
Returns None."""
for key in data_dict.keys():
if key != "individual_contracts":
self.history_logs[key].append(data_dict[key])
else:
for i in range(len(data_dict["individual_contracts"])):
self.history_logs['individual_contracts'][i].append(data_dict["individual_contracts"][i])
def obtain_log(self, requested_logs=LOG_DEFAULT): #This function allows to return in a list all the data generated by the model. There is no other way to transfer it back from the cloud.
"""Method to transfer entire log (self.history_log as well as risk event schedule). This is
used to transfer the log to master core from work cores in ensemble runs in the cloud.
No arguments.
Returns list (listified dict)."""
"""Include environment variables (number of risk models and risk event schedule)"""
self.history_logs["number_riskmodels"] = self.number_riskmodels
self.history_logs["rc_event_damage_initial"] = self.rc_event_damage_initial
self.history_logs["rc_event_schedule_initial"] = self.rc_event_schedule_initial
"""Parse logs to be returned"""
if requested_logs == None:
requested_logs = LOG_DEFAULT
log = {name: self.history_logs[name] for name in requested_logs}
"""Convert to list and return"""
return listify.listify(log)
def restore_logger_object(self, log):
"""Method to restore logger object. A log can be restored later. It can also be restored
on a different machine. This is useful in the case of ensemble runs to move the log to
the master node from the computation nodes.
Arguments:
log - listified dict - The log. This must be a list of dict values plus the dict
keys in the last element. It should have been created by
listify.listify()
Returns None."""
"""Restore dict"""
log = listify.delistify(log)
"""Extract environment variables (number of risk models and risk event schedule)"""
self.rc_event_schedule_initial = log["rc_event_schedule_initial"]
self.rc_event_damage_initial = log["rc_event_damage_initial"]
self.number_riskmodels = log["number_riskmodels"]
del log["rc_event_schedule_initial"], log["rc_event_damage_initial"], log["number_riskmodels"]
"""Restore history log"""
self.history_logs = log
def save_log(self, background_run):
"""Method to save log to disk of local machine. Distinguishes single and ensemble runs.
Is called at the end of the replication (if at all).
Arguments:
background_run: Type bool. Is this an ensemble run (true) or not (false).
Returns None."""
"""Prepare writing tasks"""
if background_run:
to_log = self.replication_log_prepare()
else:
to_log = self.single_log_prepare()
"""Write to disk"""
for filename, data, operation_character in to_log:
with open(filename, operation_character) as wfile:
wfile.write(str(data) + "\n")
def replication_log_prepare(self):
"""Method to prepare writing tasks for ensemble run saving.
No arguments
Returns list of tuples with three elements each.
Element 1: filename
Element 2: data structure to save
Element 3: operation parameter (w-write or a-append)."""
filename_prefix = {1: "one", 2: "two", 3: "three", 4: "four"}
fpf = filename_prefix[self.number_riskmodels]
to_log = []
to_log.append(("data/" + fpf + "_history_logs.dat", self.history_logs, "a"))
return to_log
def single_log_prepare(self):
"""Method to prepare writing tasks for single run saving.
No arguments
Returns list of tuples with three elements each.
Element 1: filename
Element 2: data structure to save
Element 3: operation parameter (w-write or a-append)."""
to_log = []
to_log.append(("data/history_logs.dat", self.history_logs, "w"))
return to_log
def add_insurance_agent(self):
"""Method for adding an additional insurer agent to the history log. This is necessary to keep the number
of individual insurance firm logs constant in time.
No arguments.
Returns None."""
# TODO: should this not also be done for self.history_logs['insurance_firms_cash'] and
# self.history_logs['reinsurance_firms_cash']
if len(self.history_logs['individual_contracts']) > 0:
zeroes_to_append = list(np.zeros(len(self.history_logs['individual_contracts'][0]), dtype=int))
else:
zeroes_to_append = []
self.history_logs['individual_contracts'].append(zeroes_to_append)