-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_thing_sem_from_instance.py
161 lines (138 loc) · 5.75 KB
/
prepare_thing_sem_from_instance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import time
import functools
import multiprocessing as mp
import numpy as np
import os
import argparse
from pycocotools.coco import COCO
from pycocotools.ytvos import YTVOS
from pycocotools import mask as maskUtils
from detectron2.data.datasets.builtin_meta import _get_coco_instances_meta
def annToRLE(ann, img_size):
h, w = img_size
segm = ann['segmentation']
if type(segm) == list:
# try:
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = maskUtils.frPyObjects(segm, h, w)
rle = maskUtils.merge(rles)
# except:
# pass
elif type(segm['counts']) == list:
# uncompressed RLE
rle = maskUtils.frPyObjects(segm, h, w)
else:
# rle
rle = ann['segmentation']
return rle
def annToMask(ann, img_size):
rle = annToRLE(ann, img_size)
m = maskUtils.decode(rle)
return m
def _process_instance_to_semantic(anns, output_semantic, img, categories):
img_size = (img["height"], img["width"])
output = np.zeros(img_size, dtype=np.uint8)
for ann in anns:
mask = annToMask(ann, img_size)
output[mask == 1] = categories[ann["category_id"]] + 1
# save as compressed npz
np.savez_compressed(output_semantic, mask=output)
# Image.fromarray(output).save(output_semantic)
def create_coco_semantic_from_instance(instance_json, sem_seg_root, categories):
"""
Create semantic segmentation annotations from panoptic segmentation
annotations, to be used by PanopticFPN.
It maps all thing categories to contiguous ids starting from 1, and maps all unlabeled pixels to class 0
Args:
instance_json (str): path to the instance json file, in COCO's format.
sem_seg_root (str): a directory to output semantic annotation files
categories (dict): category metadata. Each dict needs to have:
"id": corresponds to the "category_id" in the json annotations
"isthing": 0 or 1
"""
os.makedirs(sem_seg_root, exist_ok=True)
ytvos_detection = YTVOS(instance_json)
def iter_annotations():
for vid_id in ytvos_detection.getVidIds():
print('vid_id:',vid_id)
anns_ids = ytvos_detection.getAnnIds(vid_id)
video_anns = ytvos_detection.loadAnns(anns_ids)
vid = ytvos_detection.loadVids(int(vid_id))[0]
for i in range(len(vid["file_names"])) :
anns = []
name = vid["file_names"][i]
print('name:',name)
img = dict(file_name = name,width=vid["width"],height=vid["height"],video_id=vid["id"],frame_id = i,id = int((vid_id-1)*vid["length"]+i))
for video_ann in video_anns:
ann ={}
if (video_ann['bboxes'][i] is None):
continue
ann = dict(area = video_ann['areas'][i],bbox=video_ann['bboxes'][i],category_id=video_ann['category_id'],id = vid["id"],frame_id = i,image_id = int((vid_id-1)*video_ann["length"]+i),iscrowd = video_ann['iscrowd'],segmentation=video_ann['segmentations'][i])
# print('ann:',ann)
anns.append(ann)
file_name = os.path.splitext(name)[0]
output = os.path.join(sem_seg_root, file_name + '.npz')
# print('output:',output)
yield anns,output,img
# img = coco_detection.loadImgs(int(img_id))[0]
# file_name = os.path.splitext(img["file_name"])[0]
# output = os.path.join(sem_seg_root, file_name + '.npz')
# yield anns, output, img
# single process
# print("Start writing to {} ...".format(sem_seg_root))
# start = time.time()
# for anno, oup, img in iter_annotations():
# _process_instance_to_semantic(
# anno, oup, img, categories)
# print("Finished. time: {:.2f}s".format(time.time() - start))
# return
pool = mp.Pool(processes=max(mp.cpu_count() // 2, 4))
print("Start writing to {} ...".format(sem_seg_root))
start = time.time()
pool.starmap(
functools.partial(
_process_instance_to_semantic,
categories=categories),
iter_annotations(),
chunksize=100,
)
print("Finished. time: {:.2f}s".format(time.time() - start))
def get_parser():
parser = argparse.ArgumentParser(description="Keep only model in ckpt")
parser.add_argument(
"--dataset-name",
default="coco",
help="dataset to generate",
)
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
dataset_dir = os.path.join(os.path.dirname(__file__), args.dataset_name)
anno_dir = '/mnt/data/datasets/yr/OVIS/annotations'
dataset_dir = '/mnt/data/datasets/yr/OVIS/train'
if args.dataset_name == "coco":
thing_id_to_contiguous_id = _get_coco_instances_meta()["thing_dataset_id_to_contiguous_id"]
split_name = 'train2017'
annotation_name = "annotations/instances_{}.json"
else:
thing_id_to_contiguous_id = {1: 0}
split_name = 'train'
annotation_name = "annotations/{}_person.json"
# for s in ["train2017"]:
# create_coco_semantic_from_instance(
# os.path.join(dataset_dir, "annotations/instances_{}.json".format(s)),
# os.path.join(dataset_dir, "thing_{}".format(s)),
# thing_id_to_contiguous_id
# )
# try:
for s in ["annotations_train"]:
create_coco_semantic_from_instance(
os.path.join(anno_dir, "{}.json".format(s)),
dataset_dir,
thing_id_to_contiguous_id
)
# except:
# pass