forked from paraj003/LMG_sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LMG_quench.lyx
3863 lines (2833 loc) · 90.7 KB
/
LMG_quench.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass revtex4-1
\options notitlepage
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Quenches in the LMG model
\end_layout
\begin_layout Section
LMG Model: Details for implementing numerically
\end_layout
\begin_layout Standard
We start with the following Hamiltonian
\begin_inset Formula
\begin{equation}
H=-\frac{J}{N}\sum_{i<j}\gamma_{x}\sigma_{i}^{x}\sigma_{j}^{x}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}-\Gamma\sum_{i}\sigma_{i}^{z}
\end{equation}
\end_inset
A somewhat easier formula if we are more interested in the ferromagnetic
phase is, to make the following rotation of axis about
\begin_inset Formula $y$
\end_inset
:
\begin_inset Formula $z\rightarrow x$
\end_inset
,
\begin_inset Formula $x\rightarrow-z$
\end_inset
\begin_inset Formula
\begin{align}
H & =-\frac{J}{N}\sum_{i<j}\gamma_{z}\sigma_{i}^{z}\sigma_{j}^{z}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}-\Gamma\sum_{i}\sigma_{i}^{x}\\
& =+\frac{J}{2N}\left(\sum_{i}\gamma_{z}\left(\sigma_{i}^{z}\right)^{2}+\gamma_{y}\left(\sigma_{i}^{y}\right)^{2}\right)-\frac{J}{2N}\left(\sum_{ij}\left(\gamma_{z}\sigma_{i}^{z}\sigma_{j}^{z}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}\right)\right)-\Gamma\sum_{i}\sigma_{i}^{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{J}{2N}\sum_{i,j}\left(\gamma_{z}\sigma_{i}^{z}\sigma_{j}^{z}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}\right)-\Gamma\sum_{i}\sigma_{i}^{x}
\end{align}
\end_inset
Now defining the total spin variables,
\begin_inset Formula $S_{z}=\frac{1}{2}\sum_{i}\sigma_{i}^{z}$
\end_inset
,
\begin_inset Formula $S_{x}=\frac{1}{2}\sum_{i}\sigma_{i}^{x}$
\end_inset
,
\begin_inset Formula $S_{y}=\frac{1}{2}\sum_{i}\sigma_{i}^{y}$
\end_inset
, and
\begin_inset Formula $S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}$
\end_inset
,
\begin_inset Formula $S_{\pm}=\left(S_{x}\pm iS_{y}\right)$
\end_inset
we obtain,
\begin_inset Formula
\begin{align*}
H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{2J\gamma_{y}}{N}S_{y}^{2}-2\Gamma S_{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}+\frac{J\gamma_{y}}{2N}\left(S_{+}-S_{-}\right)^{2}-2\Gamma S_{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{J\gamma_{y}}{2N}\left(S_{+}S_{-}+S_{-}S_{+}\right)+\frac{J\gamma_{y}}{2N}\left(S_{+}^{2}+S_{-}^{2}\right)-2\Gamma S_{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{J\gamma_{y}}{N}\left(S^{2}-S_{z}^{2}\right)+\frac{J\gamma_{y}}{2N}\left(S_{+}^{2}+S_{-}^{2}\right)-\Gamma\left(S_{+}+S_{-}\right)\\
\Rightarrow H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\left(1-\frac{2S^{2}}{N}\right)\right)-\frac{J\left(2\gamma_{z}-\gamma_{y}\right)}{N}S_{z}^{2}+\frac{J\gamma_{y}}{2N}\left(S_{+}^{2}+S_{-}^{2}\right)-\Gamma\left(S_{+}+S_{-}\right)
\end{align*}
\end_inset
We know that the eigenstates are just total angular momentum states given
by
\begin_inset Formula $|S,M\rangle$
\end_inset
with
\begin_inset Formula $M\in\{-S,\cdots S\}$
\end_inset
and
\begin_inset Formula $S\in\left\{ 0\cdots\frac{N}{2}\right\} $
\end_inset
.
Since different
\begin_inset Formula $S$
\end_inset
-sectors do not talk to each other, we will focus on the largest
\begin_inset Formula $S$
\end_inset
given by
\begin_inset Formula $S=\frac{N}{2}$
\end_inset
.
This means
\begin_inset Formula $S^{2}\rightarrow\frac{N}{2}\left(\frac{N}{2}+1\right)$
\end_inset
.
Now in this sector we have,
\begin_inset Formula
\begin{equation}
H=\frac{J}{2}\left(\gamma_{z}-\frac{\gamma_{y}N}{2}\right)-\frac{J\left(2\gamma_{z}-\gamma_{y}\right)}{N}S_{z}^{2}+\frac{J\gamma_{y}}{2N}\left(S_{+}^{2}+S_{-}^{2}\right)-\Gamma\left(S_{+}+S_{-}\right)
\end{equation}
\end_inset
Now, we need to find the action of the different spin operators on the states
\begin_inset Formula
\begin{align}
S_{z}|S,M\rangle & =M|S,M\rangle\\
S^{2}\left|S,M\rangle\right| & =S\left(S+1\right)|S,M\rangle\\
S_{+}|S,M\rangle & =\sqrt{S\left(S+1\right)-M\left(M+1\right)}|S,M+1\rangle\\
S_{-}|S,M\rangle & =\sqrt{S\left(S+1\right)-M\left(M-1\right)}|S,M-1\rangle\\
S_{+}S_{-}|S,M\rangle & =\left(S^{2}-S_{z}^{2}-S_{z}\right)|S,M\rangle=\left[S\left(S+1\right)-M\left(M-1\right)\right]|S,M\rangle\\
S_{-}S_{+}|S,M\rangle & =\left[S\left(S+1\right)-M\left(M+1\right)\right]|S,M\rangle
\end{align}
\end_inset
Now we are ready to write down the matrix elements,
\begin_inset Formula
\begin{align}
\left\langle S=\frac{N}{2},M\right|H\left|S=\frac{N}{2},M^{\prime}\right\rangle & =\delta_{MM^{\prime}}\left[\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\left(1-\frac{2S\left(S+1\right)}{N}\right)\right)-\frac{J\left(2\gamma_{z}-\gamma_{y}\right)}{N}M^{2}\right]+\nonumber \\
& \ \ \ \delta_{MM^{\prime}-2}\left[\frac{J\gamma_{y}}{2N}\sqrt{\left(S\left(S+1\right)-\left(M+2\right)\left(M+1\right)\right)\left(S\left(S+1\right)-M\left(M+1\right)\right)}\right]+\nonumber \\
& \ \ \ \delta_{MM^{\prime}+2}\left[\frac{J\gamma_{y}}{2N}\sqrt{\left(S\left(S+1\right)-\left(M-2\right)\left(M-1\right)\right)\left(S\left(S+1\right)-M\left(M-1\right)\right)}\right]+\nonumber \\
& \ \ \ \delta_{MM^{\prime}-1}\left[-\Gamma\sqrt{\left(S\left(S+1\right)-M\left(M+1\right)\right)}\right]+\nonumber \\
& \ \ \ \delta_{MM^{\prime}+1}\left[-\Gamma\sqrt{\left(S\left(S+1\right)-M\left(M-1\right)\right)}\right]
\end{align}
\end_inset
\end_layout
\begin_layout Subsection
Ground state critical point
\end_layout
\begin_layout Standard
Let us examine the Hamiltonian first,
\begin_inset Formula
\begin{align}
H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{2J\gamma_{y}}{N}S_{y}^{2}-2\Gamma S_{x}\nonumber \\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J}{N}\left[\left(\sqrt{\gamma_{z}}S_{z}\right)^{2}+\left(\sqrt{\gamma_{y}}S_{y}\right)^{2}\right]-2\Gamma S_{x}\nonumber \\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J}{N}\left[\left(\sqrt{\gamma_{z}}S_{z}+i\sqrt{\gamma_{y}}S_{y}\right)\left(\sqrt{\gamma_{z}}S_{z}-i\sqrt{\gamma_{y}}S_{y}\right)-i\sqrt{\gamma_{z}\gamma_{y}}\left(S_{y}S_{z}-S_{z}S_{y}\right)\right]-2\Gamma S_{x}\nonumber \\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J}{N}\left[\left(\sqrt{\gamma_{z}}S_{z}+i\sqrt{\gamma_{y}}S_{y}\right)\left(\sqrt{\gamma_{z}}S_{z}-i\sqrt{\gamma_{y}}S_{y}\right)-i\sqrt{\gamma_{z}\gamma_{y}}\left(iS_{x}\right)\right]-2\Gamma S_{x}\nonumber \\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J}{N}\left[\left(\sqrt{\gamma_{z}}S_{z}+i\sqrt{\gamma_{y}}S_{y}\right)\left(\sqrt{\gamma_{z}}S_{z}-i\sqrt{\gamma_{y}}S_{y}\right)\right]-\left(2\Gamma+\frac{2J}{N}\sqrt{\gamma_{z}\gamma_{y}}\right)S_{x}\nonumber \\
\Rightarrow H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\sqrt{\gamma_{z}+\gamma_{y}}}{N}S_{\phi}^{\dagger}S_{\phi}-\left(2\Gamma+\frac{2J}{N}\sqrt{\gamma_{z}\gamma_{y}}\right)S_{x}
\end{align}
\end_inset
where,
\begin_inset Formula $S_{\phi}=\frac{1}{\sqrt{\gamma_{z}+\gamma_{y}}}\left(\sqrt{\gamma_{z}}S_{z}-i\sqrt{\gamma_{y}}S_{y}\right)=\left|\cos\phi\right|S_{z}-i\left|\sin\phi\right|S_{y}$
\end_inset
(when
\begin_inset Formula $\gamma_{z}=\gamma\cos\phi$
\end_inset
,
\begin_inset Formula $\gamma_{y}=\gamma\sin\phi$
\end_inset
).
The critical point from a Holstein Primakoff approximation is
\begin_inset Formula
\[
\Gamma_{c}=J\max\left(\gamma_{y},\gamma_{z}\right)
\]
\end_inset
The order parameter to calculate is
\begin_inset Formula $\left\langle S_{y}^{2}+S_{z}^{2}\right\rangle $
\end_inset
\end_layout
\begin_layout Subsection
Calculating Magnetization
\end_layout
\begin_layout Subsubsection
\begin_inset Formula $z$
\end_inset
-direction
\end_layout
\begin_layout Standard
Total magnetization, accounting for lack of symmetry breaking in finite
size systems is
\begin_inset Formula
\[
m_{z}^{2}=\left(\text{Magnetization}\right)^{2}=\left\langle \left(\frac{1}{N}\sum_{i}\sigma_{i}^{z}\right)^{2}\right\rangle =\left\langle \frac{4}{N^{2}}\left(S^{z}\right)^{2}\right\rangle =\frac{4}{N^{2}}\left(\sum_{M=-S}^{S}\left|\alpha_{M}\right|^{2}M^{2}\right)
\]
\end_inset
where the ground state is given as
\begin_inset Formula $|GS\rangle=\sum_{M}\alpha_{M}|S,M\rangle$
\end_inset
.
\end_layout
\begin_layout Standard
Let us discuss a couple of known properties of the ground state.
The finite size dependence of the magnetization dependes on whether the
system is in the critical point or deep in the disordered phase,
\begin_inset Formula
\begin{align}
\left\langle m^{2}\right\rangle & \sim N^{-2/3}\ \text{at the QCP,}\Gamma=J\\
\left\langle m^{2}\right\rangle & \sim N^{-1}\ \text{disordered phase, }\Gamma\gg J\\
\left\langle m^{2}\right\rangle _{{\rm th}} & \sim N^{-1/2}\ \text{at a thermal CP}
\end{align}
\end_inset
where note that the last line is a thermal expectation value at the critical
point.
We have verified the first two properties in the numerically obtained magnetiza
tion.
\end_layout
\begin_layout Subsubsection
\begin_inset Formula $y$
\end_inset
-direction
\end_layout
\begin_layout Standard
The y-direction magnetization in the ground state
\begin_inset Formula $|GS\rangle=\sum_{M}\alpha_{M}|S,M\rangle$
\end_inset
is defined as,
\begin_inset Formula
\begin{align}
m_{y}^{2} & =\left\langle \left(\frac{1}{N}\sum_{i}\sigma_{i}^{y}\right)^{2}\right\rangle =\left\langle \frac{4}{N^{2}}\left(S^{y}\right)^{2}\right\rangle =\frac{1}{N^{2}}\left\langle \left(S_{+}-S_{-}\right)^{2}\right\rangle \nonumber \\
& =\frac{1}{N^{2}}\left\langle \left(S_{+}\right)^{2}+\left(S_{-}\right)^{2}-\left(S_{+}S_{-}+S_{-}S_{+}\right)\right\rangle \nonumber \\
& =\frac{1}{N^{2}}\left\langle \left(S_{+}\right)^{2}+\left(S_{-}\right)^{2}-2\left(S^{2}-S_{z}^{2}\right)\right\rangle \nonumber \\
& =-\frac{2}{N^{2}}\left(S\left(S+1\right)-\sum_{M=-S}^{S}\left|\alpha_{M}\right|^{2}M^{2}\right)+\frac{1}{N^{2}}\left\langle \left(S_{+}\right)^{2}+\left(S_{-}\right)^{2}\right\rangle \nonumber \\
& =-\frac{2}{N^{2}}\left(S\left(S+1\right)-\sum_{M=-S}^{S}\left|\alpha_{M}\right|^{2}M^{2}\right)\nonumber \\
& +\frac{1}{N^{2}}\left(\sum_{M=-S}^{S}\alpha_{M+2}^{*}\alpha_{M}\sqrt{\left(S\left(S+1\right)-\left(M+2\right)\left(M+1\right)\right)\left(S\left(S+1\right)-M\left(M+1\right)\right)}\right.\nonumber \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \left.+\alpha_{M-2}^{*}\alpha_{M}\sqrt{\left(S\left(S+1\right)-\left(M-2\right)\left(M-1\right)\right)\left(S\left(S+1\right)-M\left(M-1\right)\right)}\right)
\end{align}
\end_inset
\end_layout
\begin_layout Subsubsection
'
\begin_inset Formula $\phi$
\end_inset
'-direction
\end_layout
\begin_layout Standard
We calculate the expectation value of a general operator :
\begin_inset Formula $S_{\phi}=\left(A_{z}S_{z}+A_{y}S_{y}\right)=\left(\frac{1}{2}\left(A_{s}\sum_{i}\sigma_{i}^{z}+A_{y}\sum_{i}\sigma_{i}^{y}\right)\right)$
\end_inset
.
In the ground state
\begin_inset Formula $|GS\rangle=\sum_{M}\alpha_{M}|S,M\rangle$
\end_inset
,
\begin_inset Formula
\begin{align}
m_{\phi}^{2} & =\left\langle \frac{4}{N^{2}}S_{\phi}^{\dagger}S_{\phi}\right\rangle \nonumber \\
& =\frac{4}{N^{2}}\left|\sum_{M}\left(A_{z}S_{z}+A_{y}S_{y}\right)\alpha_{M}|S,M\rangle\right|^{2}\nonumber \\
& =\frac{4}{N^{2}}\left|\sum_{M}\alpha_{M}A_{z}M+\sum_{M}\alpha_{M}\left(A_{y}\frac{1}{2i}\left(S_{+}-S_{-}\right)\right)|S,M\rangle\right|^{2}\nonumber \\
& =\frac{4}{N^{2}}\left|\sum_{M}\alpha_{M}A_{z}M|S,M\rangle\right.+\nonumber \\
& \ \ \ \ \ \ \ \ \ \ \left.+\frac{A_{y}}{2i}\sum_{M}\alpha_{M}\left(\sqrt{S\left(S+1\right)-M\left(M+1\right)}|S,M+1\rangle-\sqrt{S\left(S+1\right)-M\left(M-1\right)}|S,M-1\rangle\right)\right|^{2}
\end{align}
\end_inset
Therefore we have the following definition for
\begin_inset Formula $\left|m_{\phi}\right|^{2}=\frac{4}{N^{2}}\sum_{M=-S}^{S}\left|A_{M}\right|^{2}$
\end_inset
\begin_inset Formula
\[
A_{M}=\begin{cases}
A_{z}S\alpha_{S}+\frac{A_{y}}{2i}\alpha_{S-1}\sqrt{2S} & M=S\\
-A_{z}S\alpha_{-S}-\frac{A_{y}}{2i}\alpha_{-S+1}\sqrt{2S} & M=-S\\
\alpha_{M}A_{z}M+\frac{A_{y}}{2i}\left(\alpha_{M-1}\sqrt{S\left(S+1\right)-M\left(M-1\right)}-\alpha_{M+1}\sqrt{S\left(S+1\right)-M\left(M+1\right)}\right) & \forall M\neq S,-S
\end{cases}
\]
\end_inset
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
(a) Magnetization as a function of magnetic field.
(b) Phase diagram as a function of
\begin_inset Formula $\gamma_{z}$
\end_inset
and
\begin_inset Formula $\gamma_{y}$
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Properties at Finite Temperature
\end_layout
\begin_layout Standard
Let us calculate the properties at finite temperature of the LMG Model.
We will use the standard mean-field picture to calculate the phase transition.
We have the Hamiltonian,
\begin_inset Formula
\begin{align}
H & =-\frac{J}{N}\sum_{i<j}\gamma_{z}\sigma_{i}^{z}\sigma_{j}^{z}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}-\Gamma\sum_{i}\sigma_{i}^{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{2J\gamma_{y}}{N}S_{y}^{2}-2\Gamma S_{x}
\end{align}
\end_inset
In this section, it is much more convenient to go back to the original represent
ation,
\begin_inset Formula
\begin{align}
H^{\prime} & =-\frac{J}{N}\sum_{i<j}\gamma_{x}\sigma_{i}^{x}\sigma_{j}^{x}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}-\Gamma\sum_{i}\sigma_{i}^{z}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{x}^{2}-\frac{2J\gamma_{y}}{N}S_{y}^{2}-2\Gamma S_{z}
\end{align}
\end_inset
Using a mean-field ansatz,
\begin_inset Formula $m_{a}=\frac{1}{N}\sum_{i}\left\langle \sigma_{i}^{a}\right\rangle $
\end_inset
, we have
\begin_inset Formula
\begin{align*}
H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\sum_{i}\left[\frac{J\gamma_{x}}{2}m_{x}\sigma_{i}^{x}+\frac{J\gamma_{y}}{2}m_{y}\sigma_{i}^{y}+\Gamma\sigma_{i}^{z}\right]
\end{align*}
\end_inset
We drop the term proportional to identity.
The partition function is
\begin_inset Formula
\begin{align*}
Z & =\text{Tr}\left\{ \prod_{i}\exp\left[\beta\left(\frac{J\gamma_{x}}{2}m_{x}\sigma_{i}^{x}+\frac{J\gamma_{y}}{2}m_{y}\sigma_{i}^{y}+\Gamma\sigma_{i}^{z}\right)\right]\right\} \\
& =\text{Tr}\left\{ \prod_{i}\exp\left[\left(\frac{\beta J\gamma_{x}m_{x}}{2},\frac{\beta J\gamma_{y}m_{y}}{2},\beta\Gamma\right)\cdot\boldsymbol{\sigma}_{i}\right]\right\} =\text{Tr}\left\{ \prod_{i}\exp\left[\boldsymbol{K}\cdot\boldsymbol{\sigma}_{i}\right]\right\} \\
& =\text{Tr}\bigotimes_{i}\left[\cosh K+\hat{K}.\boldsymbol{\sigma}_{i}\sinh K\right]\text{, with }K=\beta\sqrt{\frac{1}{4}J^{2}\left(\gamma_{x}^{2}m_{x}^{2}+\gamma_{y}^{2}m_{y}^{2}\right)+\Gamma^{2}}\\
Z & =\left(2\cosh K\right)^{N}
\end{align*}
\end_inset
We have the self consistency equations,
\begin_inset Formula
\begin{align*}
m_{x} & =\frac{\left(2\cosh K\right)^{N-1}\hat{K}_{x}2\sinh K}{\left(2\cosh K\right)^{N}}=\frac{\beta J\gamma_{x}m_{x}}{2K}\tanh K\\
m_{y} & =\frac{\beta J\gamma_{y}m_{y}}{2K}\tanh K
\end{align*}
\end_inset
To obtain the phase boundary, we take the limit
\begin_inset Formula $m_{x},m_{y}\rightarrow0$
\end_inset
\begin_inset Formula
\begin{align*}
\frac{2\Gamma}{J\gamma_{x,y}} & =\tanh K=\tanh\beta\Gamma\\
\Rightarrow & \frac{\frac{2\Gamma}{J\gamma_{x,y}}+1}{-\frac{2\Gamma}{J\gamma_{x,y}}+1}=e^{2\beta\Gamma}\\
\Rightarrow\beta & =\frac{1}{2\Gamma}\log\left(\frac{J\gamma_{x,y}+2\Gamma}{J\gamma_{x,y}-2\Gamma}\right)///check\ \ Calculation
\end{align*}
\end_inset
So basically we take the larger two
\begin_inset Formula $\gamma_{x},\gamma_{y}$
\end_inset
to obtain
\begin_inset Formula $\Gamma$
\end_inset
.
\end_layout
\begin_layout Standard
To calculate numerically, we do the following :
\end_layout
\begin_layout Enumerate
Diagonalize
\begin_inset Formula $H$
\end_inset
in each spin sector, and obtain energies and eigenvectors :
\begin_inset Formula $E_{n}(s=0\cdots S=N/2)$
\end_inset
and
\begin_inset Formula $|\Phi_{n}\rangle$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Formula
\[
H=\oplus\sum_{n=-S}^{+S}E_{n}(S)|\Phi_{n}\rangle\langle\Phi_{n}|
\]
\end_inset
\end_layout
\begin_layout Enumerate
Obtain the magnetization of each eigenstate
\begin_inset Formula $M_{\Phi_{n}}^{2}$
\end_inset
.
\begin_inset Newline newline
\end_inset
\end_layout
\begin_layout Enumerate
The average magnetization is
\begin_inset Formula
\begin{align}
\left\langle M\right\rangle & =\frac{\sum_{s}D\left(S\right)\sum_{n}M_{\Phi_{n}}e^{-\beta E_{n}(s)}}{\sum_{s}D\left(S\right)\sum_{n}e^{-\beta E_{n}(s)}}\\
& =\frac{\sum_{s}D\left(S\right)e^{-\beta E_{\text{min}}(s)}\sum_{n}M_{\Phi_{n}}e^{-\beta\left(E_{n}(s)-E_{\text{min}}(s)\right)}}{\sum_{s}D\left(S\right)e^{-\beta E_{\text{min}}(s)}\sum_{n}e^{-\beta\left(E_{n}(s))-E_{\text{min}}(s)\right)}}\\
& =\frac{\sum_{s}D\left(S\right)e^{-\beta\left(E_{\text{min}}(s)-E_{\text{min}}^{{\rm tot}}\right)}\sum_{n}M_{\Phi_{n}}e^{-\beta\left(E_{n}(s)-E_{\text{min}}(s)\right)}}{\sum_{s}D\left(S\right)e^{-\beta\left(E_{\text{min}}(s)-E_{\text{min}}^{{\rm tot}}\right)}\sum_{n}e^{-\beta\left(E_{n}(s))-E_{\text{min}}(s)\right)}}
\end{align}
\end_inset
where we do the last two steps are taken to avoid having to take very large
exponentials, which often happens because the minimum energy is often negative.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
(a) Finite temperature phase diagram vs mean field solution.
(b) Scaling with system size, of different quantities
\begin_inset Formula $\left\langle S_{z}^{2}\right\rangle _{\beta}$
\end_inset
,
\begin_inset Formula $\left\langle S_{y}^{2}\right\rangle _{\beta}$
\end_inset
and
\begin_inset Formula $\left\langle S_{z}^{2}+S_{y}^{2}\right\rangle _{\beta}$
\end_inset
as a function of system size
\begin_inset Formula $L$
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Unequal time correlation function
\end_layout
\begin_layout Subsubsection
\begin_inset Formula $S_{\phi}$
\end_inset
correlation
\begin_inset Formula $\left\langle S_{\phi}\left(t_{2}\right)S_{\phi}\left(t_{1}\right)\right\rangle _{0}$
\end_inset
\end_layout
\begin_layout Standard
We note that
\begin_inset Formula $S_{\phi}=A_{z}S_{z}+A_{y}S_{y}$
\end_inset
.
We have, in the initial state,
\begin_inset Formula $|\psi_{0}\rangle$
\end_inset
\begin_inset Formula
\begin{align*}
\left\langle S_{\phi}\left(t_{1}\right)S_{\phi}\left(t_{2}\right)\right\rangle _{0} & =\left\langle \psi_{0}\left|S_{\phi}\left(t_{1}\right)S_{\phi}\left(t_{2}\right)\right|\psi_{0}\right\rangle \\
& =\left\langle \psi_{0}\left|e^{iHt_{1}}S_{\phi}e^{iH\left(t_{2}-t_{1}\right)}S_{\phi}\left(t\right)e^{-iHt_{2}}\right|\psi_{0}\right\rangle
\end{align*}
\end_inset
Let us obtain the action of
\begin_inset Formula $S_{\phi}$
\end_inset
on an arbitrary state
\begin_inset Formula $|\Psi\rangle=\sum_{M}\alpha_{M}|S,M\rangle$
\end_inset
,
\begin_inset Formula
\begin{align*}
S_{\phi}|\Psi\rangle & =\sum_{M}\left(A_{z}S_{z}+A_{y}S_{y}\right)\alpha_{M}|S,M\rangle\\
& =\sum_{M}\alpha_{M}A_{z}M|S,M\rangle+\sum_{M}\alpha_{M}\left(A_{y}\frac{1}{2i}\left(S_{+}-S_{-}\right)\right)|S,M\rangle\\
& =\sum_{M}\alpha_{M}A_{z}M|S,M\rangle+\frac{A_{y}}{2i}\sum_{M}\alpha_{M}\left(\sqrt{S\left(S+1\right)-M\left(M+1\right)}|S,M+1\rangle-\sqrt{S\left(S+1\right)-M\left(M-1\right)}|S,M-1\rangle\right)
\end{align*}
\end_inset
Therefore,
\begin_inset Formula $S_{\phi}|\Psi\rangle=\sum_{M}B_{M}|S,M\rangle$
\end_inset
is given as,
\begin_inset Formula
\[
B_{M}=\begin{cases}
A_{z}S\alpha_{S}+\frac{A_{y}}{2i}\alpha_{S-1}\sqrt{2S} & M=S\\
-A_{z}S\alpha_{-S}-\frac{A_{y}}{2i}\alpha_{-S+1}\sqrt{2S} & M=-S\\
\alpha_{M}A_{z}M+\frac{A_{y}}{2i}\left(\alpha_{M-1}\sqrt{S\left(S+1\right)-M\left(M-1\right)}-\alpha_{M+1}\sqrt{S\left(S+1\right)-M\left(M+1\right)}\right) & \forall M\neq S,-S
\end{cases}
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Finite temperature
\begin_inset Formula $S_{\phi}$
\end_inset
Correlation :
\begin_inset Formula $\left\langle S_{\phi}\left(t_{2}\right)S_{\phi}\left(t_{1}\right)\right\rangle _{\beta}$
\end_inset
\end_layout
\begin_layout Standard
We have the correlation defined as follows,
\begin_inset Formula
\begin{align*}
\left\langle S_{\phi}\left(t_{2}\right)S_{\phi}\left(t_{1}\right)\right\rangle _{\beta} & =\frac{\sum_{s}D\left(S\right)\sum_{n}\left\langle S_{\phi}\left(t_{2}\right)S_{\phi}\left(t_{1}\right)\right\rangle _{\Phi_{n}}e^{-\beta E_{n}(s)}}{\sum_{s}D\left(S\right)\sum_{n}e^{-\beta E_{n}(s)}}\\
& =\frac{\sum_{s}D\left(S\right)e^{-\beta\left(E_{\text{min}}(s)-E_{\text{min}}^{{\rm tot}}\right)}\sum_{n}\left\langle S_{\phi}\left(t_{2}\right)S_{\phi}\left(t_{1}\right)\right\rangle _{\Phi_{n}}e^{-\beta\left(E_{n}(s)-E_{\text{min}}(s)\right)}}{\sum_{s}D\left(S\right)e^{-\beta\left(E_{\text{min}}(s)-E_{\text{min}}^{{\rm tot}}\right)}\sum_{n}e^{-\beta\left(E_{n}(s))-E_{\text{min}}(s)\right)}}
\end{align*}
\end_inset
We can thus use the above formulations to find the finite temperature expectatio
n value.
\begin_inset Formula
\begin{align*}
\left\langle \left[S_{z}\left(t\right),S_{z}\left(t^{\prime}\right)\right]_{\pm}\right\rangle _{0} & =\left\langle S_{z}\left(t\right)S_{z}\left(t^{\prime}\right)\pm S_{z}\left(t^{\prime}\right)S_{z}\left(t\right)\right\rangle _{0}\\
& =\sum_{M,M\prime}\langle S,M^{\prime}|\alpha_{M^{\prime}}^{*}\left(e^{iHt}S_{z}e^{iH\left(t^{\prime}-t\right)}S_{z}e^{-iHt^{\prime}}\pm e^{iHt^{\prime}}S_{z}e^{iH\left(t-t^{\prime}\right)}S_{z}e^{-iHt}\right)\alpha_{M}|S,M\rangle\\
& =\sum_{M,M^{\prime},M^{\prime\prime}}\alpha_{M^{\prime}}^{*}\alpha_{M}\langle S,M^{\prime}|\left(e^{iHt}S_{z}e^{iH\left(t^{\prime}-t\right)}S_{z}e^{-iHt^{\prime}}\pm e^{iHt^{\prime}}S_{z}e^{iH\left(t-t^{\prime}\right)}S_{z}e^{-iHt}\right)|S,M\rangle
\end{align*}
\end_inset
Compared to
\begin_inset Formula $\left\langle S_{z}^{2}\left(t\right)\right\rangle $
\end_inset
,
\begin_inset Formula
\begin{align*}
\left\langle S_{z}^{2}\left(t\right)\right\rangle & =\left\langle e^{iHt}S_{z}^{2}e^{-iHt}\right\rangle _{0}\\
& =S_{z}^{2}e^{-iHt}\sum_{M}\alpha_{M}|S,M\rangle
\end{align*}
\end_inset
\end_layout
\begin_layout Section
Entanglement Entropy
\end_layout
\begin_layout Standard
Let us discuss the numerical method to compute the entanglement entropy.
\end_layout
\begin_layout Subsection
Bipartition
\end_layout
\begin_layout Standard
First let us consider a bipartition,
\begin_inset Formula $A$
\end_inset
to the left of
\begin_inset Formula $B$
\end_inset
.
Rewriting,
\begin_inset Formula $S_{z}=S_{zA}+S_{zB}$
\end_inset
.We have,
\begin_inset Formula
\begin{align*}
H & =-\frac{J}{N}\sum_{i<j}\gamma_{z}\sigma_{i}^{z}\sigma_{j}^{z}+\gamma_{y}\sigma_{i}^{y}\sigma_{j}^{y}-\Gamma\sum_{i}\sigma_{i}^{x}\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{z}^{2}-\frac{2J\gamma_{y}}{N}S_{y}^{2}-2\Gamma S_{x}\\
\Rightarrow H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\right)-\frac{2J\gamma_{z}}{N}S_{zA}^{2}-\frac{2J\gamma_{y}}{N}S_{yA}^{2}-2\Gamma S_{xA}\\
& -\frac{2J\gamma_{z}}{N}S_{zB}^{2}-\frac{2J\gamma_{y}}{N}S_{yB}^{2}-2\Gamma S_{xB}-\frac{4J\gamma_{z}}{N}S_{zA}S_{zB}-\frac{4J\gamma_{y}}{N}S_{yA}S_{yB}
\end{align*}
\end_inset
Now, we can redefine the Hamiltonian in the basis of
\begin_inset Formula $|S_{A},M_{A};S_{B},M_{B}\rangle$
\end_inset
.
To do so we need to use the definitions of
\begin_inset Formula $S_{\pm}=S_{\pm A}+S_{\pm B}$
\end_inset
,
\begin_inset Formula
\begin{align*}
H & =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\left(1-\frac{2S^{2}}{N}\right)\right)-\frac{J\left(2\gamma_{z}-\gamma_{y}\right)}{N}S_{z}^{2}+\frac{J\gamma_{y}}{2N}\left(S_{+}^{2}+S_{-}^{2}\right)-\Gamma\left(S_{+}+S_{-}\right)\\
& =\frac{J}{2}\left(\gamma_{z}+\gamma_{y}\left(1-\frac{2S^{2}}{N}\right)\right)-\frac{J\left(2\gamma_{z}-\gamma_{y}\right)}{N}\left(S_{zA}^{2}+S_{zB}^{2}+2S_{zA}S_{zB}\right)\\
& \ \ +\frac{J\gamma_{y}}{2N}\left(S_{+A}^{2}+S_{+B}^{2}+2S_{+A}S_{+B}\right)+\frac{J\gamma_{y}}{2N}\left(S_{-A}^{2}+S_{-B}^{2}+2S_{-A}S_{-B}\right)\\
& \ \ -\Gamma\left(S_{+A}+S_{+A}+S_{-A}+S_{-B}\right)
\end{align*}
\end_inset
Now the matrix has dimensions
\begin_inset Formula $(2S_{A}+1)(2S_{B}+1)\times(2S_{A}+1)(2S_{B}+1)$
\end_inset
with both
\begin_inset Formula $S_{A}$
\end_inset
and
\begin_inset Formula $S_{B}$
\end_inset
\begin_inset Formula
\[
|S=N/2,S\rangle=|S_{A},S_{A};S-S_{A},S-S_{A}\rangle
\]
\end_inset
\end_layout
\begin_layout Section
Quenching the magnetic field: Holstien-Primakoff Approximation
\end_layout
\begin_layout Subsection
Case with
\begin_inset Formula $\gamma_{z}=1$
\end_inset
and
\begin_inset Formula $\gamma_{y}=0$
\end_inset
.
[Numeric: Lmg_sim_v0.ipynb]
\end_layout
\begin_layout Standard
In the following I translate the Holstein Primakoff to my language (from
Mohammad's).
Consider the Hamilotnian
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
H=-\frac{2J}{N}(S_{{\rm tot}}^{z})^{2}-2\Gamma S_{{\rm tot}}^{x}
\end{equation}
\end_inset
Using the Holstein Primakoff transformation, we have
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
S_{{\rm tot}}^{x} & =\frac{N}{2}-a^{\dagger}a\\
S_{{\rm tot}}^{z} & =\frac{1}{2}\sqrt{N}(a+a^{\dagger})
\end{align}
\end_inset
the Hamiltonian turns into
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
H & =2\Gamma a^{\dagger}a-\frac{J}{2}(a+a^{\dagger})^{2}-\Gamma N\\
& =2J[-\frac{1}{4}(a+a^{\dagger})^{2}+ga^{\dagger}a]
\end{align}
\end_inset
where
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $g\equiv\frac{\Gamma}{J}$
\end_inset
.
It is more convenient to define
\begin_inset Quotes eld
\end_inset
position
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
momentum
\begin_inset Quotes erd
\end_inset
operators as
\begin_inset Formula
\begin{align}
a & =\frac{1}{\sqrt{2}}(x+ip)\\
a^{\dagger} & =\frac{1}{\sqrt{2}}(x-ip)
\end{align}
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
In this representation, the Hamiltonian takes the form
\begin_inset Formula
\begin{align}
H & =2J\left[-\frac{1}{2}x^{2}+\frac{1}{2}g(x^{2}+p^{2})\right]=2J\left[\frac{1}{2}gp^{2}+\frac{1}{2}(g-1)x^{2}\right]\\
& =2\Gamma\left[\frac{1}{2}p^{2}+\frac{1}{2}\frac{g-1}{g}x^{2}\right]
\end{align}
\end_inset
It is advantageous to redefine position and momentum variables as
\begin_inset Formula $x\to\sqrt{2\Gamma}\tilde{x}$
\end_inset
and
\begin_inset Formula $p\to\tilde{p}/\sqrt{2\Gamma}$
\end_inset
which satisfies their commutation relation, but leads to a standard form
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
H_{0}=\frac{1}{2}\tilde{p}^{2}+\frac{1}{2}\omega^{2}\tilde{x}^{2}
\end{equation}
\end_inset
where
\begin_inset Formula $\omega^{2}\equiv4\Gamma^{2}(g-1)/g$
\end_inset
.
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
Now consider a quench of the form
\begin_inset Formula $g_{0}\to g$
\end_inset
.
Inital state
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
has equal distribution of energy in momentum and position terms of hamornic
oscillator,
\begin_inset Formula $\langle\tilde{p}^{2}/2\rangle=\omega_{0}/4$