-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlogLikelihoodHierarchical.m
257 lines (239 loc) · 9.83 KB
/
logLikelihoodHierarchical.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
function [varargout] = logLikelihoodHierarchical(simulation,D,options)
% logLikelihoodHierarchical() computes the value of the log-likelihood function,
% its gradient and its approximated Hessian. Two noise distributions are
% supported, Gaussian (normal) and Laplace noise. The optimal scaling and noise
% parameters are calculated analytically (see optimalScaling.m and
% optimalNoise.m). Data and simulation can be compared on a linear or
% logarithmic scale.
%
% USAGE:
% * [...] = logLikelihoodHierarchical(simulation,D,options)
% * [llH] = logLikelihoodHierarchical(...)
% * [llH,gradlLH] = logLikelihoodHierarchical(...)
% * [llH,gradlLH,HlLH] = logLikelihoodHierarchical(...)
%
% Parameters:
% simulation: (1 x #experiments) struct with fields
% * y: simulation of the output for the different experiments for a theta
% in which the values nlLH, gradnlLH, FIMnlLH will be computed
% * sy: simulation of sy, the sensitivities of the output vector, for the different experiments
% for a theta in which the values nlLH, gradnlLH, FIMnlLH will be computed
% D: (1 x #experiments) struct containing data with two fields
% * t: time points
% * my: # time points x # observables x # replicates
% options: HOOptions object holding the options for the
% definition of scaling and noise parameters
%
% Return values:
% lLh: value of the loglikelihood function in theta
% gradlLH: value of gradient of the loglikelihood function
% in theta
% HlLH: approximation of the Hessian of the loglikelihood function (only
% supported for Gaussian/normal noise)
%
% Note: all observables/experiments that share a scaling parameter
% need to also share the noise parameter!
%% INITIALIZATION
n_e = size(D,2); %number of experiments
n_y = size(D(1).my,2); %number of observables
n_r = size(D(1).my,3); %number of replicates
if ~isequal(options.n_exp,n_e)
error('number of experiments indicated in options not the same as in D')
end
ind_lin = [];
ind_log10 = [];
ind_log = [];
for iy = 1:n_y
switch options.scale{iy}
case 'lin'
ind_lin = [ind_lin,iy];
case 'log'
ind_log = [ind_log,iy];
case 'log10'
ind_log10 = [ind_log10,iy];
end
end
if nargout > 1
n_theta = size(simulation(1).sy,3);%number of parameters
end
lLH = 0;
if nargout > 1
gradlLH = zeros(n_theta,1);
if nargout > 2
if(strcmp(options.distribution,'laplace'))
error('No user supplied Fisher information matrix available for the Laplace distribution.');
else
HlLH = zeros(n_theta,n_theta);
end
end
end
try
for j = 1:n_e
assert(size(D(j).my,3) <= options.max_repl)
end
catch
error('check maximal number of replicates in options.max_repl')
end
% Initialization for for scaling and noise parameters
s = zeros(1,n_y,options.max_repl,n_e); % vector including scaling factors
noise = zeros(1,n_y,options.max_repl,n_e); % vector including noises
if nargout > 1
ds = zeros(1,n_y,n_theta,options.max_repl,n_e);
end
%% optimal values for the scaling parameters
for ie = 1:numel(options.expgroups_scaling)
ind_e = options.expgroups_scaling{ie};
for iy = 1:numel(options.obsgroups_scaling)
scale = options.scale{options.obsgroups_scaling{iy}(1)};
ind_y = options.obsgroups_scaling{iy};
if strcmp(options.distribution,'normal') || nargout <= 1
temps = optimalScaling(ind_y,simulation(ind_e),D(ind_e),options,scale);
for ir = 1:size(temps,3)
s(:,ind_y,ir,ind_e) = temps(:,:,ir);
end
else
[temps,tempds] = ...
optimalScaling(ind_y,simulation(ind_e),D(ind_e),options,scale);
for ir = 1:size(temps,3)
s(:,ind_y,ir,ind_e) = temps(:,:,ir);
for iiy = 1:numel(ind_y)
for iie = 1:numel(ind_e)
ds(:,ind_y(iiy),:,ir,ind_e(iie)) = tempds(:,:,:,ir);
end
end
end
end
end
end
% remove zeros added due to dimension differences between experiments
s(s==0) = nan;
%% optimal values for the noise parameters
for ie = 1:numel(options.expgroups_noise)
ind_e = options.expgroups_noise{ie};
for iy = 1:numel(options.obsgroups_noise)
scale = options.scale{(options.obsgroups_noise{iy}(1))};
ind_y = options.obsgroups_noise{iy};
ind_e = options.expgroups_noise{ie};
[tempnoise] = ...
optimalNoise(ind_y,simulation(ind_e),D(ind_e),options,s(:,:,:,ind_e),scale);
for ir = 1:size(tempnoise,3)
noise(:,ind_y,ir,ind_e)=tempnoise(:,:,ir);
end
end
end
%% save scaling and noise parameters
% s and noise have dimensions:
% (1 x # observables x max # replicates x # experiments/conditions)
if options.save
if ~exist(options.foldername,'dir')
mkdir(options.foldername)
end
save([options.foldername '/analytical_results.mat'],'s','noise');
end
%% computing loglikelihood, gradient and approximation Hessian
for j = 1:n_e
n_r = size(D(j).my,3);
y_sh = nan(size(D(j).my));
if nargout > 1
dy_sh= nan(size(D(j).my,1),size(D(j).my,2),size(D(j).my,3),n_theta);
end
noise_j = noise(:,:,1:size(D(j).my,3),j);
s_j = s(:,:,1:size(D(j).my,3),j);
if strcmp(options.distribution,'laplace') && nargout > 1
ds_j = ds(:,:,:,:,j);
end
if ~isempty(ind_lin)
y_sh(:,ind_lin,:) = bsxfun(@minus,D(j).my(:,ind_lin,:),...
bsxfun(@times,s_j(:,ind_lin,1:n_r),simulation(j).y(:,ind_lin)));
if nargout > 1
switch options.distribution
case 'normal'
% derivatives with respect to noise and s neglected
% because they are 0
dy_sh(:,ind_lin,:,:) = -bsxfun(@times,s_j(:,ind_lin,1:n_r),...
permute(repmat(simulation(j).sy(:,ind_lin,:),[1,1,1,n_r]),[1,2,4,3]));
case 'laplace'
% derivatives with respect to noise neglected
dy_sh(:,ind_lin,:,:) = bsxfun(@times,permute(ds_j(:,ind_lin,:,1:n_r),[1,2,4,3]),simulation(j).y(:,ind_lin)) +...
bsxfun(@times,s_j(:,ind_lin,1:n_r),permute(repmat(simulation(j).sy(:,ind_lin,:),[1,1,1,n_r]),[1,2,4,3]));
end
end
end
if ~isempty(ind_log)
y_sh(:,ind_log,:) = bsxfun(@minus,log(D(j).my(:,ind_log,:)),...
log(bsxfun(@times,s_j(:,ind_log,1:n_r),simulation(j).y(:,ind_log))));
if nargout > 1
switch options.distribution
case 'normal'
dy_sh(:,ind_log,:,:) = -bsxfun(@ldivide,simulation(j).y(:,ind_log),...
permute(repmat(simulation(j).sy(:,ind_log,:),[1,1,1,n_r]),[1,2,4,3]));
case 'laplace'
dy_sh(:,ind_log,:,:) = bsxfun(@ldivide,...
bsxfun(@times,s_j(:,ind_log,1:n_r),simulation(j).y(:,ind_log)),...
bsxfun(@plus,bsxfun(@times,permute(ds_j(:,ind_log,:,1:n_r),[1,2,4,3]),...
simulation(j).y(:,ind_log)),...
bsxfun(@times,s_j(:,ind_log,1:n_r),...
permute(repmat(simulation(j).sy(:,ind_log,:),[1,1,1,n_r]),...
[1,2,4,3]))));
end
end
end
if ~isempty(ind_log10)
y_sh(:,ind_log10,:) = bsxfun(@minus,log10(D(j).my(:,ind_log10,:)),...
log10(bsxfun(@times,s_j(:,ind_log10,1:n_r),simulation(j).y(:,ind_log10))));
if nargout > 1
switch options.distribution
case 'normal'
dy_sh(:,ind_log10,:,:) = -bsxfun(@ldivide,simulation(j).y(:,ind_log10)*log(10),...
permute(repmat(simulation(j).sy(:,ind_log10,:),[1,1,1,n_r]),[1,2,4,3]));
case 'laplace'
dy_sh(:,ind_log10,:,:) = 1/log(10)*bsxfun(@ldivide,...
bsxfun(@times,s_j(:,ind_log10,1:n_r),simulation(j).y(:,ind_log10)),...
bsxfun(@plus,bsxfun(@times,permute(ds_j(:,ind_log10,:,1:n_r),[1,2,4,3]),...
simulation(j).y(:,ind_log10)),...
bsxfun(@times,s_j(:,ind_log10,1:n_r),...
permute(repmat(simulation(j).sy(:,ind_log10,:),[1,1,1,n_r]),...
[1,2,4,3]))));
end
end
end
switch options.distribution
case 'normal'
temparg = 0.5*(bsxfun(@times,~isnan(D(j).my),log(2*pi*noise_j))+...
bsxfun(@rdivide,bsxfun(@power,y_sh,2),noise_j));
case 'laplace'
temparg = bsxfun(@times,~isnan(D(j).my),log(2*noise_j))+...
bsxfun(@rdivide,abs(y_sh),noise_j);
end
lLH = lLH - sum(sum(nansum(temparg,1),3),2);
if nargout > 1
switch options.distribution
case 'normal'
gradlLH = gradlLH - squeeze(sum(sum(nansum(...
bsxfun(@times,bsxfun(@rdivide,y_sh,noise_j),...
dy_sh),1),2),3));
if nargout > 2
% approximated Hessian
tmp1 = nansum(bsxfun(@rdivide, dy_sh, sqrt(noise_j)), 3) / size(dy_sh, 3);
tmp2 = permute(tmp1, [1, 2, 4, 3]);
HlLH = HlLH -squeeze(nansum(nansum(bsxfun(@times, tmp1, tmp2), 1), 2));% ;
end
case 'laplace'
gradlLH = gradlLH + squeeze(sum(sum(nansum(...
bsxfun(@times,bsxfun(@rdivide,sign(y_sh),noise_j),...
dy_sh),1),2),3));
end
end
end
switch nargout
case{0,1}
varargout{1} = lLH;
case 2
varargout{1} = lLH;
varargout{2} = gradlLH;
case 3
varargout{1} = lLH;
varargout{2} = gradlLH;
varargout{3} = HlLH;
end
end