-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattn_optim.py
560 lines (455 loc) · 34.5 KB
/
attn_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#!/usr/bin/env python3
# Attention map optimization
# Optimize over the attention map itself to reach human-like performance
import argparse
import collections
import copy
import itertools
import os
import pathlib
import pickle
from typing import List
import joblib
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
def load_data():
data = joblib.load('data_aggregate_no-opt.joblib')
return data
class AttentionBiasModule(torch.nn.Module):
# Module that initializes & computes attention biases of different forms.
# Save the output of this module's forward() before you do a forward pass of the LM.
def __init__(self, bias_method, n_layer, n_head, sparse_rank=None, layerwise_bias=True, num_tokens=None, num_repeats=None):
super().__init__()
self.bias_method = bias_method
self.n_head = n_head
self.n_layer = n_layer
self.sparse_rank = sparse_rank
if layerwise_bias:
self.learned_attn_bias = torch.zeros(self.n_layer, self.n_head, num_tokens, num_tokens)# * torch.finfo(model.dtype).max
else:
self.learned_attn_bias = torch.zeros(1, 1, num_tokens, num_tokens)# * torch.finfo(model.dtype).max
if bias_method == 'lowrank' or bias_method == 'lowrank+sparse':
print(f'Learning a low-rank bias (rank {sparse_rank})')
assert bias_sparsity < min(learned_attn_bias.shape[-2:]), "rank too large!!"
self.learned_attn_bias_A = torch.zeros(self.learned_attn_bias.shape[:-1] + (sparse_rank,)).to(self.learned_attn_bias)
self.learned_attn_bias_B = torch.zeros(self.learned_attn_bias.shape[:-2] + (sparse_rank,) + self.learned_attn_bias.shape[-1:]).to(self.learned_attn_bias)
self.learned_attn_bias_B = torch.randn_like(self.learned_attn_bias_B) # randomly initialize one matrix to make gradients better?
self.learned_attn_bias_S = torch.zeros_like(self.learned_attn_bias) # sparse component of the attention bias
self.learned_attn_bias_A = torch.nn.Parameter(self.learned_attn_bias_A)
self.learned_attn_bias_B = torch.nn.Parameter(self.learned_attn_bias_B)
if bias_method == 'lowrank+sparse':
self.learned_attn_bias_S = torch.nn.Parameter(self.learned_attn_bias_S)
elif bias_method == 'recent':
recent_k = 10
#self.learned_attn_bias_recent = torch.triu(torch.tril(torch.ones_like(self.learned_attn_bias), diagonal=-1), diagonal=-recent_k)
self.learned_attn_bias_scalar = torch.zeros(self.learned_attn_bias.shape[:-2] + (1,1)).to(self.learned_attn_bias)
self.learned_attn_bias_scalar = torch.nn.Parameter(self.learned_attn_bias_scalar)
#self.learned_attn_bias_scalar.requires_grad_()
elif bias_method == 'recent_param':
# Only change attentions for the past `k` tokens (one parameter per token offset)
recent_k = span_len
self.learned_attn_bias_scalar = torch.zeros(self.learned_attn_bias.shape[:-2] + (1,1,recent_k)).to(self.learned_attn_bias)
self.learned_attn_bias_scalar = torch.nn.Parameter(self.learned_attn_bias_scalar)
elif bias_method == 'recent_powerlaw':
# Only change attentions for the past `k` tokens (one parameter per token offset)
self.learned_attn_bias_base = torch.randn(self.learned_attn_bias.shape[:-2] + (1,1,1)).to(self.learned_attn_bias)#.abs()
self.learned_attn_bias_decay = torch.randn_like(self.learned_attn_bias_base)
#self.learned_attn_bias_decay = torch.zeros_like(self.learned_attn_bias_base)
self.learned_attn_bias_base = torch.nn.Parameter(self.learned_attn_bias_base)
self.learned_attn_bias_decay = torch.nn.Parameter(self.learned_attn_bias_decay)
#self.learned_attn_bias_base.requires_grad_()
#self.learned_attn_bias_decay.requires_grad_()
elif bias_method == 'past_inst':
# Only change attentions on the past instances of this token
self.learned_attn_bias_scalar = torch.zeros(self.learned_attn_bias.shape[:-2] + (1,1,num_repeats-1)).to(self.learned_attn_bias)
self.learned_attn_bias_insts = torch.stack([torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len, dtype=int), offset=-repeat_idx*span_len) \
for repeat_idx in range(1, num_repeats+1)], dim=-1).to(self.learned_attn_bias)
self.learned_attn_bias_scalar = torch.nn.Parameter(self.learned_attn_bias_scalar)
#self.learned_attn_bias_scalar.requires_grad_()
elif bias_method == 'past_inst_offset':
# Tokens usually actually pay attention to the token *after* the previous instance of this token.
past_inst_offset = 1
# Only change attentions on the past instances of this token
self.learned_attn_bias_scalar = torch.zeros(self.learned_attn_bias.shape[:-2] + (1,1,num_repeats)).to(self.learned_attn_bias)
self.learned_attn_bias_scalar = torch.ones_like(self.learned_attn_bias_scalar)
self.learned_attn_bias_insts = torch.stack([torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len + past_inst_offset, dtype=int), offset=-repeat_idx*span_len + past_inst_offset) \
for repeat_idx in range(1, num_repeats+1)], dim=-1).to(self.learned_attn_bias)
self.learned_attn_bias_scalar.requires_grad_()
self.learned_attn_bias_scalar = torch.nn.Parameter(self.learned_attn_bias_scalar)
else:
assert bias_method == 'dense'
self.learned_attn_bias = torch.nn.Parameter(self.learned_attn_bias)
def forward(self, input_length, num_repeats=None, opt_heads=None):
#print('input_length', input_length)
heads_mask = torch.zeros((1,self.learned_attn_bias.shape[1],1,1), dtype=self.learned_attn_bias.dtype, device=self.learned_attn_bias.device)
if opt_heads is None: opt_heads = list(range(self.n_head))
heads_mask[:,opt_heads] = 1.
if self.bias_method == 'lowrank':
return torch.tril(self.learned_attn_bias_A @ self.learned_attn_bias_B) * heads_mask
elif self.bias_method == 'lowrank+sparse':
return torch.tril(self.learned_attn_bias_A @ self.learned_attn_bias_B + self.learned_attn_bias_S) * heads_mask
elif self.bias_method == 'recent':
self.learned_attn_bias_recent = torch.triu(torch.tril(torch.ones_like(self.learned_attn_bias), diagonal=-1), diagonal=-recent_k)
return self.learned_attn_bias_scalar * self.learned_attn_bias_recent * heads_mask
elif self.bias_method == 'recent_param':
self.learned_attn_bias_recent = torch.stack([torch.diagflat(torch.ones(self.learned_attn_bias.shape[-1]-k), offset=-k) for k in range(recent_k)], dim=-1).to(self.learned_attn_bias)
return (self.learned_attn_bias_scalar * self.learned_attn_bias_recent).sum(-1) * heads_mask
elif self.bias_method == 'recent_powerlaw':
#print('self.learned_attn_bias_base.shape', self.learned_attn_bias_base.shape)
"""self.learned_attn_bias_recent = torch.stack([torch.diagflat(torch.ones(input_length-k), offset=-k) for k in range(input_length)], dim=-1).to(self.learned_attn_bias)
self.learned_attn_bias_recent = self.learned_attn_bias_recent.transpose(-1, -2)""";
powerlaw = (self.learned_attn_bias_base * torch.pow(torch.arange(input_length, device=self.learned_attn_bias_decay.device)+1, -torch.exp(self.learned_attn_bias_decay)))
#print(powerlaw.shape, self.learned_attn_bias_recent.shape)
#return (self.learned_attn_bias_base * torch.pow(torch.arange(input_length, device=self.learned_attn_bias_decay.device)+1, -torch.exp(self.learned_attn_bias_decay)) * self.learned_attn_bias_recent).sum(-1) * heads_mask # this is bad
#return (powerlaw @ self.learned_attn_bias_recent).squeeze(-2) * heads_mask # this is maybe better
return sum(torch.diag_embed(torch.ones(input_length-k).cuda() * powerlaw.squeeze(-2)[..., k], offset=-k) for k in range(input_length)) # hopefully much more efficient
elif self.bias_method in ['past_inst', 'past_inst_offset']:
if self.bias_method == 'past_inst':
self.learned_attn_bias_insts = torch.stack([torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len, dtype=int), offset=-repeat_idx*span_len) \
for repeat_idx in range(1, num_repeats+1)], dim=-1).to(self.learned_attn_bias)
elif self.bias_method == 'past_inst_offset':
# to delete diagonal, multiply by (torch.finfo(self.learned_attn_bias_scalar.dtype).min)
self.learned_attn_bias_insts = torch.stack([torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len + past_inst_offset, dtype=int), offset=-repeat_idx*span_len + past_inst_offset) \
for repeat_idx in range(1, num_repeats+1)], dim=-1).to(self.learned_attn_bias)
return (self.learned_attn_bias_scalar[..., :num_repeats] * self.learned_attn_bias_insts).sum(-1) * heads_mask
elif self.bias_method == 'dense':
return self.learned_attn_bias * heads_mask
raise ValueError(f"unsupported method {method}")
def compute_metrics(losses, outs, baseline_attns, masks, perplexity=False, learned_bias=True):
# Compute all metrics for a given epoch (given the outputs of that epoch)
metrics_record = {}
metrics_record['kldiv'] = {}
metrics_record['entropy'] = {}
metrics_record['attn'] = {k: {} for k in ['curr', 'recent', 'past_inst', 'past_inst_offset', 'first', 'other']} # how much of the attention is being put on other tokens?
metrics_record['loss'] = losses['loss'].item()
metrics_record['behav_loss'] = losses['behav'].item()
if 'val' in losses: metrics_record['val_loss'] = losses['val'].item()
if 'sparsity' in losses: metrics_record['sparsity_loss'] = losses['sparsity'].item()
if perplexity:
metrics_record['corpus_nll'] = np.mean(evaluate_test_perplexity(model, tokenized_test_stories, learned_bias=learned_bias))
# TODO: look at how closely it approximates the lower triangle of a low-rank matrix. Mirror to make symmetric & look at eigenspectrum?
for layer_idx in range(model.config.n_layer):
metrics_record['kldiv'][layer_idx] = torch.tril(torch.nn.functional.kl_div(outs['attentions'][layer_idx].log(), baseline_attns[layer_idx], reduction='none')).mean().item()
metrics_record['entropy'][layer_idx] = torch.nansum(torch.tril(-outs['attentions'][layer_idx].log() * outs['attentions'][layer_idx]).squeeze(0).mean(0), axis=1).mean().item()
seen_tokens = torch.zeros_like(outs['attentions'][layer_idx].squeeze(0)[0], dtype=bool) # mask of tokens we've seen so far, so we can compute 'other' easily
# how much attn on current token?
metrics_record['attn']['curr'][layer_idx] = outs['attentions'][layer_idx].squeeze(0).diagonal(offset=0, dim1=-2, dim2=-1).mean().item() # average over attn heads & tokens
seen_tokens += torch.eye(*outs['attentions'][layer_idx].shape[-2:], device=model.device, dtype=bool)
num_recent_tokens = 5
metrics_record['attn']['recent'][layer_idx] = torch.triu(torch.tril(outs['attentions'][layer_idx].squeeze(0), diagonal=-1), diagonal=-num_recent_tokens).sum(2).mean().item() # how much attn on past 5 tokens? mean over attn heads & tokens
seen_tokens += torch.triu(torch.tril(torch.ones_like(outs['attentions'][layer_idx].squeeze(0)[0], dtype=bool), diagonal=-1), diagonal=-num_recent_tokens)
#print("outs['attentions'][layer_idx].shape", outs['attentions'][layer_idx].shape, "masks['past_inst'].shape", masks['past_inst'].shape)
metrics_record['attn']['past_inst'][layer_idx] = outs['attentions'][layer_idx].masked_fill(~masks['past_inst'], 0).squeeze(0).sum(2).mean().item() # same token_idx in a previous presentation
seen_tokens += past_instance_mask
metrics_record['attn']['past_inst_offset'][layer_idx] = outs['attentions'][layer_idx].masked_fill(~masks['past_inst_offset'], 0).squeeze(0).sum(2).mean().item() # same token_idx in a previous presentation
seen_tokens += past_instance_mask_offset
metrics_record['attn']['first'][layer_idx] = outs['attentions'][layer_idx].squeeze(0)[:, :, 0].mean().item()
seen_tokens[:, 0] = True
metrics_record['attn']['other'][layer_idx] = outs['attentions'][layer_idx].masked_fill(seen_tokens, 0).squeeze(0).sum(2).mean().item() # sum of all other weights (from this epoch)
return metrics_record
def evaluate_test_perplexity(model, tokenized_test_stories: List[torch.Tensor], learned_bias=False):
if learned_bias: # oh this is so hacky
# Are we using a learned bias yet? (for baseline metrics, we do not)
global learned_attn_bias
# Evaluate raw language modelling performance on a set of stories
# Actually returns nll
nlls = []
for tokens in tqdm(tokenized_test_stories, desc='stories (perplexity)', leave=False):
story_token_nll = [] # ppx for each token
with torch.no_grad():
batch_input_tokens = tokens[:model.config.n_ctx]
batch_target_tokens = tokens[1:model.config.n_ctx]
if learned_bias:
# shape of the learned bias is dependent on the length of the input sequence
learned_attn_bias = attn_bias_module(input_length=batch_input_tokens.shape[0], num_repeats=0)
outs = model(batch_input_tokens)
batch_nll = torch.nn.functional.cross_entropy(outs['logits'][:-1, :], batch_target_tokens, reduction='none').squeeze(0)
story_token_nll.append(batch_nll)
# Iterate one token at a time for any tokens beyond the model's context length (probably 1024)
for start_idx in tqdm(range(1, tokens.shape[0]-model.config.n_ctx+1), desc='batches', leave=False):
end_idx = start_idx + model.config.n_ctx
assert end_idx <= tokens.shape[0], f"out of bounds! {end_idx} > {tokens.shape[0]}"
batch_input_tokens = tokens[start_idx:end_idx]
batch_target_tokens = tokens[start_idx+1:end_idx]
if learned_bias and start_idx == 1:
learned_attn_bias = attn_bias_module(input_length=batch_input_tokens.shape[0], num_repeats=0)
outs = model(batch_input_tokens)
batch_nll = torch.nn.functional.cross_entropy(outs['logits'][:-1, :], batch_target_tokens, reduction='none').squeeze(0)
story_token_nll.append(batch_nll[-1:])
nlls.append(torch.cat(story_token_nll).mean().cpu().numpy())
return nlls # return average NLL within each story
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Optimize attention map to match LM and human performance')
parser.add_argument('--bias_method', type=str, required=True,
help='Attention map form to use')
parser.add_argument('--epochs', type=int, default=100,
help='Number of epochs to "train" the attention bias')
parser.add_argument('--train_story', type=str, default='wheretheressmoke',
help='Train attention bias on this story')
parser.add_argument('--output_dir', type=pathlib.Path, default=pathlib.Path('attn-optim-results/output'),
help='Directory to save results')
parser.add_argument('--opt_layers', type=int, nargs='+', default=[5],
help='Set a fixed random seed')
parser.add_argument('--seed', type=int, default=None,
help='Set a fixed random seed')
parser.add_argument('--no_corpus_ppx', action='store_false', dest='corpus_ppx',
help='Set a fixed random seed')
args = parser.parse_args()
if args.seed is not None:
print('Set seed:', args.seed)
np.random.seed(seed=args.seed)
torch.manual_seed(args.seed)
# Load behavioral data from Gorilla
behavioral_data = load_data()
story_avg_accs, story_prompt_words, story_span_lens, story_num_repeats, story_words = (behavioral_data[x] for x in ['story_avg_accs', 'story_prompt_words', 'story_span_lens', 'story_num_repeats', 'story_words'])
all_stories = list(story_span_lens.keys())
## Optimizing the attention map
device = torch.device('cuda')
ckpt_path = 'gpt2_wordlevel'
tok_path = ckpt_path
print('Available stimuli for optimization:', all_stories)
# Set up model & optimization config
model = GPT2LMHeadModel.from_pretrained(ckpt_path).to(device)
model.eval();
story = args.train_story
span_len = story_span_lens[story]
num_repeats = story_num_repeats[story]
num_tokens = len(story_words[story])
layerwise_bias = True # True or False; optimize individual biases for all heads & layers
#layerwise_bias = False
#opt_layers = list(range(model.config.n_layer)) # which layers to optimize?
opt_layers = args.opt_layers
opt_heads = list(range(model.config.n_head)) # which heads to optimize?
#opt_heads = list(set(opt_heads).difference([1,9]))
#opt_heads = [1]
# Proportion of dataset to include in training split. All heldout prompts are evenly allocated between presentations
train_split_prop = 0.7
with open(os.path.join(tok_path, 'token_dict.pkl'), 'rb') as f:
token_dict = pickle.load(f)
word2int = token_dict['word2int']
int2word = token_dict['int2word']
unk_token = token_dict['UNK']
# Tokenization function
def encode_wordlevel(word_list: List[str]):
# TODO: use Tokenizers library, like so:
# https://github.com/huggingface/tokenizers/issues/244
# WARNING: this uses global variables!
return [word2int[w] if w in word2int else word2int[unk_token] for w in word_list]
# Load stories for perplexity evaluation
#story_tokens = pickle.load(open('data/stimulidb.pickle', 'rb'))
story_tokens = joblib.load('perplexity_eval_stimuli.joblib')
test_stories = ['wheretheressmoke', 'fromboyhoodtofatherhood', 'onapproachtopluto', 'tosailonanaliensea', 'grandmothersmalpaandmyrtle', 'thisisgoingtosuck', 'learninghumanityfromdogs', 'afightingchance', 'thehuntergathererparkingdivision', 'akissdeferred', 'aforgottenprayer']
test_stories = set(test_stories) - set(all_stories) # don't evaluate on stories we're optimizing with
assert all((story in story_tokens) for story in test_stories)
tokenized_test_stories = [torch.tensor(encode_wordlevel(story_tokens[story].split())).to(model.device) for story in test_stories]
## Set up data and metrics
# Top-1 accuracy for each prompt, averaged across all participants
subject_acc = torch.from_numpy(story_avg_accs[story]['is_correct'].to_numpy()).to(model.device).to(model.dtype)
# the # of subjects that were given each prompt
num_subjects = torch.from_numpy(story_avg_accs[story]['num_subjects'].to_numpy()).to(model.device)
# Hold out subset of prompts in the training story to compute within-story
# generalization
train_idxs = story_avg_accs[story].groupby('repeat_idx').sample(frac=train_split_prop, replace=False).index # uniformly allocate val. set across presentations
train_mask = story_avg_accs[story]['is_correct'].index.isin(train_idxs)
# Create a mask of the attn. mtx. to calculate how much attn. is put on previous instances of the same token.
# Creates a banded matrix, where bands are spaced with an interval of `span_len`
past_instance_mask = torch.zeros((num_tokens, num_tokens), dtype=int)
past_instance_mask_offset = torch.zeros((num_tokens, num_tokens), dtype=int) # mask for induction head behavior
for repeat_idx in range(1,num_repeats+1):
past_instance_mask += torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len, dtype=int), offset=-repeat_idx*span_len)
past_instance_mask_offset += torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len+1, dtype=int), offset=-repeat_idx*span_len+1)
past_instance_mask = past_instance_mask.bool().cuda()
past_instance_mask_offset = past_instance_mask_offset.bool().cuda()
def compute_metrics_and_losses(outs, baseline_attns, bias_method=None, perplexity=False):
# This uses several local vars (like `story_prompt_words`, `tokenized`)
target_token_idxs = story_prompt_words[story].index.astype(int)
target_token_logits = outs['logits'][target_token_idxs-1, :]
target_token_id = tokenized[target_token_idxs]
target_nll = torch.nn.functional.cross_entropy(target_token_logits, target_token_id, reduction='none').squeeze(0)
nll = torch.nn.functional.cross_entropy(outs['logits'][:-1, :], tokenized[1:], reduction='none').squeeze(0)
behav_loss = (subject_acc - torch.exp(-target_nll)) * torch.sqrt(num_subjects)
val_loss = behav_loss[~train_mask].clone().square().mean()
behav_loss = behav_loss[train_mask].square().mean()
loss = behav_loss.clone()
if bias_method == 'lowrank+sparse':
sparsity_loss = sparsity_penality * learned_attn_bias_S.norm(p=1, dim=-1).max(-1).values.mean()
loss += sparsity_loss
losses = {'loss': loss, 'behav': behav_loss, 'val': val_loss}
# Get metrics
with torch.no_grad():
if bias_method == 'lowrank+sparse': losses['sparsity'] = sparsity_loss
# Metrics for this epoch (or evaluation, etc.)
this_metrics = compute_metrics(losses, outs, baseline_attns, masks={'past_inst': past_instance_mask, 'past_inst_offset': past_instance_mask_offset}, perplexity=perplexity, learned_bias=(bias_method is not None))
model_acc_df = story_avg_accs[story][['word_idx', 'repeat_idx', 'is_correct', 'word']].copy()
model_acc_df['acc'] = torch.exp(-target_nll).cpu().numpy() # model accuracy
this_metrics['acc_corr_rep0'] = model_acc_df[model_acc_df['repeat_idx'] == 0][['is_correct', 'acc']].corr().iloc[0,1]
this_metrics['acc_corr_rep1+'] = model_acc_df[model_acc_df['repeat_idx'] > 0][['is_correct', 'acc']].corr().iloc[0,1]
return {'losses': losses, 'target_nll': target_nll,
'nll': nll, 'metrics': this_metrics}
# Get the actual baselines / metrics
tokenized = torch.tensor(encode_wordlevel(story_words[story])).to(model.device)
with torch.no_grad():
outs_baseline = model(tokenized, output_hidden_states=True, output_attentions=True)
baseline_attns = outs_baseline['attentions']
metrics_and_losses = compute_metrics_and_losses(outs_baseline, baseline_attns, perplexity=args.corpus_ppx)
baseline_target_nll, baseline_nll, losses_baseline = (metrics_and_losses[k] for k in ['target_nll', 'nll', 'losses'])
baseline_loss = losses_baseline['loss']
metrics_baseline = metrics_and_losses['metrics']
if 'corpus_nll' in metrics_baseline: print('Baseline corpus nll:', metrics_baseline['corpus_nll'])
print("Baseline loss:", baseline_loss.item())
print('Baseline val. loss:', losses_baseline['val'].item())
assert (torch.tril(baseline_attns[0]) == baseline_attns[0]).all(), 'causal attention map should be LOWER triangular!'
# this should modify the _inputs_ to the attention (i.e. change attn mask before attn is computed)
# BUT this relies on HF Transformers converting the mask from bools --> floats _before_ the attention module is called
# See: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L205
def attn_pre_hook(module, args, kwargs, layer_idx=None, layerwise=False):
attention_mask = kwargs['attention_mask']
if layerwise:
kwargs['attention_mask'] = torch.tril(learned_attn_bias[layer_idx])# * baseline_presoft_attn_mean[layer_idx]
else:
kwargs['attention_mask'] = torch.tril(learned_attn_bias)# * baseline_presoft_attn_mean[layer_idx]
return (args, kwargs)
hooks_pre = []
for layer_idx, gpt_layer in enumerate(model.transformer.h):
if layer_idx not in opt_layers: continue # only create hooks for layers that we're using to optimize the mask
hook_pre = gpt_layer.attn.register_forward_pre_hook((lambda layer_idx: (lambda *args: attn_pre_hook(*args, layer_idx=layer_idx, layerwise=layerwise_bias)))(layer_idx), with_kwargs=True)
hooks_pre.append(hook_pre)
### Optimization loop
bias_method = args.bias_method
## INITIALIZATION
bias_sparsity = 1 # if None, then dense. Otherwise, set to the rank of the sparse matrix
#sparse_bias = (bias_sparsity is not None)
sparsity_penality = 5e-4
attn_bias_module = AttentionBiasModule(bias_method, model.config.n_layer, model.config.n_head,
num_tokens=tokenized.shape[0], num_repeats=num_repeats)
attn_bias_module = attn_bias_module.to(model.device)
learned_attn_bias = attn_bias_module(tokenized.shape[0], num_repeats=num_repeats)
with torch.no_grad():
learned_attn_bias_init = learned_attn_bias.clone().detach()
opt = torch.optim.Adam(attn_bias_module.parameters(), lr=5e-3) # default lr=1e-3 works pretty well, but slow
print('Number of learnable parameters:', sum(x.nelement() for x in opt.param_groups[0]['params']))
## Optimization
num_epochs = args.epochs
metrics = []
for epoch_idx in tqdm(range(num_epochs), desc='num_epochs'):
learned_attn_bias = attn_bias_module(input_length=tokenized.shape[0], num_repeats=num_repeats)
outs = model(tokenized, output_hidden_states=True, output_attentions=True)
metrics_and_losses = compute_metrics_and_losses(outs, outs_baseline['attentions'], bias_method=bias_method)
target_nll, nll, losses = (metrics_and_losses[k] for k in ['target_nll', 'nll', 'losses'])
metrics.append(metrics_and_losses['metrics'])
loss = losses['loss']
opt.zero_grad()
loss.backward()
opt.step()
assert not (~torch.isfinite(learned_attn_bias)).any()
output_dir = args.output_dir
output_dir.mkdir(parents=True, exist_ok=True)
# Recompute final outputs, but without gradients
with torch.no_grad():
learned_attn_bias = attn_bias_module(input_length=tokenized.shape[0], num_repeats=num_repeats)
outs_final = model(tokenized, output_hidden_states=True, output_attentions=True)
metrics_and_losses = compute_metrics_and_losses(outs_final, baseline_attns, bias_method=bias_method, perplexity=args.corpus_ppx)
target_nll, nll, losses_final = (metrics_and_losses[k] for k in ['target_nll', 'nll', 'losses'])
loss = losses_final['loss']
metrics_final = metrics_and_losses['metrics']
if 'corpus_nll' in metrics_final: print('Final corpus nll:', metrics_final['corpus_nll'])
perf_df = story_avg_accs[story][['word_idx', 'repeat_idx', 'is_correct', 'word']].copy()
perf_df['baseline_acc'] = torch.exp(-baseline_target_nll).cpu().numpy()
perf_df['final_acc'] = torch.exp(-target_nll).cpu().numpy()
perf_df['train_mask'] = train_mask
# This is in the order of ~20 MB
#print('attention output size in MB:', sum(x.nelement() for x in outs['attentions']) * 4 / (1<<20))
print(f"Change in training loss: {losses_baseline['loss'].item():.3E} {losses_final['loss'].item():.3E}")
print(f"Change in training loss (rel.) : {(losses_final['loss'].item() - losses_baseline['loss'].item()) / losses_baseline['loss'].item():.3f}")
print(f"Change in validation loss: {losses_baseline['val'].item():.3E} {losses_final['val'].item():.3E}")
print(f"Change in validation loss (rel.): {(losses_final['val'].item() - losses_baseline['val'].item()) / losses_baseline['val'].item():.3f}")
print(f"Change in overall perplexity: {nll.mean().exp():.2f} {baseline_nll.mean().exp():.2f}")
print(f"Change in overall perplexity (rel.): {(nll - baseline_nll).mean().exp().item() - 1:.3f}")
baseline_attn_df = pd.DataFrame.from_dict(metrics_baseline['attn']).rename_axis('layer_idx', axis=0).rename_axis('attn_metric', axis=1)
final_attn_df = pd.DataFrame.from_dict(metrics_final['attn']).rename_axis('layer_idx', axis=0).rename_axis('attn_metric', axis=1)
kldiv_by_token = {layer_idx: torch.tril(torch.nn.functional.kl_div(outs_final['attentions'][layer_idx].log(), baseline_attns[layer_idx], reduction='none')).mean(3).mean(1).squeeze(0).cpu().numpy() \
for layer_idx in range(model.config.n_layer)}
kldiv_by_token_df = pd.DataFrame.from_dict(kldiv_by_token)
kldiv_by_token_df.index.name = 'token_idx'
kldiv_by_token_df.columns.name = 'layer_idx'
# All data (incl. 1st presentation)
print('Corr over all data:', perf_df[perf_df['repeat_idx'] == 0][['is_correct', 'baseline_acc', 'final_acc']].corr().loc['is_correct', ['baseline_acc', 'final_acc']])
# Only after the 1st presentation
print('Corr after 1st presentation:', perf_df[perf_df['repeat_idx'] > 0][['is_correct', 'baseline_acc', 'final_acc']].corr().loc['is_correct', ['baseline_acc', 'final_acc']])
print('average kldiv by layer:', kldiv_by_token_df.mean(axis=0))
## Plotting transfer performance
# from train story --> other stories
training_metrics = {'training': copy.deepcopy(metrics), 'baseline': copy.deepcopy(metrics_baseline), 'final': copy.deepcopy(metrics_final)}
training_metrics['baseline']['attn_maps'] = [] # add baseline & final attention maps
training_metrics['final']['attn_maps'] = []
for layer_idx, (layer_attn_baseline, layer_attn_final) in enumerate(zip(outs_baseline['attentions'], outs_final['attentions'])):
training_metrics['baseline']['attn_maps'].append(layer_attn_baseline.log().squeeze(0).cpu().numpy())
training_metrics['final']['attn_maps'].append(layer_attn_final.log().squeeze(0).cpu().numpy())
# Evaluate parameters on all other stories
training_perf_df = perf_df.copy(deep=True) # we might overwrite the name `perf_df` later
all_story_metrics = {}
all_story_perf_df = {} # heldout performance by word in every story (in a nice dataframe)
for story in tqdm(story_words, desc='heldout stories'):
if story == args.train_story: continue # the training story is not part of the heldout set!
span_len = story_span_lens[story]
num_repeats = story_num_repeats[story]
num_tokens = len(story_words[story])
tokenized = torch.tensor(encode_wordlevel(story_words[story])).to(model.device)
subject_acc = torch.from_numpy(story_avg_accs[story]['is_correct'].to_numpy()).to(model.device).to(model.dtype)
num_subjects = torch.from_numpy(story_avg_accs[story]['num_subjects'].to_numpy()).to(model.device)
# These don't really matter
train_idxs = story_avg_accs[story].groupby('repeat_idx').sample(frac=train_split_prop, replace=False).index # uniformly allocate val. set across presentations
train_mask = story_avg_accs[story]['is_correct'].index.isin(train_idxs)
# Need to remake these matrices for each story b/c they have different
# span lengths & num. of presentations
past_instance_mask = torch.zeros((num_tokens, num_tokens), dtype=int)
past_instance_mask_offset = torch.zeros((num_tokens, num_tokens), dtype=int)
for repeat_idx in range(1,num_repeats+1):
past_instance_mask += torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len, dtype=int), offset=-repeat_idx*span_len)
past_instance_mask_offset += torch.diagflat(torch.ones(num_tokens - repeat_idx*span_len+1, dtype=int), offset=-repeat_idx*span_len+1)
past_instance_mask = past_instance_mask.bool().cuda()
past_instance_mask_offset = past_instance_mask_offset.bool().cuda()
with torch.no_grad():
# Use the module once to get the correct sizes, then overwrite with
# zeros
learned_attn_bias = attn_bias_module(input_length=tokenized.shape[0], num_repeats=story_num_repeats[story])
learned_attn_bias = torch.zeros_like(learned_attn_bias)
outs_baseline = model(tokenized, output_hidden_states=True, output_attentions=True)
baseline_attns = outs_baseline['attentions']
metrics_and_losses = compute_metrics_and_losses(outs_baseline, baseline_attns)
baseline_target_nll, baseline_nll, losses_baseline = (metrics_and_losses[k] for k in ['target_nll', 'nll', 'losses'])
baseline_loss = losses_baseline['loss']
metrics_baseline = metrics_and_losses['metrics']
# Use the true value of the attention bias to get post-optimization performance on the held-out story
with torch.no_grad():
learned_attn_bias = attn_bias_module(input_length=tokenized.shape[0], num_repeats=story_num_repeats[story])
outs_final = model(tokenized, output_hidden_states=True, output_attentions=True)
metrics_and_losses = compute_metrics_and_losses(outs_final, baseline_attns, bias_method=bias_method)
target_nll, nll, losses_final = (metrics_and_losses[k] for k in ['target_nll', 'nll', 'losses'])
loss = losses_final['loss']
metrics_final = metrics_and_losses['metrics']
perf_df = story_avg_accs[story][['word_idx', 'repeat_idx', 'is_correct', 'word']].copy()
perf_df['baseline_acc'] = torch.exp(-baseline_target_nll).cpu().numpy()
perf_df['final_acc'] = torch.exp(-target_nll).cpu().numpy()
# Save values for this held-out story
all_story_metrics[story] = {'baseline': metrics_baseline, 'final': metrics_final, 'attn_change': [], 'perf_df': perf_df}
for layer_idx, (layer_attn_baseline, layer_attn_final) in enumerate(zip(outs_baseline['attentions'], outs_final['attentions'])):
attn_matrix_change = (layer_attn_final.log() - layer_attn_baseline.log()).squeeze(0).cpu().numpy()
all_story_metrics[story]['attn_change'].append(attn_matrix_change)
# Save the relevant outputs so we can aggregate them
heldout_metrics_fname = output_dir / 'heldout_metrics.joblib'
print('Saving held-out results to:', heldout_metrics_fname)
joblib.dump(all_story_metrics, open(heldout_metrics_fname, 'wb'))
training_metrics_fname = output_dir / 'training_metrics.joblib'
print('Saving training results to:', training_metrics_fname)
joblib.dump(training_metrics, open(training_metrics_fname, 'wb'))
attn_bias_module = attn_bias_module.cpu()
bias_module_fname = output_dir / 'bias_params.pt'
print('Saving learned bias parameters to:', bias_module_fname)
torch.save(attn_bias_module.state_dict(), bias_module_fname)
perf_df_fname = output_dir / 'training_perf_df.pkl'
print('Saving training performance df to:', perf_df_fname)
training_perf_df.to_pickle(perf_df_fname)