diff --git a/propulate/population.py b/propulate/population.py index bdf2f5d3..4daa8101 100644 --- a/propulate/population.py +++ b/propulate/population.py @@ -1,11 +1,11 @@ -from collections import UserDict +# from collections import UserDict from decimal import Decimal from typing import Union import numpy as np -class Individual(UserDict): +class Individual: """An individual represents a candidate solution to the considered optimization problem.""" def __init__( @@ -28,6 +28,9 @@ def __init__( """ # TODO compare keys of position to keys of limits self.limits = limits + for key in limits: + if key.startswith("_"): + raise ValueError("Keys starting with '_' are reserved.") self.types = {key: type(limits[key][0]) for key in limits} offset = 0 self.offsets = {} @@ -44,10 +47,12 @@ def __init__( raise ValueError( "Individual position not compatible with given search space limits." ) - super(Individual, self).__init__({k: self[k] for k in self.limits}) + # super(Individual, self).__init__({k: self[k] for k in self.limits}) + self.mapping = {k: self[k] for k in self.limits} else: # super(Individual, self).__init__(position) - super(Individual, self).__init__() + # super(Individual, self).__init__() + self.mapping = position self.position = np.zeros(offset) for key in position: self[key] = position[key] @@ -71,45 +76,68 @@ def __init__( def __getitem__(self, key): """Return decoded value for input key.""" # super(Individual, self).__getitem__(key) - if self.types[key] == float: - return self.position[self.offsets[key]].item() - elif self.types[key] == int: - return np.rint(self.position[self.offsets[key]]).item() - elif self.types[key] == str: - offset = self.offsets[key] - upper = self.offsets[key] + len(self.limits[key]) - return self.limits[key][np.argmax(self.position[offset:upper]).item()] + if key.startswith("_"): + # return super(Individual, self).__getitem__(key) + return self.mapping[key] else: - raise ValueError("Unknown type") + if self.types[key] == float: + return self.position[self.offsets[key]].item() + elif self.types[key] == int: + return np.rint(self.position[self.offsets[key]]).item() + elif self.types[key] == str: + offset = self.offsets[key] + upper = self.offsets[key] + len(self.limits[key]) + return self.limits[key][np.argmax(self.position[offset:upper]).item()] + else: + raise ValueError("Unknown type") def __setitem__(self, key, newvalue): """Encode and set value for given key.""" - super(Individual, self).__setitem__(key, newvalue) - if key not in self.limits: - raise ValueError("Unknown gene.") - if self.types[key] == float: - assert isinstance(newvalue, float) - self.position[self.offsets[key]] = newvalue - elif self.types[key] == int: - assert isinstance(newvalue, int) - self.position[self.offsets[key]] = float(newvalue) - elif self.types[key] == str: - assert newvalue in self.limits[key] - offset = self.offsets[key] - upper = len(self.limits[key]) - self.position[offset:upper] = np.array([0]) - self.position[offset + self.limits[key].index(newvalue)] = 1.0 + # super(Individual, self).__setitem__(key, newvalue) + print(key, newvalue) + self.mapping[key] = newvalue + if key.startswith("_"): + pass else: - raise ValueError("Unknown type") + if key not in self.limits: + raise ValueError("Unknown gene.") + if self.types[key] == float: + assert isinstance(newvalue, float) + self.position[self.offsets[key]] = newvalue + elif self.types[key] == int: + assert isinstance(newvalue, int) + self.position[self.offsets[key]] = float(newvalue) + elif self.types[key] == str: + assert newvalue in self.limits[key] + offset = self.offsets[key] + upper = len(self.limits[key]) + self.position[offset:upper] = np.array([0]) + self.position[offset + self.limits[key].index(newvalue)] = 1.0 + else: + raise ValueError("Unknown type") - def __delitem(self, key): + def __delitem__(self, key): """Do not implement deleting items.""" - raise NotImplementedError() + if key in self.limits: + raise ValueError() + self.mapping.__delitem__(key) def __len__(self): """Give number of genes i.e. the dimension of the parameter space. Each categorical variable adds only one dimension.""" return len(self.limits) + def values(self): + """Return dict values view.""" + return self.mapping.values() + + def items(self): + """Return dict items view.""" + return self.mapping.items() + + def keys(self): + """Return dict keys view.""" + return self.mapping.keys() + def __repr__(self) -> str: """Return string representation of an ``Individual`` instance.""" rep = {