-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path3_evaluate.py
70 lines (60 loc) · 2.28 KB
/
3_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import numpy as np
import matplotlib.pyplot as plt
from keras import backend as K
from keras.models import Model
from model.crnn import CRNN
import config.cfg as cfg
import utils.sample_gen as sg
import time
from PIL import Image
def labels_to_text(img_gen, labels):
# 把类别ID转成字符
ret = []
for c in labels:
if c == len(img_gen.dict): # CTC的空白符
ret.append("")
else:
ret.append(img_gen.dict[c])
return "".join(ret)
def decode_predict_ctc(out, top_paths=1):
# 用beam search代替viz callback里的最优路径
results = []
beam_width = 5
if beam_width < top_paths:
beam_width = top_paths
for i in range(top_paths):
labels = K.get_value(K.ctc_decode(out, input_length=np.ones(out.shape[0]) * out.shape[1],
greedy=False, beam_width=beam_width, top_paths=top_paths)[0][i])[0]
text = labels_to_text(img_gen, labels)
results.append(text)
return results
if __name__ == '__main__':
weight_file = "./*.h5"
img_w = 200
# 通道顺序
if K.image_data_format() == 'channels_first':
input_shape = (1, cfg.img_h, img_w)
else:
input_shape = (cfg.img_h, img_w, 1)
# 实例化图像生成器
img_gen = sg.TextGenerator(batch_size=cfg.batch_size,
img_w=img_w,
img_h=cfg.img_h,
downsample_factor=cfg.downsample_factor,
train_size=cfg.train_size)
# 网络结构
n_classes = img_gen.get_output_size()
model, _, _ = CRNN.build(input_shape, n_classes, train=False)
model.load_weights(weight_file)
grey_img_batch = img_gen.paint_text('端传媒:定于一尊的麻烦')
grey_img = Image.fromarray(grey_img_batch[0] * 255).convert('LA') # 去归一化并转成灰度图
grey_img.show()
# 扩展通道维度,shape=(num_in_batch, img_h, img_w, channels)
color_img_batch = np.expand_dims(grey_img_batch, axis=-1)
start_time = time.time()
net_out_value = model.predict(color_img_batch)
pred_texts = decode_predict_ctc(net_out_value, 1)
end_time = time.time()
print(pred_texts)
print("所用时间:{:.2f}秒".format(end_time-start_time))