forked from openai/evals
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate.py
81 lines (66 loc) · 2.62 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from typing import Any
from sacrebleu.metrics.bleu import BLEU
import evals
import evals.metrics
from evals.api import CompletionFn
from evals.prompt.base import is_chat_prompt
class Translate(evals.Eval):
def __init__(
self,
completion_fns: list[CompletionFn],
samples_jsonl: str,
*args,
max_tokens: int = 500,
num_few_shot: int = 0,
few_shot_jsonl: str = None,
**kwargs,
):
super().__init__(completion_fns, *args, **kwargs)
assert len(completion_fns) == 1, "Translate only supports one completion fn"
self.max_tokens = max_tokens
self.samples_jsonl = samples_jsonl
self.num_few_shot = num_few_shot
if self.num_few_shot > 0:
assert few_shot_jsonl is not None, "few shot requires few shot sample dataset"
self.few_shot_jsonl = few_shot_jsonl
self.few_shot = evals.get_jsonl(self.few_shot_jsonl)
self.bleu = BLEU(effective_order=True)
def eval_sample(self, sample: Any, *_):
prompt = sample["input"]
expected = sample["ideal"]
if self.num_few_shot > 0:
assert is_chat_prompt(sample["input"]), "few shot requires chat prompt"
prompt = sample["input"][:-1]
for s in self.few_shot[: self.num_few_shot]:
prompt += s["sample"]
prompt += sample["input"][-1:]
if isinstance(expected, tuple):
expected = list(expected)
elif not isinstance(expected, list):
expected = [expected]
result = self.completion_fn(
prompt=prompt,
max_tokens=self.max_tokens,
)
sampled = result.get_completions()[0]
score = None
if expected is not None:
score = self.bleu.sentence_score(sampled, expected).score
evals.record.record_metrics(sacrebleu_sentence_score=score)
match = score > 30
if score is not None:
evals.record.record_match(
match, expected=expected, sampled=sampled, sacrebleu_sentence_score=score
)
return match
def run(self, recorder):
samples = self.get_samples()
self.eval_all_samples(recorder, samples)
events = recorder.get_events("match")
sampled = list(map(lambda e: e.data["sampled"], events))
expected = list(map(lambda e: e.data["expected"], events))
sacrebleu_score = BLEU().corpus_score(sampled, [expected]).score
return {
"accuracy": evals.metrics.get_accuracy(events),
"sacrebleu_score": sacrebleu_score,
}