Skip to content

Latest commit

 

History

History
79 lines (71 loc) · 4.6 KB

STEPS_TO_FOLLOW.md

File metadata and controls

79 lines (71 loc) · 4.6 KB

Here are the steps to follow for the evaluation :)

We recommend you wrap your project (or jupyter notebook) in a parent folder and run the following command on that folder. The output txt file, by default, will be generated at the folder where you run your command on.

For Python Project:

STEP 1

Install dslinter from the Python Package Index:

pip install dslinter

STEP 2

A __init__.py file (can be empty) is expected at the <path_to_the_project> folder.

Copy the following command in your terminal, type in the path to your project, and press enter to run:

[For Linux/Mac OS Users]:

pylint \
--load-plugins=dslinter \
--disable=all \
--enable=import,unnecessary-iteration-pandas,unnecessary-iteration-tensorflow,\
nan-numpy,chain-indexing-pandas,datatype-pandas,\
column-selection-pandas,merge-parameter-pandas,inplace-pandas,\
dataframe-conversion-pandas,scaler-missing-scikitlearn,hyperparameters-scikitlearn,\
hyperparameters-tensorflow,hyperparameters-pytorch,memory-release-tensorflow,\
deterministic-pytorch,randomness-control-numpy,randomness-control-scikitlearn,\
randomness-control-tensorflow,randomness-control-pytorch,randomness-control-dataloader-pytorch,\
missing-mask-tensorflow,missing-mask-pytorch,tensor-array-tensorflow,\
forward-pytorch,gradient-clear-pytorch,pipeline-not-used-scikitlearn,\
dependent-threshold-scikitlearn,dependent-threshold-tensorflow,dependent-threshold-pytorch \
--output-format=text:report.txt,colorized \
--reports=y \
<path_to_the_project>

[For Windows Users]:

pylint --load-plugins=dslinter --disable=all --enable=import,unnecessary-iteration-pandas,unnecessary-iteration-tensorflow,nan-numpy,chain-indexing-pandas,datatype-pandas,column-selection-pandas,merge-parameter-pandas,inplace-pandas,dataframe-conversion-pandas,scaler-missing-scikitlearn,hyperparameters-scikitlearn,hyperparameters-tensorflow,hyperparameters-pytorch,memory-release-tensorflow,deterministic-pytorch,randomness-control-numpy,randomness-control-scikitlearn,randomness-control-tensorflow,randomness-control-pytorch,randomness-control-dataloader-pytorch,missing-mask-tensorflow,missing-mask-pytorch,tensor-array-tensorflow,forward-pytorch,gradient-clear-pytorch,pipeline-not-used-scikitlearn,dependent-threshold-scikitlearn,dependent-threshold-tensorflow,dependent-threshold-pytorch --output-format=text:report.txt,colorized --reports=y <path_to_sources>

For Notebook:

STEP 1

For notebook, we need to convert it to Python file first and run dslinter on the Python file. To convert the notebook to Python file, run:

jupyter nbconvert --to script <path_to_the_notebook>

STEP 2

Install dslinter from the Python Package Index:

pip install dslinter

STEP 3

Copy the following command in your terminal, type in the path to your project, and press enter to run:

[For Linux/Mac OS Users]:

pylint \
--load-plugins=dslinter \
--disable=all \
--enable=import,unnecessary-iteration-pandas,unnecessary-iteration-tensorflow,\
nan-numpy,chain-indexing-pandas,datatype-pandas,\
column-selection-pandas,merge-parameter-pandas,inplace-pandas,\
dataframe-conversion-pandas,scaler-missing-scikitlearn,hyperparameters-scikitlearn,\
hyperparameters-tensorflow,hyperparameters-pytorch,memory-release-tensorflow,\
deterministic-pytorch,randomness-control-numpy,randomness-control-scikitlearn,\
randomness-control-tensorflow,randomness-control-pytorch,randomness-control-dataloader-pytorch,\
missing-mask-tensorflow,missing-mask-pytorch,tensor-array-tensorflow,\
forward-pytorch,gradient-clear-pytorch,pipeline-not-used-scikitlearn,\
dependent-threshold-scikitlearn,dependent-threshold-tensorflow,dependent-threshold-pytorch \
--output-format=text:report.txt,colorized \
--reports=y \
<path_to_the_python_file>

[For Windows Users]:

pylint --load-plugins=dslinter --disable=all --enable=import,unnecessary-iteration-pandas,unnecessary-iteration-tensorflow,nan-numpy,chain-indexing-pandas,datatype-pandas,column-selection-pandas,merge-parameter-pandas,inplace-pandas,dataframe-conversion-pandas,scaler-missing-scikitlearn,hyperparameters-scikitlearn,hyperparameters-tensorflow,hyperparameters-pytorch,memory-release-tensorflow,deterministic-pytorch,randomness-control-numpy,randomness-control-scikitlearn,randomness-control-tensorflow,randomness-control-pytorch,randomness-control-dataloader-pytorch,missing-mask-tensorflow,missing-mask-pytorch,tensor-array-tensorflow,forward-pytorch,gradient-clear-pytorch,pipeline-not-used-scikitlearn,dependent-threshold-scikitlearn,dependent-threshold-tensorflow,dependent-threshold-pytorch --output-format=text:report.txt,colorized --reports=y <path_to_the_python_file>