forked from VainF/Torch-Pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function.py
518 lines (414 loc) · 19.8 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import torch
import torch.nn as nn
from .. import ops
from copy import deepcopy
from functools import reduce
from operator import mul
from abc import ABC, abstractclassmethod, abstractmethod, abstractstaticmethod
from typing import Callable, Sequence, Tuple, Dict
__all__=[
'BasePruningFunc',
'PrunerBox',
'prune_conv_out_channels',
'prune_conv_in_channels',
'prune_depthwise_conv_out_channels',
'prune_depthwise_conv_in_channels',
'prune_batchnorm_out_channels',
'prune_batchnorm_in_channels',
'prune_linear_out_channels',
'prune_linear_in_channels',
'prune_prelu_out_channels',
'prune_prelu_in_channels',
'prune_layernorm_out_channels',
'prune_layernorm_in_channels',
'prune_embedding_out_channels',
'prune_embedding_in_channels',
'prune_parameter_out_channels',
'prune_parameter_in_channels',
'prune_multihead_attention_out_channels',
'prune_multihead_attention_in_channels',
'prune_groupnorm_out_channels',
'prune_groupnorm_in_channels',
'prune_instancenorm_out_channels',
'prune_instancenorm_in_channels',
]
class BasePruningFunc(ABC):
TARGET_MODULES = ops.TORCH_OTHERS # None
def __init__(self, pruning_dim=1):
self.pruning_dim = pruning_dim
@abstractclassmethod
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]):
raise NotImplementedError
@abstractclassmethod
def prune_in_channels(self, layer: nn.Module, idxs: Sequence[int]):
raise NotImplementedError
@abstractclassmethod
def get_out_channels(self, layer: nn.Module):
raise NotImplementedError
@abstractclassmethod
def get_in_channels(self, layer: nn.Module):
raise NotImplementedError
def check(self, layer, idxs, to_output):
if self.TARGET_MODULES is not None:
assert isinstance(layer, self.TARGET_MODULES), 'Mismatched pruner {} and module {}'.format(
self.__str__, layer)
if to_output:
prunable_channels = self.get_out_channels(layer)
else:
prunable_channels = self.get_in_channels(layer)
if prunable_channels is not None:
assert all(idx < prunable_channels and idx >=
0 for idx in idxs), "All pruning indices should fall into [{}, {})".format(0, prunable_channels)
def __call__(self, layer: nn.Module, idxs: Sequence[int], to_output: bool = True, inplace: bool = True, dry_run: bool = False) -> Tuple[nn.Module, int]:
idxs.sort()
self.check(layer, idxs, to_output)
pruning_fn = self.prune_out_channels if to_output else self.prune_in_channels
if not inplace:
layer = deepcopy(layer)
layer = pruning_fn(layer, idxs)
return layer
class ConvPruner(BasePruningFunc):
TARGET_MODULE = ops.TORCH_CONV
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.out_channels)) - set(idxs))
keep_idxs.sort()
layer.out_channels = layer.out_channels-len(idxs)
if not layer.transposed:
layer.weight = torch.nn.Parameter(
layer.weight.data[keep_idxs])
else:
layer.weight = torch.nn.Parameter(
layer.weight.data[:, keep_idxs])
if layer.bias is not None:
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
def prune_in_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.in_channels)) - set(idxs))
keep_idxs.sort()
layer.in_channels = layer.in_channels - len(idxs)
if layer.groups>1:
keep_idxs = keep_idxs[:len(keep_idxs)//layer.groups]
if not layer.transposed:
layer.weight = torch.nn.Parameter(
layer.weight.data[:, keep_idxs])
else:
layer.weight = torch.nn.Parameter(
layer.weight.data[keep_idxs])
# no bias pruning because it does not change the output channels
return layer
def get_out_channels(self, layer):
return layer.out_channels
def get_in_channels(self, layer):
return layer.in_channels
class DepthwiseConvPruner(ConvPruner):
TARGET_MODULE = ops.TORCH_CONV
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.out_channels)) - set(idxs))
keep_idxs.sort()
layer.out_channels = layer.out_channels-len(idxs)
layer.in_channels = layer.in_channels-len(idxs)
layer.groups = layer.groups-len(idxs)
layer.weight = torch.nn.Parameter(layer.weight.data[keep_idxs])
if layer.bias is not None:
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
prune_in_channels = prune_out_channels
# def prune_input(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
# return self.prune_output(layer, idxs)
class LinearPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_LINEAR
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.out_features)) - set(idxs))
keep_idxs.sort()
layer.out_features = layer.out_features-len(idxs)
layer.weight = torch.nn.Parameter(layer.weight.data[keep_idxs])
if layer.bias is not None:
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
def prune_in_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.in_features)) - set(idxs))
keep_idxs.sort()
layer.in_features = layer.in_features-len(idxs)
layer.weight = torch.nn.Parameter(
layer.weight.data[:, keep_idxs])
return layer
def get_out_channels(self, layer):
return layer.out_features
def get_in_channels(self, layer):
return layer.in_features
class BatchnormPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_BATCHNORM
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.num_features)) - set(idxs))
keep_idxs.sort()
layer.num_features = layer.num_features-len(idxs)
layer.running_mean = layer.running_mean.data[keep_idxs]
layer.running_var = layer.running_var.data[keep_idxs]
if layer.affine:
layer.weight = torch.nn.Parameter(
layer.weight.data[keep_idxs])
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
prune_in_channels = prune_out_channels
# def prune_in_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
# return self.prune_out_channels(layer=layer, idxs=idxs)
def get_out_channels(self, layer):
return layer.num_features
def get_in_channels(self, layer):
return layer.num_features
class LayernormPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_LAYERNORM
def __init__(self, metrcis=None, pruning_dim=-1):
super().__init__(metrcis)
self.pruning_dim = pruning_dim
def check(self, layer, idxs):
layer.dim = self.pruning_dim
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
pruning_dim = self.pruning_dim
if len(layer.normalized_shape) < -pruning_dim:
return layer
num_features = layer.normalized_shape[pruning_dim]
keep_idxs = torch.tensor(list(set(range(num_features)) - set(idxs)))
keep_idxs.sort()
if layer.elementwise_affine:
layer.weight = torch.nn.Parameter(
layer.weight.data.index_select(pruning_dim, keep_idxs))
layer.bias = torch.nn.Parameter(
layer.bias.data.index_select(pruning_dim, keep_idxs))
if pruning_dim != -1:
layer.normalized_shape = layer.normalized_shape[:pruning_dim] + (
keep_idxs.size(0), ) + layer.normalized_shape[pruning_dim+1:]
else:
layer.normalized_shape = layer.normalized_shape[:pruning_dim] + (
keep_idxs.size(0), )
return layer
prune_in_channels = prune_out_channels
def get_out_channels(self, layer):
return layer.normalized_shape[self.pruning_dim]
def get_in_channels(self, layer):
return layer.normalized_shape[self.pruning_dim]
class GroupNormPruner(BasePruningFunc):
def prune_out_channels(self, layer: nn.PReLU, idxs: list) -> nn.Module:
keep_idxs = list(set(range(layer.num_channels)) - set(idxs))
keep_idxs.sort()
layer.num_channels = layer.num_channels-len(idxs)
if layer.affine:
layer.weight = torch.nn.Parameter(
layer.weight.data[keep_idxs])
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
prune_in_channels = prune_out_channels
def get_out_channels(self, layer):
return layer.num_channels
def get_in_channels(self, layer):
return layer.num_channels
class InstanceNormPruner(BasePruningFunc):
def prune_out_channels(self, layer: nn.Module, idxs: Sequence[int]) -> nn.Module:
keep_idxs = list(set(range(layer.num_features)) - set(idxs))
keep_idxs.sort()
layer.num_features = layer.num_features-len(idxs)
if layer.affine:
layer.weight = torch.nn.Parameter(
layer.weight.data[keep_idxs])
layer.bias = torch.nn.Parameter(layer.bias.data[keep_idxs])
return layer
prune_in_channels = prune_out_channels
def get_out_channels(self, layer):
return layer.num_features
def get_in_channels(self, layer):
return layer.num_features
class PReLUPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_PRELU
def prune_out_channels(self, layer: nn.PReLU, idxs: list) -> nn.Module:
if layer.num_parameters == 1:
return layer
keep_idxs = list(set(range(layer.num_parameters)) - set(idxs))
keep_idxs.sort()
layer.num_parameters = layer.num_parameters-len(idxs)
layer.weight = torch.nn.Parameter(layer.weight.data[keep_idxs])
return layer
prune_in_channels = prune_out_channels
# def prune_in_channels(self, layer:nn.Module, idxs: Sequence[int]) -> nn.Module:
# return self.prune_out_channels(layer=layer, idxs=idxs)
def get_out_channels(self, layer):
if layer.num_parameters == 1:
return None
else:
return layer.num_parameters
def get_in_channels(self, layer):
return self.get_out_channels(layer=layer)
class EmbeddingPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_EMBED
def prune_out_channels(self, layer: nn.Embedding, idxs: list) -> nn.Module:
num_features = layer.embedding_dim
keep_idxs = list(set(range(num_features)) - set(idxs))
keep_idxs.sort()
layer.weight = torch.nn.Parameter(
layer.weight.data[:, keep_idxs])
layer.embedding_dim = len(keep_idxs)
return layer
prune_in_channels = prune_out_channels
# def prune_in_channels(self, layer: nn.Embedding, idxs: list)-> nn.Module:
# return self.prune_out_channels(layer=layer, idxs=idxs)
def get_out_channels(self, layer):
return layer.embedding_dim
def get_in_channels(self, layer):
return self.get_out_channels(layer=layer)
class LSTMPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_LSTM
def prune_out_channels(self, layer: nn.LSTM, idxs: list) -> nn.Module:
assert layer.num_layers==1
num_layers = layer.num_layers
num_features = layer.hidden_size
keep_idxs = list(set(range(num_features)) - set(idxs))
keep_idxs.sort()
keep_idxs = torch.tensor(keep_idxs)
expanded_keep_idxs = torch.cat([ keep_idxs+i*num_features for i in range(4) ], dim=0)
if layer.bidirectional:
postfix = ['', '_reverse']
else:
postfix = ['']
#for l in range(num_layers):
for pf in postfix:
setattr(layer, 'weight_hh_l0'+pf, torch.nn.Parameter(
getattr(layer, 'weight_hh_l0'+pf).data[expanded_keep_idxs]))
if layer.bias:
setattr(layer, 'bias_hh_l0'+pf, torch.nn.Parameter(
getattr(layer, 'bias_hh_l0'+pf).data[expanded_keep_idxs]))
setattr(layer, 'weight_hh_l0'+pf, torch.nn.Parameter(
getattr(layer, 'weight_hh_l0'+pf).data[:, keep_idxs]))
setattr(layer, 'weight_ih_l0'+pf, torch.nn.Parameter(
getattr(layer, 'weight_ih_l0'+pf).data[expanded_keep_idxs]))
if layer.bias:
setattr(layer, 'bias_ih_l0'+pf, torch.nn.Parameter(
getattr(layer, 'bias_ih_l0'+pf).data[expanded_keep_idxs]))
layer.hidden_size = len(keep_idxs)
def prune_in_channels(self, layer: nn.LSTM, idxs: list):
num_features = layer.input_size
keep_idxs = list(set(range(num_features)) - set(idxs))
keep_idxs.sort()
setattr(layer, 'weight_ih_l0', torch.nn.Parameter(
getattr(layer, 'weight_ih_l0').data[:, keep_idxs]))
if layer.bidirectional:
setattr(layer, 'weight_ih_l0_reverse', torch.nn.Parameter(
getattr(layer, 'weight_ih_l0_reverse').data[:, keep_idxs]))
layer.input_size = len(keep_idxs)
def get_out_channels(self, layer):
return layer.hidden_size
def get_in_channels(self, layer):
return layer.input_size
class ParameterPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_PARAMETER
def __init__(self, pruning_dim=-1):
super().__init__(pruning_dim=pruning_dim)
def prune_out_channels(self, tensor, idxs: list) -> nn.Module:
keep_idxs = list(set(range(tensor.data.shape[self.pruning_dim])) - set(idxs))
keep_idxs.sort()
pruned_parameter = nn.Parameter(torch.index_select(
tensor.data, self.pruning_dim, torch.LongTensor(keep_idxs).to(tensor.device)))
return pruned_parameter
prune_in_channels = prune_out_channels
def get_out_channels(self, parameter):
return parameter.shape[self.pruning_dim]
def get_in_channels(self, parameter):
return parameter.shape[self.pruning_dim]
class MultiheadAttentionPruner(BasePruningFunc):
TARGET_MODULES = ops.TORCH_MHA
def check(self, layer, idxs, to_output):
super().check(layer, idxs, to_output)
assert (layer.embed_dim - len(idxs)) % layer.num_heads == 0, "embed_dim (%d) of MultiheadAttention after pruning must divide evenly by `num_heads` (%d)" % (layer.embed_dim, layer.num_heads)
def prune_out_channels(self, layer, idxs: list) -> nn.Module:
keep_idxs = list(set(range(layer.embed_dim)) - set(idxs))
keep_idxs.sort()
if layer.q_proj_weight is not None:
layer.q_proj_weight = nn.Parameter(torch.index_select(
layer.q_proj_weight.data, 0, torch.LongTensor(keep_idxs)))
if layer.k_proj_weight is not None:
layer.q_proj_weight = nn.Parameter(torch.index_select(
layer.q_proj_weight.data, 0, torch.LongTensor(keep_idxs)))
if layer.v_proj_weight is not None:
layer.v_proj_weight = nn.Parameter(torch.index_select(
layer.v_proj_weight.data, 0, torch.LongTensor(keep_idxs)))
pruning_idxs_repeated = idxs + \
[i+layer.embed_dim for i in idxs] + \
[i+2*layer.embed_dim for i in idxs]
keep_idxs_3x_repeated = list(
set(range(3*layer.embed_dim)) - set(pruning_idxs_repeated))
keep_idxs_3x_repeated.sort()
if layer.in_proj_weight is not None:
layer.in_proj_weight = nn.Parameter(torch.index_select(
layer.in_proj_weight.data, 0, torch.LongTensor(keep_idxs_3x_repeated)))
layer.in_proj_weight = nn.Parameter(torch.index_select(
layer.in_proj_weight.data, 1, torch.LongTensor(keep_idxs)))
if layer.in_proj_bias is not None:
layer.in_proj_bias = nn.Parameter(torch.index_select(
layer.in_proj_bias.data, 0, torch.LongTensor(keep_idxs_3x_repeated)))
if layer.bias_k is not None:
layer.bias_k = nn.Parameter(torch.index_select(
layer.bias_k.data, 2, torch.LongTensor(keep_idxs)))
if layer.bias_v is not None:
layer.bias_v = nn.Parameter(torch.index_select(
layer.bias_v.data, 2, torch.LongTensor(keep_idxs)))
linear = layer.out_proj
keep_idxs = list(set(range(linear.out_features)) - set(idxs))
keep_idxs.sort()
linear.out_features = linear.out_features-len(idxs)
linear.weight = torch.nn.Parameter(
linear.weight.data[keep_idxs])
if linear.bias is not None:
linear.bias = torch.nn.Parameter(
linear.bias.data[keep_idxs])
keep_idxs = list(set(range(linear.in_features)) - set(idxs))
keep_idxs.sort()
linear.in_features = linear.in_features-len(idxs)
linear.weight = torch.nn.Parameter(
linear.weight.data[:, keep_idxs])
layer.embed_dim = layer.embed_dim - len(idxs)
layer.head_dim = layer.embed_dim // layer.num_heads
layer.kdim = layer.embed_dim
layer.vdim = layer.embed_dim
return layer
prune_in_channels = prune_out_channels
def get_out_channels(self, layer):
return layer.embed_dim
def get_in_channels(self, layer):
return self.get_out_channels(layer)
PrunerBox = {
ops.OPTYPE.CONV: ConvPruner(),
ops.OPTYPE.LINEAR: LinearPruner(),
ops.OPTYPE.BN: BatchnormPruner(),
ops.OPTYPE.DEPTHWISE_CONV: DepthwiseConvPruner(),
ops.OPTYPE.PRELU: PReLUPruner(),
ops.OPTYPE.LN: LayernormPruner(),
ops.OPTYPE.EMBED: EmbeddingPruner(),
ops.OPTYPE.PARAMETER: ParameterPruner(),
ops.OPTYPE.MHA: MultiheadAttentionPruner(),
ops.OPTYPE.LSTM: LSTMPruner(),
ops.OPTYPE.GN: GroupNormPruner(),
ops.OPTYPE.IN: InstanceNormPruner(),
}
# Alias
prune_conv_out_channels = PrunerBox[ops.OPTYPE.CONV].prune_out_channels
prune_conv_in_channels = PrunerBox[ops.OPTYPE.CONV].prune_in_channels
prune_depthwise_conv_out_channels = PrunerBox[ops.OPTYPE.DEPTHWISE_CONV].prune_out_channels
prune_depthwise_conv_in_channels = PrunerBox[ops.OPTYPE.DEPTHWISE_CONV].prune_in_channels
prune_batchnorm_out_channels = PrunerBox[ops.OPTYPE.BN].prune_out_channels
prune_batchnorm_in_channels = PrunerBox[ops.OPTYPE.BN].prune_in_channels
prune_linear_out_channels = PrunerBox[ops.OPTYPE.LINEAR].prune_out_channels
prune_linear_in_channels = PrunerBox[ops.OPTYPE.LINEAR].prune_in_channels
prune_prelu_out_channels = PrunerBox[ops.OPTYPE.PRELU].prune_out_channels
prune_prelu_in_channels = PrunerBox[ops.OPTYPE.PRELU].prune_in_channels
prune_layernorm_out_channels = PrunerBox[ops.OPTYPE.LN].prune_out_channels
prune_layernorm_in_channels = PrunerBox[ops.OPTYPE.LN].prune_in_channels
prune_embedding_out_channels = PrunerBox[ops.OPTYPE.EMBED].prune_out_channels
prune_embedding_in_channels = PrunerBox[ops.OPTYPE.EMBED].prune_in_channels
prune_parameter_out_channels = PrunerBox[ops.OPTYPE.PARAMETER].prune_out_channels
prune_parameter_in_channels = PrunerBox[ops.OPTYPE.PARAMETER].prune_in_channels
prune_multihead_attention_out_channels = PrunerBox[ops.OPTYPE.MHA].prune_out_channels
prune_multihead_attention_in_channels = PrunerBox[ops.OPTYPE.MHA].prune_in_channels
prune_lstm_out_channels = PrunerBox[ops.OPTYPE.LSTM].prune_out_channels
prune_lstm_in_channels = PrunerBox[ops.OPTYPE.LSTM].prune_in_channels
prune_groupnorm_out_channels = PrunerBox[ops.OPTYPE.GN].prune_out_channels
prune_groupnorm_in_channels = PrunerBox[ops.OPTYPE.GN].prune_in_channels
prune_instancenorm_out_channels = PrunerBox[ops.OPTYPE.IN].prune_out_channels
prune_instancenorm_in_channels = PrunerBox[ops.OPTYPE.IN].prune_in_channels