-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
237 lines (197 loc) · 8.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import io
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
import PyPDF2
from pdf2image import convert_from_bytes
import pytesseract
from PIL import Image
from deep_translator import GoogleTranslator
import time
from transformers import AutoModel, AutoTokenizer
import torch
import math
import numpy as np
import torchvision.transforms as T
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
import re
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def parse_text(text):
# Регулярные выражения для поиска нужной информации
date_pattern = re.compile(r"Date: (.+)")
author_pattern = re.compile(r"Author: (.+)")
title_pattern = re.compile(r"Text Title: (.+)")
# Поиск совпадений
date_match = date_pattern.search(text)
author_match = author_pattern.search(text)
title_match = title_pattern.search(text)
# Извлечение найденных значений
date = date_match.group(1) if date_match else None
author = author_match.group(1) if author_match else None
title = title_match.group(1) if title_match else None
return {
'date': date,
'author': author,
'title': title
}
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = 'OpenGVLab/InternVL2-26B'
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map to use multiple GPUs for inference.
# device_map = split_model('InternVL2-26B')
# print(device_map)
# model = AutoModel.from_pretrained(
# path,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# trust_remote_code=True,
# device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
generation_config = dict(
num_beams=1,
max_new_tokens=1024,
do_sample=False,
)
app = FastAPI()
@app.post("/parse")
async def parse_pdf(file: UploadFile = File(...)):
if file.filename.split(".")[-1].lower() != "pdf":
return JSONResponse(status_code=400, content={"error": "Uploaded file must be a PDF"})
pdf_content = await file.read()
# Конвертация PDF в изображения
images = convert_from_bytes(pdf_content)
# OCR для каждого изображения
full_text = ""
for image in images:
text = pytesseract.image_to_string(image,lang='rus')
full_text += text + "\n\n"
# Перевод текста с русского на английский
translator = GoogleTranslator(source='ru', target='en')
translated_text = translator.translate(full_text)
# Извлечение метаданных из PDF
pdf_file = io.BytesIO(pdf_content)
pdf_reader = PyPDF2.PdfReader(pdf_file)
s = """
Find it in the text
Date of publication, author of the text, title of the text
Write them in the format
Date:
Author:
Text Title:
"""
question = s+translated_text
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
parsed_info = parse_text(response)
translator = GoogleTranslator(source='en', target='ru')
title = translator.translate(parsed_info["title"])
authors = translator.translate(parsed_info["author"])
publication_date = translator.translate(parsed_info["date"])
creation_date = pdf_reader.metadata.get('/CreationDate', '')
if creation_date.startswith('D:'):
publication_date = creation_date[2:6] # Извлекаем только год
else:
publication_date = 'Unknown'
return JSONResponse(content={
"fields": {
"title": title,
"authors": authors,
"publication_date": publication_date,
"response": response
}
})
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)