-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_model.m
150 lines (142 loc) · 6.71 KB
/
make_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
% make_model uses the information contained in the model struct to generate
% symbolic expressions for parameters
%
% USAGE:
% ======
% MODEL = make_model(MODEL)
%
% INPUTS:
% =======
% Model ... model struct encapsulating the model definition for a MEM
% problem
% the model struct must have the following fields of equal length
% .param cell array of parameter names
% .common_effect indicates whether there is a common effect
% component for that parameter. common effects components are shared
% across individuals
% .random_effect indicates whether there is a random effect
% component for that parameter. random effect components are different
% for every individual
%
% Outputs:
% ========
% Model ... model struct encapsulating the model definition for a MEM
% problem
% the function make_model will add the following fields to the struct
% .sym ... contains symbolic definition of the overall model
% .xi ... are the parameter wich are optimised, this usually consist
% of common effects, the parametrisation of the random effects
% covariance matrix and the parametrisation of the noise parameters
% .phi ... is are the mixed effect parametrisation as function of
% common effects beta and random effects b
% .beta ... is the parametrisation of common effects as function of
% xi
% .b ... is the parametrisation of random effects
% .delta ... is the parametrisation of the covariance matrix of the
% random effect.
% 2015/04/14 Fabian Froehlich
function [ Model ] = make_model( Model )
% backwards compatibility
if(isfield(Model,'fixed_effect') && ~isfield(Model,'common_effect'))
Model.common_effect = Model.fixed_effect;
end
if(any([length(Model.param)~=length(Model.common_effect),length(Model.param)~=length(Model.random_effect),length(Model.common_effect)~=length(Model.random_effect)]))
error('Size of Model.param, Model.common_effect and Model.random_effect (Model.fixed_effect) do not agree')
end
% strip parameters of bad characters as this will cause problems with generation of symbolic variables
for j = 1:length(Model.param)
Model.param{j} = strrep(Model.param{j},' ','_');
Model.param{j} = strrep(Model.param{j},'\','');
end
switch(Model.type_D)
case {'matrix-logarithm', 'givens-parametrization', 'Lie-generators'}
n = length(Model.param);
n_f = sum(Model.common_effect);
n_r = sum(Model.random_effect);
% initialise symbolic variables
Model.sym.xi = sym('xi',[n_f+(n_r^2+n_r)/2,1]);
Model.sym.phi = sym('phi',[sum(arrayfun(@or,Model.common_effect,Model.random_effect)),1]);
Model.sym.beta = sym('beta',[n_f,1]);
Model.sym.b = sym('b',[n_r,1]);
Model.sym.delta = sym('delta',[(n_r^2+n_r)/2,1]);
k = 0;
k_f = 0;
k_r = 0;
for j = 1:n
if(Model.common_effect(j))
k_f = k_f + 1;
% construct variables corresponding to common effects
eval(['syms M_' Model.param{j} ';']);
eval(['Model.sym.xi(k_f) = M_' Model.param{j} ';']);
eval(['Model.sym.beta(k_f) = M_' Model.param{j} ';']);
end
if(Model.random_effect(j))
% construct variables corresponding to radom effects
k_r = k_r + 1;
eval(['syms b_' Model.param{j} ';']);
ll = find(Model.random_effect(1:j)); %k_r
if any(strcmp(Model.type_D, {'givens-parametrization', 'Lie-generators'}))
eval(['syms C_' Model.param{j} '_' Model.param{j} ';']);
eval(['Model.sym.xi(sum(Model.common_effect)+k_r) = C_' Model.param{j} '_' Model.param{j} ';']);
eval(['Model.sym.delta(k_r) = C_' Model.param{j} '_' Model.param{j} ';'])
for l = 1:length(ll)-1
m = ll(l);
eval(['syms C_' Model.param{j} '_' Model.param{m} ';']);
eval(['Model.sym.xi(sum(Model.common_effect)+n_r+((k_r-2)^2+(k_r-2))/2+l) = C_' Model.param{j} '_' Model.param{m} ';']);
eval(['Model.sym.delta(n_r+((k_r-2)^2+(k_r-2))/2+l) = C_' Model.param{j} '_' Model.param{m} ';'])
end
else
for l = 1:length(ll)
m = ll(l);
eval(['syms C_' Model.param{j} '_' Model.param{m} ';']);
eval(['Model.sym.xi(sum(Model.common_effect)+((k_r-1)^2+(k_r-1))/2+l) = C_' Model.param{j} '_' Model.param{m} ';']);
eval(['Model.sym.delta(((k_r-1)^2+(k_r-1))/2+l) = C_' Model.param{j} '_' Model.param{m} ';'])
end
end
eval(['Model.sym.b(k_r) = b_' Model.param{j} ';']);
end
if(or(Model.common_effect(j),Model.random_effect(j)))
% construct variables corresponding to mixed effects
k = k + 1;
eval(['syms p_' Model.param{j} ';']);
eval(['Model.sym.phi(k) = p_' Model.param{j} ';']);
end
end
case 'diag-matrix-logarithm'
n = length(Model.param);
n_f = sum(Model.common_effect);
n_r = sum(Model.random_effect);
% initialise symbolic variables
Model.sym.xi = sym('xi',[n_f+n_r,1]);
Model.sym.phi = sym('phi',[sum(arrayfun(@or,Model.common_effect,Model.random_effect)),1]);
Model.sym.beta = sym('beta',[n_f,1]);
Model.sym.b = sym('b',[n_r,1]);
Model.sym.delta = sym('delta',[n_r,1]);
k = 0;
k_f = 0;
k_r = 0;
for j = 1:n
if(Model.common_effect(j))
% construct variables corresponding to common effects
k_f = k_f + 1;
eval(['syms M_' Model.param{j} ';']);
eval(['Model.sym.xi(k_f) = M_' Model.param{j} ';']);
eval(['Model.sym.beta(k_f) = M_' Model.param{j} ';']);
end
if(Model.random_effect(j))
% construct variables corresponding to radom effects
k_r = k_r + 1;
eval(['syms C_' Model.param{j} ' b_' Model.param{j} ';']);
eval(['Model.sym.xi(sum(Model.common_effect)+k_r) = C_' Model.param{j} ';']);
eval(['Model.sym.b(k_r) = b_' Model.param{j} ';']);
eval(['Model.sym.delta(k_r) = C_' Model.param{j} ';']);
end
if(or(Model.common_effect(j),Model.random_effect(j)))
% construct variables corresponding to mixed effects
k = k + 1;
eval(['syms p_' Model.param{j} ';']);
eval(['Model.sym.phi(k) = p_' Model.param{j} ';']);
end
end
end
end