forked from PGelss/scikit_tt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfractals.py
235 lines (188 loc) · 7.23 KB
/
fractals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
"""
These are several examples for the tensor-construction of fractal patterns. For more details,
see [1]_.
References
----------
..[1] P. Gelß, C. Schütte, "Tensor-generated fractals: Using tensor decompositions for creating
self-similar patterns", arXiv:1812.00814, 2018
"""
import numpy as np
import scikit_tt.models as mdl
import scikit_tt.utils as utl
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
# noinspection PyUnresolvedReferences
from mpl_toolkits.mplot3d import axes3d
import time as _time
def plot1d(vector):
"""Plot 1-dimensional fractals.
Parameters
----------
vector: ndarray
1-dimensional binary tensor representing the fractal pattern
"""
for k in range(vector.shape[0]):
if vector[k] == 1:
ax.plot([k / vector.shape[0], (k + 1) / vector.shape[0]], [0, 0], color='0.33')
plt.xlim(-1 / 3, 4 / 3)
plt.axis('off')
def plot2d(matrix):
"""Plot 2-dimensional fractals.
Parameters
----------
matrix: ndarray
2-dimensional binary tensor representing the fractal pattern
"""
ax.imshow(matrix, cmap=LinearSegmentedColormap.from_list('_', ['1', '0.33']))
plt.xlim(-0.5 - (1 / 3) * matrix.shape[0], -0.5 + (4 / 3) * matrix.shape[0])
plt.axis('off')
def plot3d(tensor):
"""Plot 3-dimensional fractals.
Parameters
----------
tensor: ndarray
3-dimensional binary tensor representing the fractal pattern
"""
eps = 0.01
x = np.array([[0 - eps, 1 + eps], [0 - eps, 1 + eps]])
y = np.array([[1 + eps, 1 + eps], [0 - eps, 0 - eps]])
z = np.array([[0, 0], [0, 0]])
n = tensor.shape[0]
for k_1 in range(n):
for k_2 in range(n):
for k_3 in range(n):
if tensor[k_1, k_2, k_3] == 1:
if (tensor[k_1, k_2, np.mod(k_3 + 1, n - 1)] == 0) or (k_3 == n - 1):
ax.plot_surface(x + k_1, y + k_2, z + k_3 + 1, color='1')
if (tensor[np.mod(k_1 + 1, n - 1), k_2, k_3] == 0) or (k_1 == n - 1):
ax.plot_surface(z + k_1 + 1, x + k_2, y + k_3, color='0.67')
if (tensor[k_1, k_2 - 1, k_3] == 0) or (k_2 == 0):
ax.plot_surface(y + k_1, z + k_2, x + k_3, color='0.33')
plt.axis('off')
def plotrgb(tensor):
"""Plot RGB fractals.
Parameters
----------
tensor: ndarray
3-dimensional tensor representing the RGB image
"""
ax.imshow(tensor)
plt.axis('off')
utl.header(title='Tensor-generated fractals')
# multisponges
# ------------
start_time = utl.progress('Generating multisponges', 0)
multisponge = []
for i in range(2, 4):
for j in range(1, 4):
multisponge.append(mdl.multisponge(i, j))
utl.progress('Generating multisponges', 100 * ((i - 2) * 3 + j) / 6, cpu_time=_time.time() - start_time)
# Cantor dusts
# ------------
start_time = utl.progress('Generating Cantor dusts', 0)
cantor_dust = []
for i in range(1, 4):
for j in range(1, 4):
cantor_dust.append(mdl.cantor_dust(i, j))
utl.progress('Generating Cantor dusts', 100 * ((i - 1) * 3 + j) / 9, cpu_time=_time.time() - start_time)
# Vicsek fractals
# ---------------
start_time = utl.progress('Generating Vicsek fractals', 0)
vicsek = []
for i in range(2, 4):
for j in range(1, 4):
vicsek.append(mdl.vicsek_fractal(i, j))
utl.progress('Generating Vicsek fractals', 100 * ((i - 2) * 3 + j) / 6, cpu_time=_time.time() - start_time)
# RGB fractals
# ------------
start_time = utl.progress('Generating RGB fractals', 0)
level = 5
rgb_fractals = []
matrix_r = np.array([[0.5, 1, 0.5], [1, 0.5, 1], [0.5, 1, 0.5]])
matrix_g = np.array([[0.75, 1, 0.75], [1, 1, 1], [0.75, 1, 0.75]])
matrix_b = np.array([[1, 0.75, 1], [0.75, 1, 0.75], [1, 0.75, 1]])
rgb_fractals.append(mdl.rgb_fractal(matrix_r, matrix_g, matrix_b, level))
utl.progress('Generating RGB fractals', 33.3, cpu_time=_time.time() - start_time)
matrix_r = np.array([[0.5, 0.75, 0.75, 0.5], [0.75, 1, 1, 0.75], [0.75, 1, 1, 0.75], [0.5, 0.75, 0.75, 0.5]])
matrix_g = np.array([[1, 0.5, 0.5, 1], [0.5, 0.75, 0.75, 0.5], [0.5, 0.75, 0.75, 0.5], [1, 0.5, 0.5, 1]])
matrix_b = np.array([[0.75, 1, 1, 0.75], [1, 0.5, 0.5, 1], [1, 0.5, 0.5, 1], [0.75, 1, 1, 0.75]])
rgb_fractals.append(mdl.rgb_fractal(matrix_r, matrix_g, matrix_b, level))
utl.progress('Generating RGB fractals', 66.6, cpu_time=_time.time() - start_time)
matrix_r = np.array([[0.25, 0.5, 1, 0.5, 0.25], [0.5, 1, 1, 1, 0.5], [1, 1, 0.5, 1, 1], [0.5, 0.5, 0.25, 0.5, 0.5],
[0.5, 0.25, 0.25, 0.25, 0.5]])
matrix_g = np.array([[0.25, 0.25, 0.5, 0.25, 0.25], [0.25, 0.5, 1, 0.5, 0.25], [0.5, 1, 1, 1, 0.5], [1, 1, 0.5, 1, 1],
[0.5, 0.5, 0.25, 0.5, 0.5]])
matrix_b = np.array(
[[0.25, 0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.5, 0.25, 0.25], [0.25, 0.5, 1, 0.5, 0.25], [0.5, 1, 1, 1, 0.5],
[1, 1, 0.5, 1, 1]])
rgb_fractals.append(mdl.rgb_fractal(matrix_r, matrix_g, matrix_b, level))
utl.progress('Generating RGB fractals', 100, cpu_time=_time.time() - start_time)
print(' ')
# plot fractals
# -------------
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.rcParams["mathtext.fontset"] = "cm"
plt.rcParams.update({'font.size': 10})
plt.rcParams.update({'figure.autolayout': True})
plt.rcParams.update({'axes.grid': True})
plt.rcParams.update({'axes.grid': False})
start_time = utl.progress('Plotting patterns', 0)
# multisponges
f = plt.figure(figsize=plt.figaspect(0.65))
for i in range(3):
ax = f.add_subplot(2, 3, i + 1, aspect=1)
plot2d(multisponge[i])
if i == 1:
plt.title('Sierpinski carpet', y=1.2)
for i in range(3, 6):
ax = f.add_subplot(2, 3, i + 1, projection='3d', aspect=1)
plot3d(multisponge[i])
if i == 4:
plt.title('Menger sponge', y=1.1)
plt.show()
utl.progress('Plotting patterns', 25, cpu_time=_time.time() - start_time)
# Cantor dusts
f = plt.figure(figsize=plt.figaspect(1))
for i in range(3):
ax = f.add_subplot(3, 3, i + 1, aspect=1)
plot1d(cantor_dust[i])
if i == 1:
plt.title('Cantor set', y=1.2)
for i in range(3, 6):
ax = f.add_subplot(3, 3, i + 1, aspect=1)
plot2d(cantor_dust[i])
if i == 4:
plt.title('Cantor dust (2D)', y=1.2)
for i in range(6, 9):
ax = f.add_subplot(3, 3, i + 1, projection='3d', aspect=1)
plot3d(cantor_dust[i])
if i == 7:
plt.title('Cantor dust (3D)', y=1.1)
plt.show()
utl.progress('Plotting patterns', 50, cpu_time=_time.time() - start_time)
# Vicsek fractals
f = plt.figure(figsize=plt.figaspect(0.65))
for i in range(3):
ax = f.add_subplot(2, 3, i + 1, aspect=1)
plot2d(vicsek[i])
if i == 1:
plt.title('Vicsek fractal (2D)', y=1.2)
for i in range(3, 6):
ax = f.add_subplot(2, 3, i + 1, projection='3d', aspect=1)
plot3d(vicsek[i])
if i == 4:
plt.title('Vicsek fractal (3D)', y=1.1)
plt.show()
utl.progress('Plotting patterns', 75, cpu_time=_time.time() - start_time)
# RGB fractals
f = plt.figure(figsize=plt.figaspect(0.45))
for i in range(3):
ax = f.add_subplot(1, 3, i + 1, aspect=1)
plotrgb(rgb_fractals[i])
if i == 1:
plt.title('RGB fractals', y=1.1)
plt.show()
utl.progress('Plotting patterns', 100, cpu_time=_time.time() - start_time)
print(' ')