-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
49 lines (38 loc) · 1.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import math
import pickle
import numpy as np
import streamlit as st
import sklearn
pipe = pickle.load(open('pipe.pkl','rb'))
df = pickle.load(open('df.pkl','rb'))
st.title("Laptop Predictor")
company = st.selectbox('Brand',df['Company'].unique())
type = st.selectbox('Type',df['TypeName'].unique())
ram = st.selectbox('RAM(in GB',[2,4,6,8,12,16,24,32,64])
weight = st.number_input('Weight of the laptope')
touchscreen = st.selectbox('Touchscreen',['No','Yes'])
ips = st.selectbox('IPS',['No','Yes'])
screen_size = st.number_input('Screen Size', min_value=1.0)
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2560x1600','2560x1440','2304x1440'])
cpu = st.selectbox('CPU',df['Cpu brand'].unique())
hdd = st.selectbox('HDD(in GB',[128,256,512,1024,2048])
ssd = st.selectbox('SSD(in GB',[8,128,256,512,1024])
gpu = st.selectbox('GPU',df['Gpu brand'].unique())
os = st.selectbox('OS',df['os'].unique())
if st.button('Predict Price'):
#query
ppi = None
if touchscreen == 'yes':
touchscreen = 1
else:
touchscreen = 0
if ips == 'yes':
ips = 1
else:
ips = 0
X_res = int(resolution.split('x')[0])
Y_res = int(resolution.split('x')[1])
ppi = ((X_res**2)+(Y_res**2))**0.5/screen_size
query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os])
query = query.reshape(1,12)
st.title('The predicted Price '+str(int(np.exp(pipe.predict(query)[0]))))