-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg2img.py
67 lines (60 loc) · 2.6 KB
/
img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
@author: Viet Nguyen <[email protected]>
"""
import argparse
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageOps
from utils import get_data
def get_args():
parser = argparse.ArgumentParser("Image to ASCII")
parser.add_argument("--input", type=str, default="data/input.jpg", help="Path to input image")
parser.add_argument("--output", type=str, default="data/output.jpg", help="Path to output text file")
parser.add_argument("--language", type=str, default="english")
parser.add_argument("--mode", type=str, default="standard")
parser.add_argument("--background", type=str, default="black", choices=["black", "white"],
help="background's color")
parser.add_argument("--num_cols", type=int, default=300, help="number of character for output's width")
args = parser.parse_args()
return args
def main(opt):
if opt.background == "white":
bg_code = 255
else:
bg_code = 0
char_list, font, sample_character, scale = get_data(opt.language, opt.mode)
num_chars = len(char_list)
num_cols = opt.num_cols
image = cv2.imread(opt.input)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width = image.shape
cell_width = width / opt.num_cols
cell_height = scale * cell_width
num_rows = int(height / cell_height)
if num_cols > width or num_rows > height:
print("Too many columns or rows. Use default setting")
cell_width = 6
cell_height = 12
num_cols = int(width / cell_width)
num_rows = int(height / cell_height)
char_width, char_height = font.getsize(sample_character)
out_width = char_width * num_cols
out_height = scale * char_height * num_rows
out_image = Image.new("L", (out_width, out_height), bg_code)
draw = ImageDraw.Draw(out_image)
for i in range(num_rows):
line = "".join([char_list[min(int(np.mean(image[int(i * cell_height):min(int((i + 1) * cell_height), height),
int(j * cell_width):min(int((j + 1) * cell_width),
width)]) / 255 * num_chars), num_chars - 1)]
for j in
range(num_cols)]) + "\n"
draw.text((0, i * char_height), line, fill=255 - bg_code, font=font)
if opt.background == "white":
cropped_image = ImageOps.invert(out_image).getbbox()
else:
cropped_image = out_image.getbbox()
out_image = out_image.crop(cropped_image)
out_image.save(opt.output)
if __name__ == '__main__':
opt = get_args()
main(opt)