-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathtrain.py
executable file
·301 lines (243 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) SenseTime. All Rights Reserved.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import os
import time
import math
import json
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.nn.utils import clip_grad_norm_
from torch.utils.data.distributed import DistributedSampler
import sys
sys.path.append(os.getcwd())
from nanotrack.utils.lr_scheduler import build_lr_scheduler
from nanotrack.utils.log_helper import init_log, print_speed, add_file_handler
from nanotrack.utils.distributed import new_dist_init, DistModule, reduce_gradients,average_reduce, get_rank, get_world_size
from nanotrack.utils.model_load import load_pretrain, restore_from
from nanotrack.utils.average_meter import AverageMeter
from nanotrack.utils.misc import describe, commit
from nanotrack.models.model_builder import ModelBuilder
from nanotrack.datasets.dataset import BANDataset
from nanotrack.core.config import cfg
logger = logging.getLogger('global')
parser = argparse.ArgumentParser(description='nanotrack')
parser.add_argument('--cfg', type=str, default='./models/config/config.yaml',help='configuration of tracking')
parser.add_argument('--seed', type=int, default=123456, help='random seed')
parser.add_argument('--local_rank', type=int, default=0, help='compulsory for pytorch launcer')
args = parser.parse_args()
def seed_torch(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def build_data_loader():
logger.info("build train dataset")
# train_dataset
if cfg.BAN.BAN:
train_dataset = BANDataset()
logger.info("build dataset done")
train_sampler = None
if get_world_size() > 1:
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset,
batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=cfg.TRAIN.NUM_WORKERS,
pin_memory=True,
sampler=train_sampler)
return train_loader
def build_opt_lr(model, current_epoch=0):
for param in model.backbone.parameters():
param.requires_grad = False
for m in model.backbone.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
if current_epoch >= cfg.BACKBONE.TRAIN_EPOCH:
for layer in cfg.BACKBONE.TRAIN_LAYERS:
for param in getattr(model.backbone, layer).parameters():
param.requires_grad = True
for m in getattr(model.backbone, layer).modules():
if isinstance(m, nn.BatchNorm2d):
m.train()
trainable_params = []
trainable_params += [{'params': filter(lambda x: x.requires_grad,
model.backbone.parameters()),
'lr': cfg.BACKBONE.LAYERS_LR * cfg.TRAIN.BASE_LR}]
if cfg.ADJUST.ADJUST:
trainable_params += [{'params': model.neck.parameters(),
'lr': cfg.TRAIN.BASE_LR}]
trainable_params += [{'params': model.ban_head.parameters(),
'lr': cfg.TRAIN.BASE_LR}]
optimizer = torch.optim.SGD(trainable_params,
momentum=cfg.TRAIN.MOMENTUM,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
lr_scheduler = build_lr_scheduler(optimizer, epochs=cfg.TRAIN.EPOCH)
lr_scheduler.step(cfg.TRAIN.START_EPOCH)
return optimizer, lr_scheduler
def log_grads(model, tb_writer, tb_index):
def weights_grads(model):
grad = {}
weights = {}
for name, param in model.named_parameters():
if param.grad is not None:
grad[name] = param.grad
weights[name] = param.data
return grad, weights
grad, weights = weights_grads(model)
feature_norm, head_norm = 0, 0
for k, g in grad.items():
_norm = g.data.norm(2)
weight = weights[k]
w_norm = weight.norm(2)
if 'feature' in k:
feature_norm += _norm ** 2
else:
head_norm += _norm ** 2
tb_writer.add_scalar('grad_all/'+k.replace('.', '/'),
_norm, tb_index)
tb_writer.add_scalar('weight_all/'+k.replace('.', '/'),
w_norm, tb_index)
tb_writer.add_scalar('w-g/'+k.replace('.', '/'),
w_norm/(1e-20 + _norm), tb_index)
tot_norm = feature_norm + head_norm
tot_norm = tot_norm ** 0.5
feature_norm = feature_norm ** 0.5
head_norm = head_norm ** 0.5
tb_writer.add_scalar('grad/tot', tot_norm, tb_index)
tb_writer.add_scalar('grad/feature', feature_norm, tb_index)
tb_writer.add_scalar('grad/head', head_norm, tb_index)
def train(train_loader, model, optimizer, lr_scheduler, tb_writer):
cur_lr = lr_scheduler.get_cur_lr()
rank = get_rank()
average_meter = AverageMeter()
def is_valid_number(x):
return not(math.isnan(x) or math.isinf(x) or x > 1e4)
world_size = get_world_size()
num_per_epoch = len(train_loader.dataset) // \
cfg.TRAIN.EPOCH // (cfg.TRAIN.BATCH_SIZE * world_size)
start_epoch = cfg.TRAIN.START_EPOCH
epoch = start_epoch
if not os.path.exists(cfg.TRAIN.SNAPSHOT_DIR) and \
get_rank() == 0:
os.makedirs(cfg.TRAIN.SNAPSHOT_DIR)
logger.info("model\n{}".format(describe(model.module)))
end = time.time()
for idx, data in enumerate(train_loader):
if epoch != idx // num_per_epoch + start_epoch:
epoch = idx // num_per_epoch + start_epoch
if get_rank() == 0:
torch.save(
{'epoch': epoch,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict()},
cfg.TRAIN.SNAPSHOT_DIR+'/checkpoint_e%d.pth' % (epoch))
if epoch == cfg.TRAIN.EPOCH:
return
if cfg.BACKBONE.TRAIN_EPOCH == epoch:
logger.info('start training backbone.')
optimizer, lr_scheduler = build_opt_lr(model.module, epoch)
logger.info("model\n{}".format(describe(model.module)))
lr_scheduler.step(epoch)
cur_lr = lr_scheduler.get_cur_lr()
logger.info('epoch: {}'.format(epoch+1))
tb_idx = idx + start_epoch * num_per_epoch
if idx % num_per_epoch == 0 and idx != 0:
for idx, pg in enumerate(optimizer.param_groups):
logger.info('epoch {} lr {}'.format(epoch+1, pg['lr']))
if rank == 0:
tb_writer.add_scalar('lr/group{}'.format(idx+1),
pg['lr'], tb_idx)
data_time = average_reduce(time.time() - end)
if rank == 0:
tb_writer.add_scalar('time/data', data_time, tb_idx)
outputs = model(data)
loss = outputs['total_loss']
if is_valid_number(loss.data.item()):
optimizer.zero_grad()
loss.backward()
reduce_gradients(model)
if rank == 0 and cfg.TRAIN.LOG_GRADS:
log_grads(model.module, tb_writer, tb_idx)
# clip gradient
clip_grad_norm_(model.parameters(), cfg.TRAIN.GRAD_CLIP)
optimizer.step()
batch_time = time.time() - end
batch_info = {}
batch_info['batch_time'] = average_reduce(batch_time)
batch_info['data_time'] = average_reduce(data_time)
for k, v in sorted(outputs.items()):
batch_info[k] = average_reduce(v.data.item())
average_meter.update(**batch_info)
if rank == 0:
for k, v in batch_info.items():
tb_writer.add_scalar(k, v, tb_idx)
if (idx+1) % cfg.TRAIN.PRINT_FREQ == 0:
info = "Epoch: [{}][{}/{}] lr: {:.6f}\n".format(
epoch+1, (idx+1) % num_per_epoch,
num_per_epoch, cur_lr)
for cc, (k, v) in enumerate(batch_info.items()):
if cc % 2 == 0:
info += ("\t{:s}\t").format(
getattr(average_meter, k))
else:
info += ("{:s}\n").format(
getattr(average_meter, k))
logger.info(info)
print_speed(idx+1+start_epoch*num_per_epoch,
average_meter.batch_time.avg,
cfg.TRAIN.EPOCH * num_per_epoch)
end = time.time()
def main():
rank, world_size = new_dist_init()
logger.info("init done")
# load cfg
cfg.merge_from_file(args.cfg)
if rank == 0:
if not os.path.exists(cfg.TRAIN.LOG_DIR):
os.makedirs(cfg.TRAIN.LOG_DIR)
init_log('global', logging.INFO)
if cfg.TRAIN.LOG_DIR:
add_file_handler('global',
os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'),
logging.INFO)
logger.info("Version Information: \n{}\n".format(commit()))
logger.info("config \n{}".format(json.dumps(cfg, indent=4)))
model = ModelBuilder().cuda().train()
if cfg.BACKBONE.PRETRAINED:
cur_path = os.path.dirname(os.path.realpath(__file__))
backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED)
load_pretrain(model.backbone, backbone_path)
if rank == 0 and cfg.TRAIN.LOG_DIR:
tb_writer = SummaryWriter(cfg.TRAIN.LOG_DIR)
else:
tb_writer = None
train_loader = build_data_loader()
optimizer, lr_scheduler = build_opt_lr(model,cfg.TRAIN.START_EPOCH)
if cfg.TRAIN.RESUME:
logger.info("resume from {}".format(cfg.TRAIN.RESUME))
assert os.path.isfile(cfg.TRAIN.RESUME), \
'{} is not a valid file.'.format(cfg.TRAIN.RESUME)
model, optimizer, cfg.TRAIN.START_EPOCH = \
restore_from(model, optimizer, cfg.TRAIN.RESUME)
# load pretrain
elif cfg.TRAIN.PRETRAINED:
load_pretrain(model, cfg.TRAIN.PRETRAINED)
dist_model = DistModule(model)
logger.info(lr_scheduler)
logger.info("model prepare done")
# start training
train(train_loader, dist_model, optimizer, lr_scheduler, tb_writer)
if __name__ == '__main__':
seed_torch(args.seed)
main()