-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgetParameterConfidenceIntervals.m
50 lines (46 loc) · 2.08 KB
/
getParameterConfidenceIntervals.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function parameters = getParameterConfidenceIntervals(parameters, alpha, varargin)
% getParameterConfidenceIntervals() calculates the confidence intervals
% for the model parameters. This is done by four approaches:
% The values of CI.local_PL and CI.PL are determined by the point on which
% a threshold according to the confidence level alpha (calculated by a
% chi2-distribution) is reached. local_PL computes this point by a local
% approximation around the MAP estimate using the Hessian matrix, PL uses
% the profile likelihoods instead.
% The value of CI.local_B is computed by using the cummulative distribution
% function of a local approximation of the profile based on the Hessian
% matrix at the MAP estimate.
% The value of CI.S is calculated using samples for the model parameters
% and the according percentiles based on the confidence levels alpha.
%
% USAGE:
% * parameters = getParameterConfidenceIntervals(parameters, alpha)
%
% Parameters:
% parameters: parameter struct
% alpha: vector with desired confidence levels for the intervals
% varargin:
% options: A PestoOptions instance
%
% Return values:
% parameters: updated parameter struct
%
% Generated fields of parameters:
% CI: Information about confidence levels
% * local_PL: Threshold based approach, uses a local approximation by
% the Hessian matrix at the MAP estimate
% (requires parameters.MS, e.g. from getMultiStarts)
% * PL: Threshold based approach, uses profile likelihoods
% (requires parameters.P, e.g. from getParameterProfiles)
% * local_B: Mass based approach, uses a local approximation by
% the Hessian matrix at the MAP estimate
% (requires parameters.MS, e.g. from getMultiStarts)
% * S: Bayesian approach, uses percentiles based on samples
% (requires parameters.S, e.g. from getParameterSamples)
%% Checking and assigning inputs
if length(varargin) >= 1
options = handleOptionArgument(varargin{1});
else
options = PestoOptions();
end
parameters = getConfidenceIntervals(parameters, alpha, 'par', options);
end