forked from dasxran/Selenium-Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_exec_identifySearchButton.py
127 lines (96 loc) · 4.43 KB
/
tf_exec_identifySearchButton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from os import path, curdir, remove
from glob import glob
from time import sleep
from PIL import Image
from typing import List
from selenium import webdriver
from selenium.webdriver.chrome.webdriver import WebDriver
from selenium.webdriver.remote.webelement import WebElement
from shutil import copy
import docker
import win32ui
import win32con
ROOT_DIR: str = path.abspath(curdir)
def scrapeImages(weblink,lookfor):
# clean up imageScrapingData directory
files = glob(ROOT_DIR + '/imageScrapingData/*')
for file in files:
remove(file)
driver: WebDriver
desiredCap = {
"browserName": "chrome"
}
try:
# Local webdriver
driver = webdriver.Chrome(executable_path=ROOT_DIR + '/driver/chromedriver.exe')
# Remote webdriver for docker image
# driver = webdriver.Remote(command_executor='http://localhost:4444/wd/hub',desired_capabilities=desiredCap)
driver.get(weblink)
sleep(2)
driver.save_screenshot(ROOT_DIR + '/imageScrapingData/fullscreen.png') # take full screen screenshot
elements: List[WebElement] = driver.find_elements_by_xpath("//button | //input") # get all button or input tags
intCounter: int = 0
element: WebElement
result = []
for element in elements: # loop for each element
if element.size['width'] > 0 and element.size['height'] > 0: # check element is visible (height/weight > 0 px)
intCounter += 1
x = element.location['x']
y = element.location['y']
width = element.location['x'] + element.size['width']
height = element.location['y'] + element.size['height']
im = Image.open(ROOT_DIR + '/imageScrapingData/fullscreen.png')
im = im.crop((int(x), int(y), int(width), int(height)))
elementImagePath: str = '{0}/imageScrapingData/image{1}.png'.format(ROOT_DIR, str(intCounter))
im.save(elementImagePath)
imageTestPath: str = '{0}/tfImageClassifier/testData/{1}'.format(ROOT_DIR, path.basename(elementImagePath))
copy(elementImagePath, imageTestPath) # copy image to Tensorflow testData folder
sleep(1)
dblPct = getTfPctDocker(path.basename(imageTestPath),lookfor)
remove(imageTestPath) # delete file after tf processing
result.append(
{'element': element, 'elementImage': elementImagePath, 'location': element.location,
'size': element.size, 'probability':dblPct})
print(result)
seq = [x['probability'] for x in result]
maxPct = (max(seq))
if win32ui.MessageBox("Element found with max " + str(round(maxPct * 100, 2)) + "% accuracy.",
"Identify Webpage Element", win32con.MB_OK) == win32con.IDOK:
sleep(2)
for item in result:
if item.get('probability') == maxPct:
highlight(item.get('element'))
finally:
driver.close()
driver.quit()
def highlight(element):
"""Highlights (blinks) a Selenium Webdriver element"""
driver = element._parent
def apply_style(s):
driver.execute_script("arguments[0].setAttribute('style', arguments[1]);", element, s)
original_style = element.get_attribute('style')
for x in range(5):
apply_style("border: 3px solid blue;")
sleep(.4)
apply_style(original_style)
sleep(.4)
def getTfPctDocker(testImageName,lookfor):
client = docker.from_env()
container = client.containers.run(
'dasxran/tensorflow:trainimages',
'python /image_classifier/scripts/return_pct.py --graph=/image_classifier/outputModel/retrained_graph.pb '
'--labels=/image_classifier/outputModel/retrained_labels.txt --input_layer=Placeholder '
'--lookfor=' + lookfor + ' --output_layer=final_result --image=/image_classifier/testData/' + testImageName,
detach=False, auto_remove=False, remove=True, tty=True, stdin_open=True, volumes={
ROOT_DIR + '/tfImageClassifier': {
'bind': '/image_classifier',
'mode': 'rw',
}
})
try:
dblPct = float(container.decode().split('\r\n')[-2])
except ValueError:
print("That's not an percent value!")
return dblPct
# Provide your retails web url
scrapeImages('https://www.amazon.ca/','magnifyingglass')