diff --git a/.github/workflows/build_wheels.yml b/.github/workflows/build_wheels.yml index 63b29d250..9d8d4db8c 100644 --- a/.github/workflows/build_wheels.yml +++ b/.github/workflows/build_wheels.yml @@ -3,60 +3,73 @@ name: Build on: [pull_request] jobs: - build_wheels_linux: + build_wheels_macos: name: Build wheels on ${{ matrix.os }} runs-on: ${{ matrix.os }} strategy: matrix: - os: [ubuntu-20.04] - arch: [x86_64, i686, aarch64, ppc64le, s390x] + # macos-13 is an intel runner, macos-14 is apple silicon + os: [macos-13, macos-14] + py: [cp38, cp39, cp311, cp312] steps: - - name: Checkout SIREN - uses: actions/checkout@v4 + - uses: actions/checkout@v4 - - name: Setup Python - uses: actions/setup-python@v5 + - name: Set up QEMU + if: runner.os == 'Linux' + uses: docker/setup-qemu-action@v3 with: - python-version: '3.9' # update once build dependencies are available + platforms: all - name: Build wheels - uses: pypa/cibuildwheel@v2.16.2 - - - name: Setup tmate session - if: ${{ failure() }} - uses: mxschmitt/action-tmate@v3 + uses: pypa/cibuildwheel@v2.18.1 + env: + # configure cibuildwheel to build native archs ('auto'), and some + # emulated ones + CIBW_BUILD: ${{ matrix.py }}-* + CIBW_ARCHS_LINUX: auto - uses: actions/upload-artifact@v4 with: name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }} path: ./wheelhouse/*.whl - build_wheels_macos: + + build_wheels_linux: name: Build wheels on ${{ matrix.os }} runs-on: ${{ matrix.os }} strategy: matrix: - os: [macos-11] - # arch: [x86_64, arm64] - arch: [x86_64] + os: [ubuntu-latest] + py: [cp38, cp39, cp311, cp312] + image: [manylinux, musllinux] + arch: [x86_64, i686, aarch64, ppc64le, s390x] steps: - - name: Checkout SIREN - uses: actions/checkout@v4 + - uses: actions/checkout@v4 - - name: Setup Python - uses: actions/setup-python@v5 + - name: Set up QEMU + if: runner.os == 'Linux' + uses: docker/setup-qemu-action@v3 with: - python-version: '3.9' # update once build dependencies are available + platforms: all - name: Build wheels - uses: pypa/cibuildwheel@v2.16.2 - - - name: Setup tmate session - if: ${{ failure() }} - uses: mxschmitt/action-tmate@v3 + uses: pypa/cibuildwheel@v2.18.1 + env: + # configure cibuildwheel to build native archs ('auto'), and some + # emulated ones + CIBW_BUILD: ${{ matrix.py }}-${{ matrix.image }}_${{ matrix.arch }} + CIBW_ARCHS: all - uses: actions/upload-artifact@v4 with: name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }} path: ./wheelhouse/*.whl + merge: + runs-on: ubuntu-latest + needs: [build_wheels_macos, build_wheels_linux] + steps: + - name: Merge Artifacts + uses: actions/upload-artifact/merge@v4 + with: + delete-merged: true diff --git a/projects/dataclasses/private/InteractionTree.cxx b/projects/dataclasses/private/InteractionTree.cxx index 79b766074..ba58740ae 100644 --- a/projects/dataclasses/private/InteractionTree.cxx +++ b/projects/dataclasses/private/InteractionTree.cxx @@ -23,7 +23,7 @@ std::shared_ptr InteractionTree::add_entry(std::shared_ptr datum->parent = parent; parent->daughters.push_back(datum); } - tree.insert(datum); + tree.push_back(datum); return datum; } @@ -34,7 +34,7 @@ std::shared_ptr InteractionTree::add_entry(InteractionTree _datum->parent = parent; parent->daughters.push_back(_datum); } - tree.insert(_datum); + tree.push_back(_datum); return _datum; } @@ -45,9 +45,23 @@ std::shared_ptr InteractionTree::add_entry(InteractionReco datum->parent = parent; parent->daughters.push_back(datum); } - tree.insert(datum); + tree.push_back(datum); return datum; } +void SaveInteractionTrees(std::vector>& trees, std::string const & filename) { + std::ofstream os(filename+".siren_events", std::ios::binary); + ::cereal::BinaryOutputArchive archive(os); + archive(trees); +} + +std::vector> LoadInteractionTrees(std::string const & filename) { + std::ifstream is(filename+".siren_events", std::ios::binary); + ::cereal::BinaryInputArchive archive(is); + std::vector> trees; + archive(trees); + return trees; +} + } // namespace dataclasses } // namespace siren diff --git a/projects/dataclasses/private/pybindings/dataclasses.cxx b/projects/dataclasses/private/pybindings/dataclasses.cxx index cc4847ea5..a3a74f06f 100644 --- a/projects/dataclasses/private/pybindings/dataclasses.cxx +++ b/projects/dataclasses/private/pybindings/dataclasses.cxx @@ -148,4 +148,7 @@ PYBIND11_MODULE(dataclasses,m) { .def("add_entry",static_cast (InteractionTree::*)(InteractionTreeDatum&,std::shared_ptr)>(&InteractionTree::add_entry)) .def("add_entry",static_cast (InteractionTree::*)(InteractionRecord&,std::shared_ptr)>(&InteractionTree::add_entry)); + m.def("SaveInteractionTrees",&SaveInteractionTrees); + m.def("LoadInteractionTrees",&LoadInteractionTrees,pybind11::return_value_policy::reference); + } diff --git a/projects/dataclasses/private/test/InteractionTree_TEST.cxx b/projects/dataclasses/private/test/InteractionTree_TEST.cxx index 2d50b4957..963dff8a9 100644 --- a/projects/dataclasses/private/test/InteractionTree_TEST.cxx +++ b/projects/dataclasses/private/test/InteractionTree_TEST.cxx @@ -42,7 +42,7 @@ std::shared_ptr InteractionTree::add_entry(std::shared_ptr datum->parent = parent; parent->daughters.push_back(datum); } - tree.insert(datum); + tree.push_back(datum); return datum; } @@ -53,7 +53,7 @@ std::shared_ptr InteractionTree::add_entry(InteractionTree _datum->parent = parent; parent->daughters.push_back(_datum); } - tree.insert(_datum); + tree.push_back(_datum); return _datum; } @@ -64,7 +64,7 @@ std::shared_ptr InteractionTree::add_entry(InteractionReco datum->parent = parent; parent->daughters.push_back(datum); } - tree.insert(datum); + tree.push_back(datum); return datum; } diff --git a/projects/dataclasses/public/SIREN/dataclasses/InteractionRecord.h b/projects/dataclasses/public/SIREN/dataclasses/InteractionRecord.h index e1e3364d0..061ee0118 100644 --- a/projects/dataclasses/public/SIREN/dataclasses/InteractionRecord.h +++ b/projects/dataclasses/public/SIREN/dataclasses/InteractionRecord.h @@ -12,6 +12,7 @@ #include #include #include +#include #include #include #include diff --git a/projects/dataclasses/public/SIREN/dataclasses/InteractionTree.h b/projects/dataclasses/public/SIREN/dataclasses/InteractionTree.h index 85a027632..8231b701e 100644 --- a/projects/dataclasses/public/SIREN/dataclasses/InteractionTree.h +++ b/projects/dataclasses/public/SIREN/dataclasses/InteractionTree.h @@ -10,6 +10,7 @@ #include // for uint32_t #include // for NULL #include // for runtime_error +#include // for if/ofstream #include #include @@ -24,6 +25,7 @@ namespace siren { namespace dataclasses { struct InteractionTreeDatum { + InteractionTreeDatum() {} InteractionTreeDatum(dataclasses::InteractionRecord& record) : record(record) {} dataclasses::InteractionRecord record; std::shared_ptr parent = NULL; @@ -42,7 +44,7 @@ struct InteractionTreeDatum { }; struct InteractionTree { - std::set> tree; + std::vector> tree; std::shared_ptr add_entry(std::shared_ptr datum, std::shared_ptr parent = NULL); std::shared_ptr add_entry(dataclasses::InteractionTreeDatum& datum, @@ -59,8 +61,14 @@ struct InteractionTree { }; }; +void SaveInteractionTrees(std::vector>& trees, std::string const & filename); +std::vector> LoadInteractionTrees(std::string const & filename); + } // namespace dataclasses } // namespace siren +CEREAL_CLASS_VERSION(siren::dataclasses::InteractionTreeDatum, 0); +CEREAL_CLASS_VERSION(siren::dataclasses::InteractionTree, 0); + #endif // SIREN_InteractionTree_H diff --git a/projects/dataclasses/public/SIREN/dataclasses/ParticleID.h b/projects/dataclasses/public/SIREN/dataclasses/ParticleID.h index 3ec58b924..c01b8a841 100644 --- a/projects/dataclasses/public/SIREN/dataclasses/ParticleID.h +++ b/projects/dataclasses/public/SIREN/dataclasses/ParticleID.h @@ -4,6 +4,7 @@ #include // for uint32_t #include // for ostream #include // for runtime_error +#include #include #include diff --git a/projects/detector/public/SIREN/detector/MaterialModel.h b/projects/detector/public/SIREN/detector/MaterialModel.h index a3c626a68..66ba9573e 100644 --- a/projects/detector/public/SIREN/detector/MaterialModel.h +++ b/projects/detector/public/SIREN/detector/MaterialModel.h @@ -98,6 +98,7 @@ class MaterialModel { archive(cereal::make_nvp("MaterialNames", material_names_)); archive(cereal::make_nvp("MaterialIDs", material_ids_)); archive(cereal::make_nvp("MaterialComponents", material_components_)); + archive(cereal::make_nvp("MaterialComponentsByID", material_components_by_id_)); archive(cereal::make_nvp("MaterialRadiationLength", material_radiation_length_)); archive(cereal::make_nvp("ComponentRadiationLength", component_radiation_length_)); } else { diff --git a/projects/distributions/CMakeLists.txt b/projects/distributions/CMakeLists.txt index 3339d25ae..71faec669 100644 --- a/projects/distributions/CMakeLists.txt +++ b/projects/distributions/CMakeLists.txt @@ -44,6 +44,7 @@ target_include_directories(SIREN_distributions PUBLIC target_link_libraries(SIREN_distributions PRIVATE $ + pybind11::embed PUBLIC photospline SIREN_serialization diff --git a/projects/distributions/private/primary/energy/TabulatedFluxDistribution.cxx b/projects/distributions/private/primary/energy/TabulatedFluxDistribution.cxx index acc131a71..5b0971456 100644 --- a/projects/distributions/private/primary/energy/TabulatedFluxDistribution.cxx +++ b/projects/distributions/private/primary/energy/TabulatedFluxDistribution.cxx @@ -292,9 +292,9 @@ bool TabulatedFluxDistribution::equal(WeightableDistribution const & other) cons return false; else return - std::tie(energyMin, energyMax, fluxTableFilename) + std::tie(energyMin, energyMax, fluxTable) == - std::tie(x->energyMin, x->energyMax, x->fluxTableFilename); + std::tie(x->energyMin, x->energyMax, x->fluxTable); } bool TabulatedFluxDistribution::less(WeightableDistribution const & other) const { diff --git a/projects/distributions/public/SIREN/distributions/primary/energy/TabulatedFluxDistribution.h b/projects/distributions/public/SIREN/distributions/primary/energy/TabulatedFluxDistribution.h index 5d4c35fe7..e75607c88 100644 --- a/projects/distributions/public/SIREN/distributions/primary/energy/TabulatedFluxDistribution.h +++ b/projects/distributions/public/SIREN/distributions/primary/energy/TabulatedFluxDistribution.h @@ -84,7 +84,9 @@ friend cereal::access; archive(::cereal::make_nvp("EnergyMax", energyMax)); archive(::cereal::make_nvp("FluxTable", fluxTable)); archive(cereal::virtual_base_class(this)); + bounds_set = true; ComputeIntegral(); + ComputeCDF(); } else { throw std::runtime_error("TabulatedFluxDistribution only supports version <= 0!"); } diff --git a/projects/distributions/public/SIREN/distributions/primary/vertex/DepthFunction.h b/projects/distributions/public/SIREN/distributions/primary/vertex/DepthFunction.h index af1029ffa..aeacb773d 100644 --- a/projects/distributions/public/SIREN/distributions/primary/vertex/DepthFunction.h +++ b/projects/distributions/public/SIREN/distributions/primary/vertex/DepthFunction.h @@ -49,5 +49,6 @@ friend cereal::access; } // namespace siren CEREAL_CLASS_VERSION(siren::distributions::DepthFunction, 0); +CEREAL_REGISTER_TYPE(siren::distributions::DepthFunction); #endif // SIREN_DepthFunction_H diff --git a/projects/distributions/public/SIREN/distributions/primary/vertex/LeptonDepthFunction.h b/projects/distributions/public/SIREN/distributions/primary/vertex/LeptonDepthFunction.h index 094f30986..47970e694 100644 --- a/projects/distributions/public/SIREN/distributions/primary/vertex/LeptonDepthFunction.h +++ b/projects/distributions/public/SIREN/distributions/primary/vertex/LeptonDepthFunction.h @@ -48,7 +48,6 @@ friend cereal::access; template void save(Archive & archive, std::uint32_t const version) const { if(version == 0) { - } else { archive(::cereal::make_nvp("MuAlpha", mu_alpha)); archive(::cereal::make_nvp("MuBeta", mu_beta)); archive(::cereal::make_nvp("TauAlpha", tau_alpha)); @@ -56,13 +55,13 @@ friend cereal::access; archive(::cereal::make_nvp("Scale", scale)); archive(::cereal::make_nvp("MaxDepth", max_depth)); archive(::cereal::make_nvp("TauPrimaries", tau_primaries)); + } else { throw std::runtime_error("LeptonDepthFunction only supports version <= 0!"); } } template void load(Archive & archive, std::uint32_t const version) { if(version == 0) { - } else { archive(::cereal::make_nvp("MuAlpha", mu_alpha)); archive(::cereal::make_nvp("MuBeta", mu_beta)); archive(::cereal::make_nvp("TauAlpha", tau_alpha)); @@ -70,6 +69,7 @@ friend cereal::access; archive(::cereal::make_nvp("Scale", scale)); archive(::cereal::make_nvp("MaxDepth", max_depth)); archive(::cereal::make_nvp("TauPrimaries", tau_primaries)); + } else { throw std::runtime_error("LeptonDepthFunction only supports version <= 0!"); } } @@ -83,6 +83,7 @@ friend cereal::access; } // namespace siren CEREAL_CLASS_VERSION(siren::distributions::LeptonDepthFunction, 0); +CEREAL_REGISTER_TYPE(siren::distributions::LeptonDepthFunction); CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::distributions::DepthFunction, siren::distributions::LeptonDepthFunction); #endif // SIREN_LeptonDepthFunction_H diff --git a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryBoundedVertexDistribution.h b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryBoundedVertexDistribution.h index 48511f20f..64617a403 100644 --- a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryBoundedVertexDistribution.h +++ b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryBoundedVertexDistribution.h @@ -15,6 +15,7 @@ #include #include #include +#include #include "SIREN/dataclasses/InteractionTree.h" #include "SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h" @@ -55,6 +56,7 @@ friend cereal::access; void save(Archive & archive, std::uint32_t const version) const { if(version == 0) { archive(::cereal::make_nvp("MaxLength", max_length)); + archive(::cereal::make_nvp("FidVol", fiducial_volume)); archive(cereal::virtual_base_class(this)); } else { throw std::runtime_error("SecondaryBoundedVertexDistribution only supports version <= 0!"); @@ -64,8 +66,10 @@ friend cereal::access; static void load_and_construct(Archive & archive, cereal::construct & construct, std::uint32_t const version) { if(version == 0) { double max_length; + std::shared_ptr fiducial_volume; archive(::cereal::make_nvp("MaxLength", max_length)); - construct(max_length); + archive(::cereal::make_nvp("FidVol", fiducial_volume)); + construct(fiducial_volume,max_length); archive(cereal::virtual_base_class(construct.ptr())); } else { throw std::runtime_error("SecondaryBoundedVertexDistribution only supports version <= 0!"); diff --git a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryPhysicalVertexDistribution.h b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryPhysicalVertexDistribution.h index 51376cfb6..7cddb5be8 100644 --- a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryPhysicalVertexDistribution.h +++ b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryPhysicalVertexDistribution.h @@ -15,6 +15,7 @@ #include #include #include +#include #include "SIREN/dataclasses/InteractionTree.h" #include "SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h" diff --git a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h index c31b274e2..ee5e1b36c 100644 --- a/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h +++ b/projects/distributions/public/SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h @@ -13,6 +13,7 @@ #include #include #include +#include #include "SIREN/dataclasses/InteractionTree.h" // for InteractionT... #include "SIREN/distributions/Distributions.h" // for WeightableDi... diff --git a/projects/injection/CMakeLists.txt b/projects/injection/CMakeLists.txt index 69a373945..e0956aee2 100644 --- a/projects/injection/CMakeLists.txt +++ b/projects/injection/CMakeLists.txt @@ -4,12 +4,7 @@ LIST (APPEND injection_SOURCES ${PROJECT_SOURCE_DIR}/projects/injection/private/Process.cxx ${PROJECT_SOURCE_DIR}/projects/injection/private/Injector.cxx ${PROJECT_SOURCE_DIR}/projects/injection/private/WeightingUtils.cxx - ${PROJECT_SOURCE_DIR}/projects/injection/private/TreeWeighter.cxx ${PROJECT_SOURCE_DIR}/projects/injection/private/Weighter.cxx - #${PROJECT_SOURCE_DIR}/projects/injection/private/ColumnDepthSIREN.cxx - #${PROJECT_SOURCE_DIR}/projects/injection/private/CylinderVolumeSIREN.cxx - #${PROJECT_SOURCE_DIR}/projects/injection/private/DecayRangeSIREN.cxx - #${PROJECT_SOURCE_DIR}/projects/injection/private/RangedSIREN.cxx ) add_library(SIREN_injection OBJECT ${injection_SOURCES}) set_property(TARGET SIREN_injection PROPERTY POSITION_INDEPENDENT_CODE ON) @@ -21,6 +16,7 @@ target_include_directories(SIREN_injection PUBLIC target_link_libraries(SIREN_injection PRIVATE $ + pybind11::embed PUBLIC photospline SIREN_serialization @@ -41,10 +37,13 @@ install(DIRECTORY "${PROJECT_SOURCE_DIR}/projects/injection/public/" ) #package_add_test(UnitTest_Injector ${PROJECT_SOURCE_DIR}/projects/injection/private/test/Injector_TEST.cxx) +if(NOT ${CIBUILDWHEEL}) package_add_test(UnitTest_CCM_HNL ${PROJECT_SOURCE_DIR}/projects/injection/private/test/CCM_HNL_TEST.cxx) +target_link_libraries(UnitTest_CCM_HNL pybind11::embed) +endif() pybind11_add_module(injection ${PROJECT_SOURCE_DIR}/projects/injection/private/pybindings/injection.cxx) -target_link_libraries(injection PRIVATE SIREN photospline) +target_link_libraries(injection PRIVATE SIREN photospline pybind11::embed) if(DEFINED SKBUILD) set_target_properties(injection PROPERTIES BUILD_WITH_INSTALL_RPATH FALSE diff --git a/projects/injection/private/Injector.cxx b/projects/injection/private/Injector.cxx index 9f589202e..877a729e6 100644 --- a/projects/injection/private/Injector.cxx +++ b/projects/injection/private/Injector.cxx @@ -4,10 +4,12 @@ #include #include #include +#include #include #include "SIREN/interactions/CrossSection.h" +#include "SIREN/interactions/DarkNewsCrossSection.h" #include "SIREN/interactions/InteractionCollection.h" #include "SIREN/interactions/Decay.h" #include "SIREN/dataclasses/DecaySignature.h" @@ -41,6 +43,16 @@ using detector::DetectorDirection; Injector::Injector() {} +Injector::Injector( + unsigned int events_to_inject, + std::string filename, + std::shared_ptr random) : + events_to_inject(events_to_inject), + random(random) +{ + LoadInjector(filename); +} + Injector::Injector( unsigned int events_to_inject, std::shared_ptr detector_model, @@ -363,7 +375,7 @@ double Injector::SecondaryGenerationProbability(std::shared_ptr>::const_iterator it = tree.tree.cbegin(); + std::vector>::const_iterator it = tree.tree.cbegin(); while(it != tree.tree.cend()) { if((*it)->depth()==0) probability *= GenerationProbability((*it)); else probability *= SecondaryGenerationProbability((*it)); @@ -461,10 +473,26 @@ unsigned int Injector::EventsToInject() const { return events_to_inject; } +void Injector::ResetInjectedEvents() { + injected_events = 0; +} + Injector::operator bool() const { return injected_events < events_to_inject; } +void Injector::SaveInjector(std::string const & filename) const { + std::ofstream os(filename+".siren_injector", std::ios::binary); + ::cereal::BinaryOutputArchive archive(os); + this->save(archive,0); +} + +void Injector::LoadInjector(std::string const & filename) { + std::ifstream is(filename+".siren_injector", std::ios::binary); + ::cereal::BinaryInputArchive archive(is); + this->load(archive,0); +} + } // namespace injection } // namespace siren diff --git a/projects/injection/private/Process.cxx b/projects/injection/private/Process.cxx index bba677f4e..524161c47 100644 --- a/projects/injection/private/Process.cxx +++ b/projects/injection/private/Process.cxx @@ -50,13 +50,14 @@ bool Process::operator==(Process const & other) const { } bool Process::MatchesHead(std::shared_ptr const & other) const { - return std::tie( - primary_type, - interactions) - == - std::tie( - other->primary_type, - other->interactions); + return primary_type==other->primary_type; + // return std::tie( + // primary_type, + // interactions) + // == + // std::tie( + // other->primary_type, + // other->interactions); } PhysicalProcess::PhysicalProcess(siren::dataclasses::ParticleType _primary_type, std::shared_ptr _interactions) : Process(_primary_type, _interactions) {}; diff --git a/projects/injection/private/TreeWeighter.cxx b/projects/injection/private/TreeWeighter.cxx deleted file mode 100644 index 5cd4b7b58..000000000 --- a/projects/injection/private/TreeWeighter.cxx +++ /dev/null @@ -1,142 +0,0 @@ -#include "SIREN/injection/TreeWeighter.h" - -#include // for ite... -#include // for array -#include // for assert -#include // for exp -#include // for ini... -#include // for ope... -#include // for set -#include // for out... -#include "SIREN/interactions/CrossSection.h" // for Cro... -#include "SIREN/interactions/InteractionCollection.h" // for Cro... -#include "SIREN/dataclasses/InteractionRecord.h" // for Int... -#include "SIREN/dataclasses/InteractionSignature.h" // for Int... -#include "SIREN/detector/DetectorModel.h" // for Ear... -#include "SIREN/detector/Coordinates.h" -#include "SIREN/distributions/Distributions.h" // for Inj... -#include "SIREN/geometry/Geometry.h" // for Geo... -#include "SIREN/injection/Injector.h" // for Inj... -#include "SIREN/injection/Process.h" // for Phy... -#include "SIREN/injection/WeightingUtils.h" // for Cro... -#include "SIREN/math/Vector3D.h" // for Vec... - -#include -#include -#include -#include - -#include "SIREN/injection/Injector.h" - -#include "SIREN/distributions/primary/vertex/VertexPositionDistribution.h" - -#include "SIREN/interactions/CrossSection.h" -#include "SIREN/interactions/InteractionCollection.h" - -#include "SIREN/dataclasses/InteractionSignature.h" - -#include - -namespace siren { -namespace injection { - -using detector::DetectorPosition; -using detector::DetectorDirection; - -//--------------- -// class LeptonTreeWeighter -//--------------- - -void LeptonTreeWeighter::Initialize() { - int i = 0; - primary_process_weighters.reserve(injectors.size()); - secondary_process_weighter_maps.reserve(injectors.size()); - for(auto const & injector : injectors) { - assert(primary_physical_process->MatchesHead(injector->GetPrimaryProcess())); - primary_process_weighters.push_back(std::make_shared(PrimaryProcessWeighter(primary_physical_process, injector->GetPrimaryProcess(), detector_model))); - std::map> - injector_sec_process_weighter_map; - std::map> - injector_sec_process_map = injector->GetSecondaryProcessMap(); - for(auto const & sec_phys_process : secondary_physical_processes) { - try{ - std::shared_ptr sec_inj_process = injector_sec_process_map.at(sec_phys_process->GetPrimaryType()); - assert(sec_phys_process->MatchesHead(sec_inj_process)); // make sure cross section collection matches - injector_sec_process_weighter_map[sec_phys_process->GetPrimaryType()] = - std::make_shared( - SecondaryProcessWeighter( - sec_phys_process, - sec_inj_process,detector_model - ) - ); - } catch(const std::out_of_range& oor) { - std::cout << "Out of Range error: " << oor.what() << '\n'; - std::cout << "Initialization Incomplete: Particle " << sec_phys_process->GetPrimaryType() << " does not exist in injector\n"; - return; - } - } - if(injector_sec_process_weighter_map.size() != injector_sec_process_map.size()) { - std::cout << "Initialization Incomplete: No one-to-one mapping between injection and physical distributions for injector " << i << "\n"; - return; - } - secondary_process_weighter_maps.push_back(injector_sec_process_weighter_map); - } -} - -double LeptonTreeWeighter::EventWeight(siren::dataclasses::InteractionTree const & tree) const { - // The weight is given by - // - // [sum_{injectors i} - // x prod_{tree datum d} - // x (prod_{generation dist j} p_gen^{idj}) - // / (prod_{physical dist j} p_phys^{idj}) ] ^-1 - // - double inv_weight = 0; - for(unsigned int idx = 0; idx < injectors.size(); ++idx) { - double physical_probability = 1.0; - double generation_probability = injectors[idx]->EventsToInject();//GenerationProbability(tree); - for(auto const & datum : tree.tree) { - std::tuple bounds; - if(datum->depth() == 0) { - bounds = injectors[idx]->PrimaryInjectionBounds(datum->record); - physical_probability *= primary_process_weighters[idx]->PhysicalProbability(bounds, datum->record); - generation_probability *= primary_process_weighters[idx]->GenerationProbability(*datum); - } - else { - try { - bounds = injectors[idx]->SecondaryInjectionBounds(datum->record); - double phys_prob = secondary_process_weighter_maps[idx].at(datum->record.signature.primary_type)->PhysicalProbability(bounds, datum->record); - double gen_prob = secondary_process_weighter_maps[idx].at(datum->record.signature.primary_type)->GenerationProbability(*datum); - physical_probability *= phys_prob; - generation_probability *= gen_prob; - } catch(const std::out_of_range& oor) { - std::cout << "Out of Range error: " << oor.what() << '\n'; - return 0; - } - } - } - inv_weight += generation_probability / physical_probability; - } - return 1./inv_weight; -} - -LeptonTreeWeighter::LeptonTreeWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process, std::vector> secondary_physical_processes) - : injectors(injectors) - , detector_model(detector_model) - , primary_physical_process(primary_physical_process) - , secondary_physical_processes(secondary_physical_processes) -{ - Initialize(); -} - -LeptonTreeWeighter::LeptonTreeWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process) - : injectors(injectors) - , detector_model(detector_model) - , primary_physical_process(primary_physical_process) - , secondary_physical_processes(std::vector>()) -{ - Initialize(); -} - -} // namespace injection -} // namespace siren diff --git a/projects/injection/private/Weighter.cxx b/projects/injection/private/Weighter.cxx index 9088e3322..81dbe6dfb 100644 --- a/projects/injection/private/Weighter.cxx +++ b/projects/injection/private/Weighter.cxx @@ -1,29 +1,42 @@ #include "SIREN/injection/Weighter.h" -#include -#include -#include +#include // for ite... +#include // for array +#include // for assert +#include // for exp +#include // for ini... +#include // for ope... +#include // for set +#include #include #include -#include -#include +#include #include -#include -#include + // for out... +#include "SIREN/interactions/CrossSection.h" // for Cro... +#include "SIREN/interactions/InteractionCollection.h" // for Cro... +#include "SIREN/dataclasses/InteractionRecord.h" // for Int... +#include "SIREN/dataclasses/InteractionSignature.h" // for Int... +#include "SIREN/detector/DetectorModel.h" // for Ear... +#include "SIREN/detector/Coordinates.h" +#include "SIREN/distributions/Distributions.h" // for Inj... +#include "SIREN/geometry/Geometry.h" // for Geo... +#include "SIREN/injection/Injector.h" // for Inj... +#include "SIREN/injection/Process.h" // for Phy... +#include "SIREN/injection/WeightingUtils.h" // for Cro... +#include "SIREN/math/Vector3D.h" // for Vec... + + +#include "SIREN/injection/Injector.h" + +#include "SIREN/distributions/primary/vertex/VertexPositionDistribution.h" #include "SIREN/interactions/CrossSection.h" #include "SIREN/interactions/InteractionCollection.h" -#include "SIREN/dataclasses/InteractionRecord.h" + #include "SIREN/dataclasses/InteractionSignature.h" -#include "SIREN/dataclasses/Particle.h" -#include "SIREN/detector/DetectorModel.h" -#include "SIREN/detector/Coordinates.h" -#include "SIREN/distributions/Distributions.h" -#include "SIREN/distributions/primary/vertex/VertexPositionDistribution.h" -#include "SIREN/geometry/Geometry.h" -#include "SIREN/injection/Injector.h" -#include "SIREN/injection/WeightingUtils.h" -#include "SIREN/math/Vector3D.h" + +#include namespace siren { namespace injection { @@ -31,482 +44,54 @@ namespace injection { using detector::DetectorPosition; using detector::DetectorDirection; -namespace { - template - typename std::iterator_traits::value_type accumulate(InIt begin, InIt end) { - typedef typename std::iterator_traits::value_type real; - real sum = real(0); - real running_error = real(0); - real temp; - real difference; - - for (; begin != end; ++begin) { - difference = *begin; - difference -= running_error; - temp = sum; - temp += difference; - running_error = temp; - running_error -= sum; - running_error -= difference; - sum = std::move(temp); - } - return sum; - } - - template - T accumulate(std::initializer_list list) { - return accumulate(list.begin(), list.end()); - } - - double one_minus_exp_of_negative(double x) { - if(x < 1e-1) { - return std::exp(std::log(x) - x/2.0 + x*x/24.0 - x*x*x*x/2880.0); - } else { - return 1.0 - std::exp(-x); - } - } - double log_one_minus_exp_of_negative(double x) { - if(x < 1e-1) { - return std::log(x) - x/2.0 + x*x/24.0 - x*x*x*x/2880.0; - } else if(x > 3) { - double ex = std::exp(-x); - double ex2 = ex * ex; - double ex3 = ex2 * ex; - double ex4 = ex3 * ex; - double ex5 = ex4 * ex; - double ex6 = ex5 * ex; - return -(ex + ex2 / 2.0 + ex3 / 3.0 + ex4 / 4.0 + ex5 / 5.0 + ex6 / 6.0); - } else { - return std::log(1.0 - std::exp(-x)); - } - } -} - //--------------- -// class LeptonWeighter +// class Weighter //--------------- -double LeptonWeighter::InteractionProbability(std::shared_ptr injector, siren::dataclasses::InteractionRecord const & record) const { - std::tuple bounds = injector->PrimaryInjectionBounds(record); - return InteractionProbability(bounds, record); -} - -double LeptonWeighter::InteractionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const { - siren::math::Vector3D interaction_vertex( - record.interaction_vertex[0], - record.interaction_vertex[1], - record.interaction_vertex[2]); - - siren::math::Vector3D primary_direction( - record.primary_momentum[1], - record.primary_momentum[2], - record.primary_momentum[3]); - primary_direction.normalize(); - - siren::geometry::Geometry::IntersectionList intersections = detector_model->GetIntersections(DetectorPosition(interaction_vertex), DetectorDirection(primary_direction)); - std::map>> const & cross_sections_by_target = interactions->GetCrossSectionsByTarget(); - std::vector targets; - targets.reserve(cross_sections_by_target.size()); - std::vector total_cross_sections; - double total_decay_length = interactions->TotalDecayLength(record); - siren::dataclasses::InteractionRecord fake_record = record; - for(auto const & target_xs : cross_sections_by_target) { - targets.push_back(target_xs.first); - fake_record.target_mass = detector_model->GetTargetMass(target_xs.first); - std::vector> const & xs_list = target_xs.second; - double total_xs = 0.0; - for(auto const & xs : xs_list) { - std::vector signatures = xs->GetPossibleSignaturesFromParents(record.signature.primary_type, target_xs.first); - for(auto const & signature : signatures) { - fake_record.signature = signature; - // Add total cross section - total_xs += xs->TotalCrossSection(fake_record); - } - } - total_cross_sections.push_back(total_xs); - } - - double total_interaction_depth = detector_model->GetInteractionDepthInCGS(intersections, DetectorPosition(std::get<0>(bounds)), DetectorPosition(std::get<1>(bounds)), targets, total_cross_sections, total_decay_length); - double interaction_probability; - if(total_interaction_depth < 1e-6) { - interaction_probability = total_interaction_depth; - } else { - interaction_probability = one_minus_exp_of_negative(total_interaction_depth); - } - return interaction_probability; -} - -double LeptonWeighter::UnnormalizedPositionProbability(std::shared_ptr injector, siren::dataclasses::InteractionRecord const & record) const { - std::tuple bounds = injector->PrimaryInjectionBounds(record); - return UnnormalizedPositionProbability(bounds, record); -} - -double LeptonWeighter::UnnormalizedPositionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const { - siren::math::Vector3D interaction_vertex( - record.interaction_vertex[0], - record.interaction_vertex[1], - record.interaction_vertex[2]); - - siren::math::Vector3D primary_direction( - record.primary_momentum[1], - record.primary_momentum[2], - record.primary_momentum[3]); - primary_direction.normalize(); - - siren::geometry::Geometry::IntersectionList intersections = detector_model->GetIntersections(DetectorPosition(interaction_vertex), DetectorDirection(primary_direction)); - std::map>> const & cross_sections_by_target = interactions->GetCrossSectionsByTarget(); - - unsigned int n_targets = cross_sections_by_target.size(); - - std::vector targets; targets.reserve(n_targets); - std::vector total_cross_sections; - double total_decay_length = interactions->TotalDecayLength(record); - siren::dataclasses::InteractionRecord fake_record = record; - for(auto const & target_xs : cross_sections_by_target) { - targets.push_back(target_xs.first); - fake_record.target_mass = detector_model->GetTargetMass(target_xs.first); - std::vector> const & xs_list = target_xs.second; - double total_xs = 0.0; - for(auto const & xs : xs_list) { - std::vector signatures = xs->GetPossibleSignaturesFromParents(record.signature.primary_type, target_xs.first); - for(auto const & signature : signatures) { - fake_record.signature = signature; - // Add total cross section - total_xs += xs->TotalCrossSection(fake_record); +void Weighter::Initialize() { + int i = 0; + primary_process_weighters.reserve(injectors.size()); + secondary_process_weighter_maps.reserve(injectors.size()); + for(auto const & injector : injectors) { + assert(primary_physical_process->MatchesHead(injector->GetPrimaryProcess())); + primary_process_weighters.push_back(std::make_shared(PrimaryProcessWeighter(primary_physical_process, injector->GetPrimaryProcess(), detector_model))); + std::map> + injector_sec_process_weighter_map; + std::map> + injector_sec_process_map = injector->GetSecondaryProcessMap(); + for(auto const & sec_phys_process : secondary_physical_processes) { + try{ + std::shared_ptr sec_inj_process = injector_sec_process_map.at(sec_phys_process->GetPrimaryType()); + assert(sec_phys_process->MatchesHead(sec_inj_process)); // make sure cross section collection matches + injector_sec_process_weighter_map[sec_phys_process->GetPrimaryType()] = + std::make_shared( + SecondaryProcessWeighter( + sec_phys_process, + sec_inj_process,detector_model + ) + ); + } catch(const std::out_of_range& oor) { + std::cout << "Out of Range error: " << oor.what() << '\n'; + std::cout << "Initialization Incomplete: Particle " << sec_phys_process->GetPrimaryType() << " does not exist in injector\n"; + return; } } - total_cross_sections.push_back(total_xs); - } - - double total_interaction_depth = detector_model->GetInteractionDepthInCGS(intersections, DetectorPosition(std::get<0>(bounds)), DetectorPosition(std::get<1>(bounds)), targets, total_cross_sections, total_decay_length); - double traversed_interaction_depth = detector_model->GetInteractionDepthInCGS(intersections, DetectorPosition(std::get<0>(bounds)), DetectorPosition(interaction_vertex), targets, total_cross_sections, total_decay_length); - double interaction_density = detector_model->GetInteractionDensity(intersections, DetectorPosition(interaction_vertex), targets, total_cross_sections, total_decay_length); - - double prob_density; - if(total_interaction_depth < 1e-6) { - prob_density = interaction_density; - } else { - prob_density = interaction_density * exp(-traversed_interaction_depth); - } - - return prob_density; -} - -double LeptonWeighter::NormalizedPositionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const { - siren::math::Vector3D interaction_vertex( - record.interaction_vertex[0], - record.interaction_vertex[1], - record.interaction_vertex[2]); - - siren::math::Vector3D primary_direction( - record.primary_momentum[1], - record.primary_momentum[2], - record.primary_momentum[3]); - primary_direction.normalize(); - - siren::geometry::Geometry::IntersectionList intersections = detector_model->GetIntersections(DetectorPosition(interaction_vertex), DetectorDirection(primary_direction)); - std::map>> const & cross_sections_by_target = interactions->GetCrossSectionsByTarget(); - - unsigned int n_targets = cross_sections_by_target.size(); - - std::vector targets; targets.reserve(n_targets); - std::vector total_cross_sections; - double total_decay_length = interactions->TotalDecayLength(record); - siren::dataclasses::InteractionRecord fake_record = record; - for(auto const & target_xs : cross_sections_by_target) { - targets.push_back(target_xs.first); - fake_record.target_mass = detector_model->GetTargetMass(target_xs.first); - std::vector> const & xs_list = target_xs.second; - double total_xs = 0.0; - for(auto const & xs : xs_list) { - std::vector signatures = xs->GetPossibleSignaturesFromParents(record.signature.primary_type, target_xs.first); - for(auto const & signature : signatures) { - fake_record.signature = signature; - // Add total cross section - total_xs += xs->TotalCrossSection(fake_record); - } + if(injector_sec_process_weighter_map.size() != injector_sec_process_map.size()) { + std::cout << "Initialization Incomplete: No one-to-one mapping between injection and physical distributions for injector " << i << "\n"; + return; } - total_cross_sections.push_back(total_xs); - } - - double total_interaction_depth = detector_model->GetInteractionDepthInCGS(intersections, DetectorPosition(std::get<0>(bounds)), DetectorPosition(std::get<1>(bounds)), targets, total_cross_sections, total_decay_length); - double traversed_interaction_depth = detector_model->GetInteractionDepthInCGS(intersections, DetectorPosition(std::get<0>(bounds)), DetectorPosition(interaction_vertex), targets, total_cross_sections, total_decay_length); - double interaction_density = detector_model->GetInteractionDensity(intersections, DetectorPosition(interaction_vertex), targets, total_cross_sections, total_decay_length); - - double prob_density; - if(total_interaction_depth < 1e-6) { - prob_density = interaction_density / total_interaction_depth; - } else { - prob_density = interaction_density * exp(-log_one_minus_exp_of_negative(total_interaction_depth) - traversed_interaction_depth); + secondary_process_weighter_maps.push_back(injector_sec_process_weighter_map); } - - return prob_density; } -void LeptonWeighter::Initialize() { - // Clear distributions - unique_distributions.clear(); - common_gen_idxs.clear(); - common_phys_idxs.clear(); - distinct_gen_idxs_by_injector.clear(); - distinct_physical_idxs_by_injector.clear(); - unique_contexts.clear(); - context_idx_by_injector.clear(); - normalization = 1.0; - - // Weights are is given by - // w = (\sum_i (\prod_j p_gen^ij / p_phys^ij) )^-1 - // We first want to determine which pairs of p_gen^ij and p_phys^ij cancel - // Secondly we want to determine which p_gen^j are common across all injectors {i} - // and similarly which p_phys^j are common across all injectors {i} - // The calculation can then be simplified by not computing terms that cancel, - // pulling out common terms, and finding duplicate terms - - // To do this we will track unique terms in each ratio - // Initially we assume all term are unique - - // Initialize the state for physical distributions - // true ==> distribution does not cancel and is not common - std::vector>> physical_init_state; - for(auto physical_dist : physical_distributions) { - physical_init_state.push_back(std::make_pair(true, physical_dist)); - const siren::distributions::PhysicallyNormalizedDistribution* p = dynamic_cast(physical_dist.get()); - if(p) { - if(p->IsNormalizationSet()) { - normalization *= p->GetNormalization(); - } - } - } - std::vector>>> physical_distribution_state(injectors.size(), physical_init_state); - assert(physical_distribution_state.size() == injectors.size()); - // Initialize the state for generation distributions - // true ==> distribution does not cancel and is not common - std::vector>>> generation_distribution_state; - generation_distribution_state.reserve(injectors.size()); - for(auto injector : injectors) { - std::vector> dists = injector->GetPrimaryInjectionDistributions(); - std::vector>> dist_state; - dist_state.reserve(dists.size()); - for(auto dist : dists) { - dist_state.push_back(std::make_pair(true, dist)); - } - generation_distribution_state.push_back(dist_state); - } - assert(generation_distribution_state.size() == injectors.size()); - - // Now we can try to identify term that cancel - for(unsigned int i=0; i>> & phys_dists = physical_distribution_state[i]; - std::vector>> & gen_dists = generation_distribution_state[i]; - // Must check every pair of physical and injection distribution (unless already cancelled) - for(unsigned int phys_idx=0; phys_idx> & phys_dist = phys_dists[phys_idx]; - if(not phys_dist.first) // Skip if already cancelled - continue; - for(unsigned int gen_idx=0; gen_idx> & gen_dist = gen_dists[gen_idx]; - if(not gen_dist.first) { // Skip if already cancelled - continue; - } - // Check if dists are equivalent - // Must consider the DetectorModel and InteractionCollection context in the comparison - std::shared_ptr gen_dist_ptr(gen_dist.second); - bool equivalent_dists = - phys_dist.second->AreEquivalent( // physical dist - detector_model, // physical context - interactions, // physical context - gen_dist_ptr, // generation dist - injectors[i]->GetDetectorModel(), // generation context - injectors[i]->GetInteractions()); // generation context - if(not equivalent_dists) { - continue; - } - phys_dist.first = false; - gen_dist.first = false; - break; // This physical dist is cancelled out so we can skip additional comparisons - } - } - } - - // With cancelled terms marked, we can now collect distributions that are common across all terms - // The one exception to this is vertex position distributions - // Physical vertex position distributions depend on the injection bounds and so cannot be common across terms - - // Physical distributions have the same DetectorModel+CrossSection context so we do not need to compare them - // We just need to check that these distributions have not been cancelled out for any terms - std::vector common_physical_dist_idxs; - for(unsigned int phys_idx=0; phys_idx(physical_distributions[phys_idx].get())) { - user_supplied_position_distribution = true; - continue; - } - // Remove distribution from distinct distributions - for(unsigned int i=0; i common_generation_dist_idxs; - - unsigned int i=0; - std::vector>> & gen_dists_0 = generation_distribution_state[i]; - for(unsigned int gen_idx_0=0; gen_idx_0> & gen_dist_0 = gen_dists_0[gen_idx_0]; - if(not gen_dist_0.first) - continue; - bool is_common = true; - std::vector common_idxs(injectors.size(), 0); - common_idxs[i] = gen_idx_0; - for(unsigned int j=i+1; j>> & gen_dists_1 = generation_distribution_state[j]; - for(unsigned int gen_idx_1=0; gen_idx_1> & gen_dist_1 = gen_dists_1[gen_idx_1]; - if(not gen_dist_1.first) - continue; - bool equivalent_dists = - gen_dist_0.second->AreEquivalent( // gen dist 0 - injectors[i]->GetDetectorModel(), // gen dist 0 context - injectors[i]->GetInteractions(), // gen dist 0 context - (std::shared_ptr)(gen_dist_1.second), // gen dist 1 - injectors[j]->GetDetectorModel(), // gen dist 1 context - injectors[j]->GetInteractions()); // gen dist 1 context - if(not equivalent_dists) - continue; - found_common = true; - common_idxs[j] = gen_idx_1; - break; // We found a gen dist cancelled out so we can skip additional comparisons - } - if(not found_common) { - // No matching distribution in this injector - // Term is not common across injectors - is_common = false; - // We can stop checking other injectors for this term - break; - } - } - if(not is_common) - continue; - // Remove distribution from distinct distribution list - for(unsigned int inj_idx=0; inj_idx dist = generation_distribution_state[0][gen_idx].second; - std::shared_ptr dist_detector = injectors[0]->GetDetectorModel(); - std::shared_ptr dist_interactions = injectors[0]->GetInteractions(); - std::function, std::shared_ptr, std::shared_ptr>)> predicate = [&] (std::tuple, std::shared_ptr, std::shared_ptr> p) -> bool { - return std::get<0>(p)->AreEquivalent(std::get<1>(p), std::get<2>(p), dist, dist_detector, dist_interactions); - }; - auto it = std::find_if(unique_distributions.begin(), unique_distributions.end(), predicate); - if(it != unique_distributions.end()) { - unsigned int index = std::distance(unique_distributions.begin(), it); - common_gen_idxs.push_back(index); - } else { - unique_distributions.push_back(std::make_tuple(dist, injectors[0]->GetDetectorModel(), injectors[0]->GetInteractions())); - common_gen_idxs.push_back(unique_distributions.size()-1); - } - } - - for(unsigned int phys_idx : common_physical_dist_idxs) { - std::shared_ptr dist = physical_distributions[phys_idx]; - std::function, std::shared_ptr, std::shared_ptr>)> predicate = [&] (std::tuple, std::shared_ptr, std::shared_ptr> p) -> bool { - return std::get<0>(p)->AreEquivalent(std::get<1>(p), std::get<2>(p), dist, detector_model, interactions); - }; - auto it = std::find_if(unique_distributions.begin(), unique_distributions.end(), predicate); - if(it != unique_distributions.end()) { - unsigned int index = std::distance(unique_distributions.begin(), it); - common_phys_idxs.push_back(index); - } else { - unique_distributions.push_back(std::make_tuple(dist, detector_model, interactions)); - common_phys_idxs.push_back(unique_distributions.size()-1); - } - } - - for(unsigned int injector_idx=0; injector_idx>> & phys_dists = physical_distribution_state[injector_idx]; - std::vector>> & gen_dists = generation_distribution_state[injector_idx]; - - std::vector gen_idxs; - std::vector phys_idxs; - for(unsigned int gen_idx=0; gen_idx dist = gen_dists[gen_idx].second; - // These are common to all injectors, so we pull information from the first injector - std::shared_ptr dist_detector = injectors[injector_idx]->GetDetectorModel(); - std::shared_ptr dist_interactions = injectors[injector_idx]->GetInteractions(); - std::function, std::shared_ptr, std::shared_ptr>)> predicate = [&] (std::tuple, std::shared_ptr, std::shared_ptr> p) -> bool { - return std::get<0>(p)->AreEquivalent(std::get<1>(p), std::get<2>(p), dist, dist_detector, dist_interactions); - }; - auto it = std::find_if(unique_distributions.begin(), unique_distributions.end(), predicate); - if(it != unique_distributions.end()) { - unsigned int index = std::distance(unique_distributions.begin(), it); - gen_idxs.push_back(index); - } else { - unique_distributions.push_back(std::make_tuple(dist, injectors[injector_idx]->GetDetectorModel(), injectors[injector_idx]->GetInteractions())); - gen_idxs.push_back(unique_distributions.size()-1); - } - } - - for(unsigned int phys_idx=0; phys_idx dist = phys_dists[phys_idx].second; - std::function, std::shared_ptr, std::shared_ptr>)> predicate = [&] (std::tuple, std::shared_ptr, std::shared_ptr> p) -> bool { - return std::get<0>(p)->AreEquivalent(std::get<1>(p), std::get<2>(p), dist, detector_model, interactions); - }; - auto it = std::find_if(unique_distributions.begin(), unique_distributions.end(), predicate); - if(it != unique_distributions.end()) { - unsigned int index = std::distance(unique_distributions.begin(), it); - phys_idxs.push_back(index); - } else { - unique_distributions.push_back(std::make_tuple(dist, detector_model, interactions)); - phys_idxs.push_back(unique_distributions.size()-1); - } - } - distinct_gen_idxs_by_injector.push_back(gen_idxs); - distinct_physical_idxs_by_injector.push_back(phys_idxs); - } - - //TODO - // Find unique contexts - // std::vector, std::shared_ptr>> unique_contexts; - // std::vector context_idx_by_injector; -} - -LeptonWeighter::LeptonWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr interactions, std::vector> physical_distributions) - : injectors(injectors) - , detector_model(detector_model) - , interactions(interactions) - , physical_distributions(physical_distributions) -{ - Initialize(); -} - -double LeptonWeighter::EventWeight(siren::dataclasses::InteractionRecord const & record) const { +double Weighter::EventWeight(siren::dataclasses::InteractionTree const & tree) const { // The weight is given by - // w = (\sum_i p_gen^i / p_phys^i)^-1 - + // + // [sum_{injectors i} + // x prod_{tree datum d} + // x (prod_{generation dist j} p_gen^{idj}) + // / (prod_{physical dist j} p_phys^{idj}) ] ^-1 + // // The generation probabilities are different between each injector. // Most of the physical probabilities are common between all injectors. // The physical interaction probability and physical position distribution @@ -519,121 +104,77 @@ double LeptonWeighter::EventWeight(siren::dataclasses::InteractionRecord const & // Thus, the two will cancel out and we are left with only the unnormalized position probability // w = p_physCommon / (\sum_i p_gen^i / p_physPosNonNorm^i) - // The ratio between physical and generation probabilities that differ between injectors - std::vector gen_over_phys; - gen_over_phys.reserve(injectors.size()); + - // From each injector we need the generation probability and the unnormalized position probability (interaction probability * position probability) - for(auto injector : injectors) { - double generation_probability = injector->GenerationProbability(record); - std::tuple bounds = injector->PrimaryInjectionBounds(record); + double inv_weight = 0; + for(unsigned int idx = 0; idx < injectors.size(); ++idx) { double physical_probability = 1.0; - - /* - if(user_supplied_position_distribution) { - // Need pos_prob * int_prob - // pos_prob already supplied - // just need int_prob - physical_probability *= InteractionProbability((std::shared_ptr)injector, record); - } else { - // Need pos_prob * int_prob - // nothing is already supplied - // need pos_prob and int_prob - // pos_prob * int_prob == unnormalized pos_prob - physical_probability *= UnnormalizedPositionProbability((std::shared_ptr)injector, record); + double generation_probability = injectors[idx]->EventsToInject();//GenerationProbability(tree); + for(auto const & datum : tree.tree) { + std::tuple bounds; + if(datum->depth() == 0) { + bounds = injectors[idx]->PrimaryInjectionBounds(datum->record); + physical_probability *= primary_process_weighters[idx]->PhysicalProbability(bounds, datum->record); + generation_probability *= primary_process_weighters[idx]->GenerationProbability(*datum); + } + else { + try { + bounds = injectors[idx]->SecondaryInjectionBounds(datum->record); + double phys_prob = secondary_process_weighter_maps[idx].at(datum->record.signature.primary_type)->PhysicalProbability(bounds, datum->record); + double gen_prob = secondary_process_weighter_maps[idx].at(datum->record.signature.primary_type)->GenerationProbability(*datum); + physical_probability *= phys_prob; + generation_probability *= gen_prob; + } catch(const std::out_of_range& oor) { + std::cout << "Out of Range error: " << oor.what() << '\n'; + return 0; + } + } } - */ - double prob = InteractionProbability(bounds, record); - physical_probability *= prob; - prob = NormalizedPositionProbability(bounds, record); - physical_probability *= prob; - prob = siren::injection::CrossSectionProbability(injector->GetDetectorModel(), injector->GetInteractions(), record); - physical_probability *= prob; - // Number of events is already in GenerationProbability - // double num_events = injector->EventsToInject(); - gen_over_phys.push_back(generation_probability / physical_probability); - } - - // The denominator is the sum over the ratios for each injector - double injection_specific_factors = accumulate(gen_over_phys.begin(), gen_over_phys.end()); - - // One physical probability density is computed for each distribution, independent of the injectors - double common_physical_probability = 1.0; - for(auto physical_distribution : physical_distributions) { - double prob = physical_distribution->GenerationProbability(detector_model, interactions, record); - common_physical_probability *= prob; + inv_weight += generation_probability / physical_probability; } + return 1./inv_weight; +} - double weight = common_physical_probability / injection_specific_factors; - return normalization * weight; +void Weighter::SaveWeighter(std::string const & filename) const { + std::ofstream os(filename+".siren_weighter", std::ios::binary); + ::cereal::BinaryOutputArchive archive(os); + this->save(archive,0); } -double LeptonWeighter::SimplifiedEventWeight(siren::dataclasses::InteractionRecord const & record) const { - std::vector probs; - probs.reserve(unique_distributions.size()); - for(unsigned int i=0; i, - std::shared_ptr, - std::shared_ptr - > const & p = unique_distributions[i]; - probs.push_back(std::get<0>(p)->GenerationProbability(std::get<1>(p), std::get<2>(p), record)); - } +void Weighter::LoadWeighter(std::string const & filename) { + std::cout << "Weighter loading not yet supported... sorry!\n"; + exit(0); + std::ifstream is(filename+".siren_weighter", std::ios::binary); + ::cereal::BinaryInputArchive archive(is); + //this->load(archive,0); +} - double phys_over_gen = 1.0; - for(unsigned int i=0; i> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process, std::vector> secondary_physical_processes) + : injectors(injectors) + , detector_model(detector_model) + , primary_physical_process(primary_physical_process) + , secondary_physical_processes(secondary_physical_processes) +{ + Initialize(); +} - std::vector gen_over_phys; - gen_over_phys.reserve(injectors.size()); - for(unsigned int i=0; iEventsToInject(); - for(unsigned int j=0; jGetDetectorModel(), injectors[i]->GetInteractions(), record); - prob *= cross_section_probability; - for(unsigned int j=0; j)injectors[i], record); - prob /= int_prob; - } else { - // Need pos_prob * int_prob - // nothing is already supplied - // need pos_prob and int_prob - // pos_prob * int_prob == unnormalized pos_prob - double pos_prob = UnnormalizedPositionProbability((std::shared_ptr)injectors[i], record); - prob /= pos_prob; - }*/ - std::tuple bounds = injectors[i]->PrimaryInjectionBounds(record); - double interaction_probability = InteractionProbability(bounds, record); - double normalized_position_probability = NormalizedPositionProbability(bounds, record); - prob /= interaction_probability; - prob /= normalized_position_probability; +Weighter::Weighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process) + : injectors(injectors) + , detector_model(detector_model) + , primary_physical_process(primary_physical_process) + , secondary_physical_processes(std::vector>()) +{ + Initialize(); +} - // TODO - // Use unique contexts to compute cross section probability - gen_over_phys.push_back(prob); +Weighter::Weighter(std::vector> _injectors, std::string filename) { + LoadWeighter(filename); + if(_injectors.size() > 0) { + // overwrite the serialized injectors if the user have provided any + injectors = _injectors; } - - double gen_over_phys_d = accumulate(gen_over_phys.begin(), gen_over_phys.end()); - double weight = phys_over_gen / gen_over_phys_d; - return normalization * weight; + Initialize(); } } // namespace injection } // namespace siren - diff --git a/projects/injection/private/pybindings/injection.cxx b/projects/injection/private/pybindings/injection.cxx index f685c7862..044ccd06d 100644 --- a/projects/injection/private/pybindings/injection.cxx +++ b/projects/injection/private/pybindings/injection.cxx @@ -3,11 +3,6 @@ #include "../../public/SIREN/injection/Process.h" #include "../../public/SIREN/injection/Injector.h" -//#include "../../public/SIREN/injection/ColumnDepthSIREN.h" -//#include "../../public/SIREN/injection/CylinderVolumeSIREN.h" -//#include "../../public/SIREN/injection/DecayRangeSIREN.h" -//#include "../../public/SIREN/injection/RangedSIREN.h" -#include "../../public/SIREN/injection/TreeWeighter.h" #include "../../public/SIREN/injection/Weighter.h" #include "../../public/SIREN/injection/WeightingUtils.h" @@ -16,11 +11,20 @@ #include "../../../detector/public/SIREN/detector/DetectorModel.h" #include "../../../interactions/public/SIREN/interactions/InteractionCollection.h" +#include "../../../interactions/public/SIREN/interactions/pyDarkNewsCrossSection.h" +#include "../../../interactions/public/SIREN/interactions/pyDarkNewsDecay.h" + +#include +#include +#include +#include + #include #include #include -PYBIND11_DECLARE_HOLDER_TYPE(T__,std::shared_ptr) +PYBIND11_DECLARE_HOLDER_TYPE(T__,std::shared_ptr); +//CEREAL_FORCE_DYNAMIC_INIT(pyDarkNewsCrossSection); using namespace pybind11; @@ -28,9 +32,9 @@ PYBIND11_MODULE(injection,m) { using namespace siren::injection; // Utils function - + m.def("CrossSectionProbability", &CrossSectionProbability); - + // Process class_>(m, "Process") @@ -57,6 +61,7 @@ PYBIND11_MODULE(injection,m) { class_>(m, "Injector") .def(init, std::shared_ptr>()) + .def(init>()) .def(init, std::shared_ptr, std::shared_ptr>()) .def(init, std::shared_ptr, std::vector>, std::shared_ptr>()) .def("SetStoppingCondition",&Injector::SetStoppingCondition) @@ -74,7 +79,11 @@ PYBIND11_MODULE(injection,m) { .def("GetDetectorModel",&Injector::GetDetectorModel) .def("GetInteractions",&Injector::GetInteractions) .def("InjectedEvents",&Injector::InjectedEvents) - .def("EventsToInject",&Injector::EventsToInject); + .def("EventsToInject",&Injector::EventsToInject) + .def("ResetInjectedEvents",&Injector::ResetInjectedEvents) + .def("SaveInjector",&Injector::SaveInjector) + .def("LoadInjector",&Injector::LoadInjector) + ; // class_, Injector>(m, "RangedSIREN") // .def(init, std::shared_ptr, std::vector>, std::shared_ptr, std::shared_ptr, double, double>()) @@ -112,17 +121,12 @@ PYBIND11_MODULE(injection,m) { .def("GenerationProbability",&SecondaryProcessWeighter::GenerationProbability) .def("EventWeight",&SecondaryProcessWeighter::EventWeight); - class_>(m, "LeptonTreeWeighter") + class_>(m, "Weighter") .def(init>, std::shared_ptr, std::shared_ptr, std::vector>>()) .def(init>, std::shared_ptr, std::shared_ptr>()) - .def("EventWeight",&LeptonTreeWeighter::EventWeight); - - class_>(m, "LeptonWeighter") - .def(init>, std::shared_ptr, std::shared_ptr, std::vector>>()) - .def("EventWeight",&LeptonWeighter::EventWeight) - .def("SimplifiedEventWeight",&LeptonWeighter::SimplifiedEventWeight); - - - - + .def(init>, std::string>()) + .def("EventWeight",&Weighter::EventWeight) + .def("SaveWeighter",&Weighter::SaveWeighter) + .def("LoadWeighter",&Weighter::LoadWeighter) + ; } diff --git a/projects/injection/private/test/CCM_HNL_TEST.cxx b/projects/injection/private/test/CCM_HNL_TEST.cxx index 247cba0ab..6704ee502 100644 --- a/projects/injection/private/test/CCM_HNL_TEST.cxx +++ b/projects/injection/private/test/CCM_HNL_TEST.cxx @@ -17,7 +17,7 @@ #include "SIREN/dataclasses/Particle.h" #include "SIREN/injection/Injector.h" #include "SIREN/injection/Process.h" -#include "SIREN/injection/TreeWeighter.h" +#include "SIREN/injection/Weighter.h" #include "SIREN/geometry/Geometry.h" #include "SIREN/geometry/ExtrPoly.h" #include "SIREN/geometry/Sphere.h" @@ -303,8 +303,8 @@ TEST(Injector, Generation) upper_injector->SetStoppingCondition(stopping_condition); lower_injector->SetStoppingCondition(stopping_condition); - std::shared_ptr upper_weighter = std::make_shared(std::vector>{upper_injector}, detector_model, primary_physical_process_upper_injector, secondary_physical_processes); - std::shared_ptr lower_weighter = std::make_shared(std::vector>{lower_injector}, detector_model, primary_physical_process_lower_injector, secondary_physical_processes); + std::shared_ptr upper_weighter = std::make_shared(std::vector>{upper_injector}, detector_model, primary_physical_process_upper_injector, secondary_physical_processes); + std::shared_ptr lower_weighter = std::make_shared(std::vector>{lower_injector}, detector_model, primary_physical_process_lower_injector, secondary_physical_processes); int i = 0; diff --git a/projects/injection/public/SIREN/injection/Injector.h b/projects/injection/public/SIREN/injection/Injector.h index 9b1fc50f3..c7249eb9d 100644 --- a/projects/injection/public/SIREN/injection/Injector.h +++ b/projects/injection/public/SIREN/injection/Injector.h @@ -1,6 +1,6 @@ #pragma once -#ifndef SIREN_SIREN_H -#define SIREN_SIREN_H +#ifndef SIREN_Injector_H +#define SIREN_Injector_H #include // for map #include // for set @@ -22,6 +22,7 @@ #include #include #include +#include #include #include #include @@ -30,6 +31,8 @@ #include "SIREN/dataclasses/InteractionRecord.h" // for Interactio... #include "SIREN/dataclasses/InteractionTree.h" // for Interactio... #include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/distributions/secondary/vertex/SecondaryVertexPositionDistribution.h" // for Secondary... +#include "SIREN/interactions/pyDarkNewsCrossSection.h" namespace siren { namespace interactions { class InteractionCollection; } } namespace siren { namespace detector { class DetectorModel; } } @@ -54,8 +57,11 @@ friend cereal::access; unsigned int injected_events = 0; std::shared_ptr random; std::shared_ptr detector_model; - // This funciton returns true if the given datum is the last entry to be saved in a tree - std::function, size_t)> stopping_condition; + // This function returns true if the given secondary index i of the datum should not be simulated + // Defaults to no secondary interactions being saved + std::function, size_t)> stopping_condition= [&](std::shared_ptr datum, size_t i) { + return true; + }; Injector(); private: std::shared_ptr primary_process; @@ -66,6 +72,7 @@ friend cereal::access; std::map> secondary_position_distribution_map; public: // Constructors + Injector(unsigned int events_to_inject, std::string filename, std::shared_ptr random); Injector(unsigned int events_to_inject, std::shared_ptr detector_model, std::shared_ptr random); Injector(unsigned int events_to_inject, std::shared_ptr detector_model, std::shared_ptr primary_process, std::shared_ptr random); Injector(unsigned int events_to_inject, std::shared_ptr detector_model, std::shared_ptr primary_process, std::vector> secondary_processes, std::shared_ptr random); @@ -99,15 +106,19 @@ friend cereal::access; virtual std::shared_ptr GetInteractions() const; unsigned int InjectedEvents() const; unsigned int EventsToInject() const; + void ResetInjectedEvents(); operator bool() const; + void SaveInjector(std::string const & filename) const; + void LoadInjector(std::string const & filename); template void save(Archive & archive, std::uint32_t const version) const { if(version == 0) { archive(::cereal::make_nvp("EventsToInject", events_to_inject)); archive(::cereal::make_nvp("InjectedEvents", injected_events)); - //archive(::cereal::make_nvp("StoppingCondition", stopping_condition)); archive(::cereal::make_nvp("DetectorModel", detector_model)); + // archive(::cereal::make_nvp("SIRENRandom", random)); + // std::cout << "saved SIRENRandom\n"; archive(::cereal::make_nvp("PrimaryProcess", primary_process)); archive(::cereal::make_nvp("SecondaryProcesses", secondary_processes)); } else { @@ -118,12 +129,20 @@ friend cereal::access; template void load(Archive & archive, std::uint32_t const version) { if(version == 0) { + std::shared_ptr _primary_process; + std::vector> _secondary_processes; + archive(::cereal::make_nvp("EventsToInject", events_to_inject)); archive(::cereal::make_nvp("InjectedEvents", injected_events)); - //archive(::cereal::make_nvp("StoppingCondition", stopping_condition)); archive(::cereal::make_nvp("DetectorModel", detector_model)); - archive(::cereal::make_nvp("PrimaryProcess", primary_process)); - archive(::cereal::make_nvp("SecondaryProcesses", secondary_processes)); + // archive(::cereal::make_nvp("SIRENRandom", random)); + // std::cout << "loaded SIRENRandom\n"; + archive(::cereal::make_nvp("PrimaryProcess", _primary_process)); + archive(::cereal::make_nvp("SecondaryProcesses", _secondary_processes)); + SetPrimaryProcess(_primary_process); + for(auto secondary_process : _secondary_processes) { + AddSecondaryProcess(secondary_process); + } } else { throw std::runtime_error("Injector only supports version <= 0!"); } @@ -135,5 +154,5 @@ friend cereal::access; CEREAL_CLASS_VERSION(siren::injection::Injector, 0); -#endif // SIREN_SIREN_H +#endif // SIREN_Injector_H diff --git a/projects/injection/public/SIREN/injection/Process.h b/projects/injection/public/SIREN/injection/Process.h index e0a4254e0..f6c429eaf 100644 --- a/projects/injection/public/SIREN/injection/Process.h +++ b/projects/injection/public/SIREN/injection/Process.h @@ -12,14 +12,14 @@ #include #include #include +#include #include #include #include #include "SIREN/dataclasses/Particle.h" // for Particle #include "SIREN/distributions/Distributions.h" // for InjectionDis... - -namespace siren { namespace interactions { class InteractionCollection; } } +#include "SIREN/interactions/InteractionCollection.h" namespace siren { namespace injection { @@ -136,4 +136,16 @@ class SecondaryInjectionProcess : public PhysicalProcess { CEREAL_CLASS_VERSION(siren::injection::Process, 0); +CEREAL_CLASS_VERSION(siren::injection::PhysicalProcess, 0); +CEREAL_REGISTER_TYPE(siren::injection::PhysicalProcess); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::injection::Process, siren::injection::PhysicalProcess); + +CEREAL_CLASS_VERSION(siren::injection::SecondaryInjectionProcess, 0); +CEREAL_REGISTER_TYPE(siren::injection::SecondaryInjectionProcess); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::injection::PhysicalProcess, siren::injection::SecondaryInjectionProcess); + +CEREAL_CLASS_VERSION(siren::injection::PrimaryInjectionProcess, 0); +CEREAL_REGISTER_TYPE(siren::injection::PrimaryInjectionProcess); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::injection::PhysicalProcess, siren::injection::PrimaryInjectionProcess); + #endif // SIREN_Process_H diff --git a/projects/injection/public/SIREN/injection/TreeWeighter.h b/projects/injection/public/SIREN/injection/TreeWeighter.h deleted file mode 100644 index 14e714b94..000000000 --- a/projects/injection/public/SIREN/injection/TreeWeighter.h +++ /dev/null @@ -1,96 +0,0 @@ -#pragma once -#ifndef SIREN_TreeWeighter_H -#define SIREN_TreeWeighter_H - -#include // for map -#include -#include // for shared_ptr -#include // for vector - -#include -#include -#include -#include -#include -#include -#include - -#include "SIREN/dataclasses/InteractionTree.h" // for InteractionT... -#include "SIREN/dataclasses/Particle.h" // for Particle - -namespace siren { namespace dataclasses { class InteractionRecord; } } -namespace siren { namespace detector { class DetectorModel; } } -namespace siren { namespace distributions { class PrimaryInjectionDistribution; } } -namespace siren { namespace distributions { class SecondaryInjectionDistribution; } } -namespace siren { namespace distributions { class WeightableDistribution; } } -namespace siren { namespace injection { class Injector; } } -namespace siren { namespace injection { class PrimaryInjectionProcess; } } -namespace siren { namespace injection { class SecondaryInjectionProcess; } } -namespace siren { namespace injection { class PhysicalProcess; } } -namespace siren { namespace math { class Vector3D; } } - -namespace siren { -namespace injection { - -// Class handling weight calculation for a single pair of injection and physical processes -template -class ProcessWeighter { -private: - std::shared_ptr phys_process; - std::shared_ptr inj_process; - std::vector> unique_gen_distributions; - std::vector> unique_phys_distributions; - std::shared_ptr detector_model; - std::vector> const & GetInjectionDistributions(); - void Initialize(); - double normalization; -public: - double InteractionProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; - double NormalizedPositionProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; - double PhysicalProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; - double GenerationProbability(siren::dataclasses::InteractionTreeDatum const & datum) const; - double EventWeight(std::tuple const & bounds, siren::dataclasses::InteractionTreeDatum const & datum) const; - ProcessWeighter(std::shared_ptr phys_process, std::shared_ptr inj_process, std::shared_ptr detector_model); - -}; // ProcessWeighter - -typedef ProcessWeighter PrimaryProcessWeighter; -typedef ProcessWeighter SecondaryProcessWeighter; - -// Parent class for calculating event weights -// Assumes there is a unique secondary physical process for each particle type -class LeptonTreeWeighter { -private: - // Supplied by constructor - std::vector> injectors; - std::shared_ptr detector_model; - std::shared_ptr primary_physical_process; - std::vector> secondary_physical_processes; - - // Calculated upon initialization - std::vector> primary_process_weighters; - std::vector< - std::map< - siren::dataclasses::ParticleType, - std::shared_ptr - > - > secondary_process_weighter_maps; - - void Initialize(); -public: - double EventWeight(siren::dataclasses::InteractionTree const & tree) const; - LeptonTreeWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process, std::vector> secondary_physical_processes); - LeptonTreeWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process); - -}; // LeptonTreeWeighter - - -} //namespace injection -} //namespace siren - -#include "TreeWeighter.tcc" - -CEREAL_CLASS_VERSION(siren::injection::LeptonTreeWeighter, 0); - - -#endif // SIREN_TreeWeighter_H diff --git a/projects/injection/public/SIREN/injection/Weighter.h b/projects/injection/public/SIREN/injection/Weighter.h index d0658af3f..93e845cb7 100644 --- a/projects/injection/public/SIREN/injection/Weighter.h +++ b/projects/injection/public/SIREN/injection/Weighter.h @@ -2,69 +2,126 @@ #ifndef SIREN_Weighter_H #define SIREN_Weighter_H -#include // for tuple -#include // for shared_ptr -#include // for vector +#include // for map +#include +#include // for shared_ptr +#include // for vector #include +#include #include #include #include +#include +#include +#include #include #include #include -namespace siren { namespace interactions { class InteractionCollection; } } +#include "SIREN/dataclasses/InteractionTree.h" // for InteractionT... +#include "SIREN/dataclasses/Particle.h" // for Particle + namespace siren { namespace dataclasses { class InteractionRecord; } } namespace siren { namespace detector { class DetectorModel; } } +namespace siren { namespace distributions { class PrimaryInjectionDistribution; } } +namespace siren { namespace distributions { class SecondaryInjectionDistribution; } } namespace siren { namespace distributions { class WeightableDistribution; } } namespace siren { namespace injection { class Injector; } } +namespace siren { namespace injection { class PrimaryInjectionProcess; } } +namespace siren { namespace injection { class SecondaryInjectionProcess; } } +namespace siren { namespace injection { class PhysicalProcess; } } namespace siren { namespace math { class Vector3D; } } namespace siren { namespace injection { -class LeptonWeighter { +// Class handling weight calculation for a single pair of injection and physical processes +template +class ProcessWeighter { private: - std::vector> injectors; + std::shared_ptr phys_process; + std::shared_ptr inj_process; + std::vector> unique_gen_distributions; + std::vector> unique_phys_distributions; std::shared_ptr detector_model; - //TODO Think about whether we want to pass a CrossSection collection, or a vector of cross sections - //TODO Think about what to do with multiple neutrino primary types. Do we want to support mutiple types across one InteractionCollection, across one Injector, across one LeptonWeighter? - std::shared_ptr interactions; - std::vector> physical_distributions; - - std::vector, std::shared_ptr, std::shared_ptr>> unique_distributions; - std::vector common_gen_idxs; - std::vector common_phys_idxs; - std::vector> distinct_gen_idxs_by_injector; - std::vector> distinct_physical_idxs_by_injector; - std::vector, std::shared_ptr>> unique_contexts; - std::vector context_idx_by_injector; + std::vector> const & GetInjectionDistributions(); + void Initialize(); double normalization; +public: + double InteractionProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; + double NormalizedPositionProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; + double PhysicalProbability(std::tuple const & bounds, siren::dataclasses::InteractionRecord const & record) const; + double GenerationProbability(siren::dataclasses::InteractionTreeDatum const & datum) const; + double EventWeight(std::tuple const & bounds, siren::dataclasses::InteractionTreeDatum const & datum) const; + ProcessWeighter(std::shared_ptr phys_process, std::shared_ptr inj_process, std::shared_ptr detector_model); + +}; // ProcessWeighter + +typedef ProcessWeighter PrimaryProcessWeighter; +typedef ProcessWeighter SecondaryProcessWeighter; + +// Parent class for calculating event weights +// Assumes there is a unique secondary physical process for each particle type +class Weighter { +private: + // Supplied by constructor + std::vector> injectors; + std::shared_ptr detector_model; + std::shared_ptr primary_physical_process; + std::vector> secondary_physical_processes; - bool user_supplied_position_distribution = false; + // Calculated upon initialization + std::vector> primary_process_weighters; + std::vector< + std::map< + siren::dataclasses::ParticleType, + std::shared_ptr + > + > secondary_process_weighter_maps; void Initialize(); public: - //TODO Think about the relationship between interaction probability and the positional distribution. Check that the math works out - //TODO Add versions of these functions that take precomputed intersections - double InteractionProbability(std::shared_ptr injector, siren::dataclasses::InteractionRecord const & record) const; - double InteractionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const; - double UnnormalizedPositionProbability(std::shared_ptr injector, siren::dataclasses::InteractionRecord const & record) const; - double UnnormalizedPositionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const; - double NormalizedPositionProbability(std::tuple bounds, siren::dataclasses::InteractionRecord const & record) const; - //TODO Add a function to check that we have the right match up of variables between generator and physical distribution - //TODO Figure out a way to check that physical and generation probabilities match, and ignore those when weighting - LeptonWeighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr interactions, std::vector> physical_distributions); - double EventWeight(siren::dataclasses::InteractionRecord const & record) const; - double SimplifiedEventWeight(siren::dataclasses::InteractionRecord const & record) const; -}; + double EventWeight(siren::dataclasses::InteractionTree const & tree) const; + Weighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process, std::vector> secondary_physical_processes); + Weighter(std::vector> injectors, std::shared_ptr detector_model, std::shared_ptr primary_physical_process); + Weighter(std::vector> injectors, std::string filename); + void SaveWeighter(std::string const & filename) const; + void LoadWeighter(std::string const & filename); + + template + void save(Archive & archive, std::uint32_t const version) const { + if(version == 0) { + archive(::cereal::make_nvp("Injectors", injectors)); + archive(::cereal::make_nvp("DetectorModel", detector_model)); + archive(::cereal::make_nvp("PrimaryPhysicalProcess", primary_physical_process)); + archive(::cereal::make_nvp("SecondaryPhysicalProcesses", secondary_physical_processes)); + } else { + throw std::runtime_error("Weighter only supports version <= 0!"); + } + } + + template + void load(Archive & archive, std::uint32_t const version) const { + if(version == 0) { + archive(::cereal::make_nvp("Injectors", injectors)); + archive(::cereal::make_nvp("DetectorModel", detector_model)); + archive(::cereal::make_nvp("PrimaryPhysicalProcess", primary_physical_process)); + archive(::cereal::make_nvp("SecondaryPhysicalProcesses", secondary_physical_processes)); + } else { + throw std::runtime_error("Weighter only supports version <= 0!"); + } + } + +}; // Weighter + } //namespace injection } //namespace siren -CEREAL_CLASS_VERSION(siren::injection::LeptonWeighter, 0); +#include "Weighter.tcc" +CEREAL_CLASS_VERSION(siren::injection::Weighter, 0); -#endif // SIREN_Weighter_H +#endif // SIREN_Weighter_H diff --git a/projects/injection/public/SIREN/injection/TreeWeighter.tcc b/projects/injection/public/SIREN/injection/Weighter.tcc similarity index 96% rename from projects/injection/public/SIREN/injection/TreeWeighter.tcc rename to projects/injection/public/SIREN/injection/Weighter.tcc index 88360e58c..fa85d0f55 100644 --- a/projects/injection/public/SIREN/injection/TreeWeighter.tcc +++ b/projects/injection/public/SIREN/injection/Weighter.tcc @@ -1,7 +1,7 @@ #pragma once -#ifndef SIREN_TreeWeighter_TCC -#define SIREN_TreeWeighter_TCC -#include "SIREN/injection/TreeWeighter.h" +#ifndef SIREN_Weighter_TCC +#define SIREN_Weighter_TCC +#include "SIREN/injection/Weighter.h" #include // for ite... #include // for array @@ -11,6 +11,8 @@ #include // for ope... #include // for set #include // for out... + +#include "SIREN/interactions/Decay.h" // for Dec... #include "SIREN/interactions/CrossSection.h" // for Cro... #include "SIREN/interactions/InteractionCollection.h" // for Cro... #include "SIREN/dataclasses/InteractionRecord.h" // for Int... @@ -185,6 +187,8 @@ double ProcessWeighter::NormalizedPositionProbability(std::tupleGetInteractionDensity(intersections, DetectorPosition(interaction_vertex), targets, total_cross_sections, total_decay_length); //units of m^-1 double prob_density; + // This is equivalent to equation 11 of the SIREN paper + // Reach out to the authors if you disagree and we can send the derivation :) if(total_interaction_depth < 1e-6) { prob_density = interaction_density / total_interaction_depth; } else { @@ -217,10 +221,10 @@ double ProcessWeighter::PhysicalProbability(std::tuple double ProcessWeighter::GenerationProbability(siren::dataclasses::InteractionTreeDatum const & datum ) const { - double gen_probability = siren::injection::CrossSectionProbability(detector_model, phys_process->GetInteractions(), datum.record); + double gen_probability = siren::injection::CrossSectionProbability(detector_model, inj_process->GetInteractions(), datum.record); for(auto gen_dist : unique_gen_distributions) { - gen_probability *= gen_dist->GenerationProbability(detector_model, phys_process->GetInteractions(), datum.record); + gen_probability *= gen_dist->GenerationProbability(detector_model, inj_process->GetInteractions(), datum.record); } return gen_probability; } @@ -258,4 +262,4 @@ std::vector $ + ${PYTHON_INCLUDE_DIRS} ) target_link_libraries(SIREN_interactions @@ -46,8 +51,8 @@ package_add_test(UnitTest_DipoleFromTable ${PROJECT_SOURCE_DIR}/projects/interac pybind11_add_module(interactions ${PROJECT_SOURCE_DIR}/projects/interactions/private/pybindings/interactions.cxx) target_link_libraries(interactions PRIVATE SIREN photospline rk_static pybind11::embed) -pybind11_add_module(pyDarkNewsSerializer ${PROJECT_SOURCE_DIR}/projects/interactions/private/pybindings/pyDarkNewsSerializer.cxx) -target_link_libraries(pyDarkNewsSerializer PRIVATE SIREN photospline rk_static pybind11::embed) +#pybind11_add_module(pyDarkNewsSerializer ${PROJECT_SOURCE_DIR}/projects/interactions/private/pybindings/pyDarkNewsSerializer.cxx) +#target_link_libraries(pyDarkNewsSerializer PRIVATE SIREN photospline rk_static pybind11::embed) if(DEFINED SKBUILD) set_target_properties(interactions PROPERTIES BUILD_WITH_INSTALL_RPATH FALSE diff --git a/projects/interactions/private/CrossSection.cxx b/projects/interactions/private/CrossSection.cxx index 5f8fd83b1..dfcbf49f6 100644 --- a/projects/interactions/private/CrossSection.cxx +++ b/projects/interactions/private/CrossSection.cxx @@ -31,5 +31,4 @@ bool CrossSection::operator==(CrossSection const & other) const { } } // namespace interactions -} // namespace siren - +} // namespace siren \ No newline at end of file diff --git a/projects/interactions/private/DarkNewsCrossSection.cxx b/projects/interactions/private/DarkNewsCrossSection.cxx index 0af088563..70ebc2f0d 100644 --- a/projects/interactions/private/DarkNewsCrossSection.cxx +++ b/projects/interactions/private/DarkNewsCrossSection.cxx @@ -21,9 +21,6 @@ namespace interactions { DarkNewsCrossSection::DarkNewsCrossSection() {} -pybind11::object DarkNewsCrossSection::get_representation() { - return pybind11::cast(Py_None); -} bool DarkNewsCrossSection::equal(CrossSection const & other) const { const DarkNewsCrossSection* x = dynamic_cast(&other); @@ -284,4 +281,4 @@ std::vector DarkNewsCrossSection::DensityVariables() const { } } // namespace interactions -} // namespace siren +} // namespace siren \ No newline at end of file diff --git a/projects/interactions/private/DarkNewsDecay.cxx b/projects/interactions/private/DarkNewsDecay.cxx index 6e1c50b24..38a7b85cd 100644 --- a/projects/interactions/private/DarkNewsDecay.cxx +++ b/projects/interactions/private/DarkNewsDecay.cxx @@ -22,10 +22,6 @@ namespace interactions { DarkNewsDecay::DarkNewsDecay() {} -pybind11::object DarkNewsDecay::get_representation() { - return pybind11::cast(Py_None); -} - bool DarkNewsDecay::equal(Decay const & other) const { const DarkNewsDecay* x = dynamic_cast(&other); diff --git a/projects/interactions/private/pyCrossSection.cxx b/projects/interactions/private/pyCrossSection.cxx new file mode 100644 index 000000000..672126309 --- /dev/null +++ b/projects/interactions/private/pyCrossSection.cxx @@ -0,0 +1,166 @@ +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t + +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/pyCrossSection.h" +#include "SIREN/interactions/CrossSection.h" + +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/dataclasses/InteractionRecord.h" // for InteractionRecord +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline +#include "SIREN/utilities/Random.h" // for SIREN_random + +namespace siren { +namespace interactions { + +bool pyCrossSection::equal(CrossSection const & other) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + bool, + equal, + "equal", + other + ) +} + +double pyCrossSection::TotalCrossSection(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + double, + TotalCrossSection, + "TotalCrossSection", + interaction + ) +} + +double pyCrossSection::TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE( + self, + CrossSection, + double, + TotalCrossSectionAllFinalStates, + "TotalCrossSectionAllFinalStates", + record + ) +} + +double pyCrossSection::DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + double, + DifferentialCrossSection, + "DifferentialCrossSection", + interaction + ) +} + +double pyCrossSection::InteractionThreshold(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + double, + InteractionThreshold, + "InteractionThreshold", + interaction + ) +} + +void pyCrossSection::SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + void, + SampleFinalState, + "SampleFinalState", + record, + random + ) +} + +std::vector pyCrossSection::GetPossibleTargets() const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + std::vector, + GetPossibleTargets, + "GetPossibleTargets" + ) +} + +std::vector pyCrossSection::GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + std::vector, + GetPossibleTargetsFromPrimary, + "GetPossibleTargetsFromPrimary", + primary_type + ) +} + +std::vector pyCrossSection::GetPossiblePrimaries() const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + std::vector, + GetPossiblePrimaries, + "GetPossiblePrimaries" + ) +} + +std::vector pyCrossSection::GetPossibleSignatures() const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + std::vector, + GetPossibleSignatures, + "GetPossibleSignatures" + ) +} + +std::vector pyCrossSection::GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + std::vector, + GetPossibleSignaturesFromParents, + "GetPossibleSignaturesFromParents", + primary_type, + target_type + ) +} + +double pyCrossSection::FinalStateProbability(dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE_PURE( + self, + CrossSection, + double, + FinalStateProbability, + "FinalStateProbability", + record + ) +} + +std::vector pyCrossSection::DensityVariables() const { + PYBIND11_OVERRIDE_PURE( + std::vector, + CrossSection, + DensityVariables + ); +} + +} // namespace interactions +} // namespace siren + diff --git a/projects/interactions/private/pyDarkNewsCrossSection.cxx b/projects/interactions/private/pyDarkNewsCrossSection.cxx new file mode 100644 index 000000000..2d9f70805 --- /dev/null +++ b/projects/interactions/private/pyDarkNewsCrossSection.cxx @@ -0,0 +1,246 @@ +#include +#include +#include // for vector +#include // for uint32_t +#include // for runtime_error + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/pyDarkNewsCrossSection.h" // for DarkNewsCrossSection +#include "SIREN/interactions/DarkNewsCrossSection.h" // for DarkNewsCrossSection + +#include "SIREN/interactions/CrossSection.h" // for CrossSection +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline + +#include "SIREN/dataclasses/InteractionSignature.h" +#include "SIREN/dataclasses/InteractionRecord.h" +#include "SIREN/utilities/Random.h" + +namespace siren { namespace dataclasses { class InteractionRecord; } } +namespace siren { namespace dataclasses { struct InteractionSignature; } } +namespace siren { namespace utilities { class SIREN_random; } } + +namespace siren { +namespace interactions { + +pyDarkNewsCrossSection::pyDarkNewsCrossSection(DarkNewsCrossSection && parent) : DarkNewsCrossSection(std::move(parent)) { + self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsCrossSection))))); +} +pyDarkNewsCrossSection::pyDarkNewsCrossSection(DarkNewsCrossSection const & parent) : DarkNewsCrossSection(parent) { + self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsCrossSection))))); +} + +double pyDarkNewsCrossSection::TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE( + self, + CrossSection, + double, + TotalCrossSectionAllFinalStates, + "TotalCrossSectionAllFinalStates", + std::cref(record) + ) +} + +double pyDarkNewsCrossSection::TotalCrossSection(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + TotalCrossSection, + "TotalCrossSection", + std::cref(interaction) + ) +} + +double pyDarkNewsCrossSection::TotalCrossSection(siren::dataclasses::ParticleType primary, double energy, siren::dataclasses::ParticleType target) const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + double, + TotalCrossSection, + "TotalCrossSection", + primary, + energy, + target + ) +} + +double pyDarkNewsCrossSection::DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + DifferentialCrossSection, + "DifferentialCrossSection", + std::cref(interaction) + ) +} + +double pyDarkNewsCrossSection::DifferentialCrossSection(siren::dataclasses::ParticleType primary, siren::dataclasses::ParticleType target, double energy, double Q2) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + DifferentialCrossSection, + "DifferentialCrossSection", + primary, + target, + energy, + Q2 + ) +} + +double pyDarkNewsCrossSection::InteractionThreshold(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + InteractionThreshold, + "InteractionThreshold", + std::cref(interaction) + ) +} + +double pyDarkNewsCrossSection::Q2Min(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + Q2Min, + "Q2Min", + std::cref(interaction) + ) +} + +double pyDarkNewsCrossSection::Q2Max(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + Q2Max, + "Q2Max", + std::cref(interaction) + ) +} + +double pyDarkNewsCrossSection::TargetMass(dataclasses::ParticleType const & target_type) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + TargetMass, + "TargetMass", + std::cref(target_type) + ) +} + +std::vector pyDarkNewsCrossSection::SecondaryMasses(std::vector const & secondary_types) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + std::vector, + SecondaryMasses, + "SecondaryMasses", + std::cref(secondary_types) + ) +} + +std::vector pyDarkNewsCrossSection::SecondaryHelicities(dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + std::vector, + SecondaryHelicities, + "SecondaryHelicities", + std::cref(record) + ) +} + +void pyDarkNewsCrossSection::SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + void, + SampleFinalState, + "SampleFinalState", + std::ref(record), + random + ) +} + +std::vector pyDarkNewsCrossSection::GetPossibleTargets() const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + std::vector, + GetPossibleTargets, + "GetPossibleTargets" + ) +} + +std::vector pyDarkNewsCrossSection::GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + std::vector, + GetPossibleTargetsFromPrimary, + "GetPossibleTargetsFromPrimary", + primary_type + ) +} + +std::vector pyDarkNewsCrossSection::GetPossiblePrimaries() const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + std::vector, + GetPossiblePrimaries, + "GetPossiblePrimaries" + ) +} + +std::vector pyDarkNewsCrossSection::GetPossibleSignatures() const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + std::vector, + GetPossibleSignatures, + "GetPossibleSignatures" + ) +} + +std::vector pyDarkNewsCrossSection::GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const { + SELF_OVERRIDE_PURE( + self, + DarkNewsCrossSection, + std::vector, + GetPossibleSignaturesFromParents, + "GetPossibleSignaturesFromParents", + primary_type, + target_type + ) +} + +double pyDarkNewsCrossSection::FinalStateProbability(dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE( + self, + DarkNewsCrossSection, + double, + FinalStateProbability, + "FinalStateProbability", + std::cref(record) + ) +} + +} // namespace interactions +} // namespace siren + diff --git a/projects/interactions/private/pyDarkNewsDecay.cxx b/projects/interactions/private/pyDarkNewsDecay.cxx new file mode 100644 index 000000000..1d36dcdb1 --- /dev/null +++ b/projects/interactions/private/pyDarkNewsDecay.cxx @@ -0,0 +1,154 @@ +#include // for set +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t +#include // for runtime_error + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/pyDarkNewsDecay.h" +#include "SIREN/interactions/DarkNewsDecay.h" + +#include "SIREN/interactions/Decay.h" // for Decay +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline + +#include "SIREN/dataclasses/InteractionSignature.h" +#include "SIREN/dataclasses/InteractionRecord.h" +#include "SIREN/utilities/Random.h" + +namespace siren { +namespace interactions { + +// Trampoline class for DarkNewsDecay + pyDarkNewsDecay::pyDarkNewsDecay(DarkNewsDecay && parent) : DarkNewsDecay(std::move(parent)) { + self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsDecay))))); + } + pyDarkNewsDecay::pyDarkNewsDecay(DarkNewsDecay const & parent) : DarkNewsDecay(parent) { + self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsDecay))))); + } + //pybind11::object self; + +double pyDarkNewsDecay::TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + double, + TotalDecayWidth, + "TotalDecayWidth", + std::cref(interaction) + ) + } + +double pyDarkNewsDecay::TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + double, + TotalDecayWidthForFinalState, + "TotalDecayWidthForFinalState", + std::cref(interaction) + ) + } + +double pyDarkNewsDecay::TotalDecayWidth(siren::dataclasses::ParticleType primary) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + double, + TotalDecayWidth, + "TotalDecayWidth", + primary + ) + } + +double pyDarkNewsDecay::DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + double, + DifferentialDecayWidth, + "DifferentialDecayWidth", + std::cref(interaction) + ) + } + +void pyDarkNewsDecay::SampleRecordFromDarkNews(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + void, + SampleRecordFromDarkNews, + "SampleRecordFromDarkNews", + std::ref(record), + random + ) + } + +void pyDarkNewsDecay::SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + void, + SampleFinalState, + "SampleFinalState", + std::ref(record), + random + ) + } + + std::vector pyDarkNewsDecay::GetPossibleSignatures() const { + SELF_OVERRIDE_PURE( + self, + DarkNewsDecay, + std::vector, + GetPossibleSignatures, + "GetPossibleSignatures" + ) + } + + std::vector pyDarkNewsDecay::GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const { + SELF_OVERRIDE_PURE( + self, + DarkNewsDecay, + std::vector, + GetPossibleSignaturesFromParent, + "GetPossibleSignaturesFromParent", + primary_type + ) + } + + std::vector pyDarkNewsDecay::DensityVariables() const { + SELF_OVERRIDE_PURE( + self, + DarkNewsDecay, + std::vector, + DensityVariables, + "DensityVariables" + ) + } + +double pyDarkNewsDecay::FinalStateProbability(dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE( + self, + DarkNewsDecay, + double, + FinalStateProbability, + "FinalStateProbability", + std::cref(record) + ) + } + +} // namespace interactions +} // namespace siren + diff --git a/projects/interactions/private/pyDecay.cxx b/projects/interactions/private/pyDecay.cxx new file mode 100644 index 000000000..8148c9d00 --- /dev/null +++ b/projects/interactions/private/pyDecay.cxx @@ -0,0 +1,158 @@ +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t + +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/Decay.h" +#include "SIREN/interactions/pyDecay.h" + +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/dataclasses/InteractionRecord.h" // for InteractionRecord +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline +#include "SIREN/utilities/Random.h" // for SIREN_random + +namespace siren { +namespace interactions { + +bool pyDecay::equal(Decay const & other) const { + SELF_OVERRIDE_PURE( + self, + Decay, + bool, + equal, + "equal", + other + ) +} + +double pyDecay::TotalDecayLength(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + Decay, + double, + TotalDecayLength, + "TotalDecayLength", + interaction + ) +} + +double pyDecay::TotalDecayLengthForFinalState(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE( + self, + Decay, + double, + TotalDecayLengthForFinalState, + "TotalDecayLengthForFinalState", + interaction + ) +} + +double pyDecay::TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + Decay, + double, + TotalDecayWidth, + "TotalDecayWidth", + interaction + ) +} + +double pyDecay::TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + Decay, + double, + TotalDecayWidthForFinalState, + "TotalDecayWidthForFinalState", + interaction + ) +} + +double pyDecay::TotalDecayWidth(siren::dataclasses::ParticleType primary) const { + SELF_OVERRIDE_PURE( + self, + Decay, + double, + TotalDecayWidth, + "TotalDecayWidth", + primary + ) +} + +double pyDecay::DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const { + SELF_OVERRIDE_PURE( + self, + Decay, + double, + DifferentialDecayWidth, + "DifferentialDecayWidth", + interaction + ) +} + +void pyDecay::SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const { + SELF_OVERRIDE_PURE( + self, + Decay, + void, + SampleFinalState, + "SampleFinalState", + record, + random + ) +} + +std::vector pyDecay::GetPossibleSignatures() const { + SELF_OVERRIDE_PURE( + self, + Decay, + std::vector, + GetPossibleSignatures, + "GetPossibleSignatures" + ) +} + +std::vector pyDecay::GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const { + SELF_OVERRIDE_PURE( + self, + Decay, + std::vector, + GetPossibleSignaturesFromParents, + "GetPossibleSignaturesFromParents", + primary_type + ) +} + +std::vector pyDecay::DensityVariables() const { + SELF_OVERRIDE_PURE( + self, + Decay, + std::vector, + DensityVariables, + "DensityVariables" + ) +} + +double pyDecay::FinalStateProbability(dataclasses::InteractionRecord const & record) const { + SELF_OVERRIDE_PURE( + self, + Decay, + double, + FinalStateProbability, + "FinalStateProbability", + record + ) +} + +} // namespace interactions +} // namespace siren + diff --git a/projects/interactions/private/pybindings/CrossSection.h b/projects/interactions/private/pybindings/CrossSection.h index 13be468d0..0e8a1ac77 100644 --- a/projects/interactions/private/pybindings/CrossSection.h +++ b/projects/interactions/private/pybindings/CrossSection.h @@ -7,141 +7,18 @@ #include #include "../../public/SIREN/interactions/CrossSection.h" +#include "../../public/SIREN/interactions/pyCrossSection.h" #include "../../../dataclasses/public/SIREN/dataclasses/Particle.h" #include "../../../dataclasses/public/SIREN/dataclasses/InteractionRecord.h" #include "../../../dataclasses/public/SIREN/dataclasses/InteractionSignature.h" #include "../../../geometry/public/SIREN/geometry/Geometry.h" #include "../../../utilities/public/SIREN/utilities/Random.h" -using namespace pybind11; -using namespace siren::interactions; -class PyCrossSection : public siren::interactions::CrossSection { -public: - using CrossSection::CrossSection; - - bool equal(const CrossSection& other) const override { - PYBIND11_OVERRIDE_PURE_NAME( - bool, - CrossSection, - "_equal", - equal, - other - ); - } - - double TotalCrossSection(siren::dataclasses::InteractionRecord const & record) const override { - PYBIND11_OVERRIDE_PURE( - double, - CrossSection, - TotalCrossSection, - record - ); - } - - double TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const override { - PYBIND11_OVERRIDE_NAME( - double, // Return type (ret_type) - CrossSection, // Parent class (cname) - "TotalCrossSectionAllFinalStates", // Name of method in Python (name) - TotalCrossSectionAllFinalStates, // Name of function in C++ (fn) - record - ); - } - - double DifferentialCrossSection(siren::dataclasses::InteractionRecord const & record) const override { - PYBIND11_OVERRIDE_PURE( - double, - CrossSection, - DifferentialCrossSection, - record - ); - } - - double InteractionThreshold(siren::dataclasses::InteractionRecord const & record) const override { - PYBIND11_OVERRIDE_PURE( - double, - CrossSection, - InteractionRecord, - record - ); - } - - void SampleFinalState(siren::dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr rand) const override { - PYBIND11_OVERRIDE_PURE( - void, - CrossSection, - SampleFinalState, - record, - rand - ); - } - - std::vector GetPossibleTargets() const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - GetPossibleTargets - ); - } - - std::vector GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - GetPossibleTargetsFromPrimary, - primary_type - ); - } - - std::vector GetPossiblePrimaries() const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - GetPossiblePrimaries - ); - } - - std::vector GetPossibleSignatures() const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - GetPossibleSignatures - ); - } - - std::vector GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - GetPossibleSignaturesFromParents, - primary_type, - target_type - ); - } - - double FinalStateProbability(siren::dataclasses::InteractionRecord const & record) const override { - PYBIND11_OVERRIDE_PURE( - double, - CrossSection, - FinalStateProbability, - record - ); - } - - std::vector DensityVariables() const override { - PYBIND11_OVERRIDE_PURE( - std::vector, - CrossSection, - DensityVariables - ); - } -}; - void register_CrossSection(pybind11::module_ & m) { using namespace pybind11; using namespace siren::interactions; - class_, PyCrossSection>(m, "CrossSection") + class_, pyCrossSection>(m, "CrossSection") .def(init<>()) .def("__eq__", [](const CrossSection &self, const CrossSection &other){ return self == other; }) .def("equal", &CrossSection::equal) diff --git a/projects/interactions/private/pybindings/DarkNewsCrossSection.h b/projects/interactions/private/pybindings/DarkNewsCrossSection.h index 0af03d4e1..5824f5bab 100644 --- a/projects/interactions/private/pybindings/DarkNewsCrossSection.h +++ b/projects/interactions/private/pybindings/DarkNewsCrossSection.h @@ -9,401 +9,13 @@ #include "../../public/SIREN/interactions/CrossSection.h" #include "../../public/SIREN/interactions/DarkNewsCrossSection.h" -#include "../../../dataclasses/public/SIREN/dataclasses/Particle.h" -#include "../../../dataclasses/public/SIREN/dataclasses/InteractionRecord.h" -#include "../../../dataclasses/public/SIREN/dataclasses/InteractionSignature.h" -#include "../../../geometry/public/SIREN/geometry/Geometry.h" -#include "../../../utilities/public/SIREN/utilities/Random.h" -#include "../../../utilities/public/SIREN/utilities/Pybind11Trampoline.h" - -namespace siren { -namespace interactions { -// Trampoline class for CrossSection -class pyCrossSection : public CrossSection { -public: - using CrossSection::CrossSection; - pyCrossSection(CrossSection && parent) : CrossSection(std::move(parent)) {} - pybind11::object self; - - double TotalCrossSection(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - double, - TotalCrossSection, - "TotalCrossSection", - interaction - ) - } - - double TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE( - self, - CrossSection, - double, - TotalCrossSectionAllFinalStates, - "TotalCrossSectionAllFinalStates", - record - ) - } - - double DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - double, - DifferentialCrossSection, - "DifferentialCrossSection", - interaction - ) - } - - double InteractionThreshold(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - double, - InteractionThreshold, - "InteractionThreshold", - interaction - ) - } - - void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - void, - SampleFinalState, - "SampleFinalState", - record, - random - ) - } - - std::vector GetPossibleTargets() const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - std::vector, - GetPossibleTargets, - "GetPossibleTargets" - ) - } - - std::vector GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - std::vector, - GetPossibleTargetsFromPrimary, - "GetPossibleTargetsFromPrimary", - primary_type - ) - } - - std::vector GetPossiblePrimaries() const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - std::vector, - GetPossiblePrimaries, - "GetPossiblePrimaries" - ) - } - - std::vector GetPossibleSignatures() const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - std::vector, - GetPossibleSignatures, - "GetPossibleSignatures" - ) - } - - std::vector GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - std::vector, - GetPossibleSignaturesFromParents, - "GetPossibleSignaturesFromParents", - primary_type, - target_type - ) - } - - double FinalStateProbability(dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE_PURE( - self, - CrossSection, - double, - FinalStateProbability, - "FinalStateProbability", - record - ) - } - - pybind11::object get_representation() { - return self; - } -}; -// Trampoline class for DarkNewsCrossSection -class pyDarkNewsCrossSection : public DarkNewsCrossSection { -public: - using DarkNewsCrossSection::DarkNewsCrossSection; - pyDarkNewsCrossSection(DarkNewsCrossSection && parent) : DarkNewsCrossSection(std::move(parent)) { - self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsCrossSection))))); - } - pyDarkNewsCrossSection(DarkNewsCrossSection const & parent) : DarkNewsCrossSection(parent) { - self = pybind11::reinterpret_borrow(pybind11::handle(get_object_handle(&parent, pybind11::detail::get_type_info(typeid(DarkNewsCrossSection))))); - } - pybind11::object self; - - double TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE( - self, - CrossSection, - double, - TotalCrossSectionAllFinalStates, - "TotalCrossSectionAllFinalStates", - std::cref(record) - ) - } - - double TotalCrossSection(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - TotalCrossSection, - "TotalCrossSection", - std::cref(interaction) - ) - } - - double TotalCrossSection(siren::dataclasses::ParticleType primary, double energy, siren::dataclasses::ParticleType target) const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - double, - TotalCrossSection, - "TotalCrossSection", - primary, - energy, - target - ) - } - - double DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - DifferentialCrossSection, - "DifferentialCrossSection", - std::cref(interaction) - ) - } - - double DifferentialCrossSection(siren::dataclasses::ParticleType primary, siren::dataclasses::ParticleType target, double energy, double Q2) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - DifferentialCrossSection, - "DifferentialCrossSection", - primary, - target, - energy, - Q2 - ) - } - - double InteractionThreshold(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - InteractionThreshold, - "InteractionThreshold", - std::cref(interaction) - ) - } - - double Q2Min(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - Q2Min, - "Q2Min", - std::cref(interaction) - ) - } - - double Q2Max(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - Q2Max, - "Q2Max", - std::cref(interaction) - ) - } - - double TargetMass(dataclasses::ParticleType const & target_type) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - TargetMass, - "TargetMass", - std::cref(target_type) - ) - } - - std::vector SecondaryMasses(std::vector const & secondary_types) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - std::vector, - SecondaryMasses, - "SecondaryMasses", - std::cref(secondary_types) - ) - } - - std::vector SecondaryHelicities(dataclasses::InteractionRecord const & record) const override{ - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - std::vector, - SecondaryHelicities, - "SecondaryHelicities", - std::cref(record) - ) - } - - void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - void, - SampleFinalState, - "SampleFinalState", - std::ref(record), - random - ) - } - - std::vector GetPossibleTargets() const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - std::vector, - GetPossibleTargets, - "GetPossibleTargets" - ) - } - - std::vector GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - std::vector, - GetPossibleTargetsFromPrimary, - "GetPossibleTargetsFromPrimary", - primary_type - ) - } - - std::vector GetPossiblePrimaries() const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - std::vector, - GetPossiblePrimaries, - "GetPossiblePrimaries" - ) - } - - std::vector GetPossibleSignatures() const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - std::vector, - GetPossibleSignatures, - "GetPossibleSignatures" - ) - } - - std::vector GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsCrossSection, - std::vector, - GetPossibleSignaturesFromParents, - "GetPossibleSignaturesFromParents", - primary_type, - target_type - ) - } - - double FinalStateProbability(dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE( - self, - DarkNewsCrossSection, - double, - FinalStateProbability, - "FinalStateProbability", - std::cref(record) - ) - } - - pybind11::object get_representation() override { - const DarkNewsCrossSection * ref; - if(self) { - ref = self.cast(); - } else { - ref = this; - } - auto *tinfo = pybind11::detail::get_type_info(typeid(DarkNewsCrossSection)); - pybind11::function override_func = - tinfo ? pybind11::detail::get_type_override(static_cast(ref), tinfo, "get_representation") : pybind11::function(); - if (override_func) { - pybind11::object o = override_func(); - if(not pybind11::isinstance(o)) { - throw std::runtime_error("get_representation must return a dict"); - } - return o; - } - - pybind11::object _self; - if(this->self) { - self = pybind11::reinterpret_borrow(this->self); - } else { - auto *tinfo = pybind11::detail::get_type_info(typeid(DarkNewsCrossSection)); - pybind11::handle self_handle = get_object_handle(static_cast(this), tinfo); - _self = pybind11::reinterpret_borrow(self_handle); - } - pybind11::dict d; - if (pybind11::hasattr(self, "__dict__")) { - d = _self.attr("__dict__"); - } - return d; - } -}; -} // end interactions namespace -} // end LI namespace +#include "../../public/SIREN/interactions/pyDarkNewsCrossSection.h" void register_DarkNewsCrossSection(pybind11::module_ & m) { using namespace pybind11; using namespace siren::interactions; - class_, CrossSection, siren::interactions::pyDarkNewsCrossSection> DarkNewsCrossSection(m, "DarkNewsCrossSection"); + class_, siren::interactions::pyDarkNewsCrossSection, CrossSection> DarkNewsCrossSection(m, "DarkNewsCrossSection"); DarkNewsCrossSection .def(init<>()) @@ -429,20 +41,8 @@ void register_DarkNewsCrossSection(pybind11::module_ & m) { .def("DensityVariables",&DarkNewsCrossSection::DensityVariables) .def("FinalStateProbability",&DarkNewsCrossSection::FinalStateProbability) .def("SampleFinalState",&DarkNewsCrossSection::SampleFinalState) - .def("get_representation", &DarkNewsCrossSection::get_representation) - .def(pybind11::pickle( - [](siren::interactions::DarkNewsCrossSection & cpp_obj) { - return pybind11::make_tuple(cpp_obj.get_representation()); - }, - [](const pybind11::tuple &t) { - if (t.size() != 1) { - throw std::runtime_error("Invalid state!"); - } - auto cpp_state = std::unique_ptr(new siren::interactions::pyDarkNewsCrossSection); - auto py_state = t[0].cast(); - return std::make_pair(std::move(cpp_state), py_state); - }) - ) ; + + RegisterTrampolinePickleMethods(DarkNewsCrossSection, pyDarkNewsCrossSection); } diff --git a/projects/interactions/private/pybindings/DarkNewsDecay.h b/projects/interactions/private/pybindings/DarkNewsDecay.h index c858b39b8..354bbd197 100644 --- a/projects/interactions/private/pybindings/DarkNewsDecay.h +++ b/projects/interactions/private/pybindings/DarkNewsDecay.h @@ -7,338 +7,14 @@ #include #include +#include "../../public/SIREN/interactions/Decay.h" #include "../../public/SIREN/interactions/DarkNewsDecay.h" -#include "../../../dataclasses/public/SIREN/dataclasses/Particle.h" -#include "../../../dataclasses/public/SIREN/dataclasses/InteractionRecord.h" -#include "../../../dataclasses/public/SIREN/dataclasses/InteractionSignature.h" -#include "../../../geometry/public/SIREN/geometry/Geometry.h" -#include "../../../utilities/public/SIREN/utilities/Random.h" -#include "../../../utilities/public/SIREN/utilities/Pybind11Trampoline.h" - -namespace siren { -namespace interactions { -// Trampoline class for Decay -class pyDecay : public Decay { -public: - using Decay::Decay; - pyDecay(Decay && parent) : Decay(std::move(parent)) {} - pybind11::object self; - - double TotalDecayLength(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - Decay, - double, - TotalDecayLength, - "TotalDecayLength", - interaction - ) - } - - double TotalDecayLengthForFinalState(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - Decay, - double, - TotalDecayLengthForFinalState, - "TotalDecayLengthForFinalState", - interaction - ) - } - - double TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - double, - TotalDecayWidth, - "TotalDecayWidth", - interaction - ) - } - - double TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - double, - TotalDecayWidthForFinalState, - "TotalDecayWidthForFinalState", - interaction - ) - } - - double TotalDecayWidth(siren::dataclasses::ParticleType primary) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - double, - TotalDecayWidth, - "TotalDecayWidth", - primary - ) - } - - double DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - double, - DifferentialDecayWidth, - "DifferentialDecayWidth", - interaction - ) - } - - void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - void, - SampleFinalState, - "SampleFinalState", - record, - random - ) - } - - std::vector GetPossibleSignatures() const override { - SELF_OVERRIDE_PURE( - self, - Decay, - std::vector, - GetPossibleSignatures, - "GetPossibleSignatures" - ) - } - - std::vector GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - std::vector, - GetPossibleSignaturesFromParents, - "GetPossibleSignaturesFromParents", - primary_type - ) - } - - std::vector DensityVariables() const override { - SELF_OVERRIDE_PURE( - self, - Decay, - std::vector, - DensityVariables, - "DensityVariables" - ) - } - - double FinalStateProbability(dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE_PURE( - self, - Decay, - double, - FinalStateProbability, - "FinalStateProbability", - record - ) - } - - pybind11::object get_representation() { - return self; - } -}; -// Trampoline class for DarkNewsDecay -class pyDarkNewsDecay : public DarkNewsDecay { -public: - using DarkNewsDecay::DarkNewsDecay; - pyDarkNewsDecay(DarkNewsDecay && parent) : DarkNewsDecay(std::move(parent)) {} - pybind11::object self; - - double TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - double, - TotalDecayWidth, - "TotalDecayWidth", - std::cref(interaction) - ) - } - - double TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - double, - TotalDecayWidthForFinalState, - "TotalDecayWidthForFinalState", - std::cref(interaction) - ) - } - - double TotalDecayWidth(siren::dataclasses::ParticleType primary) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - double, - TotalDecayWidth, - "TotalDecayWidth", - primary - ) - } - - double DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - double, - DifferentialDecayWidth, - "DifferentialDecayWidth", - std::cref(interaction) - ) - } - - void SampleRecordFromDarkNews(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - void, - SampleRecordFromDarkNews, - "SampleRecordFromDarkNews", - std::ref(record), - random - ) - } - - void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - void, - SampleFinalState, - "SampleFinalState", - std::ref(record), - random - ) - } - - std::vector GetPossibleSignatures() const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsDecay, - std::vector, - GetPossibleSignatures, - "GetPossibleSignatures" - ) - } - - std::vector GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsDecay, - std::vector, - GetPossibleSignaturesFromParent, - "GetPossibleSignaturesFromParent", - primary_type - ) - } - - std::vector DensityVariables() const override { - SELF_OVERRIDE_PURE( - self, - DarkNewsDecay, - std::vector, - DensityVariables, - "DensityVariables" - ) - } - - double FinalStateProbability(dataclasses::InteractionRecord const & record) const override { - SELF_OVERRIDE( - self, - DarkNewsDecay, - double, - FinalStateProbability, - "FinalStateProbability", - std::cref(record) - ) - } - - pybind11::object get_representation() override { - const DarkNewsDecay * ref; - if(self) { - ref = self.cast(); - } else { - ref = this; - } - auto *tinfo = pybind11::detail::get_type_info(typeid(DarkNewsDecay)); - pybind11::function override_func = - tinfo ? pybind11::detail::get_type_override(static_cast(ref), tinfo, "get_representation") : pybind11::function(); - if (override_func) { - pybind11::object o = override_func(); - if(not pybind11::isinstance(o)) { - throw std::runtime_error("get_representation must return a dict"); - } - return o; - } - - pybind11::object _self; - if(this->self) { - self = pybind11::reinterpret_borrow(this->self); - } else { - auto *tinfo = pybind11::detail::get_type_info(typeid(DarkNewsDecay)); - pybind11::handle self_handle = get_object_handle(static_cast(this), tinfo); - _self = pybind11::reinterpret_borrow(self_handle); - } - pybind11::dict d; - if (pybind11::hasattr(self, "__dict__")) { - d = _self.attr("__dict__"); - } - return d; - } -}; -} // end interactions namespace -} // end LI namespace +#include "../../public/SIREN/interactions/pyDarkNewsDecay.h" void register_DarkNewsDecay(pybind11::module_ & m) { using namespace pybind11; using namespace siren::interactions; - // Bindings for pyDarkNewsDecay - class_ pyDarkNewsDecay(m, "pyDarkNewsDecay"); - - pyDarkNewsDecay - .def(init<>()) - .def("__eq__", [](const siren::interactions::DarkNewsDecay &self, const siren::interactions::DarkNewsDecay &other){ return self == other; }) - .def("equal", &siren::interactions::DarkNewsDecay::equal) - .def("TotalDecayWidth",overload_cast(&DarkNewsDecay::TotalDecayWidth, const_)) - .def("TotalDecayWidth",overload_cast(&DarkNewsDecay::TotalDecayWidth, const_)) - .def("TotalDecayWidthForFinalState",&DarkNewsDecay::TotalDecayWidthForFinalState) - .def("DifferentialDecayWidth",&DarkNewsDecay::DifferentialDecayWidth) - .def("GetPossibleSignatures",&DarkNewsDecay::GetPossibleSignatures) - .def("GetPossibleSignaturesFromParent",&DarkNewsDecay::GetPossibleSignaturesFromParent) - .def("DensityVariables",&DarkNewsDecay::DensityVariables) - .def("FinalStateProbability",&DarkNewsDecay::FinalStateProbability) - .def("SampleFinalState",&DarkNewsDecay::SampleFinalState) - .def("SampleRecordFromDarkNews",&DarkNewsDecay::SampleRecordFromDarkNews) - .def("get_representation", &pyDarkNewsDecay::get_representation) - .def(pybind11::pickle( - [](siren::interactions::pyDarkNewsDecay & cpp_obj) { - return pybind11::make_tuple(cpp_obj.get_representation()); - }, - [](const pybind11::tuple &t) { - if (t.size() != 1) { - throw std::runtime_error("Invalid state!"); - } - auto cpp_state = std::unique_ptr(new siren::interactions::pyDarkNewsDecay); - auto py_state = t[0].cast(); - return std::make_pair(std::move(cpp_state), py_state); - }) - ) - ; - - class_, Decay, siren::interactions::pyDarkNewsDecay> DarkNewsDecay(m, "DarkNewsDecay"); DarkNewsDecay @@ -355,19 +31,7 @@ void register_DarkNewsDecay(pybind11::module_ & m) { .def("FinalStateProbability",&DarkNewsDecay::FinalStateProbability) .def("SampleFinalState",&DarkNewsDecay::SampleFinalState) .def("SampleRecordFromDarkNews",&DarkNewsDecay::SampleRecordFromDarkNews) - .def("get_representation", &DarkNewsDecay::get_representation) - .def(pybind11::pickle( - [](siren::interactions::DarkNewsDecay & cpp_obj) { - return pybind11::make_tuple(cpp_obj.get_representation()); - }, - [](const pybind11::tuple &t) { - if (t.size() != 1) { - throw std::runtime_error("Invalid state!"); - } - auto cpp_state = std::unique_ptr(new siren::interactions::pyDarkNewsDecay); - auto py_state = t[0].cast(); - return std::make_pair(std::move(cpp_state), py_state); - }) - ) ; + + RegisterTrampolinePickleMethods(DarkNewsDecay, pyDarkNewsDecay) } diff --git a/projects/interactions/private/pybindings/Decay.h b/projects/interactions/private/pybindings/Decay.h index d8c59ed6c..8c0152428 100644 --- a/projects/interactions/private/pybindings/Decay.h +++ b/projects/interactions/private/pybindings/Decay.h @@ -8,6 +8,7 @@ #include "../../public/SIREN/interactions/CrossSection.h" #include "../../public/SIREN/interactions/Decay.h" +#include "../../public/SIREN/interactions/pyDecay.h" #include "../../../dataclasses/public/SIREN/dataclasses/Particle.h" #include "../../../geometry/public/SIREN/geometry/Geometry.h" #include "../../../utilities/public/SIREN/utilities/Random.h" @@ -16,7 +17,7 @@ void register_Decay(pybind11::module_ & m) { using namespace pybind11; using namespace siren::interactions; - class_>(m, "Decay") + class_, pyDecay>(m, "Decay") .def("TotalDecayLength",&Decay::TotalDecayLength) .def("TotalDecayLengthForFinalState",&Decay::TotalDecayLengthForFinalState); diff --git a/projects/interactions/private/pybindings/InteractionCollection.h b/projects/interactions/private/pybindings/InteractionCollection.h index b2ec2cc0f..5d8314acc 100644 --- a/projects/interactions/private/pybindings/InteractionCollection.h +++ b/projects/interactions/private/pybindings/InteractionCollection.h @@ -23,6 +23,7 @@ void register_InteractionCollection(pybind11::module_ & m) { .def(init>>()) .def(init>, std::vector>>()) .def(self == self) + .def("GetCrossSections",&InteractionCollection::GetCrossSections, return_value_policy::reference_internal) .def("GetDecays",&InteractionCollection::GetDecays, return_value_policy::reference_internal) .def("HasCrossSections",&InteractionCollection::HasCrossSections) .def("HasDecays",&InteractionCollection::HasDecays) diff --git a/projects/interactions/public/SIREN/interactions/CrossSection.h b/projects/interactions/public/SIREN/interactions/CrossSection.h index 2e6c64493..57ef742ea 100644 --- a/projects/interactions/public/SIREN/interactions/CrossSection.h +++ b/projects/interactions/public/SIREN/interactions/CrossSection.h @@ -15,6 +15,8 @@ #include #include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/utilities/Random.h" // for SIREN_random namespace siren { namespace dataclasses { class InteractionRecord; } } namespace siren { namespace dataclasses { class CrossSectionDistributionRecord; } } @@ -51,7 +53,7 @@ friend cereal::access; void save(Archive & archive, std::uint32_t const version) const {}; template void load(Archive & archive, std::uint32_t const version) {}; -}; +}; // class CrossSection } // namespace interactions } // namespace siren diff --git a/projects/interactions/public/SIREN/interactions/DISFromSpline.h b/projects/interactions/public/SIREN/interactions/DISFromSpline.h index 8ef0a2531..80ae88c06 100644 --- a/projects/interactions/public/SIREN/interactions/DISFromSpline.h +++ b/projects/interactions/public/SIREN/interactions/DISFromSpline.h @@ -121,6 +121,7 @@ friend cereal::access; archive(::cereal::make_nvp("InteractionType", interaction_type_)); archive(::cereal::make_nvp("TargetMass", target_mass_)); archive(::cereal::make_nvp("MinimumQ2", minimum_Q2_)); + archive(::cereal::make_nvp("Unit", unit)); archive(cereal::virtual_base_class(this)); } else { throw std::runtime_error("DISFromSpline only supports version <= 0!"); @@ -138,6 +139,7 @@ friend cereal::access; archive(::cereal::make_nvp("InteractionType", interaction_type_)); archive(::cereal::make_nvp("TargetMass", target_mass_)); archive(::cereal::make_nvp("MinimumQ2", minimum_Q2_)); + archive(::cereal::make_nvp("Unit", unit)); archive(cereal::virtual_base_class(this)); LoadFromMemory(differential_data, total_data); InitializeSignatures(); diff --git a/projects/interactions/public/SIREN/interactions/DarkNewsCrossSection.h b/projects/interactions/public/SIREN/interactions/DarkNewsCrossSection.h index 135619dec..b6a26b0aa 100644 --- a/projects/interactions/public/SIREN/interactions/DarkNewsCrossSection.h +++ b/projects/interactions/public/SIREN/interactions/DarkNewsCrossSection.h @@ -17,11 +17,9 @@ #include #include #include -#include -#include #include "SIREN/interactions/CrossSection.h" // for CrossSection -#include "SIREN/dataclasses/Particle.h" // for Particlev +#include "SIREN/dataclasses/Particle.h" // for Particle namespace siren { namespace dataclasses { class InteractionRecord; } } namespace siren { namespace dataclasses { struct InteractionSignature; } } @@ -42,14 +40,12 @@ friend cereal::access; DarkNewsCrossSection(); - virtual pybind11::object get_representation(); - virtual bool equal(CrossSection const & other) const override; virtual double TotalCrossSection(dataclasses::InteractionRecord const &) const override; virtual double TotalCrossSection(siren::dataclasses::ParticleType primary, double energy, siren::dataclasses::ParticleType target) const; virtual double DifferentialCrossSection(dataclasses::InteractionRecord const &) const override; - virtual double DifferentialCrossSection(siren::dataclasses::ParticleType primary, siren::dataclasses::ParticleType target, double energy, double Q2) const; + virtual double DifferentialCrossSection(siren::dataclasses::ParticleType primary, siren::dataclasses::ParticleType target, double energy, double Q2) const; virtual double InteractionThreshold(dataclasses::InteractionRecord const &) const override; virtual double Q2Min(dataclasses::InteractionRecord const &) const; virtual double Q2Max(dataclasses::InteractionRecord const &) const; diff --git a/projects/interactions/public/SIREN/interactions/DarkNewsDecay.h b/projects/interactions/public/SIREN/interactions/DarkNewsDecay.h index b78b9e3c0..6294456c7 100644 --- a/projects/interactions/public/SIREN/interactions/DarkNewsDecay.h +++ b/projects/interactions/public/SIREN/interactions/DarkNewsDecay.h @@ -34,23 +34,21 @@ namespace interactions { class DarkNewsDecay : public Decay { friend cereal::access; public: - + DarkNewsDecay(); - virtual pybind11::object get_representation(); - virtual bool equal(Decay const & other) const override; - + virtual double TotalDecayWidth(dataclasses::InteractionRecord const &) const override; virtual double TotalDecayWidth(siren::dataclasses::ParticleType primary) const override; virtual double TotalDecayWidthForFinalState(dataclasses::InteractionRecord const &) const override; virtual double DifferentialDecayWidth(dataclasses::InteractionRecord const &) const override; virtual void SampleRecordFromDarkNews(dataclasses::CrossSectionDistributionRecord &, std::shared_ptr) const; virtual void SampleFinalState(dataclasses::CrossSectionDistributionRecord &, std::shared_ptr) const override; - + virtual std::vector GetPossibleSignatures() const override = 0; // Requires python-side implementation virtual std::vector GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary) const override = 0; // Requires python-side implementation - + virtual double FinalStateProbability(dataclasses::InteractionRecord const & record) const override; public: virtual std::vector DensityVariables() const override = 0; // Requires python-side implementation @@ -71,7 +69,7 @@ friend cereal::access; } } -}; +}; // class DarkNewsDecay } // namespace interactions } // namespace siren diff --git a/projects/interactions/public/SIREN/interactions/Decay.h b/projects/interactions/public/SIREN/interactions/Decay.h index 69d960731..3c3512664 100644 --- a/projects/interactions/public/SIREN/interactions/Decay.h +++ b/projects/interactions/public/SIREN/interactions/Decay.h @@ -15,6 +15,8 @@ #include #include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/utilities/Random.h" // for SIREN_random namespace siren { namespace dataclasses { class InteractionRecord; } } namespace siren { namespace dataclasses { class CrossSectionDistributionRecord; } } @@ -24,7 +26,7 @@ namespace siren { namespace utilities { class SIREN_random; } } namespace siren { namespace interactions { -class Decay{ +class Decay { friend cereal::access; private: public: diff --git a/projects/interactions/public/SIREN/interactions/InteractionCollection.h b/projects/interactions/public/SIREN/interactions/InteractionCollection.h index be1658888..3a8e8f80b 100644 --- a/projects/interactions/public/SIREN/interactions/InteractionCollection.h +++ b/projects/interactions/public/SIREN/interactions/InteractionCollection.h @@ -19,14 +19,15 @@ #include #include #include +#include #include #include #include #include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/interactions/CrossSection.h" +#include "SIREN/interactions/Decay.h" -namespace siren { namespace interactions { class CrossSection; } } -namespace siren { namespace interactions { class Decay; } } namespace siren { namespace dataclasses { class InteractionRecord; } } namespace siren { @@ -69,6 +70,7 @@ class InteractionCollection { void save(Archive & archive, std::uint32_t const version) const { if(version == 0) { archive(cereal::make_nvp("PrimaryType", primary_type)); + archive(cereal::make_nvp("TargetTypes", target_types)); archive(cereal::make_nvp("CrossSections", cross_sections)); archive(cereal::make_nvp("Decays", decays)); } else { @@ -80,8 +82,10 @@ class InteractionCollection { void load(Archive & archive, std::uint32_t const version) { if(version == 0) { archive(cereal::make_nvp("PrimaryType", primary_type)); + archive(cereal::make_nvp("TargetTypes", target_types)); archive(cereal::make_nvp("CrossSections", cross_sections)); archive(cereal::make_nvp("Decays", decays)); + InitializeTargetTypes(); } else { throw std::runtime_error("InteractionCollection only supports version <= 0!"); } diff --git a/projects/interactions/public/SIREN/interactions/pyCrossSection.h b/projects/interactions/public/SIREN/interactions/pyCrossSection.h new file mode 100644 index 000000000..15349485b --- /dev/null +++ b/projects/interactions/public/SIREN/interactions/pyCrossSection.h @@ -0,0 +1,63 @@ +#pragma once +#ifndef SIREN_pyCrossSection_H +#define SIREN_pyCrossSection_H + +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t + +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/CrossSection.h" + +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline +#include "SIREN/utilities/Random.h" // for SIREN_random + +namespace siren { namespace dataclasses { class InteractionRecord; } } +namespace siren { namespace dataclasses { class CrossSectionDistributionRecord; } } +namespace siren { namespace dataclasses { struct InteractionSignature; } } +namespace siren { namespace utilities { class SIREN_random; } } + +namespace siren { +namespace interactions { + +// Trampoline class for CrossSection +class pyCrossSection : public CrossSection { +public: + using CrossSection::CrossSection; + pyCrossSection(CrossSection && parent) : CrossSection(std::move(parent)) {} + + bool equal(CrossSection const & other) const override; + double TotalCrossSection(dataclasses::InteractionRecord const & interaction) const override; + double TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const override; + double DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const override; + double InteractionThreshold(dataclasses::InteractionRecord const & interaction) const override; + void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override; + std::vector GetPossibleTargets() const override; + std::vector GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const override; + std::vector GetPossiblePrimaries() const override; + std::vector GetPossibleSignatures() const override; + std::vector GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const override; + double FinalStateProbability(dataclasses::InteractionRecord const & record) const override; + std::vector DensityVariables() const override; + + Pybind11TrampolineCerealMethods(CrossSection, pyCrossSection); +}; // class pyCrossSection + +} // namespace interactions +} // namespace siren + +CEREAL_CLASS_VERSION(siren::interactions::pyCrossSection, 0); +CEREAL_REGISTER_TYPE(siren::interactions::pyCrossSection); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::interactions::CrossSection, siren::interactions::pyCrossSection); + +#endif // SIREN_pyCrossSection_H + diff --git a/projects/interactions/public/SIREN/interactions/pyDarkNewsCrossSection.h b/projects/interactions/public/SIREN/interactions/pyDarkNewsCrossSection.h new file mode 100644 index 000000000..9b45bc177 --- /dev/null +++ b/projects/interactions/public/SIREN/interactions/pyDarkNewsCrossSection.h @@ -0,0 +1,72 @@ +#pragma once +#ifndef SIREN_pyDarkNewsCrossSection_H +#define SIREN_pyDarkNewsCrossSection_H + +#include +#include +#include // for vector +#include // for uint32_t +#include // for runtime_error + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/DarkNewsCrossSection.h" // for DarkNewsCrossSection + +#include "SIREN/interactions/CrossSection.h" // for CrossSection +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline + +namespace siren { namespace dataclasses { class InteractionRecord; } } +namespace siren { namespace dataclasses { struct InteractionSignature; } } +namespace siren { namespace utilities { class SIREN_random; } } + +namespace siren { +namespace interactions { + +// Trampoline class for DarkNewsCrossSection +class pyDarkNewsCrossSection : public DarkNewsCrossSection { +public: + using DarkNewsCrossSection::DarkNewsCrossSection; + pyDarkNewsCrossSection(DarkNewsCrossSection && parent); + pyDarkNewsCrossSection(DarkNewsCrossSection const & parent); + double TotalCrossSectionAllFinalStates(siren::dataclasses::InteractionRecord const & record) const override; + double TotalCrossSection(dataclasses::InteractionRecord const & interaction) const override; + double TotalCrossSection(siren::dataclasses::ParticleType primary, double energy, siren::dataclasses::ParticleType target) const override; + double DifferentialCrossSection(dataclasses::InteractionRecord const & interaction) const override; + double DifferentialCrossSection(siren::dataclasses::ParticleType primary, siren::dataclasses::ParticleType target, double energy, double Q2) const override; + double InteractionThreshold(dataclasses::InteractionRecord const & interaction) const override; + double Q2Min(dataclasses::InteractionRecord const & interaction) const override; + double Q2Max(dataclasses::InteractionRecord const & interaction) const override; + double TargetMass(dataclasses::ParticleType const & target_type) const override; + std::vector SecondaryMasses(std::vector const & secondary_types) const override; + std::vector SecondaryHelicities(dataclasses::InteractionRecord const & record) const override; + void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override; + std::vector GetPossibleTargets() const override; + std::vector GetPossibleTargetsFromPrimary(siren::dataclasses::ParticleType primary_type) const override; + std::vector GetPossiblePrimaries() const override; + std::vector GetPossibleSignatures() const override; + std::vector GetPossibleSignaturesFromParents(siren::dataclasses::ParticleType primary_type, siren::dataclasses::ParticleType target_type) const override; + double FinalStateProbability(dataclasses::InteractionRecord const & record) const override; + + Pybind11TrampolineCerealMethods(DarkNewsCrossSection, pyDarkNewsCrossSection); +}; + +} // namespace interactions +} // namespace siren + +CEREAL_CLASS_VERSION(siren::interactions::pyDarkNewsCrossSection, 0); +CEREAL_REGISTER_TYPE(siren::interactions::pyDarkNewsCrossSection); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::interactions::DarkNewsCrossSection, siren::interactions::pyDarkNewsCrossSection); + +//CEREAL_FORCE_DYNAMIC_INIT(pyDarkNewsCrossSection); + +#endif // SIREN_pyDarkNewsCrossSection_H + diff --git a/projects/interactions/public/SIREN/interactions/pyDarkNewsDecay.h b/projects/interactions/public/SIREN/interactions/pyDarkNewsDecay.h new file mode 100644 index 000000000..27902808d --- /dev/null +++ b/projects/interactions/public/SIREN/interactions/pyDarkNewsDecay.h @@ -0,0 +1,67 @@ +#pragma once +#ifndef SIREN_pyDarkNewsDecay_H +#define SIREN_pyDarkNewsDecay_H + +#include // for set +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t +#include // for runtime_error + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/DarkNewsDecay.h" + +#include "SIREN/interactions/Decay.h" // for Decay +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline + +namespace siren { namespace dataclasses { class InteractionRecord; } } +namespace siren { namespace dataclasses { class CrossSectionDistributionRecord; } } +namespace siren { namespace dataclasses { struct InteractionSignature; } } +namespace siren { namespace utilities { class SIREN_random; } } + +namespace siren { +namespace interactions { + +// Trampoline class for DarkNewsDecay +class pyDarkNewsDecay : public DarkNewsDecay { +public: + using DarkNewsDecay::DarkNewsDecay; + pyDarkNewsDecay(DarkNewsDecay && parent); + pyDarkNewsDecay(DarkNewsDecay const & parent); + + double TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayWidth(siren::dataclasses::ParticleType primary) const override; + double DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const override; + void SampleRecordFromDarkNews(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override; + void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override; + std::vector GetPossibleSignatures() const override; + std::vector GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const override; + std::vector DensityVariables() const override; + double FinalStateProbability(dataclasses::InteractionRecord const & record) const override; + + Pybind11TrampolineCerealMethods(DarkNewsDecay, pyDarkNewsDecay); + +}; // class pyDarkNewsDecay + +} // namespace interactions +} // namespace siren + +CEREAL_CLASS_VERSION(siren::interactions::pyDarkNewsDecay, 0); +CEREAL_REGISTER_TYPE(siren::interactions::pyDarkNewsDecay); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::interactions::DarkNewsDecay, siren::interactions::pyDarkNewsDecay); + +#endif // SIREN_pyDarkNewsDecay_H + diff --git a/projects/interactions/public/SIREN/interactions/pyDecay.h b/projects/interactions/public/SIREN/interactions/pyDecay.h new file mode 100644 index 000000000..90a5263de --- /dev/null +++ b/projects/interactions/public/SIREN/interactions/pyDecay.h @@ -0,0 +1,62 @@ +#pragma once +#ifndef SIREN_pyDecay_H +#define SIREN_pyDecay_H + +#include // for shared_ptr +#include // for string +#include // for vector +#include // for uint32_t + +#include +#include +#include +#include +#include +#include + +#include "SIREN/interactions/Decay.h" + +#include "SIREN/dataclasses/Particle.h" // for Particle +#include "SIREN/dataclasses/InteractionSignature.h" // for InteractionSignature +#include "SIREN/utilities/Pybind11Trampoline.h" // for Pybind11Trampoline +#include "SIREN/utilities/Random.h" // for SIREN_random + +namespace siren { namespace dataclasses { class InteractionRecord; } } +namespace siren { namespace dataclasses { class CrossSectionDistributionRecord; } } +namespace siren { namespace dataclasses { struct InteractionSignature; } } +namespace siren { namespace utilities { class SIREN_random; } } + +namespace siren { +namespace interactions { + +// Trampoline class for Decay +class pyDecay : public Decay { +public: + using Decay::Decay; + pyDecay(Decay && parent) : Decay(std::move(parent)) {} + + bool equal(Decay const & other) const override; + double TotalDecayLength(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayLengthForFinalState(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayWidth(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayWidthForFinalState(dataclasses::InteractionRecord const & interaction) const override; + double TotalDecayWidth(siren::dataclasses::ParticleType primary) const override; + double DifferentialDecayWidth(dataclasses::InteractionRecord const & interaction) const override; + void SampleFinalState(dataclasses::CrossSectionDistributionRecord & record, std::shared_ptr random) const override; + std::vector GetPossibleSignatures() const override; + std::vector GetPossibleSignaturesFromParent(siren::dataclasses::ParticleType primary_type) const override; + std::vector DensityVariables() const override; + double FinalStateProbability(dataclasses::InteractionRecord const & record) const override; + + Pybind11TrampolineCerealMethods(Decay, pyDecay); +}; // class pyDecay + +} // namespace interactions +} // namespace siren + +CEREAL_CLASS_VERSION(siren::interactions::pyDecay, 0); +CEREAL_REGISTER_TYPE(siren::interactions::pyDecay); +CEREAL_REGISTER_POLYMORPHIC_RELATION(siren::interactions::Decay, siren::interactions::pyDecay); + +#endif // SIREN_Decay_H + diff --git a/projects/utilities/private/Random.cxx b/projects/utilities/private/Random.cxx index dc57b72c1..78a2e0f2f 100644 --- a/projects/utilities/private/Random.cxx +++ b/projects/utilities/private/Random.cxx @@ -8,12 +8,13 @@ namespace utilities { SIREN_random::SIREN_random(void){ // default to boring seed - unsigned int seed = 1; + seed = 1; configuration = std::default_random_engine(seed); generator = std::uniform_real_distribution( 0.0, 1.0); } - SIREN_random::SIREN_random( unsigned int seed ){ + SIREN_random::SIREN_random( unsigned int _seed ){ + seed = _seed; configuration = std::default_random_engine(seed); generator = std::uniform_real_distribution( 0.0, 1.0); } @@ -40,7 +41,8 @@ namespace utilities { // reconfigures the generator with a new seed void SIREN_random::set_seed( unsigned int new_seed) { - this->configuration = std::default_random_engine(new_seed); + seed = new_seed; + this->configuration = std::default_random_engine(seed); } } // namespace utilities diff --git a/projects/utilities/public/SIREN/utilities/Pybind11Trampoline.h b/projects/utilities/public/SIREN/utilities/Pybind11Trampoline.h index 0dab50844..c26edd35d 100644 --- a/projects/utilities/public/SIREN/utilities/Pybind11Trampoline.h +++ b/projects/utilities/public/SIREN/utilities/Pybind11Trampoline.h @@ -1,7 +1,24 @@ +#pragma once #ifndef SIREN_Pybind11Trampoline_H #define SIREN_Pybind11Trampoline_H +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + #include +#include +#include +#include #define SELF_OVERRIDE_PURE(selfname, BaseType, returnType, cfuncname, pyfuncname, ...) \ const BaseType * ref; \ @@ -52,4 +69,119 @@ return BaseType::cfuncname(__VA_ARGS__); \ } while (false); +#define Pybind11TrampolineCerealMethods(BaseType, TrampolineType) \ +public: \ + pybind11::object self; \ + pybind11::object get_representation() { \ + const BaseType * ref; \ + if(self) { \ + ref = self.cast(); \ + } else { \ + ref = dynamic_cast(dynamic_cast(this)); \ + if (!ref) { \ + int status; \ + char * realname; \ + const std::type_info &ti = typeid(BaseType); \ + realname = abi::__cxa_demangle(ti.name(), 0, 0, &status); \ + std::stringstream msg; \ + msg << "Cannot cast this to " << realname; \ + free(realname); \ + throw std::runtime_error(msg.str()); \ + } \ + } \ + auto *tinfo = pybind11::detail::get_type_info(typeid(BaseType)); \ + pybind11::function override_func = \ + tinfo ? pybind11::detail::get_type_override(static_cast(ref), tinfo, "get_representation") : pybind11::function(); \ + if (override_func) { \ + pybind11::object o = override_func(); \ + if(not pybind11::isinstance(o)) { \ + throw std::runtime_error("get_representation must return a dict"); \ + } \ + return o; \ + } \ + pybind11::object _self; \ + if(this->self) { \ + _self = pybind11::reinterpret_borrow(this->self); \ + } else { \ + auto *tinfo = pybind11::detail::get_type_info(typeid(BaseType)); \ + pybind11::handle self_handle = get_object_handle(dynamic_cast(this), tinfo); \ + _self = pybind11::reinterpret_borrow(self_handle); \ + } \ + pybind11::dict d; \ + if (pybind11::hasattr(_self, "__dict__")) { \ + d = _self.attr("__dict__"); \ + } \ + return d; \ + } \ + static pybind11::tuple pickle_save(BaseType & cpp_obj) { \ + pybind11::object x = dynamic_cast(&cpp_obj)->get_representation(); \ + return pybind11::make_tuple(x); \ + } \ + static std::pair, pybind11::dict> pickle_load(const pybind11::tuple &t) { \ + if (t.size() != 1) { \ + throw std::runtime_error("Invalid state!"); \ + } \ + auto cpp_state = std::unique_ptr(new TrampolineType); \ + auto py_state = t[0].cast(); \ + return std::make_pair(std::move(cpp_state), py_state); \ + } \ + \ + template \ + void save(Archive & archive, std::uint32_t const version) const { \ + if(version == 0) { \ + \ + pybind11::object obj; \ + if(this->self) { \ + obj = this->self; \ + } else { \ + auto *tinfo = pybind11::detail::get_type_info(typeid(TrampolineType)); \ + pybind11::handle self_handle = get_object_handle(dynamic_cast(this), tinfo); \ + obj = pybind11::reinterpret_borrow(self_handle); \ + } \ + \ + pybind11::module pkl = pybind11::module::import("pickle"); \ + pybind11::bytes bytes = pkl.attr("dumps")(obj); \ + std::string str_repr = (std::string)(bytes.attr("hex")().cast()); \ + \ + archive(::cereal::make_nvp("PythonPickleBytesRepresentation", str_repr)); \ + \ + archive(cereal::virtual_base_class(dynamic_cast(this))); \ + \ + } else { \ + throw std::runtime_error("BaseType only supports version <= 0!"); \ + } \ + } \ + \ + template \ + void load(Archive & archive, std::uint32_t version) { \ + if(version == 0) { \ + std::string str_repr; \ + archive(::cereal::make_nvp("PythonPickleBytesRepresentation", str_repr)); \ + \ + pybind11::module pkl = pybind11::module::import("pickle"); \ + \ + pybind11::object bytes_module = pybind11::module::import("builtins").attr("bytes"); \ + pybind11::object bytes = bytes_module.attr("fromhex")(str_repr); \ + \ + pkl.attr("loads")(bytes); \ + this->self = pkl.attr("loads")(bytes); \ + \ + archive(cereal::virtual_base_class(dynamic_cast(this))); \ + \ + } else { \ + throw std::runtime_error("BaseType only supports version <= 0!"); \ + } \ + } \ + +#define RegisterTrampolinePickleMethods(object, TrampolineType) object.def(pybind11::pickle(&TrampolineType::pickle_save, &TrampolineType::pickle_load)); +#define TrampolinePickleMethods(TrampolineType) .def(pybind11::pickle(&TrampolineType::pickle_save, &TrampolineType::pickle_load)) + +#define RegisterTrampolineCerealMethods(BaseType, TrampolineType, Pybind11TrampolineType) \ + CEREAL_CLASS_VERSION(TrampolineType,0); \ + CEREAL_REGISTER_TYPE(TrampolineType); \ + CEREAL_REGISTER_POLYMORPHIC_RELATION(BaseType, TrampolineType); \ + CEREAL_CLASS_VERSION(Pybind11TrampolineType, 0); \ + CEREAL_REGISTER_TYPE(Pybind11TrampolineType); \ + CEREAL_REGISTER_POLYMORPHIC_RELATION(Pybind11TrampolineType, TrampolineType); \ + #endif // SIREN_Pybind11Trampoline_H diff --git a/projects/utilities/public/SIREN/utilities/Random.h b/projects/utilities/public/SIREN/utilities/Random.h index 91ed6594d..f6ae1e9db 100644 --- a/projects/utilities/public/SIREN/utilities/Random.h +++ b/projects/utilities/public/SIREN/utilities/Random.h @@ -9,13 +9,23 @@ #include // default_random_engine, uniform_real_distribution +#include +#include +#include +#include +#include +#include +#include +#include +#include + namespace siren { namespace utilities { class SIREN_random{ public: SIREN_random(); - SIREN_random( unsigned int seed ); + SIREN_random( unsigned int _seed ); // this naming convention is used to double Uniform( double from=0.0, double to=1.0); @@ -24,7 +34,27 @@ namespace utilities { // in case this is set up without a seed! void set_seed(unsigned int new_seed); + template + void save(Archive & archive, std::uint32_t const version) const { + if(version == 0) { + archive(::cereal::make_nvp("Seed", seed)); + } else { + throw std::runtime_error("SIREN_random only supports version <= 0!"); + } + }; + + template + void load(Archive & archive, std::uint32_t const version) { + if(version == 0) { + archive(::cereal::make_nvp("Seed", seed)); + set_seed(seed); + } else { + throw std::runtime_error("SIREN_random only supports version <= 0!"); + } + }; + private: + unsigned int seed; std::default_random_engine configuration; std::uniform_real_distribution generator; }; diff --git a/pyproject.toml b/pyproject.toml index 2f9959f35..08542f867 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -77,8 +77,9 @@ dependencies = [ "awkward", "pyarrow", "h5py", - "DarkNews", ] +[project.optional-dependencies] +DarkNews = ["DarkNews>=0.4.2"] [project.urls] Homepage = "https://github.com/Harvard-Neutrino/SIREN" diff --git a/python/LIController.py b/python/SIREN_Controller.py similarity index 64% rename from python/LIController.py rename to python/SIREN_Controller.py index 13c4f556f..7f714b115 100644 --- a/python/LIController.py +++ b/python/SIREN_Controller.py @@ -14,15 +14,33 @@ from . import _util -from .LIDarkNews import PyDarkNewsInteractionCollection - - - -# Parent python class for handling event generation -class LIController: +from . import darknews_version +if darknews_version() is not None: + from .SIREN_DarkNews import PyDarkNewsInteractionCollection + +# Helper functions + +# attempts to merge multiple interaction collections +def MergeInteractionCollections(primary_type,int_col_list): + cross_sections = [] + decays = [] + record = _dataclasses.InteractionRecord() + record.signature.primary_type = primary_type + for int_col in int_col_list: + assert(int_col.MatchesPrimary(record)) + if int_col.HasCrossSections(): + cross_sections += list(int_col.GetCrossSections()) + if int_col.HasDecays(): + decays += list(int_col.GetDecays()) + return _interactions.InteractionCollection(primary_type, cross_sections, decays) + + + +# Parent python class for handling event generation and weighting +class SIREN_Controller: def __init__(self, events_to_inject, experiment, seed=0): """ - LI class constructor. + SIREN controller class constructor. :param int event_to_inject: number of events to generate :param str experiment: experiment name in string :param int seed: Optional random number generator seed @@ -67,28 +85,23 @@ def GetDetectorSectorGeometry(self, sector_name): return sector.geo return None - def SetProcesses( + def SetInjectionProcesses( self, primary_type, primary_injection_distributions, - primary_physical_distributions, secondary_types=[], secondary_injection_distributions=[], - secondary_physical_distributions=[], ): """ - LI process setter. + SIREN injection process setter. :param ParticleType primary_type: The primary particle being generated :param dict primary_injection_distributions: The dict of injection distributions for the primary process - :param dict primary_physical_distributions: The dict of physical distributions for the primary process :param list secondary_types: The secondary particles being generated :param list secondary_injection_distributions: List of dict of injection distributions for each secondary process - :param list secondary_physical_distributions: List of dict of physical distributions for each secondary process """ - # Define the primary injection and physical process + # Define the primary injection process primary type self.primary_injection_process.primary_type = primary_type - self.primary_physical_process.primary_type = primary_type # Default injection distributions if "mass" not in primary_injection_distributions.keys(): @@ -96,44 +109,23 @@ def SetProcesses( _distributions.PrimaryMass(0) ) - # Default injection distributions - if "mass" not in primary_physical_distributions.keys(): - self.primary_physical_process.AddPhysicalDistribution( - _distributions.PrimaryMass(0) - ) - - # Default injection distributions if "helicity" not in primary_injection_distributions.keys(): self.primary_injection_process.AddPrimaryInjectionDistribution( _distributions.PrimaryNeutrinoHelicityDistribution() ) - # Default physical distributions - if "helicity" not in primary_physical_distributions.keys(): - self.primary_physical_process.AddPhysicalDistribution( - _distributions.PrimaryNeutrinoHelicityDistribution() - ) - # Add all injection distributions for _, idist in primary_injection_distributions.items(): self.primary_injection_process.AddPrimaryInjectionDistribution(idist) - # Add all physical distributions - for _, pdist in primary_physical_distributions.items(): - self.primary_physical_process.AddPhysicalDistribution(pdist) # Loop through possible secondary interactions for i_sec, secondary_type in enumerate(secondary_types): secondary_injection_process = _injection.SecondaryInjectionProcess() - secondary_physical_process = _injection.PhysicalProcess() secondary_injection_process.primary_type = secondary_type - secondary_physical_process.primary_type = secondary_type # Add all injection distributions for idist in secondary_injection_distributions[i_sec]: secondary_injection_process.AddSecondaryInjectionDistribution(idist) - # Add all physical distributions - for pdist in secondary_physical_distributions[i_sec]: - secondary_physical_process.AddPhysicalDistribution(pdist) # Add the position distribution if self.fid_vol is not None: @@ -146,11 +138,72 @@ def SetProcesses( ) self.secondary_injection_processes.append(secondary_injection_process) + + def SetPhysicalProcesses( + self, + primary_type, + primary_physical_distributions, + secondary_types=[], + secondary_physical_distributions=[], + ): + """ + SIREN physical process setter. + :param ParticleType primary_type: The primary particle being generated + :param dict primary_physical_distributions: The dict of physical distributions for the primary process + :param list secondary_types: The secondary particles being generated + :param list secondary_physical_distributions: List of dict of physical distributions for each secondary process + """ + + # Define the primary physical process primary type + self.primary_physical_process.primary_type = primary_type + + # Default physical distributions + if "mass" not in primary_physical_distributions.keys(): + self.primary_physical_process.AddPhysicalDistribution( + _distributions.PrimaryMass(0) + ) + + if "helicity" not in primary_physical_distributions.keys(): + self.primary_physical_process.AddPhysicalDistribution( + _distributions.PrimaryNeutrinoHelicityDistribution() + ) + + # Add all physical distributions + for _, pdist in primary_physical_distributions.items(): + self.primary_physical_process.AddPhysicalDistribution(pdist) + + # Loop through possible secondary interactions + for i_sec, secondary_type in enumerate(secondary_types): + secondary_physical_process = _injection.PhysicalProcess() + secondary_physical_process.primary_type = secondary_type + + # Add all physical distributions + for pdist in secondary_physical_distributions[i_sec]: + secondary_physical_process.AddPhysicalDistribution(pdist) + self.secondary_physical_processes.append(secondary_physical_process) - + def SetProcesses( + self, + primary_type, + primary_injection_distributions, + primary_physical_distributions, + secondary_types=[], + secondary_injection_distributions=[], + secondary_physical_distributions=[], + ): + """ + SIREN process setter. + :param ParticleType primary_type: The primary particle being generated + :param dict primary_injection_distributions: The dict of injection distributions for the primary process + :param dict primary_physical_distributions: The dict of physical distributions for the primary process + :param list secondary_types: The secondary particles being generated + :param list secondary_injection_distributions: List of dict of injection distributions for each secondary process + :param list secondary_physical_distributions: List of dict of physical distributions for each secondary process + """ + self.SetInjectionProcesses(primary_type,primary_injection_distributions,secondary_types,secondary_injection_distributions) + self.SetPhysicalProcesses(primary_type,primary_physical_distributions,secondary_types,secondary_physical_distributions) - def InputDarkNewsModel(self, primary_type, table_dir, fill_tables_at_start=False, Emax=None, **kwargs): """ Sets up the relevant processes and cross section/decay objects related to a provided DarkNews model dictionary. @@ -252,7 +305,20 @@ def GetFiducialVolume(self): if fiducial_line is None or detector_line is None: return None return _detector.DetectorModel.ParseFiducialVolume(fiducial_line, detector_line) - return None + return None + + def GetCylinderVolumePositionDistributionFromSector(self, sector_name): + geo = self.GetDetectorSectorGeometry(sector_name) + if geo is None: + print("Sector %s not found. Exiting"%sector_name) + exit(0) + # the position of this cylinder is in geometry coordinates + # must update to detector coordintes + det_position = self.detector_model.GeoPositionToDetPosition(_detector.GeometryPosition(geo.placement.Position)) + det_rotation = geo.placement.Quaternion + det_placement = _geometry.Placement(det_position.get(), det_rotation) + cylinder = _geometry.Cylinder(det_placement,geo.Radius,geo.InnerRadius,geo.Z) + return _distributions.CylinderVolumePositionDistribution(cylinder) def GetDetectorModelTargets(self): """ @@ -281,19 +347,32 @@ def GetDetectorModelTargets(self): return targets, target_strs def SetInteractions( - self, primary_interaction_collection, secondary_interaction_collections=None + self, primary_interaction_collection, secondary_interaction_collections=None, injection=True, physical=True ): """ Set cross sections for the primary and secondary processes + If cross sections already exist for either, attempts to merge the interaction collections :param InteractionCollection primary_interaction_collection: The cross section collection for the primary process :param list secondary_interaction_collections: The list of cross section collections for the primary process + :param bool injection: whether to apply these interaction collections to the injection processes + :param bool physical: whether to apply these interaction collections to the physical processes """ if secondary_interaction_collections is None: secondary_interaction_collections = [] # Set primary cross sections - self.primary_injection_process.interactions = primary_interaction_collection - self.primary_physical_process.interactions = primary_interaction_collection + if injection: + if self.primary_injection_process.interactions is None: + self.primary_injection_process.interactions = primary_interaction_collection + else: + self.primary_injection_process.interactions = MergeInteractionCollections(self.primary_injection_process.primary_type, + [self.primary_injection_process.interactions, primary_interaction_collection]) + if physical: + if self.primary_physical_process.interactions is None: + self.primary_physical_process.interactions = primary_interaction_collection + else: + self.primary_physical_process.interactions = MergeInteractionCollections(self.primary_physical_process.primary_type, + [self.primary_physical_process.interactions, primary_interaction_collection]) # Loop through secondary processes for sec_inj, sec_phys in zip( @@ -304,57 +383,95 @@ def SetInteractions( record.signature.primary_type = sec_inj.primary_type found_collection = False # Loop through possible seconday cross sections - for sec_xs in secondary_interaction_collections: - # Match cross section collection on the primary type - if sec_xs.MatchesPrimary(record): - sec_inj.interactions = sec_xs - sec_phys.interactions = sec_xs + for sec_ints in secondary_interaction_collections: + # Match cross section collection on the primary type + if sec_ints.MatchesPrimary(record): + # Set secondary cross sections + if injection: + if sec_inj.interactions is None: + sec_inj.interactions = sec_ints + else: + sec_inj.interactions = MergeInteractionCollections(sec_inj.primary_type, + [sec_inj.interactions, sec_ints]) + if physical: + if sec_phys.interactions is None: + sec_phys.interactions = sec_ints + else: + sec_phys.interactions = MergeInteractionCollections(sec_phys.primary_type, + [sec_phys.interactions, sec_ints]) found_collection = True - if not found_collection: + if not found_collection and(sec_inj.interactions is None or sec_phys.interactions is None): print( "Couldn't find cross section collection for secondary particle %s; Exiting" % record.primary_type ) exit(0) - def Initialize(self): - # Define stopping condition - # TODO: make this more general - def StoppingCondition(datum, i): - return True - - # Define the injector object - self.injector = _injection.Injector( - self.events_to_inject, - self.detector_model, - self.primary_injection_process, - self.secondary_injection_processes, - self.random, - ) + # set the stopping condition of the injector with a python function + # must accept two arguments, assumes first is datum and the second is the index of the secondary particle + def SetInjectorStoppingCondition(self, stopping_condition): + self.injector.SetStoppingCondition(stopping_condition) + + # Initialize the injector, either from an existing .siren_injector file or from controller injection objects + def InitializeInjector(self,filenames=None): + if type(filenames)==str: + filenames = [filenames] + self.injectors=[] + if filenames is None: + assert(self.primary_injection_process.primary_type is not None) + # Use controller injection objects + self.injectors.append( + _injection.Injector( + self.events_to_inject, + self.detector_model, + self.primary_injection_process, + self.secondary_injection_processes, + self.random, + ) + ) + else: + # Try initilalizing with the provided filenames + assert(len(filenames)>0) # require at least one injector filename + for filename in filenames: + self.injectors.append( + _injection.Injector( + self.events_to_inject, + filename, + self.random, + ) + ) + self.injectors[-1].ResetInjectedEvents() + self.injector = self.injectors[0] # presume that injection happens with only the first provided injector + + # Initialize the weighter, either from an existing .siren_weighter file or from controller injection objects + def InitializeWeighter(self,filename=None): + if filename is None: + assert(self.primary_physical_process.primary_type is not None) + # Use controller physical objects + self.weighter = _injection.Weighter( + self.injectors, + self.detector_model, + self.primary_physical_process, + self.secondary_physical_processes, + ) + else: + # Try initilalizing with the provided filename + self.weighter = _injection.Weighter( + self.injectors, + filename + ) - self.injector.SetStoppingCondition(StoppingCondition) + # Initialize the injector and weighter objects + # Use existing .siren_injector and/or .siren_weighter files if they exist + def Initialize(self, injection_filenames=None, weighter_filename=None): + + # Define the injector object(s) + self.InitializeInjector(filenames=injection_filenames) # Define the weighter object - self.weighter = _injection.LeptonTreeWeighter( - [self.injector], - self.detector_model, - self.primary_physical_process, - self.secondary_physical_processes, - ) - - def GetCylinderVolumePositionDistributionFromSector(self, sector_name): - geo = self.GetDetectorSectorGeometry(sector_name) - if geo is None: - print("Sector %s not found. Exiting"%sector_name) - exit(0) - # the position of this cylinder is in geometry coordinates - # must update to detector coordintes - det_position = self.detector_model.GeoPositionToDetPosition(_detector.GeometryPosition(geo.placement.Position)) - det_rotation = geo.placement.Quaternion - det_placement = _geometry.Placement(det_position.get(), det_rotation) - cylinder = _geometry.Cylinder(det_placement,geo.Radius,geo.InnerRadius,geo.Z) - return _distributions.CylinderVolumePositionDistribution(cylinder) + self.InitializeWeighter(filename=weighter_filename) + # Generate events using the self.injector object def GenerateEvents(self, N=None, fill_tables_at_exit=True): if N is None: N = self.events_to_inject @@ -363,8 +480,8 @@ def GenerateEvents(self, N=None, fill_tables_at_exit=True): prev_time = time.time() while (self.injector.InjectedEvents() < self.events_to_inject) and (count < N): print("Injecting Event %d/%d " % (count, N), end="\r") - tree = self.injector.GenerateEvent() - self.events.append(tree) + event = self.injector.GenerateEvent() + self.events.append(event) t = time.time() self.gen_times.append(t-prev_time) self.global_times.append(t-self.global_start) @@ -374,12 +491,25 @@ def GenerateEvents(self, N=None, fill_tables_at_exit=True): self.DN_processes.SaveCrossSectionTables(fill_tables_at_exit=fill_tables_at_exit) return self.events - def SaveEvents(self, filename, fill_tables_at_exit=True, hdf5=True, parquet=True): - + # Load events from the custom SIREN event format + def LoadEvents(self, filename): + self.events = _dataclasses.LoadInteractionTrees(filename) + self.gen_times = np.zeros_like(self.events) + self.global_times = np.zeros_like(self.events) + + # Save events to hdf5, parquet, and/or custom SIREN filetypes + # if the weighter exists, calculate the event weight too + def SaveEvents(self, filename, fill_tables_at_exit=True, + hdf5=True, parquet=True, siren_events=True # filetypes to save events + ): + + if siren_events: + _dataclasses.SaveInteractionTrees(self.events, filename) # A dictionary containing each dataset we'd like to save datasets = { "event_weight":[], # weight of entire event "event_gen_time":[], # generation time of each event + "event_weight_time":[], # weight calculation time of each event "event_global_time":[], # global time of each event "num_interactions":[], # number of interactions per event "vertex":[], # vertex of each interaction in an event @@ -390,10 +520,13 @@ def SaveEvents(self, filename, fill_tables_at_exit=True, hdf5=True, parquet=True "secondary_types":[], # secondary type of each interaction "primary_momentum":[], # primary momentum of each interaction "secondary_momenta":[], # secondary momentum of each interaction + "parent_idx":[], # index of the parent interaction } for ie, event in enumerate(self.events): print("Saving Event %d/%d " % (ie, len(self.events)), end="\r") - datasets["event_weight"].append(self.weighter.EventWeight(event)) + t0 = time.time() + datasets["event_weight"].append(self.weighter.EventWeight(event) if hasattr(self,"weighter") else 0) + datasets["event_weight_time"].append(time.time()-t0) datasets["event_gen_time"].append(self.gen_times[ie]) datasets["event_global_time"].append(self.global_times[ie]) # add empty lists for each per interaction dataset @@ -404,17 +537,27 @@ def SaveEvents(self, filename, fill_tables_at_exit=True, hdf5=True, parquet=True "num_secondaries", "secondary_types", "primary_momentum", - "secondary_momenta"]: + "secondary_momenta", + "parent_idx"]: datasets[k].append([]) # loop over interactions for id, datum in enumerate(event.tree): - datasets["vertex"][-1].append(np.array(datum.record.interaction_vertex,dtype=float)) # primary particle stuff - datasets["primary_type"][-1].append(str(datum.record.signature.primary_type)) + datasets["primary_type"][-1].append(int(datum.record.signature.primary_type)) datasets["primary_momentum"][-1].append(np.array(datum.record.primary_momentum, dtype=float)) - + + # check parent idx; match on secondary momenta + if datum.depth()==0: + datasets["parent_idx"][-1].append(-1) + else: + for _id in range(len(datasets["secondary_momenta"][-1])): + for secondary_momentum in datasets["secondary_momenta"][-1][_id]: + if (datasets["primary_momentum"][-1][-1] == secondary_momentum).all(): + datasets["parent_idx"][-1].append(_id) + break + if self.fid_vol is not None: pos = _math.Vector3D(datasets["vertex"][-1][-1]) dir = _math.Vector3D(datasets["primary_momentum"][-1][-1][1:]) @@ -424,18 +567,24 @@ def SaveEvents(self, filename, fill_tables_at_exit=True, hdf5=True, parquet=True datasets["in_fiducial"][-1].append(False) # target particle stuff - datasets["target_type"][-1].append(str(datum.record.signature.target_type)) - + datasets["target_type"][-1].append(int(datum.record.signature.target_type)) + # secondary particle stuff datasets["secondary_types"][-1].append([]) datasets["secondary_momenta"][-1].append([]) for isec, (sec_type, sec_momenta) in enumerate(zip(datum.record.signature.secondary_types, datum.record.secondary_momenta)): - datasets["secondary_types"][-1][-1].append(str(sec_type)) + datasets["secondary_types"][-1][-1].append(int(sec_type)) datasets["secondary_momenta"][-1][-1].append(np.array(sec_momenta,dtype=float)) - datasets["num_secondaries"][-1].append(isec) - datasets["num_interactions"].append(id) + datasets["num_secondaries"][-1].append(isec+1) + datasets["num_interactions"].append(id+1) + # save injector and weighter + self.injector.SaveInjector(filename) + # weighter saving not yet supported + #self.weighter.SaveWeighter(filename) + + # save events ak_array = ak.Array(datasets) if hdf5: fout = h5py.File(filename+".hdf5", "w") @@ -446,5 +595,7 @@ def SaveEvents(self, filename, fill_tables_at_exit=True, hdf5=True, parquet=True fout.close() if parquet: ak.to_parquet(ak_array,filename+".parquet") + + # save darknews cross section tables if hasattr(self, "DN_processes"): self.DN_processes.SaveCrossSectionTables(fill_tables_at_exit=fill_tables_at_exit) diff --git a/python/LIDarkNews.py b/python/SIREN_DarkNews.py similarity index 96% rename from python/LIDarkNews.py rename to python/SIREN_DarkNews.py index 736f74c0f..8f3b53752 100644 --- a/python/LIDarkNews.py +++ b/python/SIREN_DarkNews.py @@ -10,8 +10,8 @@ from scipy.interpolate import LinearNDInterpolator,PchipInterpolator # SIREN methods -import siren from siren.interactions import DarkNewsCrossSection, DarkNewsDecay +from siren import dataclasses from siren.dataclasses import Particle from siren import _util @@ -419,7 +419,7 @@ def FillTableAtEnergy(self, E, total=True, diff=True, factor=0.8): ) num_added_points+=1 if diff: - interaction = siren.dataclasses.InteractionRecord() + interaction = dataclasses.InteractionRecord() interaction.signature.primary_type = self.GetPossiblePrimaries()[ 0 ] # only one primary @@ -507,7 +507,7 @@ def GetPossibleTargets(self): def GetPossibleSignatures(self): self._ensure_configured() - signature = siren.dataclasses.InteractionSignature() + signature = dataclasses.InteractionSignature() signature.primary_type = Particle.ParticleType( self.ups_case.nu_projectile.pdgid ) @@ -527,7 +527,7 @@ def GetPossibleSignaturesFromParents(self, primary_type, target_type): ) and ( (self.target_type == target_type) ): - signature = siren.dataclasses.InteractionSignature() + signature = dataclasses.InteractionSignature() signature.primary_type = Particle.ParticleType( self.ups_case.nu_projectile.pdgid ) @@ -544,7 +544,7 @@ def GetPossibleSignaturesFromParents(self, primary_type, target_type): return [] def DifferentialCrossSection(self, arg1, target=None, energy=None, Q2=None): - if type(arg1) == siren.dataclasses.InteractionRecord: + if type(arg1) == dataclasses.InteractionRecord: interaction = arg1 # Calculate Q2 assuming we are in the target rest frame m1sq = interaction.primary_momentum[0] ** 2 - np.sum( @@ -566,7 +566,7 @@ def DifferentialCrossSection(self, arg1, target=None, energy=None, Q2=None): energy = interaction.primary_momentum[0] else: primary = arg1 - interaction = siren.dataclasses.InteractionRecord() + interaction = dataclasses.InteractionRecord() interaction.signature.primary_type = primary interaction.signature.target_type = target interaction.primary_momentum = [energy, 0, 0, 0] @@ -614,7 +614,7 @@ def SecondaryHelicities(self, record): def TotalCrossSection(self, arg1, energy=None, target=None): # Handle overloaded arguments - if type(arg1) == siren.dataclasses.InteractionRecord: + if type(arg1) == dataclasses.InteractionRecord: primary = arg1.signature.primary_type energy = arg1.primary_momentum[0] target = arg1.signature.target_type @@ -625,7 +625,7 @@ def TotalCrossSection(self, arg1, energy=None, target=None): exit(0) if int(primary) != self.ups_case.nu_projectile: return 0 - interaction = siren.dataclasses.InteractionRecord() + interaction = dataclasses.InteractionRecord() interaction.signature.primary_type = primary interaction.signature.target_type = target interaction.primary_momentum[0] = energy @@ -732,7 +732,7 @@ def SetIntegratorAndNorm(self): self.decay_norm = json.load(nfile) def GetPossibleSignatures(self): - signature = siren.dataclasses.InteractionSignature() + signature = dataclasses.InteractionSignature() signature.primary_type = Particle.ParticleType(self.dec_case.nu_parent.pdgid) signature.target_type = Particle.ParticleType.Decay secondary_types = [] @@ -744,7 +744,7 @@ def GetPossibleSignatures(self): def GetPossibleSignaturesFromParent(self, primary_type): if Particle.ParticleType(self.dec_case.nu_parent.pdgid) == primary_type: - signature = siren.dataclasses.InteractionSignature() + signature = dataclasses.InteractionSignature() signature.primary_type = Particle.ParticleType( self.dec_case.nu_parent.pdgid ) @@ -766,7 +766,7 @@ def DifferentialDecayWidth(self, record): if type(self.dec_case) == FermionSinglePhotonDecay: gamma_idx = 0 for secondary in record.signature.secondary_types: - if secondary == siren.dataclasses.Particle.ParticleType.Gamma: + if secondary == dataclasses.Particle.ParticleType.Gamma: break gamma_idx += 1 if gamma_idx >= len(record.signature.secondary_types): @@ -782,15 +782,15 @@ def DifferentialDecayWidth(self, record): nu_idx = -1 for idx, secondary in enumerate(record.signature.secondary_types): if secondary in [ - siren.dataclasses.Particle.ParticleType.EMinus, - siren.dataclasses.Particle.ParticleType.MuMinus, - siren.dataclasses.Particle.ParticleType.TauMinus, + dataclasses.Particle.ParticleType.EMinus, + dataclasses.Particle.ParticleType.MuMinus, + dataclasses.Particle.ParticleType.TauMinus, ]: lepminus_idx = idx elif secondary in [ - siren.dataclasses.Particle.ParticleType.EPlus, - siren.dataclasses.Particle.ParticleType.MuPlus, - siren.dataclasses.Particle.ParticleType.TauPlus, + dataclasses.Particle.ParticleType.EPlus, + dataclasses.Particle.ParticleType.MuPlus, + dataclasses.Particle.ParticleType.TauPlus, ]: lepplus_idx = idx else: @@ -813,9 +813,9 @@ def DifferentialDecayWidth(self, record): return self.dec_case.differential_width(momenta) def TotalDecayWidth(self, arg1): - if type(arg1) == siren.dataclasses.InteractionRecord: + if type(arg1) == dataclasses.InteractionRecord: primary = arg1.signature.primary_type - elif type(arg1) == siren.dataclasses.Particle.ParticleType: + elif type(arg1) == dataclasses.Particle.ParticleType: primary = arg1 else: print("Incorrect function call to TotalDecayWidth!") @@ -930,7 +930,7 @@ def SampleRecordFromDarkNews(self, record, random): if type(self.dec_case) == FermionSinglePhotonDecay: gamma_idx = 0 for secondary in record.signature.secondary_types: - if secondary == siren.dataclasses.Particle.ParticleType.Gamma: + if secondary == dataclasses.Particle.ParticleType.Gamma: break gamma_idx += 1 if gamma_idx >= len(record.signature.secondary_types): @@ -948,15 +948,15 @@ def SampleRecordFromDarkNews(self, record, random): nu_idx = -1 for idx, secondary in enumerate(record.signature.secondary_types): if secondary in [ - siren.dataclasses.Particle.ParticleType.EMinus, - siren.dataclasses.Particle.ParticleType.MuMinus, - siren.dataclasses.Particle.ParticleType.TauMinus, + dataclasses.Particle.ParticleType.EMinus, + dataclasses.Particle.ParticleType.MuMinus, + dataclasses.Particle.ParticleType.TauMinus, ]: lepminus_idx = idx elif secondary in [ - siren.dataclasses.Particle.ParticleType.EPlus, - siren.dataclasses.Particle.ParticleType.MuPlus, - siren.dataclasses.Particle.ParticleType.TauPlus, + dataclasses.Particle.ParticleType.EPlus, + dataclasses.Particle.ParticleType.MuPlus, + dataclasses.Particle.ParticleType.TauPlus, ]: lepplus_idx = idx else: diff --git a/resources/Detectors/densities/HyperK/HyperK-v1.dat b/resources/Detectors/densities/HyperK/HyperK-v1.dat new file mode 100644 index 000000000..dfec97159 --- /dev/null +++ b/resources/Detectors/densities/HyperK/HyperK-v1.dat @@ -0,0 +1,26 @@ +# Detector model file +# Detector: HyperK +# Version: v1 +# Material model file: HyperK-v1.dat +# Date: 2024-05-03 +# Authors: Nick Kamp +# Notes: +# Uses PREM model of the Earth +# Assumes HyperK is a cylinder of water + +object sphere 0 0 0 0 0 0 6478000 atmo_radius AIR radial_polynomial 0 0 0 1 0.000811 # 0.673atm x 1.205e-3(g/cm3 for 1atm) +object sphere 0 0 0 0 0 0 6371324 rockair_boundary ROCK radial_polynomial 0 0 0 1 2.650 # surface of bed rock, 1.0 x 2.65 +object sphere 0 0 0 0 0 0 6356000 inner_crust ROCK radial_polynomial 0 0 0 1 2.900 +object sphere 0 0 0 0 0 0 6346600 moho_boundary MANTLE radial_polynomial 0 0 0 2 2.691 1.08679956050855438e-07 # surface of mantle +object sphere 0 0 0 0 0 0 6151000 upper_transition MANTLE radial_polynomial 0 0 0 2 7.1089 -5.97159001726573544e-07 +object sphere 0 0 0 0 0 0 5971000 middle_transition MANTLE radial_polynomial 0 0 0 2 11.2494 -1.26036728927954783e-06 +object sphere 0 0 0 0 0 0 5771000 lower_transition MANTLE radial_polynomial 0 0 0 2 5.3197 -2.32867681682624407e-07 +object sphere 0 0 0 0 0 0 5701000 lowermantle_boundary MANTLE radial_polynomial 0 0 0 4 7.9565 -1.01649662533354259e-06 1.36199775701391389e-13 -1.19131495406828110e-20 +object sphere 0 0 0 0 0 0 3480000 coremantle_boundary OUTERCORE radial_polynomial 0 0 0 4 12.5815 -1.98367603202009108e-07 -8.97421093229181259e-14 -2.13773109929070169e-20 +object sphere 0 0 0 0 0 0 1221500 innercore_boundary INNERCORE radial_polynomial 0 0 0 3 13.0885 0 -2.17742748697875934e-13 + +# HyperK detector (from 1805.04163) +object cylinder 0 0 6370674 0 0 0 37 0 60 hyperk WATER constant 0.94 + +# Center of detector at HyperK +detector 0 0 6370674 \ No newline at end of file diff --git a/resources/Detectors/densities/IceCube/IceCube-v1.dat b/resources/Detectors/densities/IceCube/IceCube-v1.dat index 401b76d95..6f8fa1f69 100644 --- a/resources/Detectors/densities/IceCube/IceCube-v1.dat +++ b/resources/Detectors/densities/IceCube/IceCube-v1.dat @@ -27,3 +27,6 @@ object cylinder 0 0 6372184 0 0 0 564.19 0 1000 icecube ICE r # center of detector at IceCube detector 0 0 6372184 + +# Fiducial volume +fiducial cylinder 0 0 0 0 0 0 564.19 0 1000 \ No newline at end of file diff --git a/resources/Detectors/materials/HyperK/HyperK-v1.dat b/resources/Detectors/materials/HyperK/HyperK-v1.dat new file mode 100644 index 000000000..205ecfdfe --- /dev/null +++ b/resources/Detectors/materials/HyperK/HyperK-v1.dat @@ -0,0 +1,29 @@ +# Material model file +# Detector: HyperK +# Version: v1 +# Date: 2024-05-03 +# Authors: Nick Kamp +# Notes: +# + +WATER 2 # H20 +1000080160 0.8881016 # 0, 88.8% in weight +1000010010 0.1118984 # 2H, 11% in weight + +ROCK 2 # SiO2 +1000140280 0.4674349 # Si, 33% +1000080160 0.5325651 # 20, 66% + +INNERCORE 1 # Fe +1000260560 1.0000000 # Fe56 100% + +OUTERCORE 1 # Fe +1000260560 1.0000000 # Fe56 100% + +MANTLE 2 # SiO2 +1000140280 0.4674349 # Si, 33% +1000080160 0.5325651 # 20, 66% + +AIR 2 # N2 + O2 +1000070140 0.7562326 # N2 78% in volume +1000080160 0.2437674 # O2 22% in volume diff --git a/resources/Examples/AdditionalPaperPlots/PaperPlots.ipynb b/resources/Examples/AdditionalPaperPlots/PaperPlots.ipynb new file mode 100644 index 000000000..e58810105 --- /dev/null +++ b/resources/Examples/AdditionalPaperPlots/PaperPlots.ipynb @@ -0,0 +1,449 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "07c768a9-b979-459b-b18a-e040dfd2dad5", + "metadata": {}, + "outputs": [], + "source": [ + "import awkward as awk\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.pyplot import cm\n", + "from matplotlib.colors import LogNorm\n", + "plt.style.use(\"../figures.mplstyle\")\n", + "import numpy as np\n", + "import os\n", + "try: os.mkdir(\"figures\")\n", + "except FileExistsError: pass\n", + "\n", + "import nuflux\n", + "\n", + "import siren\n", + "from siren.SIREN_Controller import SIREN_Controller" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5c21ad8d-9001-4f51-8ec3-32341e50f494", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAImCAYAAADuehRqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRk0lEQVR4nOzdB3hT5fcH8G/SdO89gJZO9h4iqCi40J8D90JBFJUhQ5YKKogyZAuIinsvRHEylL33hu6990yz/s97Y/lDb1JKm6br+3mePsW+N7mXBNOTk/OeozAYDAYQEREREVGToWzsCyAiIiIiossxSCciIiIiamIYpBMRERERNTEM0omIiIiImhgG6URERERETQyDdCIiIiKiJoZBOhERERFRE8MgnYiIiIioiWGQTkRERETUxDBIb0Dr16/HddddBx8fH9jb2yMsLAxTpkxBfn5+nY4jIiIiotZBYTAYDI19ES3VunXrkJCQgH79+sHd3R0nT57EnDlz0KNHD2zduvWqjyMiIiKi1oFBupV9+OGHGDNmDBITExEcHFzv44iIiIio5WG5i5V5eXlJ3zUajUWOIyIiIqKWp1kH6efPn8e7776LkSNHolu3blCpVFAoFJg3b16tbv/DDz/gxhtvhKenJ5ydnaXykkWLFlk8MNbpdKioqMChQ4ekMpY77rgD4eHhdT6OiIiIiFo2FZqx9957DytWrKjTbSdNmiTdVgT2Q4YMgYuLC/755x/MmDEDGzduxKZNm+Do6GiR6/T29kZhYaH051tvvRXff/99vY4jIiIiopatWWfSu3btiqlTp+Krr77C2bNnMWLEiFrdbsOGDVKALgLz/fv34++//8ZPP/2E6OhoKSO/a9cuzJ49+7LbfPrpp1KW/kpfP/74o+x827Ztw+7du7F27VqcOXMGd911l5Q1r+txRERERNSytaiNo6Ls5bPPPsObb76JWbNmmT2uf//+OHjwoFQW8+qrr162JgL066+/XmqFmJmZKXVbEUSGOz09/YrX0KZNG7i6uppdF28KBgwYIJXaPPDAA/U+7lJ6vR5paWnS+cUbBiIiIiJqWkToXVxcjKCgICiVypZZ7lIXqampUoAuPPbYY7J10a+8Xbt2SE5Oxh9//IFHH31U+rkI1qsC9vro3bu3FEDHxMRY5LhLiQBdXDsRERERNW0i1mzbtq3Z9VYXpB89evRi95TQ0FCTx/Tt21d64MSxVUG6pYhyFvEOSgwsqu9xarVa+qpS9aGIuHY3NzcLXjURERERWUJRUZGUVK2p8qJVBunx8fHS95p6j1dlo6uOravbbrsNQ4cORZcuXaTyGRH0v/POO+jevTvuvffeqz6uuvnz50tdYKoTATqDdCIiIqKm60qlya0uSBc1QIJouWiO2FBa9U6nPkTt+5dffnkx2G/fvj3Gjh2LKVOmwM7O7qqPq+7ll1+Wjqn+zoyIiIiImrdWF6Rbk9jAKr4sdVx1IusuvoiIiIioZWnWLRjroqr+p7S01OwxJSUl0neWjBARERFRY2h1QbooJanaXGlO1VrVsURERERE1tTqgvRevXpJ33Nzc81uDD106NDFNohERERERNbW6oJ00Y+yX79+0p+//vpr2boYZiQy6aLW+4477kBzsHr1anTu3Pni34uIiIiImrdWF6QLr7zyivR9wYIFOHLkyMWfi+y66KoijB8/3iLDi6xh3LhxOHPmzMUhTURERETUvCkMVRNwmiERYFcF1UJsbCxycnKkbHmbNm0u/vznn39GYGDgZbedOHEiVq5cCVtbW6lHuWjJuHXrVhQUFGDQoEHYvHkzHB0d0ZyIFozijUVhYSE3vRIRERE143hN1dz/kvv375f9PCUlRfqqculUziorVqyQgnFRKrJnzx5oNBqEh4dj5syZmDx5co39yYmIiIiIGlKzzqTT5ZhJJyIiImoZ8VqrrElvabhxlIiIiKhlYSa9BWEmnYiIiKhpYyadiIiIiKiZYrkLEREREVETwyCdiIiIiFo1vbYMTa2XCoN0Igs4fPgwRo8ejcjISKnnvuixL1p6jhgxQuq5b6nbEBERkWUYDHqUZ+1Hxr5piFvfD+r802hKuHG0BeHGUevT6/WYOnUqli1bBpVKhSFDhqBr167SkKy4uDhs2bIF+fn5mDt3LmbPnl3n2xAREZFlaEpSUBS/HsXxP0FTkiT9zKBVwqPzCPj1fQMNrVUMM6L/b8EovnQ6HR8SK5s1a5YUbPfs2RM//vijlAm/VHl5OVatWoXc3Nx63YaIiIjqV85SkvQniuJ/Qnnm3os/16Z7Qr2nI9SHI2CYvhU+vV6G0sYeTQEz6S0IM+m1d+TIEfTp0wfDhw/H+vXrL/5cZLCDg4PRv39/bN26tcb7iImJQceOHeHh4YHTp0/D39/f7LFi6q29vX2dbkNERERXT9SYV2QfRFHcjyhO+gMGbanx55U2UB8Lg3pvR2jjAy4e7zDkBDqsnAJHv/5oSMyk01XXZenU+c3mUbOx94RCUfctFW3atJG+p6SkXPZzT09P3H///fj888+Rk5MDHx8fs/fx6aefSp9ePPfcczUG20JVsF2X2xAREVHtaUrTUBy/HkVxopwlQZ41PxQJQ7n8d6z2WH/Yu/dGU8FyF5KIAD1+fd9m82iE3ncIKgfvOt/ez89PqgGvHqQLoj5cvPs+ceKEVC9uzu7du6XvNR1jidsQERFRzfTaCpSmbEJR3A8oyxC/aw0Xs+aVx8JQsacTtAk1J8e0+RUoPpgC9+vaoylgkE6tkkKhQGBgoBSka7VaaQNndWVlZTXeR0ZGhvS9bdu2tT5vXW5DREREciKhps47YSxnSfgVek3RxTVthsf/Z83LHFATWz9n+D7WA36P94RDiAeaCgbp1GqJQDkpKQlpaWlSHXqVf//9V/rerVu3Rrw6IiIiMkVbkYPi+A1S1ryy8MLFn4sOLZXHQ41Z89jAmh88BeB+Yxj8n+wFj1sjoLS1aXIPNoN0arUurUuvCtIPHjyIv/76CzfddBNCQkJqvH1AQADOnTuH1NRUdOjQoVbnrMttiIiIWjuDXovStG1SYF6a+o+IyC+u6XJcpcBcvT8KhlLHK2bN/R7vAd/HmlbW3BQG6S2AJVowio2Yos67uRDXW1/VN4+WlJRg5MiRUunL0qVLr3j7QYMGYdu2bVIXmNrWmNflNkRERK1VZWEsiuK+R1H8z9BVZF/8uUGnQOXpEKh3d4Lm/JVLSN1vDDVmzW+LbJJZc1PYgrEFYQvGq7N48WJMmzZN+j5lyhSpq8uGDRukDixPPvnkFW9f1U5RdIQ5c+YMfH19a92C8WpuQ0RE1JroNSUoTvodRbHfoyLnyGVrugInqXVixb6OMBQ613g/Kh8n+D3aA35P9IRDaP2Te5bCFoxEV1C1eTM5ORnPPPMMfv75Z6xcubJWAboQERGB6dOnY/78+Rg2bBh++OEHhIaGXnZMRUUF1qxZg+zsbOm4utyGiIiotfQ0L4z7ASWJv8OgK///NT2giW4jZc0rT4UA+ppbMLtdFwL/p3rBc1gHKO2aR9bcFJa7UKtVVe6ydu1aKWu9fPlyTJgw4aruY968eVJQLSaIihpzUcIiWjiK9o7x8fHYsmWLNDlUHFef2xAREbVE2vJsaQqoyJpriuMvW9OX2UF9IAoVuztDn+1e4/3YeDjA9+Hu8H+yJxwjzc84aU5Y7tKCsNzl6sTFxSE8PFyqQf/ggw8watSoOj/2hw4dwnvvvYcdO3ZIm0L1er3U4nHgwIHS/d58880WuQ0REVHL2AT6rxSYi+8wXL6nTpvsg4qdnaE+Gg5oas4nu/RpI2XNve/pBKWjLVpSvMYgvQVhkE5ERERNVWVRvNSdRfQ1v3QTqGDQ2EB9NAzqXZ2hTfKr8X6UTrbwub8L/Ef2gXO3mgcUNUWsSSciIiKiRqXXlqMk+U8UxX6H8qwDsnVdrisqdov2iR1gKK156JBjRx/4P9UbPg92hcqt5mNbAtakExEREZFFVeSdkgLz4oRfoNcUX7YmbQQ91xYVu7pAc7YdYFCYvR+FSgmvuzrCf2RvuA5oJ00Mby0YpBMRERFRvekqi6SgXATn6vzTsvWLG0F3dYY+p+aNoHZt3KS+5r6P9YCdv0urfHYYpLcAlhhmRERERHS1LrZOjPkWJcl/wKBTy47RpnkZN4IejgAqa97c6T44FP6jesPz1kgpi96aceNoC8KNo0RERGQN2oocFMevR2Hsd9AUxcnWpYmgJ9ujYmcXaGMDa7wvGzd7+D7SXSppcYzwRktXVMvuLsykExEREdEVGQx6lGXsQpHImqduEaNBZcfoSxxQsacj1Hs6QV9Qc5mKU2c/+D/dR+rUYuNsx2egGgbpRERERGSWtixDap1YGPs9tKUppo8Rvc13dIH6SDigq2HKp40CXv/riIDRfeB6TevaCHq1GKQTERER0WUMeh1K07dJWfPStH+MLVlMlbScCJWCc218QI2PoK2vM/ye7CVtBrULdOWjXQsM0omIiIhIoilNRVGsGDj0PbRl6SYfFamkZW9HqHd3hr7A+YoTQUXW3OvuTlDa1ZBhJxkG6UREREStmEGvlbLlokNLWfp2k1lzQZvqhYrtXaE+EglozXdeUdjZwPvezgh4pi9ceta8aZTMY5BORERE1AppSlNQFPu9VGuuK880eYxBL7q0hKBiZ3doY/xrvD/bABcEjOoDvyd6SuUtVD8M0omIiIhaY9Y8bZv4icnjpMFD+ztAvbsndDkONd6na/+28H+mL7zu7AClLUtaLIVBOhEREVELpylNkyaBisy5tjzD7HG6bDdU7OwF9YFIGCoUVy5pebYvXHqwpKUhMEgnIiIiaqEdWkSNeWHM1yhN+9dsrbnBAGijg6DeOxDqY57mkusSWz9naeiQ6NRi51dzH3Sqn9Y9b7WFWL16NTp37ox+/fo19qW0KgkJCVJ/V/F12223mTxm37590vrIkSNNrh8+fBijR49GZGQknJ2d4ejoiPDwcIwYMQKbN29u4L8BERG1RNryLOSdehcJv96AtO2jUZq61XQLRa0SlYe6o2TlaBStuRPqo+YDdOeegQhffTd6HRmPtlOvZ4BuBcyktwDjxo2TvqrGzJL1bdq0Cf/88w+GDBlSq+P1ej2mTp2KZcuWQaVSSbe7++67YWtri7i4OPz+++/48ssvMXfuXMyePbvBr5+IiFrCNNDdxqx5ymbRxNzssaKFovboTSj7NwS6PPPHQSkGD3VA4LP94NK/LQcPWRmDdKJ6at++PZKSkjBjxgwcOHCgVi9is2bNkgL0nj174scff5Sy55cqLy/HqlWrkJuby+eHiIjM0lXkGaeBxnwDTUlijY+UPicI2oO3oWSbHQxqkVk3HaDbuNlLHVoCRveFfTsm/xoLg3RqlY4cOYI+ffpg+PDhWL9+/cWf5+fnIzg4GP3798fWrVtrdV8dOnTA4MGD8dlnn+H777/Hww8/XOPxMTExWLRoEby9vfHXX3/B31/e0kqUvUybNg1qtboOfzsiImrJDAYDKrIPoTDmK5Qk/QmDvrKGYwFFxiBU7OiD0r3l//3UdG26Q6gnAsb0g+/D3WHjYtdAV0+1xSCdJHqDAfmV5v8nb2o87eygrEXG2pw2bdpI31NSUi6/X09P3H///fj888+Rk5MDHx+fWt2fKEv59ttvpQz5fffdJ5WtmPPpp59Cp9PhueeeMxmgX8re3r5W5yciopZPpylGcfwGFEZ/hcrC8zUfbHCGInE4Sv/0R8X5IvEZrdlD3a4LQeBz/eFxSwQUyrr/biXLYpBOEhGg9930a7N5NA7deje86xHA+vn5SYF09SBd6Nq1q5SlOHHiRK1rzEX2fcKECVi8eDHef/99jB8/3uyxu3fvlr7X9r6JiKh1U+efQUH0VyhO2ACDtqzGY1WqLtCfvB0FG7TQZIpjRYAup7BVwvu+Lggc0x/O3WpOGFHjYJBOrZKoGw8MDJSCdK1WK23erK6srOYXwupeeeUVrFu3Dm+++abUzcXFxXRrqowMY3/atm3b1vHqiYiopdPr1ChJ+kPKmlfkHK7xWIXSDvb2d0K9szey16dDX2Y6MBdUno7wH9Ub/qP6wM6fLRSbMgbp1GqJIFls+ExLS5My4VX+/fdf6Xu3bt2u6v5EqczMmTOlL5FRf+ONNyx+zURE1LJpSpKlDi1i6JBOnVfjsbYuIbDXPYiijT5I/SMO0CeZPdYhzAsBz/1Xb+5kviSTmg4G6dRqXVqXXhWkHzx4UNrMedNNNyEkJOSq7/PFF1+UurIsWbIEY8eONXlMQEAAzp07h9TUVGnTKRERtW7GoUM7UBD9JcrE0KGapgkpbOAUOBTKzGHI+7gYGXuSARSaPdz12nYIfOEaeN4ayXrzZoZBOl3ciCnqvJvT9dZX9c2jJSUlUpmKKH1ZunRpne5TdGWZM2eONKBIfBdDiaobNGgQtm3bJnWPYV06EVHrpVPnSxlzUW+uLRXBtnk2jn5wbfcwtKf6Imv2OZSfP1PDwQp4391JCs5degZa/sLJKhikk0R0SqnPRszmqCpIT05OljaKPvnkkzh79qzUfUX0L6+rp556SgryP/zwQ1x77bWydfFGYMGCBfjggw8wadIk+Pr6mr0v0YKRHV6IiFqWitzjKLjwBUoSN9bYPlFw9B8Il8BHUbrVE0mvH4YmY5fZY5XOdvB7ogcCnu0Hh2CPBrhysiYG6dRqVW3cFEH6M888g59//hkrV66UgvX6sLGxwdtvv4177rnHZF16REQEpk+fjvnz52PYsGH44YcfEBoaetkxFRUVWLNmDbKzs6XjiIioBWwETfwNBRc+hzrvRI3HKm1d4RZ6Pxzd7kfut1mI/uwodMXm52bY+rtIgbn/U72gcndogKunxsAgnVqtqkz62rVrpYz18uXLpTaKlnD33Xfjuuuuw65dpjMe8+bNkwJxMXVU1KWLshfR+lG0hYyPj8eWLVukaaPiOCIiar40pSlSh5bC2O+gV+fXeKydRyd4RI2ASnM9Mj44jrgffoeh0vRUUMGxgw8Cx14Dn/u6QGnPkK6l4TNKaO1Buhgs9PHHH2PUqFEWvf+FCxdK9eemKJVKqSTmsccew3vvvYcdO3ZIX3q9XmoNedttt0nXc/PNN1v0moiIqOGJEsryzN1S1rw0davYGVpj+0SX4GFwj3wS2kQ/pM3bh/w/P69x76jrwGAEjRsAj6Hh3AzagikM4l8SNWurV6+WvkSweeHCBRQWFsLNza2xL4uIiKj1TQSNW4+C6C+gKYqt8ViVUxDcIx+Da9hDKN1bjLR396Bot/kWilAAXnd2QOC4AXDtY0wyUfNUVFQEd3f3K8ZrDNJb4ZNOREREllNZFCtlzUWArteW1Hiso/8geEQ9CaeAG5H3ewzSVu5F2alMs8cr7G3g+1A3KTh3DPPi09aK4jWWuxARERHVobd5afo2FJ7/DGUZO2s8VqlygWvYffCIHAGVQ3tkf3cS0as+gjrBfI26jZu9NBU04Jm+nAzaSjFIJyIiIqolXWURiuJ+QOGFz6EpSap5I6hbBNyjnoRb6HAY1LbI/Owo0tf+AU1mSY2dWgKf7w+/J3tB5dq6WiPT5RikExEREV1BZWEMCi58hqL49TBoy8wfqFDCuc3NUkmL6HGuzS9H6tJDyPjoEHQFFWZv5hDmhaDxA+DzYFd2amkEqWVlCHJ0hEKhQFPBIJ2IiIjIBINBj9K0f1F4/lOU1TBESFDaecA94hG4Rz4OW+e2qMwoRtLrW5H5+VHoyzRmb+fcPQBBE6+F1x0doLBR8nmwIrVOh7/SU/F9cjz25GThp0FD0NvLu8k8BwzSiYiIiKp1aSmK/RGFFz6DpiSxxsfG3rMz3KOegmvI3VCqHFCRkI/k1/9E9rcnauxx7nZdCIJeHAj3we2bVPa2NThdmI/vkuLxS2oSijTGN1DaXAd8lxTHIJ2IiIioqaksTpA2ghbF/VhzlxaFDVza3QaPqJFw8O0rBdnlF3KQumITctafBnTmu1t73h6FoBevhWtftlG0piJNpRSUf58Uj1OFBdLPDDqg/Eggiv8MR/nhAPz47lbM7qqBi8oWTQEz6URERNTKBw/tQcH5T1Ca+o/4idljlfaecI94FO4RoqQlSPpZ6ckMpC7fg7zfzpm/qY0CPsO7SMG5U0ffBvqbkKnndn9utpQ1/zM9BWq9caiULt8exZtDUbwpDLos54vHF/4RjguPFjWZbDqDdCIiImp19NoKFCf+goJzn6Cy8HyNx9p5dIRHh1EXS1qE4kOpSF22GwWbY8zeTmFnA99Hu0vTQR3ae1r870CmZVWU48fkBPyQnICEUuMnImJ0p/q0D4r+DEfZ3raAVl7/r97RHhGqplN6xCCdiIiIWg1teRYKL3yBwpivoVPnXaFLyy3w6DASjn7XXKwbL9qTiJQlu1G0M8HsTZVOtvB/qjcCX+gPuwDXhvhrUDVavR7bsjKkrPm/WenQiahcvBkrU6Hk3xAU/xEOTbI7aqJUKnD8OHD99WgSGKQTERFRi1eRdxoF5z5CcdJvgN58txWlrSvcwh+GR9RTsHVpe7FsonB7PFKW7kLx3uQaBxCJ4UMBz/aDrbdTg/w96HKJpSVSnbnInGep/7/FZWW8u5Q1L90WAkNFzeFu797ACy8Ajz4KOP9/9UujY5BORERELXcqaNpWFJz7GOVZ+2s81tY1VMqau4XeD6Wt8/8H5//GIWXxLpQcSjV7W5WXozSAyP/pPlC5GcthqGFbJ27KSJWy5rtzsi7+3KBRoHRPWxT/EQH1WZ8a78PBAXjkEWNw3q8f0BQb7DBIp1Ztw4YNOHbsmOznkyZNgoeHR6NcExER1Y9eUyp1aCk4/yk0JebLUgSngOulenOnoMFQKJQXg3NRa56yZBdKj6abva2tn7NUby6mg9o42/Fpa2DRxUVSm8T1yYnI11Re/Lk22xHFf4dJX/rCmt8kRUUBzz8PPPUU4OXVtJ8yBumE1h6kf/bZZ7Kfjxw58qqC9MOHD2PNmjXYsWMH0tLSoNfrERQUhIEDB+LJJ5/ELbfcYpHbEBGReZqydBRe+ByF0V9Drykye5zCxh6u7YdLwbm9R9TFn4vgPP+vaKSK4PxEhtnb2wW5ImjCtfB7rAeUjk2jXV9LVa7V4vf0FHybGIfD+bkXfy5KzitO+KL49wiUHQgC9OYHQdnYAPfcA4wdCwwZ0jSz5qYoDOJfJLUIRUVFcHd3R2FhIdzc3Br7cloFEVhPnToVy5Ytg0qlwpAhQ9C1a1fY2toiLi4OW7ZsQX5+PubOnYvZs2fX+TZERGReRd4pFJxdh+Kk3wGD1uxxNo5+8IgcAbeIR6Fy8L48OP/zglTWUnYq0+zt7YPdpQFEvg93g9Keec6GdKawAN8kxeGXlEQUa///Of3/jaAR0CTXHOsEBABjxgDPPgu0NW4vaFbxGv+FEdXDrFmzpGC7Z8+e+PHHHxEeHn7Zenl5OVatWoXc3Nx63YaIiC5nMOilvuYF59Zdsd5cTAX16DgarsH/g8LG7uqD8/aeaDN5IHwe6AqlrQ2figZSotVgY2qylDU/UZh/2VplsqvUoaXkn/YwlNf86cXgwcC4ccC99wK2zfiDDmbSWxBm0mvvyJEj6NOnD4YPH47169df/LnIYAcHB6N///7YunVrjfcRExODjh07SmUxp0+fhr+/v9lj1Wo17O3t63QbIiL6f3ptOYri10udWjTF8TU8NAo4txkqBeeXtlC8muDcIcwLbSYPgs/9XaBQmS+noPo5WZCPbxLj8GtqEkp1/581N4iJoAeDUPR7BCqOm/99Kbi4ACNGGEtaunZt2s8IM+lENWjTxjiOOSUl5bKfe3p64v7778fnn3+OnJwc+PiY3x3+6aefQqfT4bnnnqsx2Baqgu263IaIiABtRQ4KL3yJwugvauxvrrBxgFvYA1K9uZ1b2GVrUnD+dzRSFu2sOTiP8ELbKdfB+97ODM4bSLFGZM2TpJKWU4UFl63piuxQsjlUaqF46URQUzp2NGbNn3wSaGmVvix3aQFWr14tfYngr64MegO0eWVoLlReTlAo677zw8/PT6oBrx6kC6I+XLyQnzhxQqoXN2f37t3S95qOscRtiIhas8qiWOSf+xjF8T/BoFPXXG8e9RTcIx6Djf3lG/+lbi1bYpGyaAdKj5vfEOoQ6Y22L10H73s6QWHDzHlDOFGQh68T46QAvaxa3KKOc0fxb5Eo3REMQ6X5siKl0rgRdPx44Kabms9G0KvFIL0FGDdunPRV9fFJXYgA/XDnFWgu+pyZCFufuk8cEB97BgYGSkG6VquVNnBWV1ZW85uWjAzjC33bq9iNUpfbEBG1NiKorsg+hPxzH6I0ZYv4idlj7Tw6wrPjM3AJ+R+UNpd/AlnV5zx50U6UHkkzex8Mzhu+1vzXFNNZc4NOgbJ9QSjaGAn1Gd8a78fHx7gJVLRQDA5Gi8cgnVotESgnJSVJ7Q9FHXqVf//9V/rerVu3Rrw6IqJWOnwodQvyz7yPityjNR7rFHgDPDs9C0f/QZfVm1cp3JmA5AU7UHJQ/onpZWUtU69n5ryBnCrIl7Lm1WvNq0paijeFSl1adDk1T2ft0weYMAF4+GHjEKLWgkE6tVqX1qVXBekHDx7EX3/9hZtuugkhISE13j4gIADnzp1DamoqOnToUKtz1uU2REQtnV5bgeL49VLmXFNcw/AhpS1c298jZc7tPUy/hhbtS0bKwu0o2p1k9m4cwr2MZS3DO7OsxcLKtFopKP/GRIcWoTLBTcqal24PqbGkxdYWePBBY3B+zTUtt6SlJgzSqdWqvnm0pKREGmIkSl+WLl16xdsPGjQI27Ztk7rA1LbGvC63ISJqqXSVhSi88AUKLnwKXYX5trNKW1e4Rz4h1ZyrnExvui85miZlzkV5S02tFEVwzm4tlne2qEDKmlfva35Zl5aNkag46XfF3uYvvGDsby7+3JqxBWMLUp8WjK1t46iwePFiTJs2Tfo+ZcoUqauLmEAqOrCIiZ9XUtVOUXSEOXPmDHx9fWvdgvFqbkNE1BIng4oWioUx38KgLTV7nMopSGqh6B7+EJS2LiaPKT2dJWXOxaTQmoYQtZlyHXweZJ9zS6rQ6fBHWgq+Toy9bBpoFX2pCsVbQlH8WwS0maafvyoDBhiz5g88ANj9fyv7FoktGOmqiIC3Phsxm6OqzZvJycl45pln8PPPP2PlypW1CtCFiIgITJ8+HfPnz8ewYcPwww8/IDQ09LJjKioqsGbNGmRnZ0vH1eU2REQthbowGvlnP0Bxwi+AXmP2ODuPTvDs/Bxcg++AQml6Gk15TC5S3tmJ3A1nzO4rtQtylfqc+z7aA0o7DiGylLiSYilr/lNyAgo0lbJ1TZozin6PRMmWmgcPiZKWhx4CXnwR6N/fYpfXYrDchdDay13Wrl0rZa2XL1+OCeJt/FWYN2+eFFSLCaKixlyUsIgWjqK9Y3x8PLZs2SJNDhXH1ec2RETNWXnOUeSfeQ+lKZtrPM4xYBA8Oz0Hp4DrTG4GFdTJhUhZvBPZ350E9Kajc1s/Z7SZNBB+T/SC0oGhjiVo9HpszkjDV4mx2JOTJVs3GICKE75SSYsobYHB/Kfdfn7GDi3iKzDQIpfXIrHcpQXhxNGrExcXh/DwcKkG/YMPPsCoUaPq/NgfOnQI7733Hnbs2CFtCtXr9VKLx4EDB0r3e/PNN1vkNkREzYVof1iWvh35Z9aiPGu/+QMVSrgE3wnPTmPg4GV+VGRlVgnSlu9B5mdHYNDoTR6j8nZE0Phr4T+qD2ycmvE8+CYkrbwM3ybG4bukeGSpK2TrBo0SJTvaoeiXKGgSLu9PX13v3sDEicYuLa25mrOoluXJDNJbEAbpRETUFNooliT9gbwz76Gy4KzZ4xQ29nALe1Bqo2jrYr7ptbagHGlr9iPjg4PQl5kukbFxs0fg2GsQOKYfbFxacfRnIXqDATuzM/FVQiy2ZqbB1FsiXYE9iv8KQ9EfEdAXONQ4eOi++4zB+aBBrbNLS3WsSSciIiKr0evUxjaKZ96HpiTR7HFKO3d4RI6Ae4enoHLwMXucrrQSGesOIW3VPugKK0zfl5MtAp7th6Cx10Dl6WiRv0drlqdW44fkBHyTGIvEMtMbeiuT3FD0SyRKt4XAoDFf5y9mK4rBQ2Iq6BU6GpMZLNQiIiKiOtNrSlEY8zXyz30EXXmm2eNsHP2l/ubuEY+Y7dRivD8dsr48htQlu6DJMh0oKuxs4D+yN9pMHAhb39bV9MDSRFnSsYI8fJEQi9/TklGp15uuNz/mj8INUag4WnNfxMhI40bQkSMBl5obutAVMEgnIiKiq6ZTF6DgwmcoOP8p9JWXj3q/lK1bmLQZVAwhUtrY19gKWHRqEb3O1QnyITgSpQK+j3aXep3bt3Xns2aBoUNfJsTidJHp509fqUTp9mCU/NoB6sSaWzuL0R+TJgF33mkscaH6Y5BOREREtaYtz5Z6nBdEf1ljj3N7r27w7PwCXNreCoXSpsZMbsE/cUie9y/KTsu7hlTxuqcT2s24AY4R3ny26tk+UdSai7KWYq3pGn9dkR2K/whH2Z+RqMw3/8ZK9DN/7DFjcN6jB58WS2OQTkRERFekKU1D/tn3URT7HQw6tdnjHP0GwLPL2BrbKFYpPpyKpDf/RfGeJLPHuA8JQ/CrN8K5WysfP1kPOoNB2gD6RXwsduWYL0nSpLpIWfPSf0KgVZt/Y+XtDYwda/xq7VNBGxKDdCIiIjKrsjhR6nFeFL++xgFEzm2GwrPzWDj69r7ioykGESW/tQ15v583e4xL3zYInnUj3AZy12Fd5arV+C4pDl8lxkmtFE0R9ebqs96o/LUz8vf6w1BDf/OOHYEpU4AnngAcuU+3wTFIJyIiIpnKwhjknV6N4sRfRcF4jT3OvTq/AHvPTld8FCsziqUpoVlfHxfpXZPHOHb0QbtXboTnbZFXzMSTacfy8/B5QozZjaCCQQeU728Dw8auyD5dc7350KHASy8Bt93GenNrYpBOREREF6nzzyDv1CqUJP8lQjnTj4zSFm6hw+HZ6XnYuYVe8dHTFquRvmov0tcegL5ca/IYu7ZuaDf9Bvg82BUKG+48vFpqnQ6/pSXj8/gYnCg0s/FWbAZV20D3bwTKN3ZAXrL5enOVCnj0UWPmvGfPq74csgAG6URERISKvJPIO/UuSlM21zyAKPwRaTqorXPQFR81faUOWZ8fQcqSXdDmlpsORDwd0WbyIKmlotKBYcnVSikrxdeJcdJU0HxNpdnjdIV2cNzSDem/hqA4v+b+5s8/D0yYALRpc9WXQxbE/xuIiIhasfKco1JwXpb2r9ljFConeEQ+AY+Oz0Dl6HvF+xQdW/J+PYukt7abbaeodFQh4Ln+CBo/ACo38xMryfTjuzc3G5/FR2NLhumJoBdluMJ9cy+c2+gHdYX58iExcEh0aRk9GnB15aPeFDBIJyIiaoXKsw8h7+RKlGXsNHuM0tYVHlFPwaPj07Cx96zV/RbtTULiG1tRejTd9AE2Cvg91gNtp10PuwBGg1ejVKvF+pQEqaQlpqS4xmNdkwJh+1t3HNvkCr3efHDeuzcwbRrwwAPGEhdqOvh0EBERtSLlWQeRe2oFyjN2mz1GaecBz45Pwz3qKdjYudXufqNzpHaK+X9Fmz3G8/YoqWOLY5RPna69tUooLZEC8x+T41GsNV3TX9WpJTy2I3J/jMLxPebrzYU77jAG54MHA9yf2zQxSKdWbcOGDTh27Jjs55MmTYKHh0ejXBMRUUMozzqA3JMrUZ5pPji3sfeCR6dnpdIWpW3tZrpXZpUYO7Z8ecxsxxapneJrQ+A2oF2dr7+10RsM2JmdKZW0bMvKMLeFV+KssEXUqZ4493U7/HPSfL25rS3w+OPA1KlAly4NctlkQQzSG9D69euxdOlSnDt3DsXFxWjTpg3uvfdezJ49G56epj821Gq16N27N06ePIlvvvkGjzzySENeYqsngvTPPvtM9jiMHDnyikF6QkICQkONXQ1uvfVW/P3337Jj9u3bh2uvvRZPPfUUPv30U9n64cOHsWbNGuzYsQNpaWnQ6/UICgrCwIED8eSTT+KWW25p9c8REVkgc35yRc3BuYMPPDs9B/fIx6BUOdXqfnVlGmS8fwCpK/dCX2p6w6JDmJeUOfe8swPbKdZSiVaDn5ITpeA8vrSkxmPbq9zR7kAv7PjUBz8nmC9pETXmYjPoxIncDNqcMEhvQHl5ebjxxhsxbdo0uLu7S4H3nDlzcPz4cWzdutXkbVasWIHs7OyGvCy6hAicTQXPV2vTpk34559/MGTIkFodL4LxqVOnYtmyZVCpVNLt7r77btja2iIuLg6///47vvzyS8ydO1d6U0dEdLXKsw8j9+SyGstabBz9pDaK7hGPQqmq3eZNg96AnB9PIfntbahMM10XrfJ2RNup18PvyV5Q2prP7NL/S/yvpOWHK5S0iFB8kGNb2G/thl8/csa2bPPBeWCgcTPoc88Zu7ZQ88IgvQE988wzl/23CNgdHBwwZswYJCUlITg4+LL1lJQUKYhftWqVlHml5qF9+/bS8zljxgwcOHCgVtmiWbNmSQF6z5498eOPPyI8PPyy9fLycunfQW5ubgNeORG1ROXZR5B3cnmNG0JFcC4GEIl2irUNzoXC3YlIen0rSk9kmFxXOKgQ+Hx/BE24FirXmmuiydilZU9OFj6Jj8Y/mek1lrS42dridrtI5P8SiW8+tkNJDUn2Dh2M9eZiMqg9n4Zmi0G6lXl5eUnfNRqNyTpokU294YYbrH1Zrc6RI0fQp08fDB8+XCpLqpKfny+9eerfv7/ZTzuq69ChAwYPHiyVzXz//fd4+OGHazw+JiYGixYtgre3N/766y/4+/vLjnF0dJQ+gVGr1XX42xFRa1SRexy5J5ahLH272WNsHP2NwXnEI1Da1D56K4/NRdIcsSn0gukDFIDPQ93Q7uXBsA+q3UbT1qxcq8WG1CR8Gh+NC8VFNR4b5eqG2wydcPLLtlj2hRImwoeLrrkGmDEDuOceTgZtCZp1kH7+/HmpzEDU9Yqvs2fPQqfT4c0335QylVfyww8/YPXq1VL5SWVlJSIiIvD4449j8uTJUtmBpYhrEkH5qVOnpEz5HXfcIcucimBN/F3E34mBWcMT+wOqPr24lNgrcP/99+Pzzz9HTk4OfHxq14FAlKV8++230r+7++67r8Z/P6K8RvybeO6550wG6JeyZwqEiGoxITT3xFKUpm69cuZclLVcRXCuzS9HytJdyPzoMAxa09243a4PQcgbN8O5W82vZwSkl5fhi4RYfJMYh4IaBg+Jz2Nv9g/CoLJO+HOtJ6b9oIC+hmbow4YZg3OR42OnlpajWQfp7733nlTDXRciay1uW1UP7OLiItUUi5KFjRs3SgGzyGZagsiYFhYWXtxgKLKtl6qoqMD48ePx+uuvIzAwUNqQaG3if/7mVFnh7V2/LIGfn58USFcP0oWuXbtKH0GeOHGi1jXmIvs+YcIELF68GO+//770fJqze7exPrS2901EZIq64ALyTi5DSfJfZh8gGwdfeHZ+4apqzgW9RofMT48gdfEuKVA3xSHSGyFvDIXHzeHcFHoFR/Nz8XFcNP5MT4FO9Ek0w1Vli4eDQ9EpIwofzXHEyD/M36f4HSg+uJ0+HejZs5ZPLDUrzTpIF8GU2HzXq1cvqSPK22+/jS+++KJWHT1EgC4C8+3bt0u3FUTmVAROu3btkjbriYDr0uznqFGjapWdf0BMBLjEtm3bUFZWJm0cnTdvHu666y5s3rwZNjbGzTTiuu3s7PDiiy+isYgA3c8PzUZWFuB75aF3Zom6cfGGSATpoqOOeLNWnXjOrsYrr7yCdevWSZ/kiO4w4t+XKRkZxlrOtm3b1vHqiag1qyyKR97JFShO/FVUNZs8xsbB+7/gXHRrqX3CSSQoCrbEIvH1LaiIyTO/KXTaDfAb0ZObQmug1evxV3oqPo6/gKP5ph/LKmHOrhgZGgn3c+2xZKwNZu0wf6z4gHXkSGPNebUP5amFUbWkjZnKWqZWRVAszJw582KALojSBtEO7/rrr5c27YlAXXRlEUTt8oABA2pdRnEpsTlQEG31xJ/F/fz8889SMJ+YmCjVJ3/11VcoLS2VjisqKroYJIoMfNU1kGWJIFls+BStDy/dxPvvv8bR2N26dbuq+xOlMuLflPgSb/DeeOMNPmVEZDGa0hTknXoXRXE/AQadyWOU9p7wEq0Uo0bUupVilbJz2Uh8bQsKt8WbXFfY2SBgTD+0mTQQKrfaZ+Vbm8LKSnyTFIcv4mOQVmH6U4gqg30D8FT7SOTv9cf8hxQ4dMj8sSLvM3assVuL6NpCLV+zDtLrIjU1FQcPHpT+/Nhjj8nWr7vuOrRr1w7Jycn4448/8Oijj0o/F4GyJYJl8aZAZHHF5kEhPj5eqkGvnn0XRo8eLWXXS2rawk0WqUuvCtLFvw2xP+Cmm25CSEjIVd+neL7EG7wlS5ZgrHg1NSEgIEDqnS/+LYpNp0RENdGWZyHv1CoUxn4r6lBMHqO0c4enGEIU9VSthxBV0eSWScOIMj87YnYYkdfdHRE8ewgcQjjkzZz4kmKpS8uPyQko15l+EyU42tjg/rbt8US7CBz+0w0TngFOnzb//IitUaK/+bhxIhl0VU8tNXOtLkg/evToxS4rVYNoquvbt68UpItjq4J0SxH1yOLjxLCwMOm/RWa9KnN7aTmEOK/I5HOYjfU2j4o3Q6JMRZS+iCFUdSH2MYjNweINlvg+YsQI2TGDBg2SSqBE9xjWpROROTp1PvLPvI+CC5/BoKsweYzS1hUeHZ6GR8enYWN3dV1VpLrzTw4j5Z1d0BWavn/nnoEImXszJ4WaIX6f78/Nxkdx0diamVZjC8UgB0c8GRqJ+wJCsfF7O/zvftHty/zx4leUmAz67LOAs/NVPbXUQrS6IF1kroXqPcovJTLplx5bV7fddhuGDh2KLl26SF06RND/zjvvoHv37tLkUUFMtRT90y9VtXG0c+fOUumNOSIDf2knmKoymbpuxBR13s2FuF5LBeniDZl4oRUTPkWHILH/oKpEqS5Ej3sR5H/44YfStNHqxBuBBQsW4IMPPpA2MPvWUFwvnl92eCFqXfSaEuSf+xgF59ZBrzE9LEhh4wiPDiOl7LmN/dWnVwv+iUPC7M2oiDbdMcA2wAXBs26CzwNdoVBeefZDa1Op1+P3tGR8FHsBp4sKajy2t6c3RoVFYrBHG3zxqRJ9FwJJSeaPFzm8mTOBJ59kj/PWrtUF6cXFxhc85xrellZt+KtP0CuIXttiamRVsC+G3ogSiClTpkgbRetr/vz5UrbWEkQ5f302YjZHVRs3RZAu9jeIfQIrV66UgvX6EBuCxb6He+65x2Rdumj1OX36dOn5GzZsmLTZuPqnOqLjj9gfIabPiuOIqOXT69QojP4K+afXQKc2HTwrlHZwj3xc2hSqcrz6F+3yuDyp7rxgU4zZYURBY6+RhhHZONf/91RLUyDqzRPj8FlCNDIrTH/6INgoFBgW2BZPh0Wig7033n8fGPMOkJ5u/r67dBENCICHHgJM9DKgVoj/DBqQ6PIhvq6WCOZFZvdKXn75ZSngryLeVFR9CkC1z6SvXbtWylgvX75caqNoCWIoldjfIDoFmSK6/IhAXEwdFXXpouxFdCsSbSHFm7otW7ZI00bFcUTUshn0WhTFr5emhGrLzERxChu4hT0Ir64TYOscdNXn0Barkbp0NzI+OACDxnTDbe/hnRE8+ybYt2WzguoSSkvwcdyFK9abixaKj4aE4anQCLjpnLBmDXD7kpo/qe7TB3j1VQ4gIrlWF6S7urpK36s6qZhStVHTza1pT00TZRAshah/kC4GC3388ce1arF5NRYuXCjVn5siOhGJkhixeVn0+9+xY4f0pdfrpdaQolRKXM/NN99s0WsioqZDJGNKU/5GzvHF0BTFmjlKAdeQu+HVfRLsXNtf/Tn0BmR/fxLJb/4LTbbp33vOPQLQft4tcL2GSZ7qz8/h/Fx8GHsemzNqrjdv7+witVB8oF17aEtVWLUUWLas5vkj4teDmLt4220cQESmtbogXWSpq0oczKlaqzqWWiaxebc2n1jU9RMP0XLzSvcvNil/9NFHdb4GImqeyjL2IOf4Iqhzj5s9xrnNUHh3fwn2np3qdI6SI2mIf2UTSo+kmVy39XVGu1k3wvfh7qw7r9bf/O+MVKyLvYBjBTX3N+/v5YPRYVEYGhCE4kIFFr8FLF8OFNRQpi7m2M2eDQwezOCcatbqgnQx+EgQpQSirMBUh5dD/zUqvbSHOhERUX1V5J1G7rGFKMvYafYYR79r4N1jOhx96/Y7qDKzBMlvbUP2tydMritslQh4rj/aTB4Elat9nc7REpVqtfghOV6aDJpcVlpjvfn/gtpJ9ebdPbyQnw/MfQMQA9D/Gy5u0rBhxuDcRD8BIpNaXZAuNgv269dP6of99ddf41VRCHYJUUMsMumijOSOO+5Ac7B69WrpS5RtEBFR06MpSUbu8SUoTvzF7DH2nl3g3WManAJvkOZpXC2ppeK6Q1LPc11JpcljPG6NkFoqOoZ5XfX9t1RZFeX4LD4GXyXGolBjug+94KpS4ZGQMKmsJcjRCXl5xqB75UqxJ8z8/d99t/G4vn0b5vqp5Wp1QXrV+HYxQVS0wRPdNaoy5iK7XjWAZvz48c1m0ue4ceOkL7FxtLlcMxFRa6CtyEX+6dUoiP7S7CAiW5f28O7xElyC74BCUbvJ2dUV7ohHwiubUH7BdBG0Q7gXQubdAs+hnCNfJbq4COtiz2NDapLUUtGcNo5OUtb8oeBQuKhsjcH528bM+X8N40y6/35jcN6jR52eUiIoDPUpym1kR44cuWyqY2xsLHJycqRsedWmQEG01hOb8S41ceJEqd2e6KYhepmLloxiuExBQYG02W/z5s3SYJrmpCpILywsbPKbXomIWjK9tgwF5z6WhhHptaanRts4+sG760S4hT8IhdK2TudRpxQi8fWtyNt4zuS60tkObadeh4Bn+0FpZ4PWToQ8B/Jy8EHsefyTWUM/RADdPTzxbFgH3B7YBiqlUgrOxWbQmoJz8QHIgw8ag/OuXRvm70DNX23jNVVz/0vu379f9nMxQbJqiqRw6cCfKitWrJCCcVEmsmfPHmg0GoSHh2PmzJmYPHmyRfqYExFRK2ynGPcjck8ug648y+yUUM/Oz8OjwygoVXVLBukrtEh/bz9Sl++Gvlxr8hifh7tJA4ns/I2zP1ozncGAzRmpeD/m/BU3gw71D8Sz4R2kTaGi7EjUnIsh1FcKzh9+2NitRfQ7J0Jrz6TT5ZhJJyJqxHaKqVuRe3wRKgujzQ8iihoBry7j6jQltEr+1lgkvrIJFfH5Jteduweg/fxb4drPOLCtNVPrdPgpOQEfxl2Qep2bY6dU4r62IXgmLArhrsbMpujQIjq1iOy5uZpzEZw/8ogxc96pbk14qBUqag2ZdCIiosZWkXsCOUffRnmW/JNdIwVcQ4fDu/tk2DrXPXCuSCpA4uwtyP/zgsl1lacj2r16I/we7wGFTd1q21uKwspKfJkYi0/iopFbKf80vYqHrR2eaB+OJ0Mj4GvvIP1MBORiM+iSJeZbKYrg/NFHjZlzBufUUBiktwDs7kJEZH2akhTkHl9cY8cW0anFp+cM2Ht2rvN59Got0tfUUNqiVMD/yV5oO/MG2Ho5oTVLLy+TWih+kxiHUp3pMqCqzaDPhEfhoXahcFIZQyExx3DVKuCddyDVn5vCzDlZE8tdWhCWuxARNTxdZZGxY8v5T2HQm251KIJy754z4Rx4fb3OVfBvHBJe3oSKONNRo0vfNghdeBucuwWgNYspLsL7sefxS0oiNDVU8XZx88BzER0wLLCttBlUKC8H3nsPWLAAyM42H5w/9BDw2mtA57q/3yKSsNyFiIjIggx6DQqjv0LuyRXQV5qug1A5BcG7x1S4tr+nzu0UBXVakVTaYq5ri8rHCcGvDYHvQ91a9bTQo/m50mbQTRmpqGmD3XU+/lJwPsjH72IPetFT4sMPgbffBtJraPTywAPA66+zWwtZH8tdiIiIrrgpdAtyjs6HpjjebMcWsSHUvcNIKG3qPsVTDCTK+OCgNJBIX6YxXdoysjfazbwBKo/m1SbYks/HzuxMrI05h725ZlLf4qECcEdQOzwX3gFdPf5/o66YV/TZZ8DcuUBysvnz3Hsv8MYb7HNOjYdBOhERkRkVeaeRc/QtlGfuNX2AQgWPyCfg1XUCbBzqN8WzaF8S4qf/hfJzOSbXXfq0Qeii1lvaItoo/p2eivdizuJUoZkdnaLUSKnEg+1CpZrzEOf/bz8phnJ/+60x8I6JMX+eO+8E5swB+vSx9N+A6OowSCciIqpGW5aJnBOLURz3k8jdmnx8XNrdDu8e02HnFlqvx0+TU4qkuf8i+9sTpn9RezkiePZN8H20R6ssbRHTQEWt+dqY84grNT/i01VlK3VpGRkaAZ//OrUIokR9wwZjm8TTp82f55ZbjNn1AQMs/TcgqhsG6S0Au7sQEVmGXluO/LMfIv/MWhh05SaPsffqDt/es+Do169e5zLoDcj66hiS3vwXuoIKk8f4jegptVVsjV1byrVafJsUj3Wx55FWYfq5EPzsHTA6PAqPBofB1db2suB882bg1VeBQ4fMn+eGG4A33zR+J2pK2N2lBWF3FyKiutc5lyRuRM6xhdCWpZnfFNpzOlxD7qrXplCh9HQW4qf9iZJDqSbXnbr5I3Th7XDt2watTZFGgy8TYqRWijX1OG/v7IIx4R2kIUT2NjaXre3ZA7zyCrB9u/nz9O8PzJsH3HyzsXsLkbWwuwsREVEtVOQcRfbhN1GRe9TkukLlDK8uY+HR4WkoVf9fRlEXupJKaVNo+gcHRJG1bN3GxQ5tXx6MgFF9oFC1roFEeWo1PomPxmfxMSjWmtg0+59Obu4YG9EJw4LawqZadH38uDFz/vvv5s/Tvbsxc37XXQzOqWljuQsREbVK2rIMKXNenLDBzBEKuIU/DO/uU6By9K33+fL+uiD1PK9MNT1j3vveTgiZezPsAlzRmmRVlOOD2Av4OjEW5WJ3pxl9vXwwLqIjBvsFXGyjWEVsBBU152JjqDlRUcYNoaLf+X8t0omaNAbpRETUqui1FSg49yHyTr9ntu7c0f9aqe68PpNCq6hTi5Dwyibk/3nB5LpDqCfaL7gNHjeFoTVJLSvD2thz+D4pXtocas5g3wCMjeyI/t7yN0ppacas+Lp1gNbMgNF27YwdXZ58EvhvuChRs8B/rkRE1HrqzpP/RM7Rt6EtNV0LbuvSHj69X4Zzm1tk2dqrPp9Wj4yPDiF5wQ7oS+WTSRV2Ngh68Vq0eXEglA6t59dxQmkJ3os5h/XJCdCamQ4qHvnbAttgXESny3qcVykoABYuBFasME4MNcXX11j68txzgEP9qpSIGkXreVUgIqJWS51/FtmH56A8a7/5YURdJ8Aj6ikobOzqfb7SExmIm/KH9N0Ut+tCELrodjhGeKO1iC0uwqros/g1NQnm8uaixvzuNsEYG9EREa5usnURkL/7LrBgAZCfb/o+3NyAadOASZMAl/9vk07U7DBIbwHYgpGIyDSdOh+5J5aiMOZr0fPQxBEKuEU8Yqw7d/Cp98MobQxdtAPpHxwE9PIsscrbESFzbobPg13rnalvLs4XFUrB+e9pyWY6zgO2CgUeDA6VpoMGXzKAqIooZfn0U2PZSqrpD0GkbPmECcCMGYB363nvQy0YWzC2IGzBSERkZNBrURjzjRSg6ytNT6d09LsGvn1es0jduZC/OQbxM/5CZYrpjaF+T/SUhhKpPB1bxdN0prAA7144g78yUmucDvpoSJjUSjHQUd4LvmoQkWineO6c6fsQ3RdHjwZeew1o0/o6VlIzxBaMRETUKomSlqxDb6CywHRUp3JuA59er8Cl3TCLZLMrM0uQMGsz8n45a3LdMcoboYuHwW1AMFqDUwX5WHnhDDZnmu43LzjZ2GBE+whpCJHvJdNBL7VzpzErvnev+XOJTi1i46jo3ELU0rDchYiIWkxLxeyj81GS+KvJdYWNAzw7vwDPTmPq3e+8aiNq9lfHkTjnH+gKK0xuDG0zeRCCxg+A0r7l/7o9WZCPFRdOY2tmutljXFUqPBUaiafDIuFpZ2/ymLNngZkzgV9NP40SMYBI1KX36WOJKydqmlr+qwYREbVoep0aBec/Qd6pd2HQlpk8xiX4Tvj0ehm2zpaphyiPzUXcS3+ieE+SyXW3QcFS9twxvOUXRx8vyMPK82fwT5b54NzN1hZPh0ZiZGgk3O1Mb8wV7RRFzflHHwHmOjL26mXs6nLLLZa6eqKmi0E6ERE1W6Vp25F9+A1oihNMrtt5dIRvn9fh5D/AIufTV+qQvnofUpbugkEtH7wj6s2D5wyF78PdWvzG0BMFeVhxheDcw9YOz4RHSaUtIlA3pagIeOcdYMkS8+0Uw8KAt97iICJqXRikExFRs6MpSUH2kTdRmrLJ5LrS1g3ePV6Ce8RjUCgt86uu5Gga4ib9jrKz2SbXfe7vIk0MtfV1RkuvOV9+hbIWT1s7PBveASNCw+GiMh2cazTAhx8as+fZph9S+PgYN4SKXudmEvBELRaDdCIial6lLWc/QN7pNTDoKky3VAx/GN49pkLlYJlSE11ppTSQKOND020V7dq5I+yd2+ExJBwtvVvL8vOna9wQ6mX3X3DePgLOZsZ7io4tv/xi3BR6wfQQVjg5AVOmGPudi77nRK0Rg3QiImo+pS2H3oCmxHRpi4N3T/j2nQMH7+4WO2fh9nip9lydZKKNo1KBwDH90HbGDbBxtmvRfc5FcF5TK0URnI8J74gn2oebDc6FAweAqVONnVtMUSqBZ54xZtcDAy1x9UTNF4P0FoDDjIioJdOUpiL7sCht+dvkuo29N7x7zoBb2P1QKJQWOac2vxyJr29F9rcnTK47dfFD2LI74dKz5UaSMcVFWHHhTI1DiGqTORcSEoCXXwa+/db8+e66y7gptFOn+l87UUvAYUYtCIcZEVFLYtBVIv/8x8g7uRIGnYkdhQol3CMel2rPbezcLXbe3I3nkDDzb2iyS+WntLdB26nXI3DsNVDa2qAlii8ploLzX1OTzAbnYkOoGED0ZGjNwXlBAfD228CKFUBlpelj+vYFFi8GBg+2zPUTNXUcZkRERM1WWeZeZB98DZVFMSbXHXx6w7fvXDh4dbHYOaWhRC//jbzfzptcdx3QDmFL74BjRMtsq5hSVipNCP0pJRE6UThugrutrZQ5fyo0wuyG0KpNoWvXAnPmALm5po9p394YwD/8sLHMhYgux3IXIiJqMrTl2cg58haKE38xuW5j7yX1O3cNvc9ipS3SUKLvTiLxtS3QFcg3o9q42iP4tZvgN6IXFMqW11Yxs6Icq6LP4rvEOGjMBOeuKluplaLoc26ulaIgbv7bb8a6c3ObQj08gFdfBSZMAOxNzzMiIgbpRETUFBj0OhTGfIXc44uh1xSbOEIB90hR2jLVoqUt6uRCxE39E4X/xplc97g1AqGLbod9UMtrMZKrVmNtzDl8kRADtZnpQS4qFUaFRmJ0WJTZIURVjh8HXnoJ2LrV9Lqoihk3Dpg9G/BumR9GEFkUM+lERNSoKvJOIuvALKjzTG/StPfqDr9+c+Hg3cNi5zToDcj87AiS5v4Lfam8WFrl7Yj2b90K7+GdW9xQoiKNButiz+PjuGiU6rQmj3G0sZFKWkTduaddzenujAxj4C0mhZpJxOO++4AFC4DISEv8DYhaBwbpRETUKHSVRcg9sRSF0V+IqNn0QKKe0+Ae/igUSstt0qyIz0fclN9RtDvJ5Lr3fZ3Rft4tsPVpWUOJyrVafJYQI2XPC0XRuAl2SiUeDwnHC5Ed4WvvUOP9VVQAy5YZ68pLSsxvCl26FLj+ekv8DYhaFwbpRERkVaIGvCT5D2QfngtdeZbJY0TNuag9Vzn4WO68Oj0y1h1C8tvboC+XZ5BtA1wQ9s4weN7WstK9lXo9vkuKw7sXziJbbWoAFKBSKPBQcCjGRXZCkKNTjfcnsuU//ghMn25srWhK27bA/PnAY49xUyhRXTFIJyIiq9GUJCPr4GsoS99mct3WLRx+/ebByX+ARc9bHpOL2Im/o+Rgisl1vyd6Ivj1IVC515w9bk5EhxbRRnHZ+dNILpO3kxREIc/wtiGYGNUZwc4uV7zPw4eBSZOAXbvMTwqdOdNYmy7+TER1xyCdiIganEGvQf65j5B3cgUMOnk2V2FjD6+uE+DZ8VkobOwsmj1PX3sAyQt3wFAhz57btXNH2JI74HFjKFrSJxVbM9Ox+NwpnC8uNHvc7QFtMLljF0S5Xnkjbnq6sSPLp5+arjsXZfsjRwLz5gFBQfX9GxCRwCCdiIgaVHn2YWQdeBWVhab7jzsF3gi/fnNg6xJs2fNG5yD2xd9Rctj0OHv/p/sgeNaNsHFpOX0A9+dm452zJ3E430xzcgA3+PrjpY5d0d3D64r3p1YDy5cbg29zdeei3lwc07t3fa6ciKpjkN4CrF69WvrS6XSNfSlERJdvDD22SGqtaIqNox98+7wOl3bDLNpBRcqer9mP5EU7YFDLXxft23sifPkdcBsY0mKerbNFBVJw/m9Whtlj+nh6Y2rHbhjg43vF+xPZ8l9+MfY7j401P4xITAoVnVtaWAMcoiZBYRCfi1GrGjNLRNTwG0P/QvbhN8xsDFXAPWoEvLu/BBs7twbInv+GksNppk6LgDH90O7lG2HjZH4gT3ObErr0/GlsSEmEuV/mHVzdMa1TVwzxC6zVm6HTp4GJE833O3dxAWbNMh7j0HJK+ImaXLzGTDoREVmMpjQN2YdeQ2mq6QjP3rMz/Pq9BQefnhZ91C/Wni/YbjJ77hDmhbDld8JtQDu0BHlqNVZHn8WXibFS9xZT2jk5Y0qHLrirTTBsahGc5+cDr78OrFkDmPpgVtzFqFHAW28BAQGW+FsQUU0YpBMRkWUmhkZ/jpzjS2DQyjuJKGwc4d19Mjw6jIJCadlfPeWxuYid8BtKDpmoPVcAgc/1R9uZg1tE9lz0Ov84Phrvx5xDsdb0ICJvO3u8GNUZj4SESX3Pr0QE5OvWGTeG5popZR84EFixwtj3nIisg0E6ERHVi7rgHDL3z4Q693gNG0PfhK1LW4s+0lLf8w8PIentbSY7t4jsefjK/8G1v2XP2xi0ej1+TE7A8gunkSmmCJngolLh2fAOGB0WBWdV7X69i1aKEyYAx46Z73e+aBHwyCOsOyeyNgbpRERUJ3qdGnmn3kX+mfcBgzxItnHwhm+fN+ASfKdFN4ZWTQ2NfXEjivenmKk97492Lzf/7HlVO8VFZ08iuqTI5DEiW/5ESDjGRnaCt33tOtWkpQHTpgFff216XdSai/UZMwDnljV4lajZYJBORERXrSxzH7IOvAJNcbzJdbfwh6WJoTZ2V+7BfTUMegMyPz2CpLn/QF8mH23vEOqJsBX/axG158cL8vD26eM4kJdjcl287bmnTbDUTrGtU+0i6cpKY7vEN98031Lx/vuNXVtE9xYiajwM0omI6KraKuYcW4CimG9Mrtu6hsKv/9sWnxgqqFMKpamhRTtNz6IPeLYv2r1yI2ycLTcMqTEklZbgnXOn8Ftastljrvf1x8xO3dHZ3aPW9/v338CLLwIXLphe79LFWHc+dGhdrpqILI1BOhER1UpJymZkHZwNXXmmfFGhgmfn56SpoUobe4uXfGR/cwKJszZDV1IpW7cP9kD4yjubfd/zgspKrIo+g8/jY6Ax0x25i5sHZnbujut8/Wt9vwkJwOTJwIYNptfd3YE5c4CxYwHb5l0dRNSiMEgnIqIaacuzkX14DkqSfje5bu/dA/7XLIC9R0eLP5KVmSWIe+kPFGyKMbnu91QvhLw+FDYuzTd7rtbp8EVCLN6NPoMijbyER2jj6ISpHbvi7jbBUNayvl/sL33nHeDtt41/rk7czdNPG9f9/Or7tyAiS2OQTkREZjPYxfHrkX3kTegrC2XrCpUTvLtPhUfUk1AobSz+KOb+cgbx0/+GNr9ctmYX5IqwZXfC46awZv34/pGeIm0KTSqTt60U3GxtMS6yE55qHwF7m9o/xr//bhw2ZG5aaL9+wKpVQP/+db16ImpoDNKJiEhGU5qKrAOvoix9u8lHxynwBmkokaXbKgoiKI+f+Tdyfz5jct33ke4IefNmqNyb77jLo/m5eOv0cRzOzzXbsWVE+wiMj+wED7vaf0oQH28MzjduNL3u6wssWACMHAnUooU6ETUiBulERHSRwaBHYfRXyDm20ORQIqWdB3z7zIZr++EWb6soFPwTK20O1WTKW4/Y+jojdMkweN0e1WyfsZSyUilzvrGGTaH/C2qHaR27ItjZpdb3e6XSFhGQjxsHzJ0LeNR+rykRNSIG6UREJKksikfWgZkozzpg8hFxCf4ffPu8BpWjr8UfMbEhNHHOVmR9dtTkutddHRG66HbYejs1y2erWKPB2phzWBd3AZV6vclj+nh649UuPdDL0/uq7lt0bRk/HogxXbaPQYOMpS09e9blyomosTBIbwFWr14tfenEbGcioqtk0OtQcP4j5J5YCoNOLVu3cfSTJoa6tL21QR7b4oMpiBm3EeqEfPm53R0QuuA2eN/XuUEy9w1NZzDg+6R4LDl3CrmV8sdWCHZyxoxO3TEssM1V/R2Tk41dW376yfS62AwqsusjRnBaKFFzpDCInSvUIhQVFcHd3R2FhYVwc3Nr7MshomZAXRiNrH3TUZFrei68W/hD8On1KmzsLP+aoq/UIWXxTqSt3Avo5b+K3G8KQ/jyO2EX6IrmaE9OFt48fQzniuSbbqs2hb4Y2RlPtA+/qk2hogGMGEgk2iaWmthvytIWopYRrzGTTkTUChn0WuSf/QB5J1fAoJf3Hlc5t4X/NfPhFHBdg5y/7Fw2Ysb+irJT8p7rSidbhLwxVGqv2Byz5wmlJZh/5jg2ZaSZXFcpFFJg/mJUZ3jaXV1P+Z07gRdeAE6fNr0+YACwZg3Qq1ddrpyImhIG6URErYy64Bwy902HOu+kiVUF3KOehE+PaVDa1m7U/NUw6A3I+OAgkt76Fwa1vETPpU8bhK++C45hXmhuRI9zMYzo07hos8OIhvoH4uXOPRDucnWfDmRnA9OnA59+anrd2xtYuBAYNYpdW4haCgbpRESthEGvQd7p95B3ehWglw/NsXVtD/9rFsHRr1+DnF+dWoTYFzeiaGeibE2hUqLt9OsRNP5a6c8tre68g6s7ZnXpcVWTQgWxx/Sjj4AZM4D8fNMDiZ591tjVRQTqRNRyMEgnImoF1Plnjdnz/FPyRYUSHh1Hw7vbFChVlu89LrY+5f50Wup9riuSB7GOHX0QsfpuOHcLQHNzIDcbc08dw+miApPr3nb2mNKxKx4ODoXNVZbunDgBPP88sHev6XXRrWXtWuCaa+py5UTU1DFIJyJqxdlzO7cI+A9YBAefhililgYTzfgLuRvOmlwPfL4/2r1yI5QOzevXUVp5GRacOWG237mtQoGRYZEYH9lZ2iB6NcRmULEpdOlSwFTTLldXYN48YOxYQNW8HjYiugr835uIqCXXnu+dZiZ7bgPPTs/Bq9uLUNpc3ebF2ircEY/YCb+hMr1YtmbXxg3hK/8H9+vbozmp0OnwQex5vBd9DhV6021vb/EPwsuduyP0KuvOBTEpVPQ8T0oyvf7II8bgPTDwqu+aiJoZBulERC2xc8uZtcg9tdJ09tw9Ev4DFsPBu3uDnF9foUXSW9uQ8b7poUg+D3RF+/m3QuVu+dKahiJKdv7OSMW808eRWl5m8pgoVzfM7tLzquvOhZQU4MUXgZ9/Nr0eEWHs2nLLLVd910TUTDFIJyJqYX3PM/dOhTrvhHxRoYRnp+cbNHteejoLMWN/QfnZbNmajYcDwt65Hd73dEZzEl1chDmnjmJ3TpbJdXdbW0zu0BWPh4RBJZqUXwVRzrJ6NfDqq0BJiXzdzg6YORN4+WXAofm8pyEiC2CQTkTUUqaGnltnnBpqou+5MXv+Dhy8ezTQ+Q1S5lxk0A2V8jIQ9xvaI/zdu5rVYCLRUnHF+dP4LCFG6uBSnQjHHwsJx+QOXeBlf/Vveo4eBcaMAQ4dMr1+443Ae+8BHTvW5eqJqLljkE5E1MxVFsUhc980VOQcMZM9F7XnExssey5qzmPGi9aKCfLT29sgePZNCHimHxTK5jGYSG8w4KfkBCw8e9JsS8VrvH3xWpee6OzucdX3LzaGvv66cWqoqY2hPj7AkiXAiBHGFotE1DoxSCciaqYMBj0KL3yGnGOLYNBVyNZt3cIRILLnDdS5RcjdeA7xU/+UurhU59TFDxFr7oZTJz80FycL8vH6qSM4mp9ncj3QwRGvdOmBOwPb1mka6p9/GieGJspbxUuefhpYtIg9z4mIQToRUbOkKUmRsuflWftMrCrg0emZBut7LuhKKpEwazOyvz5u6vQIfOEatHt5MJT2zSMXVFBZicXnTuLrxDiYmhVqp1RiTHgHvBDREU516HuYmQlMmgR8+63pdVHSInqeDx589ddORC1T83j1JCKii11GimK/Q/aReTBoS2WPiq1Le/hf+w4cffs22CNWfDgVMS/8CnWCfASmXZArwlfdBffr2jeb0pZvk+Kx+OxJ5GvktfzCzf5BmN2lB4KdXa76/kUp+yefAFOnmp4YKjaGzpoFTJ8O1KGsnYhaMAbpRETNhLYsE5n7Z6IsfZvJdfeop+DTcwaUKscGOb9Bp0fayr1IXrQD0MnzzV53d0TY4mFQeTTM+S3tREEeZp88ghMFJqJnAO2dXfB6l5640b9uTcmjo40bQ7dtM78x9P33gaioOt09EbVwDNKJiJqB4oSNyDo0G/rKQtmayrmN1LnFyf/aBju/OrkQMeN+RfE++YRNpbMdQuffCp+Hu9WpTruplbY42thgfGQnjA6Lgr2NzVXfv0YDLF5snBqqNrHv1NPTuDF05EhuDCUi8xikExE1YTp1PrIOzkZJ0u8m193CH4JP71mwsW241oY5P59G/LS/oCuSR5wufdtIm0Md2nuiOZS2/CC6tpw5Yba0ZVhgW7zauQfaODnV6RwHDwLPPAOcMNGmXnj0UWNXF7/ms5eWiBoJg3QioiaqNPVfZO6fAV2FicFADr7wv2YBnNsMabDz60rUiJ+5CTnfn5QvKhVo+9J1aDN5EBSqqxvg0xjOFBZIpS1H8nNNroc5u2JOt151mhZa1VbxtdeMAbheL18PCTH2PB82rE53T0StUJ2D9CFDLPOLQXw0unXrVovcFxFRS6DXlCL76FsoivnG5LpL8P/g128ubOwbLntdciQN0c9tgDqxQLZmH+yOiDX3wLV/WzR1xRoNlp8/jU/jo6E3U9oyIbIzRodHSR1c6mLLFmPteXy8fE3c5cSJwNy5gMvV7zslolaszkH6NnM7Ya5Sc6hfbOpWr14tfelMTcUgomalPPsQMve+BE1JkmxNaecOv75vwrX9XQ12fmlz6Kp9SFm4AwatPKz1eaAr2i+4FSo3hybfBef39BTMO30MmRXyHvLC7YFtMKtzzzqXtohuLS+9ZOzeYkq3bsC6dUD//nW6eyJq5RQG8UpWB0qlErfffjtmzJhR55MvWLAAmzZtYnBpIUVFRXB3d0dhYSHc3NwsdbdEZAUGXSVyT65A/tm1gEEeHDsF3iiVt6ic6laOURvqtCLEjvsVRbvlbxBsXO0Ruuh2+NzfBU1dfEkxXj91FDuzM02uhzg5Y0633hjsF1Dnc/z0EzB+PJCRIV8TrRRF6cu0aYCtbZ1PQUStPF6rV016QEAABtdj8sKnn35an9MTEbUI6oLzyNw7Ber8M7I1hcoJvr1fhVv4ow36yWPe7+cRO/l36ArkWWeXfm2Nm0NDPNCUqXU6vB97Hqujz6LSRGG4KGcZG9ERz0d0rFPXFiE93Ricr19vev2GG4APPgA6dKjT3RMR1T9Ij4qKQmBg3XrHXhrki/shImqNDAY9Cs59jNzj78Cgl3cbcfDpA/9rl8DONaTBrkFXpkHia1uQ9flR+aJSgTZTBqHtlOua/ObQPTlZmHXiMOJLS0yu3+DrL2XPRe/zuhCfOX/2GTB5MlAgL9OHqyvwzjvAs88a69CJiBqt3IWaHpa7EDUfmtJUZO6bhvLMvfJFpS28u02GZ6cxUCjrlvGtjdLTWYh5fgPKz+fI1uzaukmbQ90GtENTlq2uwNunj2NDqrxERwhwcMTsLj0xLLBNnT+JSEoybgz9+2/T63feCaxdC7Rt+vtoiai1lLsQEdHVEXmR4oRfkH3oNeg1xbJ1O/coBAxcBnvPzg16DZkfH0biG1thUMs3nHvd08k4OdTdoUn3PP8uKR4Lzp5AkZgeVI1IZo8Ki8SkDl3goqpbYbiomBETQadPB0pMJOh9fICVK4FHHuFQIiKyPAbpRERWolMX/DeY6DcTqwp4dBwN7x5TobSxb7Br0OSWIW7S78j/O1q2pnSyRfu3b4Xvo92bdOetC8WFePX4YRwy0/O8h4cX3ureG13c696iMjYWGD0a2L7d/FCiFSsAX986n4KIyLJBenZ2NtLS0hAeHg4XE01fi4uLcfToUdwgds8QEZGkLGMXMvdOg7Zc3g5E5RQk1Z47+Q9o0EercFcCYsb+Ck2GPC3s1M0fke/fC8cI7yb7jFXodHj3whl8EHseWhOVmq4qW0zv1A2PhoTBpo5vMkQn23ffBV55BSgvl6+LrViitOXuu+t090RElg/StVotnn32WXz++efSf9vZ2eG5557D/Pnz4ejoePG4M2fO4KabbmJbRSIiUTKhUyP32DsoOP+RycfDtf1w+PZ9AzZ2Ddc2VfQ7T1m8E6nLdgMmdiEFPt8f7V69EUr7pvvh6q7sTGljaGJZqcn1u9u0k3qe+zrUvUTn/Hng6aeBPXtMr4vM+uLFgEfTbnJDRC1ErV+RV65cie+++w5z585Fnz59sH37duln4vtff/0Ff/+G691LRNQcqfPPImPPZFQWnjc9mKj/W3ANvrNhryG5ENHP/4KSgymyNVsfJ4SvugseQ8LRVOWq1XjrzHH8nJJocj3YyRlvduuNG+rR81xkz5cuNfY2NzX3KCQE+PBD4JZb6nwKIqKG6+7StWtXPP7443j55Zcvy5rfe++9Utb877//RkREBPbv34+BAwcyk94I2N2FqHm0VnQKuA7+A96ByqnugWVt5G48h7gpf0BXKI883QeHSgG6nX/TnFUvfjWtT0nEW6ePI18jfwxVCgXGhHfAhKjOcKhjz3Ph7Flg1Chg/37T6+PGicF7gInqTiKiptHdJT4+Xgq+L9W5c2fs3btXmjw6aNAg/Pnnn3W7WiKiFkJbloGMfVNRnrFbtqZQ2sGn10y4Rz0FhaLhmmnryzVImG2697nod97ulRsROPYaKJRNc3NoQmmJVNqyOyfL5HofT2+81b0POri51yt7vmSJMXuuVsvXw8OBjz4C6jGvj4ioXmodpPv4+CAzUz5i2dvbG//++y/uvvtuqRZ9xowZ9bsiIqJmqjjpT2QdeBn6ykLZmp1HJwQMXA57j4Yd4FZ2LhvRz21A+dls2Zp9iIe0OdSldxCaIo1ej4/iLmD5+dNQm5gY6qpSYUan7tLGUGU9us/UlD0XdztpEjBvHuDkVOdTEBFZr9zlvvvug4ODA77++muT65WVlXj44Yfxyy+/SK27RAkMWRfLXYgah15TguzDc1EU94OJVQU8Oz0Lr+5TGrS1ongpz/7qOBJe3QR9uVa27n1fZ4S+Mwwq14a7hvo4WZCPmccP4UyRiXGeAIYFtsXrXXvC3+H/GxVYOnsuBmB/8glQ7UNjIqKmXe7y2GOPYcmSJcjNzZWy59WJbi8//fQTxo4dK9WnExG1BuU5R5G5ZzI0JfKNjSqnwP9aK17boNegLapA/NQ/kbvhrOne5/Nvhe8jTbP3eblWi2UXTuOj2AuQ586BQAdHzOnWG7cE1C/7f+4cMHKk+ez5lCnAm28ClzQrIyJqHpl0avqYSSeyHoNei7zTa5B3aiVgkH9y6BL8P/j1nwcbu7rXTddGydE0RI/ZAHWiPAPt1NkPkR/eC8dIHzRFu7Mz8cqJw0gy0VZRvJ14MjQCUzt2rfPE0Krs+fLlwKuvMntORC00k05EREaakhRk7J2MiuxDsodEqXKBb785Uv/zhsxci/xKxtoDSJr3LwwaeQ7a/+k+CHljKJQOTe9lvrCyEm+fOY7vkxNMrndwdcP8Hn3Ry7N+g5Wio42157vle3iZPSeiJq/pvXoTETVhRQm/IPvgbOg1xbI1B58+CBi4DLYu7Rr0GjS5ZYh98TcUbI6Rrdm4OyB8+Z3wurMDmqK/0lPw2smjyFbL20LaKZUYH9kJz0V0lP5cV2LP6erVgOhjYGpqaGSksfZ80KA6n4KIqHkF6WIq6Q8//ICtW7ciLS0NFaamQkgZDIV0DBFRc6HTFCP74GsoTtggX1TYwKvri/DqMhYKZcPmPor2JiHm+V9QmS5/k+DSry0i194D+3YNW2JTF9kVFXjt1BH8lZ5qcr2vlw8WdO+DcNf6TV5NSDBmz7dtk6+JDzYmTgTeeoudW4io6bPYb5Ps7GzceuutOHHihPQxbE2a4uYlIiJzyrOPIGPPJGhLk2VrKud2UmtFR9/eDfoAGnR6pC7fg5R3dgL6aq+xCiBo4kC0nXY9lLZ1H+zTEMTvg59SEjHv9DEUajSydZf/2io+Vs+2iuLXjuhrPnkyUFIiXw8LM2bPb7ihzqcgImqeQfr06dNx/PhxaeroCy+8gMjISLi6ulrq7omIrM6g1yHv9Gqzm0NF3bmoP7exbdjXusrMEsSM/QVFO+UdZGx9nRG++m543BiKpia1rAyvnDiEHdnyGRvCTX4BmNe9D4Ic69eQPDUVePZZwNw8PTE1dOFCwNm5XqchImqeQfpvv/0Gf39/7Nu3D15eXpa6WyKiRqEpTUXGHrE59KBsTWnrCr9+8+Da/u4Gv46CbfGIHfsLNDllsjX3waEIX3UX7Pyb1sx6vcGArxPjsODMCZTq5D3bPW3t8HrXXri7Tbt6fbIqsufffGMMwgtMtFcPDgY+/hgYOrTOpyAiav5Benl5OW6//XYG6ETU7BUn/oasA6+Y3hzq29e4OdS5bYNeg0GrR/KiHUhbsQeoXkFoo0C7GTcg6MWBUCibVvlgQmmJNJRof6584qkgAvPXuvSCt339hirl5ADPPw/89JPp9dGjgaVLgRq6mxERNWl13z5fjShvEYE6/b/169fjuuuug4+PD+zt7REWFoYpU6YgPz//sodp27ZtUjap+lfXrl35cBJZkV5Tisx9M5Cxe4I8QBebQ7tNRtuh3zZ4gK5OK8KZ4V8ibbk8QLcLckXnn59Am0mDmlSArjMYpIFEw7ZtMhmg+zs44MN+g7Ci94B6B+gbNwLi5dFUgB4YKD7ZBdatY4BORM2bxTLpo0ePxowZM5CSkoK2bRv2F1hzkZeXhxtvvBHTpk2TmtafPHkSc+bMkWr3TXW3WbduHbp06XLxv52c6lenSUS1V5F3SgrONcXy3t0q57b/bQ7t0+APaf6WGMSO3whtnjzp4XFrBMJX/g+2Xk3rtSG2pBjTjx3Ekfxck+sPBYfi1c7d4WZrV6/zFBUZJ4OKDaKmPPoosGoVwIpLImoJLBakjx8/Hjt37sSQIUPw7rvv4pZbboGyHn1uW4Jnnnnmsv8WAbuDgwPGjBmDpKQkBIuCyUuIAH3AgAFWvkqi1s1g0KPg3EfIOf6OSKXL1l1D7oFvv7mwsWvYugm9Rofkt7cjffU+2ZpCpUTw7JsQ8Hz/JtUdS2TP18VewNLzp1ApmpNX08bRSRpKdL2vf73PtX078NRTQKJ87yy8vYH33gMefLDepyEiajIs2tD3/fffx+DBg3HHHXdApVIhMDDQZKAufsnExsaiNaraVKsx0YqMiKxLW56NzL0voSxjp2xNoXKGX7834RY6vMGvQ51SiOgxG1BySN5D3D7YHZEfDIdL7yA0JdHFRZh27CCOF+SZXB/RPlxqreisqt+vGTFu49VXgWXLjBtFq/vf/4APPwQCAup1GiKilhukJycn4/rrr5e+i764IggV2WJTLJUJOn/+PDZt2oTDhw9LX2fPnoVOp8Obb76JWbNmXfH2YvDS6tWrpfKTyspKqX3k448/jsmTJ8PW1haWIq5JPB6nTp2Syl3Em5jw8HDZcffccw9ycnKkGnbx5wULFnAjLlEDKU3bhsy9U6FTy0s07L17IGDgCti5hjT445//dzRiJmyErkA+/M3zjiiEr/gfVO4OaCq0ej3WxV3AsvOnTWbPQ5ycsbBnP1zj7Vvvcx09CowYAZw+LV9zcQFWrDAOLmpCHy4QETW9IF3Uo4ugXGyUFJsjxUZSF/Eq2oDee+89rBCv0nUwadIk6bYi4y9KdMS1/vPPP9LfY+PGjVLw7+joaJHr9Pb2RmFhofRnMfDp+++/v2xd1Ku/9NJLUjmMuI79+/dj/vz52Lt3Lw4dOiRtOiUiy9Dr1Mg99g4KzpsqbFbAs/Pz8O4+GQqlbcOXt8zbhvT39suvws4GIW8Mgf/ovk2qvKWm7Lm4yqfDIvFSh65wrGf2XKcDFi0CXn9dfOooXx882DiYKLTptYYnImp6QfqWLVsQEhKCzZs3Wy2oFN1Ppk6dil69eqF37954++238cUXX1zxdhs2bJACdBEQb9++XbqtILLYImDftWsXZs+ejcWLF1+8zaeffopRImVTi+z8Aw88IOveUlZWJm0cnTdvHu666y7pcbKxMU4GFNcvvqqIYF1ckwjov/nmG4wcOfKqHhciMq2yKA4Zu1+EOl+emrVx9EPAtcvgFDCwwR8+dfJ/5S2HTZS3hHggct1wuPQIRFOqPf8w9rzZ7Hmoswve6dkPfbx86n0uUQn55JPAnj3yNfGr5e23RZIFaOVbnoioFbBon/SbbrrJqlnf6hsza7tRVQTzwsyZMy8G6IIoM1mzZo1UtrNq1SopUBdZbmH48OG12tTZpk0b2c969uwpfR84cKD0Z3E/P//8syyYv5TYeCvq1w8ePMggnaieRAlecfxPyDr0Ogxa+VAg5zZD4X/NItg4eDVqeYvX3R0RtvQOqNyaTnlLbHERph47iGMmsufiFXd0eBSmdOgKh/+SDnUl6s1F1xYRgJeWytfFy+iXX4oN9vU6DRFR6wvSO3fuLLUcbOpSU1OlwFd47LHHZOuiXKddu3ZSbf0ff/yBR0VPr/9KUqoC9voQbwrEx9cxMTG1Or4pfdRN1BzpNMXIOjALJYm/ytYUSjv49HoF7lFPNvj/a1J5y1vbkL7GTHnLnKHwf7pPk/l/XmTPP467gMXnTpnNni/u2R+9vbzrfa6sLODZZ4Ff5U+RlDGfOdNY+mJXvw6OREStM0ifMGECnn76aWlzZFMewnNU7ET6r8tKqJmCxr59+0pBuji2Kki3lN27d0tZPTHYqCZ///239Kanf//+Zo9Rq9XSV5Ui0USYiC6qyDmG9N0vQluaLHtU7NwiEDBoJew9OzX4I6ZOLUL0sz+b7t7S3hNR64bDuXvTaU8S/1/f80Mm+p6LtxCjw6LwUsf6Z88FMXhITAcVgXp1Yn/955+LTyHrfRoiotYbpD/xxBM4c+aMVNMtuqsMGzZM1ge8KYiPj5e+13RtIpN+6bF1ddttt2Ho0KFS/3NRBiSC/nfeeQfdu3fHvffee9ljJ94w9OnTB66urtLG0YULF0qlMY888ojZ+xebS0W3GCIy0fv87IfIOb4YMGhlD49bxKPw7T0bSpVlNodfcTjRuI3Q5pc3+fIWvcGAzxNisPDMSVTodbL19lL23DK156KkRQwm+uAD0+tjxgBLlhi7uBARtUYWC9KrNkEKY8eOrfFY8XGuViv/xWkNxcXGUd/Ozs5mj6nqSlPfzLTIgn/55ZcXg/327dtLj43ofmN3yee2Ioj/+uuvpc2sorZfTGwVE1xff/31y46r7uWXX5buq4q43qo3GEStuvf5vqkoS98hW1PausHvmvlwDb6jwa/DoNUjef52pL2713R5y9yb4T/KWP7WFKSUlUrZ87252bI1cYWjQiMxtWP9O7cIBw6I5AQQHS1f8/MT05eBu+6q92mIiJo1iwXpooSjIY5tzsQnCuLrSkSwLb6ulsjOsz0j0f8rTd+JzL1ToKvIkT0sDj59EDBoOWyd2zb4Q1aZXozoMT+jeH9Kk+/eIl6Pv0uKx7zTx1GqkydPgp2cpc4t/S3Q91zkZubPB8QHgKLNYnV3320cTCQCdSKi1s5iQbrexMaipkiUkwilptoH/KekpET67ubWsGPAicgyDHoNck8sRf6ZtSZWFfDsMhbe3SZBobTokGWTCv6NQ8y4X6HNkXeR8bqzA8JW3NlkylsyK8rx8vFD+Dcrw+T6E+3DMdMCU0OrWiuKwUR75R8sQHywuXy5sTa9iXywQETU6Br+N1YTI0pOBLEx1Jyqtapjiajp0pSkSL3PK3KNm8Ibq/e5QadHyuJdSF26C6j2YaHCVongN4Yi4JmmMZxIZM83piXjtZNHUGhiWlCQoxMW9eiLQb7+FjiXmDMBvPiiSIDI10VnWzHeIiKi3qciImpRWl2QXjU0KDc3V6oVN9XhRUz5FC7tod6UrV69WvrSmfr8mKgFK076A1n7Z0KvMe41uZRT0E3wH/AOVA71bxF4JZVZJYh54VcU7UyQrdm1c0fUh8Ph0jsITUGeWo1ZJ4/gz3R5KY7wUHAoZnXuAVfb+k9czc0FnnsO+Okn+ZrYxjR7NvDqq4AFEvVERC2OxWa2icmYoq3gX3/9ZfYYsSaO+fHHH9FYxKbMfv36SX8WmzWrE9NGRSZd1HrfcUfDby6zhHHjxkmddar6vxO1dHpthdT7PGPXOHmArrSFT+9ZCBr8kVUC9KK9STg59GOTAbrn7ZHovvXpJhOgb81Mw23b/zYZoPvaO+Cj/tdhYY++FgnQt24Func3HaCL1oq7dhl7nzNAJyKyQpBeUFAgtWA0R0wkzc/Px1dffYXG9Morr0jfFyxYgCNHjlz8uciuV3WmGT9+vEWGFxGRZakLo5H8970ojJG/jti6hKDdrT/Bs+PoBi8rMegNSF25B2eGfwVNZrU6DhuFVN4S9dkDUHk0fJvHKynRajDz+CE8c2A3ci6ZrVDl7jbt8PeNt2KIf/03s4q7nzoVuPlmIC1Nvi4GRR87ZixzISIi8xQGC7VaEfXb4mvbtm01HnfjjTciKSkJcXFx9T6nCLAvbfcYGxuLnJwcKVvepk2biz//+eefERh4+S+fiRMnYuXKlbC1tZV6mYuWjFu3bpXeaAwaNAibN2+Go2Pj/3K9GqIFo3hjUVhYyE2v1OKIl6qiuB+QfegNGHTynuOuIffAt/+bsLE1bg5vSKLnecz4jSjYLJ8cbBfoisgP7oXrNU2jHer+3GxMPXoAKeXyjayetnZ4s3tv3BlkmWs9c0ZMcgaOH5eveXkZWysOH26RUxERNVu1jdcsVgmYkZEhBbdXIoLnA6JJroX+kmLwT3UpKSnSV5VLp3JWET3JxfWKWu49e/ZAo9EgPDwcM2fOxOTJk2vsT05E1qXXlEjlLcWJv8jWFDaO8O07B25hD1hlU2bJkTRceGY9KlPkcxTcbwpDxOq7YOtjfg6Dtah1Oiw5fwrrYi9U38cqEVnzBd37wteh/p1mRKpn7VrjcKKKCvn6LbcYN48GNY2qHyKiZsFiQbqTk5NULnIl4hhLBcAiK1+fDwIeeugh6YuImq6KvFPI2DUBmhITmzI9OiBw0CrYuTd8axDxWpP50SEkvr4VBk21lrNKBdpOvx5tJg2CQtn43VvOFBZgytH9OF8sfyPhbKPC7K498VC79hZ5U5OdbSxh+fVX+Zp4qV+40NjZRWmx4koiotbBYkG6mJq5e/du5OXlwUt8rmmCWBMbM7t27Wqp0xK7u1ALJYLiwgufIefofBj0lbJ198gn4NPrVShVDd9zXFusRtzk35H36znZmq2PEyLevxfu1zd+y1adwYAPY89j6blT0JhIYPTz8sGSXv3Rzskymf5Nm4CnnhKfpMrXxMu82H4kNo8SEdHVs1hu4/7775cGBD3xxBMoK5PXPopx9yNGjJC+P/DAA5Y6LbG7C7VAuspCpO98HtmH58gCdKWtKwKuWw2/fm9aJUAvO5OFU7d8YjJAd722Hbr9M7pJBOhJpSV4ZM82LDx7Uhag2ymVeKVzd3wz8EaLBOiigvCll4DbbjMdoE+YAIiqRgboRERNYOOoCL779u2Lc+fOSZs0H3vsMXTs2FFaEz8T3V/S0tLQoUMHqQ+5KI8hy+LGUWoJynOOImP3BGhLU2Vr9t49EDjoXdi6WGdTZva3JxA/4y/oy7WytaAJ16Ldy4OhUDVuHYd4Cf8hOQFzTx1DqU5+nZ3c3LGs1zXo4GaZblXnzgGPPmrs0FKdnx/wySdAM+leS0TUpOM1iwXpgtisOXz4cBw+fFhW6yhOIwYJiU4rwcHBljolXYJBOjVnBoMeBWc/RM7xxYBBHmx6dHoWPt2nQmHT8Ju69eUaJLy6GVlfyiNRGw8HRKy6C563RqKx5arVeOXEIWzKkPc6FG8dno/oiIkdukiZ9PoSvylEd5aJE0VSRr4+bJgxQPev/5BSIqIWzerdXQTR+lB0btm4caM0uCgxMVH6uQjKb7/9dtx9991NYiQ2ETUtuoo8ZOybirK0f2VrNvZe8L92CZyDbrTKtVTE5+PC6PUoO5UpW3PuGYjIdcPhEOyBxvZvZjqmHz9osu95sJOzVHve18vHIufKywPGjDE9mMjeHnjnHTFbAuDLOxGR5Vg0k06Ni5l0ao7Ksw4gffeL0JXLg2JHv/4IGLgCKqcAq1xL3h/nETvhN+iK5YGv/6jeCJl7M5T2jTvDvkyrxdtnjuOrRNOzJh4KDsXsLj3goqr/1FBh+3bgiSfEJ6XytS5dxCA7oFs3i5yKiKhVKGqMTDo1DtHrXXzpdDo+BdSsylvyT69B7sllYnxntVUFvLpOkL4UyoZ/mdJrdEh+axvS18jnLiidbBG25A743N8Fje14QR4mHdmPhNJqE04BeNvZY36PvrglwDLNyLVaYM4c4K23jKUu1Y0bZ8ygN7OZb0REzQYz6S0IM+nUXGjLs5G5dwrKMnbJ1mwcfBEwcBmcAq48HM0SKjOKET1mA4r3JcvWHKO8EfXx/XCMskzZSF1p9Xq8F3MOKy+cgdZExDzELxALevaFr71lut0kJBgnh+7dK1/z9gY+/hi4+26LnIqIqNUpauhM+ttvv40ePXrgzjvvrOtd4Pfff8fx48fxyiuv1Pk+iKh5Kcvci4zdE6GryJatOQYMQsC1y6By9LXKtRTuTkTMmA3QZJfK1rzv64KwxcNg49K404eTy0ox5ch+HMqXD4tztLHBrM498GhImMX2+3z3HfDcc0BhoXxtyBDg88/F5GiLnIqIiBoik65UKjFy5Eh8LFIqdTRq1Ch8/vnnLNOwEGbSqSkz6HXIO70aeadWyMtbFEp4d5sMzy5joVA0fEtDg96AtFV7kfz2dkB/+Uugws4GIW/eDP+RvRt1o7t4aV6fkog3Th1Fiag9qaaHhxeW9uqPMBdXi5yvtNQ4GdTUS7pKBcybB0ybxsmhRET1xZp0ImpS5S0ZeyahPHOPbM3G0R+Bg1bA0e8a61xLQbm0OTT/72jZml1bN0R9dB9celmmrruuCior8eqJw/gjXb5bU7yFmRDVGeMiO8HWAq0VBdHz/JFHgPPn5WthYcbNof37W+RURERUS/XakfXjjz9i27Ztdb59Tk5OfU5PRM1AWcYeZOwR5S3y/9+dAgdL7RVVDt5WuZbSkxm4MGo91EkFsjWPm8MRvuou2Ho17qC1vTlZmHL0ADIqyk22VhSDiXp7WebxEp+jvvuuMUNeeflgV4no6rJ6NVBDySQRETXFIL2kpET6qg/2TSdqweUtp95F3qmV4r8uX1TYwLvHVHh2GmOV8hYh66tjiJ/5Nwzqal2QlAq0m3EDgiYOhELZeOUtlXo9lpw7hQ9jz1d/tCQPtWuP2V17Wqy1osiRPP00sHGjfM3FBVizBhgxwiKnIiIiawbp8fHxdb0pEbXi8haVUyACBq2Eo29fq1yLmB4a//ImZH99XH4tPk6IXHsP3G8IRWOKKS6SWiueLjKR4be1w/wefXB7YFuLnU98APr440CafFAp+vY1lrdERFjsdEREZM0gPSQkpK43JQtjn3RqSsoydksBusnylqCbEDBgMWwcvBp9eqhL3zbS9FD7ILdG3Rz6dWIc5p0+jgq9fM7BIB8/aXKov4NlmpGL/adz5xo3gZpqGTB1qrEvul3jNrQhIiL2SW9Z2N2FGr97yyrknVxhsrzFp8c0eHR61mrlLXl/XUDs+I3QFcmnhwaM6Yfg14ZAaWeDxpKrVmPm8UPYkilPZ9splZjesRtGhUVCaaEOM8nJxt7nu+St6eHnB3z2GXD77RY5FRER1YDdXYjIyuUtk1GeubvRy1sMWj2SF+5A2gp5qY3S2Q7hy++A9z2d0Zh2ZGVg6rGDyFZXyNaiXN2kzaGd3T0sdr4NG4z15/n58rVbbjH2Pg8IsNjpiIjIAhp+3jYRtdrhRFJ5y7VLYGPvaZVrEUOJop/fgKKdiU1yeqhap8M7507iozh5+0fhqdAIzOzUHQ42lsnwV1QYO7esWmW697kobRElLhbq5EhERBbEIJ2IGmA4kfW7txQfSMGFZ9ZDkyHvOOU9vDPCltzRqNNDxebQF4/sw9ki+ShPbzt7vNOzH27yD7TY+UTP84cfBo7L98uifXvg22+Ba6zTmp6IiOqAQToRXTVtRQ4y90xGWYa8wFnlGGAsb/HrZ7XNl5kfHULia1ulUpdLKVRKhMwdCv/RfRut3au4vm8S4/Cmmc2hN/oFYFHPfvC1d7DYOUX5ytixximi1T30EPDBB4C7u8VOR0REDYBBOhFdlfKs/UgX5S3lmSaHEwVcu9Rq3Vt0JZWIm/oHctefka3ZBbpK3Vtc+1mudeHVyq80bg7dlGF6c+jLnbvjqfYRFnsDIcZWjBtnDNKrc3QEVq4ERo8W8ykscjoiImoOQfrEiRPRp08fPPnkk5a6SyJqQgwGPfLPvI/cE0sAQ7WMsEIJ7+4vwbPz81YrbymPzsGFp9ej/Ly81aPb9SGIXHsvbH2d0Vj2SJND9yNTFIZX08HVDct7D0BHN8uls0VZiyhvEWUu1XXpAnz3nfE7ERE1DwqD+CzWApRKpfRVVlYGOzbZbRRswUgNRafOR8bel1CW9q9szcbRD4FSeYv1CpxzN55D7Iu/QV8qn2UfNGmgNEFUYdM4uyE1ej2WnT+NtTHnTE4OtfTmUPEKvnYtMHkyoJZ3m8SzzwLLlwNOThY5HRERNccWjCLe37dvH7Zv347c3Fz4+PhgwIABuOGGGxi4NyAOM6KGVJ5zFBm7xkNbJi/ZcAq4Dv4Dl0HlYJ2OKaLmPGnev0hfs1+2ZuNmj/BVd8Hr9ig0lsTSEmlz6IkCea9DLzs7qfZ8qH+Qxc5XUGAMwn/8Ub7m6gp8+KExu05ERK08k35pXaW426r/9vb2xuTJkzFt2jSoRN8vahDMpJMlif+HC85/jJyjC0R0XG1VAa9uk+DVZRwUSusMBKrMKkH0mA0o3pMkW3Pq7Ieoj++DQ5h1auFNWZ+ciNdOHkGprvpjBVzn448lvfrBz0KTQ4WDB40BeHy8fK1PH2N5S3i4xU5HRERWjtcsHqSL70OHDkVUVJR0ESKrnpiYKK3169cPf/75Jzw9rdMzubVhkE6WoqssQua+aShN2SRbs3HwQcDAFXAKGGi1B7ym9oo+D3VD6KLbYeNka7XruezaNBrMPnkEv6TK3zzYKhSY1qkbRodFWWxyqHjFFuUrM2YAGo18fdIkYMECwN7eIqcjIqKWUO5ia2uLf/75BwMHXv7Le+/evZgwYQIOHDiABx54AFu2bGm0dmhEVLOKvJNI3zkO2tJk2Zqj3wCpvaLK0bfx2yva2aD9vFvg91SvRns9OZafh4lH9iGpTN7rMNTZBSt7D0BXD8slJXJzgVGjgI0b5WteXsCnnwJ33WWx0xERUSOyaJA+ePBgWYAuXHvttVKt+hNPPIEffvgB3333HR555BFLnpqILBAQF8Z8hZzDb8Kgl2/I9OoyHl7dJkKhtE7Jmq60EnEv/Ync9adla3Zt3BD10X1w6W25+u6roTcY8EHseSw5dwpaEx9GPtiuPV7v2gvOFizv27MHEC+byfL3Thg0CPjmG6BdO4udjoiIGpnF2h84ODhIG0XNEbXoH374oZTe/1Ske4ioydBrSpCxZyKyD86WBehKe08E3fgpvHu8ZLUAvTwuD6fu+MxkgO5+Q3t02zyq0QL07IoKPLlvBxaePSkL0F1VKrzbe4C0QdRSAbpeDyxcCNxwgzxAFx8gvPIKsG0bA3QiopbGYr9xg4KCcOrUqRqPcXV1lbLtu3fvttRpiaie1AXnkL5zLDTF8h2IDj59pPIWW2frBcR5f15A7PiN0BWrm1x7xW2Z6Zh67CByK+XX1tvTGyt6X4O2TpbrzZ6dDYjRE3/9JV/z8wO++AK49VaLnY6IiJoQi/2mE2UuIkj/+eefazxOZNRFwTwRNb6iuB+R/PdwkwG6R8dn0Pbmb6wWoBt0eiS9vQ0XnvpRFqDbuNoj6vMHEPzKjY0SoFfq9Zh3+jhGHdglC9BFNfz4yE74buCNFg3Qd+wAevY0HaDfdBNw7BgDdCKilsxiv+3ExlCxeWvEiBF4//33TR5TUFCAbdu2wU+kgIio0ei15cjcN13q4GLQXT4RU2nrisAb3odv71ehUFqnY4omtwznHvkOacv3yNYcO/mi6+ZRjdb/PKG0BA/s+gcfxV2Qrfk7OODrawfjpY5doVIqLVbe8tZbxkA8LU1e3vLGG8DmzUBgoEVOR0RELb3cRbRXXLBgAaZPn46xY8dixYoVePDBB6UMu4eHB6Kjo7Fo0SLk5eVhlGhPQESNorIoDum7xqKyQD4/3t6rGwKvWwVbl2CrXU/JsXRcePonVKbIP2Hzvq8LwpYMg42zHRrDzymJmH3CdO/zof6BWNSjH7ws2OswKwsYMQLYJO98iYAA4OuvjcE7ERG1fBbrk17lp59+krLqGRkZsrZo4lSBgYHYv38/2rZta8nTtmqXThy9cOHCFftuUutVnPQ7svbNhF4r7zfuHvkEfHrPgtLGeg22s746hviZf8Og1l32c4VKiZC5Q+E/um+jtFcs1Wrx+skj+CklUbZmp1Ti5c7d8VT7CIte2/btwKOPAunp8rVbbjHWn/v7W+x0RETUWoYZXUqj0WD9+vX4448/cOzYMWRmZkoXM2TIEMyaNQtt2rSx9CmJw4yoBgZdJbKPvo3CC5/J1hQqJ/j3nw/X9ndb7THUV2iR8MomZH15TLZm6++CqHXD4XpN4/QTPF2YjwmH9yG+VP5GJszZFe/2GYDO7h4WO58ob5k/H3jtNeOfLyUqaObMMXZwsVA1DRERteYgnRoHJ46SKZrSFKTvGg917nHZmp17FAKvWwM7d+vNj1enFOLC0+tRekyeMnYd0A6RHw6Hnb8LrE28FH4aH4MFZ09IG0Wre+i/3udOFux9Lrq3PPGE6fIWUXMuep8PHmyx0xERUWudOEpETUtp2jZk7JkMfWWBbM019D749XsTSpWT1a6ncEc8op/bAG1uuWwt4Ll+CH5tCJS2NrC2/Eo1ph87hC2Z1XZqAnBRqfBW9z64u41l6/R37jQOJ6q+OVQQbRVFeQv32BMRtV4M0olaIINeh9yTy5B/erVsTaG0g2/fOXALf9hq9d4iS5327j4kv71NjOu8bE3pZIuwZXfAZ3gXNIYDudmYdGQ/0ivkbxy6e3hiZe8BCHG2XGa/ajjR7NmA7vJSfKmk5c03gZkzWd5CRNTaMUgnamG05dnS9NDyzL2yNVuXEARevwb2np2tdj26EjViX/wNeb/Ju8k4hHkh6pP74NTJ+m1ZdQYD1kSfxfLzpyEvbgHGhHeQWiuKjaKWkpNj7N5iqvd5UJCxvEVMFiUiImKQTtSClGftR/ruF6Erz5KtObe7Hf7XLISNnfU6/5RH5+D8yJ9QEZ0rW/O8PRLhq+6Cys0B1pZVUY7JRw9gT478cfK2s8eSXv0x2C/AoucUg5YffhhITZWvsbyFiIiqY5BO1AKIcpL8s+8j9/hi0crl8kWFCj69ZsKjw9NWbWeY99s5xEz4DfrSymrXA7SbORhBEwdCobR+e8XtWRl46egB2eRQYaCPH5b16g8/B0eLlrcsWQK8/LLp8hZ2byEiIlMYpBM1c7rKImTufQmlqVtkayqnQAQMeheOvn2sdj0GnR7J87cjbaW83MbGwwGRa++Fx5AwWJtGr8eSc6fwfqy87MZGocCkqC54IbKj9GdLycsDRo4ENm6Ur3E4ERER1YRBOlEzVpF3Cuk7x0Jbmixbcwq4Dv4Dl0Pl4G2169HkliHmuQ0o3JEgv56u/oj65H44hFiux3htpZSV4sUj+3A0P0+2FujgiBW9B6Cft49Fz3ngAPDQQ0CifB4ShgwxTg/lcCIiIjKHQTpRMy1vKYr9BtmH5sCgr1ZOAgW8uk2EV5fxUCit186w9EQGzo/6CZXJhbI1n4e6Ieyd26F0tIW1/Z2eiunHD6JIo5Gt3ewfhHd69oOHnZ3FzicmT7z7LjB1qhjsdvmaSNKLoUWis4uN9TtNEhFRM8IgnaiZ0WvLkXXgVRQn/Cxbs7H3gv/AZXAOtG6LkOxvTyBu2p8wqC8vulaolAiZdwv8R/W2aj28oNbp8PaZE/g8IUa2Jjq2zOzUHSNDIyx6XYWFwOjRwE8/ydd8fYGvvgJuucVipyMiohaMQTpRM1JZFCeVt1QWmmhn6NNbqj+3dQ6y2vXoK3VInL0ZmZ8cka3Z+rsg6qP74Nq/LawtvqQYEw7vw+ki+RCnECdnvNvnWnTz8LToOY8dAx58EIiRvyfA9dcD335rbLNIRERUGwzSiZqJ4qQ/kLVvBvTaEtma6Nzi03MGFDaWK9u4ksqMYlx4ej1KDsl7Crpe0xaR6+6Dnb/lhgDV1q+pSXjl+GGU6rSytbuC2knTQ11tbS1a3vLRR8D48YBa3jBG6uoydy6g4qstERFdBf7aaAFWr14tfemq93ejFsGg1yDn6EIUnP9ItqZUucBvwEK4Bt9h1Wsq2peM6GfWQ5NVKlsLeLYvgt8YCqWtdYuuy7VazDl9DN8lxcvW7JVKvNG1Fx4ODrVoeUtpKfDCC8AXX8jXPD2NP7/zToudjoiIWhGFQexAoxahqKgI7u7uKCwshJub9QbWUMPRlmUgfdd4VOQclq3ZeXRA4HVrYOdmvXaG4uUi8+PDSJy9BQbt5XM6lY4qhC6+A74PdoW1xRQXYfzhvThfXCRbi3Bxxao+16KDm7tFz3nuHPDAA8Dp0/K1a64BvvsOCAmx6CmJiKgVxWvMpBM1UWUZu5GxeyJ0avm0TtfQ++DXbx6UKssN3bkSfbkGcdP+Qs73J2Vr9sHuiPrkATh384e1/ZScgNknj6DcxCdJD7ZrL2XQnSxca/LNN8Czzxoz6dVNnAgsWgRYsGEMERG1QgzSiZoYg0GP/NNrkHtymah1uWxNobSDb9834Bb+iFW7pVQkFeDCqJ9QdjJTtuZ+Yygi378XKk/rvWEQyrRaKThfnyJvRO5kY4N53ftgeFvLprJFzfmUKcCaNfI1V1fg44+N2XUiIqL6YpBO1ITo1AXI2PsSytL+ka2pnNsh8Po1cPCybjlJ4fZ4RD+3Adq8ctla0KSBaDfjBihslFa9pvNFhRh3eC9iS4plax3d3KXylnAXV4ueMyHB2L3l0CH5Wo8ewA8/AJGRFj0lERG1YgzSiZqIiryT/00PTZGtObcZCv9rl8DGzrJ11VeqP09ftQ9Jb20D9JdvXVE62yFi1V3wurOD1a6n6pq+T07A6yePQK2//FMG4bGQMMzu0hMOFp4U9NtvwJNPAvn58jXRF10ML3K07gcJRETUwjFIJ2rK00MVSnh3fwmenZ+HQmG9bLWupBKxk35D3q/nZGsOEV7o8NkDcIz0gTWVarV49cRh/JKaJFtzUakwv3tf/K9NO4ueU6s1TgidP1++JoLy994DnnrKoqckIiKSMEgnauzpoQdnozhePqLSxsFbGk7k5H+tVa+pPC4PF0b+iPJzObI1z2FRCF91F1Su9la9prNFBRh/aB/iSuXlLV3dPaThRO2dLduTPSMDePRRYNs2+VpUFPDjj0C3bhY9JRER0UUM0okaSWVRPNJ3jUVlgYlstW9fBA56FyqnAKteU/7mGMS88At0RdWm8iiAtjNuQJtJg6BQKqz6KcO3SfGYc+qoyfKWEe3D8WrnHrC3cHnLjh3Aww8bA/XqRF36unUAu5wSEVFDYpBO1AhKkjchc99U6DXyzLBHh9Hw6TUDCqXlpmJeiUFvQOrSXUh5ZydQbXKCjbsDItbeA8+h4bCmEq0Gs04cMVne4qpSYUGPfrgjqK1FzymmRrzzDvDKK0D1jo5iSOmSJcbJolZsrENERK0Ug3QiKzLotcg9vhj5Z99vMtNDtUUViB2/Efl/RcvWHDv5osOnD8Ah1NPq5S3jDu1FfGmJbK27uyfe7TMAwRYubykoMNaX//qrfK1dO+D774EBAyx6SiIiIrMYpBNZibY8Gxm7J6A8a79szc49SmqvaOdm3Wx1+YUcnB/5Iypi8mRr3vd2QtiyO2HjbGfV8pbvkuLxhpnylpGhEZjZqbvFy1uOHjX2N4+Lk6/ddhvw5ZeAj3X3yRIRUSvHIJ3ICsqzDiJ993joyrNka67t74Ff/7ehVDlZ9bnI++M8YsZthL60WkcZpQLBs29C4NhrrDowSXRvmXXiMDaYLG+xxaKefXF7oGXLW4SPPgLGjTMOKrqU+KvPmQO8+iqgtG4beCIiIgbpRA2dGS44/zFyjs4HDNWKnJW28O3zGtwjHrdqMGzQ6aXa89Slu2VrKi9HaXqo++BQNJXhRKK8ZVXfa9HOydmi5ywrM9aXf/KJfE1kzb/+GrjlFouekoiIqNaYSSdqIHpNCTL3TUdJ8p/y//GcghB43Wo4+PS06uOvLayQurcUbImVrTl180fUJ/fDIdjDqtf0Q1I8Xjt5FBX6am9iADwVGoGXG6C8JSbGWN5y/Lh8TdSdi/pzUYdORETUWBikEzUAdWE00nc+D02RvMjZKeB6BAxcDhsHL6s+9mVns3Bh5E+oiJePzfR5sCvCFg+D0tF6HWXKtFq8dvIIfkpJNNm9ZWGPfhhm4e4twoYNxg2iRUXytYkTgUWLADvrleETERGZxCCdyMKKE35F5oGXYdCWyda8ur4ofSmUls0MX0nuxrOInfAb9GWayxdsFGj/5s3wH93XqiU3McVFGHtoL6JLikwOJ1rV51qEWLh7i5geKurLRRBenYuLsTb9oYcsekoiIqI6Y5BOZCEGXSWyj76NwgufydaUdu4IuHYZnNvcZNXHW9SfJ8/fjrSVe2VrKh8nRK0bDreBIVa9pp9TEvHqicMor96IHMAT7cMxqwGGE9U0PbRzZ+Cnn4COHS16SiIionphkE5kAdqyDKTvGoeKnCOyNXuvbgi8bg1sXdpa95ryyxH9/C8o/FdecuPcKxBRH98P+zZuVrueCp1Oaq0oWixW56JSYX73vvhfG8sXgu/caZwemp4uX3vsMeD9942ZdCIioqaEQTpRPZVl7EHG7hehU+fK1tzCH4Fv3zegtLG36uNcdiYL55/6EerEAtma76PdEbrwdigdrPe/f1xJsdS95VxRoWytk5s7Vve5FqEurhafHrpsGTB9uunpocuXAy+8wOmhRETUNDFIbwFWr14tfelMlA9Qw7ZXFJNDc4+/I0aJXramsLGHb9834R7+oNWfgtxfzyL2RXn9uUKlRMi8W+A/qrdV689/S0vGy8cPoUQUhVfzaHAYXuvaEw4WLm8Rm0KfftpYxlKd6Nryww/ANddY9JREREQWpTCISINahKKiIri7u6OwsBBubtYrY2iNdJVFyNw3DaUpm2RrKud2CLz+PTh4dbF+/fnb25H2rrz+3NbXGZEf3Qe3AdbrK6jW6fDWmeP4IsFEu0cbG7zVvQ/ubWv5evjTp4H77wfOn5ev3Xor8NVXnB5KRERNP15jJp3oKqkLziF9xwvQlCTI1pyDhsB/4FLY2Lk3mfpzlz5BUv25XaBly0lqklxWinGH9uJkobzdY5SrG9b0uRbhrpZ/IykGED37rHFQUXWvvWb8snDSnoiIqEEwSCe6CkXxPyPrwCsw6CqqrSjg3X0KPLuMhUKhbDr154/3QOiC26C0t97/6psyUjH16EEUa6u1ewTwQLv2mNu1FxxVlr2eykrgpZeAVavka56ewJdfAnfcYdFTEhERNSgG6US1ba94ZB4Ko7+QrSntPREwcAWcA69vWvXnb90C/5HWqz/X6PVYdPYk1sVdkK05KG0wt1svPBgcavHzJicb+5vv2ydf69MH+PFHoH17i5+WiIioQTFIJ7oCTVk6MnaOQ0XuUdmavVd3BF6/BrbObZpM//PGqD9PKy/DhMP7cCRf3uEmzNkVq/tei45uli8B2roVeOQRICdHvjZmDLBiBeDgYPHTEhERNTgG6UR1bK/oHvE4fPrMtnp7RW3Bf/Xn/zSN+vPtWRmYfGQ/8jWVsrW7gtrh7R594KKyteg59XpgwQJg9mzjny8lgvL33gNGjrToKYmIiKyKQTpRHdor+vV7C25h91v9sSs7l43zT/4IdUJ+o9ef6wwGrDh/Gquiz6J6iyg7pRKvdemJx0LCLF5uU1AAPPkksHGjfC083Nh2sUcPi56SiIjI6hikE1Wj0xQjc69or/i37LGxdQmW2ivae3a2+uOW99s5xIzf2CTqz7PVFZh0ZD/25GTJ1to5OUvdW7p6eFr8vMePA/fdB8TJP0TAXXcBn38OeHhY/LRERERWxyCd6BLqggtI3/k8NMXxTaa9okFvQMrC7UhdtqdJ1J/vz83Gi4f3IUtdvcMNcGtAEN7p2Q9utnYWP68IwJ97DqiodlqlEpg3D5gxw/hnIiKiloBBOtF/ihM2InP/DBh05SbaK06GZ5dxVm+vqC2qQMwLv6Jgc4xszblXIKI+uR/2QdYZXKU3GPBB7HksPndKKnW5lEqhwIxO3TE6LNLi2Xy1Gpg82VhnXp2PD/Dtt8DQoRY9JRERUaNjkE6tnkGvQc7RBSg4/7HssVDaeSBgkGiveIPVH6fy6Byp/rwiNk+25vtId4Quuh1KB+v8L1xQWYmXjh3AP5npsrUAB0es6jMAfbx8GqS94gMPAAcOyNeuucbYXrFtW4ufloiIqNExSKdWTVuehfRd41CRfchMe8XVsHW2fhSY/3c0Yl74BbqSah1TbBRoP+8W+D/dx2r15ycK8jD20F6klsvHeN7g64+lva6Bt729Vdsrjh0LLF0KNMBpiYiImgQG6dRqlWcdQPqu8dBVZMvW3MIfgW/fN6zeXlHUn6cu242UhTtkaypvR0Suuw/ug0Kscy0GA75MjMW808dRWa3PoXh7MKlDF4yP7ASlhd8siEqahQuBV1+Vt1d0dATefx8YMcKipyQiImpyGKRTqyOCz4LznyLn6NuAQXvZmkJpB99+c+Ee/rDVr0tXopa6t+T/IZ/Y6dTNHx0+ewD2ba2zabVEq8Erxw9jY1qybM3bzh4rel+DQb7+Fj9vYaGxv/mGDabbK65fD3TvbvHTEhERNTkM0qlV0WtKkXngZZQkyptsq5zbSO0VHby6Wf26KuLycP6pH1F+Xl7b4fNAV4QtGQalo2UHAplzobhQKm+JLSmWrfX18pHqz/0dHC1+3lOnjO0Vo6Pla2yvSERErQ2DdGo1KovikL7zBVQWmshUB96AgIHLYWNv+d7eV1LwTxyin9sAXWH13oIKhLwxFAHP9bNa/fnPKYl49cRhlOt0srUx4R0wtWNX2DZAn0PRoWX0aKCsWtm7+GuL9oozZ7K9IhERtS4M0qlVKEnZhMy9U6HXyLPDXl0nwKvrRCiUNlYvu0lftQ9Jb20T/Q0vW1N5OiLyg3vhPjjUKtei1ukw9/QxfJ0onxLkqrLF4l79cGtAG4ufV6MBpk8Hli+Xr3l7A19/Ddx6q8VPS0RE1OQxSKcWzaDXIffkUuSfXiNbU9q6wv/apXBpe7PVr0tXpkHclN+Ru/6MbM2pky+iPnsADu2tk9VPKi3BuMN7caqwQLbWxc0Da/pei2BnF4ufNz0deOghYNcu+Vrfvsb2iiHW2SNLRETU5DBIpxZLV5GHjD0TUZYhjwLtPDog8Pq1sHNtb/XrUicXSvXnZacyZWted3dE+Ir/wcbZ8hM7TdmckYapxw6gSKS0q3ksJAyvdekJexvLf8IgAvMHHwQyMuRrzzwDvPsu4OBg8dMSERE1GwzSqUWqyDsp1Z9rS1Nla64h98DvmrehVDlZ/boKdyci+pn10OZWm2qqANq9PBhBEwdapf5cq9djyflTWBtzXrbmaGODt7r3wfC2lk9ji/aKIgB/6SVAe3ljHann+erVxtp0IiKi1o5BOrU4hbHfI/vgbBj01QYBKVTw7f0q3KOestpGzEvrzzM/PoyEWZsB3eX15zau9ohYew88b4mwyrVkVZRjwuF9OJAn7yQT5uyK9/pdiyhXy7d6LC0Fxowx1plXJ8pafvoJ6NPH4qclIiJqlhikU4uh16mRfXgOimK+ka3ZOPgi8LrVcPTrZ/3rUmsRP+NvZH99XLbmEOGFDp8/CMcIb6tcy76cLEw4sg85arVs7X9B7TC/Rx+4qCzf6jEmxthe8eRJ+ZrYGCoCd7FRlIiIiIws30uNLlq/fj2uu+46+Pj4wN7eHmFhYZgyZQry8/NNPkrfffcd+vfvDycnJ3h5eWHo0KFIF7vr6Io0pWlI2fKwyQDdwbcvgof91igBemVmCc7c+5XJAN3j1gh0/WukVQJ0vcGAtTHn8Pje7bIA3VahwJyuvbCy9zUNEqD/9ptxI6ipAH3WLOCPPxigExERVcdMegPKy8vDjTfeiGnTpsHd3R0nT57EnDlzcPz4cWzduvWyY5csWYKXX34ZU6dOxcKFC1FaWoodO3agoqJa72ySKcvci4xdE6BT58rWPDqMgk+vl6FQWmcQ0KWKD6fiwqifoMkoka21mTwQbWcMhkLZ8GU3hZWVeOnYAWzNlL/hC3J0wuo+16Knp5fFzytarc+ZA7z5pnzNzQ344gvg7rstfloiIqIWQWEQxbJkNR9++CHGjBmDxMREBAcHSz+LiYlB586dsWLFCrzwwgt1vu+ioiLpzUBhYSHcRBTUwol/ugXn1iHn2ELAcPnwHYWNA/yuWQC39vc0yrVlf3sCcVP/hKHy8utSOtki/N3/wfuuTla5jlMF+Rh7eC+Sy0plazf6BWBpr/7wtLO3+Hnz8oDHHwf++ku+1rWr+JQJiIy0+GmJiIiavNrGa8ykW5koYxE0l7S8+/jjj2FnZ4fRbGtRa3pNKTL3z0BJ0u+yNVuXEARe/x7sPa0TCF/KoNUjcc5WZLx/ULZmH+wh9T937uLX8NdhMODbpHi8ceooKvX6y9ZE7n5yhy4YF9kJygbYQHvsmLH+PD5evvbII8C6dYCzs8VPS0RE1KI065r08+fP491338XIkSPRrVs3qFQqqWvHPDFHvBZ++OEHqRzF09MTzs7O6NGjBxYtWnRZAG0JOp1OKls5dOiQVO5yxx13IDw8/OL6nj170LFjR3z22WcICQmR/h7iWv7880+LXkdLUVkUh+RN95kM0J2ChqDd7b82SoCuySvD2Ye/NRmgu10fgq6bRlolQC/XajHt2EG8cuKwLED3srPD5wNuwISozg0SoIsSlmuvlQfootX6smXGDaIM0ImIiK6sWWfS33vvPalEpC4mTZok3VYExEOGDIGLiwv++ecf/F979wEdVbX1AfyfSkIaECAJhF5CCZ0gVcECiqAgIIrwsKIURaogIvrgCQroo4Og0pEOYgNUkI6EjnQIkRZ6GimkzLf2yZt8mdwJJGFupuT/W2tW4j135ty5uQ77ntlnnw8++AAbNmzApk2b4OnpaZHj9Pf3V19piLZt22LFihUm7VFRUbh8+TLGjBmj8tEDAgLUzcdzzz2HQ4cOoXbt2hY5DkcQf2kzru0egvSUuGwtTihRZyBKhL4LJ6eCv/dMOHEdp/61CsmR2lU7A98OQ4UxT8DJVf/jioiPQ9/w3TgVl3G9ZdWouD+mNWqKIE/L14e/dw8YPDijznl2AQGAXPKPPmrxbomIiByWXY+kh4aGqomWS5YswYkTJ9CrV69cPW/dunUqQJfAfO/evdi4cSNWr16NM2fOqBH5HTt2YPTo0SbPmT9/vhqlf9Bjlaxlns3WrVuxc+dOzJ49G8ePH0fHjh3V6LpReno64uPjMW/ePPUeJJCX4wkMDFRBOwGG9DTcOvIlrm7rownQnd18UeaxefCvM9AqAfrtn07h2DMLNAG6k7sLKk/tgIpjnyqQAP3Xq5fw3PbfzAbob1SuhmXNW+sSoF+5ArRpYz5Al1H1/fsZoBMRERWqkfQ3Zf3wLJydcxcIffbZZ+rniBEj0LBhw8ztUipx5syZaNWqFaZPn64CdUnsF507d0bTpk0f+Nply5bVbKtfv7762bx5c/W7vM7atWvRtWtXtV3SbUQbiXT+R3LUW7Rogb///huFXVpyNKJ2vY+Eq39q2tyLhSCo1Ry4+1h+dcwHMaQbcHnyDlyauF3T5hbgjerzu8CnkfZ6sLSU9HR8fuIovjl/WtPm7eqKz+uFoX2ZYF363r4dePFF+TZI29avX0aKi7u7Ll0TERE5NLsO0vND0kr27cvIGe7Ro4emXeqalytXDhcvXsTPP/+Ml19+WW2XYN0YsD8MuSmQEXep6GIk6Sx//fWX2cl/hb0EY/Kd47i6vS9S4v/RtHlXeA4Bj4yHs6vlR4cfJC0+GWcHbMCdn80Exo3KoPp3XeAe6KP7cVxLSsSA/XsQbmb10BAfX8xs3ByVvS1/HFITavr0jBSX1FTTNg8PYM4c4F//sni3REREhYZdp7vkx8GDBzOrrFSqVMnsPo1l5ZUs+1qSpL1I8C0LGxlJ7rnIWjs9OTlZpd0Yj8Uc2UfK+GR9OJLYC+txcVMXbYDu5IKSDUcjsPl/rRKgJ124g2PPLjQboJd6qS5qre1ZIAH67pvX8eyfm80G6J2DK2BNyyd0CdATEjIC8Pfe0wboFSvKRGgG6ERERA+r0I2kR/yv7ISxRrk5MpKedd/8ateunVo1VEbKZcVRCfonTpyIunXrolOnTiZBerNmzVT6zvjx41UuukwclZVJhw8fnuPry75SLcbRGNJTcPPgeESf+k7T5uLhj8AW01E04MGpR3qI2RaBM2+tQ+qdxGwH5oQK/34SgW82Vt+U6L166JyzpzDp5FGY1m4B3J2dMSa0AV4uX0mX4zh/PqO84mHtAqpo2zajeou//guoEhERObxCF6THxWVMOpSSizmRCaXiYUemmzRpgsWLF2cG+xUrVkS/fv0wePBglXOeNZf+xx9/VJNghwwZgsTERISFhalqM/er7CIrlMprGcnxGm8w7FVq4g1E7XwXidf3ato8/OsjsNVMuBUNKvDjkm8/ouaFI/Lj34A00/W/XIt7otrcTvB71Pw3M5YUm3IPQw7uw2/XrmjaynoWxczGzVC3mOVXDxWyMJFkiN25o20bNSpjdVEptUhEREQPr9AF6QVp7Nix6pEbkn4jixrJI7dkdF4ejiLp5kFc3d4PqYnaWYi+VXugVKOP4exS8O83PTkVER9sxI2l2uFjz5qlELKgKzwqZkz+1dPxmGj0Dd+Ff8ysHtpGrR76CIrpMEtTSq3LXOuPP87IRc/KxyejNvrz1lnYlYiIyGEVuiDdR6IKAHfvagMdIymHKO63VCtZVszZZbgR/gkM6fdMtjs5u6NU2L/hV6W7VU75vWvxOP36GsTvu6RpK96+OqpO7wgXb/1vHFb+E4HRRw8g2czqoYNDQtGvWg1dFieS8v69ewPr12vbatUC1qwBQkIs3i0REVGhV+iCdEk5EVK9JSfGNuO+pJ/0tGQVnMee+17T5lo0CEGtZsHDv55V/gTxh6/idO9VuHcl+8JJQNmhLRE8tBWcnPXNP09OS8OYYwex/B/t/AhZPXRKw6ZoWSpAl76PH5fSo8Bp7fxYSPVQ+dLnf/e8REREZGGFLkhv0KCB+nnr1i2VK26uwkt4eLj6mbWGui2bMWOGemRdIMkepCZEqfKKSbcOado8SzdFYMtpcPUoaZVju7nmb5x7/ycYkkzLlzgXdUOVaR3h37GG7sdwMeEu+oXvwrEY7SqmDYqXwPRGzVBGh8WJxOrVGSPo2b9wkqUIJkwAhg4FdJ4fS0REVKgVuhKMwcHBalKmWCqlKLKRsocyki653u3bt4c96N+/v1rJ1Fj/3R7IxNB/fu1gNkAvVuMNlH18kVUCdENaOv4ZuwVn31mvCdCLlPdD7Z96F0iA/se1q+iwbbPZAL13par4vnkbXQJ0uc8bMSJjpDx7gC5VWzZuBIYNY4BORESkt0IXpIsPP/xQ/ZwwYQIOHDiQuV1G16X6ihgwYIBFFi8ibZWU6FPzcen3nkhLumXS5uTigcDmU1Cq4Udwci74L3lSY5Nw6l+rcGXabk2bT/PyCN34Grxql9b1GNIMBkw+eQxv/LUDsSkpJm2eLi6Y0vARfBLaQJVatLRbt4CnnwY+/1zbJl8q7d8PPPmkxbslIiIiM5wMEjXZKQmwjUG1OHfuHG7evKlGy8uW/f/l2NeuXYugINOyfQMHDsTUqVPh5uamaplLSUZZTCg6OhotWrTA5s2b4enpCXsiJRjlxiImJsYmJ72mpybh+r5RiItYo2lz8y6PoFazUaR4TascW+L52zjVayWSzpjeOIiA1xqiwrin4Oymb33BW8nJGHhgD3bevK5pq+zlg1lhzVDdR58bR1m3S/LPIyO1bZL2MmsWYGf/OxAREdl1vOZq729y715tPe1Lly6pR9aVObObMmWKCsYll3vXrl1ISUlBlSpVMGLECAwaNMikjjk9vJS7l3B1W18k3zmmaSsa1BqBLf4LF3frfHMRvVUWKFqLtJgkk+1Ors6oOL4tAnrrPzfh4J1b6B++G1eTsi2SBKB9UDA+r98Y3q5uuvQtJRT79AGSTN8+XF3l/xOgb1+mtxARERU0ux5JJ/sYSU+I2oWrOwcgPVm7Ck7x2v3hX2cQnJxdrLNA0dx9iPz4d1nG06TN1d8T1b/tAt9m5XU/hsWR5zD22CGkZPtf0dXJCSNr1cVrlarpsnqoZNMMGQJMm6ZtCwzMmDzavLnFuyUiIirUYgvDSDrZdnUXlX9+ch5uHpoAGLLV93b1QmCzyfAu184qx3a/BYqK1iqN6gu7wqN8MV2PISE1FR8e2Y/1l//RtJUu4qGqt4T56zN5NioKePFFYPt2bVuLFsDKlUC2DDEiIiIqQBxJdyC2NJKenpqIa3tHID7yB02bm29llGk1B+5+Va1ybPeux+P0a+YXKCrxbIgqsejirW+60/n4OFVe8VRcrKatqX8pTG3UFKWKeOjS9549QJcuwJUr2rb+/YEvvwSY7UVERKQPjqST1aTEX8SVbW/jXvQJTZtX2ScR0GwyXNytcxNx92iUquBy77I2OA4e1gplh7TUfYGiX69ewrBD+xCfalriUbxTNQRDQkLhqkP1FvH118C77wL3TBd2RZEiwOzZwKuv6tItERER5RHTXcii7l7djqid7yH9nra+d4k6g1AidACcnKxT+fPWDydw7t0NSE+0zgJFqenpmHjyGL4+d0rT5uPqikn1m6Bt0P9XJbIkmTstwfncudq28uWBNWuARo106ZqIiIjygUE6WSz//M6JObh1eKIm/9zZzQcBzb+Cd9knrHK2DekGXJq4HZcn79C0uQf7ImRhN3iFBuh6DDeSk/De/j3Yc+uGpi3Exw+zGjdDJW8fXfq+fDkjvcVMISQ8/jjw/fdAqVK6dE1ERET5xCCdHlp6agKu7RmO+H9+0rS5+1ZF0KNz4O5b2SpnOi3+nho9v/2TmdHrpuVQ/ZsX4FbKS9dj2H/7Jvrv341r2WscAuhUtjz+U7cRikq9Qx3IxNBu3YBr17RtQ4cC48dnlFokIiIi28J/numhpMT/gyvb+uBetDYI9ir3NAKbToSzm7dVznLyxRi1QFHCce3iQKV71UfF8e3g7O6i67cL8yPO4rPjh5Garbyim5MTPg5tgFcqVNalvKJ0N2MGMGgQkD31vWhR4Ntvge7dLd4tERERWQiDdAdgrRKMd69u+1/+eUy2Fif41xuC4rX6Wi3/PHbPRZx+fTVSbyaYNrg4oeLYJxHwRmNdgmOju6q8Yjh+uHxR0xbk4YkZjZuhQXF/XfpOTATeeQdYuFDbVrkysG4dUKeOLl0TERGRhbAEowMpqBKMD8o/D2w+BV5l28Bari85hIjhv8KQYnpsLsU8UH1uZ/g9Vkn38op9w3fhtJnyii1KlsaUhk3hL+VUdBAZCbzwAnDggLbtmWeAJUuA4sV16ZqIiIhygSUYSTc3D41H9AltmRB3v2oIkvrnvvoGwTkxpKYj8tM/EDXnL02bRzV/hCzqBs/KJaxWXrFf1RoYXCMULjqN4G/ZkrFA0c2b2rZRo4BPPwVcCn5hVyIiIsoHprtQnvlW6oKYM0tgSP3/VBLvck8jwIr556kxSTjTZx1itpzXtBV7ogqqznkerr4eViqv6IbJDZrgqcAyuvQt+ef//S8wbBiQPePJ2zsj7aVzZ126JiIiIp0wSKc8K1IsBAFNJyFqR78s+ef9dM3xvp/E87dxqucKJJ29rWkL6vcIyo9uAycXZ6uUV6zhK+UVm6Oilz43LwkJwFtvAUuXatuqVwfWrgVq1dKlayIiItIRg3TKF5/yzyCl3jAUKV4LXmVaW+0sxvwZgdNvrkVajGl5Qyd3F1Se9AxKvVRX1/4P3L6lyitGJSVq2joHV8B/6jSEp041DiMiMkbIDx/WtnXsCCxaBPj56dI1ERER6YxBOuVbidoykm49Ud+E48JHm4G0bOUNSxZF9fld4dMkWNfJs4sunMO4vw8hpYDLK4rffssooXhb++UBPvkEGD0acLZOYR0iIiKyAAbpDsBaJRitJT0lDZGjNuPafG0Jk6KhAQhZ2BVFgvUbQk5U5RX3Y93lfwq8vKLcD0yeDHzwAZBuWrwGUtBn8eKMUXQiIiKybyzB6EAKqgSjNaXcTsCZN9cidkekpq1EhxBUmdYRLl7uuvV/4W68Kq94MjZ7bXiguSqv+AhKFtFngurdu8AbbwDLl2vbatTIqH8eEqJL10RERGQhLMFIDifx9E2c7LkSyRfuaNrKDm6B4OGPwslZv8mrv0VdweCDfyEuNUXT1lfKK4bUhqtOOSbnz2fknx85om3r1AlYsCBjJJ2IiIgcA9NdyC5E/3EOZ95ah7S4ZJPtTh6uqDK1A0p20q+ESZrBgK9O/Y0ZZ05o2nxcXTGpfhO0DSqrW/+bNgEvvQTcyXZvIunuY8cCI0cy/5yIiMjRMEgnmyYTNKPm7kPkx78D6dkmaAZ6I2RhN3jXD9Kt/zv3kjHwwF5sv3FN01bdx1eVV6zs7aNb/vnEiRlBePb8c6naIquHPvusLl0TERGRlTFIJ5uVfi8NF0ZuxPVFhzRtXvWDELKgK9yD9AmQxdHoOyr//HLi/y/aZNSxTDlMqNcYRXUqryj556+/DqxYoW2TuueSf16tmi5dExERkQ1gkE42O0H09OtrELdLW0HFv1NNVP5vB7gUddOt/+X/RODjowdwL9sQtquTEz6sVQ+vVqqqW3lFyT+XPPOjR7VtL7wAzJ8P+Oh3b0JEREQ2gEE62ZyEUzdwSiaIRkZr2oKHt0LZIS11C5CT09Iw5thBFaRnV6qIB2Y0aoYw/5KwRv75uHEZqS9WWtiViIiIChCDdLKLCaLOnq6qvKL/czV16/tyQgL6he/CkRht9ZjGJUpiRqOmKO3haZX886VLgfbtdemaiIiIbBCDdAfgCIsZqQmi88IROfo3zQRRyTuvvrArvOvpN0F0x41reG//HtxJuadpe71SNYyoVRduOpVXvF/9c+afExERFU5czMiB2OtiRrKC6IWRm3B94UFNm1eD/00QDdSrgooBs8+ewqSTR5FtABueLi74vF5jdCxbHnqJiMjIPzdX/5z550RERI6HixmRXUi9k4jTb65B7PZIsxNEq0zpAGdPfSaIxqWkYOihv7Ap6oqmraKXN2Y3bo4QXz/o5bffgO7dgdu3zdc///BD5p8TEREVVkx3IatJPHcLp15ZiaTztwt8gujpuBi8s28XIu7Ga9qeCiiDSQ2awNfNTbf88y+/BIYPZ/45ERERmccgnawiZlsETr+xFmkxSZoVRKtO6wD/5/VbQfTHyxfxweF9SMiWwy8Z54NrhKJv1Rpw1unmICEBeOutjImg2dWsCaxfz/rnRERExCCdrODawoO4MGIjDKmmWeBuAbKCaFd4NyijS7+p6emYcOIovjl/WtNW3M0dUxo1RatSAdBLZCTQuTNwUJt6r7YvWMD650RERJSBI+lUYAxp6Yj85HdEzdmnaStaJwAhi7qhSBl9JrzeSE7Cu/v3YO+tG5q2On7FMbNxMwQX9YJetm4FunUDbt403S4D9p9+CowaBehUPIaIiIjsEIN0KhCpcck4+/Y6RP92TtNW4tkQVJneES5e7rr0ffDOLfQL342opERN24vlK+HfoQ1QxMVFt/zzadOAwYOB7BUypQDP4sVAx466dE1ERER2jEE66S7pn2ic6rUSiSe0o9hlBjZHuZGPwcnZSZfyiksiz+Pfxw4iRaLlLNydnfFJaAO8XKEy9JKUBLzzTkYaS3YhIcC6dUCNGrp1T0RERHaMQTrpKm7fJZzuvQopNxNMtju5OaPyl8+iVPc6uvSblJaGj47sx+pL2tKOZTw8MaNxc9QvXgJ6uXQpo875Pm1mDzp0yBhBl5VEiYiIiMxhkE66ubnmb5wb+CMMyaZ5Hq7+nqj+XVf4Ni2nS7+XEu6ib/guHIuJ1rQ1L1kaUxs2hX+RItDLzp1Aly7AtWvattGjgU8+Yf45ERER3R+DdAcwY8YM9UjLnvRsJZJmcnnSDlyauF3T5lndHyGLX4RHxeK69L3tehQGHtiL6JR7mra3q4RgaI1QuOo4Q3POHODdd4GUFNPtXl7AwoUZo+tERERED+JkkIiKCtUys3pKT0rFufd/xK01xzVtfq0rodq8znD19bB4v3IZzzp7EpNOHkP2C9rLxRUT64fhmTLB0Mu9exnB+ddfa9uqVMmof167tm7dExERkYPFaxxJJ4u5dz0ep3uvRvz+y5q2gNcaouJ/2sLJ1fKj2HEpKRh66C9sirqiaavs5YM5Yc1R1Ue/m5aoKKBr14w0l+zatQOWLQOK6/PFARERETkoBulkEQknb+DkKytw72KMaYOzEyqOexKBb4bpcqbPxsXi7X27cP5unKatXWBZNYLu4+YGvcjEUFmI6LL2vgQffAD85z+ATtUdiYiIyIExSKeHFv3HeZx5ay3S4pJNtrt4u6Pq3M4o/kQVXc7yL1cuYdihfbiblmqyXcbqh9aog3eqhsBJVgvSieSY9+kDJJu+bXh6At9+C7z0km5dExERkYNjkE4PJeq7/bjw4SYgLVsd8nJ+qLG4G4rWLG3xM5xmMGDSyaOYffaUpq2YmzumNmqKVqUCoJfUVGDoUGDKFG1b+fIZ9c8bNNCteyIiIioEGKRTvhjS0hE55ndEfa0tBO7dqCyqL+gC99LeFj+7t5OT8d6BPdh587qmLdSvGGY1bo7gol7Qy61bwIsvAn/8oW1r3RpYsQIoVUq37omIiKiQYJBOeZYWn4wz76xH9Kazmjb/TjVRZUoHOHtaPg/8aPQdvBO+C1cSTRdGEl2CK2Bc3Ubw0DEB/MgRoFMnICJC2yaVXSZPBnRMfyciIqJChEE65ZmMoJsL0MsOboHg4Y/CydnyeeCrL17Ah0f24156usl2NycnfBzaAK9UqKxr/vmqVUDv3kBCtvsDd3dg9mzgtdd065qIiIgKIQbplGflPmyNmG0XkByZsaKnk7sLKn/ZHqVerGPxsylB+bi/D2HRhXOattJFPDCzcTM0KlESepF7gjFjgHHjtG1BQcCaNUDTprp1T0RERIUUg3TKMzf/oqix9EUce2aBqntefX4X+DYtb/EzeT0pEf3DdyP8zi1NW+MSJTGzUTOU8rD8wkhGsbFAz57Ahg3aNgnMV68GypTRrXsiIiIqxBikU754ViuJkMXd1ORQj8olLH4Ww2/fRL/w3biRnKRp+1fFqhhVux7cnS2/MJLRmTPA888DJ05o215/HZg5EyhSRLfuiYiIqJBjkE75psfoucFgwOLIc/j3sUNINZiWdSzi7IzP6jbGC+UqQE8bN2bUOI/OyObJJHNS//tfoH9/QMf0dyIiIiIG6WQ7ktLSMProAay6eEHTFuxZFLPDmqO2X3Hd+pd7AqnQIiuFZpufCn9/YOVKoE0b3bonIiIiysSRdAcwY8YM9UhLS4O9upRwV6W3HI25o2mThYmmNHwExd31yy9JTATeegtYskTbVrduxgJFlSrp1j0RERGRCSeD5BeQQ4iNjYWfnx9iYmLg6+sLe7Hr5nW8u383bt+7p2nrW7UGhtQIhYuO+SWXLgGdOwPh4dq2bt2A774DvPRbH4mIiIgKkdhcxmscSSerkfvDeedPY8LxI8iWXQIvF1dMrB+GZ8oE63oMu3YBL7wAXLtmul3uCaTs4siRzD8nIiKigscgnawiITUVIw6HY8OVi5q2il7e+DqsBar56PttwDffAH37Aikpptt9fDLSXjp21LV7IiIiohwxSKcC98/dePTZtwun4mI0bU8EBOHLBo/A181Nt/4lKB8yBJg2TdtWtSrwww9AzZq6dU9ERET0QAzSqUD9eT0KAw/sQUy24WvJOH8/pDYGVKsJZx3zz2/dAl58EfjjD21bu3bAsmVAcf0KyBARERHlCoN0KrD889lnT2HiyaPIPlPZx9UNXzVsgicC9F2+8+jRjAWKIiK0bUOHAhMmZNRCJyIiIrI2Bumku/jUFAw/FI5frl7StFXz9sWcsOao5O2j6zFICcWePYG7d023y6qhc+cCvXrp2j0RERFRnjBIJ11FxMfh7X27cCY+VtP2dFBZVcHF21W//HNZlEiqtIwZo20rUwZYuxZo0kS37omIiIjyhUE66eaPa1fx/oG9iEvV5p8Pq1EH71QNgZOO+ecyat67N7B6tbbtkUcyAvSgIN26JyIiIso3BulkcekGA2acOYGvTv2tyT/3c3PDlIZN8VjpQF3PfGRkRv754cPatldfBWbNAjw8dD0EIiIionxjkE4Wzz8fenAfNkZd1rSF+Pip/PMKXt66nvVt24AuXYCbN023OzsDkycDAwdygSIiIiKybQzSyWLOq/zznTgbH6dpe7ZMML6oF4airvpecl9/DfTvD6Smmm4vVgxYvhxo21bX7omIiIgsgkE6WcTv165gkMo/N42OnQEMr1kXfapU1zX/XMquDxoEzJihbZOFidavB6pV0617IiIiIotikE665Z8Xc3PH1EZN0apUgK5nWdJaZIGiLVu0bc8+CyxdCvj66noIRERERBbFIJ10yT+v4euHr8NaoFxRL13P8LFjwHPPmV+gaMSIjPKLXKCIiIiI7A2DdLJ4/nnHMuUwoV5j3fPPJYVFFiiKjzfdLlVbvvkG6NFD1+6JiIiIdMMgnSxW/1zyzz+oVRdvVdY3/9xgAMaPBz76KOP37AsUyeqiYWG6dU9ERESkOwbplGf/JMRrAvSCyj9PTATeeANYtkzbJiuHygJFEqgTERER2TMZ/CQ7N2PGDNSqVQthBTR83LtiVXQJrmCSf/7Do0/qHqBfugS0amU+QO/VC/jzTwboRERE5BicDIbsCQNkr2JjY+Hn54eYmBj46lzOJDktDS/u3KIWJiqI/PO9e4FOnYCoKNPtklXz+efA0KFcoIiIiIgcJ15jugvlSxEXFyxq9hh8XF11zT8XixcDb74JJCebbpfrWkbV27fXtXsiIiKiAsd0F8o3Xzc3XQP0tLSMMoqSypI9QK9aFdizhwE6EREROSaOpJNNio0FXnkF+PFHbdsTTwArVgAlSljjyIiIiIj0x5F0sjnnzwPNm5sP0AcMAH75hQE6EREROTaOpJNN2boV6NoVuHXLdLvMS50+HXj7bWsdGREREVHBYZBONmPuXKBfPyA11XS7vz+wahXQurW1joyIiIioYDHdhaxOgvKBA4E+fbQBemgo8NdfDNCJiIiocOFIOlnVnTtA9+7A5s3ato4dgSVLAB8faxwZERERkfVwJJ2s5swZoGlT8wG6lF5cu5YBOhERERVOHEknq/jtN6BbNyA62nS7uzswb15GbXQiIiKiwooj6VTgZs4Enn5aG6AHBAB//skAnYiIiIgj6VRgUlKA99/PCNKzq18f+OEHoFw5/kGIiIiIGKRTgU0QlfSW33/XtnXpAixYAHh58Y9BREREJJjuQro7fRp45BHzAfpHHwErVjBAJyIiIsqKI+lklQmiRYoA334L9OjBPwARERFRdhxJJ93MmmV+gmhgYMYEUQboREREROYxSCeLk1VD330X6NcPSEszbWvQANi3LyP9hYiIiIjMY7oLWZSMmssKops2adteeAFYuJD550REREQPwpF0spizZ4FmzcwH6KNGAStXMkAnIiIiyg2OpJNFSI65jJTfvm26nRNEiYiIiPKOI+n00KRKy1NPaQN0WUF061ZOECUiIiLKKwbpOlqzZg1atmyJkiVLokiRIqhcuTIGDx6MO7KyTxatW7eGk5OT2ceECRNgq2RS6LBhwBtvZKwmmlW9esBffwFNm1rr6IiIiIjsF9NddHT79m0VgA8bNgx+fn44evQoPv30Uxw+fBi/Z1nZZ+bMmYiNjTV57qJFi9T29u3bwxbFxQGvvAJs2KBte+45YMkSwNvbGkdGREREZP+cDAaDwdoHUZjMnTsXffr0QWRkJMqXL5/jfk2aNEFSUhKOHDmS69eWQF9uBmJiYuDr6wu9REZmBOLmDk1G1sePB1xcdOueiIiIyG7lNl5juksBK1GihPqZkj0/JIszZ85g37596NmzJ2zRpEnaAN3NDfjmG+CLLxigExERET0suw7ST506hWnTpuHVV19FnTp14OrqqvK4x40bl6vnr1y5UqWjFC9eHF5eXqhXrx6++OKL+wbQ+ZGWlqZGxcPDw1W6i6SwVKlSJcf9Fy9eDGdnZ/Sw0SU5J040zTWX+47Nm4HXX7fmURERERE5DrvOSZ81axamTJmSr+e+//776rkS2D/++OPw9vbGH3/8gQ8++AAbNmzApk2b4OnpaZHj9Pf3V19piLZt22LFihX33X/JkiV47LHHEBwcDFvk4QGsWycpOUDRosCPPwL3uecgIiIiosI0kh4aGoqhQ4eqoPbEiRPo1atXrp63bt06FaBLYL53715s3LgRq1evVmkmMiK/Y8cOjB492uQ58+fPz7ECS9bHqlWrNP1t3boVO3fuxOzZs3H8+HF07NhRja6bs2fPHpw7d85mU12ylleURYt272aATkRERGRpdj2S/uabb5r8t6SI5MZnn32mfo4YMQINGzbM3C6lEqWiSqtWrTB9+nQVqEtiv+jcuTOa5qKeYNmyZTXb6tevr342b95c/S6vs3btWnTt2tVsqouHh4fZNlsTEmLtIyAiIiJyTHYdpOfH5cuX1aRMYS7nW+qalytXDhcvXsTPP/+Ml19+WW2XYN0YsD8MuSmQEfezZ89q2lJTU7F8+XI10q5ndRYiIiIism12ne6SHwcPHsysslKpUiWz+zRu3NhkX0uStBepeikLG2UnaTc3b960+VQXIiIiItJXoRtJj4iIUD/vV6NcRtKz7ptf7dq1wxNPPIHatWurFUcl6J84cSLq1q2LTp06mU11kUmmzzzzTK5ePzk5WT2Msi+IRERERET2qdAF6XGyVCagSi7mRCaUWiLolQWJJPA2BvsVK1ZEv379MHjwYLi7u5vsGx8fjx9++AG9e/eGmxQdz4Xx48erko5ERERE5FgKXZBekMaOHaseuSE3Bnfv3s3T648cOVIF/EZyU2H8FoCIiIiI7FehC9J9fHzUz/sFxDKqLWx98qak0MiDiIiIiBxLoZs4KiknQqq35MTYZtyXiIiIiKggFbogvUGDBurnrVu3cpwYGh4ern5mraFORERERFRQCl2QHhwcjLCwMPX70qVLNe2y2qiMpEsaSfv27WEPZsyYgVq1amW+LyIiIiKyb4UuSBcffvih+jlhwgQcOHAgc7uMrkv1FTFgwACLLF5UEPr374/jx49nLtJERERERPbNySAr69gpCbCNQbU4d+6cWgxIRsvLli2buX3t2rUICgoyee7AgQMxdepUVe5QaplLScbff/8d0dHRaNGiBTZv3gxPT0/YE6nuIjcWMTExNj/plYiIiKgwis1lvOZq729y7969mu2XLl1SD6OsC/4YTZkyRQXjkiqya9cupKSkoEqVKhgxYgQGDRqkqWNORERERFRQ7HoknUxxJJ2IiIjIMeK1QpmT7mg4cZSIiIjIsXAk3YFwJJ2IiIjItnEknYiIiIjITtn1xFEyZZxeIHdoRERERGR7jHHag6aFMkh3IHFxcepnuXLlrH0oRERERPSAuO1+a/IwJ92BpKen48qVK/Dx8YGTk5NJm6xGer/FjvLTLneCckMgK7TaQ132B71HW3n9/L5OXp6Xm30L+zWj9/ViyT7y8zp5fY7e10xObbxm8v53yA1eM7aBnzN5PxdhDvA5IyPoEqCXKVMGzs4513DhSLoDkT+0LORkjouLy30vvIdpl+22HnDl5j3ayuvn93Xy8rzc7FvYrxm9rxdL9pGf18nrc/S+Zh70XF4zuf875AavGdvAz5m8nwsXB/mcyc2q9izBWEj0799f13Z7oPd7sNTr5/d18vK83Oxb2K+Zgjh+a14zeX2O3teMvV8vgtdM3s8Hrxl+zuT1/5/+hehzhukulG8s+Ui8Zkhv/JwhXjNUWD9nOJJO+VakSBGMGTNG/STiNUN64OcM8Zqhwvo5w5F0IiIiIiIbw5F0IiIiIiIbwyCdiIiIiMjGMEinArNq1Sp07twZ5cuXR9GiRVG7dm1MnjwZKSkp/CuQxpo1a9CyZUuULFlS5QlWrlwZgwcPxp07d3i26IFSU1NRt25dtWbE999/zzNGZm3dulVdI9kfoaGhPGN0X8uXL0eTJk1UPFOiRAk88cQTuHr1KiyJddKpwEyaNAkVK1bEF198gYCAAOzatQsfffQRjhw5ggULFvAvQSZu376N1q1bY9iwYWrW/dGjR/Hpp5/i8OHD+P3333m26L6mTJmCGzdu8CxRrsybN08NHBlJ4EWUExlgHDlyJIYOHYrPP/8cd+/exbZt25CUlARL4sRRKjDyD2apUqVMto0bNw6jR49GVFSUCtyJ7mfu3Lno06cPIiMj1TcyROZcunQJtWrVwvTp09G7d28sW7YML730Ek8WmR1Jb9OmDXbv3o2mTZvyDNEDnT17Vn2+yEBA3759oSemu1CByR6gi0aNGqmfV65c4V+CHki+UhRMkaL7ef/99/Hcc8/h0Ucf5YkiIov69ttv4e7ujjfeeAN6Y5BeyJ06dQrTpk3Dq6++ijp16sDV1VXl48kId26sXLlSpSQUL14cXl5eqFevnkpnyW0QJV8PycVepUqVh3wn5KjXS1pamvoKMTw8XKW7tG/fnteLHSnoa+bXX3/Fpk2bMHHiRAu/E3Lkz5nnn39eLRkv3+jKt3WSbkf241QBXjOSqlujRg2VpluhQgXVl+z/yy+/WP6NGahQGzhwoEEug+yPsWPH5vq5rq6uhrZt2xpeeOEFQ7FixdS2li1bGhISEu77/L///tvg6elpGDBggAXfETna9eLn55fZjzwvPj5eh3dGjnDNJCYmGqpUqWKYNGmS+u+IiAi177Jly3R7f2Tf18yBAwcMQ4YMMWzYsMGwZcsWw4QJE9RnTmhoqCEpKYl/XjsxsACvmZCQEIO3t7chKCjIsHDhQsPGjRsNHTp0UM8/duyYRd8Xg/RCbu7cuYahQ4calixZYjhx4oShV69eubqw165dq/aTC3X//v2Z22/cuGGoU6eOapMPvpzIftWqVVP7MuiyH9a4Xg4ePGjYuXOnYfbs2Ybg4GBDmzZtDKmpqRZ/b2T/18zo0aMNNWvWNNy7d0/9N4N0+2Stf5eMNm3apPb97rvvLPJ+yLGumWrVqqntP/30U+a25ORk9e+T9GtJDNLJRO/evXN1YYeFhan9xo0bp2nbvn27aitSpIghOjpa0x4bG2to3LixoUKFCobLly/zL2DHCuJ6yWrPnj1q35UrVz70sZNjXTMXLlxQ/71q1SrDnTt31OPw4cNqv2+++eaB1xbZroL+nBElSpQw9OvX76GOmxzzmmnSpInann2EvXv37oaGDRta8F0YDMxJpzy7fPky9u3bp37v0aOHpl1qW5crVw7Jycn4+eefTdpkm+T+XbhwARs3bkSZMmX4F3BwD3O9ZNewYUOVZyiz68lx5eeaiYiIUP/dtWtXlVcqD8kTFTLBq2zZsgX8LsheP2eM5LOGHNflfF4zWUt1ZiUD35YuwcggnfLs4MGDmZU2KlWqZHafxo0bm+xrnAAoZdDkfwq54ENCQnj2C4H8Xi/m7Ny5U30QysJG5Ljyc83Ur18fW7ZsMXlI6UUhZV51mdRFDvk5IwNIMnFUFqohx3Uwn9eMVI4SWdfrkEB+x44dmftbChczojyTEStxvzrVcveZdV/Rv39/rFu3DmPHjlUB+549ezLbpOaor68v/xoOKL/XS7t27dQKbjJqISuOyoekVOyQVSQ7depUAEdO9nTNFCtWTFVnyEq+sTN+vrRq1UrHIyZ7/Zzp2bOnCtCkHLCPjw/27t2rFqeRmz7W1ndsEfm8ZiRIb9asGd58802MHz8egYGBqrKMrIY9fPhwix4jg3TKs7i4OPVTyhTlxNvbW/2MjY01KY1mHNWSR1Yy6pX9H1gq3NeLjGItXrw488NRVqvt168fBg8erMp2kuPK7zVDhVd+rxkZBFi6dKlamCYxMRHBwcEqPWrMmDH8nHFwcfm8ZpydnfHjjz+q1UaHDBmirpuwsDD88ccfOabC5BeDdCowxlEtotyQb1zkQZRfcmMn6VFEOZGl3eVBlBeSIiOLGslDT8xJpzyTrwTF3bt3c9wnPj5e/WQKC/F6IX7GkN74OUOOeM0wSKd8jU6Jixcv5riPsc24LxVevF6I1wzxc4ZsTUU7iGUYpFOeNWjQQP28deuWyWSKrGQJd2PJPCrceL0Qrxni5wzZmgZ2EMswSKc8k4k1MklCyISb7KQMkdx9SkWO9u3b8wwXcrxeiNcM8XOGbE2wHcQyDNIpXz788EP1c8KECThw4EDmdrkjlQocYsCAAfDz8+MZJl4vxM8Y0h3/XSJHu2acZNlRq/RMNkEuSuOFKM6dO4ebN2+qO8ysK/StXbsWQUFBJs8dOHAgpk6dCjc3N1XPWsoYSXH/6OhotGjRAps3b4anp2eBvh/SF68X4jVDeuPnDPGa+R8J0qnw2rJli9ykPfARERFh9vnLly83PProowZfX1+Dp6enITQ01DBhwgRDcnJygb8X0h+vF+I1Q/ycIVuzxUFjGY6kExERERHZGOakExERERHZGAbpREREREQ2hkE6EREREZGNYZBORERERGRjGKQTEREREdkYBulERERERDaGQToRERERkY1hkE5EREREZGMYpBMRERER2RgG6URERERENoZBOhGRlVWsWBFOTk4PfMyfP9/ah2oXLly4oDl348aNy3H/xMREzJo1Cx07dkS5cuVQtGhReHp6Ijg4GO3atcOECRNw/vz5hz6uc+fOwdnZWR3PyZMnH7h/SkoKSpUqpfZfsWKF2hYVFaV5b5988slDHxsR2R5Xax8AERFlaNGiBapWrZrj6bhfG2l5eXmha9eu6vd69eqZPUWbN29Gr169cO3aNRVA169fH02aNIG7u7sKiHfu3IlNmzbho48+whdffIHBgwfn+1RXqVIFjz32GLZu3Ypvv/1Wvd79/PDDD7h58yb8/f3RqVMntU1uHnr37q1+P3ToEA4fPsw/PZGDYpBORGQj3nzzTbz66qvWPgyHUbJkyft++/Djjz+q4DctLQ2vvfaaGm0vU6aMZjRbguXPPvsMp0+ffuhjeuONN1SQvmjRIvWarq45/zMsgbzo2bOnumkQfn5+me9JRtAZpBM5Lqa7EBFRoXPr1i0V/EqAPmjQIBUQZw/QhZubG7p06YK//voLb7311kP3K69VrFgxNUr/yy+/5Ljf1atXsXHjRvX766+//tD9EpH9YZBORGSnjDnJYvXq1WjZsiV8fX1Vmoekzvz88885Pjc1NRXz5s1D69atUaJECRQpUgSVKlVC3759cfHiRc3+Mvorfcn+CQkJ+Pjjj1GzZk2Vvy059UYGg0EFvI0bN1ZtkqrxzDPPYNeuXSavYfTdd9+pbZL7nZMrV66oYFlSPSS4toRp06YhJiYGgYGBKuf8QVxcXNCoUSOzbXfu3MGYMWNUqoyPj49633Xq1FEj83KuspL30KNHD5ORcnMWLFigbiDkPNatWzfP74+I7B+DdCIiOycBYrdu3dTv7du3R7Vq1VRQ3KFDB6xdu1azf1xcHJ566ik1Mrx//34VBD733HMqUJ89ezYaNGiAgwcPmu0rKSlJBdlffvmlCurledKfUf/+/VVKhzxfcrvbtm2rgv5HH31UpZdkJwGrTI6U3PCc0knmzJmjbipefvllFfRbwvr169XPF198MTOVJD+OHz+u8t3//e9/4/r16+pG6cknn8SNGzcwevRodbMkNwNZyfkRP/30k3qOOXLzknVfIiqEDEREZFUVKlQwyMfxd999l6fnyXPkUaxYMcOePXtM2saMGaPaqlevrnlejx49VFuHDh0M165dM2n76quvVFu1atUMqampmdu3bNmS2V/dunUNV69e1bzu+vXrVbu3t7dh586dJm2TJ0/OfP5jjz1m0jZq1Ci1/b333tO85r179wyBgYGqff/+/bk6LxEREWp/Oa/mpKSkGJydndU+ixYtMuRXQkKCoUqVKup1PvroI0NycnJm2927dw0vv/yyanvttdc0z61fv75qk/OS3Y4dO1Sbp6enITo6Osf+jX9j+UlEjodBOhGRjQTpD3rcuXPH5HnG7VOnTtW8ZlJSksHPz0+1//PPP5nbjx8/bnBycjKUKVPGEBsba/Z42rdvr563YcMGs0H6tm3bzD7v8ccfV+0jR4402x4WFmY2SL98+bLBzc1NHW98fLxJ27Jly9RzmjVrZsitBwXpcmNifC+//vqr2X2mT59u6N27t+aR1axZszJvdsyJi4szlC5d2uDq6mq4ffu2Sdu0adPUc0NDQzXPe/3111Vbz5497/s+GaQTOTZWdyEispMSjDmlZUh97+wkdaVy5coq7eTy5cuq/reQPHWJ7yVPXPKnzZF0FtnPmDKTVenSpdGqVSvNcyQdRfYXr7zyitnXldSWffv2abbLhE0plbhs2TJV9eSdd97JbJsxY4b6OWDAABSkLVu2qDz/7LJWi5F0FdG9e3ezr+Ht7a1yyuVcyvuW1B8jmbQ6bNgwHDt2TE1KldQgcffu3cya6Ex1ISrcGKQTEdl5Ccby5cub3S6TSI155EbGRXm++eYb9bgfyavOLusk0ayknrexn5z2yWm7eO+991SQLkG5MUg/cuQIduzYgYCAgMx655YgE2VlsqrcrJh7j2LVqlWZv1+6dCnzJicr47mUOuvyuJ/s/UiFlxdeeAFLly5VE0iNQboE6PHx8Zk11Ymo8GKQTkRk52QRntxKT09XP6USSU4L/Bg98sgjmm1SnSS/jJVozGnatKkKVGVU+c8//1QBqnEUvU+fPg81uTM7qU0uk2Wlxnh4eLga1c4P47l8+umn1Y3E/VSoUEGzTUbKJUj//vvv8dVXX6lza5wwKmUX73e+iMjxMUgnIipEjCPCklozffp0i72uVF2RFJvk5GRERkaiVq1amn0uXLhw39eQ0XQJmOW45AZiyZIlKqDOmv5iKVKVRoJ0GbmeOHGiKvGYn3N58uRJFWznZ6S/TZs2KiVJRuTXrFmjboq2b9+uyj0aVxUlosKLJRiJiAoRyUUXsopm1jSYhyVBbrNmzdTvMjpsjqSz3I+UQwwKCsK6devwn//8R+Vnd+7c2ewiQw9LbggkHUgWDRo1atRDnUtjDnleyUi5caEiSXkx1k2XmvFly5bN12sSkeNgkE5EVIhIDXRZ9VJql0tOtLnRbQmOZRT72rVreQ58xdSpU7Fnzx6TtilTpmDv3r0PDPRlMSWZhDpp0iRdJ4yWLFkSCxcuVKlCMpIuNeMlYM9O8tZ37txp9jUkDUfSWFauXIkPPvhA1Z/PTlYWnTt3bo7HIXMQZORcJqp+/fXXahsnjBKRYLoLEZGNkBVAZVXOnEh1EONqlQ9D8p6jo6PVsvQhISEqtUQWJpKAVIJ2SQO5d+8eTpw48cBc66xk1FsCVwk2ZVEfqQIjI+NHjx5VrzVo0CCVe32//PK3335bjaJL2ozkjcsiSHp5/vnnVYWWf/3rX+rcy3mRXH2Z4Gpc3VSq40igLcF89tx1WdlVni8VcL744gv1vuWYg4OD1UqjsjiTvG+piCM3AebIiLmMnEsFGOlPFnYyV62HiAofBulERDZCRmxzGrU1VgSxRJAupRc3bdqE5cuXY/HixWrV0UOHDqn0DwmqpYSi5GxLhZG8khVLw8LCMGvWLDWa7uHhoSaEzpw5M3PUXkaxcyIBrQTKMuouq5fqTSZ9RkREqNKKEijLDcrff/+tblgkzz40NFQdh5x3yR/Prnbt2qoKjbxvWd1Vft+9e7d6jxKsDx06VN283I+MnEvfQqrE5Cc/nogcj5MUS7f2QRARkeOT/GsZrZ48eTIGDx5sdh8Zfa5Rowb8/PxUffeiRYvmuR+5GZBvBiQV5UGTVe3ZJ598gk8//RRjxoxRvxORY+FIOhERWYyMQku6iKSCZC1VKDXZZbRaRtZffvnlHJ//8ccfq1FsyU3PT4CevXa7se685OE7QhpJTEwMBg4cqH6Xbz+IyHExSCciIouRSZhS7UQmqEq+tUxCPX78uBrRlgmSkvYiKTVZSaWZ9evXqwBf0lwCAwMxfPjwhz4W6XvBggXqd1nJ1RGC9MTExMz3RESOjUE6ERFZTPfu3REbG5uZ5y6VWiTPXLa///77atGi7A4cOKDKD0qu/JNPPokvv/xS5d/nl4zkO2omp9zAOOp7IyJTzEknIiIiIrIxrJNORERERGRjGKQTEREREdkYBulERERERDaGQToRERERkY1hkE5EREREZGMYpBMRERER2RgG6URERERENoZBOhERERGRjWGQTkREREQE2/J/4rqV822CSTwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Particle to inject\n", + "nue = siren.dataclasses.Particle.ParticleType.NuE\n", + "nuebar = siren.dataclasses.Particle.ParticleType.NuEBar\n", + "numu = siren.dataclasses.Particle.ParticleType.NuMu\n", + "numubar = siren.dataclasses.Particle.ParticleType.NuMuBar\n", + "nutau = siren.dataclasses.Particle.ParticleType.NuTau\n", + "nutaubar = siren.dataclasses.Particle.ParticleType.NuTauBar\n", + "\n", + "particles = [nue,nuebar,numu,numubar,nutau,nutaubar]\n", + "\n", + "# target mass\n", + "target_mass = 0.5 * (0.938272 + 0.939565)\n", + "\n", + "cross_section_model = \"CSMSDISSplines\"\n", + "\n", + "xsfiledir = siren.utilities.get_cross_section_model_path(cross_section_model)\n", + "\n", + "# Cross Section Model\n", + "target_type = siren.dataclasses.Particle.ParticleType.Nucleon\n", + "\n", + "DIS_xs_CC = siren.interactions.DISFromSpline(\n", + " os.path.join(xsfiledir, \"dsdxdy_nu_CC_iso.fits\"),\n", + " os.path.join(xsfiledir, \"sigma_nu_CC_iso.fits\"),\n", + " 1, # interaction type\n", + " target_mass, # taget mass [GeV]\n", + " 1., # min Q^2 [GeV^2]\n", + " [nue,numu,nutau], # primary types\n", + " [target_type], \"m\"\n", + ")\n", + "\n", + "DIS_xs_NC = siren.interactions.DISFromSpline(\n", + " os.path.join(xsfiledir, \"dsdxdy_nu_NC_iso.fits\"),\n", + " os.path.join(xsfiledir, \"sigma_nu_NC_iso.fits\"),\n", + " 2, # interaction type\n", + " target_mass, # taget mass [GeV]\n", + " 1., # min Q^2 [GeV^2]\n", + " [nue,numu,nutau], # primary types\n", + " [target_type], \"m\"\n", + ")\n", + "\n", + "DIS_xs_CCbar = siren.interactions.DISFromSpline(\n", + " os.path.join(xsfiledir, \"dsdxdy_nubar_CC_iso.fits\"),\n", + " os.path.join(xsfiledir, \"sigma_nubar_CC_iso.fits\"),\n", + " 1, # interaction type\n", + " target_mass, # taget mass [GeV]\n", + " 1., # min Q^2 [GeV^2]\n", + " [nuebar,numubar,nutaubar], # primary types\n", + " [target_type], \"m\"\n", + ")\n", + "\n", + "DIS_xs_NCbar = siren.interactions.DISFromSpline(\n", + " os.path.join(xsfiledir, \"dsdxdy_nubar_NC_iso.fits\"),\n", + " os.path.join(xsfiledir, \"sigma_nubar_NC_iso.fits\"),\n", + " 2, # interaction type\n", + " target_mass, # taget mass [GeV]\n", + " 1., # min Q^2 [GeV^2]\n", + " [nuebar,numubar,nutaubar], # primary types\n", + " [target_type], \"m\"\n", + ")\n", + "\n", + "labels = {\"CC_nu\":r\"$\\nu$ CC\",\n", + " \"NC_nu\":r\"$\\nu$ NC\",\n", + " \"CC_nubar\":r\"$\\bar{\\nu}$ CC\",\n", + " \"NC_nubar\":r\"$\\bar{\\nu}$ NC\"}\n", + "\n", + "primary_xs = {\"CC_nu\":siren.interactions.InteractionCollection(numu, [DIS_xs_CC]),\n", + " \"NC_nu\":siren.interactions.InteractionCollection(numu, [DIS_xs_NC]),\n", + " \"CC_nubar\":siren.interactions.InteractionCollection(numubar, [DIS_xs_CCbar]),\n", + " \"NC_nubar\":siren.interactions.InteractionCollection(numubar, [DIS_xs_NCbar])}\n", + "\n", + "\n", + "erange = np.logspace(2,6,100)\n", + "\n", + "for k,xs in primary_xs.items():\n", + " primary_type = numubar if \"bar\" in k else numu\n", + " plt.plot(erange,[primary_xs[k].GetCrossSectionsForTarget(target_type)[0].TotalCrossSection(primary_type,e) for e in erange],label=labels[k])\n", + "plt.loglog()\n", + "plt.legend()\n", + "plt.xlabel(\"Energy [GeV]\")\n", + "plt.ylabel(r\"$\\sigma~[{\\rm cm}^2]$\")\n", + "plt.show()\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "66f4b43b-327b-468e-8ff7-b71a5b0f97cd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAIeCAYAAABnS7PoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9B5gkZ3XvfTrO7MzO5qxd5ZwzGAVAAgWCQCSRczLXvjaf7338+Np+vuvHvrafz+Fe4ysbDCaaLEBgEEJZIIKyhHJa7Wpz3p2d2PF7TnrfU29XdffMzsym98Bququrq6urqqt+77/+55xcs9lsQowYMWLEiBEjRowYMaYt8tO36BgxYsSIESNGjBgxYkTojhEjRowYMWLEiBFjBiIq3TFixIgRI0aMGDFiTHNE6I4RI0aMGDFixIgRY5ojQneMGDFixIgRI0aMGNMcEbpjxIgRI0aMGDFixJjmiNAdI0aMGDFixIgRI8Y0R4TuGDFixIgRI0aMGDGmOYrT/QExJh+NRgM2btwIAwMDkMvl4qaMESNGjBgxYsQ4wAL7TO7duxdWrFgB+Xy2nh2h+wAOBO5Vq1bt79WIESNGjBgxYsSI0SHWrVsHK1euzHw9QvcBHKhw606cM2fO/l6dGDFixIgRI0aMGEEMDg6SSKrclhURug/gUEsJAneE7hgxYsSIESNGjAM3OlmBYyJljBgxYsSIESNGjBjTHBG6Y8SIESNGjBgxYsSY5ojQHSNGjBgxYsSIESPGNEeE7gMwrr/+ejj11FPhggsu2N+rEiNGjBgxYsSIEWMKItfE4oIxDths2Llz58KePXtiImWMGDFixIgRI8ZBzGtR6Y4RI0aMGDFixIgRY5ojQneMGDFixIgRI0aMGNMcEbpjxIgRI0aMGDFixJjmiNAdI0aMGDFixIgRI8Y0R4TuGDFixIgRI0aMGDGmOSJ0x4gRI0aMGDFixIgxzRGhO0aMGDFixIgRI0aMaY4I3TFixIgRI0aMGDFiTHNE6D4AI3akjBEjRowYMWLEOLQidqQ8gCN2pIwRI0aMGDFixDg0eK04o2sV44CMZrMJ0JzCBeamcFnhonPTuPAYMWLEiBEjRoxpigjdMRi661NJ3VMUKXzdnAyYTwTUu5g1gn+MGDFixIgRY6IRoTsGQXezWpuRLZEJrPuiYOcmBuaJdejmczssv+vltXspKvgxYsSIESPGIR0RumNAo9EAqDUOGKW6KyDdB/W6ORUwnptaCG9O5P2pmyPabmLEiBEjRowDOSJ0x2Clu1ZP3RIdYW4qYQ9tLm65ZvJ0Wko6fM6+AnTXy0h5/0Te1wLtuRzk8hHEY8SIESNGjAMlInTH4Mjgs2Yn5LWg3E0020DyhAG+mRw4tFmXVIDNlLzNJzQb2cuaDhXbvHey6ndT5m/mc5Ar5KMKHiNGjBgxYhwAEaE7BkUu10XJ9i4BOxN+cxYomxNadg7SoDPXQZVvpq+X+azOMK6Anb4cfJwK4c1Qttan/r0TBenM9U15D4F3Pg/NRpPAO1+IJfljxIgRI0aM/RkRumNQ1GuNbOF1Ei6FrtTgNsBNYJuAzmbb+enzPJnqg/R1kiUmPssstysQd19PX2+2rhep9ykfSYOPXFLJNu91j1LGIXY78HduZsN3g19r1hvQRMW7mId8PsJ3jBgxYsSIsT8iQncM4rZ6vY3boW3VjXACT0tXleVBszOoZ3rJA7BVCE2o68E8fll2mbmUz02+l+uXByCepma3TG/97i3z6PtDpjcKeOpmonU066eLMPCN6jap8LrKqHijZ7+SgwZCt3q9ZVDAHnDdd/wa/o3JmTFixIgRI8bURYTuGJOGbs+hxo+NdoY0K0aWG8LysAPc0HqSfG8CzlNLpFjV2Hq9O8B4MwXGQxDHSi8dITxUuFMgPE0FDxXwNABvdgPfAt51eVwXX3oI0vJ5ye+T/E65ANIpOTMCeowYMWLEiDHhiNAdY/LQ7R4g9LWH66zpeYI4sYY46G71hSf5WMHeqtutgwDm2twkYbwNiEMrhNvPbV2kAexOAJ5hQcl1Yz2x8J3n9zaxFKT93uHgxUJ94kYAA3oTpKqN2/65bEBH37gu0yjoWkUlqucxYsSIEeNwjgjdB2Bcf/319K+OJDwDgUyG7NjikAhU6rQESebTpII6EehuoCLbAr3p7yPVVdYrE8wdjBvF3VVMsaDJUO6/rLK/wngbEO8CwluU8OYEALyN/cQPdHKZCau8iVjlRh93o1oHQHtJsGGzADz1deMFDwFdX2vi53SAc5qmA60U5TyCeYwYMWLEOFQj12xXZy3Gfo3BwUGYO3cu7NmzB+bMmTNtnzM8PA6j26v0WBkyy47cdnqa4yLkSZmgh11aVY1U6E6ybeo8DgyzoDz4qKSwG9S1lmXQQwvwVqHn2nwt668rmrTWZKjgIYBnfUGzfbvyfss87EvndWkkarHnONHSzOsGH+Hnt2zrANAz4DzxWidrSwTzGDFixIhxiPNaVLpjiKrNKi2qm1oUw4bm6WUN0aw43MzlGEpbZsL/oELLf2kSCsPBchMgrwvuoKbTc/Uup72ez0Ou7mE48Tp9Z5T79QtkqOK6krmmKPQ8sxd01dbiFXFrg0lVwbMU8Hb2E2s9aQvfsi7IwY0GFMrFbEInNk9COPnC8XMkMdPNp779loGC94+ngblT64PXQkU9oaRnKeYI9/oc65EbK0tUy2PEiBEjxoEYEbpjJJvAhCq3hSNisFaYbiP2ujfaEoAt4E7Al1ItQ+jLTm8ZDFj4VZtDShW9nPFe23Wm9whEJpRpWpSORpJ+cauouxV1XnO/jLyBdn0voS3TsttICV97NwDutk0H+Dag7uqw51N86Lp+Tp1nss8VvCdeP8PvB7XkSElCnSbfjV6uYxnKYKe3ge8saE+zuZDXPATzLLU8QnmMGDFixDgAIkJ3DAqCMsdHzUw1ExXeUCXm97RRxsWGgY9DBTzhu1YVVyDdWp6d7cVCuJFEHXC2AD2r0tbGkoByVPdTID0vpJdQxRWsSfk18xZSvObo3jAJplRnhb67WV+dr5EC4M5jLwquUctTrSoGvnX5bhARfDm7rxO3KBRe6XYHJD6PnqqnXkV6gfd8qWD2sQwSnE1JBgOyP13nUHnOmyiwuTjnTuBXaqOk2/KIwaGRVM9ToJwTQKOvPEaMGDFiTG9E6I5BYdVPDMeEKTaOxHQrxLZI3myvaJqZGmLxkJdbbSvKbKbiReJzZR5WUz2Yu/emQLlrnBN4oun9KQo7iv6s3Sa/K4OsWzBPQ6GcKoT4TaAJnw6UETzz3r7CoqyvsOI3RAqAB4MKvy0EhhUkFdKt2q0bLVTBE1YVs9w2SZLu9azXZLDhBha4IGFZAne097ilWEU9GDigaq7bAgHb7nO1uUwQyps5o+wrlLexr0SVPEaMGDFiTEdE6I4hynZKomEA2KqcOjEzBPJgWyoUOwdDiq2E/1igRFSVDxBllOZpWXigWupTdYQI1CWVbwOETtUNFuugN9gYxMxhDXJUapNVRPhjPYTTpyJwNmzbePaFOz84DTLyCQDHfVGr+Xm8DcSDtnaxRAB3CrkRdGl/hpYTAfAQrv0mFVU62NyZr7s7EDrYkNdS4NzZVxzoBhsTp6hqjpOKMmCgPAA/OsN9hP+j/aG7y/2T/d7GvrIvKnmLQi6vRS95jBgxYsToFBG6Y4iC24CmlmQOWEhV00T+nwNvXwlbbeHWjpFQqEMQ97OZz2sD2Xbh7G/wgB3aXAK13FqLnX/duivQ9+ugNlDGs1RxOyhwFphQUkf1upFwc5AdBcHR+JzR5pIAcCU978EwAC4QG3jdnfpNHmYeNhBHum3XakMJR06JWt8Ji0rSLkLAr6+bQVnieAjfG4K5ec0PgkwnTbW66BgFA7eNWuplcKb7S7+XWljouVqBnLCOrzUyVfJWIG+0BXK7XdMsKwrj4f6KESNGjBiHX0TojtFSWs+yEjORQI3lNE2qVJhSKzKpkGKtMJ5sBq7QKqJVQcyHG+tDi3+cNU9ZZvBaguKcrOpAMVGVxUKeeRdVb7GLJPWf5OIWVZzmpWW12lmS9htv7XDfPbTyuEou3rety2MINImbRJ8C6LS8fOLzcVaGRwZuVMALmBCpXno7eCEV2avPiWOAQFdeT2zfpE876R03rxnItGCun+193t2+lg3l7vvjdtMBi66L2creS24GPLTNtXziBIDcWlkCy0qmOp5oIBTV8RgxYsQ43CJCd4wW8HV38uW5Zb5kgqOHmoDlEnZhBXeCWDdNgcy/OwRp9VA7D7SCsLpEVGl2qmurSt+ygpKYyOXw5LsEKjmuqyZ8EljZYiVU4hBfYzuI+zhSVuV7GEhvEhSadRJ/s41k1RRRglVBN1YbhkF+nbzftFwBP/WIOx+7Ji7y8gsFY1NxOzfZ8TLD/ZOqejtF3IK3hd3EQMMr4nK/wO0zD/3pr7lt4O6eGPiG5Pu8Gi2NgeR70ufTdpc7GYkDRLaDuUXiBj8E1QLkMljSbeG/XCuQO3VcprUAeNpjGiH5ZkGx7GGMGDFiHHoRoTuG93R7GiHREIO4RZIfW1RpEQq959hbTJSd9H0K41rfmkrrJXzPgRVFwdAlVnrgt3CeSLq0YC//SC1n8mpJALVAznPJIML5hq01IqmoJmwV9J0R1J3vQdZN1HBRzHndTFlDSQZNdHs0KjhZUQzs0hq57ec3Kiv5/A0adQF9sZjg4goF/u6lkq8c4jzVTp23O8Oo4jqLVDFxYyRrGbFgbcDbrWc78NbX3IAlCd4JNd0efzLAcEaVNJuKgXWu622my10Cv7Hdl/e5DeTZtp9t7pw424qt1pIYVbb6yoNpenyxMl7PVsYFxiOIx4gRI8bBHRG6YwgMJ2s3O+6SBEDnNfEz+T+BFcSrvGzGVTWb4Dj0QKuCjX7ywAHhFXCueuKg38A5q5gGtAk8ORHRLUK6RyYsIlopJIC7EMbxNfJkW5BUn7SBPLKbKKhj0PdRUNLBg7eNSJZjQs1ne4tX2Z0KbHaB3zIBgBt7ClZKqetAiXg5T1aTeh2tJqyC4xLyefwn6q+qrgSURrk1kJsoQRjYTdz6uu+X9IBngrfbHSngnTwMErYWf/yFvvOU10JYDy0v4qNPALkmJOjIhd7k9zUU1VplbSpyWGiTJj2+OsB4i2/c2lSq9a4849EvHiNGjBgHfkTojgHD92+ANZ95CPKFHEAB6y7nqYpErsx/Cz0FAHpegHxPEfL4txefFyHfU4B8uUiP6XlvEfKzipDD6b0ynUDHJg5aVdyAo+MX32TGsKCzBrguls7OwmCfN41p0qDcJ3Eavzkus5kyX6M9jCfrT1sC9SvtKqE4QdXDEQG6rC+r9WhX8XWwfaUTX/kjEXa8YOq/KDyyBUVWR5M0UbwV9ZZBTUcOaD/hafSXkkpZokco58GSVcCbmYp4Ww94CN6hDcWAt98wSbWbLU3Gc21eS4CnjHQS5QBNJN5jrSspHnSGYa+cW9U8OY+8V6qaqP1KB2OZMK6fpY2e9Phpsa34z6LHURWPESNGjIMqInTHgMrGvbD37jVioZANEiRXtg0FKqNM25cIvmeVIDerCIVZJSj04eMSFGYhwOcgj8/75HlfGQr9/HpxoAx5mr8H8v08PT+7TO3MGYq99QUDJxEkCphzjxexpGCDHPNaIm9QVWwE1dCCYjeHKNXY5j58nT5fleZw84k9JWFb0UGBwppN4qSPkQRJU/5QFXLDiALndiCjfmJOpKzV0dai+wUVcH694EoMMnxXq6x8q2rqAdYr4gjktGaFJJQ75VvHTSmVURJVUXTbpYC3X07SgpLY1oGinYiUScn3JWE9dbZO07MgXRVzsRbxYJPtKl3BuNpVjGUmzaJiD9I0VZwHBbJ+0Z4SI0aMGAdMROiOAY0K1wrUiiOMBN4+ov5jG1b4VTDCNDNn8zC2iPpoDQD/AUDVLINZzVYkkenmM3Q+G6iiF2aXGcRnyz98PFCEwkAPw/qcXgL04pweKPaXIT93FhTm9tB8+WLBCLdiRwl86ajuuiTPhH1B1ynnVHkLmQyKBuQtH1opWCZQAxgVO41dpZFI4PR+ceYyBWtRrc1+UI+47rdCvgHVKjsk6D0N/tw6esDJB+4rtOB2INjNNV0Le/6eeueBO3vqEAu3Ed5dwNcKRSm4iLCPcE5gmVEVJbChWCDvxoLStdodgr1mzU5gPJkG6gnLikn4TKjjwff2Xn4cqEjzJIXxYniHQ++2yK2KwDveGcQb6SAefeIxYsSIsV8jQncMaIzVWpDaC95yITel8BB9WsA4BdqzgN19ipCXwrqruGGWmepmGK9DbXwUYMdoitc5XQC1CyVInz8LivN6oDi3B/KzS1Cc1wuleb1QmDcLCvN7oTinF4r4GKfPn5X0XmtreT82SfgrCJbMdGtPYchWhdR4n82XVWValVP1i/OyNXFUVXBpYy91xn35QIY0BLxSiaG7XmOQ5cp6Oef7xs49Ct+q3KIvXG04DPGyojW2qnCpQv5+qIQ3x70VBScreFPVFK0b7hr2ZPi/8WEAtt4CYsviCJBn7Wx3oAYWkwlEi1c8TQEPpiePcquC+/2v+0gLa+p25cFOLvCN4/6QxzSNSxq6JM7GxEDcJXDW6gmPuK2cYuuKx4gRI0aMqY0I3TGg75xlsPij57AqJv8a+K9Sh2aFK5s0aw2CXZxOf+UfVGrQHOd/dXwuPman3CYQPQngzQDWnVJOL7Z2RUxYNsQnbq21gcieYiHhMtf1vRX6V1nn18muY4uVIZ+D0rweKCzog+KCWaSkFxb0QmlhH5QW9UFx4Swoze+HAr62YBYUytxVUe06vqyhk/f9R6kdhHzTHpgItHM5yEtJQP7+JtnRjCLYxiBNeASE7XR2GzQhV2QVXH3tmqCqlV1w+EP7Gh/XFQbZE07W9IJXaLVUIUI9JmiSOi9QSPNVGeyrNflsTfpjhwytk9jLef20ZbyAtz1AbGnKFiAP9lmL2r0vkbWcCSzfVXwxNpCWWzo4cNHvpUm/tK3lDoB6yKk+e8F36HQWFU6qdc4UfeAAPNcK5vrcVE6JtpQYMWLEmN6I0H0AxvXXX0//6nVpETnN0XvKIlh0XW+mTRYnknKJ4S72RnxUOMDSdAjnYzVSz0lBH61Bs1aDOj6u1KE+XIXGWJWnj1ehMVKD+kgVGqNVAnx8XB+uQQOn4b/hcWgMoz8iQHDXbtzUpNbVNexhLSwhoDuIz7BAuCeNJlR3jkFt5yiMOXNFEu75PTwhP38WlBf2QWFRH8F6aXEfFBf3Q3lJP5QWzoYi/l3cB3m0FQgk++3ZcLXAtQSiAmYi8c9YHhjWrN2BK65YSzQq0+rJbqDfWICLbSRat1y/mU06ZcDjQ7EhhTwYvml6zirfPMhQ37hCuqreBI34mbKuXAUG1Xg5xsiaIk19RBVnWM+A6Zan1n6S2DEThvGWhkGZP44g1NvtbvOYUjsOiJPHnM7rAF23j/VthyCufny8y4DvLbSCuC9raO0pUQ2PESNGjP0VuWbYjjDGARODg4Mwd+5c2LNnD8yZM2faPmfnziHY89xeB2VOaKQa1/JYVThnBfHvTyZOemhrYSTyA3tFToEd4TNRDEKhiVRZaQQzLiC+d5w84o3RCjSGKlAfrkBt7zg0Edbxtb0I8HV+PIjPK/QX1XuF7xSLdsu6BhXlzF17o4qHinjwejswx0eokBcXz4byMoTxXigt7YfS0tlQXjwApWU4fQBypVyKEi7VWvIeynH5ZHnBaWbdtPKItkVXJdz5xp0YyvuAb1SQh6Vln6gijkEWlUKelHKyqZB1Jll6T7eZ+tF5cCRlCgWy2XIhgxU5/vT4cq+77ppcc1y9+Fq60cJ0ouSf3Z/OvuEHK0kYDw1TSWhP+rmtXcTPm2hy1Lo04yt3N4FaAF1VfJtEmpg3bbn6+/TP3Ew+r0AGZ9aakqju4r+MVcPDdvfeihItKTFixIgxUV6LSncMVkUbWLlDrCR64adOeV4kA/IAM3w7p4PMr9dlupYnzc7Oi9uo171ibsRDtKyw7cE0veGlqbsDoKdIZQvRY92DCrEMCjAY0K3nWtVVrSiCnuM6Keb1PWNQGxqD+p5xeoxwXts9BnX8N1zn13ePQ33XCNSHqu1VcUvtzmusemuWk93PXtsxCtXtozD61LZUKMdAy0p5xQCr5Mv6oLxsNvQcMQdKSwagvGIOJYdy2RaTxGkgjGzZCTeD99kwa5o64wKrakHhnctw3cQETAVkBOY8HzfYYt5V0MOzSa7h4LteY/im40sa9qBFhgFQbCgOmtkvTomaAQdqzXX1/bMizsspFHmdEMb5GMSZBPqV2A14hjDeNpzpvptZDXAnRivBcaJfxCrWVkV3dzHMvDqQSFHPFc6dSi4LUXOQA+ZGA/JSklJRnpVwo4jbuvVp3nAtY5hiSaG/uO+iLzxGjBgxMiNCdwwKUivxwiwVDvji3IQaenKlNTWGq01dY0jXizFbk2UmqgYi6idBr1cwGzV/UcdLt4JzA5O7LKzTZzTotnmyIkWTlqGAruqsesjZXoCroG3aBSh6ilDsLZK6XE405jFAE8ARAkZt1yjUdo5BY3gMqjvw8SjUd/Pf2t4qVLeN8LSdo1S+UO0sLmSZvnCGqdaS5K9E6FZDMMdlj7qpdsFAFVoQynuOGIDy8n4oLR+A8hED0LNiLvSsnAeANdNNAqfrT6R3GcRa4tY78Iuzmu7bjCZKCSK4SyUOHmsx6uaLUqWjZBJBCb65KkoDwRvHedTZk1V26qIp1hRbG5yAu+aTMfU4ylVZ6cbKLOwHZwVdGdPDuB5ukryoI6hwwwcKdsvOCKMdiydubzQz1ezws3ynzADErXJvYDjZ7MkcywriMpCl4wQ3BHUu5YGY2rJ0YYlOqHXppEo/pEaXEC5VeCKEx4gRI0ZmROiOwWAsF92GVKfQaiUsHGrnQimRx14Gd3tdLQ4ueUuAFpfFIdNVicSLf70OTbFCKMjlRVJXUKf1wDJ2alNw5eUQ0FmNVZWuxbOL4KB2CXwvHunSj4TmLQqQqBm84OGY/N/UgAQtIJgs2W/gWTprShBEiureGByD2vZRqO4Zhdr2YYLl6vZhqO4YZ1V72zBBOiashmp46D/XSIibwWv0NfdWYOzZHfQv6WrnQMtKz8o5UFreDz2r5kLvUfOgdAT+nQuF/p5WZTz4YFdTWpL9fLImerPVUiFNfAScGfjUZoQQzUsu5HmgVgRfJo/urpDH3MC4DKy45J0M+rSso5a9w8fSxdQzYVOSM3NUd5wSNl0CJ5Y7ZKUca5TTYzn2JqyAyyGtx3WL/9vt06Abptu20DVcJ2wxZpDrvNpuY6j9JAXO7TTx/+s0d1dLSkHy8Y118LULZyEJ4drwaSIQHu0oMWLEiEERoTuGKNBSUszZPX3JOAUL4nJR1EhdJMuIbxijiXEE3Ph+23HPQQJfoEn1tApfHqflfKMQ8pUIFMmgoG6UcK3q4fLD8K9WwNCW9OpBx5vh46iae+sC1SYX9ZSrdeiSpUGOIDFOx+XyKolNxjBHw7WEb0JhLpYZ7IWexnye3yUQqkeCIZa85ttGoLJzGGrbhqGyZRhqW4ahunMcqluHoLplCGC4kqhSHTodujU+VHHZW4eNxUSL1QEUFvUTfJdX9EPvMfOh56j50HvkPCitmkMNiJSt9K6CAjgCttYR1xrinIiJ308qcdBK4jHl9zLtN3cjheG9QEp5g2GclFcuacLHWwNyRT4uEMhpQCbVVvRL2GaZrJRLZ1LjF1dPOFRZ5uXa4uITFyXcKeKOTdskXk4kC8aOqkIQD1Vu4x+n35zxZvPOE7ANBwmJWuTJZYbTQoWcAdkvz61aCOHu9ohU1kmDcF0lA+H6uJkLyhSapj3q+Y8RI0aMQz0idMcgAG5UUaHSjSH1fOkhU61jAQOqvqCIFpAWHzj3Vfd2Bap8IV5gUpQFXhH0xbrSrCEEaZKjr7qgQE6fbz3lTa+kE9ySl4WT+tjvi8tkwFKlnIAe/ckC9s5iIqXu6DWtK95AEOT3ES6LAkvP8TuQPYKTQDXh1I8rWKX165ensnu07EKOGvjgv94TFppyguKtFsCtD1WgummIwLy6eQiqm/ZCdfMwVFBJ3zjIirlTqZNKeLdAXts+AsM7RmDowSSMNwt5Usd7jp4HvUcOQO8xC6DnyPnQe+x8GlQgdOm248RUtUVoVRPbvIefq1LuAFk5VOZF9ZmBlH3kuP2Qy+qNJhSx1KFYUByMk2dcDj26G+I9/Xi4ufGZgDdZVlRYlsEZ+f6rmr/gveL0WBI31a+uIN4xEhaSYC90sJsklO9Quc6C64Rqbj9LbSb2domZputjp7l1ToFwOj7ZKoQQrvs1hHA6XUhdcTeCMZ8Fpla4trNvSOdM+hfrhMeIEeMQjgjdMQhiSLmka6UtcWYSsSShkhVxqUIi244S4iialDzHyW+h99S3WfeaMjKWOqDxNUncxGs5Xdz5OXIYwjRdv/EflgMnUBYAwUGDLpYgX7Q7VM/x1rh2T8RlV2usyuOFXzow0lu1bJ5YHsjOgBAgrdNJmcNAsDe5ZjoQoKWQz0S+GcK+g3FJUqT5vUWFoZzKkNDnUGfMAiq7APm+EkF5T3NBq9+cBil1qG4egerWvTCOEL5xL1Q27oXq1mGobNhLCZoJlXwiUW9C5aU99G9v8Ga02/Qch4r4APQeu5CAHGG8sHCWcw+p99vCN+8atRtJ8p21KZhqJ3KvhNa7SNuDsvwIBBGKuUBKA/JlXm6D7MpccUU4kBVx16iJjx8H4jQ+bJI9xTGhgrjuQ60fTrYUnkmTRi2IuwhHOkaN9/sh8JCnKd9qK0mxvKSp2cnPN7/drGlu3TLL87SCuYVw6xPPFzyES235VCXcDiR0wxkrCq2CQHjCiiL5HLFZT4wYMQ6ViNAdA37zmwJ84qNHwtzZDZg7UPd/B/BvA+bOrsO8OfivAfMGGjB/Lj5uQg9agukiSyTpL6BiVyHbganSwNUrGEbVa4vBuVpeLeeScgLekCO1UxVBtRM0ZT78HEQCTJwjYEZw1WoaCNVqjahz50vmPoRbBgCntlPCIFtKtAU8eVnl+MD3O085/eX3Uq1tDHwv56qJbZZhXAqLcO1ksVIkbL68ARNQThCP2w6hBNcI7wDg54sHHr8DDnQwYbK0Yjb0n7vCqadcVaYJjdEajK8fhMqWQais2wPjLw2yUo4wvXlvVxaJkAdx61AC6c5RGL4vuQC01uAgoffoOdB73AKYddxCmHXCAijO7zcdOhWguAmPVcZdN0y18RjPMVdPQY++3HVRiDcNetjJwHYUWgL+1fwAsjO5TS13cPgL6nHo9r2AOE6jgR6CvoB4zcC2jkWLyJtBg5+uI0v5TnhE/LRUb/dEgRu6gPBgWhLC9Y+BcIFyV4EI7Sgy3OEumpIwrQDOEn5bK4qq4HQHKKrgMWLEOEQiQncM2Lq1Cdt2lmDbzoltjFm9DVhAMF6H+XPqsIBgvEHPF86rwwL616DXFi6ow+xZWGKOgRYr0LEg7JvcqCpYpyQ4flJzyjlDB1VZUaVYL9hG3aZl4TzMcwyqlFRJLV3cIADHCeqxJm86fg7BHXvXSWUXWwRd+FHFlwRPBWpajvPCs42G1psAUawqCH6yvTBRlBR6TQqV9VevOCaWEtoaiwZ9D7TJyPd1rEIedPHCE5ArVPK0/Kwiw+8JCxhkpHIIvlYfq0J1wyAp5OMv7YbK2j2kjo+t2Q31HVwnpV20clyOfOojD26A4Qc2+EEFJqIu7oO+ExaQOt534kLoPW4RKeP5nhLDNwn9khRLEjQ32VG1m4Yv2rXTrQBvc06+xOOC50NBmi1A+F3zpkIHlxTkt4qFiY4l/304X0FAnBI3vdqt5czZLcP7QNVvOj4VxCUZt1BgdZzLkesgzqv63Sjfrk63ldOzgDvcKe2AGyY5TRVvezsixcaiVWLyemsM1Wra7rzPaPvTv0a6FSVUweWujle/+S+XlpzQECdGjBgx9ntE6I4BOycI2xqjY3nYgP+2IkB1jlKxKTBeg4Vz67BwPsP5wvkNWDS/Bovm12HxggYsWlCHuXPwwi1KMTZhIbhhFFP4YU8vQxK7PKTkoSRqIggQMOH8VIecHxOw4vvk9jWr4wLnCWVcLRDSbZPsH17lLpRY7kQLC5e4a3oAxmmyHgSI1qaidhha/QYbJ6SUG1tM2G7C5RSl2Yy0JVRgdM2KRNlXCMfBhTOjy3fzNdSbpNrme4rQcwx6tBckXBFky9g7DuPrBqGyfhdB+PjaQfpbfWkPwX+7cB5zM622bQQGtw4D/HKdORAK0HvMPJh1/HyYddJimHXCQug7eREUF/SLvYfrdTex7KMmtjpgFQ2V7DvsBefBF+8tBnh83GipsELHjiS34jOpoicWiTznNsiOIWUcbU1OiZZFyoDJVtJT9nOKeM3YVaihj4dyGfe02L11f7lqOgnWNlaTLPtJt8Cd/EAH0mFznbbTnB0lbBgUKOMyD20b3dj4m6PBie9qqk17+Hj3/na6gxaq4ALg9VgbPEaMGAdhROiOAXv3zsxhUK3lYPP2Iv3rBtAJxBfUYTHC+EIEcvxXg6WLGrB0If5FOEdVWSANRW6Bc5ewR+qyWFtQ7TUAh2DMZg+AvKjhrlqKtDRXyNAkSlvCkDzZrnIHTglUbmqRLjAv3yvnIEOS/hCKi+IvV3bB9WKrNwM6qdSs5nNSqUAKrZCAuQA3wzoSJa+LB39ZZ1e1wltxWBxnuMG6332nLoZZpy6GeZKkSpaMegMqaFdZtwtGV++Ccfy3dhBGX9xN3UI7hU/IQ+WyAePPcZnD3Tc976YXl8yGvlMWkk2l75RF0HviYuhdOVcgTkdPsl8EgH1lFbqVwDYRqQ2eIwoW5ZzeQOmcTL1allK+I981UBBXP7jxh6Oqrn5xw8W2cQ8q5w7EpaoN7kOEcEoiFk85ibV450byDLjMYeDvDpIsW6wmAXAnIDzVrz1FwO1M6sG0LGXcrVPrNLZCSYIt/m5UBVewz1DBvQ2lAbk621CsEh6TMWPEiHGgRmwDfwDHTLWBv//+PfDAzeOwZ08O9gzlYXAoD7sH8zC4Nw979hZgN/3Nw+69BRgcQpnqwAmsbIEwjhC+ZGEdli2uwdLFDViyoAbLF9dg2VJ8rQ4l9N7KHW8MsmuIWEziMIvmDEcIXgK4GKSoIhgTMMt7mbeTQZYUn8SpM3H3RoETU8PaiYNSUYXgT2uB0zROrLRFLZxVRDpu6rzePM4eaAJtbSijfhb5juSHd018vOfeV/awvmJTScMl+qkthut2Y2WVsTUI4jth9PkdMP7iHhhbvZs6TLpqMBrOnhBAoJluAT0/p5cAfNbJi6D/tMUM4kfPk5rgBj8tbwqEqZeceZ0VcP4YaXkvCrdNeFTe1UX68pD8AWoPwg6dng21bgyvky/YoZVQvEtda4frNhRWdEq4a3WvuQVC/7wKKW3iQ7+32RZtvd6dlGu3QVrh2g1au5jmnofrEK6n2sx0JwYquB8tyqBZ7WhpjxW+I4DHiBHjAOO1CN0HcMwUdO/YMQrb10vFgUpFpLwGg6drE80wUas0CMp37szB7r052DOYh12787Bzdx527ZF/g/i8QI/x71hl/9bhRfBB68qyxQzlK5bUYfmSGixfUocVS+uwYkmNvOeocrKFgxv5uM59ojiTdYPsLrRUB78WwG3SocImJluS95vgWPzl6sUm0JZlm6Dlkgqe9wmbxuNLiZWUNJgC5EUD4WJxoPUV4CcIFZuFS37TvikGENWqooMVbQRkmpY6IGXgYaLH+euVOlTXI3wziI+9sBvGntsBlY1D8uZWEOfyg8YIYaZbUCMQP3UR9J+6CPpOXwq9Jy2GniPw9yHbPNiWHnjVesJJnKSqSjlB7ojp7Tu6ji6p1t7McPyo4M3fG/c5W1RkZGMUZuZBfs6NpgRURfnWfSM2ZpeYqRDO3T+Nyh0kXVrlO00JbwvcMs++wLUu3m23Lpdlnzu1PgRw5XD8oWUBuD7XjpgRwGPEiDGDEaH7EIiZgu6REYDt21tFSHxexT7b0sIbk8tcFQKQ8nsE5pgUxclRXPNabg1jNBowPJIjSN+xKwc7d+Vhh/zbvisPO3cV6O8O+bu/lPRyqUkgfsTSGoE4/j1iGT6uwarldVi8qE5NFBlWhXnUskIWDJMoJ95zcn1IQyEHlJztl4BpBXJWXxUCBc7U7iKhlTU4YZIhnmqFiypu911CAVd1XwcKAvwYnuV9Mqv7LvnAZ24A0lmPtbKMNMtJQLorL8d3FprDFRjFDpqrd8DoM9th7IVdMPrcTmiOcwUc+z1d3XFbRSVlOv6nuKiPALz/tEXQd9oy6DtjKRQHenwyrVbRcW3pOYGTAU+hUOHPfj/xkAdqOK+jdm1FLz/nHlAiLlVFkQ6b5OWXJclzhW4erKQr4Xw3hD8Jd6M+x4GhhXD87Amp3onKKH6eCUGyHZQEyrh3wkwcysNBgL7JqvtajlBrhFMyh77ubzG0quDWfhIV8BgxYkxxROg+BGKmoVsVPQwrINlpYfh5OFFQb+Fj0h3CGnlsJSuNfMuYgdZsbTuvne3GR7GSSg6278jTv607crBtRwG27yjA1h15eox/d+wuSHLhzAR6zFcIiCOEr1xeg6NWVOGI5XU4cnkV5s4Vx4Aq3qoaa21lsTkooGviJW1DZy/hvxbIeTl+33hFuhW+E8tRC4ruJHkTFXhL+FV0Pb0PmW0y6rlNWkr8unu7joVGqzqK6Zye8B0BhlErJmty3PhLe2Ds+R0w8tRWGH12F4w+vZ0qoihcdwviFtp6jp0P/acvhv4zl0HfaUth1omLICfbVBnb+YtFrbawq3cH9MvyZlCvNc9h7OFieWH/v9pYbKdOXWOseMIecQOcCt1kT1Fo9DZmOm7EEKSt7rGiD9Yx11riXOFnAqq3PM8EYLMjJwPX9tfZwtJZirdztaQDuP1OXNVG/PpS4lOPuQjgMWLEmMmI0H0IxExB9/Awlg1sb7t1lR7MNIVBnTcEdX2edBIonJvmMagOInxT6T+qps1JilrNQJOrzPNqtQk7duRg6/Y8bN6agy3bCrBlWx42byvwNHy+vQBj4zNjbZkzuwGrltfgyCOqcNQRdThyRQ2OWlWDo46okefcWgqc+CzERg1xaj6hUtVwblPvVdEs+HbWkUISvqnpjqk77soOqmWGd4j88fYTCGwodpDgazF7cLfwa7+f+54GxK36rZ9JIK6lE0WNbjTq1JET1XAC8Wd2wshT26C+aywTxPnAywbxfH+JFPD+M5ZA/1nLoP+MZVBaOEuSMlU1ZrmZB49W/UZFWopF6vaAJITrrqLPpwGMV8L5u0qFG9di3u8P6k2lnVu1UrlAvtat1+3rKuqQeMuqt0I4VnPB5wrhlCCrkeWpdk8maDtJU66dJah7KE+F+ax5zH7mPxHAY8SIsf8jQvchEDMF3UNDDN0KdOxtTkK2TRq06quGBUI7f6ic6zxpy/OfKXANRi0nH3OD4RwCpVzmJyWdGupIV7wGwK7dTdiytQCbt+Zh42YE9Dxs2lpw/xDWa1h/bBoD65kjhB8tEH70yhocs4r/YrlE+u4CU7j2hHZp6rWWHFTQM/AXJlsSbFv4Zr+HB2V9bD7Hgz5vXjwOyK8u9hVXOSUX+sEFnsl6ww16nLPGKrnqBbFeDUh6xRN3VcyAg6uw1KG2ZQRGnt4Ko09sgeGndsIogngbRZwPqhAwPbRh/fDZZy2B/nNWwMA5K6B05Fyp5OL932RDcctXgOTPsN+IP9sr53RnQxtCyfd0HnDXtdN3VlXlG6NOj33lFF1+aD1xz2XAwIM7rmvPjgqpkFLUDpu6olr5Jdc20TFbBZ8ixbubedr4wDMBXOfDAXsnBVwHtzEJM0aMGJOMCN2HQMwkdG/e7J+H6nQaVFvlOw3ULVSHynnae62CG6rlaevBCiEDC3mOBcr1Asv+cray+G54DOIWzFFd3LYdYMOmAmzYlIcNmxHOC7BB/m3cUoDxaUwEHZjdIPg+dlWVoPzYo+pw3JFVUsl7S171RijW2uDWC85ALFDuICoJ31TW0NUI9y3tWwZPUtbOlR50qqqvoML2GFu33IC8+Wx1lqjiq4mpLhHTJr8557T3JFt/uwKUb4bCXSkZinPUcXP4ic0w+sRWGH5yO4w+tR2aVRmctVG+00C8tGgW9J29HGafswwGzj0CZp2yiLeXUb/dXQHpTKoL9Oq3/wi17libh9pPbDInvSaDDP4t+Ooh+hyXicert7OE0O2rnlD9erv/RAVXK0q+wA2DLITrurdum3TgnZDi3S2A28osUwDgmpTZFYDHJMwYMWJMMiJ0HwIxU9C9d6+Hbs1/tBCtqqdGGgyHoG4hPQvI20F1OF+718LlKbApmJMwjoCIkCbTCUI1+ZM9AzyfKukC6/hv+44crNuQh/Ub87B+U8H9XbepSGo5K5RTG7jeK5fV4dijqnDcUTU49sganHBMDY4/ugpzBhiYFEqxNjmWNHQwLkmSLf5rLXUtCXzi93AWF63p7ZZNPuKkuo3PVRRPJGrKMpyIHajatlyjfS1LBdf5rb3GtWvXUo5i+dBGOKreNisNGHt2O4P4Y1tg+Int1PAnTflOA3FfABAg11eG/vOWw+yzlsLAeSuh78zFkC+VpCOqt6DQ9qS7D/IBdqCiDXzsN9TBiAVEA91WUeffpN8ODJG8P7Wgh36vhAquJSMlWdONdaTTpi1ViL9R17THUrCsU6biPRk7SRdw7ZJCZxLA0xIwVf2OdcBjxIjRJiJ078f4/ve/D//4j/8ITz/9NOzduxeOOOIIePOb3wx//ud/DvPnzz8goXvjRldWOhOk1W6g11qvOsuta7kahssRB0PieTuVOwusk9DWHszDzwnB3NUAVrimfDdWytWmQixJZltuMJ9oYS1KebXSJIV8/YY8rN1QgHUbCrB2fQFe2lCElzYWYbwy9UCOjYJQDT/+mDpB+InH1uCk46owd4AtBQrdLUq4SbLU8nRcmYM3kINSo5DichDqNSkzoRgHCriWOEQG9rXA6V0MNgJ+gtDegyLHjme4VguKhW+2aoTrwQl1pB4H1TcQOCvbR8iSMvTIJhh5fBuMPLEVGmP1jsq3U+0l8r1F6D97Gcw+dznMuWAl9J6xBIq9ZfksN6rx2j0l0PptpeulFU6c51swX61VpFrLZychnD3zbopsJoJval0vnvmmGaCI6q37z6ng2sRHtidxpdQKp+c0EGsD3N0o3p0sJ13AddcALvkF7vlUA7gq4QbAsWJNjBgxYgzGOt37L77whS/AmjVr4IILLiBofuyxx+Av/uIv4KyzzoLbb7/9gIPuwUEP3RgK0NphL82fnQXl+B59TWHbqt3twD60oWTBeZZSbpfVzXt1ntaET621zGqnKuPUll4gnGGd7SosOfp65vqvXm1QUufadXlYs64Aa9cVYM36AqxZx0BeqU4tkGP3TlTDTzymCiefUINTjq/CScdWoVhIKuHhhgu3m7WjJF4T9Zz+GkuKIlGquu7AVTsyKgz7aimqvitMBwTu19MkjSZqhgf+drWfoBJNSnh4jOAc1Qb5wYcf2wQjD2+Bod9uhtr2kbbAHVolaJv0FKD/nOUwcOERMBuV8NMXQ6Gn5OZSm4gfgPjxBB2Duj46EAED4UaRVzXdWk+4/5IMRNQXrutNDJmjcoXC8TzACmwn9rkCOtpQaMCF1VGoFjwPXPC5L784RYr3dAB4+LxbAJe7XhMGcITvInc+jREjxuEZgxG6D6z4/Oc/Dx//+Mdh7dq1cOSRRx5w0L1+vem6nOKpDuHYArVCevh+G+Ey8T0K6ArF1sbSDs6tcm7Vd13OREBcPzNtQBFuA37MCrkmdzKEs/KNUGtVcA/nHtK1Aku92oT1m3Lw0roCrF5bgNUvFQnM8e/mbUWYqigUmmRNOfWEKpx8XBVOP6UKpxw7DvPni/VA7CF28OE3sKrRUhnFbFOyV2itb+MBV4h0HS7VriBE7cRtnc89sNvdAp33SrvZTBUULa/H71V7RqCAqyYuSnhiMODsMDkYW7sbRh7dCMMPb4ahhzfD+NrdCatJEoK90mzhvNBfgtnnHwEDF6yA2Resok6arIZ6+4nrpGnW25UspGV56NbmPQrW+smqQNOAUHzlWrrRQ7a3ceC+ciX2paqKukd0nONa2pvn4q5wz5N1whNbonN1koMAwLPKELpzShaAxxrgMWIc1jHYJa9N3dU9RttYsGAB/eVmMwdW4HVIVW39q//C5wrDOh1DYdvaROw8oQ0FH9dqSZhViDZCsQtcjoXxcL01LHyHIG7fp8vEsPCvrBlaXJKPGYCoVTwtv+DsKpTzSMoifyABFiVv+u6eCuG5ngYcc3wTjj62CZc269Csy3HRaMDQcA7WrM3B82sK8OJLRXhhDcJ4CdasL0K1NjE1rV7PwXMvlujfD810rDl+2klVgvHTT67C6SdWYeliaduuDY5Yn2YkESXZqeXklxevvHZUxOfi725SN0UtiSc1xbH6jAA0C7Q5/iz+qES9ap1GMCSwSO/U9+sEnVFa0rva6AKE6rvGujBqV9Eyfb5uOCvlPavm0r8F15xCcD6+ZS+MPLYZhh/cCHsf3EQdNa3MHQI3jWGGqzB49xrYc/camlaa30sq+MArjoT+C1bCrKPm8fET2DF0QCemclfhhC0orXYZP48d6EpxdZnHLp+sIgjm+BvEZj5Nb0NxY0H8HejgSxJfczKZurDWAWpV3K+8fdWGggM77tKaAdfO9uFVcjswTgVlucvkBitpcN3NPC1ecrMu8qJuOr7rwvakPBR4AJ0vegCnUYseT74KEL2Ohxda03BawUC4K/sZI0aMGIdRG/hnnnkGbrnlFnjwwQfp31NPPQX1eh3+8i//Ev7sz/6s4/u/+93vwvXXXw+PPvooVCoVOP744+E973kPfPrTn4ZSCW8ntwYuHyH78ccfhw9/+MOwatUq+MlPftL1Os+U0r1nD8ALLyQVbOvRtiBtFWGrbqdZPuxjtZ6kAXk4b1qk+bitMm7BPFTlw8ftVO7QdqKfqSCPEb5u3xtO42RHqUWOsOcSNDmRk+qRE1gaRRwv3uYxK9INGBtvknf8+dUFeGFtEZ5bXYTn1xbhhZdKUJ0Cqwp6xU8/qUowfubJFXq8fLmoffh9pPqJwoZWU2FlVe0dzvfg7SnOWyylBkUh1Coo2ohHK33QZwmVknrO4qx1eouKnbSpqAKpkOpfd1I76exa+QT/tlhPBLxwPqeYywrVdo/A0KObYPj+DTCEEP7M9sTgMM1+YqfhsspHzoM5v7MS5lx8JAxcsBIKs3s96ZoBBx+HptmOs5s0U0sPJuwsKaq3uxugA1vzGm6fOh2TPlkWn6uvPEsB15simphJrOl84eYORLBdMtXtfVDAuQtnM32eCSriaWq4u0xStaQGd8KciP+7mJek3xgxYhyKEe0lQfzhH/4h/NM//VPLhuoGuvW9xWIRLrvsMpg9ezbccccdsHv3brj44osJ5mfNmtXyvnnz5hEwY1xxxRWUYNnf3z/lO3FfY+dOgKef9hBsYdg+xggtHyF4WytHaDkJLSN2+QjN1kueZjNJA3N7rbWecldj2gC6/U5pIB4q5WmfG4K5nV+/Zzh/uK6qjOvCqRZzwhfuHxMuSDMhTfiigRFaWRDGmk2ojDVg3aYCPPtCAZ57sQjPvFCif5jYua9dO5csqjOAn1yFs06rkSK+cH7d1wvHbYF+cVK8BRxNR0NX41sS89T2kNjOheRGcg4Tq4gGkK5SMT101UyMncXZTVL2uQApq9ymVCFr1Z4yzXtFZnfQjp9cGxyHvQ9tgKF718Hwg5th7NkdbYHb9oakaQWg+uAE4b9zJPSdsSyZbCrbIPFOHaEYSwSrrR66WTHXNdDRiP1gVrkpuZKa9di5jQKOd23Mc952HrjD5/RbLnhLCj5GT7iCebhN2j2naROtcJIC125as3todyp6RkUUl4Q90QTMYiGq3zFiHKIRoTsluRHV7nPOOQfOPfdc+Ou//mv42te+1hG6b7zxRrj22msJtO+++256L8b27dsJwDFJ8o/+6I/g7//+71ve+8gjj8DIyAjN81d/9VdwwgknwK233kqWhKncifsaWC7w0Uc9RBbFdIR/9dpRLvvHVgUnISelYoi1pIS+7/Axhn1P6N22YJ7l+c4CcAv87UBcwwKzfn6ojKcBfKjEZynhnVRy1ywFlxUo3nw7XdRx3VloXbEAIO/DZe0dbBKEP/lMAZ56vgxPPsdAvq8JnKtW1OCsU6twxilVOOuUCpxxah36ZvE6UP3upmmOI7BNUE633qVVpSRXanlCLc1GCjlBsfWHe+U3TSHPgnSrfpsnDmO9DULqftvazS2gzuo4daXUKim00xgMcVpt5xjsfXA9DN27Hobu3wiVl/ZkA7eVnyWKaEV5xSqYc8lRMOcVR0FpYZ/FvWTpQTqwE45zP72l7KBXvW1Cp0J2mFDINn+1AflKKKqAkyIO7RVw/IvJu2qHQQsKAnionOv2aPc8FZQDIO9K3Z7ge0IrTALAZYPyH/n9meRrXb67wxPLD8aIcUhHhO4O8cEPfhC+8pWvdITuCy+8EO6//36C5j/90z9NvHbPPffAJZdcAj09PbBlyxYC5Ky499574eUvfznZVN72trdN6U7c19i+He03ST+1YToK+1gh1EI5OmwURPH1ELatLSRLMffg2TqtWxjXSANqq4RboLbv18dp6nbW+7PgXQE7hHe7zE4wLktzFg5rTbEKuO4cAm8CcW+AtzBerTbhhRcL8ASC+LMleOK5Ejz5XAlGRid/6xs9vli28JzTq3D2qRU4+wysJ16DUpFsri37jztkGrg2Sq2rfJLz1hKyV4jVgraV1gNX0wi1kVdI82VTUm0lYr1QS7jOowqxrXrS0rBH6oQ7cJeBAL/uYVwTJcfX74G9962Dvb9ZB8P3bYLartHuITwH0HfaEphz8SqYd+kxMOuMZQmftqt64uww7J1PS7gMAdxxZ5BMGQK4KuK6pprsSXdmpFKK1gqX8YwDbn3OdyGkTrgkf+LxgoMtPU/odN0WurZpzwmMA7CdKrtJi9rdzn5id1dgP9HSour/7mQ/YQU8er9jxDiYIyZSTkFs2LCBgBvj3e9+d8vraC1Bn/a6devgpptugne9612Zy0KFHE+6zz//PBxogef/2bPZw8r/WsE7Dcjta6OjSbAmpUtA1sK5XmitnUTnt+sT2k0s1Opn6mP9awFc188q6mHSpQ2bGKqvW0jWecIBiN02IYSH62jLKeo89m8YHsp9Te083YXADStwYMoUakdOeo8BbQvm+V6AU05rwKmn1qFJCZwjpJy/+FIennimBI8/U4THn0FVvATDI92BODYHevr5Ev375o19NG2gvwFnnlolEMd/555Rgfnz/AZBoFZfgyribLVRbzeDS13amFNTI/Vpk+3BAzr1dFSwpP/7ncZNKxVI/XZ18GU6y3DNcl+9wnW9FGmW7D56N8LtR4R77Y7p/+LyelbOpX+L33o6gerY09tg8DcvweC9G2DkwY1UtjANuNm63YSRx7Hd/VbY/NkHobBgFsy9ZBXMufRomHvxUZAbQDubJpNqEx2tdJI+sHPfU9rNu8GHE8qlIRB5hrwFRSvB6KYiBRvfj+eKfLJOeAjgrma83M1AwKaGTvUkgGs5wo4AboA7+TwFpt1zduX4LFF8ngHgXUK8OnZcfXC3UnIHgn6ieWhUuYUovd18vtvweblDFaufxIhxWESsXtImHn74YVd55Jhjjkmd5/zzzyfoxnnbQfcvf/lLOkEfe+yxmfOMj4/TPztymolAqEEgwvVDMMTKBhbATUf1VAAPp4XPsWCLKtMaFsgVqBWyVcHG94WQrpBqH+u1UKFWwTsNwNuBuBGrXFiQVrU7y6rSDYTba7eFcWtPseq3bjf7/VXR5Fv16qMGaGA9bmmOQ6BkbnkrhBPwYhURhCHxi+fqDTjhZIDjT6jDNVfjzhqmz1+9Ng+PPVmEx58rw2NPsT1lbLw7EN87nIdf3t9D/zSOObIG557BAI5/Tzyuzmo4VkRRXzeCt1Vf8ZisSaMWAnE8eAS2VUbnLaBkJTWq8fvpIpOwzImdMh23lLyVYEu94vaug2nj7soUJvaV+rw9eJNijv57bEYkyYqzTl0Cs05ZDMs+cj7UR6qw98ENMPTrl2DPr9ZDZfUu/SgH4Xoc4LP6zhHY+cNnYdePnoVmPgezz1tOCvicVx8Dfccu8MesU2G1lKBsHXN86XP3/bUyjBv86Gu8LpQ065r5+FKMup20tnfDALgq4PhyrZYE7hDA9XWtC54K4MFdoDS/dwjX3sudBHAFXr07si9Aznc9+PjTbUODRhmh5Mt8ibVWMT3W+HaF+t94vZq1uku+zJewMtK+WcFixIhxYEWE7jbx4osv0t92dbVR6bbzYlx55ZVw+eWXw2mnnUbWEwTyv/u7v4MzzzyTOlNmxd/8zd9QE52ZjrlzmzB3DpfxY2hskg0BQa/eyFFlDFQz8ZpCUG4APITxNDjPeoz/8DMt5Lo7sGJZseCtMI7vCX3ZIdjieur66ueG84Ugrn91+RbiNcKShfp6qIq3g3CdPxw06PcPVfssNTwEEbzwE5Sr2umKczB0YmdJrQ9X1ARNgQGXsGmU8uNPaMDxx9XgWqhBsz4ElfEm1RF/9KkS/PbJEjz2dBmefbFIZQm7CSx/iP++95NZTg0/54wqnHcm/qvAuWfWoK9PShYSh7DKTT52UcCRbRvYIRO3G9UHV7XRZh8KVIvKzRxqoCuol+2QjaDe+6MRmrUkHBpdcDhA6ncjqYKTj1286GpjcRYVmp70UhGM95Zg7kVHwdyLj4aVOYDx9YMw+Ku1MPhL9ISvg8ZI1fGz7ls3YKs3YOi+jfQv9w+/hPLR82Heq46EOZccC3MuOIIqZbB9RoHU1zxPDaPW0mAvGACqj5zUcVStacV4Ji4VyNuTjlEsnYnbTBIpeTvyMnAQ0A7A8XWrgFNjHrk7pmXinfqdBtdp6vaE1O4ugJx+gzJPqLoLgLtmQbYcIVbyKQT2E+u9CtRv/FvXBlWx9GCMGIdMROhuE9jCHaNdxRFMsAxVafSB/8d//IcD8aOPPho+9alPwf/z//w/UMaMxIz4kz/5E5pHA5epUD+9gRe8hmt8gRe9HidQivmTrvUM33iFUPVa/yKoWkjtBsg7gbmWNLc1vfEvquOqBCuIK6zqfBbAbZ3w0BoSKtchPLdsqRQ1XCOE6jQI123UCcb1M+w2zVLDw2mtr0tyI8JhPk8Aw75UU8ZQveAGCHKiitO2rTWgt9yAU09pwsknVeC6a8bo/cMjOXjq+SI8+mQJHn2yDI88WYZNWwpdq+E//00P/cPAZLtTT6jB+edU4YKzKnDBWVVYvFhUT1o9hivXCp1GIwwtpDOLgk3g00ipOCHg6hRotZ5oxWtj0RAB1/l32c+MB5ZxZcvGV1XTWVVwZcnvzAckDWacdz1ZspC94TkoHzEHFr39DPoHtQYMPbgB9vxyLez5xUukgvs7JN6KotPGX9wJW17cBVu//CgU5vfC3EuOhDmXHQdzLzoaiv2lhA3DAnjS2uUHHOKud+um4ew0SpJOFhd7BQKyJF2SXUJmK5S0TxQvD//ieQQBW33nuE4euNmyVJO7O9qi3jXnEUV9X+wmmXCtd47aAbmz4UBmgqa/E5BuP6GKP7V6VL9jxDjMIkL3NAQmZ+K/iQaq4vhv5sPeexZ/rFxF7e3NAvovCTpQhW59XWGbFPLgH4KznUeh0yrR3YK5QilCeQifeFG2nnAMfV+Y1Gk/38Jt6LXOUtI73fntRtkOLSbh54eWFNpbZoCh84cQZW004XryNEli1KTXou+yqRYUa0nJGVW8QNaVBoH47GITLjyvAeefNQrNxgjBxKYtOXj0CVTDy/DwE2V47OkSjI13VsNRMcd58d+Xvsne8KNW1uCCs6vwsnOrcMHZFThmFW5UbSYjYNNosPebKqNQhW3fYt7BmSZMev+4h1gJfS7zsiqtzWi8uokKNirZrFAmky1pCXafyY5DsNRlhf5v/UvwiZ9VysPsl62if6v+Ww7G1u2GwXsQwNfC3ns3AFT4YLUQrp9X2zkKO3/4DOz44bPUoh6b8sx99dEw/7LjqBoKvUO99Npop21oIqUmm5pjjEBdFHVnDJeKHfo+2f4up1WQNQRwbWfv7jCJNx+tNDLOp6Y+dWpHnw7giUTIAKbT7CepardRzDVbtTOQZ1Q/Ce0nuj3loMwXsaRnM0i+FJEjqt8xYhySEaG7TQwMDNDf4eHhzHmGhobo73RWF5mZwIullEFzZs1sAE++jsDA1QjwX1qvIAVtC+ZqZ1EwT7OtdAvl9q+1g1hbigVx+zdUxLOsMPo9rCpeqbSq01kRLiP0ntv57DqkVUoxopoD69CWkqaO289IKuOiGON2QZIpiQouflSFbLWe4L9CyYN5viiPGw1Yvgxg2eIKXPlKzk+o1HPw7AtFeOi3JVLCH3qsDBs2d6eGr11fpH83/HiWqxt+4TlVePl5DOHoCy/SdmlSOTttS4/JlmRFIVCULpm6wWgDuNRJLomn/mFTh9nbpG0bebaH8HQFb+PhlqonCTuIORZdeUR5T6h8k6XFjBhwfkzGXHTdmbD4nWdBfbQCQ/eth913robBX6yF2rbRFhXcJXmO12HPnathz50vwrq/uAtmn7cC5l1+DMy7/Hgor5jTMhjLOlb8sStWEDez1PpWrDUwSoMLqfNN/nqBSF1DX9qQrSRJAOclWr832U+CBEwEcLKpFHJ0DHCnTLF9NPdd7fblYUxnpmbKe/BBAOiZNcaNL94DuFe/cQCpJUGj9ztGjEMvInS3CbSFYGCiZFboazrvwRlc+ysB2BMC8OC9KRKwJj9qDXAbITBbdVwBPOtfCOmd/iqIhuq4riN9naAFvE6z1hBdhr7XArX9O6G90MxelqraabAeJnSGCrhdfuhhD1/z3433I+9ShsB8ydQPV/+3GR0QLJiV1nl68k0445Q6NdZ5X3OYIGnz9gI8/FiJAPyhx0pUOaXWhTd86/YC/PhW/IedHAEWzGvAhedW4HfOr8LLz63ASccj+Aoca0dJhDl3i19sFNLj3Pm+BZAcGOOszhLgKdRtO1tvhD6Cy3ZYLzduN1WT7SDJ1WEP/N/cst4/p/Ux78V3FGaVYM6lx8DcVx5Lnzn25DbYfddqajs/+vQO8xmyYgr/9SbsvW89Afv6v72HyhHOvfwYmP/aE6D32AVS4cXbVsLg48C/4MsSmg3iAFUsJ1ouUJVfBXarPrvP5fML3kljKwoDtsJ4MuFSXpc7NgU8b6AFjc4xTQFw2UHGbtK1/SQFrr3fWrZRIxvQ2yZf6jaW/6qtiYxGUgknX5ZBYlS/Y8Q45CJCd5vARjoYO3bsIH92WgWTBx54gP5q05ypCGw3j/+wjfzMhHasyADsTABnhdtFJzjPCAu/oUpuYdkq5NamEkJ4qI53UstD37Sq3gqz+HlhQmP4N62LpS7TPk9sqpSSh+Hf0B8eJne2s8HYwQHt5Vz6tBDCQxVcIUetCHQ8FL38rwo3epHtFyJlXHeMzMcqXgOWLWzAla8ah6tePU6fNTYO5At/4NEy/UMgH+qiZOHO3Xm4+Y5e+ocxb26D4PsVF1Thd85HJRyVULGTYDIwWTikwY5jRTzGGejYFy5YJo95O+gO1MRIv5EwzdJ1gXTzsjKet4mXoQJOanujxXLC7cI1aVOUYxFE1frCP6sczDptCfSdvhSW/ZeXQ3XjXth91wuw566XYOj+dQB1q7bLMEF+jiOPb4Hhx7fAxn+6F2adtBDmveYYWHDFSdB74oLMiiFZ4Wqsa1k8a+HQyLVaTjx+iu1HnmrOgSsdaQBcj3k9xdB2MWUK8b0K4FQLnCqhaFJxRilBFZtD5bobuM6yo2Qtw1SKceq3bkO7jfKTV79j3e8YMQ7cyDX91eSwiplujjOZmKnmOHihb2KJAYHkJGBLGIgmQMh4LTUmAODdr3MrcFuV3E4L580C8TQoD1Xx0JYSNtLp1DSnXaSp2GmNf6wdxq6j3bztfN4a9rtlAVa7afZvIyhN6EA8QwEnINeuf2rnQM8zVqyQQcWzq0vwwG/LcP8jJbjv4RJs39mdJcXGwvkNePl5Fbjowipc9LIqHL2qztU1BArVuuBQyP1Rn7b63yGle6VYU8QK4TcKzyMVyGUQKk18tLyg+czkNhafuK2O0mID8dYE17xGveWy2PrgOAzesxp23/YiDP7yJWiM1PwxoLhn4FoxuPfY+TD/imNh/lUnEYzbxjhqe/GJmKbbpdhmEiBpfNYJz7W1a2jzI90W7u6M+Y5Yo90lxrLCTQ16TOUZrYZC70Hft/w+aLsjgIsHnEtTpjTX8f6Pzkp1YDVJUHRzcup3SyUU/XaapEt5FF795jsGxpsu0K82Max44mp/6/QYMWJMW8TmOFMU/+N//A9qA/+3f/u3cPXVVztFG9VvrEiC8Xu/93tTDtwzHhNSuE0v5wn7v6cGwEnVEg95+DUsRFsIt3/ToD0NvK2ynKWeY9h64Dq/ro9CuH2cBuRZlpRQ9bbLcJtXr/cC4uHn6jazcG295cka4Mn5w/daVd3Pry2v8wLxAgiB95v+yjTe4AzcBOF5D+e4jJOOq8IpJ1Th/W9DhToHa9bl4f6HSnDfI2W49+EybOzCF75jVx5+clsv/cNYvrROAH7xy6rwigsqsGIpas0sPyYboIgCaqoROmWf/NgCSrIBqOqJg2oZmFpIx4GtyLEMeR7Abe1vGgDQvpNuhuDB29pM9DP5TbaGOMN+aV4vLHj9KfSvMVaHvb9ZC7tufYFsKPXdfHfBfyWvwI+/uAs2f/YB+tdz3AKYf8VxsODKE6EHFXDZTl7J9495WX459laJ+qz1QNLvr9uZ/N6qOMvphmwppqkOVrZhAOfXioXWJEw+xHJUYAYXrxX58LDEGuJVKgXKteypYVfBerkz1O7mJLze+6h+u4GKLEMOIynjwnadFvVbrDR6q05LVZL6XZCulxG+Y8TY73HYKN0PPfSQg2SMF154AbZv3w4rV66EI444wk3/wQ9+AMuXL0+89w/+4A/gM5/5DJRKJaq/jSUEb7/9dti9ezdcdNFFcOutt8KsWZzodXAq3erpzla4Zc426nd7dXwm1O92kQbjaSAe2lZCwM6Ccf1nvd76F8O2hNd5s+DbJkHq5gxLEVpwzlLTsxIw1UKjy7a2FN1Waep3aEVpcQ+kPJYl+m6Oxg/u1XAZlCWm++NJ4ZKggQiKgQSh+75He+A3D5Xg3gfLsG7jxJXw44+pEYBf8rIKvPz8KrixM34/hUVpAe9YMvmLcMpzmEQplfPMRpF5ELZlYydgHa0BwVjV3U2Q0ojhhk/Cs+7bZGt66xdHCBt+YAPsvuMFgvDqtpGk5cWsv11wz/ELYMFVx8OCq06C3uMXGJUZko+1VnXwihOE1cIjj53iq2q6ueOQVLytjSRZ/URLSNJvU5OfZd25yU4yr0S95tiYyanfuYmp3anqN+3Q7tXvFmDvpH7Ld3Xqt94lkt8D1rd3+0CPF6uCS/1FrOPOFqYYMWLMNK8dNtB91113watf/eqO86F3Oy0p8jvf+Q75rB955BGoVqtw3HHHwXvf+1749Kc/3bb29kFlL3EX9PaQfbAD+ERhvBvveJoiHtpTLISHlhWF46wIEyd1WdZ+EgJxGiRbxdy+xyrXVs1OW5ZG1q7Mgnb/Hi6fZ5MtcwrXMk03oHbxU1VPvcIKYc7ikMvBxi15uPehMvzmgTL8+oFS1xVS/DZuwtmn1+CSl1Xhla8Yh7PPqFNpTFKfCSaNLSWA7oRFxVhQ1HZiX+X19/M4k7P6uLVKSFj9hEpeJksM6kxag9zuF94PHkwtiJN/vNGAkUc3w57bnoOdt74I1U2DLQCeCxcIALNOXQwLrj4B5l91IvSswlGK0KOq9ZByl8AAuJZgdB51hdI0QNVl6V0gdyx6+4nWYHd2Ffo9MpSrR59EZrGbqACtpzNK8Ja7ZpyMGZYezLCWYIQw3QVcZ9pTGumfYdfBDQLNnQVu3hTU/db9ptBtQTy2nI8RY8ojQvdBHDaR8tlnn5126EYVrNHg1pCs5uVaIdpd9aYCwIMEzJTl7m8PYjc2ldCq0gnCVb1OU5UxQjDv5Am31hBcbpr/236fNIU7XIc0eLbzWDAP5203LXseD9Wu0oh4wC2QUzUQ8xq1upfvrcmLBKqiZOLs6zcW4DcPluBXD5ThV/eXYNuOiUH4wOwGWVFe+TtVuOQVFTjmSF9GkNRp8Q+nqd72t+EVcH1dvj9tW18uUKVWW/e7Rck24B22nmf10ujFkjzY4vt22993gsT3j/x2C+y+9TnYdctqqGz0AJ5cgeQK9Z+zHBa8jgG8tKjfjix8cqm2SJf3W5WbezfJYKaZrngnqB2SwM13UcxdCfdZHsZrVa9+twC3CsKkBDehoB7wIj93P4vJqt9Z3m/zfSakhqeo3/rEDa7wt4PP0Vqi62/83nQocKtXvruC7eaj9SRGjH2KCN2HQMyk0l1LVErhLoUhgOtrCYA2EL0v9pQDGcBthEp3O0W8WyDX6WGypj4O4Vc3h0K3fRwCe1pCZvhZCtLtoLrdYCGMdhDeTgF3YCYJma5LZmA5cYmZqoobT6vaWJyq57ZhDlavzcMv7yvDL+8vE4wP7p3YLXZMwnz1xRV41UVYHaUGfdKo1irgKth6YLU+Z2hrPfHKd5h0mRws0evYUVM94Vqm0IG4qcDSTEm8FFjX91JnTGnMw+NrBnBUwHfcvDqhgLuFuvX2wIiNeBa8/gSY/5rjoTDQm6BL2ge68qa9vbiF3GMduGjVlkwXi1Y2EcsJr45R9VPUb03IpDsqsq90v1gY18Ec5SLiP7Sh0OBq+uCavo+o1F1ZT8ImPLp5ZHShVWS0oRUfiv6zdIO3WE8KeTq2YsSIMbGI0H0IxExBd6NRhzrW2coA5a4BvEuLSaf3pkY7dXw/hwXntAoqoXVFgT3rMYY+D1VwjNDXnQbPaVVQ9L2quLcDeX3dvpb2GRa800G6tZlPqICH6+CnNVMBPN0DbqYreGiCIq4vJd7pAIKT7h5/qgg//00JfnV/GR58tASVavfHV7nUhJedV4VXXcT/TjqhnlS90U9M8GJUb/cnqWRbXZyTl1W15gGxtZwktq+ZNwHgATS1qOWyDXyjHt9lM1mhhIFu+JFNsPtnz8Kun62G6tahjgCeKxdg7quOhoXXnAxzLjka8j0lPnYEIsny4t4ryqssQ1V53i6+IotrsGNYNvDsJNa7NdEzqX4jrNOg17w7S/2mioPYL6rcWf3uykrSyVrSDbC7qiZyXlYrinMcefjOhYmX7iCI1pMYMaYqInQfAjFT0F1vNKBK0B0A9pQBeFBisEt1/EDzf+8riKcp4u3gO82WEirMoRKOodfgtIRMBWd9rLYUfWwjhOvwdQvTnawn+tj+7caS4rdnEsCd7UTLFBovuFpV6HuKLSrBZgK7akfBI3p0tAn3P1yCX/ymDPfcW4ann59YC4MjltfhskuqcPmlVbjowgr0ccf1oBOjqqqiaIvqzOuQ9Hxb5Zs7OPoEzITqbeeluuC+oYszk5gNGwI4A7DcKtDqHbpf5X2uQku9AUP3byAA33nraqjvGu0I4IW5PTAfEzDfcDIMnL/SFT1yFhGt5pFhaeb1kYnUVZT3mUKpWM95GWoxCWA8Ad4yytHZOAlR6oB7U4vzeie936iON8l6ki80J6d+N6bQapLV2KdT4qXczXCJl9F6EiPGPkeE7kMgZlLprtWqfD53NXihDYD7ZJ2JAHi71w5lAN9XELd2FPvYJjumJWhq2PnChM1QBddltFPRk4pp6+emqdv2b9r83cC3VcAJJBSwUzzfyY6Z4nHVHSBqM3el9ImDlEAn32nLtjz8/Fcl+MW9DOFYerDbQBX8dy5gAH/NpVU46kge+ViottYTBV/flMaUEJRGOfw26/82H2go3G0ro36HfxU+NcmSwFS859YjrrYTBWS7rZrVOuz91Uuw66fPwK7b10BjpNIRwMtHzIEF15wEC685BWZhF0wFVi2ZZ08RmnDJ9y6c35tUeSkdaNVvZU+veBuwt63XvYPJbX9lT3xKvz/57Tn1G+Eb0tVvvINCAO5OgX6A0FWiZbdWkzRgTx2ldLCepCRe8qEYrScxYuxLROg+BGKmoBv93C6R0txWRgB3F7H9AeA2ebMTYB9kAK6hIJyWoNktfFtLSgjiVh23NcX1s8PNFdYTt+tpbSZW4Z7I6yFQdwPrNkI4t015FL4VyBXKQzj3tgNkHuu59gl/VgXH5T35bBF+/usy3P0r7JpZgnoXLettWUIE8Ne+qgoXnFODYkl/R/zZ2Dmx4dYn7Njo1WzrEw8tJxbU03zf1oaicnPanQ2/7f1nei+6AXB9jvA2WoU9P18Nu37yPOz5+RoC8tY6/UkA7z97GSx408mw4OqToDS/1zXccdtfrDoJdnXnhVb126wmf4TedUnxflMHUtnvSShNVhxC+MZutN57LwNPPcVR0x1WuxG+i6X26vdMq+ETsZ5oTf121pPYcCdGjOyI0H0Qx0xXL6k36mIvweCLRs4COF0wurOYTCwBc9/hPDVIkTt4k4FCEJ8sjGPY0oVpYIth4drCuX0ttI6k2VTsPOHnpdlM7ON2ynf4nrTpChMOHgyAhwmZCQWcoM0uzyul1gtMh5MovYODAL9+oAx3/bIEd/2quyY9GnMGGvDqixHAK3D5pTWYN9fAkYNZ0+VS4chBWAZ400+k1X6S5vtmQBUQFMDT5/6zTW3voNa32kLcew3r1XePwa5bn4OdP3kOhu5b37LzaLvT6oqSX8zB3FceAwuvPQXmXnoMFHoKqZ5tBXDvg7cdOL0xxHrCnfpNkK7HVqB+y7bXBjt6XLuS1/q7IquSPei4yY6CPT7HP1T3u4jt53lA5wYHUwnXYgexaniojne0nujRbb4o/Ta6tZ7EhjsxYiQiQvchEDOdSNmqcEMLgDcmANn7PQHzIFW/O9lS0mDcTsNI+xs28tGw3TStVQVDLSW6HOvtDkE6BPEw0lRv+znt1HM7Txq02/BqngK3/G22h3A9/u1ynOKtKqFWcHHKK8Bzqwtw5y/KcMc92LK+2LUKjnXBX3ZejQD8qstrcDTaUCxlaqURc1OJXpI60gx8ptlOAN7+i8g84m9OKzvIAJ/cpvp7RPgnJV7aLSYBPGlZsTuosmEQdt70NOz8z+dg7PkdiYVzeUiBPRnoF+fPgoVvOgnmv+k06Dt5kdhf5Fgwzg3LogklWxvhSGmY0LYSNtdRxbwl2VK3g/72ZAVU/eZcAT8TNeBRfzp6vo36jVYU7J5ZyLdRtydgNXHr285qMlXWE+l2mbCeWBXcVD3JY9nBg/w8GyPGvkSE7kMgZjKRskbQ3RDvYnuLCUYLnNPJOs1+MjkAP9z9353CQnhWV019jBEmZtr36fI0wlrfFohD8A5riduOm3a+LPtJ4nDpUvlOW2b4WpYH3DXioUoO3orSakPBhZtEP6MyNw34qu+YPgcA9g7l4Oe/LsGd95Tp3/ad3d9xOen4Glx1WRWuvLwCZ52O6nJS+ZY18GZjAW9Wm828ge+7xenh1HwD3AGs2wGQ35+6Hsm64O78YLYFr6tP6Bt5chvs/M+nSAGv7Rhp3ZHmOX7KrFMWw6JrT4H5bzgFygtnJdTvBIDLf0L1Gx8j/GLogMGeWozLRmBTGwgpdvvSgpZjFeQVwNUHrutkEy/RNqTwjb5vhG9Vv6fUatKlOp54Hmz7ZgZ8a9UTvrnSbIVutaCwtB9LDsY4bGMwdqQ8+GMmle6qJFKqeseija/ta1+j82wKgIevpQK4wvlUA3hL854DvwHPdFlSOnXOzLKo2OTMEMZDENfnYRJmGhRbeNbXw3lCWE57PQ2y7edlPU+uk1fAbdJllh3Fem0Y7DSZUIDbJtB5AZy3TSMHjz5RgNt/zgD+2FPdV0RZtqQBV7waFfAqXPSyGnDT26ZXtLXkoONer9Ty5xuVnJ/6dXUbxHSoRCjFbECj+iZKGtpSfJLA6KuepNtRfPKiAfJaA/bcsxZ2/ugp2H3nGmiO19oCeL6ch3lYfvCtp8PARUdCoVRwx4HyqNb3JnuT7AT1MuN5yY1RIGk34Vm8ms8DLV6Aflc3uKSXki3ntXFljX5ftrY4J1rynQhRv9UPTgAOUKBthjYN+wEHiPUkqHpCkxqB9cTCd2g9KRbYfhIb7sQ4jGIwQvfBHzOmdNfrUG/UnNIh16UWAMcIX5sMgDt4muIEzEOt/ve+hG4CZcZ2HTXDf+H8oeUkjZHSwDvcDaEKHs6XBt92nnA3pSnhuuyWQ6CDB7yl5GCz1ZLC5eW8D9gdcnL0obJJ66BWC/Ma/mfzljzc/osy3PZzrIhSgvHxXNc+8Ne8sgpXv7YCl11Sg/4+BV6BcEgOAlK7YVqriq6XeJEt0Gmt70KhNekyvDvB252h0tpVNMHSQZ99L+04LpJS3TsGe255Dnbc+AwMP7yp1e8dPC8v7YOFbz4ZFlx7Osw6en6L3ztR7US6VLounOTICKqd2GRL2rdmm5gNxevugdtuYSkN7x7T70V+c7pOadYTfI7qdwnLD6Z5v7uoepIK18Z60pUVpVvriTbcwe0kvwNnPYklB2PEgAjdh0DMnL2ElW4wJ1ruiDc5AE+8d59LEM5QAuYhqH6nRZribf3e7UDcKugYVsXWCCue6HwaNulSn3eCb7sMna+T9SSMtHns5yU94EkAb1HDNeHMHFsK4ap6K9NYZdkC+8goEHjfdneZ/nVrQ+ntacIrL6rC615bhSsuq1IiplpOFBWd8i7Q2lLvO63RjoPbZvukS002TOl0yZVXmtklB817fedOXs7oCztg538+DTt+9AzUNu81Nph0//fsC1fCoredCvNeewLke4vsn6ZzWUZ3S3I/JOFbTxV6o6zVbgItXm9Vu/W3oseqtZ5g1PEOkrSf132viZfWB66+b4Rx9H3jc5cYOlHryb5aUbSeNy3CVD3Jsp7g3SKteGLAP6GCR993jMMkBqPSffDGjFcvQaW7LnW6E69Iq+RJKODWnuIBPN+1x9sBuMta869134CHq5gc7v7vrFDVObSYhP/SbCjWihKGrXgSWkww9HnW63a+TtaREKaTKmz2+9op6Kwemi6YKb7vBIhbo3GwLur/9i8heMpvRmpPo3f4kcdL8LM7y/CzO0qwem13NpRisQkXv7wKr38tquA1WLhA63lndLpMKN6+6olVv53tJCPp0qnYKYMXX288u+JJ2gZ37dtpWzRg6NfrYfuNT8Du215ssZ/QJ5htXRwow4LXnwiL3n469J221BmuaSAgorp6qHGCNteh/aaCAM4vHUu1nKACt+vaaWp/h9YTtWQomCfgm47xHDSQws3gJKF+K6diwmUBoCjw7U6XjRn0eYeAb3ZwAr69C8lbT2p1udESfd8xDr8YjNB98MdMKt2cSOlhNwHgcnHmO6/NltfaAfi+liCcKIC3ey36v9uHVbq7saGEjXoU4DHSLB4hWOvzsPRgWmRVPslSsNNgPFTeQwtMO/tJSxUU6aBiAZx+G6b1fEulEdsR0nyWb1JD74AX1uTh5jsQwMvw8GOl7B2W2D7YkKcGb7iiAq+/sgZLFonKraCr4C3GZ9sVky0odlvxGUDhlpM0Jeky3BECmwiJtgqIVjzJJTzg/P1oefJenMOp0saSgcuq7RmDPTc/C9t+8DSMPLalo/1k9mmLYeHbT4MFrz8Z8gM9fMyJCq3nIVVxeVW93USTLfUUo2N4973cDvPArcc7QzpbTxS4Vf12pyLtKGvaz+N7vLWE10WfW/UbO2Duk/VkslaU0HoiB0nXJQctfFsVXBIuo+87xqEUEboPgdhf9hKNKQNwYxWxgJ0E8M5NdqayAkq71w5n9dtGO7tJmv+7GxU8q528rQ3eDr6tSt6tGp62HmnLzZoW2k9sEqb1gHOVh2z7iSqXZCHQ49hZQGiKWG+8P3vT5pwo4GX41f3dNeVBCHz5+XV441UVeN1rK7B8WfClAtuJB++k+u2+v9pNXDk9nziJMO6TEoNtKZ+BsN5s8jLQK55QvxPdIqWyhwFvrdwy9swO2P79x2HHj5+FBrafJ0ZOt58UZhVg/lUnkPrdf84K9k8LCWO7dx7Ae+uJJlu2er15UkMqOfJxZAcXvC0UuB2TJ1RhD9xO/cbV1cpBUiPcNtwJ4VtLDqZZT1JLCnYD192o4/Z5o3vfN5UcpByIRmffd6z3HeMQiQjdh0DMXPWSBlRrlUTZrH0FcP0baNOZHm8FcH/xagVwp2C2g/OWKiYRwKcSwLtVwEMveCfVO7Qq0LGTUXJQ5w9fC1+33u/wcyYC3eE0hhiTYOmU8KT1RGvJMVS2LodK2lmLgvveztPFoCQPdw/m4Pafl+CmW7EzZhnGK90BONYCf9PrqvCGK6uwZLFVqBWo8Xfv/d7egmKX49X4sNOlVb9VzfeJjezpdomeboHBnQZzF0Be9uDq1OkmNCt12HPnatj+g6dg8J619EF8GjIALgYZjL6TFsLi606DBW88BfID2PnSLzORbElc6q0nWudbvd7WWqIDpITHIqXJDgY7lfzdD3W66T5X6wlWuqE7AnpsE3BLjoxUOcFVRRgvlrgCSlfWk8lYUcLnKWr6hHzfFr5D37fCN5arJAA/NBPbYxz6MRjtJQd/7Fele1IAzhcNensCwHMTqnKiTXhCyPaVB7oB8GZ7j/ck4Dwq4InDo2voTvOHZynaaR7rNEi382Wp350U8G5A2wnDISTKcRLW/+YqJ0YNt8mZWvXBrbg22vHA6TtTygzBelGjnkYThkdzcMcveuCnt5WoGsroaK4rCwqWH7zm6gq8/gr0gBtp2vi32RbSCt5+ZcD7tuVOVaLrpeysUP3G6QhgXN+bVfKwQU/CvsGb2FkUkpVjmlDZsBe2/+AJ2P79p6G2abAl2TKhfvey+r34nWfArLOW0wDAJ3OyOpwreOuJTba0db7JbtIIrDfyWP3faq3iREvv9dY9Su/FeeT3gU/VekJ/ZVSQVfWkUGQGJvW7KMfOZGDa7cs2VpQUa0pb37fk0iYaDqnvm34rSRWeD8xca9Illh0M6r7HiHEgR4TuQyBmVunGRMo0xM4A8A4qt9wpbfF4u8S5liTLyZYgzE+j/zstOTN/yLafn2oAz0rADBvzhECdNT0LpsPXdZ3avafd827ntZ+h/m9sEoWwnaaAk46sUG6ARZen1TW05bxVUPmB/BaFFsk33WjCWAXgrntK8JNbe+DWu8owPJLrqhvmpa+owbWvr8DVr63CwIC2gleg5l8tJU/igKbeIIXbrW8AeokOl1rxxCVj8vq0eurT/d6u2okkHOqg3W9/b3Ogs0e9Sar39huegN13vQg5sfe47Su6d8Oo34uuOx0WXXMK5AZ6+DwVdKnUAT3rtf476ynBqd+mMY5uFN61uWSZQaP0q9c7F0C/2jfUeoL1v+nOgYFvTcJUq4n6vlH9dmOWffF9qxUlfJ5lVQnrf1t7jYy6XP1zm3TZwfcdm+3EONgiQvchEPtD6Xa3CLPIph2Au1u73QN4epWTdgA+PRVQJvtaVL9bDg/3r5MKHiri+j59rJs5zTrSDr7tPOE0+zecnva8m89pCSktGNpNqIKFsZ5o7W+3HFfxxCfqKagxjGpiZPB9TNIq1v7++a9K8ONbynDLXSUYGu48COwpN+E1r6rCm99Qhde+qgqzer3tRMGbw1hJgo2g9hQqIRe2mU8Z0FjgruNghaqKaLMdmsNVStGShQm7jSqqxnqCy6xtG4LtNz4J2254CqrrdrdXv/uKsPCNJ8Li686C3lOXsBiAr8kH8PZmkGTtv32lk4QSLx+kTXV0gOQSR00BENqy+hW1KRU9ZusJvofUdvGak7qtgwmq9w3OeoJJl/icljtRn3eG77trH3iXvu+WpMtAdW+xoMRmOzEOgojQfQjETEF3rVaDWkOqlxiK4BMlZfuk00UKgOuFhCsLtL5GSo1NspxsF0xbAaVdl0u5iml7+32F7HavRQCfvA3F+sRtN027ibNAOmt6CO5uVwXzZT2faEJmq1UmWftbFXAGblbFrR1FVWEL3CbHMNGSPrSbuAREeQF/PeOigP/nz3rgljvLMNKFBaW/v0klCN/yxgpc8oo6FKl6oSjetB6Nlq6YicoobpArBftIncWvzFpzWCmlu3KD3nqCoCsfn2k9UcV1zy9R/X4cdt+xBnLUNjKZfOlcEpCD2WcvhSXvPAPmXX0i5HpKyTrfTNtu2+IgIVHnW9Ru+tqOTZN3Ksh6QhYRDpto7JwaslEs4Go9dITvWt1XhFHgDn3fuE5YctDBd26afN4ThG/9Xl35vmPSZYyDMCJ0H8Qx43W6sWSgKN104XQXe3ORdhlAUwDgE6jz7V6z97TFOz4VCZj2tUQEn5f+mof6bgH8cLSfTBTAQ1tKNwCeNU3/qoreTiXPem/WPO3eF94s4g5+BrzDcoMK3qJ+qy9YVWxf1cP8LvW4lTtN/L3E4hB8h9GRHNz5yxL88GZuxjM21hnAFy1sUAImAvi5Z9WpuQsoFGMyJcFmMkHSfWeBZbZrtKre+psj5deVTOR118FGIldRnjjVNki8zLKe4N/ajmHY8f0nYOsNT0J13Z626ndxbhkWv/VUWHTdmVA+er6v8y0gzOsr+1R+/qQ+F7jKibWe6PxqM8FppHY3uR43aDMfU2ZS4Vt937QJZWeyhUl+G3xS5GOl0Go9wXVQ9bvUs+++7/B5aE3xGyTjuT42u7QFvnFgSrkRSZU+NemyKImX7W5DxYgxgxGh+xCIGVO663WoSvs0p1wdAAC+fyqgpEF20jfup0f1ezoBPG0eC+ATUb/t804Ab+E8XK79m/Zap2mEqSlVT7SHuAdvBJGmU0i5AgYfq4nDLi3T0SR96jp43zQnYd52VwluvKmHlPBqrTO4HH1kHd56TRXedk0FjjtW74C1drt0qxNAnleudUCqSnjrNrOQbv9yoqb3etsv6T5OYNWVFm8mFdc96P3+9uOw+272frdTv+deeiQsfeeZMPCqYyBXKMh29012CHR547qSgHqqSN4glHOTnEc1uVITLfVcaXlVbdD6lVx5Qx1MNPEOpdhetEKKlBjE72rrf2PJwVTriYXjLuF6n5MuVXk3FiFdHb1NoL5v6Szk4Vu2dex0GeNAjAjdh0DMXCJlHarVilGb+UEI4E26PRpcJRO3dcPAi5JcUCYC4KZ1TiO48HSbZEn2lACyncVEPstCtgPw6P8+4ADcWk6yaoGHqraNdgq4fn4aUGdBe9rrac/bTedpTahXvZfG1v4OkzBdExIDdixwS2Ugo34n7Cd0iGs1EFNeTxL7du3OwU23leGHPy3Dr+4rig2kfZx7Vg3e9qYqvOl1FVi0kGt2s83Ce77VqsY/s3TVO63cYNrphUsoNluqnQhVJy1xptGOt4fYUoYMpZXNg7Dj++j9fpLazrdTv3tWzIYl7zoDFrz1dCgu6GNWpa8swCvedN6jDNxq7SD1W9ZLFX3tRKrAjbs59H3zecwPJJzyrx8iW4BrYvN7apQzIPsf1e7A943PNemSGu6Y2z8J3/dUJVmGzzNgXPcT50L40UbbZjvGghKTLmMcCBGh+xCI/aZ0G8U5BHCXHGMbSpgIxRI73atInV+zKrfzBLbzeGcAeLvX2iVg0kW0CyV7sq9F//fEAbwdfKep1/pYX2sH1/rPquiJXdYBsrMsJmEDxzD4M5upSZaqgDsbiik7yJ0S/ToT0JHVwC6YHzr7hn4PnVdu+7OFpQlbtufhP2/ugR/8pAyPPFbsqg39qy+pwXXXVuCKy+uUkMkWEDFda6v5cJuZcoM4wZURTN0+fGaw8MwvtFY7yW4zr5N99qX6x/EA2n3natj2nSdg8BdrWyqdqAOdDBDlAiy6+jhY/N5zoO/MZW7bKaDSMEBKBqLvWwc7WlXE+fK9gVsaIYlQYBIt2Yri1980fpRtpl559ZPnoF7j9+tnq/VEfd8OvpFZxYZSKsvmmgg8pz0/AJIuI3zH2J8RofsQiJlWuulkbqwjSQA30zQyANw+blW/2wF4btIlCLsG8K4SMNt1x0z3eE/OG57hSTzMvd8TAXDbsj4NwNvZUPQ1+3nt5rXLCtmuGzC307IGAKSEBuCN0N2wiZfyj5DFJlzauuctK9K6TgzqHrp1xXD66rV5gu8f/LgHVq9Vks+OuXPY//2Oa6tw/jk16QKpcGvkZ10X/f6JcoP6W/HWk8TXkHkTtb6l2on3squKnLaPWv3eCuG4DcZe3AXbvv1b2P6Dp6GxZ6yt+t1/xhJY+t4zYd7rToJ8qdjaZMecMjTtw8I3g7Jzqrsa3+j1xq6ZmjBKxwSdqsTr7g4U+aNfwfm++UDG3wKO1dgrnWI9kaTLAlpkClL7WxsD7eekyxb4dudPLl2ZBd8J33eseBJjhiNC9yEQ+0PpJvXJQa8/s7nbfyYxphXAW8HcnTgzKCYVwPXir4ueAIBnV0AxEK3vnZYEzCnyf0fwnrAFJQ3GU8dAgRpuX7Mqddr0duA+WeU7BHC+68/uXW4xL+Atj731RJIzUSWXkoJ8CJrfn1GGs20nckyqVzqoi/3wYwX4/o974MabyrBjZ+fB4DFH1eEd11bg7W+uwFGrxF6GoEydLIOBi8Cz1OPwlUrs9jCJk4k7EQlgb7WeqHfafUfj93alBrVOuNnfzfEq7Pzps7D1G4/ByONbub66wLEZstNalxb0wuK3nwaL33UWlFfIOVrgW0v9YZ5j2OGSbgaIlT9nBw1ye1GtJ6x2e+D23vGkomx93yqe0AAAP4O2P9tQ0up96+Ym60mZYd/t/knAtFuPjOdu/tBXbq4tHSuehEmXseJJjP0cEboPgZixOt31GtTqNTnXqYvaq9fGbNIVgFMCprv9mwLgGfQSnr/bQnY3JQihOQMJmJOH7Hav6bJjdv7EATxNDVf7assxlwHUIZy3g/fwvVnLSpsv6732Z+ISLxO2k8D3jeqolh00CXwebvXQSv5euUxh0vrgIdDNTq/X61gDvAjf/3EZfnp7dxVQLv6dKrzzLTV4/ZVV6JslDXaCcoP2c1xXS/kdKEjbWuRaS9vW53blFt35wScsKrDRc5N02WJZceshdA4NGPntFtj69Udg580vAFRqLeq3EwwKeVhw+TGw5L1nQ/+FK/nsmUeQZXC2HS5BvN7+zkRGjW/KWfANdpwlyLSTp/XVmwPme1GOgNho8JvQb0CWqQmZ6vP25Qd5HTXpsliSs1QIx7zK3cN2O594pwooQdJlGnzTtHrSn96ifMeKJzGmOSJ0HwIxs0p3xd339EmRBrTlUabPuw2A56a4Aopv1TG1FVDavdYuAXNC/u/M9vPhexi4c86kG2NfADy0n1jFNdwdndTsEKItIGfBd6h2O4A0j60lIk0F166Xof3EtZw3IO742pQdpNJyCtqBAu6UZKmSoiq4UJeDVTk0YWgI4Me39MANPyrDL+8tdVX/+5qrq/Cut47Dyy7Q9vHBtjTqLaviolgTN7HlwpUrTIzdGS4JcJuhfcQvO9NYL1YbtXgkLCjiCantGIEd338ctn7rCahuHMyGb8hB38kLYen7zoIFbziZan4Tf7tulFJnW+FekyqDGt8MwrjKul7YRZQfI0w737eF70Dt9iqxb/hD1pOG+L61OAhVN+EZw3KD+BwTL/Fxt/DcNumy26TMMOlyCiueUKlBLDmYcSzEiDGZiNB9CMTMQTcr3Rgu4SooWbWvAH6wlSCcUAJmije8ncc76zXnHdVZJesp+runD8DNbkn8Dafbx8b+3NZ60gnAu3mPTgttGQQlge872enSVEUJ7BlWBXc/OQUVfc19uKrhPvnSbgd8fcPGAnz/J2X47o1leGFN50HisUfX4bq3VOC6a2twxBHcvTOt06UHb1y1oNa3Ubj9euv2ym60o10u6f2BDcep5mI5UXXawTHBXwP23PEibPnWY7D3ly9lJl7ifwvzemEJWk/ecxaUl8+RSjMCwgSq4qPOJ2t8+46VfHLVOw+0H01ibKLKiR2z2xOYaRbk3SheCScLnrGepCVdZvm+2yZZtoNrY4NKfT7RiifmPKpJl3xrRku5yLxp5QbR+22OgxgxJhsRug+BmGmlmzvK8YmJT5BdWE1mCMD1tjn5WE1Xu3YAbiHbeQT3qQKKz4RqB9ndA3irNcVCBs+CV76oysyUAi6HR+rfdtVRkkCbnM9OT3ufnT/tcRjIC1zjmY+dELjpdxfAOD0XgLO2k0S1E15coha4sz0460kunF3WiYHpoUcL8N0f9cCNPynDnsH2/m+0Trzq4jq8++0VuPLyKvT2+sRO/hCfaMi+5jwnelOyJ9s/0DzBnSDTG+3o9yVvdcHDt8J4Yv/pu3x+ZUI1d9tE1nH0+Z2w7RuPwPYbn4HmSCVb/c7nYcFrjoGlHzgX+s8/Qr4Ye73Z9+3by7fU+A4KgeB+CBvs2ConvH56/mxtLS+byiV7qvKt8O388zK2oe+BSrjAttpO2iVddqpoMtUVT9rBd6x4EmOmIkL3QRwz3ZGyRemmW7nqg2w9A04XgJv0nfYqt9bdDVXuLgHc3wpOB/CW1+QCyglXTWikQLbW6d03/7e0DSfDpyjcYjGJavfUATg2FclKxOymBKH9GwJ1t2p32rKyQDxUudOmE4iJ+m0TLpNdL2VDaKMW8RTzT92qvvLXer31ywZVT2iyTGP1mGcbG8/BrXeV4ds/KMNd93Su/71gfoNqf7/nHeNw6sn6cck280qPrta3tqMPul267yG1tJ1ireq2fHdI8YQ7xd8JxQrvPtlSAV296TBShW3fexy2fvNxqKzZlbCahNaT/tMXw9L3nw0LXncSQLFAJyQ9dzjrSUqDHVdSUKrVoGLOu5Ifo/WEcxdSfN8CtTru18GEDlQ06RIDDxeFb1ob8Xkn4FsGfqh8F4v7lnS5vyuexHKDMaYqInQfAjGjSndt3MtnoqxODsDDUoMTBPA2vssJ2UzkIlcwa2YBnC4c5nmzC2uKgv5E/N/dWFMSX1E6Fuo3cRaTfDF6EKcgulW99XGW2t0OmsPXOynfWUp4p1rf9vOsN5ysA1lVT0wSJlU90dbqRq1HgOMPSFt/9X4noZvWoQV6+VywaQvA9/6zDN/8Xg+88GKhq+Y77357Fd76xir0z3anJP9TcQo0vqY2EqldTiAqCZtmm1nLSbLUoNmu5knaaUjPieT/NtYT/XyEwcFfrIEt33gMBn++pq31pLiojxruLH7nmVBa1M8qtIFvnJCwnmiJQR3406ka5+GzWVjlhL35XoXWdvXJEoOyMQW+CV1lG5P1BA8VabxDyrwMSlp830VW3WWTT2/Fk6znbSqeeN831sOvx3KDMaYlInQfAjFT0F2tVZ3SzdHcdwC3oN0RwPmzrJrrT5owqUTLriC7I4BLF8sp8393tqbQshp1r+LQumAyWQHyKC3F2K/2k26sJ1l/00Eufb5uPsM+tstWUCcPsFhNLHi32E6I2KyK6v3FDuqlGY+W10vYT9SOkloJxPzWoQkPPlKEb/2gB354UxmGhtur3319Tbj2DVV473VVOPfMqgPpVNVbVkgVcB4Y8Lr5JEm9KyDVLHKcqJloMa+2lBSfb7tkS232ozcNxlbvhK1ffxS23/g0NIezrSdQLsLCN5wAyz54Lsw6abHrMEr7TywffBqWhjfeOeL+w3W4RQ0X+HTwLSc07VekN9lszfCEj0XLDcpyuQIKQKPGjxO2k6DTpcI3C+3pFU86wfVEK6C45RsRx1sJ1cvOGy2WG4wxnRGh+xCIGSsZ2KjDeGVcEoa0ZXK+PYDjBZxenziA2+549v1ZpQazfN7tAFw/lpUmM+sEKqDYFvQYkwJwaA/ZLa+JQbPZRHlL6w3LtkebCVlN2sNKjOkHcHPYtP2ry89SubMsJfo3DfTDx2nzKnizBZp/19m2E7aeqPrtlGWjAPt18Cq4y7MwlU+0Skdivcz7uIMkwOhYHn5ySwm+8b0e+M39nQeTp5xYh/dch7W/q7BgnvkhKr3SOoiSTeuiNbv9RiEMI6uEgLWedww4qxKu6nVaOcKcraJhLCxqDVFbCC17uALbbngctnz9Maiu293WejLnd1bC0vedDfMuO5bzR1BFxoWInYe+Q1p3S9nQuj+oOyU12NG7FgzMblP48T89psEE1XoXoUEWy+I5r6fzfUvCJwOwT7pU5RvnRd93qazfbxornkyw3KD+LrzyHZQbzKr1jQO0EidcxnNvjKyI0H0IxMwq3VV5ppnxCuB5owL5M3UumMbXPZs41Z0FJQ3AJ5toqSfTtEoIE7KmmDrfXjWZWHKmVj9wF1iB7HwX9hO8+PPFQa9w6u9G8Gb0j/A9PYGbGz3fab7vNO+3jW4tKN28px2Md/vYgre+pp0tW5IvVf1W+4nUouPkRL88m0hpPd86wORj1SqxCuiehTzQ8+/9hTU5+Ob3yvCdG3tg67b2yZfYav6NV1fhA++uwsvOr7tt5ResA3eGZ1THOUWCFfDkIMYo1k5s0N+4bzGfaLJjVVtISbbUVbBwi/Oj9eSu1bDpq4/C0L3rk+3lg34CPUfNg6UfOAsWveV0yPeVXa1td64xfvyE9UTmQeAm64eWGGyIVUW+TzMDvnWXqdVEQZVvGHgbSg2B3vi+Se228C1JllrxBK3rtOYTqXAykfKC01VuMA2+i1JyMAofMYKI0H0IxEwq3ZVqxbWA5xNoPgnggs8dATy4OHMkpzuFTJeaAuCuekcHAM9qT99WGZcSZd0AeCfI3tfShC0A7pRx3B51spr4wYyq3lq/W+rOxpbxB4z9hPaS4UZ9bBVofd7OatKNwt0J4LtRv5s1XvkEhGunS4JwXxWCl+MhvBvPt8KNVhbhwW9SRVfbBn78HT9n9fu2u4rUjKddnHRCHd53XRXe8ZYKzFf12yV+ap1u32BHPGv21psHaaqDnYc61TjnBELr++a7UJpkmSxXo8mWer4MgUyTNrV9/chTW2Hr1x6GHT9+jhruZKnf+Tm9sOQdp8LS950DpeVzuAKLKMzElQjXRb+9tbmXdVng56LlQyue2AGdX0E5l5J9JJl0KWMXPn5kh+t2oFrfzRzUa5p0KQOrpl8vPMsifOPpinzfuQmWG5xoBZSJlhuk+bPLDcZa3zG6jQjdh0DMnNJdg2p1zAEd1/X16jDXt+WLhqTVuGndALg2j7HT9UzXFsAnUGpwotaUyZYgnEwC5kQBnJQtea3RwC54dV0j513VyiZO9VYFPCow0w7gWSp4mvo9EeXbwqh9bKelAbkF+XbL1O+SSLqUxF31d6eq39Rum4EkAW32c0TG5t+vTtR5vUda+NVDkE60dcOhCZu3FuDb3y/D128ow0vrCx3V72teV4X3v6sCLzsfAZtrfGPVCl4HKS9I391XPlFLjMK33z5Jr7b9q10tw33Tuo+9hUWtJ9QeXpMuIQf1nUOw9Zu/ha3ffALqO4azrSeFPCy86jhY9qHzoO+MZdzkngYrSd83gi0lkrr14CV0ai2vJQYTxZVMTXEaUEqiZ9hmXt0Z5DengVPQZl7gG5dDfm+BbxWSw6TIfS03mFl+cBLlBi18t631jdaTeN497GOwS17LNe3RFuOwbY6jSreDwDYAjkHJj07p6Q7AHUC7phbmwjsJAMdBwETa0CuA04WvyxKEtBRjTWl25Q1PJmA2JlCaUO0nuAysvEL/I0Ont89Y+Nbt7FRvVcDjRWBaolvlO0y+DJVtq4Znqdr2ebcKdzfvT7OdYJCv11Y3afF9N6BeZR+svp++V9Bkxi3TJFom1ie0zai66uBXlHWsy10HuOfeIvzHd8rw09tKUK3mOnq/P/Bu9n7TKVO83tSIxna5pMXgd8m7WuXmNGPOZ/JY6oT79/tUyrS7aWnNdmx7eQ/fAM1KDXb/9BnY9JXfwuhT2zKtJ/h84PwVsOxD55Dvm3wbCv90bkjrbql3H7jiicI3+755/5DvW6xH6pvR/aRqN621AD1bAFvLDdYJvH3FE/3eYdIlLhtrfbeD74nCeKf37wt8p5YbNP5vtJvQ8wIeS+3tUTEO3div0H3ZZZdNyXLwoL799tvhcI2Z9HRXa5XEeUpvVU43gHtdGCO8eDW7AvDM6QLgDAW5ffJ5W8i28N3pPZO1piAH6AVLoZusPqS4+Xu/CfhmAoq+7wPMfhLW/bYxEQtJmrKapopbILbLCJVq22THzkNHoQC2hfBQDceZ9TyR/E62hbxfURYM5XwQKvZiMVELireZ6XENsG0HwHd/2AP/8e0yrO7Q+XLWrCa89ZoqfPDdFTjrDM1CFKVbBuVplhP1p/M6sYKrqjD3DpMmPWIV8Up4SrKlVjyxrelNyUKFY/W843+G7lsPW776COy+48WWREtbcrDnaPR9nw2Lrj2NfN9uP5tmOKo483r71vKkste5ORGvH4MyVa5R+1HoSxf4TvN5O+XbQSx/ptpO1P+u8G2TLlEJx1rfyKrdwHfa804VUDour4tyg7HWd4wDGrq5W9i+B/54sEHM4Rozq3SPc/1XPLkb2G4B8NDr3QHAWzouhr7wNgCePD/uG4C7E2mWApxRAWUiYO5gWr9v19YUVrjt+ulFqmAVN3qPZNxTKM3ZbR193zMdnZIv7T8CGqMwW+Btp2B3et6t2t3JvmLXjc4HkniJoI0QbssOOggX37faKhKnfwPV/NvU7pWt6j8rjobV3TqJH1ysVxi/vLdE6jdWQOmkfp97Vh0++J4KvPmNNZjVoxVXfIt5aznhDwngW0BOPdWuUolJulQrCQ+OeRu47au1saUjpNpDvO3EKMty3Rt/cRds+dpDsP0HT0NztOrhPPR9z+2Fpe86HZa+/xwoLprN64jLwyRKOd5UYWZhWGtt83pra3lUu7X5jvOoh1Yh7X6paq8AtpXVpaexsaGw9xxtJ7S+AtusfPsKJ1pukJIuc5OD64k+n+pa32mNdmLFk8MnBvc3dF911VXwx3/8x5Next/+7d/CLbfcEqF7Bu0l2viBsrnlhDkdAM5KE59ZJwXg7prQHrS5/F74+dk+b35Jvsc+VkDJhGwdeGSUJqzTRZO/L/7Txypf2frAVFbQXRAamb7vlson0XpyUKjf9nHWtE4QnbbctOlZ4I1BtalT2s3bfwzj/iin5Ql4+sRLXqACtFOFjUdcoVxXwonRtsW7UcF37MrBt75Xhq99uwxrXmqvfs+b24R3va1ClU+OP855JeS8xyuJCjYmVLJi7BvMJMbropJr3Wc/OJCXTWdLd/4LFHBrO9HtZb8vs2EOGoOjsO3bj8GWr/8WaluGMn3fVO/7jSfAig+fD70nLqIkx7zWVyfrEC9bS5y7u3Di91D41m3suwSkwzcd61KSUKuYaJUVek3P2rIsSrrUGydai1yWrYMCarRDFU/w/IgDnKA8oNv2XTxX60m7+fWaIV8z4S/qBN9UglPgu125wWIhwvdhEoP7G7o/+MEPwhe/+MVJL+NDH/oQfPWrX43QPUPQjfYSgm0LjHLSOWgAfB9qgDeD6boeWgFhqprz2OlpyjhCtwN5vCCh2k2Pk3cNaBnuu6oFRV+331MAPPq+94v63SnxUtVvc0gk4DhrfJQ2fbK2E30cwnb4Gv2VpEtNsrSeb+sD52MyAPmMet/uMxPwnwRvroZiV1isKmI/Ue/3V75ZhptvL3WsfPKqS2rwkfdV4LWvrkGx5EsN+qRJ461wd5/0PGG3jdahC5vsiO+YErVbfUG24kli/yW6fXrlvFmtwe6fPQubvvQIjD251VuUU3zfc195FCz/4LkwcNGRaubxy8aBkVRAMQI1n5+olTy/g8cgXG4Qw5aN1AGVhW8tWcjNdDx8szvHf38sN+iSLrWaitxZkOa79BzBW+Eb/6FyH8Kyg+u0iicWvve11ndKo50J1/pG1RsBPNb6hsMduqelxd2JJ54Iy5cv36dlLFu2jJZzOMb1119P/2bKWkOjdlN2gdQX8msKADabUDQALudtAkI65Uv5KMp2V9VIfI4NgW0CcMlYSgC4ZjHhCR67YloAJyuF9i/2AK63mOlyonzuADRpP3Hz5toBuKkNHkzPVMb19rDIUlYZN92qE9EIlfGWaia+GYdu9wR5ybawF369ve1vbeN7ERqS3UO1QoEOdDjzPiZdTlfg7iiVgPyq+Hci6rceGqEcYu0oDn4y1GwMHc/q33bLpZxkV06wdTlWrcZqDfTrzzNg5xS861gX20M4Tkdfr3qlDb/64APd/MSMrSPcqHbF1KsgvxUExle+ogavvKgGGzcBfOv7vaR+b9ycbnW86xdF+rdyRYOsJ+95RxUWL+YKTW7Z+DuSVo50HpKN4Acn/HtqiD/a7xfxfeMdANNlKLH6bickbSmqrnt4lHNnuQDz33AqzH/DyTD0G/R9Pwy771yT8Hlj4PO9d6+BwbvXwKxTF8Pyj5wH8686AZpYYUNLAtI5wCv0XNGkScBtky5xfdDy4dZN4drdAeGdVCxycx1ud8/2FgVuLvbC1w2cVpQMc6xUWRQvOankOH9VPd85KthUr+HxlKNBEZUepP3Btg06z+FxlvZc1fqs11vmzydhnHz/SRin5qW0gfWaI9kJCNP0XT18a4Ut3o9yTSGbTSPCd4xYveRAjpn3dPNZ1Oov3ruXrYBL8ru7sOhlYKIKeD5fcAozA7BtQmAU3jZdMFOV7jYKOExxCUJWtsILfbNtaUKrgCPI26pzdLHJ5aCYdifAnc19vXJdUqvvOyZdHmzebwx7KKVZTMLnVpUOX0+zorR7X3jYJ5vkJK0noecb/1KlE3nMlTFsjW4PcemlB42zQZRVf9hbtVnOCK40oC6vCbV6Dm69s0Tq9133lNrum3K5CW96XRU++v4qnHt2XZRc1ZAlWVIsEAig1lJCH6edKV27eV/xpGG6Yzpvuxk420onCuF4HnC+b1Hf0fbCydT82aPP74CtX30Ytt/4TEu9bwvjpRVzYNn7z4LFbz8dcgM9RvmWJjfW9+0GWdocCJ/jucckk7p9JXc+zPZQtVvc43yMGKuJG1TJYy15mJp0Seq2iDt5abRT9M8n3WgnVMInUuvbNtpR+wzfdvTKNz7FOz7tlO/Y5fKQi1gy8BCIGYPuWhXGquP0OFWIklec3zsDwFUY2CcAd5/lAdMqtn6t/MU7ubZdAvgUliD0BW7tdGuN6b40IQ9kmlAz3SvxL95p8HfXkwMR9/ktvm+5UxD4vmPS5f4NBplW0E6Dcev9Du0m7WwiWTCdNW87xdyrs+mlBnkZnHSZ5vm25QbtoDUB8YnkS22iY8A00ekxKDEov/OspEucb81Lefjqt8rU+XLX7vaJ/mefUYePfqAKb35DBXp6fKIlL0sql6DCKYMOVGP9uiuse1e0njskhdLZUFy+iRP5W8sMKnz7coMCs2bf1XaMwNavPwpbv/U41HeOtPi+cXMQdw70wJLrToNlHzgHisvmcBlFOsmwLE2nvwC+6fyTZ7AkuEYlm5Iu/fnM+UxUsLHwTXc/eTNoAmlY65v2FU1n5bsl6VLhW/YxrqOteDLVtb1Tn2c12kmD73aNdtLgO3a5PCQiQvchEDNaMlCgO9RRbeiFAU8kDrbdnV4Pum0BnJKPtFW7tjznT0Sl29krpgjA9faus4LsawWULGXcgPZE/d+NYHpdBjaKy7htC80mlAt+++gS3C1MR1a+ZpgxlNA0Z7Vpk3TJ/u/YbGemAg+nbpTvtMTLLFW6HZi3U8LTXk+bP9lcJ4RvfsDlBusBfPNow4G5qrYZCZeqGPMTf2Ky4O0qodAP1VtUdLpSnT4fqwD88Cdl+NLXe+CRx9onXi5c0CDbyYfeW4GVK1Q08H7vsOKJKvCOzbQqCtFVUEc7pXslvVe/qreKa4VB32DH3o10tqEc5KpV2P6DJ8n3XVmzK9P3jVaThW84AVZ85HzoPWmxsx+55jqycM0ppHWlwQU/Tmuu4+CbX0rAt1pNXJKlSZYNa32T6FCXYwgV8IZ04cyA73YVT6YNxhsp8N2h1ncLfNNBmWy0w77v2GL+YI0I3YdAzLS9pIFtx1EpMupLOwCHDmp3FoAn6n0LgPtbdN0nW3YH4K3fwJc3mwoAb1XNwotpJwAPp+NFqC7/dF8QeJPizYMT/ZwkfPsCuxaAeNPGpMuDRf22EJ6lfqe1mE875EJ41sed7CR2WjfzhuCN/8gjjIO9WjLpMmE9Abae2M9xiX7unpV8X4RCV0zDU7j+fi20+tr89m4Xz6ufg9CN8H3jT0owXsn4vdJ2bsLrrqjBRz9QgYtehqCtv3HpamnbzEsUXFKiPKYa5AmCdt/DtpXXykZp8E32FVtm0I8x3BuolTs0Yc/tL8CmLz0EQw9uymy2g1PnvOpoWP7h82Dg5at4QQjQZMr28O1PlZoYytDMKUdSW12a6yh809dppCRdUkUmXhzbUHjApNVPNOlS4Vsro0hzUbL3JCqeSGoK/kX4TtiVwlP/JGE7c3n72OUywvehFQckdL/00ktw1113wfvf//6Z+siDOmZS6d754g+hOGs59Mw/Q5Jt1JJmAFyBeJ8A3NsmZhLAQ9DuBOB0cUsFcP/53VZGcVchu834fm2L/1vLdeG7anhLXrtUSvlAav+MjzHb38K2Ufbt8xb4dtumi2Y7puKJU8CzBhMxptV6si/qdzsVPFS17bQ060kn8Nb1CVvNW+hOazlPr7uBYWA9kZbnCoG6TK2lzeuhjaRaywzysa6+cFRs9RzD792+Mw/fvKEEX/5GD6zf2N56cupJaD2pwNvfUodZPfq7l/bwtHgGQrcdkhXozPzGamIG4bbSiVY+8XDt1X1XK1y7T1pAVvjONWHo4U2w5YsPwq7bVkNeViqNJfvOXArLP3Y+zH/t8dCUZEGCb3NjTG4w8PkpAd/+boJua/18PYdKig5bXeSmB/nG8dgw8O1sJ6bWNx4mWHWFVXEdRwVdLtH2UuLjBG0nlADaAb7TnncqR7iv8I3zUj30dl0uY4v5gzIOSOj+3ve+B+94xzsO6zKAByR0V4bhuR9eDI3qIBT6V0HfiithYNWV0DPnBD6BGwC3MLcvAM5N0tjfnA3gKdVOMgDcleBqk2zZCcDtvLZNs58egLZ6Mo0hdcIAnjJdtw96R9Hb7bazKN/6j0prCXxrnWHrPe2UdJndbMfe4tRmO7HT5UwHiWJG7W5nQ+mkQLd7baLWk7TSgxbQLdDa76LHX9hkR+t/U8IlPhay0mWqR1uX49q2m86W1MrcfbD/Y+eRw9jDrBEUMBD+brmjAF/8jx74+a9KHWt+v/e6Cnz0AzVYeQTvAFtukKGT7ScJ4BZfNM/vu1SqWq7t5bP2V/IcFnT2VGeZ2WZ8imzC2NrdsPXLD8K27z8NMJ6ddNlz1FxY9uFzYfFbT4NmGdO3pawfdi+VtgDWWaFpMOhrx/M3Pqd9oeq1WlFEPafTJkJxCnxzJ0s59+Pr9Fb/BcmdVGNI18MprdEOwjeuA5Ub5EJaesB0DdeTgu/gVJta61t3WLsul7HF/EEZEboPgZgp6N7z0i3w0j2f8rdm5exRHDgB+o+4CmavfC30DBzFpaamGsD3seX8ZAFcFexQ+0nMpXenrWIRquIYqNZNIAGzHZjz5/I0tJeg2s0XH29ZcXVtIcfqt6tykm+Bb289Mfd6eSW6arYTky4PXPW7nfXEHlZpfZ46Kd5ZdpKseUMQT/ssnY+VPu/vTlW9tc28toY370+vdmLqejvATc5jtqiZLr/5wO7x7At5sp58+wdlGB7ubD35+Ieq8PILajQIZtAylhPT4dJvt6Snu7XSSbK9fNo2tTa6EL4J6qR0IZcAZOXZJV1+8zGo7xrNTLosLOyDZe89E5a+92zIze0l+FWARdWZOhfns+GbBx0M/NwFU/eFV+ZxEqrS6rhwTZFMkmU6fJuKJ8E50baYR6W+VMqo9X0Qd7nEOzUxDnPoPvbYY7uab2RkBLZt2xaV7gMMutf/4g9h17ofyzM+IYQAXp5zBvStupIAvNy3rHsA1xNOJoB7u8lMAfi0NeGZTAIm1cxunY4XFv6OHrzRaoL/J5VbPi+vNhO1n0jr+Gzfd5B0abeNfqeYdHlIJ15ay0iWWyhLxU6br5NCbh+HwI7gxAp3PbXDJQI4ve7Uaf8LdcuVFbA2FFceO1gBv07J8oWJhE0p24ev7R0G+Pb3y/DvX+uBF9e2T7w88zS2nlx7TRX6ZvlzlIVv7wHRdWHTNv6m0aZBqi+dD0QSloonZF9J2dBJeNdzt/q+m77ailRL0TbwzbEq7JCky+q63d4pYeCbVndWCRa/4zTyfZdWDBDsOvh2SrVfDz7mkhVPHHyLjcTuEoVvHVeI3VlOoVK9RTcdVRHxBxGdI5sM35yen4Rvvtbw8yKq3/l9hG9d2aznEb4P6xicSegul8twxhlnwIUXXth2vtWrV8Ntt90WofsAg+5tj10P21d/F2rD64M7ZmkAnoOe+edC35Gvg9krLoNS74KOAM6nT11cOoC73gNTDOBUBpAGAaaBTAaUsxph4XcfaoDvS2UUI+XRNUagm7YT3p6X5Sh8674im4n1fedQSdr3pEtnx5ELapbvm+1Asc38TKrfYd3vNCCnvdZGge7WehK+ngXjnVR0XX99L9/44XKDaf+05CBZTwiqjOptLCQOYvWzDeuqiq1AzXP6362v4uPBW5Ma8Tn27br7V2X4wldLcPvd7a0nixdhw50qfOA9FVi+VCs0oe1CBvuu1KE7JToeL1i/tqkekoBv+R7qWXdlBt15shkkXaqFxcK5fGa9Abtvex42feEhGH18Swt8u+eFPCx8/Qmw4mPnQ+/Ji00lFukwKfO5NvIZ8O0oNeVYIq42VU1IkEmD74xa39rlko4NV8sbglrfaD1BYaJDl8t2cJ32fCq7XNoW87L7o/J94MeMQvd5550HxxxzDNxwww1t54ue7gMTuivVCoxVx6Cy63EYXncLDG+6BeqjWzsDeK4IvYteBn2rrobZy18FxfLAjAI4n/vS6303M6alA/jEmvB0rIAiF/9OoJ05XZbvfpgK2uY1rXCCdwt0O6XBd+j7nrakS9on0fd9oFtP0iC6G4U663X7vB1s22k2STKs+93IsJ2Evm99E32GlJLTcB7wgO/UpmFtHVoBW4FdfdKuxKjUx3fOrCbA6rVFgu9vfb+99aRUasK1b6zCJz5UgbPPVMuXnhewhCfawfT3ZrrMkm9daoMnEjO1YY0fPCiYd6r13WJZ4cW5z8N3Y6fLzV96EPb8/KWWTpdhxZMVHz0fZr9spYNvV8rQivm2nCGBPzfaoXOUsQzpB2iSpe4PvVrgMaGOCu6G7MGclmHqflOnTSk3KBzMy0qBbxwQFPMGvkN4nsLnE4FvLTNJ51wttWkGBdZ2Qtsa28tjucHYYv7wge5PfvKTcNNNN1F1kk7Q/fa3vz3RcjzGgVC9pALjlTEPeph4s+0hGFmPAH4bNCq7OwJ4Lt8DvUsuhv5VV0LfskuhWJyVCeDetKLvV7TjKWHCZVsADxrudNuERzTffaoB3lVllG5BWyujiDLt1sDUQtefqiZCMggzfOO1RquZ8C7k71zoIukycUm1dNFV0mX0fR/M1pNOEJ72OE29TgPsTuCdtg6+HT032yEAN9aTFt93YFnRZdvfq60mwoN13zWS1kcqcdjfuftdG686za9NevI5GNwL8M0b0HpShrXr2ltP0O/9ux+pwtVX1CGfV9+22E/Id63nAE4K1N9ZS7KlEK0OEvScZT31atcgxNca2YkGO6pjy/aR96qyP/zEVtjyxQdgx0+fhzxu8wz47j9nOSz/6Hkw77XHu1fSqqlQEmbDw3dLuUE9z1GbehkIYbMe3ZcZ8M3yibcvoh1JIbZRz7WWG5R8AFomVbHJ+XKDaD0p7EOXy4k8D5Vw2+WymRwIsefbt5gP4TvRaCfC9+ED3S+88AI88cQTcM0117Sdb3R0FLZu3QpHHXXUvn7kYREzV6e7CmNjI6S9sBLsb31CswajW++D4fU/g5HNd0KzNtwZwIv90Lf01eQB71vycigUyikA7iMVwOXqQcqEqBiuWUwXAK5n/gSAu8oeU9gF05QQ5NdbAdwNN+SBTfrymnJSGddP5PfJ+pP/21dV4eRH3U8evmkwYeFbYdskXRamIekyrdkO/zUKeJp0GmO/WE/S4FsjtI20e5xmH+k0X9Zn6vp7KOekyzTbiat2UrdJl25pDqrlaXapQQHeRJUL5/O2SriFcl1unrzYt91VgM9/tQd+0aHqydFHNuBjH6zCu982DgNzINXv7Qcm2fCdVmbQ1vx2yjekN9jBJw6QQ/iWpMnx9Xtgy5cfhK3ffQpgrJpZ8aT3uAWw/KPnwsI3ncrFsgW0Sc+XAYrfvtxcR+GbnUPc5TINvvG/nGQpAwmCcc0D8kmWFr7xosA349Dv7Wt9a7lBqvWN58R8a61vtJ2gCt41fE+lDWWq4Jua7GCDs3i+hcO9ekmMA7dO9+j4iPc3mioaqjhjNBsVGN18DwyvvwVGt/4CmvXxjgCeL8+DvuWXQ9/KK2HWovPJY6yw6AC/A4Bb2NZ5KHve2E2yAVysJkENcGs10TbPU1UDPJgrfXoA4M6WIoONEE7p1ql+qOwbXQmtbqKJqThHjcC5NemSrzcewLtttuMBOzbbOZitJyF463Ov5rYup920btXtdsuz70mMZ40VhWwncrs9zXaivm8afGpCol1WsH7qq06o3WrV0N+mgSv/E+AVJSDW+tXud9uEJ5/Nwxe+2gs33Ni+4c7AQBPed10VPvKBcThqlS0baH5rzgJj/6Pw6tvJezBPbtAQwvU/NtHSwrfaQbw6zWBa2zUKW/7jYdjy9cegsWvUVThR+GY7DkBx+QAs/9A5sOS6MyDXVyblOY8AK5vNXRfkP5gAybAbwLfsDzsIwTdrkiWq3TS/E2CUVxXuJcnS3SblRjuNtFrfBQ/ftOwiJGp9t22cMxHYDt8vF6sJt5hX+ManarOK8H1ARITuQyBmFLorI6Jw+pMFn5ggHcBrIzCy6RcwvO6nMLr913hvryOAF3qXQN+KK6B/5RXUhCfh65ssgEv91k4A3q4JT7bXu3sAV1BuC9rB9KwEzMT3NyCt31mTKvlCoY2M/PeAIOmy2WXSJZYcdBeJDPh2HxGb7RxU0U2znaySg+2guZPqbWG6HYxnwbZVvd04E0uspVQ74dbz+FisKWZw3FJq0NEfPXNmC3PTyhC4+Q56VnODWVMpxZX2a8L2HTn4j+/0wBf/owxbtmaXeENf8RuvrsEnP1KBC8/jsxvaLwvFvHR0bCSa+XCrdoFvaYJD1U9MuUEt06e/U7vx9ffMoOtbufvzvle/eUCi5QYBGljx5IbHYNMXH4HqxsHMiidYYnDZ+86Epe8/B4oL+qi2NsG31BG3Xmv8D3WylEY7xJ/SVl5rqut1RAqwuCRLV26Q7ojq/vFJlha+6TVSlxm+2fMtCaspLeYtfKfV+p6WFvOThW/1fWfBN9qXSlH5Piyg+/vf/z5ceeWV0N/fP10fcUjHzCrdaBvhH3PaaN4COP2YTactbKozvOFOGFn3Uxjb+QBN6wTgRWnC0y9NeBLOCgOHeuGbLICrQqzv6wbArf2kXbUTd6u1rQUluSV8JKHWq2npSjdtZ1K1OelGby/zeRlvN+cD+IYW33ddWsl7+ObZCpNIukwq37qF7cCE1jj6vg+wIEgRhbud/zvLehLW/J6s7SQLxtOWZ9eD4E/sBs7znaJ622nOUpKynk7xtpPsdwzAm9fVXzK5Y6SuvLwBwVdOmJVxgB/d3AOf+1IZfvtEe9/3BefW4Xc/Og6vv6JOJe4UvmmpUjIxuS3E50wecDbCKHzbEoFpdyo0LHwntrWxnri7AZLsl2s0YOdNz8DGzz8E489u777cYB0S8O3uPsgXovMyno9crW9oD99huUGTZOkEgpQW81q6FZV4Tbi0yreFbxzkoOI9o/BtlPBM+DY7K7PFfITvww+6C4UCPPXUU3DiiSdO10cc0jGT0L16zw5Y0lMmr6/zGRsAVy3IAZuekNVPKLBaG90Gw+tvIw94Zc9v3YmyHYCXBk6E/pVXQR8q4LNXuTMan3dE1XFvzQbwfFADvBXAoQW2J1MDvLmPqngSyv020e+kEK/fIzkHTydHtatC4BV2vjibbppyneGatm183wLehUklXRIV6BrIsYIXgkZXvm/XYj76vveL9aRdx8u0et90FHRRKrCdfSQLvENlO0v1Ti7bdLmUBEuXaKkwLh1kw+XZxjNpdb6dyyPs/shLcCvhBt5mNOuEZlpWDu57qAif/WIZfnprsaVmtY0jVzbg4x+qwHvfWYOB2fzbIwVbBhoEyIkumwza+JuVU44AuVe+dQCe1mjHfv+WgU4A3+78LQP7vXe9CJu+8CAMPbAhuKtnzhTFPCy85iRY8fELoOe4BWou520t8I3B5RkFvrHEYjGAb6lVzqdmKQlorCvOGi33LhxwZ8G3ScBErzjljCp8h7W+C1hqkC3r+x2+M1rMd4RvGU2Q8l3Ms/e73YgsxsEH3XjBfvrppyN0HwQlAy+/6xYYbzTgNYuXwBVLl8JZc+emALgvN9UK4FqGy3sgq8PrYXjdrTC84Wao7n2uI4Dj8565Z0Lfqqug/whswrOEwS1RPzsJ4BruJGQANasLpp7Y+c7s5AC8fQnCAMClWkpnAPflB3T97UkRL6J8rfZQTjAtFhGrQzs5UOFdPkzRma0n2c12spMu/RZOJl3KEMjBt345BnKfMKoXlljv+2ArORjaQ2xMBMDTlpEG4xOrdkLfJrXGt2uwY5IuaZl82ydYB69qJ8BZu1W2KPJG9XaDSR3s8gDY1QOXc+ial3Lw+a+U4Rs3tC85OGegCe9/dwU+/sEarFjuW80nhPXEtvV+bXfHjpTs7rpcquptLSj6k/ZJkF5Ft+f64Yc2EnzvvuPF7HKDOYB5rzkOln/8Aug/e5krN8iWmSR8KzsqfNO5rmGuAeKp1+/iyg1SFSdIiDa2xbwDezovWw94Er6pkJQ01uEW9s2u4DsceaTBNL0sqv6Mwrds3AR8U9JlhO+piAjdB3Fcf/319K9er8Ozzz477dD9yI5tcO2v7kpMW1zugcsXL4Yrli6Bs+fMcwmQzvpg29oaALfZ9vakXBl8HobW3QojG2+G2vC6LgA8B70LzoP+I18HfdiEp2deWwBn9ZmfGHNKC4BnlSDkvCL2Pju1JQPAQwuKBXC0eexra/pEFRM3sNHkUA/fuh08fHPZQJpH9gVfY9S36ZMu9cKD02uigndKupx0sx2zN7SKjL4e630fnCUHMdIsId1Ad9p8aap3O5Bv97mYSJlotlOrt5YaFAlfaz0n19EovvazUtVunsuvOydZ8ps8FHrF3MP37j1N+Pp3sOFOD2zYlO37Lhab8KbX1+BTH6vCWafXUpMtNbnRrZfczXJJk6Ja2xrf9r5Umt/bPncKselyiX+p+Q0uQRJRR5/dAVv+/X7Y/uPn2pYbHHjFkVRucODiIykdU9fPjckhKDdIgyReZ/WYW/jWN2TBN4kgopTXEb4hqYprrW+6HtR0Pryz0A6+ucslJ1yaL9dFl8sQvtPmT914tra3sZp0hO/gcyN8T31E6D4EYqaU7r954hH4t9WoRKfH4nIZLlu8BK4UAFfVczIAjnNUdj8JQ+tugRFqwrOlM4DnCjBr8e9A/6rXQd/yS6FYmp0J4OoJ1+eTAfBuumC2qwGeZUvJAnBSykMPtajNVun23m8/vS7d7ix80wXHJHZywpBUSND9Yq0rttmOUdjbNdsptCRdsgpnnyfh23l7HHxP1PedHKjEmAnfd5bqba0nIXxn/Q0jVLP1cZrdJHxf2ue2WlN8ucGwwY4mXdJ0Sbrk47m1znfC4+3A2zfY0Q+3tb5VNWeFXH8f+ju1EJ+DSrUJP765CJ/7Ui88/Nv2vu+Lf6cG/+XjVbj8lVUpsyfNVGQjORyz8C0qt9o6dHCQgG8pE6jnb//9mqkVT2yXy2TnSV5+ZdNeqvXdqdxg35lLqcvlvCux1reHb5zf8adL6OQvxF/VtpX3Axu116ivHHc9+rFpMNZohW95mA7fnIVOXnU83rWxThp84+NiUZvwTKLF/ETh2z5XsDY/hISBAZlb7vBE+J6+iNB9CMRMQfeHf/NzuHMbwm/nSAL4fN/a2AG4zz7vDOANGNv+EAyt+xmMbr6dmvCEAG69T/TOQi/0LbkU+o7EGuAXQ6HYkwDwdl0wKdnQwPZkAJy/avdNeLJ94flEAqbtjKkXc/VNEpST4mTtInKxk3kpydKAQFbSpTFoeojXxKKMZjtOad+nZjtsM0mv962zt/q+E8AdW80fNL5vC8SdrCehcpz1ejcWlhDGtSa0rfVtPd+JaQ6+6d0JxVth1W0b97lmHrVTObHADBJt8mXQSdIOuO99oAD/+sVeuPm29r7vk06ok/L9tjdVoLeXE8FzOecDMfDtgRWroCh8c9KlPxdbwLbr5lRUgW3tcplotCMSNbd6186TvL2w3ODWr0q5wcGxzHKDvcfOh+UfOw8WvvlUzlyUbcYdNe12s23lTQUX2Svu/Cefr4MwC99oIeFrhb/jpxVOKMmSbxM6D7hrtEMCDF8YCLw14RK3SdHAdyFoMe+On2mG8Sz41h+RwDf1ewgU+VD5pjrmWPEkihxdR4TuQyBmztM9Do/t3AK3bd0Kt23bCs8PD3cN4JcTgC+Ds+bMTQC4PUl0BeBYA3zrvTCENcC3YBOekQSAh0Hnx9IA9C27jCqg9C66AAqFUgaAe7Vb3+uVl8l3waST9UQAXD9LLrLddMZMKN0GolWN0prnOo2tJ0l1XJMuk/Cd5vtOb7ZDvkpV0kyznYLxfZMSnmk9CXzf1mbjQEW2h1ZxkVvCCfimHRBbzR+ovm98rpEFyBMB51AJz1LB01Tx8DUNhA4L3OlJl94uklzZ5Lr6JjvG622a6fg7UNqaPrvRDnvMxW+da8ILL+bh377cC9/6XglGx7Lhe8niBnz0A1X40HvHYcF81pBzmlae2F4Gvjm73Nf6DhrtuJJ9dlsbkVtby6e1mGcBwbddR8DFj6sPVWD7d34Lm770CNS2DiWUb614QrW+V8yBFR85BxZjre9yKQHfnik9fHMtcQ/f4Z2RNOWb8lZwWzS9zzssLzhh+DZdLqm5DlboKmipxP0H3+4OdADfVHazXu8OvqXRToz2EaH7EIiZhO7h8SFXp/vF0VG4fdtWuHXrRAC8B16zZDFcsaRLADe3MSHwHTfrY9SEBxXwsW2/hGZjvCOAF3oWQP/y10LfqiugZ8E5BIkK4N5k4iMVwIMumN0CuM97abZtzKNnyAbet0w05mm2QDlvCpmu62Wmq0rvlW1vM9GTbFdJl/a+voNv2Q/GspKVdKmDAAVwuga1s56k+r5brSdJ33e0nhxMvm98PTisWh5nTetkTWmnkocgbucLYZ3PM1bprpPlBB/j759AXJTCBMyH6xQ22ZHqF07xFhj01hKrhvs8DffdEiMPgF178vCVb6Dvuwzbtmf7vvv7mvCed1TgEx+pwNFH6jnWCh7uUxJnvxz60IJGO7oeWqZQN1xLa3mtGqXnWjmz6GknMVCiCQDNSg12/uhJKjdYWbs7s9xgfmEfLH//WbDkfWdDYaBXOlsKfPvGjs7Sk6Z8J+5MyDlaa3trkiXCN7WKrwfwbZIs+bTlvdT4Gjb26Qq+scMl/it1Cd/hNbPT88nAtxM+2sC3qXyCyZYE4YW83C2JkRYRug+BmFHoHtvrvIdOG54kgC/p6YHXLlkCVyxZCmcOzHUKTsvJwl18ctkAXh2C4U0/pyY8Yzvuo7b0nQC82Lcc+ldcSSUIy3NP9gAu0s90dsFsVwO8UwWUjgCu4BtUEqGmNrLdEOjpk40tpPukS+/7Ji+jIRq1r6D6jdGx2Y6o4SF8p1tPbL1v6LrkYLSe7L/AXdfJ891N0mU3yneaBSVrXhtZqre5wZPq+Q4rnpAqrssJLNcOKKX6B02TO0ZhvW/b4VJmdDYQl3ypyzWNdjAqlTx870cl+NcvluGZ57J936j6XvM69H2Pw7ln+ffTucGqwOZcTGovLTIdvtu1mE/At4FSpy4Hjgf3+683YPctz8KGzz0IY09vy4RvGOiBpe86nWp9Fxf2i03GnWKNRScJ39rl0ufAZMM36HML36bFfAjfFszRkoTrrMmecjPOwTfOizXXW+DbjBwmBdsRvg+4iNB9CMRMQfd4BZXuvT4hh05EmgLub0lNBsCX9/QSgL926VI4ffacDgDuPcoeRr0i2xjfSU14hrAG+K6H3KnfAnhSxwEoDRwD/Suuoi6Y5YGjEyff/dUFM8t+YquiOPtICoCTUm7sJ049UyVa3oHqNzfq4JcdXFuQxgucSbrkiyRf+lQhUXBX+4xLukzxfeM2wUGA833r846+b1lL4/v2V3YuOTgx6wluw6jKzJT1JGy2E4J4u6TLdvCcpmbr56ZZQLpVvW2pQX5uGu0EVU5s0iVKgu7ckaJ488rxH5+YaFxUJsmSEwB9C3p+zRiqU+C72czDnb8owr98oQy/+HWxY9Ll73+iApe/iuRYKV8o5wAdIARlBvlnH7SYl7J7vBbp8M0id+D51sRN+bpp8I3L3/vzF2Hjvz0Aww9uTBVs6XlPEZa8/VRY/tELoLxyjhuDOziXjexLG/JSuNFOEr5V7SWNX2qYt8C3qXDCOaf+e9M5st4K39hoR/UVhW9yakArfKPthKrCTAd8s9+wc/WTZoryjef3WlS+D1ro/spXvgJvectbYGBgYLo+4pCOmYPuMYJuhSv6MTpINHWxEwA+Ardv3Qa3TsADvqIXAXwpXLlkKZwyeyAFwKXTpcyvtxL1nCqXKTr51YY3wfCG28mCUt37ZAt4h0CO08oDp8JsTMDEGuD9K8yFbGq6YNJ1RywpfNNWVZh0AO+2Lrjzast3Sni6pXFG4ssbmwk/RVA21hNcllyAPXxn+L7N7UldvnaOs0mXZDPRZarvW7zgmb5vHRS0LTk4EetJbLizv+E7hO4s+J6snUT/WvtKmhLeDt5D20FLxZMg4VIrniSUcOriqOqqtplXkJVb9O7DzWCBDvmkz1te4VnVU+vOiXLO0+PdbYM8/PaJPMH3D28qQb2eIvVLnHpSHf7LxyrwljfVoVTylU78OcasZyKxUvJItPoJVRVKueXgtrHHcAX5RHMd+Qw/AHH/oT9D96+DTZ9/EPbcvTa71rc22vnEBdB73MJU+Ebw5NNMG/jmkzX7wGWN9W4Ahq3nbSucKHzz3USGb7040Wm7EXS5TIFvtJ3gHQmCb0y+LGTA9xQ9dxvSwngX8M3HetL+Em0nBzh0xzh47CV7R/f4s4S5orUHcH6yemSEkzC3boMXRroD8FWzZhGAX7F4CZxkANx2vswEcGODwMfVwRdhaMNtMLwRAfzFxOekA3gOeuedA/1HXg19R1wOpd4FLQDubhpPsAumntdUUaJrgqi+etKysK11wdsq4LLOSftJq9KtnnkOBVKvQhMwuxKLDN9usGMgmi8QBr4Dg65WOcHQut/4l+qQUFWTZNJlzsA3XgvJCz4l1hOdvbP1hP/GbPyZhu92yreromkifG6T4kLYTnuPVcLbtaxPm9eDN01l60mtnt1kRyqeqOUkbLlOnmFV2u2gwp1jwu9m6n27wbVRy3lO4xnn433dxhz82xdL8LXv9MDISDZ8r1jegE9+pAofeHcV+vvS4Vt/dmGN7xC+WaXX80G4Dwx8JyA3KaA4X7XW4uavBKNPbIFNn78fdt78AuRlh7ecIXIA8684Hlb87oXQd/pShl9pkqPXCbrzp/BNcMwt5vkYzYBvAXgpMb5P8N3S5TJoMY+fjWUGZwq+U5XwDPimY4G6gUb4PuSg++6774ZHHnkEjjrqKLjmmmt8DegYMwbdY+OjMDQ+6H54Dty6BnDfM/kFBPAtW+GWbVthzQhWIOkcR/X1wRVLlsCVi5fC8bMHePnUfCEbwLlyiOCV8yE3oLL7GRhefysMbfoZ1Ec2dQbwXBFmLbyQm/AsfxUUy7O7BvD8BLpgtthP2lRFsRVQSD2WZhS6BcjDLVVB+KLWqnSb6zyvvyslhpsJEzm1BbuHb72IW9833331Hnsxp8r20ZJUvIU0CbMmy7PWE/2XlXTZyXrCH2MuwJlVT/gegx98xJrfB2rSpb4WQptGO/tI+DicFirbocqdZVkJK57QMW3LDdYZwq39hJ6L3cDDcVLxdp8lrc/5sX8tqf571ZvxV1/g9aFktkD1xmXs3N2Er36jDJ//ag9s3ZZv2+nyw++rwsc/XIUli+quxbwmCya2l+TD8CDZg3838G23QThYSoypZZlYKdCp0fkcjL+4k+B7x4+ehVyVS4umDM9hzquOgRUfPx8GLlzp4Fu538E3dY/kBEg6N8mJmfabwDJ78ZPwzeUFpZOl3ulMgW8Fc828R8DG02w7+KbzoXS1pC6X+QnCdyfbyT7At92fDr5pNN1G+ca/2OES/+kdm8MoBg8k6P7yl78Mn/nMZ+jfxRdf7Kb//u//PvzLv/yLe3755ZfDT3/6Uyhonc7DPGYautED7IUYToTDoGlZAG6qkTgAF0B8nhTwbXDr1i2wdnS0q3U5tr8frkQAX7IUju6f3Vr1pGsAr8P4jkdhaP2tMLzpVvKDdwLwfL4HZi2+GGYfdSX0Lr0UisVed5pvZDThMXdmeT7zvAXATTWBiQC42i5C9ZsuVIlSg/4Kzuc7g92JzngetlkYDiDaVSTg7Wx9305fNompCfiWjYn7hDpdplhPtOoJrjsDuCj+Kd0tJ1b1RBVv33CnnfrtGu8cZheHmY6JJF2mgbaNbu0n4TyhBSXtua5r2ntC+E5tsiMVT1rXK1C1ZbzL4OlfCz/Pv039v6YUH1kovB2Pf8YM36NjTbjhhyX4ly/0wPOrs6+l5XITrntrDX7vExU4/pg6+cWpJbsZW+v2KBTzUMfKLkqz7jcVtJbPGkHJHa7QWmThm88fDN9Ojc7noLpxEDZ/6UHY+p0n2zbamX3BEbDiExfCnFceCdxowMOtLfKBUNsJvkkdb3YH33z3Ut5nVHH6bga+2Stuulxmwbe0mHfw3QmuJ/q8E3zLnQQL3852gtd2nFD37wvhmz4LywweZvA9eCBB9xve8Ab4xS9+AVu3boWenh6a9sADD8CFF14Is2bNgiuvvJKeb9iwAb761a/Ce97znulepYMi9ofSTSCm5e3MCdRgi7Rc1wx9/OEyinnLh0IeAjhfFJ4bGYZbUQHfugXWj411tV4nzZ4NVy5ZRgB+RN+sAMCT7d7bAnijSjXAUQEf3ow1wIc6A3ixH2YvezX0rboKehe/rKUGuLuFqnDXRhG3AM4pkO2b8Fhbh15Mk/YTTkx01U+ClvJeofffyHXRVBC27zEAq9PqgVrtmu+4KgVy4ZM7EgrfqoE5+4mq3wLu7X3fE7GehOtuL9yiik0w8TIC+PQGXas7eL47VTxpB93he7KV19Z10/k7VTzJgm8E7kTFEzeAZfuEqr0O5sEmWybV5eQ6ZcO3TTbXZer5Ap8htP7sjhJc//keuO/B7KRLVNZfd0Ud/usnx+GC89CvjmqrB25tC4+B9gxKMuQTlvk9Cag2OAHTg3n4WU7W8ftLLBkhfKPvmZfJ54razhHY+hVptLM3u9FO3+lLyPPtulx6FmyFb1FuXR11OVe0g29cH9flkk5RvstlC3xrl0up+802lxzU6ngc5TLhG/8ifCOEJ+Bb7oAcyPBNn0Ff5PCC78EDCbqPPvpoWLlyJdxzzz1u2n/7b/8N/vf//t/w3e9+l5ItN2/eDMcddxy8/OUvh9tvv326V+mgiBmF7rE93MHQKN0J72FbAPdKqsvE1+xwxzx8RsTHTw8PCYBvhU3j3QH4aQNz4Mql6AFfCstm9QZVT6BrAKca4JvugaENt8Do1nvoeTsA1xrgfctfQ014ehacDYV8oesumGkAnpaUqbAtd0fTK6A4aPSdxtBqwh8sey+hdJtvFCjdBMPSGMN6uvXC4yulYLMdr1Zb33doPVHfpz2l0D2PpvF9C/RjG3naT24tm1DMFzx8y8WhNbnUW2sS1hOnfofWk9bESwvgtHx9HNXvGQlWMdvDNz4PK56E/m77N5w+ETBv12AnfL99TN39UsoNJpruyG8Kv0uxmLR8WCVZFVOnYhvriT+r0ZSEZcVZzjAnhuBUl8fHtLZ2ue8hhO9yx06XF7+cle/XvJrlAQJfY5WTnzInJprGOFLeSL6Th3BbKUXXS33epBy7BkMBfLvznNbf9vDd2DsO277xKGz6yiNQ3zGS3eXy+AUE3wveeJKrM5gF37hs3vcp8C0nbG6sk9FiPgW+VVjQSi4K3xj1qoI5QL0GBy58yw7nQjRylzmEb3yqx/phDN+DBxJ0Y/WS17/+9fCtb33LTUOV+7nnnoMdO3a4C/xVV10FTz31FKxdu3a6V+mgiJmC7tGxERgc2+3gDlzyH54rfJWLdgCe6vtW+wL5ag0UGQB/fO9esp9gGcKtlUpX63vO3HkE4K9ZtAQW9fa0BXBXscN8L70YNSpD0oTnJhjdfq/UAG8P4MW+ZdC//EpqQ1+eY2qAdwHgmiTaCcAxbAUUTbZkX7eelAumpbwu3atjtvW6h3VoUbq9pYQvoHpCxM+iPWdqgtOnu+/oTB2pvm9tQW3VdVTI9H31FOuJrj9OKxrriQfk9uq3rfKQVL996UVW41vhO6rf+xe+Q/C2j6ei4ok+tmpz1ns0bLnBNAXd/UXfbpBwmehwidNloJq0rxio020iZwQVLvzn6PnLrbG3a0gZQ7dMgV+2iMjvV+D7udVF+NcvlOE7N5agUsmGn9NOqcPvfWIc3nJNg6CPBuiU7J5Sf9ud4wW+3djfw7essjvfqXpu4VsHGw5SqVW9b7xD8C3CDn2n8Rps/+5jsPHfH4bapr2Z8F1aNQ9WfOxcWPTWUyFX4i6XnCxqvoeFb6oF7uHbgb98carlTS3fO8M3vV8GC66MolgOJwrfBUm8dCk8afDdCcY7za/PFb51RbqFb614kgXfhTwD+CEI3wcUdPf29sIb3/hGUrUxxsfHaaVe85rXwE9+8hM33/ve9z644YYbYLRL/++hHjOpdA+O7vKggmGuEFrKz9fwdr/mCQK4wo1vQU6Lw4sWADw6OEjwjZVQdlQ7Aziee86fP58sKJctXgzzy+VUAJfTZwBuXl0mFXZ8NwxvvAuG198EYzsfDtQlf96BlhrgV0L/qqugNPsosZCEAO4jDbZVi8dmMnricmCtSY2yzRLqt7ONiFprfN66++SrBeq3AWbx8GsZPwJtWTGrdNtpmmSJ/1O1mpclAwvr+7YmXU04NYmnWqpQE7USvm85uVvrCW6jbuDbqd86+JELQ3biZVS/93e0S7QM4duq32mAPRH1O8vWkTYdI6vJDoa1naDNpFapu8eY4Kfw7ZVUs3wL3+bujVWCk0q2WjC8Op7Ip7aVT/QcbH4zW3cU4PNfLsOXv16Gwb3Z8HPkygZ86mPj8J531qGvNwnfrm71BOA7MVjJUL61xXwI3wnlW8CQvlK9Abt+9BQ12qms3ZXZaKewZDYs/+i5sPidZ0BhVtk32nHigG4rGRDW0cseKN+aOGqchQ6+8TNyE4RvGYlY+KY2DNLVUgcHdCwU9gG+9+W58z9G+D5ooPvYY48l8H7yySfp+S233EKq9l/+5V/Cn/7pn7r53vSmN8G9995LVpMYMwfdI2MjsBeVbvXhhYeEmyZl68T37SqY6NnVXIUyAdyeZFXFVc8bzot1TgHgod27qQb47du2we5qteN3KOZy8PIFCwjAX7VoMQyU2MOoJ0avBZuBhMKiUW7xDfXRLTC84Q6qAV4ZfNwpo1k/FHx3z8Bp0I81wFe+FoqzlpFKmyx0Bx0BXLdzMgGTmzQ4S4jdtiJnqdWEwVjgXVXrNKXbqNpZSnddGvAUApuJKt04X91YT3h99IKZtNXw8WIqGKjXWzPjRdmvG9i2TX440VKVb289mVzipffJevWbBx9R/T54Kp5kRZqKrdMn+xgjrclO1rw06O/U4RKFBqn1Te8xN6fcMp2NJDmQ9ucwBVgtH5oN3+65g1dexvBwHr7yrTJ89otl2LI1u+LJwgVN+NgHx+GjH6jB/Pn8m3bwLacX12DHfY6pcKKdO935lgHaNRAydyZT4Vu6ZRaktKwDeR3QyyBg983PwobPPghjz2R3ucwv6INlHzgLlpoW867LpdODePl6KnHKN30HaAvfmmQpKU28rjJ/J/hu1LjaCa1HAr5lGQF8s+3kAIFvPZDxDw4+aeOrL+fQV74HDyTo/vCHP0yNcv7X//pfcPXVV8MnP/lJuO++++jfeeed5+ZDT/f8+fMpqTLGDNpLnNLdSCq0mQDOD9MAXE+ciZ7DBmy1+gg/zrcH8GYTqo0GPLB7D/m/79y+DfbiVbdDlPN5uGThQrhy6TK4eMEi6MP7o7Q8GQBkWU6MF1o/vzb0EldA2fgzqO1dnbCbpAXVAJ+PNcBfRzXAi+V5LapzLgu+Zds0OiVgktpt6lSbfZFWqtANjajjqKjaCtqyH9gzmaF0y3fWaQjkOAWVbr1I1lOsJ7R8A98M22qk8YGnZ4IFA990EROodr5vmYbwjYMsVqW8T72z+q1bYuLqNz22SZf03W1pwhhTGd1WPElTo21M1IKSZkMJlfXwudUbrApO0IbwkQHfqnw7+E5T16WOdXgHK7wTpyqyEzWcCqqVkGyiYnC3KJeDaiUHN/yoBP/338ptK5709zXhfe+qwKc+VoMjViRvO2TBtzbw4i6XuY7w7f7D/sZkl8ss+PZfl9Zj8I7VsOFz98PIo5sz4TuHLebfeyYs+9C5UJzf1wLffkDjbSa8KbPhm86L+c7wreUFWzzfAqVN0+EyFb7xe1CTHT7Xo/Id4Xv/xgEF3c8//zzB9dAQV43Aj3zta18LP/vZz9w8zz77LJx88snwqU99Cv7v//2/071KB0XMJHTvQeiWhDPOQPcn3lwmgPu2wu0A3FVEMeXqugdwqYiCNbibTfj1jp1UA/zu7dthpJ3kJTGrUCDl+6olS+F3FiyEMp4RBY51/VR5xci3AHgutQZ4g2qAJwE8l1YDfNHLYfaRr4NZyy+FQrHfXTQTHSIDi44NC69q3eBLj7vZ6c0zgVLekP1DW9A0F8L/6vfkdeGLr9b/Tq8JrrXDvbKG87lulLL+qmDTJ6t3MdiWvismm3/0FGThXdVv9WDj8ejxV6uo5Mn7req37oUw0VIv+AnryT6r39xsJwHjEcCnPOi2fYdqJ7bcIP/uWpfTzoaSZlfpBN5Zy86s9W393mJBaan1rc2kzHppdRP9HGcbEQtdcl34iSZhKnynWVWSFO4BGQHvZ3cU4TOfLcODj2RXPCmVmvC2N1fhD363Ciccb6s42W3i7uH5ilPyW9Rulazw+w3srhv0RdiikQbf2rsgtJ3Y/YALGf71Otj4b/fD3l+vs8Nws7XwIlGCJe88HZZ/7HwoLZ7t7jp0Bd8uKXXf4BvM9w3hmyqmSP4DPkiDb0xsxceofBd0t6XoD7yf5fgQb3za80kr3+Y61KJ868asN1pLDKryjRbD0sGpfB9Q0I3xxBNPwD/8wz9Q2UBMovzv//2/U7lAjX/913+Ff/u3f4O//uu/JjU8xgzaS0aHYXB8j/MjY9DtQ5fc4i0jkArgAiFdAjgtTxSXbgGcM7/V89uA0UYD7tm+gwD8nh07YDxQftNioFiE1yxeAlcsWQoXzF9AwKbfq+VkEQI40aapAb79EVbAN9/WXQ3wQi/0LbkUZh95FfQuvQgKhZ6WEoT6PlXE3eVWnqclW+rnWa+6s5pofeFA/dbvoWCZULoDVTt9GivdCUjXW7dmEKN2FHvOV+uJJhKxvJSs38vrzLfKE/AdWE9ygfqN/3Ra997vKVS/Y9fLaQu6xhvrSbs28/oTsH/Dx+2edwPtIVzrc13XhNfbzZOE77Ra39pinj7HVv0wvxFX2cRk4SQHCwru/geooK4wkxhUGL+3Pkf4/vUDBfjnz5bh9rs5+TCz3OCVNfj0f6nCOWdpwqgVHvx6eBufgW86hzTbwrcrW6dQarpj2msFLieRRuLUaICRRzbCxs/dD3vufDEbvssFSrbEiiflI+YmbSMZ8M2f5eGbrn+FDPjWhM12yje+Vb60t6GwxYUODwPfVHJVYFub7hSLSfh2OU7yRe3zbuA7fD6j8F2URjsHCXwfcNAd40D2dA+T0u3O0U7Z1JM1g3JnABfQ0ZNltwDu381gJu/hxXtlRMsTKr2psDFcr5Py/bOtW+DXO3dyU5YOsbBc5i6YS5bBWXPnyme2b8JjTx77UgO8UBqAvuWXUwJm76LzoZAvdlcBxandeqPVX5ysN92uuw5adL6wAY87h4r3GxVlq3SH7ed9e+pcS0t62hyiHhOQu8+UfWllMNmnaj1xJ+VgP3FpQ55qW83zeZpVbvWuM3jnA/ieSvVbK5/QEZGqfjvwjur3tMJ3N+q3V3gnD95ZCnc7MG9RqoPES/rdSIv5zPbyqIKbXwMfWl7a1rOsB8xw/eRc4mDdlh71VU38+dguQO5yyfnhiWfy8M+fK8MPf1KCej0bgC55RQ3+4FNVeNUl2OXS6tzyvcXizXfiGL75upKEb4Zu+V3qQCGAb/xLZ54JwvfYU1thw2fvhV23rM5uMV/Mw8I3ngRHfOpC6Dl6gVtXSnZ3pyoup6jwTXcKxQZktQ/d7zjNNf0x8M2dfGW/BPCttb1b4ButJ9SsZ2rgezIwPin4Ntfl5iEI3xG692NgBZavf/3r8OCDD8L27dvhmGOOIV/7f/2v/xVKUrLoQEuk3DO6kztSupO1VCzJAHAd9acDuIe/7gDcf1YWgLsLC3ilVJdLP0z5PQ/WanDH9m3wsy1b4P5du3wljTaxvLeX7CdXLV0GJ86e3RWAZ9cA/zkp4FQDvDHeFsDxeaF3kauAUp53WnYJQrnnqbXUtZBjooyfVbvlE1Xttncw+Xupl1AvVNqBMgnbHsB998usjpjWMmOVblo3XQd7JQ62iSpcpK67mu8e5mlN5MSepn7r56j6rWUH7Wfsu/pdTwB6d+p3tJ9MJ3y3a7hjyw0aZnVhgRxSVePktKx5slTvLMsJT/eNdnBlXZJlUP/bK6ua0Ge/j1HABeqcii0z6Xxcoo8+md/vqgGZ9xjAUl+4nu/XrAP47Bd74RvfKcHYeDYAnXVGHf7wdyvw+quq1MnS22HEuy30jL9XLL/HJfGS8O0GwgLfCQU8Db7FA+5sg/T9/J0PZ9ORbTW+egfZTnb857OQpx7tKWeEHMD8q0+AFZ96GfSdtHhq4DtUvu0AY4Lwjc8RvkPlm0WJVvjmBMypg+/MWwZTAd8YajHBvwcBfEfo3o+BDX6wIdCb3/xmWLp0KfzqV7+Cv/qrv4J3vOMdlFB6INpLdkv1Er7lZ8s4eQDn8D8g/PGpCpoF4KFVBBVWVV8VmBlyzBUxFcBZPU0sS4FI1i8E8B3VKpUfRAB/ZHBPV9vi2L5+uHopA/iqvj5/EtKLrEG4tgBe3QvDG+6GISxBuON+sqTYMDda3fNi/yqYfcTVlISpJQh5n/ga1HrNRC81vU+gViHUq+TJ9VQkxMEKOXX0k+U53UbV7ZfLS/WSNKU78HkbpVvVZD6pmu6WohRTIx+nwMs87nDJJRv8yLHiK5P7wOWp0GLb0pNSrz52WR7BuAB4J/XbXSWcApaboPrtm/m4x079jsmX+7PcoCrfbu+rqNZGsW732D63Vg37moXt8HPt/KwaYq1v4++u8oghAd+iVrvjUsJ7uM1h7EQSD0vW662qN82ncOPHvoljX5dH14EcwJZtAP/+1R7496+2Lzd43LEN+K+fqMA73lKBUhm76MrPy227nIPYicK31uRWCNfzsL9WePimbdZMh+/q+t2w8fMPwPYfPA25CifppwzHYd7lx8GKT10I/WcuS9pOnOCrHTRxd3UH3yrsMmt6+Nak8lbbidhWBGptAiYeHZTipHcG5NRD5/l9hO9unmduOH2uYJ3z1/iEQCTVfNxoxEB+C3xTxZMDD773C3Rv27YNNm7cSFVIZs+e3fL63r174eGHH4ZLL70UDuXA7bB48eLENITuP//zP6dyiAjiB5q9ZPforkRlCVVIpwbAFba8gmhlJIZpPNEWWgvgBgCuge9phJ+lZ7IUAN80Pk4t6BHAn5aE3m66YF61dClZUJZ0aMKTBeCk0FZ2wsh6LEF4M4zvxhrg7QPf2zvvXJh97LXQt+IyKBQR/t3m0BK4coIV9VvgO7VMoZzsdO9SOUNRnulkn9H90reO57O+93Czp5uVdL2QCx4nmilJCTNzpyDN503XQKNqa7EGVYIcBAfzqZWFvN9aH1zKjeGCSeWW9+OFHa+JlHiZuI0+VXW/pTRjlvotV9yYfLl/yg3q9LDRThZYd4LtLNtJ1jLt7zdUxf0h7uE7ze/tki9tox2zbPVq8xPz+XYAKfDtL/vJEYH+dlrgW8v+kY+ZoW7P7gZ87Tu9HcsNLl/WgN/7eBXe+85x6O9X+PZCgn4PhW8q10frqCUHjX3EdUoM4FvOfRa+NU/UwrfdBxaIa1v3wqZ/fxC2fvsJyI1V+TKUwpRzLj0KVvzuhTBw/kq//WUfa/sErUGg8I1JjnqnQoN83ROFb/GAW+V7ovCN64IqeCGv1U+mFr47wngzA771QKA65Y2DEr5nFLprtRp87GMfg69+9av0vFwuwyc+8Qn4m7/5m0SyJNbgfsUrXgH1LqpOHGrx05/+FF73utfBQw89BOecc84BBd3DqHSP7kw2x6HoBsC9gaMzgHsLgp+WBHA+6Rhbh02gzIjE/AkAN60epVY4xprREfjZFlbA8XGnwLdj4iUq4JcvWgJzyqWuADytJGFtZCMMr78NhtbfDNW9z3SsAZ4v9sPsFVfBwDHXQGne6Wabk+FNOkKKwqPXSwvgXlbyarfZPGn1v53XW2tfG1W4BbYRwAXGtTmQKvMWbu00hWVdjtqXrEJvjxlPAB56rb2pqWUMnQVHP5ZBWJvs8HHB6jd6v1X9tlcFB+AuqVgvDv4WtB9EyPtkoyfUb6ckdmc/8Qp5jH0N3OwI2Z3qfadFCNLtwNq+px14Z6neWY12rO0kDb4zu1wSYMlv3cA329R4on6eH2jqvBZw1LqnyxT4ltEyz+/LEI6MNOCGH/bAP3+uB9a8lH0cL5jfhE98qAIf+cA4zJ9vuxSbii3SBMuBM10CUhInTZJpcpv7Ot8Ko13DN4LvjhHY/JWHYMvXH4Pm0Hhml8vZL1tJnu85Fx0JTSrh5OGb7n2JPYf3rSrfIhZYgWGC8E1nnUY6fNM5qNEFfOdz1PQnwvdBDN3/+I//CH/2Z39GjW6wNODdd98Nn/nMZ+DEE0+Em2++2Sm7+xO6n3nmGWrKgz5r/Ift5nE9sEEPrnunwG6a119/PTz66KNQqVTg+OOPh/e85z3w6U9/uiuf9p/8yZ/QdkIVvFuAnlHoHttNCmb2xaU9gLuThISqntYX7kakQYZ7OoCbetodKp8k11Ky2+XqwOd1qVWrkKzNeppNeHZoCG7exgC+eTzpwU6LUi4HFy9cRPaTSxcugllY2D8FwHW9+SulAXgDqoMvcAnCjT+D+vC6FruJ9X9j9AycCnOOuw76Vl1B1VBoUZQxlHfqt3ZdVkHBe8L5eyM2c4m9fGv9b/RYiuLGm8lfjNS6whc/VJe9+q17nFX+JGxbn7d+MXeRcF5z2d8J3c0PGFx5RFMhxXrErfpdk1rj9Xpwt0QSbzUJFAcqeCyr9cStM9+PT6rfSh9p6rcDh06lBzGsKiOP5Xgg8NYShAeIcnOwB9lEBbAnU+s7TeHOej6R17pttKPwHSZbpjXase9NWPPMuNFNSwCr/9VxmTxbSURg2J22tSux7YypD5pQrzXhP39Whn/61x544qk2tb77m/Ch91bhkx8Zh+XLch3hmzo75pPwrW3hE7/DicB3YjurNcTA955R2PK1R2DL134Ljd2jmfDdf85yWPHJC2He5ce0hW9cD8YeD99qw7PHhLSpaA/fUuHEwbfxg7M9LwnfBPWaWBrAN7WzzzehOBHlWz01Wc8PU+V7cCah+/TTTycARbDUwO6T6GlGsMV63Aip+xO6//AP/xD+6Z/+qWV6N9Ct7y0Wi3DZZZeRdeaOO+6A3bt3w8UXX0wwbxX9MHBbnH/++fCRj3wE/vmf/7nrdZ5Je8nO4R0OrlogOSOcLzsxP/+S7Dv5ZOobIvjyVEyH7QE8qWCnA7h7IXU9swFcpzNEYhv6m6UN/a4uumD2FQpw2eIlZEF52bwFUJIkD7VpMBzyFrDKrwVw2hKNBlR3PQ5D62+BoQ03Q6OyK1j/JIDny/NgzqprYc7xb4PCrBVyopeMIrnI5KgFcah223q6sk1ln3C6pAFcq9rTia7g/doTUL+9GqcXVVsaUWA2w+ftdG1TGxzXl2A+OKbQGpWlfuO6uBse8mo+0XbeVz7RMpKp6neG/SR5DbHq9wSSL+WKGJMvpw++O1U8sd7bbhXtbsDbK6rpr9nlKmskoZDPEd10udTPSjt3O9Xa3v1qo3rzcz0+DXyrRUWTLclSoZWQ+Ddx5z0l+D//0gO/uT+71ne53IR3v6MGv/fxMTjmKAXWAL7dsrm1vJ7yeWXawzc/ttcmOb+0hW//uWRxGxqHbd/+LWz690egvmM4E75nnboYjvjdC2H+VSdIomg2fLPFKQW+9TyOoGzgW63O9BzhHZfVzIBvXGCjFb7Rfkf2qrocH3IskPhQyIDvTnA90ef7CN9NHETU6+6OtS43hG/8m8da3zMM3zMK3f39/XDTTTfBK1/5ysT0HTt2ULv3l156iewV1Wp1v0H3F77wBVK70dpx7rnnUj3wr33tax2h+8Ybb4Rrr72WQBsVfHwvBlYlQQB/7LHH4I/+6I/g7//+71Pfj/Phd+7t7YVf//rXtK26jZlVundSW2+nEKQCdTLs9OT8/Lq7kNj3GDjjW4hGAW4L4AxnzraSAuBufboEcGozHAA4Ahiqpfft3g0/wy6Y27ZRScJOMb9UovrfVy1bBmcNYAlCc4Uy3mJrP9ELgp6g6bxTr8Doxrtg79ofwej23yQugK0Anof+pZfCnOPeAb2LX8YVXSSz39lNNEnVKCJp6jclTMpnaFImeaKD7pd2YJUEcAYDbMjjW7gnbSW6QfSi7/eQZP+7Z/47JkOa8wgsE4howw/zXtvEh+GbhxQsmvmTelrlE1a/0ftdCLzf9mhMV7snlHzZDsCj/WRaYiK1vi0EhxG+1kkltyDdrXqe1uWSvgOCR62eqHCSKDNoWswXi/yLTsCoSSB1v8O09ScXmxyn+vtwLwooiqdap4Xwjb+++x4qwT/9axluvTP7bnCh0IRrr6lRxZNTTvIWFrnp1Ba+deBv4Tt9X/jrUziwsZoEfzcP3/p6c6wK2294HDZ+/iGobd6bCd+9JyyEFb97ASx8/Uk02LfwTefa+sThm5uD+QY5WP1E4RtP1rQtuoBv/Gxc8YMFvpt6nT9I4HtGofuoo46Cv/u7v6PqHGFgF8prrrmGLB1//Md/TMmEB4Kn+4Mf/CBVEukE3djI5/7776dESLTP2LjnnnvgkksugZ6eHtiyZQtt8DBxFMEcLSVYwWTFihUTWseZhO5dUjLQxnQDuPdj8IlT9WxrR2gF8FxXtb+TAJ6uhNvyUqzetAL4WL0Ov9y5C27eugV+sX07VLv4uazo7YWrly6Dq5ctg+P6ZruTvl3PEMDdeckAeG14Ewyt/TEMrf8RecHbRWngWJh7zHUwe+XVkC8PSFmtpNebbYD4Wfj708oacstStoUmZaIHmsv0+e6XdNFQRcztK1GxpUpIuvptK7Ckq98t01xlEl2SL4nIBQ9t3XYGXKeku4ZA3OVPLTBUWQvhBKfL8myLee4ap108+RYs1f0mz7Ve3GEfki9N6U1X5cUaiqy1JNpPphu+s8DbJl3qsZH2t1t41r/2XBiCXzsYT1PK1fONSnetIisbKOGh8h3CN0bY8TJcV/f7E2jUAbYuwyWsE+y5tfd3nDCHopCHJ57Kw2c+2wM3/qQoHuf0uOq12GhnHM4/x8C3qzeu9oLWrpZpyncofSf3QQp8tzTDSYHv8Srs+OFTsPFzD0J1/R5XwaQRwHf56PlwxCfOg4XXnsrrq4IITA6+1S2nsN8tfNM+qit8+zrffC4HqNcmCN8iwe83+AYvGE0Evgvl7DsuByV0v+UtbyEl9xvf+Ebq6+iBvu666+CHP/wh+0YPEujesGEDrFy5kh6vXr2a6m2HceSRR8K6devou7/rXe9y08fHx6mzJirhCOcnnXTShNdxpqB7aGSIoNvVvTC3GycL4Aq+rQCeTK5UQwHbMhCkbZ3kdAB3MG3reAcAnr2eCr/Jk65+X7p8aPk7U5McY2+1Cnfu2A43T6AGONb9ft3SZVQHfFnvrNSBQicAbzTrMLLp5zD4/HdgfOd9bT8vV+yHgZVvgDnHvR3Ks4+hMyrbTVT9VruGXCj19rXxhNNvVPaPV7/lAh7sb93Wekbn619S/c6ymkxG/ab1o+/EFwi+8Jv34kBBhX3zXldxRNYP1W9cXyrE1qJ+4wWN286r+u0a75i65O1LD7Jtxa97uv2EB0C6T6L9ZH/BdzddLvcVvMPXssA7C8bTlmPhG5MtGbjrLvGSfiP4m0jxfXtgNVAdltdTB5h5v7WcuN8lTUqHbx1wIny/uCYH13++B775vRJUKtnwfelFCN8VuOQVeG7PgG9Zttbo9gNX7RBpbCUZamcLfAuYZsG3EwVqNdj5k2dgw+cehMrqne4rSxs3B+PFI+bCio+fC4vfdjq1N7fwTcsWNZ/gm+AYuoZvXA+s9tIOvjWfJYRvXBx68LuBb9yeCN+F0kEK38UCFHu7748y2eiW16YkZf7d7343vPjii2QnSQusZvK9730PPv7xjxOkHiyB5Q0xFixYkArcGOjVtvNi4KDine98JynkaLvpFrgR1HHH2X8zEXzrSlpukzqoKpyeYD2UktKpZZkMnFtIt9MJbtz85sSFFwK3TP5MPYu7yh80qhdl0izfQw8uQ5ZvrDHs8bW39nV95LvIf/2PWCFUpQg+GzLwqhWgQVVLrlm2HP7lrLPh5ldcBP/9hBPg9IH2gyFM1Pw/LzwPV//6l/DRhx+A7214CQYrFb+dAusGn9S9AsrfIw+zV7wall/6r7Di1d+BOUe9A3LFPn4P/TPbpjYMe9d8Czbc/jbY+ItPwtCG26BZqzJgKHAbQHY1ugW4yfsnFVE4ZQmTLfnkhuCp20+3pqs+EqrbCAHip2Z4ZYsH30hACwp7v/m40yEWL8dO4+uPXLQpYVTuimgDIZ1PS/eJ4i431l1qqnq4dd8SRBeKBNHUmU7WX3V0tBjV5DvU8XkToNJowHityse0qcmN34PWXxIh5UogVy8ecPhLPlcqcQNPLJMJBeoEylcL6XSaUy+4+deoQQP3pf1brxkFPsZEAncB1i3GPPhyGaCnh//19vrH+A9f10NHSw7q33aSlb6WNp8uwz4P50ubpu9x03JyC71UhHy5CIWeIuRKJSj0lAg0cDp+SQRe7U7J/xBUtFayDHBFGddp7jtKxrK7w29KdTJj43L5XEaTXDNN/AxRpCVx++gj6/B3fzUGD941BJ/66Dj09aVvwJ//sgjXvrsPrnxzL9x8S56gkL+/z/Fw8KbbQyouhXdX/eVCBvfJPRHYd/yASL8/Vvmg7eUSG9F/VoD5bzoNzvjxe+C4/3M19Jy4kIFZzjfUMRL/btwDL/2/d8Ijl30ZtnzlIVLKcSNJPx53XBEAk9VGEiAlOZz95zyIwDmw1B8tX9TxIp02clCr8fkaq5LQ5kf7CDXIke9FyjpCtObxYGdkPAfyOuMxjp+F2xlPZ1T9BK1YVUyQBajW84B1BqrjkjuDpE/LbUy6pTyGFiDgxF1zYVHgxpBBg94lYJiW13AbYSnEUlEGNXr69dV/vAfqwIjDtg18N0o3Jj1iF8mzzz47AdU2/uAP/oAqtbztbW+jCicYn/zkJ+Fzn/scLfs1r3lNYv5TTz01cxT0P//n/4S/+Iu/aJk+E0r3jtEdUmtYlTxoSXZMKuDJ2+rtFHA73Srg7On2kXyveGzp9hsr2axEqk8xLEcoXm3Thtx9H1FFCcgUaoKBtb3r2tLQh37F8mOnEwXLCTqyfml0lNRvtKCsGRnpqgLKJQsXweuXLYeLFyyEHlMBxX2mUcD1RG8HQvXqEAyv+QkMvvQdqO5dk/o5isiFWctg4Oh3wJyjr4FCeaFLtnTVCUwJQtoaKRVRaCCjdzFcVRmG6DT12x03qu12qX6nJVrqd6fiAKYZkL43YR0K1O980B2T968MMk1be7pA4nqR+o2bxjfZUesTHjv63fEowsdFnJapfienua0TKDfd2U/oVxbtJwdYox2rSHdjFUlTs8OKJl7VzVa927aYz0i2dNOoRJFRvtPWVz5MQd1aSlyFE+d/1gGkuZMjfm9Vyum3p4TJpaPohV27cvCFr5bh818pw+492XB0ykl1+PR/qcKbXl+DYtGvkLJaQvnWc79eE0QF99eM0HbiTiKJq4HbNq4HmwoM2lmT9oQrp7jnjhdg47/eDyOPbclUvvML+2D5h8+Bpe89G/J9Za2I6z5Z0lRIYdYBBm1frfoUKN/qhuxG+dZa3lb5ZuGiVflG8BbNwCnzpLCL8l1A9RuV70KG8j1RJbyR/n4+2P2xxxvV1yfXKmQJ5Ztq3YvyjV2J+8tQoNHJ9EbsSDkF0I3Jlujjvuiii8gikhb4Os53xRVXUJUWDOxGuXbt2tT577zzTnjVq16VqXTjP7sTV61aNTPQPbJddE1vO1Aw0APaAngy0gDct5RvB+AI1D45MuhgmQDwRjB/UoX3AK4lr/xVTOHOgw5WifA1wGUh7kRsB9qtXTDdCy1NePDx08PD8FME8C2bYbso2u1idrEIr128hAD83LnzuDGEK0GoJ38/mHBDfgFIBMSxbffC3ue/AyNbf2F7NCaC3pIvQf/y13Di5fwzebpLRPTSgt6CbNeAhzDdPW89L4afztUOWInWT2P/I1+0WEVvpgK5nUdrfEuVYLNP7bqr1cSr15ooKbqeP47lLole1Oi7kqqF8B0OBPj4svYTBXBcN4Ly/Wo/ic13prvRTlaLedp/baA7w92QaR+xcN5Ni/kwCA5R6atlVDrBRjuofsrdL/nZJD/f+MBD+GaQhVT45nMidIRvvkbQSQiGhwC++u0yXP/5Mmzdln0D/uijGvAHn6rAddfWoFxmv7iMs91gW8sEJuE7I6GyReyZGHwr0Dv4zjVh78/XwIbP3g/DD27MhO/cvFmw/ANnwZIPnA3FgVlTDt/4Hlf9RJXvfGtLeQffxOS5VPgm8Qs7WpqkUO5qCROH78bknvMK6jHVPXyrnzt/AEH3tLrLv//978OVV145oYodh0KsWZOuPHYKTMjEfzMdfOdNwANPUqQuS3MCtWE4mPBAzVAUSiW+XrOeDNMA3Hm45S8DtWmpnQBvcEqkBW+sK+4sAxJ68qF5jB1ClylrKJ4/fIMsw1zVaHu4Cie+4kQCwEWldLqsfNmTB2bDKbNnwx8ceyw8uGc3AfjtW7fCUEYew1CtBj/YtJH+LevpgauXLYc3LlsOx/T1u23BtxoD/5uBwd5FF8KsxS+D2sgm2Lv6Bti77kZoVJJt7+ldjSoMb/gp/SsPnEI1v/tXvgYKRfx9qkJs1W8yG9L24g7HbD2hRwb6Q/VbVWZVlXEClbly6rdYW/A7UNKmlhlkaOQEUIZrvE1LnTBxGao4W9iWZjeI4azY8CMSU0StZl8r+7dpPeXGharL1KET/+XZrkTXJkl+ws/A486VVJRKDlU6vnj/43MqDIC2FbKuMHzrcUH2E/luDsjdINDCNIY0DVFrTI7fw4eoWGroGNRmPB68WcmS/AZMpqJ9F5vvTCZwe6PlJEy4xNvxWV0u0+4Ze0tGOoyH6nY4n6rYdl6djxMkveXEngrp3FAsQBN/XJR1h18Ez5t6y50fM4D7866tmOLuJImCav3PXojRdZbzJr3fV4eicqx63tdtJCvsrinNBiAi/O5HKvDh91XgWzeUqNHOS+tb4XvN2jx8+o974f/73w34/U9il8sq9PU2yO7grzd6DuJrGv9mFHv9TvJNavyGtTfNZKJYZ7zdg6wLZjCl+0f7ls2+5Bg4+dKjYeg362DjZ++Hvb9ep2cn3+Vyzyhs/KffwKYvPgxL33smLPvQuZCf38fnEYRZqc5C211sJwTfjSR8q0CCVhLaT7QurHaT8i21vfG4pXN1jfcZQjTBt9hOaEmycmg7ofM0voYwjWdsC9+0HLQrAjQKfO5D20uxqBVmeMBH8DxFz8HCuK2hKLtZRwR6E4XvcHQY8e6nmNY2aG9/+9spGfFgjYGBAfo7PDycOQ9WZ8GYTiV6uoNPnNLRD0EHkxJUZVMlU9VEB9D8g1flkQHAGrIwfFUJPdnofAl1WlqLh55s9ZnbefVz6WQiAM4nPlYEfZKP1G7WRi72y7o11BOhAqcfeOg6WveVW557XUvR6ftV/WGV4YL58+H/PelkuPUVF8HfnXY6vHrRYrKWZAU25/nS2jXwlnt/DZ9+7BF4ZM9uc4nwy9f1Z++9llgAKPQth/mn/z4cccVNsOicv4DSwOniUQ72NyY3730Ktj/yP2Hdz66GHb/9B6gMvyQXc16m1Y619JT0fqCTM21fgUVVqRtBMxy6vppul2qu1COFShLKII0BWS+LCNisgBEQo/dbKokggHNSpwyq6DlfVNVP6dRulnRkEMXL4gurJCzh8mgIYAEcgZlVEbrcNJtQKhSglC+wQoFJajhAkAsoer5rjTr/azah2gQYF+93jfzWeJyyX9v+RnwjHN0pnMXkAJwe8Dbh6ita1FHXjy+Gkokhv1+qz0JebxrE4OeL/7tRr9Jv5DB1E046EIDQ76o+bwRx/aeeb3yMwKHhfdPJf2HYaWnwbadbILd/9bGFb/se+i2ipxv93r1FyKHq18P/0O+N/wrlAgOwqqHh52rpQLo2+JUmGKV/dj49b4og4V73yZy8JLHp0XdGsOIBY0+pAR98dxV+c/sQ/Ms/jsJJJ6SLFZs25+F//M8eOOcVffC//6UHMP2JlmcHMqSsy0BUFOBkMh6HwqzdGeH219+p95TziwrctP1lVbnNPUD/havgxC+/FU755jtg4JVHJ66OYocHGBqHzf96Pzz6qi/CS397N9R3DOkpl5clb6DtjnArijLfpRCl3Xi+VS1Xz7e3mrBCgvCNpxEH0QX9YuKrxvnlWo+Ajcc1qtnk/Ua/OA44q3yex2Wi37tWBajWAMYrAJVx3pbO860e7sk+rzdan+P21lGJK2iuubSB51uFn8MFug/2EzzaRDCwOklW6Gs678EYfLJC8MVsFQ+USQBvTCmAu1vuDsBVRYYuAJyXhzCtCrivJ+0hmztiapklA8gJkBcQTNRQ9omcCtYOcM371arAyX/+/SGAl7GJzpIl8A9nnA63vOIV8GcnngTnz5uXYcXguGv7dvjggw/Ahx68H36+favUmvb25QSAa2UYmVYo9kD/qtfBisu+BCsu/RIMHPF67Kjj97f5nEZ1L+xZ/R+w4dY3w5ZffArGNt9NAKcATN9Q/N2k1ojERrqxXG0JtmXBBMkC0oyNsu/N9tLptP+c+s3bkZIvaTkMuJwoK3BMryNcc2IWz6uwrRAqcpsOHNSbLfuQRRFcHu9bngtValG3ZT1omrGL4DGEjXOKhSL5uOmWPQ0OuFEPfg5Ct8J3DXJQkeTLqkt2NMmXFsBdtw4dQClku2GPm88NKin5ssjv1YRSl3zZMMmX8g/XoZ5MvjzYz88zGbjZFb7TAFwhHCFFIcyCcRaAh48tUIf2FQyrqutrtrRhGuC7O4xYex6hu8ywjeCNIA4I3wrldJfE3BVU+CQw9fkXCtBe9bbrpdcBd+TyT9LCt1tPtpRZ+MbzAm7rt7+pCnffNAxf+pdhOOv0dPjesTMP/+v/64EzX94Pf/0PvbBjp1foERDV6sJNYgL4NjlKXMnFwLcMIsL95GxxAt/6RfhOQADfeBJrNmHW2cvhhH97M5x6wzthzuXHpcJ3c6QKW//9IXj0VV+CtX95B1S3DHYH35rcqfCtLeUNfOO6tsA3nfDk2MmCbxnaK3xjBROC8FKeky1r7eGbbvDtS4IldIDxbuBbbI2HTSIlXrCefvppagd/MHq6169fT57qyZQM3JfAdvP4D4H32WefnXZP997hQdg5up2Ahn51Aj7WOx22+HZ2EFEraT5jQfGoAKkWFH7NK92hBcXZShJA3jqf82ubSHi/g1uILTaXcGOY1vX6+nQ14dk8NkYNeG7asgWeb3M3BePYvn64buVKKj04t1xyn+3937yiWnLRvo5wXBvfBUNrfwR7136vY83vQt8yGFj1Nphz7Jug0LNQvg/v1/+fvfcAs6yq8r7XjZWrOndXVecm54xEBQYlKDkIkhFHMKcJzsz7zrx+z8yo4xgQIwKSFGigyVlQVHIOkjp3V3Xurpxu+J619l57r73vOTdUVzXdVWdp0TeefM/57XX+679M85eQYkvldMLe2DxQEg15hDe6DN6DQj5piig5O26lHOwxor8hpCZc/UPzMDIV19Obs2GyQFW2mKeLlZGBeNpvUeDJg0DlZ25/H1KPHheSFFwevLYxzKvFsU4ntoh52zffsZ+JopzATVuqw2WlLealjrtAXy2gWj6Xn2HJiTwd+npwOw8F0XndaIctB9nvG//oOUtIHH0zXwP4F8u/Xfnb4uWy53hzvMcC3tfSDJQnqBfU8tFzDZ9P/TlBLeb/+ly4Kra2Jg8Xnz8EX/z8EMyYxha0elsktI2eWSflz2TrMNhFwy2WDNR+ozOITjSxZSE/J6//GAKxgmEFfnyNjEH/O+uh7RfPwaaHFyvnJO/8R5FOwJQz94Dmvz8YqlqbzPtWT64+W6D5Znkfdy/m2ng9Adqc+jl9Hy9LBLU6bcEON1rzzQX3dI1hIM7iOU+dgUn/rWUntHwxV/NNyQoE9aS8LkH5BZalnheRnbBQHlvDm+NqrBdS7ujQvbXNcbY2tpVPd2dPJ2wZ6NJFW9rBIRDA7YVfAYb6voIFCAFw9Q1G7G0D4BbrZNFmGIArmUIhvFcO4DYV7WRRGDTlBUjLYzgz+353Nzywdh0sam+DLryCh0Q6HieZymnNzXDIxEk6s8ySNpWp5c2q2t0ziDLLZaC3/c/QvXSh7nhZJGJJqJtxHDQuOAuqJu9vMq1GS6z3tzqDawDnEyOdsGWxpXGBNyCtmNAIQmxuV29Pdq5hG0DOnqnjTJROaghWxT/61ihn/8MKLfVxUlhoyXIYvZyieNN4hGvQNplFDRN0N0IfCux0Qseelj2Z7pckrdHyGrNN+bitxP2EL61WHlO++4nOsHPmXJv0SjvDKEoHZ6TxJzvcFvNBED1cMDd72oPvsHkwfONCBjqd8GP24uaBn7Bhc+BbFFH68G3BUN/xMsXLdsBnBg9ay8uFnqYLLQA892KcWsw/8cdU8RbzZ2eo6HJWKxZc2my8kZ1wrUQJ+OZiST7Ncw1+KHyj5E1fH4rB98DijdD2i+dh4/3vQ1xnYwvgOxmHyaftBi1XHgJVsyeacbSEb8p8o/RDy2TU9uQBuV5PyroHwDefoyuAb9J55y18+wWXZcM3+EmikYdvJa+Kmwz5aEYE3SME3WFt4NGT/JhjjinZBn5HgO6u3i7oGOxXt6NZq8wATvpVun9jIVr/8pWjRxiAi89xYabIdhYCuL1CDBfATZMW9WWb+RTYwd/zlc6myE9f2SQw07+6CU/pNvT2x21h2w7AFWTbjoq0zHpEjt/vxcLKNe1wy8qVsFY42QTFjKpq+NSMGXBKcwvMrqtVtxbZdUQXCzK8+tlvXIbBruXQteRO6Fl9H2SHusyoIQi5Ug07Q+Ocs6Bh7knUgIcuPiL7ra43+rlegBhesNT1TW8zTseLwY64zPgZcLl91bGm7QL5wsMFvlAZbKtNLhr0CADnbHXeB3Bzt8dU6jgAzl0u1J1ONTjICotDk/3Wy2jsB032uxSAD8/9RA1ulJbbDkoDst/6uDda8yj7PWz4DutwKVvMh41rfCeSMBAvzFzb78r3ZC4h7LsOfCNoD6HdmgLuAtcT0W+BpkVAxplvsTA6Z+EtvZ6/7WTLWW+T1RbrWQq+33gzBj/6RTXc/3DSFsYHtJg/67QMfO2Lg7DTvJwtQjTrL+BbZQ30uVzfW2P4Fv2LHfg253lpg4vfU2dIH74J8RMufA+t2AyrEb7veQ9iGaVNKRhqJ2Iw+ZO7QstVh0D1/Mmh8E3ZfHM60vBN51C1vcnyj2VKReCbb/2pTPrIwnciAeR4sk3gG99LoRQvgu5tHi+//DJcddVV5vnixYthw4YN1HGytbXVvH733XdDc3NzoBd3KpWC4447jtxYnnjiCdiyZQvZCT722GNQU1Ozw0J3/+AgbB4ahCwKsxi4BYBz9lsBuKv51qnJIgAuL/bqpBkG4PY2qMwu88RE6sSQrGyII7PS7inLzF8U+DnvOwBerA19rIwumDajLYNP2ea7jge4dUvhe4LYnOWRtWvgxpUrS0pPMA6ZOBFOndECx06dCjWJhNYu44lUNvyxgwc1f3WByGZ6oWfVE9C15A4Y6nq76HywKU9Dy4lQP/9MqJqwq7cNVVEi7X8v+x3Ujt6Xn6iLsL2roJZZ+aur3a9vFxoLRyl6CZaayKJKHlLYbc3Qave5hW3PZlADtJP9Nq2oRfabh6j6wFHSE53ZQyW2PvnTOuDFQa+7KioFwGuVzDZL+UlottsMcO1AJZKfbP8t5sNkIpU8Luf9sCx4EHyTlAt1w5zlRggMshzk87k6eXvTlwsTtAwufPN5gO+SlgXfXHQcA3j3PYCf/Koa7rwnBVkc6QYEfu9TJ2bh618ahL33UDVDEr5pUI3aZwZJEPCNyQPO3vOZnM8XurFYGHz7mW8jsdOgD0apF4NMWwes/uULsOGudyA2mAmG7xjAxBN3htYvHAo1u0y18K3PrSwtwRbuNO3shwvf+B5B94cI37Eo0/3hxFNPPUWZ6VKBnTWDiiJvv/120lm/+uqrMDQ0BAsWLIALLrgAvva1r1HHzdGIbQXdA0NDsCWTMRk6+p8GcJntxkJLtipTNmicFQ8GcAsyrjyFI14UwKUdlTXwL7w9akf7rF/mbIQKmTXnDKIH1uLKY+AvBMBjUoAoAEc14VESBO5C6GYg7eNyPcAZxp/dtBEWtbfDHzdsgKESarD6RBJOnD4dTm1ugT0bG0xGndZNeYWYdLijB9eQ2b/xDehccgf0tj8G+Vxxn/GqCftBw7yzoG7msRBPVNtF18CtEuD6TM62VLwLPPmJ22aeb43y1drmwPn4IGsthm2d/VaDDPZutUCuLnV6O1SY/ZZacgxV92Cz3+pCxxlwV35iLrAM31p+wt9nq0rOfjOUK48S/dpIyk8C9d9qMFKO/MQ6roSkaaMIhO9S2m99CKs9UCQhF5Yh9+FdZrllFNN7S6tABmHqWKm7+rHcREI4Pdf2eaYQz5kfn3u95IU+3/ifc+Bbe/sXrKdZKYZ+C9/LVwD89FfVcOvC4i3mP35shuD74APKh2/lkqUy1pXAN8NpRfC9tgvar30R1t32FsQG8JorrAbF2k/4+AJouepQqNtzugPf+K9Sqwj4JokLlAXfGNQ3hwdmvIL58mUnbJhAnUQD4DuGtoiJbQDf+DTKdEexvRVSInRvGhqyl2/OlAUAONmOUcX5SAK4OsFKAGeowZAAzstXmKEp1BCqboSyC6z8QghYSx9ukcmWn8uPQBMe/5LAAG4zvRbYGMa3ZIfgkTVK9/1eGdnvnevq4bSWFjhx+gyYlEqZGwQqc+OdpKzSWmW/B7dA97L7oXPFnZDtse49Fn/FsqcnQMPMT0H9vDOgqmG2l4FW2W+aL+1flf2mddSQjYaAKvutM0tCfsLPeQkNs+vlyHnPEaxNITvvC74LEgLbBMmVSE3McuhjQx8HNvutB2Z8lOlCTXZ8MNlvnT3n7DdllLj7m5afsP6bpVMVyU80gLuDPx4gWB1SJD/Z9vAdJDuhfRSYGS5PbiJf43NlQO+votNg+LbLrwsuhcabm+s4GXACrcL5Sa22hO+gpIiUnKhEBgTDt9Ooh+UutgBz7bo4Ndm58Xdp6O0Lh++jDs/AN748BEceljWw6sA3We4Vh295u0CmB/i3rRoZF8K3vZvrwbcGYpxIdkMPtF/3Iqz73VsAvYOh8N10zHxo+cIhUL9v84jBN8OxA988Z4ZvcH2+ZcdLfk/Z+7qZ77hOKukyEge+E1wjGwTfw4Rx9KuXNQijFZGmewzEtsx0U/dEkSqR2Vd1DtS2etoPm7LfZMumfIHZnxUKijF9AGc4Va8ZvbGZExfQWWcUFzZoATXOlQZwk7czICdz6ubT/CkB1roqO54o0oZen7B4GTwAZ4hmCyMuoJS9i4tJUdTyM8BbCQo+f7enB+5pa4OH162DziKFlxjoDY6yE8x+HzppEmAvRbkftAOehm+XrPGf3rXPQOfihdC3/s+msY1dSjeqJx8CjfPPhNrmj0IsjoVOOhOl7nPqdZDFl+HZb7q7opeHBlD6GqXqttSSyK6YCpzdbLdaUhe2qbupnqWFbV00rNMwjMwy+21+B/ro4+y3KbQU99KNLIQuFKrBjfrT9px60zGA80CT9J/8G4zHyMrQZr/5YiitB8vIdm8D+YmsZYiiNHwXk534mepSchH5Wth7Ya+HwXjh+dTCt+90Qt0tNYzjBAncE0Xg22t5L4fxDN90/le+nibDba4bvLxSQ27W0cI32gn+6oY0XPvbNHR1h0PXIQdm4RtfGoDjjlGWgrEi8E2PEy58q3N/BfCtc+IF8K3vPBbA9+Y+WHPDS7D25jfI19uHb37eePRc0nw3HtRqzufbE3w7me+46mI5IvBd7Dk+TibGj3sJFiqeccYZpslMFNuvpnuDznQbyDa34u0ZWGaD1WGjQYV8f7Xe27StDirGZAs2kQU0ABwE4Jx1ZlBQWmS+BSilB6UAnGHFyFVEQVAYgHMwpIS3obfFngxinEk1AOZnyrlAULeQ9xfaLcIs/IkqKQ3AYD4HT21Q8pPnN28OwGA3mqur4TTsetncAi1oOGyyMGIAILIEZsyEF9P+ddCx5G7oXrUIcv0bis4nUT0FGmadBvVzT4NUHdZIuBp2Iz9hGY22u1K66VhB8SX7eRv41t7aJDXRU+ZGvybbzc1yArLfujm0Xh7lRV5O9hunSI4xoU4nOtPNUhPtRy7hgqajM+/ZQO23lZ/wMvJrCOCk/9aFwx+e/EQ/5gx8JD8pO4KsBX0Al/CtD63Af2UEQbN7hzActP3X/M+VA9+O5SDDN9+CEjISk4XXRX/2NG47XjKIKqAtDt+s9zY4SABsMwidXTH4zU1p+OV1adi0ORy+0AscZScnfQK7FIsCdH2+JTtAMdAugG/HztOVn7D2hGUo6m5fCHybO8ICvvGTXf2w5revwNobX4NcZ79xUVH3VFkiB9Bw2CySnTR+ZKYuDtVX1HgJ+NZdpNVdXpXAqAS+SVKnJTKO1aDOfg0HvuMJcXwMB761nnvcZLqj2DGgu29wENYNDJhMKgOsOUwZOkPueZoMHoJ2CIAHFWNagaGUoAQBOC+G1W5zNt4HcFeWEnBxEhmMoMJNP0Ou5iuspMIA3GQc7EChYHuZ5dbFdB6AK41vEIBb8MX3ZMGmOiGq77cPDsJ97e1wb3s7tJdwPsFpHj5pEmW/PzZ1KqS18wafTe3Fg48FztLgbh2CvrV/hK4P7oT+zS8WnQ9eWGqmHkbZ7+rpR0AinjTyE3Y/MUWfoviSFkWTstGCG2cU3RWTmvTofW5gWsszTCbbPqdlF3c8ZGabpR2lYBtDNVrSYKyPSc7/q8Y9wmaQdxv7cnPnDJEZJv9vfXfHyX6z+4nMfutjM4mNTrzsd3H5SXhBZnnuJ1A8+623Y+T9XX5It5MwAGeGDYLucsE76DPFstz+53zJCR0Vis6MvKQYfDtZbe24oaYRAN9GbqIec9ZbvRYgOdFQbrLN/CLDOJ8AIA89vTG46Xdp+Omv07BufTh877ZLFr72hQE4/ZScAUDbYsHCtxp4Ixy6Wm0J33JDjxR853sGYO3Nr8KaG16lLHgYfNcf3EqZ76Yj54TCN29Thm9OdGGouw0KvlWWf+vhO4bzzpSAb1ymRGxk4Hu8Zbqj2DGgu3dgANbqTLdyftAG/wLAZRDEmOJGt507wp9pJe4AOLueCPkJdZ5kYA8DcHWSprbvpllKIYDTa17DHigC4NKgjsFdFmTa7LT5lNgCfBHQkhNhJ6gyHxZ0jBSgYg9wztuCk0036ySvZOIxngix2O/FLR1wz5o18If160sWX05MpeCT02fAqS2tsKC+Tjue6Ay0cVzhgkvOwqvtk+1eDh1L7oLu1fdBbrDTDhD4ToWYT6JmBjTMPhXq55wKqdrpZi+o4kvqHawvDOoMn9OZL91sTVWjE7iyVWAeYrpJD2fs3ey3zYZbKYnKdhN8y2x3iNTESktU5zxcJtRbq2uqcnEwLeZZahLgdMIZfs5+80CV9ym/hvPWrsh62vb7vvwEj1fWhLsA7rmfVCQ/GeHmO5H394jBtyvJCAfsoLF+sWy2P82wDLtfbGn+9dxNgvy+ffjmAkazDDyIMCDHGVh9xgmQnBj4NqAVDN9G+qROHjAwFIdbb0/B1b+sglVt4TC2YF4OvnLlAJxzZpY6ZPrwbfLZ7ESkG2hVCt/scsInDmMwwMssk0Hk9a1f6xuEdb9/HdqvfQWyG3tC4btu/2aC7wkfmzcs+Ob9Uyl8q3ow/R5thyLwTVgQBt94zs0PD76jTHcU26VPd18fdPLtbfQX5kybzmaYjnoMhfo9zoZbWUJpAFedxjgDrltVa414OQDOJ5IRA3AjMykPwHm57HXNBZqwJjws35D4a5dfwLsp3BQXCz0fpRG3gyGGdAe6RWYVtz/qvbHj5b1r1sB73d0lj4X9mpqo8c7x06ZDrRbWqVWx6X9zEhbZ71ymH/ranoTOJXfBQMdrBcDtRCwBtVOPgAbMfk87TA8wguQnebf4Uvc4Jo20AG6zaE7223+uihIJQfX+0Ll9Iz8hA4YgIMffgy5s9LPf/LsIyn4ztnL2m8BfADinD9WAQx4ROvsttJtSfqISX9rnWx8bKptv5SfckKdk9rsS+YnQAhQ23wnLfkfe3+WGbzUYBOB+a/iwTHWQ37cP2GGPObsalgn337c/izxkh1SHS99mMAi+ZYFkAXzza+K8GyQ54Q/S+dqOv4vCtzKfykEmG4c7FqXgRz9Lw9LlbpJDxszWHHz58wPwmXOzgIq8cuG7QHYiNyD/dvWJPAi+7ZUrGL75J5kfGIL1t78B7de+DJm13aHwXbvXdILviccvUE1z2CEpAL6t73mZ8K1PYernr3slBMA38KCBJTg4b908aqThWy1zfvxmujOZDNxxxx3kb93W1gb9/f3BCxSL0WfGc2xr95LewUHo17DNwE0XeQ/AuWjQHL76xGGAXL9GIc7YnJmTAE7ZbrIhZN03vwaOM4rMwPGF3M05Bzuj8LKoqvBiAM5ZO3tSLw3g6j01D+UbLWjX3bhiIBIE4GabmQuR6wEuM+kMMfw+T1stW7xw+XTVPVtVvdvdDXevWQMPr10LPexVFhJ1iQScMH06nN7cCns0NmjA5m3O8gy7v6X8ZHDLe9C97G7oXv0g5DO97ubw7hnEa1ugafZpUDfnFEhVT7H3oDXw5oNg3ACg0oX7ME7bRV+9DaRqGYuCYDto8eUoBsgFgNtBViFs0x2bENjm16TUhLPdbCkou2nS2yS/UoBgtreWn+DdHsZk7ojpy0/Y/SRRsfxkeM131J2rCrPf9G+i4A5aFOaU4XS4DALwcuG7nAx4qcel4NsP1nznwjy+8T0svIuFw7c8jUq3EnvMlAff7kShwGYwh3aIEId77k/Cj35eBX97Lxy+p0/LwRc/NwgXX5CBulp7frLz0edBTkjFA+DbaPcC4NtOMRS+OZsfBN8wlIH1C9+Etl+9DJn2TgvHHnzX7D6V4HvSJ3a2jc30tIPgm3/bDnwLy8kC+Obr7FbAd47UqeXBt9rnnGzj82h+fGe6169fDx//+Mfh9ddfDywKcxYIbw2XAILxEtsq0z2UzUJGQLf887PfxstbAzgfyjITbhPCIcWY2gmFMt46603PtfSEGvNQ5tC3JpSaVF/6IV4zsOyWyTOAcybaz/44TiSlANzPXsgshABret3NIzoZegZXd5upT3IW2xS1CgB0pSiiWikgnDsBWDibzcIT6zfAPe3t8HJHR8njY5f6ejijWVkPNuJ9VnEdw+VIBMpPAHJDPdC3+nHoWHInDHb9zQydAuUnmP2edhQ0zDtDZ7/VOjFwq+XHCyIDo9WF2wGZgD7ef0J+op672XAuYuWzkmmIw9KSANhWK67a0+O82NqQ5SBs94cXXCqs5Cy553RiXFeC5Cd09bMQbF5jP3G97aX8hGQvYlDMUJ5E+Yl+XV173EEna71t7YLMasdC5ShF5Sd2ixYpvkxYCI8APBS+w7LfUvPt/t7F/g84LVQC2AWyPP2aayu4tfAt6lzkvPxsvQff9rjD5+4IxBa082virqAH3+o6owj+oceS8MNrquC1N8Phe/KkPFz52QG4/OIMNDYUgW+uNxHwrZsWGNcQd7+I5I4H3ybXAF7nySD4zmRhw6K3oO2XL8PQyi2h8F29y2RoRfg+cRddSO6D/fDhWzGv2gpq/SuH77wuOg6Db7wWJ+LB8M37e9xmui+99FJyMtlpp53gyiuvhJ133rmoo8lHP/rR0V6kHSK2FXSDsQQMBu+w7DcDuJ6AaXdtELgcAOdb6WxDSFaE2UAAd5xRMDPOI2kzL25Ko+QoLoDrLKTIhhcDcBAZcgXFGu74xIENFFgeEOKYEgTgBTIRbx3kdqH5GtjxpCq+FIXPmEz13r+EXHp6RpYCAMt7e8n55P41a8irvVhUxePwd1OnwenNzbD/hAkEeXKZeBHw+FDAZyUpA5veVtnvtkcgn+0vKj9J1DZD4+zToX7OKZConuplkNTa2gutAENzF4M7ydlsOGeZOfvNwK3g2sozZLbbdLUslf0WsC3lJ1Bm9ttm5S0E28Y0CrbN7WdeUyE/YXBXGXe9Lgi05lhS2X5cvoTpfjkS8hO7D2XTJSsdgwqz35H1YFDg5ivVYIfzVGHZ72JZ7lLPJWi7SQrXlzussY9pL08yE1d+Yh5ntXuF50Dl3HiRumYn8813Q3mAzl0Y5fVH/suZ9CgS5QABAABJREFU2GD4xuPwD39KwA+uroIXXmbvusJoaszD3182CJ+7bAgmThCZ6xD4VsvIAwxROBkvDt/S57skfEsgzmZh433vQNvPX4TB5ZsD4Rufp+dPgtYvHAyTT96NuuMUZtW3f/iOx/KQTAbAN743nny6OaZOnQrJZBLeeustmDRp0mjPbszEtoRuPxCEEZ6CMuB8kQ8CcoxYEQCXl/AgAOcCs2AA1/IU3xmFdOF84mGMERk1Mxv3hK4uFFaewXAclAF34VieaCxUM1+4FzCLJfaCYjPXBv6NJt294smsuIJ1K35UgwY+a1lXFSmFsZAjMj3eSuC6D2Uz8PSmzQTgz2zapL2jw2NubS2c3twCn5zRDJOq0nbHlpCf5Ia6oXvFI9C9/G4Y6nrXuwtgs9/qXJ2EumlHQMO80yn7jdlwvhNBb5vsjtTl62k4WVk2IRfSFJkNNx1F/T3mHqu+/IRh21YclIZtdjoxR2kR+QnryU2hqMhKq1VgPbmaJncHNNlvT37COXPXelBLUooAuNkaQdlvvcfKyn4LALf1ClHny9GA70qy20GfsxBnX/fhKmg6Es4LEhEItMLphLPg3PESj0XOfNtjQz/yMusKqv1zuPmaOhb15+zdy8rh+6/PJeB/f1oFf/prOHzX1eXh8osG4aorMjB1Sj4YvnUiwHr5838K4dvfdty3gtYzCL7FPvHhmwA4l4OND75L8D2weGMofKfmTIDWKw+GyafuTtlhA9/6shQE31IaVAq+8TvxmIVv8iRPlAnfeG4jFYQqwMTvMXzTXb5kCHyP10x3fX09nHDCCbBw4cLRntWYig8TumWo2+QKwDNlwjc+p8AfptYqSwCXYS7j+tfPtwbDAJzkJqI5TxiAcxc/KALg+ELcy4ZzBtesvygapW8a8PPtAV05CstV9GYIuNXLTiT2xOtCs4QhL42lZiJkJxZyGe6k3pve8rpt+gDOdwnW9vfBve1ryP1kTQnrwWQsBsdMmQpntLTAIRMniuy3zVIoSYa94OGWxONjaNMb0L38Hp39HnCA299Uccx+zzoV6md/kjLh3NVM2MDa7WWYsBDGne3Odx3Ec85+mw1qnFL0cgirMFvMG+DhreUnjtZbAzNvI9PBUstPpNTEALmQayiIEMWXQn5C0wuRn/D33eJLdUGk4kuT/bYDGZvFym1l8SV/zBZfFs1+q1RmlP0uA75LAXjQOSfoeSnwlq/54/ZSkhOZJzDT9eDbtxmUshM7LQurzvIVg2+ZCXCsVjlHgfDGdzvtKULdceFftZr+Cy8jfKfh8aeUvC4oaqrzcMkFQ/DFzw3BjBlS+jI8+PajIvjm7LKE73wONj36Pqy+5gUYeG+DvdOsP8swnpzZBK2fPwimnLlnAXzjf2jfmILVbQvfObRL0d/LDpUB38kYJFLjMNO9//77Q0tLCzzwwAOjPasxFdsLdAfJUDJY/S3gu5QcxUCfBhdz8Rdn0CA5SjEA5ybgBsgNgOPnsyUAXIKdAFt5kvc6UBZArhdBenA+IRmNOU0sOBtus+oq6+5nrc22MPsi50k8bAWSWQIjhyjMmtv1sAuD01MNXtB2D+CFzZvh7vZ2+OOGDbS/i0UrNt5pboFTZsyAqdXVwnGmuPwkN9QF3csfge4Vi2Cw612bgeL1dJA5ATVTDoPGeadBzYyj8KxaWEhjlCbB8hM5fZulVVpLmf2W2XD+lqozUkWqvL9KZr/1awkD26WdToKy32qcx9lum/3mC7VpRKE/R78IvV2KWg/q/cLyk63y/hbFl6Ymgb9Xovgyyn5XFgQ02m4wrL18GHzrw7gkfEvALmca5cI3ARjCrgbu0E6XFcI3/9YlXMfC4Fv/3OnczPBtXQLE+VH93vDpa2/G4Yc/rYIHHg2H76qqPFxw7hB8+fNDMHMm2xva8z6tR2Jk4Fv9pi186xueBfDN1zduGrb58Q+g7WfPQ9/b68Phu7kRWj5/IEw9ay+IpZOh8K2WB0rCNyqJEvFg+M4iTNN20fCN1oXmpKoz3foCohpjh8C3Lk5n+Ea9d7IqDqn0OMt0//SnP4V//Md/hHfffRdmzpw52rPb4WNbu5eMlg48rBjTuHLoC7MpA2RHDv16ZQCuoAC13tKa0M2G6xMBndCUTZ10NNEzM7PkbDgDOJ/prRQkGMAJYIxjin3VB3DOskrAz4c23mEPWMY/uw9McZqQi5hCPykxEbaENhte/GTEA6PNg4Nw/5q1JD9Z3tdX9DsIbkdOngxnNrfA4ZOnUAtlc9UR3ty+/ARhdHDzW9C1dBH0tj8KOaH9ZtmGBL9EzVRomPkp0n4n61rtMaN6MxjpDzWzcGCcjynebOxh4nWUC5Gf2LsCdhupy6UdYEggtzruymCbs93qrpG6Y8THIAO0qQ9gwBXyEwZjlUHPOdlv1eDDLosdkOGwRr3GAB4LKr40F3IB5GLQV5D9NttVXm64cZb4fJT93ir4DmsvXw58l4Lq0YBv9Z4iMtZ4+/BNmfCMvpckwV0DnrM84okzHx++xfHMh6yT+fbhWw/M+U7T396NU8HlPQ8myds6KFKpPHz6zCH4ylVDMG+uXHYl0yBTIg++lY56OJlvHpyHwDcCrtj+qu49Bx1PLoW2nz8Pva+vDYXvxPQGaLniAJh23t4QS6eczHU58O3v/1yRzHe58M06eTouPPjmwRTBdyoOyXQCauvGWaYb49xzz4VXXnkFrr76ajj++ONt1i+KHSrTXQrAWYZSbjEmAzhGkAa8FIBjIIyajpgiC44AnisqR+E0iapUZ2eHMDmKyj5zwRsDFlelF0axzLIEcFWQ6RZ5sne3gXedmVRuGDaParM67jZiVxO/AJOytM77Fqz9KyIXcSrLQlv1/lrHFrirfQ08sX49DPjWCV5Mr6qCU5ub4YzmVpheXeVl9YPdTwiUM93Qs+Ix0n4PkPOJBW4u31POJepR9aSDoXH+6VDb/FGAeFpnv5V62gyaGPINSxfTguuUipAPmVOlGSjYaZaSnxTYCgr5Ca6/dTopQ36iDgSn0Y4ZOMZcqYm8Z8DFl/q6Zv7oGNbLK+0/2RHFkZ8IAK+0+FK+GmW/Rw++g2QnPnyLw3hYUF3s+/KxhC2OUM03HiOo764Qvvkwo2ZRdJpzwZu3TQF8mwGyBF59RsGUrDk58nlZHbeqKFD9Rj9YEocf/zxNft/ZbDDYJRJ5OPPUDHz9i4Ow807h8C265Qjphj2PlwXfvGoVwnfn08sJvntebg+F7/iUOmj57AEw7TP7Qry6NHzz+ZT3LW/M+DDgmxvrYOFkJfCNy5KujkFtfbgbzZiF7i1btpAryZtvvklFlc3NqMsshBXcSYsXL94Wi7Tdx44E3ZUUYhZzQ9FnBjo2rPVZ+QAepgO3enDthVzQqEe4XbA1nABwzjoyBJlsZogcxSxiKHiDk5X2CzUdyQf6T5uOl272XGqT5bxZA2zA22TCdXZfd07UUylYRpMNN8uoM7JCk9iRyZDnN8pP3u/pKXo84JIdjtnvlhY4YuIkSCYwnyoyVex8wS4cpDdWWD2w+W3oWrIIetc8AtmMyrK7eWYL44mqidAw85PQgL7fDfPUMutuETL7bW5cmBYS+gJL/+gTvcha04DO2N8VL8aU2W46piljbPeTLz9RIB0PLL5EIM/S4CG8+FK6n9humjL7rS5I7NRjst8hxZecdbeljurChtaDbvZbHxtO9lu95ma/7aAmyn5/uPDtN9opBtlBWe6g537mOug9DB++w+bN8E2uJkMBDXYC4FvKTcy8xHmtAL71d3lBxFXFwrcxAygstjRSLUoYAKxYHYOf/KIKfrcwBUNDwXCMgH3qyRn45peHYPfdchXBt00IaPgOGLWUC98YmJ0Pgu+uZ1ZB28+fg+7nV4fD96RaaL58f5h+wX4Qr00XwDfuGy5k9DPf+VGAb3vnrxC+E6k41DfFIV01zuQlK1euhKOOOor+LTU7up0a+XTv8NBdTiFmEHz7AI4/T/f2d3FHFEf3XATAuVWKakcvvMDxuQYXBRTsp6zmytO3Wb1COQrJKcwS8dLYLKe8/W/e44878Fx48pauHJxvta8rjbevhvanouQMbhrItkq2VnAM2eXEW11dsKitHR5Ztw76SmS/p6bTcEpzC5zZ0gzN1bVe5tmVnzDE4v8ymR7oWfkYdC9F7feboheiUT87MF41YX9onH8G1LYcA/FEtdm+RuKiYZxeCZGf+FpwPxtuWwKJi7bYznb78gDGlZ8QkGtIrdTphGHbarXVVbao9aCwCjS/EQ3+bD9oZEle8SVvloLiS5H9Hl7xJR9v+jPD1n5Hvt9h8F2q6DIoe11JdrsQaoOz3vxZP9s+HPgmv2+uaRAZbxlF4Vu0lOeFcBIB4jcqTwn0OB4M3+1rY3D1r9Jw8+/T0D8QDN8YJ31iCL715SHYZ+8Q+CYKzQ8Lvu26W/h214nXwcI3hwLgPHQ9j/D9AnT9dUXB+czMdkINNF+6H0y/aH9I1FdVJDvJ26xHYIfLkYJvnF9NXRxS4w26zz//fPj9738PRx55JHz9618nn250NAmLOXPmjPYi7RAxVqBbBmm7RRFmJkT77QM4X5hVkVcsEMBlmHOwOMtKAFf+3262G6UobjMefJ8vEHp0HgDg/K6jAxZyFD17A1qFchSetpCtCM2smXaBjlbcGtUnMEc2YrKwGsp5bvQ59ie3J26bkbIdMFlv7Fw1fRkKQ1osBl2ZLDy2bi3c1dYOfyvRdh6X7vBJk8n55GjSfrMcw8+QKfmJsIGGgY53oWvpPdDb/jBkh7qLZ79TDVDfehI0zDsV0o2qC5sCbl08yV3ttHOJ2fw6Q8zZb8JCfeXlhjhh8hMe+qlri+9842a7g2Cbp21hm50/bKOdLMtC+JgIabSjdVQmHWgkXaL4sqj1oGi8E2Y9aBvvhGe/1Wu286Xrpz4C2u/I93ur4FuOlYupP4tlwYOAOuh9H9TD9N58HDmt5XNF4Ft2spTnEIQ1s1x+YzM+Rs037XmVwVqDZLnwvW5jDH5+bRquvyUNvb3h8H38MRn45lcG4aADSsM3eXYTSFv4ZsGL0+nSC3kNkutp1yEcvrtfaoO2XzwPnX9aHgrf8cYqmHHJfjD9kgMg0VA9CvAN6rkuHMXLNh0vtPoavmUnSgHfGNUNCUilxhl0T5s2Derq6uCdd96BqirUdUYxXqG7lBNKJiT7LS0KcyMA4Ark8WqT8QBcdcYk/DAArgo06X1FIwZYGcAxu61giefvArgCIzV7bOfN2XA3M6RkK1Q0J1rX8/rxrUO1TrZbo283yJ8nKyZ6TV1NWWPM31PZHu+er7AxlGdns76eB7iar+7QoOfB8hOEbpSelNN2fgplv5up+LK5urog60QXGpHtzGMGhPol9UP36idV9rvjFUfvnQvKfjfuTfBdN/N4iCfrmPJMVp2dUGLmKiCavhgYD8qGi22nlyIXMvDhfWMu3l72mxrtWGwvBHKTWy8z+03bS7iN0EvBxZd85Ve/Nbzrow8B0QHQL74cHetB2XgnX0H2O+p6WSl8+48ZvotloUvBd7nPi+m9CyUreaPxNt0th7xOlyXg2xZfFnYUlvDNyLa18L1pSwx+cV0arr0xDd3d4fD90SMz8K2vDMJhh5aAbzyzkc7bhW+aN/2MvQGs2QZull9tC3E3sQh84/pgoSXKTrDwMhS+G9Iw7aL9oPmyAyDRWKPPbfbaWy58x/QSDRu+cXmyXI8EUF2XhEQyfNuPSejG7pMnnXQS3HbbbaM9qzEVYx26w5xQEMI5y11KD84AzhDOcFhRBpwkMLolfR7dT7TiVTuhyOJL1b5ewrgFmLhuU84nCZsN911StCDCgLEP4PaEz1BrHTbkBcmiGeuuYyJLzWusYM/qjnl783R8yYwVzTAQWlcK3wNcwrGchnzcm83CY+vXk/zkza6uoscBTumwSZPg9JZW+NjkyZBEoLeJawWzvPt0wwRaxlweBruXQveye6Fn9QOQHVTt7R1rQIZhfJysgYbmj0P93FOhauJeWqagbzdrSDXzEBCpMsjCLUDrPdV2jAdkv7W9n9im+quBr7GUhjA6ROsd5HQiiy95bZ3st16XSrLffFBmQ7Lf0npQebGrYU4intiOs9+JgnPCeAxfXhKm+S4F36Wy2f57fpZ7JOCb7QWxANNmvpVTUNBy+fDtrAefA4xWXJ3djFRDJ17wfenxHQTf+EH1GYCOLoBrb6yCX16Xhi0d4cffER/Jwje/PAhHHpaxoKhPv+XAt/pdKFgP2mFbC999b62D1T97HjqeWBwuO6lLwbQL9oXmyw+E5MTaEYHvmM6BVArfGOmaxPizDDz00ENpIR577LHRntWYivEE3ZUWYoYBOEZ8KwHcuKB4TigSwLk1vQvgXNUus7QWANzOk2xLp854Jn/tXJxsdtMtonQdSOznxXtaz2sz25wN4e+wJMRmZA1gy8JM4WJivsNgz+sjM+byKimulrz93+3uJvh+oMzsN/p+n9bSDDOraw08cmEPy0FoG+m0CK3v0AD0rnkaupbeCf2bX7SDlRDtd6phJ2iccxrUzT4REqlG48mrGtBgoxZ+zPCWD4Rxmf5ii0AjETHZXrf4kp+brWQkSKLU0nM6ydJxqT7j68ErtR40x7seWDnFlyLjFlZ8uS2z3/Y3yun3YtlvLnoF+5gyX9oqlH+n4xzAK4HvYgBeDMjD4DtIwlIMvhV0yk/nHeiWjx0gD1tGAaAM1fYzLhbxsRsI3/xdYXhi4FtvPIbv7h6A39yUpuz3xk3hIHjwgQq+jz3ahW8zwNfwnc+rwks6B+rfbjH45mLL4cC3Ogeoc2//O+th9c+egy2PFoHv2hRMPX9vaPnsQZCcVGsSGbERhG8aECXC4RvfqxqPme6bb74ZLrvsMnj55Zdhr732Gu3Z7fCxo/h07wgAblrSl9kV0z8TBTXkwcLL8Nb0qmjUwgVnLm0WkwFciuzM7UQnz8yvgedEguuhT4AagvkzdrXkqdDN6oCA+CD5ifqWdT+BANtBc8bjbSUyskEyFDsIUevQr7Pfd7W3wxudnUX3P34Tu12i/OSYqdOg2iyTzkhrBxIpP6GRQC4PQ71tOvt9P2T71wttfID1YLwK6qYfA/XzToWaKQeJIj1rDcgZY5qHY0XIWTIFm3jiVxIJ/WJB9lvuc7un7HbmZbTb3d7iDi6+LOV0ogai8bK13/zbK6fxDsP7yGe/FTAXz37z0JKLofVt9jKy39KvfzxHUDt5H8AVGLmZ6iCglhH2vhyTB30vyOmE/w2E72we8hk1QgiCb5KfaJu5AtgPgG96mWs9nI+ytBAK4NtkzYVVPQ/SHStCAOjpBfjtrWn46a/SsH5DOHzvt0+WZCcfPzYYvmlZ4i58y/cYvlVBqbx7WiZ8G4lLAHzHgDpbrv75c7D5ofdVAj5g2ByrTsLU8/aG5s8dBKnJdQ58069W3wykZcL96OjQi8M3LgethwfftE50+o5BMh2HdPU4tAz89re/Dddeey185zvfgRNPPBFmz569LWa7Q8d4znQPxwmlmCsKBgJqYmsBHP+yOuvNWnD2AqcTu86M0+sqy8IaZ3ZD4ZOZAid3/uqkaMFELpHpMWNe40eyG5vNeNt3XfB25R8M1jadxeCD31NNVKyzCWdSnEJOIT8xc61AfvJBdw/cvaYdHlyzFrpLZL/rk0n4xNRpBOB70W/CXXcCMdq2Co5znAnPDEHfuj9D17J7oW/9Xy3kefIT3mbJulnQOPtUqJ19MqSqp9gTv77g8IWas77kEcycx7euta+vurrwXQtuWiSKL8XdgMJiTLWdGLZjRbTehT7fthkPeYHzZwSQKwDPBWS/lf47vx1nv+2AxM9+W+mJzX7baTogHrWcd0I22QnrcCkb7fggHTZ2KZX1DvpuudlzDr7biPAtPb7Lgm8hM3Ggml7zEMlougPgW99tc+36XGtXCd99/QA335aCq39ZBe1rwuF7rz2y8I0vD8LJHx+CJBcFmvExZ9qF7GQY8M0SlWHB9+KNpPne+MAHENfZff9XC+kETD13L2j5+4MhNa2+fPjW59kg+MYgS/UQ+MbH6dqE3WbjBboT2IuzzMCdm8FfeRQRdFfghLKtAJxOVLo7JEE3ZcF1MWaA9EQpkBnG2YVFK2J1Zlmd0BjANWSRLtu+r77LJ3yZvaOlEgCvlpqnITtfqs/FtO93ttBTXEKgc7K2WnCb3BZ2dF7XS+kNzutr4TzY5gqf9edy8Ni69VR8+XqJ7DfGgro6OKulBU6aPgMaUmk9L+1RLeUneg6YfcbHQ71roWv5A9C76l7I9K4OzH7bBhopqJ16BDRQ2/nDERmd7Le5MBgnFP0ep2NsEtbRgtP1TGarNDYG3fGQ2e5C+Um+KJCbxjtFrAfjI5T9pvs9erMpQ85i2e9ynU+G0/WSN6TeGqbJkL0TEtkOVg7fQQWXQdnoMOeTUllvfhwG3/K0USzDHgbfUoaCr9NAlbyx+dxutd5qPcqHb/taIXxrVjTwrX6/fMdSvT8wAPD7O1Pw459XwcrV4YC4684I30Nw6kmDQqes7uzhHFVLeygfvvWvrBh8U518rjz4Hlq2GVb/4jnYcO97EM+Gw/eUs/aAls8fAunmRleWIn66BM9bCd/4IFWVoGz3uILuSrtPsg5qvEeU6d52AG4kKDoz6p9MLejoYNjUJxVViKngG+UnvvTEb09vCsHovKFucdN8RSaOIJlOhsp/25y2dEMdqefm76tFsx0ROJthP2NWgNfMgI1JCHryEx92+EKhOhxKmz+b9VbQny14TWbK5b/cCIflJx90d8Nda9bAg2vWlMx+18QTcML06dR4Z3c+2TkDBSWukNBF+yGbg/4NL0DXsnugd+1TWh4kgNtuETqZJ2umQePMU6BuzqcgVddiQFQCPstP6CKkNx1lvEX2mz6i0uBlFV/62XDnuBdFlGU7negBE3UC1b+DWEDxpW71Uzr7XUbjnW2X/WbLR3fd6Tco7uboCujC7HdUeDls+N5ayYn/GX98HgbfIeN4C9/Y3TKXDYRvNVh24VvKTVg/beFbNiezCyuvF4XuKbFg+NY9FSV8Dw0Bdbf80c/SsHR5eLJywfwcdbg885RB0/iFT9EjBd/m2qFWOxC+VREnX5IEfK/cAqt/8TxsXPQuxFD2EwTfqThMPn13aL3qUEi3NhWHb5x2vhC+1fkvHL6pI+V4zHRHMbyIoHtkrAjL7YpZDMDVm/ZM7AO4SqpxthJP5hq+6eLu68DVeyxJwc9Q0R0FnoBd2zOrlWYIU/PEf1ULeYYHvTgavE3RpimidFvOW9iAQPmH8es2loAsCxEw6zXWkfpvWTTK61JKfuIHar//uHEj3LdmLTy/ebOQ1wTHng0NcFZLKxw/bRrUJpNO9p9t6KwOnDXhALn+TdC54mHoWXUPZLqWlGi8E4eaSQdDw/zToKb5YxCPp1wi0PBGdxPwu6L4krY3j4n4asd3FvTOY3DmrWIz2TQDsyS0DXWlflDxJYxg9putCMPaztMAjLt92h8iZfPRIpPWQw5htKypdPZbNt0JyX6boz4g+23mKLT3RvsdVHgpQNwrvCz01x8/4Xe4DAJwmfkuBeDlgDeGzaa6mfQwvXcYfNOdmExp+LanKishKwXf9jUtl+Dj1QN0H765lXwQfOM2XXR/Ev73mip4f3E4fM+dnYOvfXEQzjl9CKqqY2XBt/nFjBB843dNISQ1q8FrqtoWmbYOgu8Nd70DsaEQ+E7GYfJpu0HLVYdC1awJFcG3Gvhb+Mbl0Ql2gm9ciGT1OHQviWJ4EUH3hwfg0gucIKAMAI95r6t/CjtishuKKrrkhjz82YzBI2VBKIwGze1Jja/mpG+EhQ44cCbTSmPU1Hw5i3pTXAxEG2+ntbzOyqpBgN0MQfITR5JgQNzaGkKl8pNYDNb098P9a9YQgK/u7y+63xuSSTh5+gzKfs+rqzOFh6bYScIrL7nO3g9seh26Mfu95nHIZQfE53kNrfVgvGoiNLWeDHVzsfHOPKPhZLCU2e+C4kstRYnhBYrlJjobrlO9XvbbHbjIJZKDJTVp9dkw68FRz36PtPZbALgP2+Y1Hmjw8esUrMrsN6MFa7/V3jR3QcTvKOp46Z9PFRAGwbdfcDlS8C0lJ2EZ9YrhG2Ung3qkgIX6AsSLwbcFa91gzPcD16Nm6YYyHPjmfzKZPNz/SAp++NMqePvdcPie2ZqDr141COefPQTVNWXAt+zpwOckvW6l4Vs16ynUfOvTQQB8Z9d0wepfPg/rF/4NYoNKPlwwXE7EYPIpu0HLlYdA9bxJgfCND7CglKVBqpA0HL7xvaoalJeMw0LKKCqPCLpHPjDDhwA+tJUAHgbaQa9LHXjOa8iTL+EHbgDAyDvcvLCFAz7ZyxbZnB2UIMGwBQXyE9PYRsCd5kebzafv5Dz5CRS0oFdZWFc3Xkp+Eu5+gu/FdcFfjPbbC5s3w8K2Nnh640YoLj4BOKCpCc5saYVjp06DKrTuEoMA/24ANUfS+zg30Ak9q5+ArmXYdv5tgedF2s7POx1qWo+BRKLaOIUYKUMpGKcDlD3HRLElY7LwVLfiCD709F0DcdWsJPtdTuMddCCx3vgjl/1mK0i2OzTDRm1Ck4yrY4Oy3wXSk8qy32YZ+DNmW4mjKJKelA3fxbLfpeCbn4fBsx9hUpJi8F3odBIA3wjcOlUvO10WwDcDqnpE/0XAc8oMyoFv+VuV62aSJFAA39gG/eHHU/CDn1bBG2+FA2TzjBx8+cohuPDTg1Bb++HAtyNt9OF7XRe0/fpFWHfbWxAbCIHveAwmnbwLtHzhEKhZMGXr4DseH9uZ7vXr10NbWxssWLAgsM17V1cXvPLKK3D00UeP1CzHdETQvW2sCIeKZMFLAbhfiGnh1IbMjsf8jpi6EFNmwAnMKY+qs+Q6Iyf9NaR+2zQIEpBqNM0sXfBO8haqeTqsgdMgKoDeWRfOoPIJm4o1EyIzbr+jri9C911UfhLsfiIHFUYewifqfB7WDQ7Cve1rYFF7Oz0uFhNSKTi1uRlOb26BWTU1Arp5e8jst5Ic8C3MgS3vKuvB9ochP9RVUHzJjXfou9h2vvkEaJh/OlRN2LUg+62ugFJuor9Jm0ojvb6bIbPfJhteUfZbvfphZL/11d3JfvMeNtlvDbg0P5H9prbzYmCBU0bot787e8eGpzd828FShZelPb/Hq/SkFHxLtxOOMACXcCzfC4LsMPgOyoRL+Ob31WsufOO/LEEJgm+Z8ZaZb1528zN3lifAWYpBXXeu9JfdwDdDuoBvXObHn0rBD66ugpdfC4fv6VNz8MXPD8HF5w9Cfb1cKAHflMMpA75tbX1R+OZizqLwnVPTz27oJvhe//u3APqH1P7gARrv9xjAxBN3htYvHgo1O08dFnzHxqqmG91GrrjiCrjxxhvpeTqdhr//+7+H//qv/4Kamhrzueeeew4OP/xw8p+OYuR2YhTbJ4AzmJQjQ8kxfHPW25OhcEZcfcX6RtOkeB4iG63AW59MDZTYDpnmNqnjgmJPpGrB/WY9PBtXfqK+o+QqLL2wFxkN6DrrGyY/KeZ+QgCmmwHx57kRBGeMBrM5+OumTXBXWxs8W4b2+9CJE0n7fdTkyZBKJIy9n4UnIdcRBXq5wV7obf8TdC27Gwa2vOxkv3ntZfY73bAnNM4/HWpb/w4SqTqT/VZ6eAvj5m5CSPab1l+lyJ3GOzL7XZAxqjD7rWDbsxnUvt/B2W9pRailIno9DMiWmf3GoSW/FpT9NvdvRPabtd+xCrLf8th1juvQjpe0QyLpSYnA7cjgHQbfRr0h9qX8N+g1MU4P/WzQ98JkKEoPXCZ8U5v5rAvfEp6deZcP33wH0jbTGR58//EvSYLv515Mhu6XKZNzcNUVQ3DZhYPQ0CBkMmXCNxdI+/Dt3I3Urlg+fNOAnOtZQuG7B9qvfwnW3fIGQF8IfAPAxE/sBM1fOBTqdp/mwDd+SO+aQvimwpEYuZfg35iC7v/93/+Ff/3Xf4V/+Zd/gQMPPBD++Mc/wk9+8hPYZZdd4OGHH4bp06fT5yLoriwi6N4xAdzeChcZcJFV5ggH8AzktAQlTIaiAFz+dIX8Q0C/mrytbudmN2RHKGYrpSESyF35SWGmnE7eznsiC+45UBTKTxj4xPbhK5bJPMrlsHIQ3t6cITcwmQdY1d8Hi9rXwL1r1sBmtAMoo+slZr9nVFdZzbxeOTmgwDsPDJD49kCnbjvf9gDkBjYXbbwTS9ZC3YyPQ8O8U6Fq0t5i2bmRks6qk7ONtB4MabzjZL95cBKc/VbLE579VndLcuVlvwVsh2e/le83DzDU7DS4Otlv69LC+5Cz5/Q7kNlvf0ArloM70FJtFWvLzaBDLUB50hNV0Gm2jic9sYWX/BsRA9jI9cScS2TWOwjAWXbiS0/4sZ8BD/pM0OOg90rBt/yshO8Cb29+TScM7XnMTsNprKMPDRei8ZwH4fDtNdjhzxaF72wOnnkhBd//SRX85dlw+J44IQ9XXjEIV1w0CI1NxeEbr3+JRAB86wy47/dtoDoIvvX0SsL3pl5Y89uXYe1NrwP0DBbANz+fcPwCaPnCoVC/13TzfjH4Rj/0MZnpxi6Tn/nMZ+Cf//mfzWtvv/02nHbaaZTVfuSRR2CnnXaKoLvMiDpS7ngAzuBtumFqCDLZuCIt6aV0Qj4na0EurpTNeLT9mcmCa79w19LPyTc7hXYmO20AxV0W/Yj+rH+yKz/BsFlzGzZjrdvEF5WfSO9xe5VkbTlPz3yarQz1ts3qaVNoQLMt6wGGsll4aqPKfr/U0VF0P+OWO2LyZMp+f2TSJK3d15DPAxVGTpN+08WX2UHoa/8TdC5dBP2bnrfbwgE8mf3eBRrnng41Mz8ByXRDYPabZkFZpiApChdbgpP99hvv0PtiCTjMxXIUst+cmWZ4riT7zb7fKvGsst+y8FLt98LCS5xMIqDwsrj0hAsty5CemK1WTHrCd4+ihjvlwre84e0DeJDLcCnAHgn49q0Gg+DbNNwRx0cQfDtg6ywDZ8WF3pvhW8NtKfhW71n4xgk9+2KSNN9PPR0O302Nefj7y4bg7y8bgAkI39Lqmz2u9bwkfKtD3IVvM3Aw1xzYavjObemD9htehnU3vQ757oFQ+G46Zj60fPEQaNi32cK3TlRI+MZI1iTHnqa7rq4OHnzwQfjoRz/qvL5x40Y44YQTYMWKFfDQQw/B0NBQJC+pIKJM944H4IHt6CsA8KAsOElPKPOdK+iEab2/OQuuIIYb60joshIQC/acPTSIaJxIxO1QAdNO5ruk/ETOR4C3+Iy9GMlBgshMSkmOB968ZvI2JAs86HsE4nH6d2kfZr/byf2ks0TzrRlVVXBGSyucOmMGTKmq1pkeW2DqaM31XHGf4/4d7F4NXcvvg97V90G2b13x7HeiGupmHAcN88+Aqkn7etlvnEciNPtt5Sajkf2OF8C2n/22XS8tbPOALBvQ9VLVJNjstyzGzIuDyLqL8Euq8NK0nDfWg67toJIlqTsdju3giEpP+BcVSU8qhe9SAO5HuUBdyWcdiUQAbPvfZfiWreWD4JtdTHyN+bDgW2ezC+DblL4EH7f0r4bvF19F2UmatN9hUV+fhysuGYIrLx+EyZOgINtuz3Hqt4rwraA5Vhq+deevrYLvzn5Y89tXYO2Nr0G+sz8cvj82D1quOgQaDmgJhG+cVnV9ygD4mIHuOXPmwPe//30455xzCt7r7u6GU045BV566SX4x3/8R/i3f/u3SNNdZkTQvf0DeLlOKPg47wE4gbAAcPAgXGZ/+blyNdEFmCLzHeQDbpBbF5OpadgMKM+LCy/5NrnNgqtvqCy8Xk7Tclhnvk1xEaNxvqj8RJ10s578RHuvakAzkxMDBF4PA0YC9q2fuDqhm6JR7RJiNeMA/ZkM/GHDRrizrQ3e6Ooquo9xH3108hQ4q7UVDp4wQWmLeVsR4NEe8VXsOvs9BH1r/6Lazm/4q5EthGW/Uw3zoXH26VA7+yRIVjU5ZZ1h2e+gtvNh2W/p+7012W/O/gf5fgcCOSbnWd4hst+kU/e6XtqMv26QZmoL9G9Od72kcYdTeCkaWunPUp2Flp7YwsvRk56U23DHFF8GaSjGcIw0fJeSoAR93tdzlzvdcuEbuyf6mm7WQ9sZuMvD9QiuPMWe3+jc5cE3P/CPW+NcpT/z2htxynw/9Fg4fNfV5uGyi4bgC1cMwtQpxeGbIFr/1rmNvQPffJeK724Vge94PA7ZbBnw3TUA625+BdqvfxXyHeHw3XjUHILvxoNnqkw3tUfQHSmrx6Cm+4wzzoDq6mq49dZbA98fHByEc889F+655x7agVEhZXkRQfeOEZTdQ/guAeASwhnA8cRhdKnmxOpmwR0847O1vs2tJCgWwBUE5AP13zoHTCGdLExGUuikGYhl4aXLQDbTy/pwx/1EFEEWl5/wd9yug+qRlSHEwu5Dczbb2x8kOxHFmBLceXrvdvdQy/mH166FnhLF3eh2ckZLC5wyfQZMSKcVSJH0wQ4ELGjZNsq4zTK9a6FzxQPQu/IeyPS2Fc1+Q7wK6mYcS8WXVZMP0MdAQttJFs9+0wWRPjcy2W/elmShaAZrAbCtZRrGzlBnyDn7jb8N2XRHfUZbo3lAbpNnen7ccp4HFGaf2+w3y7tK2Q6GF17mhi89MQPA4UhPEuMSvrnLZSXwHQbHpbLgQZ8tBt/qPBYsb2H4lq3lpfzEh2/5wyoJ3+LNAvgW2uog+LbTCYbvN96Ow//+tArufzgcvmuq83DphUPwhc8NwYxp+fLhWzZbG0X4zncPwNpbXoM1178C2c19dJ4gCT61klO/fXzecMRs8vlu+sgstR+TcUiTT/cYk5csXLgQfvCDH8D9998PkydPDvwM7qCrrrqK9N1Lly7d2lmOi4ige3wAOGX/BIAjHIAH3fYc6zboIT2s7mqJAE52g57+mzLfeeyOyKDutRnXk3M12uodWXgJBoxYfuIup5R/2Oy4WdiA2/pW2mBP3hbUWX5i5CL8Gi+zyWJ7jW/w4ohZRTwLU0aepSF2WjwfvAD0ZbLwyPp1cFdbO7zT3V10/6ZiMThu6jQ4s7UFDmicoDK5BdlvK4Vwst+5LPSve47azvet+5PJkoZnv+dC4yzMfp8MyeoJW5n9VpNW+1gde+HZb/UZzn7HHJtB/hbbABZmvxm2bddLHrxxkWSh7SA+4kJbA7NaT58PKbyk6dFtZA3fnP32pCcSvp3CS9xf4jgeOekJb03remJdcSLLQd5+ssV8GID7YMw/e/m4nKx3ufAt/w2Db9qz2Fq+XPg2d5LKh28Lu8Xh2yyzk1TQRxrOXMzrb+/G4YfXVMGiB7BTb/Bgr7oqDxd9Zgi+9PkhaJkeAN8idbM18B3jEXel8N07COtufQ3ar3sFsht7w+H7I7Og5aqDofHw2ZCuTUOqaoxBdxSjExF0jx8AZwgnsCHvY+2CEuCA4mfBzfwoM8jSEwXbBRpwxwWFtcMMVjbvKbMbfuGlkghgZpPX0+p3DQA7dlMMNfKiZs/mon2OvtjJ4kvbDpxP4iRPQZmKk0ziCSvoNpIAvS7mwqCvfhL65YK93dlF2e9H1q2DfulvFhDzamsp+/2p6TOgIZUqmv12LvR4t69vA2W/ezD73bOiRPY7DXXTj4FG1H5POdDLfuttqTaMvq9amP32u17SUaUzxkbaI6A2CMYVOFrYjhXJfkvY9p1Q3Oy354Qist+09QUIm42I39XAzC42rP0mmBMDWtlJVg4nkyMmPbEafN4WdpBSXHoSdbscOfgut/hSviZ/+t5pwPleWGa8FHybxwK+1WHsZavFYaWWw/UDLwnf4ufhF1uqQbEa9Ks7kTF4f3EcfvSzNCy8JwW5XDB8p9N5uPDTQ9RoZ2aLB9/6zuS2hO+YbG6M26NvCNb//nVou/Zlsh0Mg+/GQ1ph9jcOh8nHzR/1u0oRdI+BiKB7fAM4Z8ATHoBDAHT7WXE67WJWO4OWeaoAU2W7Uf/tZcG1/7deUKMXtBiopSXCPo/t5SyMCZtBCZ0GxgvlJ26eVd5eFSdw1jsWgLfNXgdWSenlltl4llrwFdRmbXSBj15enEbP0BA8uG4d3NXeDot7eoru26p4HD4+bRp1vdy7oVEvJre8x+Upkf3e8BJ0L70Hetf+obzs9+wzoHbWSUWz36qzZfnZb7k1+HKnBlcWnM3yiwu91VSrC7E9XgoLL0laGADbqkGOlZ6oeedKOqGoOza8jVSwFlwWXuLvia/tYdlvWXgph7KB0hMnG26lJ2ZfBUpP2JLR3KaJdN9lwLf/OAh8+ecvHwdJUcwuCXg/TOddLnwrzXfWaSdP2e6QzDdNm3+Pch5i+SV8q+JAPrXxINc6jdgv86HIv+Jw+F68NA4//nkabr87BdlsMJCmUnk476wh+OoXhmDObFn4Xhy+1SA2BL5B/yxwEfHnY+5muvDNTXgK4Fv4/Of7h2D97W9A+69fhsy67kD4rm6ug4NevBLiVeGuLmMOuu+77z44+eSTRYvqKMqJCLrHZlQK4FSEqX6sNjun/xjIDQw5CCJuy2v5iWMzqP+o86XJglu/ZjktxWx8kbAuKNYdQn3aZssL5Seycp21xSqcU7EJ/j4DnZuRt1AIIVOxRZ/UTcIAmhk86PvHKjPu+n1LPfgbnZ1wZ3s7PLFuPQyWOF3uUldP2e+Tp0+H2mRSZL99bWRA9rt/I3SueAh6Vt4Nme7lxZ1P4lVQS9rvM6Fq8n56cIPvYuZNX3QLst9cwMgSjHKy35YwzJZ2uokKPalXeIlSjwTfHUHpk5cNZ3SQ0hMuvGSHmnKkJzwI80mIgFvfrRg96Yl4rnXyBbpvszSR7rtc+A7KelcC38UAWpaFlAPfDNth8C1BHsHah+8CEJeyE7Ku9+BbzlMDZCF8qwGd+scttiwG31TMq+fB8L18ZQx+8osq+N3CFAwNBcN3IpGHc8/MwNe+OAjz56rvGXvBIrKTYcM3qBflHUOaDq6tsTUUTbYGhmD9wjeh7VcvQ2ZNl4FvnP6C7xwDM686FEY7tivoxh3Q3NwMF1xwAVxyySWw++67j/Ysx0RE0D32YzgAzrfUEwLADYgLyC3AWA0GBOEh+m/KeksvcK9bJMOp6orI7iW+/ERk3Q2wSWDnDLDMnlt/bnOrX3Tx5KJEdZWzGVdTGOgNENSFRTbbsb7frnJZL52eXwG0m/WOQcfgIDyA2e+2NljR11d0v9YmEnDitOlwRmsr7F7fYLtdlpX9zsHAxpeha+kilf3WdyKKOp/Mwez3iZBMN1rZAu0/zoQpr28s3qP7KFoHbqSdBsbVR/F40na3qvjQyEhcSRMvvynMFW4pLFlh2DbZb1F4qbLf2fK04CGFl3Q8eIWXPLhiSGcXG5aeKCmL+t3Q8RwmPfG6tpYtPZH7Sei+1Sv6N6iGC5Huu0L4lo8lQJeCb/+9Sj83mvBtBuFyeSqAbyk5MdOqEL5XrY7BT35ZBbfcnoLBwWD4jsfzcPZpGfjalwZh5wWVwzfIkc9owPdgBjbc+Ra0/fIlGGrvhPS0Ojjwr1dA1cRqGFfQfdBBB8HLL2PLZLVjDj30ULj00kvJ0SRqbx4eEXSPrygG4PJxzgfwfF6BAt8iD7Eh9DOV5P1NwBOm/2YXlFyI/ERNXYKqo+ljyDSgbvK0ejF05lq2ftenYVvUKWCeLAp5+RmgeV72IuRnv2X42W/WqPOyl5v9frmjgwovn9ywgfZNsdiroZGkJx+fNhWqseW8zn7zBUgObKxDjMpyZ/s3Q9eKh6B75V2B2W89LNDZ72qobzkeGuafCemJexmpDH3SZL8DGu3oglOW35jst6P11hdzc6GX2W9Gcis9UZpKT3qit6nvcmKz4TlH8qI+o0DBl54YiJdDF2FDGCQ9CfL8ZulJkOsJDQKEvz53vORpyUy3es068Og5hloORrrvkYFvfh4G3+p3XfhaKUiXKrVK4VsCOII1ar4zg9nK4FsfRg58m0R2hfAtl928Fg7f7WticPWv0nDT79LQPxAM3wi+Z3wqA1//8iDstos4B40AfOeF0sS4nXjwTefKeAn4XvQ2SUpaLthvfBZSvvnmm3DdddfBLbfcAuvXr6cdgzaDZ555JmW/jz322G2xGDtURNA9fkM24kEAl57gQR7gbENIGnAPwKGIC4rR3WLmO5tRmm+v+Y6RoJD8BLPgXtGlOGHKYkp1YmTw1tlHAVC8NOx+YbMmqkiTs64EQDp7y01qGMKl5k+Cd/HstwbqcrLfaoJmv/jZ700DA3Df2rVUfNnW3190nzYkk3Dy9BlwZmsrLKitc7LfvvOJver72e+7oXftkyWz3+mGXaFx3hlQN+tESCRrsBOPTqziYApt6zQEqiubhla9fgy+gdITe3eB8dHuSXdbBxVeBne4VJnuQi24LoJkLbiQgZjCS3E85YJcT/Rr8s6IWkb8zai31bQLpSd+w51w6Ukpy8Ei0pNI910xfBfLfrPKKAiqS2WzRzrzLT+rMt8I3NjozC2+NDCeUfBtEgN+Rl4+Fw11uGYmrNjSCP5kVt6Hb+7LIOB7zboYXPOrNPz21jT09YfD9yknZeAbXx6CPXfPWVlHCHzHnLuZwoYTthK+xfhWwjeuR1V9auxZBlYSmUyGrAWvv/566lKJz3HnzJ49m7LfF198MTXbiSKC7igsgMsmPJmQjpiyHT2Bh4YjzIKHQTeDcin9Nxdh4mskS6HsuJIvmFoNTnVoWFIZSdsJ07frk2DLhZKUP9SZTvWWtagzQE+QxlIEthXkzK9aH6kd96vWGQhlq3l9hjbZb7UcFWi/AeDZTZvh7vY2eHrDRiju+g1wYNMEgu9jp0yBFPo1SxGik/3nC5J1ys72b4KuFQ9C98pFlP2WwF2Q/U7WQkPLCVA/70yomrib2Uc0TS3LoM0j5Ca0nvh/UXhJH3Gy0KQed44pPgSCCi/JbUbDtRpUaSlKCdguVwseJj0hhxNeNk96wvuxQHqiLow0Pzo21UFi7yiNuOWg3HqR7ntr4Zv/wuBb/uu/Lp8HgXfQNCRsc4SVr8n28rlMtnL49rtoOl0vGb65bfvw4Jvng84s2ARn/YYY/PzaNFx3cxp6ekM2CgCc/Ikh+OZXhmCfvcLhO8/yOi1FC4dvUeZOd53UoJoTAeXCN847VZuEdPUYa44z3MCM90033UQA/tZbb6mTczxO7eLHc1xzzTX0h02E3nvvvZI7MYrxCeCl2tEziFPGDiFCV7D7LigMzZzdM/pmlJZQZlsXWjpFmJRnN/ITk88QVwmGIgJkIQmRBYUW+rV8xHSVsF0xDYQbiNNZaumwwu3hnWY7hdlvG3xad7Pf5PGtAb/S7Dd/bl1/P9y7Zg21nV83OFh0f05MpeDU5mZqOz+zukZfYDSwEejTXlfZaXMR5ex3HgY2vACdS++GvrVPGecTFvFIKQp+oapxH2hccBbUzTwO4vEqIzexPt/BhZfKdlBlgfkiqNwBNDSawVGw9ERKTfjORYHHt9dgh7Xg+H68DOkJy4RYekKAzvIrHlSUIT1RF+18CemJvYukpCd2GUZW982fKab7ls128LXxYVZQLnxL188g4A57XCl8+9KScuHbentnA+Gb7vLFS8O3+c0NE77tSkAofG/cFINfXJeGa29MQ3d3OHyf8HcKvvffd+vhG6T8RMJ3mZnvBDbHqU9CKh1BtxN9fX3w7W9/G3784x+rW4klusONl4jkJVGMJIATRKCGVmfxuIiMYRz8zLfI3rH+W2a+Czth6kY9NCHrZCEdRzAYjtXHrO0g3x1VOkUJ7hLOLXywownDvJOZpum6+vGRzn4T7JjsfmH2G1fx6Y0byXbw2U2bREazMHAKh0+aTE13jpo0RQ0y6IqlU828NXm5xBfx9UzfRuhacT/0rLgbMr2rnaGCvQ+gVyndBA0zP0XZ73TDbKv9prscTAp5iNHVjR1R9Drqzaa2Lksk1DFEGWan8FIWiXrrK6Qn3PFS7UMftktLT6jwskzpCW9DKz3RA8YQ6QnLtziT7ktPWPcts9/xMnXfvL6yQDlc981wHu73rf5VED7e4dt/LM1tys1gh70uAThIcrK18C09vsuBb2deTvMdAd9xL1Ggi7mlbIUtDMPgm895mzcD/PKGKvj1DWno7AqH7+OPGYJvfnUIDtrfwjcGrUe58G3GqMODb1zeVG0C0tWjaxe4w2S6n332Wcpy33777bTAuCjY0RIz4FFE0B1F5QA+WIELCp7IcPzP8hN8zJlomQl39N/a/YQgPB+c+VbyE25VLzpFGrCXU9eZdoYJDcsM0wauTFWRlS/YbLSEaygr+62TnyahG5T9NoMFk/2WbXwEAPOdASe7a5Ef/13d2wt3r1kD961ZA5tL3MmbUVUFpze3wOmtrTBZN91RXtsy+60vW0Jaow6ELPStewa6ltwFfev/rD9lgZv9axlkqycdDI0Lzoa65qNRi7IVhZd+i3nXcpJlRWZQ4klPCLaF9zsXZjqwLTLdUnpSMhtervRE05KUxvBjKT3Bu0ZO0yptc1ix7nuYft96ifWYKmq2w+HLS4Ky3+XCd1jWe2vgO8zjOwi+UXaC/6IEhQb9ePxldcde96RVFL7teZQz3QK+xflYwrc61drMt/pYIXx3dAJc+9s0/OK6KtjSEQ7fxxydgW99ZRAOPRjvQtk6EKrhMecMC988dC8J31qW6MC3FoJLl6yq+uT4hu729na48cYb4YYbbiDpBGeOjj/+eNJ0n3baaZBOp7flIm23EWW6o9gaAB8IyH4X6MA9ADeNQiR4e3pwCm07qGBJZ709D3CydjLuJ/JKpU7gLAEwWWxjBVjYdIeWg4FZfFYWTFpbKXDmR7ICLS+wmcKg7DfbarnzC89+C3zlIs94IvDKymCM2/8P69eT7SA6oBQL3A/HTJkCZ7XOhIObJugLKWf08V89LDAuMDxwUauR7VsLncvuhZ6ViyDbv65AbmKz3zFI1Eyjpjv1c0+DVPVkUXipM8EEkboJiPT8Diy8DJae0Eti7pVIT/Ixe2cmUHpSoPO2DXeCCjFLSU9sxszqvlVBpK2doGWUvw+t+5aOJ4lt4vfN25J/pTFXcoLHpJRGjfEoF74xSgF4MecTCblBMpVKii1LwbfMfDN8M1TbGdtlVslekYgoAd/y91cOfHPHLTy+uroAfnNTGn7+mzRs2hx+h+WowzPwj18bhMMO9eGbEyCyS+XIwDeeJ9P1qfEH3YODg7Bo0SIC7ccee0ydJPN5WLBgATmX4F9ra+toL8YOFxF0R7G1gVItBD0GcHZECSrCNCAiAFzaDxqwEM+pKQme5Lj9PHe59CDcWhBagDUZdCFD4eBbqdJ9RRXjKdhVr7Hria1iGu3sNw4HlFSBO2LaD6vP+Ma9hILm1qn5F/KwrKeXpCf3r1kD3SUkdXNra8l28JQZM6A+idlv5apRePJWtoNaFamWPjsEvWv+SNnv/k0vOMCtFNA2Ew6xFNRP/yg0LDhbt5zXAOdJT9wW8zprzBd94dftZJ31nN2hjRvqAqr06ypzXb70RM1DbRRHehLUbl7UHLCgQ3a7VMcT301gf3G1P6XrCX3X033zMebovsVnSum+/aLLIN23hG9X9x134btA950Y9/AtAXwk4buYLKUUfPvfp+MtEw7fJEUxdxLFXUShPhsufNu7U+I3aRrb8LR1gzQB3909ANffnIafXZuGDRvD4fuIj2TgH742BEd8JAtx7bntw7ftThkA37qngLOtxXKa7DmMY+hGyciWLVvoAKmtrYWzzjoLLrvsMjj66KNHe9Y7dETQHcVIAzgCN3ZVzITAt98Fk/TfsvkOP5YJEXO/VbeYZ+cT1nlrG0LVgh4z3/hY3/oXPt40LfPAZjqN5EADGIMQF9FZ8K48+62yJa7uVoZje2cGBvaUGY8nbLY8IPst5Sf8r2qfbNe1L5uFR3TTnb91dxfdh9XxOHxi2nQ4e2Yr7FHf6DXd0RpzXnudJTVpKtzv3Sugc+ld0LvqPsgMdal1EFKOgqY7c8+GhtknQjxZX1bh5bCkJ0JqohbZWvzR/kUZCVsO6k8XwLYePA1HemIFLVp6wndBzMJZKJG6b37ZSk9wsOrCN8JBwtd962LmIPgu7vfNXVKEPKeiZjsRfG8NfIdJSYplvbcWvmnvDo0OfLPzUyB8e37h5cI3Tqi3D+DGW9Pk9b1+Qzh8f+TgDHzrq0Pw0SMrg29KFZi7lx58izuB9FtGeUnDOIRu3DGHHXYYgTY2xKmvrx/tWY6JiKA7im3RhAd14KU04HQi05IHY5smstDDkZ8oDTg+zge4mnhe4BqOLUgIS0GTvZGe36Wy36K5T54lJnzSttl0Dnsb0xZbqjfUtlAZVpxvQmQf9fKrtK0CU3HxY6cY42Mdi8HfOrtgYVsbQTjenSgWezY0wlmtrfCJqdOgipruyMJLXQxpbhvzfPS6ZAege9UT0LV4IQx2vVEA3EIlDoC2g60nQcP8cyDdOB9iQnriA7e0GaRVjMkOl+rCyoWW1q1bf7Zs6Qm7nGh7TAHfKhuuIbeo9KTQAzzu6b7x41yOa6UnftGlHSQY6Yke/bmWg2qb+JaD1rOeYbuYFGV4RZeF8K0y3kZ+Mk6KLn3ZSZjPd7nwXe7nfNDmCLIZDINvzPJmB8uHb/Ud3L+FmnKp91bLJ85XZcA3f19BbyF889mjfwDgxt+l4epfpmHtuvBj7OADFHwf+9EQ+I7LVpUefMsOx862V7/RRDIGqboUVNWMM+h+9913Yddddx3t2Yy5iKA7itEO/PlnMAMu4NsH8EyA/pssCFH/LVxQZObbnALp80p6wplvv/mO8vtW8hN14bAXBAYlhmjbmEblJ60GPDj7TbIHc7vRgjs7n/BteAZvxUvy88FhMyoJa0FnquaVDMZaJgrkl4BjoNvCHlfld3HL+fZ2WNbbW3QfNiaTcMqMZjhr5kyYVV1tCi9pFqQz9gsvnfvYMLDlbZKe9LQ/ArnsgCs3cXA8BjUT94eGBedAXcvHSIpSWnpiHQe0+MFpFc9LYrtXWqD1t7WEAJaeYDdLWg3Khms5lAZYWR8QXIippCfcEZMGo1pm4khR1G0Z23DHK6y10hN1rBnLQf1ZR6JVge47vOjS6r5d6QlrXfX+joouAwN/rkFdLYPgWx1/7r/+Y/laMDCPMHxj5js7ivBN5wixQBK+5Xqbpjx6Xrh+CQHf+tw2MAhwy20pajHf1h4O3/vvm4V/+OogHH9sGfCtBwhY12KTJoXwHU9gpjs9vn263377bfjrX/9KDiV77rknnHLKKbb4K5OJiihFRNAdxfbggOLLUPwmPAnZhl5fVZJeIaYpiCP4Zn9vLTnx7AcVhHMxnUREzlIX2v5xdlw6pXDHSgXh7Cghp6VOfQqcsZtGPDD7LYFHfpf/Ky9QFpR0VpTGBxrC2YNcZ72DCi9lPp6h/8XNm+HOdtVynm0fw+KwiZNIemJsB4WVYinpSW6oE7qWPwjdKxYWtJz31zlRPRUa55wBDfNOh2TVFNfpRDzmhju0nfWdYld6omFEgLXY00ZKUig90Q12hPRENtxxYBuCs+EsmZLSE4ZtlUGXXvN62KIHSFTJoG0Jrd2l/p6+A8M1EkFFlyClJhXrvgub70RFlyMP3/xnf9vuv/7joNe2BXxL4C4G3zTNhL0raE9n0ulEwrauCRFe3gzfVjWnBqNs3Md3H7kmR8I3tiz43cIU/PjnVbCqLRy+990rC9/66iCccHzW2SbDgW98r6apClJV4xC6V65cSe4kTz75pHkNu09ia3iMX/7yl3DVVVfBo48+Cscdd9y2WKTtPiLojmJ7APDBgBb0BU14WH6iLQhZwyoLJjHM+V/rvo3MpKD1vC7ApMypbZxiBSJ22vYiokBLWs/Zf3Vhps4qcvabr2hKm42OK/J2v23WQyd0p329VEHzzX2VRVZ6Q9USz6y5yI5asPZSY0aLKyUuFpI39PXDPbrl/NqBgZK2g9hw5/SWFpiUSuvCS1xKLkoyiyWAl5Okeehd9yx0L7kTetc9bZBTrrvZArEk1DcfR9KTqkn70nYcnvSEM+FGmewcL2buLDXRa8KDLanzDtN9s/+2hW23Q2bZum9tG8h3J5TERPfnZImUkM8wxNPvJAYBuu84/W7K1X2XX3RpjuQAxxN930Hc7RmvjidB8B0E4Pwz9eE7bBOVgm9/GgWZ6AD41s1xxWnDhW/5VxF8mzuK4ZITdYNRZ7zzFcC3mqI5Bw8NAdx2dwp+/LMqWL4yHL732iML3/zKIJz8iSwkdG6iEvimu56pOKTr0lBVM86ge9OmTXDQQQfBsmXLYK+99qICyp/97GfkWsLQvXnzZpg2bRqBNzbJiSKC7ii2vwLMcprw0AlYF2AmEwkDEQ4s68c2863lJ3nXAYVbzzM0qHO5LGfklvNcOCmz3xa4/c8zDMnunDLPbAsjZeY8V6jZdvTiDEE5Z5pGj2uy6txW3s7WWBZ6qS21vjp7w/sjn6emO3e2tcGz2KmiSOAdh7+bOg3OmTkT9m1opNu/gmALst8WWZU/eaZvDXQtvRu60HZwYHNR6UlVw+4kPamfdTzE4tVCesLwXUR6EtBenocccqDlhr29DaG6bzezzc+5GDdI9006by2ZCWvAYy0HFShL7GUfY3u7nucRrvvGbY1Ag0cjy06U7luuR5lFlxV3uowcT8qFb24YKeGbf0ql4Dss6+2D/FbBNx5n5O+tH0v7Qdz7pimZvcll7yDarLdb4xEC3/I3aNaJpX8WvlXDGz7V5EwhOW7POxal4H+vqYJly8Phe/dds/DNLw/Bp07KQDJpT1nlwHcilYCq+hRU1Y4zTfc//uM/wve//3345je/Cd/97nfViSoed6Ab44ADDqD3XnrppdFepB0iokx3FNsrgA8ENOHxM+FSfsLab+OAImDYyE/IdlAVW/rFlwbGKTspT1n66iEglW8x0rsBRZkWrhQgIwizMSB+DTW2QWdFqzPXfh8CfiyuW/AG+Vgshy289JdVu5Boz++Ce9BCUsPQuKKnhzLf2Ha+E+mgSOxaX0+FlydNmwHVWHgpu3hy62UhPWHZBD3NDkL36j9A9+I7YKDztaLSk3i6ERpmnQ5NC86CZE2z0m/jZOkKmdD7UUhP6C5JzNF908VdX/yDs92cP1NzZx29tRhU8IvSE7Ig9GDbPreDs3DLQZsdp6y1+Az9JgKKLv17+H6xZXHdt+5+6em+P5yiy/HneFIufDtKjFjxzpOVwrd8X4J42HRs5C1wVwDfdtqs3eYBbcAy0ViaW8xvPXzncgB33puC//1pGhYvDc9I77JTFr71lSE49ZMKvnnEjgMOOl0mCuE7lohTc5yq2hSMK+jebbfdyKv7gw8+MLfMgqAbrQT/8pe/UAOdKCLojmLHKMA0TXhKSFDwVIgAntbAJztgYvDtdgUMCrBl5ps7XppW9NSWXsAuTcRcAvSSWtBXtnXc3EG2iVevsw6cfaLl9xWE8lKWcjwpzAUbWQS3qTcFnewbzvIV0dnSd5XQIMYZVgZ4vMb0D2Xh8Q3r4Y62Nngbu1UUifpEEk5pboZzWmfC7Joak3X3pSdmK2oAZiFH3+a3oXvJQuhpewTyucFA6Yla3DjUkef3OVAz5WAlWfCkJ5jhJeaT0hORgDfSE5YDeXML0n0z2ErdN3mGe9IT2f2ywAWlQIqivVd4mgHwXZnuW33H6L71OhXTfRv4rqjoMrzTJW+5yPEkOLi9fDHdN8P3SEhO5DgtCL7DplUMvhG2sdiSnU9C4TtQY84LwscTFNV7q9+FuIEGtstkufB9zwNJ+MFPq+C9D8Lhe8H8HHzzS4NwxqkZSKWKw3cC5SXjMdNdU1MDJ598MixcuNC8FgTd559/Ptx5550wUEKvOF4iynRHsSMWYJayIOQGPEl9omYNOAZnvuk5Zb/R71vDdoD+2/h/a3iz4C29MTA4o6vdTQxse59ltw8H1GU6iGFZX0A0vOEAwEpPPGtDkWHkaZj3hEyAoFRLE1yO1RlLz2IQgxoGCekJvv9mRwcsbG+HR9euJUlQqcLLc2fNgiMmToZkQpj7BnS5lNITXLuhgS3Qs+w+6FqxEIZ624pKT9INO0Hj/HOhfubHIZasVxdjvc+KeXxTw50iDXak9IRAV1oM8j2REN033abPlyqyzBZKUcQyseWg2hd2+yCQSwtC1n2rY0/Dscjmu7pv905QEHxz0aWj+95Gjifq3ziMd/j2fb6D4Nt/vK3hm+6oZAvhmwFcwjdJvAJYt1B2Ih1Q7F2d4cJ3Tv8W2PkEF+++h5Pwg6ur4J33wuF7/twcfP1Lg3DWaWjAYZbWgW9cn+rGNKTHm2XgxIkT4ZBDDoFHHnmkKHQfeeSR1Bp+3bp1o71IO0RE0B3FjhYIJYPZrNF/y8x3UBac7QdTQn7CcOHc+dS6b+WAklFab1l8yc+F77f6nirwYSCy+VG3gY7+qCmcZCbkwks7TW07aKwCWXdt3UgIFkVmlueaN5CsNN92GkrTi63ODZYb2Qfr2AsFnQ5ICq9z1fMnBlsGB+G+NWvI97utv7/ofmuproazW2fCqTOaYYK+grmuJ3JFPOlJPgu97X+GniW3Q+/G57QXtwRcc+mFeKoBGmafBo3zz4JUbatjMyh13wSKujGGaS9vij6LNNgpQ/dNjTMIntnuUtULOLpvk8Vzdd8lpSiiUNLovkXDJrMp9fJImzb1c1DLwkWX8VJFl/xvyaLLyh1PzLAmBL6N5ITlJ2NceoKbBCF7pOC72PNy4dufV9guKIBvXXwZCN9hHTh5cLwV8A1CQmXzHIXwTaeBPMCDj6bgf36ShrfeCYfvubNz8LUvDsI5Z2SgqsqFbzw2ayZWjT/LQGyMg9ISLKSsq6sLhO4NGzbAvHnz4NBDD4XHH398tBdph4gIuqMYC/rvfgHfmAUPy4CT/huA5CcSKozWlaaKF4+M0n8L7Td42W/qE8PAqjPF4kapnpIuZOOrhr7S+eDNmWe/8NJqt732ycZL2raatzaHsgm6cCoR8/elJ9zp0kpP7NXVZJMLpCdWJ53N5uHZLZvhjtWr4a+bNnnlUW5UxeNwwrTpcO7MWbAbNjEzBZ/W59sOXLQ0ROyf/s4l0LPkTuhafR/kM30VSk/UlZacZHR7eZoLg77OuIfpvh3LweHqvkmKoqRGQTrw8O6XxS0IsyFFl6YijsFIH685r+iSLRFp3XggKaA7sU0cT+wxO54dT4rBt/T5DoPmUrAdFlLfzZ/j01dYQaY/vXLhW915KQ7fxhZQLvdw4TuvzrNh8P3IEyn43o/T8Obb4fA8a2YOvvaFQfj0WRmortbbJxmH6sbUdqXp3ib3hlCrvXHjRvj6179OJ6Sg+Na3vgW9vb3UsTKKKKLY8SORSEB1KgUTqqpgQjIJDYkENCSTUJdIQE3AH8I2nuX7cjnoy2RgQEM7SleMMwoCUTIN8VQ1xJLVEE9UQ5ycMqogjn+JakgmqqlxSzyeVNlEXSimkILdHJTWlgBK3lqni5VqXU/zgzwNHriZjjx/MXxxJtVOWXX8xIsTQwxrjq3ggt8QCOyAkAtLKtOrs+0CzlnXLtdLp8Z1JlXpgI+YNAl+vM8+cPehh8KFs2ZRQ52gQH3+PWva4fwXn4dLX34JHlm7BgayGVaY2Cs8A5lYdnxc1TgfJu/3LZj58Qdh0p7fhGT9HAe4bd41Bz1rn4S1f70SVj95PnQtWwTZoT4aHFEGWd/uNsAttN7cYCfH2W9PasIALoY29BrJQDSk4vHAxxM12EFwpqY9elBFnVStCwofK3y3QmWuVR0DQmyS4VrPI6E/k9XT4YJIap5DQw598RXUJO/yGP/ueBxSOiNPvwFd2InTwXln8krKRXeW8C+L62G7uvIATB1PSg6ijm8eANpjkgamzuAR1yGhbCBxabX/Olt6mo6y+i+XGdI2oNIhZewF/vxQS4xgh5lV/MObQ/zHz/F0xj9VhnD/DyPssR8Srvk5T5fh2J82v2aXPQbxZALi6SRgNSL+m8AW6akkxPBxVRJiSVxwbHymZuQjGxZR4kRxMM9WhOK0YNMjdNpVd3vMrzGv733lLNizool+0zgYMA3G8PyGtTMAJ/7dEPzhvh64+de9sN/ewjxdxMpVcfj6P1fDwR+thetuTEJfnz4PFG/su81jm2S6+/v7SV7y1ltvwf777w9nnHEG/Ou//iscddRRcOqpp8Idd9wBzz//POy3337w7LPPQorU8VFEme4oxqr+m7LfnvwkKAuOkcznVZtzrf92ZCf6ZK18v63m22S+MWeq9eBO+3ahmSXZgwFcod8VhZdGViAKMk02yckA2y6V1m7Q13wzgEvFd7j0BOfMWma57Ep64qa/lEzFzYKbOYlMeH8mA4+uXw+3r14N73Z3F91nk9NpOLOlFc5sboGp1Xj/1kpqTJqdqVzomAkUcznoXfsXJT1Z/9dA6Qk/TqSboGHOmdA4/0xIVM8wtmR0kedOc9QZ0tV9u5aDpXXfjsWg0X1b2JZFl5x5k7KSAgvCCqUovMWoG6b+hC26FDpwJ/OsnnPRJdcaWEhWdzb8okvu2Ll1jie8ayO7wWKZ72K6bz/zLf8Ney3oM0HZ86DMdzkNdswxIFrLs+2gzHwrj0TnpoyzbHwHrCDzLbLe9BrdOgTzOfUTtF8Iy3zT7ytnM9/4jSf+lIT/+XEaXno1XKvdPANlJ0PwuauS0DRxnMlLMNCR5Oyzz6ZulOaCIX78Bx98MCxatAiam5thvMc111xDf5hhQ417qZ0YRRQ7uv1gqQY8eI5IxWKQlkWXnvOJuoBwR8tMaPGlckPhzLEteDTyDAHFGAzeCowZyDRUkZZby1eM1MG2mvdvt5uObp7rSZD0RC2PyvzIrLdq5GPb1quw4C5FA/SOkZ5omQppyLVFXzYHb3Z3EXw/vn49ZU2Len5Pmwafbp0Fezc0aGmBXbOCJjtSN49Z9K7lZDmopCe94dITbLgz41ho3Ok8qJ60j9F9x3C3hTTYUbpvW/hatu6b4Vvovk2reafIshzdty26DIJtLrrkAYnRfWvHE9Z9q/lywa9eLjGYMrpvbTlYrOiS/PLjOFi10OEP/CK7wW0D37LJDh968l95SJZTQPlhwbf/fZaR8OvlwneMz920bC588+vqlMqOU4Xw/dSfk/D9n6ThhZfC4Xv27Dy8915M6L3HCXRzYDHlAw88AEuWLKELx6xZs+DEE0+kjPdY14JVGlGmO4rxEhmUk2j49t1P+DFlnnXLeYYWDikpLMh+h4A33wqn73nZYbYQ5LOjuk5YX3GbHeT3rQbbZlVVTte4oXDmNaTTJed9zYXG03dbSQAHu3/EjesJF30q8NXyFuF6wm3ncR45oQ/GD64fHIB72tup6c567NlcJHavb4BPz5wFH586lSREnPHmrJctVC3UfWeHuqF7xYPQuew2yHSvENITF74xqpr2hYadPg31LcdAPFltPL6t7jtW4HKie39qGUmh7pszyVa3bbXytshSudgQQJDum4suC3XeEr4NbOsBjjkeAywISUvORZYaonF/uEWXCjS42Y7ah7GAosvCNvP4b6JSxxN5t0LpA4raDSrZFpTw+lYFl6bwcoxf53GzMXhva/gOBGKoEL7xeBrKjgp8x/RvpRR8q3NSvmz4fvqZJHz/x2l49oVC+P7sZVn49W/GYaY7isojgu4oxrP8hOGbu2ASXOCHtN0gh1to6b4m4ds03GGbQZ0JV7aDwh9bZDzFFI2kwkoArG7WvKZbyqvMaJj0xLZkZgBj6UkwkHhZb/b69qQn8g6iIz1hfbmAf1pN6WZu5DQx0gU/tXEjZb9f6egour8mplJwZutMkp7MqKmmTnChTXZkoSM1lclB/5o/Q/fi26Bn4/OhloMEjzXToXHuOdAw5zRIVE8yRZfFGuwQHOv9aBoShTbbUa/wa1QAqcFYFTGqokvV6Kew2Y5aT1X0JcGXM+68f0gX7jmesAe68f/Wl+QCx5OCoku1B7kImeEb5xVUdJkoBt/SEnI07QYNfI99u8Fy4Js7XHKESU/CQDoIfMuBbzmf4D5c4fDN/t+Vwrf9TN6VymiHKDsBmRV34ZtlJ0HwjZP4y3MKvv/yrILvZDIPb7yagd323H4KKSPo3o4jgu4oxrv8pE/bD/p6bwMmAd8LyoCb4j/uepkP0X+T7aBu424KzVygV7IOzuq6MG7g2pOe2Ey5lYe4y2o1jVZ6IiFcZ4FNS3jfu1s7ahRrtCN035w1st7ROjvsaJ7z8H5PD9y2ahU8vG4d3YkICxwEHTd1Gpw3cxbs3dhgpDe8ZmF+39T8Jg8w0PkB9Cy+DbpWPwi57EC45WCiCupnngyN8z8N6cYFpsEO7d5KdN+epaOjfddtgqRVn9Nch2HebH8ftrXlnpfpdmG7uP83L6Mp/NR3JtQD3VBELxsPRFleg69jgSWjDA8KqKW8ZzeY+JDsBseT17eE7zDpyY4C3xK4Hfh23I3KgO8YD8jLhG+zoHzcCfim87huiqN/yH99PgE/+EkVzJmTh1/9CqC6PoLuKMqICLqjiAJgUEtPWO8tdd9UGV9QnGj/+Dm/z1k7dlyQ4O36fQdLTxgQpLTEygys5lvOOUh6YkDEZNW1sEJ3aGNQNfOTYKj6MBfAkIEXnd1UvuHWcpB1yiZTqz/LTgFOll3rvvmDWzJDcE9bOyxsWw3tJZqX7d7QQPD9iWnTyX/dLr9oeiQ6XJpMPTbcGeyEnqWLoHP57ZDtWxuu+waA2qmHQxPqvqceTu2e6VPoihDQ3dLCt9R9iyZDMqPsHy8hRZcM5+6AyYNtkekOL7oUd2u044kP37i9ihVdSvjmYl98fSgQvrVlogBwalQVAt9mPYZhN1gKvseT1/dIwHcQQEtNd9BnfPgO0oAXg2/12lbAt/49muM+DqMK31yAiZHJxWDCjGqorhvH0I2FlOjZHRQHHXQQ7LHHHttycbbriKA7iihUIJyQ5ruEz3dYWCcRkbn2Ol4ybPsZcANTAn6dwkEBCxaEGHRYWqAKK5X0hN0n3LSS9eSOhXp967VxFNBO1pumkVXZdQ1ocZ0FNsWX+B3WOrP8Q8A/ftcBU6H7xmHJ0xs2wO9Xr4YXt2wpenhOTqXhzNZWOAtdT7DdvJZw+BlvsRZm7VD609f2JHR8cBsMdLxWVPedatgJmhacD3UzT4B4qkbNg1g3uLul31q+sOhSfdAUgTLEss6biyy9okvWkfPxgvaDvMcK/L71vvWLLiUgI3znhQ6cijAFfHPRpYRvPk7zZTqeoLuJhG+U1bB2XX0iPyLwXZ7XdwTffnv5MN13mP47CLz955XCt81UK89/gm8suCSbSFt8uVXwDZw40a9pvTefB9W4t7DY0sC3SEBgUxyG70RSNcepaRgH0H3ggQeS88aTTz5JMM1x6aWXwo033hj4nX322QdeeeWV0VicHTIi6I4iCht5401ss93Sw9uXnjg55yDJiXhstd9WesJ6b+t4kiVwlbfDXd23lJ4wcDNgWAEDg4+9huiCS8/OzWY/Cy0HeZ0Y5i3EaEgSum+nbQ9/3goHtAxGXWGVRlwOMIJ13xgfdPfA7W2r4YE1a0pKTz4+bTqc1zoT9powQcuAy9N941SHNr8JnR/8HrrbnwDID4XqvuNVk6BxzlnQMA+7XU4zRZdK950vWXTJ8/OPkWJFl6a5DrvSOEWX7GUeXHTJwF+gAxfac1N0KRxPVNFloeMJwYnesrbo0hZgcrFmLshuUA8Qwh1PfLtBu6WsvEnsEePNHCvfbnCcNdrhzHcx3be0GvSlIoGNa8qA7a2FbyfzXQ58cy1JbHTgm0+lir1d+I6nElA7qRpqxrq85IknnoDjjz8eLr/8cvj1r3/tvIfQ/dvf/haOO+445/VVq1YRpD/22GNw7LHHjvQi7ZARQXcUURRGtki2OxMiPQmSn/DjYtITznaz5luBN2bD5WnTBVO+jW9hS4EQw6oqimTQssWX1mAPoUfrvoVmnAsuPRQWRaDsfuLOLx+m+yYnE3kvW3bttFvHOKxo7bKv++7MZODe9nYqvCwlPdm3qQnOnzkbjpkyGZLxpL0QM5IWFHtqv2/ct31roWfJQuhccRfkBju8ZRV3IOIpqGs9EZoWnAfpCbtqqYz6ZGHRpe4S6RVd2jLFQviW7i84zYSAb8qk6+dFO1sGZLqduw0C0N2iSysLKeZ4gkDOFoM0UNTwzd3+9NFc1PGE4Zuy4eJYkr+lUfH6HufwHSY98SMs6x30WpjkJOi9IPjm5QyVnVQK3zEL4QXwrX6Q7vL4TidlwncsEYO6yZjpTsP2wmvh5oZbEei3jSv8ta99LfB9fA/hWga2iF+wYAHceeedEXRHEUUUoUG3wPUFn0GbM96JYtITcevdzzQQoNKJGm9xJ+iiwQDOhZeUBceMIAEMg7i+hc6ZUu0aQpDK2UZhyaZkAyyh4IyjymQrYNeLSc91llL4LqtpMkThVK00gpafOx56PuH+crDzOGdDdXpUaaCNLllIBTT0MVhJwG9KpeDCWbPh/Fmz4E9aevJSiPTktY4OeK3jDZhRVQXntM6EM1paoREtBzUMG/AXjhoMaema6ZDe84vQsOtl0LfyIdiy5FbIdC83298MO3KD0LXyXuhaeQ/UTjkUGnf6DNRMO4IuwFx0mTMGCLrbp85WE0Dw7eogGGb5hJaakK5bjaDMNsWnvP1I88qOJ7oAlj7OmWwHRkQWWd8lIQtDBBgN6CSNwWNdb3vKRWu5DA0mtLRJ2STqbLjQatu7LOK3wncKhETFgDyZxOCgC4rAt5bf8PGm5VASvun3pH5puqiY15uPQ1wKUXxM+wJ/f+pYV75xdv5jKXCVsEEsdrDEPwRs/rcYfPvpUh+Q5WvyOZ8Kw94Lmr4EdYZvhmUCYnoTB0k5SCRzkM/g+SsH8aSF7xjDd05kPsxCY4dLPT2aBx6n1l5QnffMYUG/CynBU7UbdkBrZHG6qdr2FKOS6T700ENh/fr15MXtB8tL0JnAD+xIid0oX3jhhZFepB0yokx3FFGUDqNb9TLeMuvtZ78DbQZDHhNAZJXm25WeaBjXGTvlGuJqk+WUZMGl9XB29eCciebPmcY8AnLMbd4Q3bfbaIenqjy6GWIQqjjTybpnpCEJ51b3Le4EsJUiFyTyAEbCeywG73V1wW2rV8PD69YWlZ5Ux+Nw8oxmOH/mLJhfX28KBFmsyR02eV/J6zXuy/41T0PHB7+D/k0vhuq+cZHSDTtD04LPQP3MEyCWqgosuiScNjDtOp7IosvCSzgPljw4Z22+3v7KEcU6nrhZfW57b91KCmQmWuPtO57IsrPyHU/sHRFq0OPBN68nzUtqvoft9W3XysivTDaf51zM6zvuar+3M5AayaCBTs6VnFSS+fYfl3pe6r3hZr4py53NOplv0H7fJvNN41Nry2LnJ+QoTiGlzXxb+FY/YHc5dZfMdALqUF4y1jXdU6ZMgcMPPxzuvffegvcuueQSuOmmmwKhGztWogZ8w4YNI71IO2RE0B1FFJVFLkTn7QO5Lz0BARgyjK2czuSpZjtuoWWh9MSZqgNpCo7VfC1Q24uHgmZVrGcA2y/UFLpx+13tfGJu61s6lN0xWccsdd+O3l1KUugFYUuoxZ08IODtoxNN5vtS8rFlcAjubm+HO1avhnWDxaUnh0+aDOfNnAlHTJ5i5CZW983TVtIQCd+4pEMd75Duu6vtEYDcoAPccvsnqiZDw7xzoXHumZComcQHTQVFl8Hw7Rdd8r1uW3RZzPFEwna43aDVgavj1y/CLHQ80ZlwvXy0zYrAt3U80cWZAXaDVn6iCjpHwuu7skY74xu+gwDcjzCgLiVDGY7mO+y7dCzhoDYrXE6E8wkEwbd2ILLT8y0ItdzKmjSZc2QYfCdScaibUgO1jemxDd3pdBrOPfdcgms/Xn/9dVi5ciWcfPLJBe9ddNFFcNttt8FACV3geIkIuqOIYnjBYMIZ78xWuJ64mWhwdd+yy2UBiLtZddkkRS2jvaUvwZpD6ajV7XYumpRIa/TF4kqoMtlSH66W3IpBFOCwjaFaLusJztph66TitqbnzKwskVPyArYltMWWMvOL2/+J9etJevJGZ2fRfTe/ro4sB0+aPgNqEsmiRZdS40x3MgY2QvfihbBl+ULID252BggC4yGWqIb6mZ8k15NU0zz1DjGhkmaU9vc2vUPFf93mOk5nS3Y40QWLnBlHoU68hN2gmUeQ44lTcKulKAWOJwHwLTpzGscTvb+s44mbaffhmyVPqFEdUfgOsBscz10uRxu+y82C+1nvoEx34bIr+GZrQSgC3zxNP/PtwDfdUXPnbWsvxOc0fCerMNNdBbVNVWMbuidNmgRHHnlkYKa7WJxyyinw9NNPw+bNm0d6kXbIiKA7iihGR3riF136rify32KPleYbIdt1PZEZcMqQa8CVgG0gxHG3KO71jQWWxo7LaREPojBSt5cXbid24GCB0djliSI4x5mFJSesq5XaTwmcemBgumZqT3AkVmtLaMH+zc5O+N2qVQThuA/CYgJ2u2xphXNaW2FqVY29AKstr/PGEFh0mcv2Q98K1n0vdYDb7Ds9rdrpR0PTThdA9dSDaKXV3WxcdkpBKwmNA98Klgk8LRoWZr6F1MQvsnQcT9hukGFeaqH11Ljwlu9UFBRhBkhRCtvOK2kIbwsJ7BK+efmt44kdsMmBHk1bwHdCDzZCZSY+fEvQ0seJtwRRl8sQ+C5WdBkUQSBdCr6DPuvquYtPfzjwnRfSK3Y54aJLM7Dic5q/HKJBmcl0V8XJvaSuaYxnuvfcc0/o6uqCFStWVPS92bNnQ319Pbz99tsjvUg7ZETQHUUU21Z6wn8F1nxhMC6zdzr7rTTeVgPOdoNKnmIdSVizLb2WObggji8iqtCT7f70bX1zwdFuJWqBnOVi3be9FcsAzPOTTXVUlpwlJ/gu675tFl16hdtsswRrCft2uVjaay0G1vUPwB1tq+GutjboQHIoYjmIjXY+M2sW7N7QKIWdas21PIP3kVlmapGehcG1f4Et790M/ZtfFsWh1hmcBzBVTftQs53a1r+DGGbYy3A8YTgOcjzhrH8xxxPWfds28+x4Umg3WJjpDnJ78eHb3m2xjidqXdQgyZWqSJkJ789SdoPS61s5nsQh+SE02hkvXS7LhW8fjIPguBzJSZCspBh8+98pBd95of0ugG8nex0A30HzE/CdSMWgflot1DaOcU33FVdcAddddx3ps48++uiyvvOnP/0JPvaxjwXaDI7XiKA7iihGX3oS5vddTHpirat0JpoBQ7iemGy3aDnPPuD2drrNYhdaDiowIVijLKlCO/V53XlN6H2l3AM/y9DGXS4LdN92bcStfQZ8/CgXR7KCWnxaZ2hVC3ku1JMwb1LiVnIiXmMJBz7vz2TgofXr4NaVK2Fpb2/RfXfghAlwwazZcPTkKcYT3S26tIWFbhlpHga3/A063r8VetofF37f9r90bGCznbpZ0DTvM1A/55MQT9cpYMZl1pk39nVRAwpurqMBUB5n3gDNbA8jolCwLYsuC+HbzXSr2+va4aMS+BadL40uXOjAncy3WR77GojfQ/le38qv3MC2kYqMLnwbyck4hW//8YcJ30Gt5SV8Y6Y7OyTgW2fA+TkViWP1rhdqmnKGwfCdRE331Jqxn+n+4x//CMcccwx1l8QOlMUWAAOz4ocddhj87W9/g8cff5y+G0UE3VFEsT1JT2S22w8n+80XKQTvbEYVVwrwBk96Yr/DpXTsmKGmZxxRtP2b1FMj6HDmmqajW8SzFls9d7WRPqDZckR7z9YuQ74wcy67W2rXD15+qWGXqO4PLniacuvhe89t2Qy3rFgJz2zeVHTfzaqpgc/Mmg2nNLdAjZbcyCuv1OH7RZfZ3nboXHw7dK64E/KZHmcZ5X6Mp5uo2U7j/HMhUTtVTU8ZlZuiS+N4gv9jtxfeO3anFIXvYMcTzozbQRhBTFH4ttl3Cd+FjifunRtpN2ieB3h983z481SQXOB4MrrwrV7JFe1yOd5azDN8BzXZqQS+y224I18rBt/y32HBd0atFMG3px/nSCTsuS8IvhPpBNSPB+jG+MQnPkFe3DvttBP88Ic/DCycxHjwwQfh61//Orz//vvUMOfRRx8djcXZISPKdEcRxfYhPWEIl64nUlPr/8vv02dF0SU1Utfgjd0u0RtDdb3MOZaDFqaFzlw0r2HdN4MkZ7rZ8k+pOLTmVnQlDOtyKTXfUiSh5mtlKTJk0aXJOHMGmIsdna3CQg6r7ZVFl1bnDrCkpwd+t2olPLi2uOVgYzJJuu9zZ86EaVU1ar3FbYQgxxNVdIk2Hd3Qvfw+2LL0Zsj2rgmF71g8DXUzT4KmBRdAesKCrXM8MaMeqe+3RYwMw47DiW83WE6mW8A3bwOWpthMtx2M0CoVgW86BkiBZKGdP09HtR6UOnaD+nkitNGO3+XS1317/UFLNtrR22yctpgfTfiuJBMelhXfKvjO6cx3FjPfhd837iVmgdT8sCNlw7RxAt0bN26EI444grpM4kE+ceJEOOCAA2DqVJUxQB/vl19+mYomcREQzjErjnaDUVS2E6OIIopt63oSZjlI/wa8xpaD4FgOKt23BW+0HMTnAdIExleRMWTdN1MmN/hhGS37fTOiEGALfz+j7fYy2QTdosU8T5uKJLn5ic58xllDzfIL7Z5iip1MdtPOh5sCWfi22XfHjQUANg8Owp1t7aT93jg4WFL3jU16dmlotBlQ6aShZUCMclx0GctnoXf1H2DLezfBYNfbBdtfPq6ddjQ07XwhVE09UM2jIscTkcMNaSvPmWhV8OjZC5rMeHGvbyezLhqehBVhsm0g7x+WkchlznvwrewGrUSKtOEB8E3zFcWW7PUddbncdvAdJj0J010HwbL/Hs/Hl6aUA99BziejBd/J6gQ0TK0e++4lHDjzL37xi/C73/1O3Z6SJ2FTcR8ne8FrrrkGJkyYMFqLskNGBN1RRLF9SE982YmEcdvQJVzzbTOQru6bpSYI3iYDTl7f7HhiW7rLgsvium+WcrB9IEOgkIDIAQG+hrBf0GIeCm77O10tcV4E30rlHFx0yVdeUbooijmdZkJMrEZPbosuh3J5eGTdWrh15Sp4r6e76L47ZMJEuGD2LDhi0lS6CPN8uTTVabCj4ZsGUQAwuOFF2PLuTdC34S+Bgx9bdLkvNO18HtTPPF7bAurrmv6ScjzRhaWeProQ5u0dgjC7QToe2W5Qf9a1G/Th23NAEUWYpvOkkIzob1nAL2Y36Hl98/e4CJMb7fC8Zd0DSU6E13cyajE/5uE7bHrFNOEjBd/xVBwap9dA3YRxAt0c2Jny/vvvh5deesk0vsGMNma+P/nJT1L79ygKI4LuKKL48APho5jkxCm89G7ZB93Itq/lje7b73bpWw5ytpktBinLbMDbgpTyUhYaZ5NF5fI/fdtdLI+Uh3CLeYJTAYwWQO1gwryvIVs2/uHP8GIUFl1a/TfI7K3nmOJUnOqRxQudHaT7/vOmjUX327zaOrhg1iw4eXozVCVV9t1o3QvgGwGWCxwBsl1LYMt7t0B320MQyw0WOJ5wJOvnQNO8C6Fh7ichlkwTfNP0QuwGCx1P/D3F2W0F32wvqGQrHnwLu0EFtxBoN+jaOxZ6fTvSFu58aYA+HL7j+nsM27wm/DzLy+7Dt854F220U0mXywLZiW81qI6oYNlJ3Pp9jxPZSTH4xgiTnhQDaPndcuA772W6w+CbRERZF74NcJcB38l0HBqm10L9xHEG3eMtPvjgA/if//kfeP755+GNN96A1tZWWLZsWcXTiaA7iii2nyCQKKPZDktP2C3CXurdcO76Gd03Z7ndRjvKdlC1m5cFiAwSstENAzNnvVkmorTeNsPMOVOjDA8pupQwwoWacrpWg+sWXWIgSCndt/IQtzpmoeNWeX4BfYVFnHpj2qtyPg/L+vrg1pUr4IESuu9JqRSc0zqT/iZWVRn4Vnpst828BGDcNtm+9VR02bViIeSGuqyG3vPVwE6XTXPPhYb5Z0GieqIa/OB6ceZbSzuC4DtsYKZ03MJukOE7yG7QsRcM9vo292NCizAL4bvQ69sCc7FGO9KukO0GpcQo2OtbwXeiWKOdYvAtii7DW8x78E2UKGwGReZ9vME3Py8G32EZcVGqEAjp8rOVwLeF8GD4Nu3mJXzzAao7UjY1146/TPd4i3vuuQe+8IUvwCGHHAJLly4l3XoE3VFEMfakJ8VsB8vRfcvneUf37Xa4jEE2RPcdC5Sb6AX13E705zmTrTtOOvpbP1utp2e6VDqWg2oprNe426zH6tmVP7ffZMfJZorMr0U6IYeRmXVzS1ut85ZMBu5cvQpuX90GG4fCdd/V8Th8srmZLAfn1tabAUOo3aCGXIK3oR7oWn4vdCy9xRRd+naDtLyJGmicfTo07nQ+JOtbDXznnWy/vjshCh7tMWGzxQyophBTNFgKtRv04Ftv5XDY1lIeV2Yi973OfHsOKNxox3h9i4GlhO+gRjuyPqGSRjsOfDsFl1GL+eHCd7Hsdxh8l+tyEiRPyee3Dr7xL5vJFcB3QRZcw3ciPU6g+z//8z9h3333DXUsKSceeOABeO211+Db3/427GhhKvoB4POf/zw8/PDDEXRHEcV4thxE4NTfC3IBoX/5OcM3OZq44O3ovk3mONhmkEGK3zMZcZY3iCY5nLWm1vMm681pJm5QYX2+bZMdK9nQS+9IThRkW5S2+nHX8YQz9LRdxSBBELoDWW62X01qIJuFR9atg1tWroTFvT2h+w2/+bEpU+Gi2XNgn8YmlTn2Cjll0aXSISu4hNwg9K5+Era8/1sY7Ho3QJ/NM0lAXcsnYMLOF0J64m4Fjifs762y7FyQ6q65nK4L31bX7cO3sYys2G5weI12uAjTb7QjC1a5FqGcLpcsPWHtNxbIjih8S69vc5fGbzEfF/KT8Q3f/BeU5S6W+R4t+OYoF77R47uppQ7qJ45x9xIEzksuuYQa5Aw3Lr30UrjxxhshG9bXdAeJCLqjiGJ8Ww5mAlrNYxRr22FBSxdc6mY7fgacO16y1jtIwsJA4ne5tBpbnZ02MGWLLikc7bWCNQUlBpu8zLTMhmtPZsyu64woFxkaz2vteMLZfjlY0MhvrQUZWYXNnlw+/uyzmzfBzStXwnObNxfdb3s3NsJFs+bAx6ZOgxRn+R3HE9VxUbpyoN0gXuwH1j8HW979LfRteqFgu0sIr5l6OEzY+SKomnaIWs5hwjcfF/RcF1lKRxPr7Q1Fvb6dAYaGbwuW4fCtjpXi8M3fyVbQaCdIduLDN2e+7eDDk5n48O1ssRLwzcdoBN8fGnzH7di8LPiW2e9i8J1IAExoroGahu2nI+XYbdfkxbvvvgtXX301DQb23ntvSCaT9AP9//6//6+s799xxx3UMROtD+vq6iiT/73vfQ+GhoZGfdmjiCKK7TsQDtKJBFTrv6pEAtLxOP1ViT98zrfSOUtOns7i9ryBHQ3S8USKivTiiTR5RsdiKfUv/8VSEI/j+Ux7FxuTN5tZZBiRBWaYRVfZevUdfE9JTtQnlKZXZQ45i2kuelS/pvBQZqNVm3rzxEpDUJIgZCLEOU7hn1oOsfJmuqa8kbPtGph07t7JfCq7Q4DDJk2Ca/bdF2496GD45PQZtM2D4o3OTvjWW2/A6c/+FX6/cjn0UpKHpTq64FJk6lWxrJLtVE07DGYc/Qto/dgtUNv8CcjHEoFZ7771f4X2v34e2v9wMfSsfBTyMb3dcmoeBqA1vDJTSkcTJ++vgZS2GUtL9DYxXuTC4YS2kSk25MGJ3rZiBq40hZ9byY0aL6gvEADrImMePCjAV99JeNlu8ukWIE8Nc3S7+JTeN1R4qddRDVZz9s4ROstkszSwVYvrbiFy8BHe3gqg7WDQ1WqrLaS+oz9HAzouWubusbrIOaf+clTwPPbUuLhZEE5TKYB0GgDLHuQfvsZ/DL5yM/Bzf9OU+lxevIe7VUpJ+H0u1eDX+T1ZwhFPxCGeSkI8nYREVRIgqf7Fv1g6pVZuO4pRy3TX19dvlec2upz09PSMWKb7q1/9Kvz4xz8ueP073/kO/Ou//mtZ30VQP/bYY2nd/vCHP8CWLVvgyCOPpIY+NTU1gd+NMt1RRDH+Yri67yCvb6m5JhjUmW9utCPbzdvnttGOtB1U89IFlVZda0Db6LNN0SXrqOXnbYEoS1akFtxAG39WaHhdXXbh99T0EPw5x60htsDWQHSfFJlfJ0Wu/0UgXDs4CL9fuRLubG+DbkzhhcSEVArObmmFT8+cDZOq0I1ET1tP0hYOxgkw2W4QlyXbs5ocT3pW3QP5bH8BfHMBZqp+LjTOvxAa534SRaduZ8syvL7VtMrx+rbLHOr1LWQmfibcGfzJ49K3Hyy70Y7dj2ZAKHYVF1wifPO0t67LZenMd6Ut5o3TyRhuMV+u7EQ7TgZaBmL4chA/YiEZcvl5UxYiMt9+dtyfD+q58fyI2e5EMgaNk1JQXQ1jX14yEkF2RSME3ddeey1lu/fff3+yKkTd+U033VQSuhctWgSnn346gTa2t8fv8qAAARzdSb7xjW+QW0lQRNAdRRTjN8rVfVMGL+BULM+lMk/n+n2rNvOm4Y50PyE4lxDF+m0JyAKcJSQTm+kumKz9FjRrvci1pMRzPDHuJFpnbKwNAzoRSuBmEOd5mWyr4/8tZQlqoGAGFQST8QL4xmn0ZDNwT3s73LpqFbT394fuN7wr8ckZM+DCWXNhTl2tALpgr29WtdPAYmALdHxwO3Qu/z3kBztC7QYT1VOgce5nYMJOZwOkakO8vl34lvIbsw3E4IMBmx1OlNtIrNDbm+8fYLa33EY7wgElvNGOuGNTZqMd2eXSabQTAt8kNxmFFvMRfJcH3/5jhm99mimIbQHfQYGDyXg8Dw2NccrYby/QnRyNmaNjx/YWn/3sZ4c1MEA4x/inf/onA9wYmMX/2c9+BkcddRT89Kc/hX/7t3+jDR5FFFFEwcHODAmh+05o0E4K+MaCMX5smuAYiYkKkznlqxTKGfLKZ5iKE0kukoRYPgMxlDBg8WVMFV3SzXPtMIIuKOQBbeQfmMVTgCKtBunT2CpetKRnBGanDDqXEkFpYGJ7QBHktmIytgqC/GY/ajmERlcl5LV+XNsNBmS7Y76kRQ8UWH4iNez4Wm0iCedp+8A/rFsHv125At7pLmy2gxaEd7a1wV1tbXDMlKlw8ey5sM+EJpFac+Gbl4fgN90EE/f8HDTtciF0LbsPOpfeBNneNrNNGb6z/Rtg8zs/ho7F10HD7DOhaefzIVEzRXh9h7eVZ500/VeAI7cCymL2GuFbD1SyOoueiOlCRs4c62Jc9FjRe9zCtpq4EKNYxxMpM6GjQmfLhZJfLa/eH9xESklMlJsLzhk7mXKjHRpQ6d8Lda5Eu0kA+k2QIIQ7iIrfAv+mkhK+SWbl6rRD4Vtr4dU25Ky2yHzLxwbUpXVlXA1cxmDmm2Un+Idwzf/Kxz58y+9y+FrtsPf91/k9/3sM+fw6z7egdT02xuIi6e0oRgW658yZA2MhVq9eDS+88AI9Pv/88wveR2nJrFmzYOXKlfDggw/Ceeed9yEsZRRRRLEj6b7zntc3Q7gP4lJLLP/1Lf3U7e4kihsVeOcQUhF0UaOdUe3f81mIQ0ZnGVXjEv5ulkFYFKopBw/WNGNG3dX6quI87dOttATWflBntRX8qPccfa0pqlPzl4MJBV44CBADAtZw6+y1gSbttc2aYgYjzqTT3IycgbPpahkQ0o6fNg3+bto0eGnzZrhp1Ur4y6ZNBfsMP/2HDevpb/+mCXDx7Nlw1JSpphhU7xDKKIvemiq7m6yBxp3Ohsb5p0NP25PQ8d71MNj1np4ugzuQ/3fH4hugc+mtUN/6SZiw60WQbJhtmuuQzZ7o3qnHIw58W/8YqcNm+ObiLZRvKLBMsAZcZ461izjkNPBL+JZ7SW1TKzORfvTB9oM4TQiE70QIfBu3G7YR1Bl02XyKt3RcDERoQBuP2S6XgfCttmA58K0aouaKwzfpgXJjGr4xJHxL6B4OfMuQGexSr0v4xigbvkOy6GMKusdKvPLKK/TvpEmTYN68eYGfOeiggwi68bNbC90DAwP0J29XRBFFFGMrEAiweAyz27kQzXeiRLMdmk7BdNGYVmW+qeiLM8yUEUe5SQJiKDkhSMCsuJ0OZ6l5+ch1QlgNstzAdJUkPslaKBYNeoxbilhfXxYhs/hKFqEGA1ylaRxSaP0ZOPENthu07eWFUtkIoq0wRb+oP2uLStUVG6d70KRJ9LekpwduXrkCHly7lvaHH690bIFX3tgC82pr4cLZc+DkGS1QpWxe6H2SSej207xOtA3iKaibeTzUtf4d9K97Fra8ewP0b37JlYjQ9weha+Vd0LVyEdQ3HwdNu1wC6Ul7KIBnLJaNdgx8o4zEb7Tjwrdxp9Hv4aAJtyd1uaQCRiU6MS3ntdSFBUdOV0uWmejNr8ZZQnKkB09sAxkLgG+WkJAriYFv9ZwHEvJ48uGb38PBDkmLNHyj3CUL2UL4LqgbsPCt5sUVe2oQwnacqv5BwDetdDh853PaZnCcwrcEcFkcGZTBLgfMhwvfcp7jItM9VoJlMrNnzw79DGa65Wcxent7KfONsWTJEnq+cOFCen7wwQeH3gn4r//6L/iP//iPEV2HKKKIYvsMcytdZLhRBhBWeCnhm79P//IEWRsdi0MimVafRb036bpV1pu13/GYyn6rP84W8mQU8PLtewUdCnyyBPJKjiIbpxgdNvt9I/gTxFsrOW7Io7TjUjYjGsyQxMXqeCkjTtNWYGQGAQhJGnDVNFhmojXoesvQOmiJjAVR1kbzFVl9Y0FdHfyf3XaHK+fNh9+vWhVadLm0txf+3zt/g58tWQyfmTkbzpw5ExqTSdOkRtrksa6ZCgBjcaiefhg0Tz8MBja/RXaDvWufFE1seF/moLv9MfqrmfIRgu9qtBskaHXhm9ZJS0XklpRbxmlcIwY/Smqk9hDBNYFwIXwrbuVl5D1pl9iRD+jMutTrM3zHZaMd7cEtu1wScItiVZPZ17IouhOjB3P8vZwP3xraEb5zMTxecD7WuSQMvm3RZSF8g4Rvkm3xYC9XCN88xBDwLesXxjp848/Fz36Xgu98wHsjAd9S/709RQTdRaKrq4v+RYvAsMACSz8rvW7dOjj77LOdz/Hz66+/nmwLg+Kf//mf4etf/7p5jtNkqI8iiijGvu4bZR8JKTPR0OYXXvLVxtE5C0cSkxVPpCCP0hMCzyTk8xlIcLMd/W9OtJrnjLLv/mAlBDbrbZcfO1bi95UelpaJQF9nPVniYSQlGoRJ9qJ0vDR9AUSsN+cOiDHRUp4UzhqYadKUELdZS3qd26HbhRTZd9dm0FzQ9aenVVXBlxYsgMvmzIFF7W1UdLlW3IHk2DA4CD9e8gFcu3wpnNXSCufNmg0ztE2C1BzT7ClDq7Yv/i81cS+Y/pHvQaZ7BWx570boWv0AxHKF9rN9G56lv6qmfajRTs3MY7XmuzDbTfIGk/d3Nd9s++jDt8qis5pbwreVWBC4m0JaF77Z8URtX7Opjfe3hF2Tefe6XDJ844ATl4WeF8B3zIVvPVhl+GaYNiCO8yNIB8hq+E6VgG/3mGdS1HcQfPgm4I4XwLcq9s0XwDf3Jo/gGwKLLsUprcCf2z1Xls5cI3zLYsso0z0OYu7cucPy86yqqqK/KKKIYnwGuTEEFF36em9+TZ5l+Jxj9K7i6hZLJLXDRZK8hxm4qehSup3Qa9yeRWU6uUEJF0FyplR5etO33aJJhGmTecbvc2GjgmF6XUsMHJ26fWLAmL/HregdWGbduK/9FmkxrZIQGUyGQ631ZUDWnCSXoy6ZhAtmzYJzZ86CR9eupaLLxT2FnS57sll675ZVK+Hk6TPgotlzYT4mY0RreXM90F7calFikKifA1MO+FeYuMfnoeP9W6BzxZ0AmV6R9VYx0PE6rH3xW5B6dz5MWHAJ1M05gfzZyeub1Da2rXzOkWN4dn+iQySve17Ct8l820w4O6+oY4DdUrStox4w+fBdoPEuAt/sgGLgWy+bD9+qoNSui4Rvths021nfMcLPqd8TOJnveDnwTXdYKoVv5WUTDN9xqruI4Buc8LPfvjzEnBK878h8g/++zHRvbzcZokx3kWhoaKB/0S88LLp15Xsxi5gooogiiuEWXRqv7wC9d1DRpQOy/Fjos7HRjiqAxHu/COMI3thuTmm96Q+lKBpidQmZLpIU2eECyz8FJwTe2jOaINAshU1TmeUkuz/bfp6BjeGXIdv39y60G1RZT8qGm06NJg9sNoLVfusqTy91ZlTntBwKmpKxPNkHnjRjBvx14yb47crl8NKWLQX7DPfDPWva6e+jU6bAJbPnwn4TJtL0s9ov3OwLvU68X+LVU2Hi3l+BCbtdBp2LF0LnslshN7C5AL6HupbA+lf/D2x692fQNP8iaJh/GsTjNdpPXA1quMulbZyj1lv2D+VtisFe4znjcMK2fSrTrdrG8NaxLeYLMt1qh9gul0bjHQDfYuBE3uLYUVDDdyIEvvk5bTtBUuzEExPwbQZ0ReAbteROi3kfvnl4wF7yVAcQBt9ceFoKvnPjEr6DdN+5IvBdTHYSBNylCjK3p4igu0TGGgMLJcOC3+PPRhFFFFGMVHAGEEEbiy/LKbrkzo8SsApcTxAeEI4w65dXloME2+SVoYoVMeudQAcUne1jbbIFNnVFlFpt/CxjVZYyVlqFbDLJ7vqh3aDJuOp28IR7wmLQtRu02mADdQ58IzB5xZZOSaXtBmpkFno9lCbYYi5DJD5VDXAAjpg8CY6YMhne6uig7PYf1q937jZw/HHDBvrbv6mJ7AaPmjJFgRzamHnwrbLLWvqSaoQJu18GTbt8BjqX3gddS34Lmd62AvjO9q2BTW99D7a8/2tonHseNO18DsTTTQTNNMwRbeLJetDp4egeGyhpon2h31VDJlVkSQMDbjFvBlAavrXThyqq1F7fEnwKCiwL3U3MtmVvceHPbeFbLTEbUTJ8s/SEt2VJ+Gbfb3I9UZaMJOfS3zW/EV2vwFvLdL0kOVQYfONxmfDgGx/jUkTwXUz3nSsTvvm9YpITH75xHpG8ZAcKbKSDsXHjRiqUDHIwefHFF+lf6eG9tXHNNdfQ30g1BooiiijGXtEl673Dii5N9jvA8cR4bFPGLaHs93JxiOEfFVlqpxOyGmTHEw3gpsmNtn+je7haV8yabD035f3NcO6skeuYwqDNt/exCM1kHt3tYEFcZleV04ntZqmvvCoNyQprncEUjiOcCebBAkthWIPuKMBt4d2ejY3wvb32gpU9vXDTqlVwX3s7DBoAs/FKRwe88sZrML+2Di6ePQdOnDGDtMWsjeecvPUeYY/yNDTtdBY0zT8dulY+Bh0fXA+Zrg/MMvMWzg1uhi3v/Qw6ltwAjbPPgqZdLoBEzVTT5VJJR3RbeAe+re6ctzMP1nz4xu+qTDgWbCr4dlvMC/hmr2+egdB428yu8AIX9oOu97dojqOXN+fDNw8svW6d9JiPN91OXt390N8TxZukC0cgz2ZpukndMrxi+NZaeNvtVR/H6BwUwTeBNRdWJoYJ3/575cB3ORrwbR3bYW3n9hMzZ84ktxGMW2+9teD9P//5z5TpRh32SSedNGLz/cIXvgBvv/228QiPIoooojDwHY9DKh6nron4V81/iQT9VSUSJE3BzzE8MoSzRjbvXdUQJNDxJJ6qghi2Jo+lIBZP279YCuJx/EsSxzKgGYjBP3ZXMVc5DYZUNGddH6hDJzXyYQ06Lx9iFd8/thZtavlzjjab58PWf7yO/JizjfSaJkA1f88izsAUd+bUy+AQIxObTeFyhnxmTQ18e9dd4YHDDoPLZs+BhmTwzeMlvT3wf995G0555i9wy8oV0JMZMnzNMGe18VKTHoeGOSdA6zG/h6mH/C+km/bzihn1RzO90LHkRljx6Mmw4cXvwGD3cgO1So6hV0PLJnw9vXkutiN1qkT41lCNmW+646G/p80jtfe3gnF3ufRyOptSZ9q9rpq8ifEzfBzx8WtkOHyXQm+xhLARpOkblxg1ZW4bn4wn6C6RmbaeJx63zp0j1M5nswTgai9YmYntxmr3l2oJT7do9N0SXF5wMt+muBfhm9Yfj3v1K8S7S/SXzUAuM0ROQ+Z3MsYCx8TpNNatqX/5MT/nfxHCObvNridyc4jSiMA/+TkfwLeX+NChO6FHlttrfPvb36Z///u//xtefvll8zpmv6+66ip6/MUvfjHqRhlFFFFsc/hOM2R7EE7/6vcwe6d8gwWkiXbbDOEELwgOiRTEUtUQT6QhkUAIryLwBgRxDePkPCKyf6zRNRpw3YCHIVY9z+q7d0qKoHS8WbehjWnMo5ePM/LCa9lsA6PVtq3G2emEgZvtDc1jnYE0zVGM/ERkMoXnuAVtWWTJMGnfm5hKwVXz58ODHzkMvr5gJ5geUhC/ZmAA/ueD9+Ckv/4Ffr50MWwaHDDwzbgqC1ONJicGUNfyUWj52G9gxpHXQvWUwwPhG3JD5PW96vEzYN2z/wSDHe9BDiU8HnxTp0qGb3OHwVoq0nNdZKl01Gp/4tbF70r4TjjwbSUXxkHFu+Vv4dusoZUYlQnftK8ZvnXWmo9jH75p+UmmFdfwrTXs+vOZAPgexNdKwTd3uXTgW/+GzG8NlzWpZVaxYPjG30gE38AwzvAtftoORIcBNkO6PNa2R7FALP8hD6vYBorju9/9LlxxxRXUkGYkA4GZIRlj8eLFsGHDBspmt7a2mtfvvvtuaG5udr77la98BX7yk59AKpWC4447jiwEn3jiCdiyZQscccQR8Nhjj0FNTQ2MdKBlILaW7+joiAo1o4giiqKR9wou/WJL43gScsqXt+jNI30bXWm+MROnHU4Agdn6fjvFiBI6TLGgm9/hDKDxB9eNapRNoC5+ZK9kvW6yHb38l73BFdTYjpgsMzDFa6KIU8lplPbbQLamdSO7YCcOoy238Ge1xCz10JCHAw0tV3h4/Tq4ceVKaroTFjhAOr2lFT4zazZlzc38je0hA6mdDxPqYMe71Ginp/1x3ZBeen3bqJt2FDTtehlUTdnXdLnkFvPSC5u3v95B7nQ0aKtBAVgNtpZqsAyFZSfsfqLuqMSdAkszbaGmkcec81x8xpFG8bYhiZXW9+v3ZaaeCzzlgMIMCkUxadwDdM6ScwGmvGskC3wLfb5ZdiKGEs689e+J19TYFPLvgxv6iO6WDsSPrcgJ2Yn881/j8O0GwzYLv47wjh4XtbWjvSbl89qHDt2Y6ZbaZXz+zDPPwCGHHFLw2f7+furYiCtWaTz11FNwzDHHlPwcareDiiJvv/120lm/+uqrMDQ0BAsWLIALLrgAvva1r0Eah2ajEBF0RxFFFJVGkONJEIRL67ig8JvvUGYOO10SaCvgBs9ukIGCEZFhm6HZwIfOPMuMIH1D27mZ97lroJGOYKLGLd6URZRGTa5B3MC3zqarz9MS2c8RlLuqd/a69uHbvBoA/+737d2Ev2zcSEWXr3Z0hO4zLJY9Yfp0shvchXo/uPANOqOb1fpsslDUOvShnlXQ8S56fd9nvL6D4Ltm0gHQtOvlUD39I4TFqpEMS98D4DtoECb2lcJNC9/cHIjh2xZsloBvo22X87KvGY10QYt5+3luQkSZcemQorehhG/zO2FpjWgx78M3Qfdw4dtZwgD4Nm3lS8M3vYd1DuMYvnO5QjvBUvCNaq8Iur3Ak+DatWuhtraWMsj4/Nlnnw2E7ueeew4OP/zwMV9gKAsp33vvvSjTHUUUUVQcrNUN63Apiy4x/OtWwXPjFKLsBqnbpQPeGshRm2qkGuq/SsLA1oXSI4QlCEpzy3CL8hXO8DK+Gfhl2OHMtGm048OvBn1RUOpaw3nrJkjVDBrYJ1psFQZq9T0eD8jMu2gUIz776pYtBN9Pb9xYdL8dPXkKXDZ3HuzX1KR9QhgcFc4q+FbFlxK+M/0boOv9W6BDe33TvgrYj1WNe8CEXS+FmtZjA+Ebw83my22UD4VvGreYQYIL3xhxH77FnQX7KBy+OfM9HPgmA79y4FtTnYVvfYeF4VvLXeixgG9ViiBlJxF8bw/wnYyguzAQsv/93/8d/t//+38wf/58kn2gvOQTn/gE7LvvvvQax5NPPkkFi319fTAeIsp0RxFFFCMF347TSQCAs4Y2yO1EhnMb3UhPVPbbabKD5nWmuQjLR9zpaE5zuhci5FgbOZnJ1sDuZSX5Vr6UH1gIVlIVniZnzn0QJ6iPc/acHSdsdh6v8jE/qy4cTtSKoAWjWiEf/s3yxWLwQVcXyU4eXruW7PDC4oCmCXD53Hlw+KRJavm9rK2Bby3voI6XCI5DXdD1wW3Qsex3kB8Mz66nGubDxJ0uh9rZx6tC2QL4Vs1xCuBbHlt6zSx8689r+Fb6cS3vMJIiloio7RkvB759mUkIfPNAyei2C+A7T/7c/NlS8M0gj+8mNHzT9kYXIQHf6vv54cG3aT8vMt9mWuM3850NkJn48B1ULCk7WkbQHRAoJ1m9ejXJP1C68b3vfQ8mT55MhYp4QGGb9b333ht23313eP755yGZTMJLL70E4yEi6I4iiihGA759ADevCRcSX2IiL+9OO20G71xh1psAnJuFaMhgkMZQUGu9s2UBnM0qawmDaPVuJCcC3pVOW+u3zTIzDroZavqEB+ZmniTN1vDNBXSsFxfTtxtDZ271NB3xsAZMlm9I+G7r64ObV66Ee9rboN/3SxOBcpPL5syD46ZOJbtBqfVWLVisGw1iIQ8u8tl+6FxyN3QsuQly/evcRRZrnKxtgQnzL4a6+adCHJ1q9F0EIzsp1mI+BL6lZZ+BbyNDsfCtvsta/mD4ttMPh2+/SNjs/3Lhm1Onw4BvPJ6Tw4BvlkDx78IufQTfw4Fve9fJ/kXQXYamGzPbt912G+y0004E4fyHMgssrvzOd74zop7Y23NE0B1FFFGMRmSLFFvyv74FIGejg7LgBIAM3mR7xhpv/S+BN8pRFNRb3bbNGqvpKEjiZiVSY2313gzaEst0AadpGa/a0YuyyALYUZ/X8C304WHwrcJmyu0yyKy5C8PcPIhBzG40q2HfPDAIt7WtgttWrYJOpImQmFVTQ17fn2puhSqESV3wVwq+sbto5/IHoGPxDZDtWRkoOcFIVE+BprkXQMNOZ0E8Wbt18G2y2YXwbWUoLnyrlvP83JeZ2OmzLrx05tsOtsqFb3K/EQ4nXICJvwlelq2Dbz7+wjPflcG3yniP18x3Vrwm4RuDoRtLAKNCyiLQHYWNCLqjiCKKUb2YleF2QsDh2/V5RZYYjANW823BO8ft5XUmnP2IpWOGlJiQBaDIKBvQFW25WedtyyfdQjhbPGltaV09toVvnr/vdGI+p51OLBUVwrcq2xTw7chPCjPgUjeOQNo3lIG71rTBzStWwjq0EgyJKek0XDhrDpzZOhPqEwkv8y211CjtsLIaHPB0r34COt77DQx1fRAK3/FUIzTNPQ8adv40JNJN+m6EtevL+01hvMGP2jqszdfuZCHwzcvM01Kwy4MqN9NdoAMX8C12lslal4Jvcikx9oGokXcz3XxMMHxLm0EL37bQktZX38mJ4Ht0Ip9XkF0ufDN019XBqMcO416CP0rs/Mh/mMXeZ599qKhyvEZUSBlFFFFsr3aDElwxQjXgBOsKvnPCXpDw1IFx/XEpY2ENuHGvcAsvWe/NzW+oc6GwJZQZP7YENJlss7w22ywlALzsDNmmY6QH32o7WMmLAWhny8bKhG8rYRnKZuGBtWvhxhUrYHmfKogMisZkEs5tnQXnzZoNE5EutKuLmLSAbw2z+p3e9qeg453fwkDn66HwHUvUQOPss6FpV9XlUt1HCIZvXm93P9nMLe0r7XAis/PlwDcEdSANgG9HZlImfJvBgfDuNoPHEvDtH2sfBnzbY1Y7nziZb205OI7hO5EAmDgxynQ7gSfCK6+8knTar7/+OtkC4msoL5Ewjn9TpkyB8RRRpjuKKKLY0ewGfR241X0r8GYAR8ziDLiCcTehLqfDWnD9jvlXwTYWQFqpipQomGkIL29pwiGtBllbTpDNBZQavlE+YCQcCDa5POQRcnVBIHszO9lrMT0J3wb+VRWdsWzBBjambb1u9POHDevhhhUr4G9dXUW9vs9oaYULZ8+FGWhfGwDfUhCiOkKqN/vWPw9b3rkOBjaFdz/GZkj1M0+FCbtdDMm6VtNinmUs3BXU6NWd+drnPnxzE5tC+Nb7rgL45mO30I6w0NdbdTfl46Q4fNvlsQW6peBbenzjH2rZUYsfwffIRyn4xl0SWQYWkZdkMhl48cUX4cILL4T29nZqWrNmzRro6uqiA7alpYUy4ffccw+Mh4igO4oootgR7AYhTKrgaUwpU0yyk4wD3K7Xt8xJqsQML5OdnpvJdtxRdNabpCWmDbfKsLoWhMy7ivYc6YmGVHY9IemBLgRk7TjDt3ldFF4G2SK6mnLhsKKXX1aDGdmELt58bvMWuH7Fcnhhy+bQfYZZ1ZOnz4BL5syFubV1avrC9jAeAt84/76Nr0PHu9dD37o/6iWVoh3eKEmobzkBJux2KaQa5zvwTetQAN92IMNbIRcI3wq4FfzGQuGb9+2owTcvjwffcnBQCXyzzjscvnnZ7XKzbEk9Nw3uo8z3MOEbN21Dg5KZjBl5CcLxo48+Ct3d3dRUBjs2VldXD1vTjXaB2Cny5ptvJokJLt7DDz8M//Ef/wFvvPEGHH/88bBo0SIYDxFBdxRRRLE92Q2GAbjv9R2WAWfQlI120OnEb7JDWXEvU8s+0VZywpaDtjNlIYi78G1sCnWGNmHsAYUG27T6FnPnTpT4BDPVBrItGiruVK/L5bLr4cO3p/020habAWd9OcPz652d8NsVy+HJDRtC9xlO5bip0+CyuXNh9/rGiuC7f8t7BN+97Y/pMsMA+IYY1E0/DibscRmkJ+yuMvQ8CMH/kW7bbJWCvLcP36arZQh8KxWFuptQEr4LNN6FBZZyicqBb+5e6cM3fo8tLHNFNN8SvpWOHAdIqiiYf2N8PFQK3+qVXHmyE+5uOQ5kJ1mR6cYiym1RX7pNoPvBBx+Es88+2/HNRou/iy66CL7//e+X1Rrdh+6GhgaCaoR3GfhDOPnkk+Gggw4iB5PxEBF0RxFFFNur3WAQgFfi9a0mrOwG3UY7VobCXt9Ghc0SEtFe3kc62aBGwQ8CjkFd43BigI5gTRdbBrSYt90CRSZVPFaNeSwYxQLgm6HP6taljruwwY5eFDPQIPgWmujFPb3w25XL4aE1xb2+D580GS6fOxcOnDBJTVMXDBJ8a315kOxkqGcldLxzA3Svvl/ZPwbCN0DNlCNhwu6XQfWU/QvgW0G+HG64RZel4JuOOdx3ZvnC4Ds40838GSsB3yC6XrJMyYdv/k5Z8K3XY3ThW/92xCsRfBfCNxdTbosYNejG5jXYAh1j1113henTp8OPfvQjmDdvHrS1tVFWGp9PnDgR/vSnP8GECRMqgu7m5mb47ne/S+Dux0MPPQRXXXUVtWofDxFBdxRRRLG92w1myvD6DgLwcK9vKTeR+m9Vamdbu+N3LYy7uVQurrQFhI7HtwAiK1uxXS6D4JuLLdk+zwfxQstB9Tk5UFCzkODpdVsMynzztNhZRcD36r4+uGkVen23w0ARr+/9myZQ5vvISVN05ltZ3uH+cgcBnGhX0JrpWwsd790EXSvvBsj2F0yXP18z6UDTYp6HM9SZkprjKGcXmesvzDbr9dXLkzPfLQHfLBkqAt8ObHOyWB6LwkGnUvimyen9JOEbp4bfw89tC/g2nvMOfNNSjevM97aMUYNuPLGgXzZmnJ944gn453/+ZwJkLHzkQKkJZqqx+PEXv/hFRdD9zW9+ExYuXEjdJxHkZdxxxx1w8cUXQ29veEX3WIoIuqOIIoox5/VdAMk6tOzEbbRjXU9kox1GVdld0pWcWOiWTh4YKCnxu1Xq2ZsCTAPHwkvcylDUdFi6IoHGgWytRZbAzeDJWW4JZLajuFt4WQDfvC21/R6+u3FwEH63ehXcvmoV9BSx4N21vh4unTMPjp82nWBYZr4ZArO4HbRWW20YgOzgZuh4/1boXHY7QKabXy7Yh9VN+0ATtphv+ShNVwE0BMK30bV7AyCoAL7JN1zANxdommJZoZHfGvjm5Q2Eb70vZIt5XhfCY/17KIBvhu4K4VsO6Pi42Br4psd4VyaC7+0TujF7jU4jWPD4u9/9Tk1Ed45Eq7/99tuP/tauXQs//OEPYf369RVBN7qXnHLKKfD000/DJZdcAmeeeSbMmDED3nrrLfiHf/gHKqZ85plnYCxHZBkYRRRRjBWvb3Y7kZca3+fbgTfWfItGO7LNvJKcqPecRjoaoixox0p0ueQ25Po9lpxwVzvH6cRmGm3EvBbzLiBJEFfFoBK+bZbbWPGZbLmFb0IyDZxu5l3LK8SAAl/rGhyEhe3tcMvKFbB5aCh0n82pqaWCy0/OmAEpHIQIzTeYFvMB8I0t5hffDh1Lb4X84JZQ+K5q2BWadr0Eamcej1u6oMW8Wl+rmZbwLQ6SsuGb/cmDMt/lwrc5DoW7DR9LpmkOH/NCIlMJfNNQ0jtWfPjGbyN883E9LPgW+yWC720T20TTPXPmTPg//+f/UIv2V155BV577TX69+2334bBwUE6IBDA0XEE/9AasJzmOHiAX3311fCDH/wAVq1aZQ5clLXcdddd1BZ+PESU6Y4iiijGote3jCAAN3Djdbm0WW/UGfNrFr59eYcvafDh23a5FDp0A9+c9Yw78FaQoWctNGfGRdbWWhZqH2luZ8+0JztrMrAVwHdp+YncfjiNvkwG7l2zhoou1w6EN9qZUVUFF82eA6e3tEJtImkKLYPgm+4qaELNZfuge8ndsEW0mA+C73TDPGja6XKom308xGLpkvDNyx8G31poYVrKy66c/F6sTPh2M91Wb14ufOO/Vp6zncA3W1gOA75VxlttzSjzvZ1C9z/90z/B7bffDo8//ji1b+dA679f/vKX8NWvfhW+8IUvUGYcgRwXqtKOlO+//z5pxSdPnkxwj58fLxFBdxRRRDHWvL4ZwE3DmCIAbl43BZfWYpAhnGUossulO03XTcQBYS621C3jZYt5x9CbQYhazCtttcR3Kx4Q2nGVdlct5jWwFsC31iYb0YW2CFTwY9ZA2AvybLgAU4B9ATSqRjsPrVsHNyxfBsuF4YEfk1IpuGDWHDhn5kxoSKaMVR7rlYPhO08FsN3L7oUti38L2d7Vav8H7L9UbSs07XQZ1M89GWLxqgL4xuC7EnwMcYY9VgZ883LaJj0sA8lXCN/6GHa2oydF8RrvKPjWHvD6eyb37MG3nH6+AvjGo5N04F4HV7uteAyn3xeNi0YCvu37UXyo0D0wMEBSkD//+c9wwQUXkJ0fyj+WL18O//7v/04zfuEFZbrvjsxtRG3gwyOC7iiiiGIswHeYz3cmBL5DAZyyeTnIZa3Wu7DLpc74ielIbTeqCygrbhFD6L1ZKuK2mGepCX+a4Vu2qlcyE63xVjNW8yeyVO4cxZxOJHw7hZNlwLez3QLgG7c92gxev3wZvNutNNlBUZ9MwnkzZ9Hf5HSVgW9aXyq+dOHbFLfms9Cz8hHY8v71kOkONzpI1kyDCfMvgbr5p0I8UTti8E1afDNIUFKTovAtZCY+fMt5bWv4VseRtXh04RsAU44OfBf4kFcC31rGxUtK82cf8Qi+t+s28D/5yU/gV7/6FclKeGfPmjUL7r33Xth3332Lfrdc6F63bh28+eab5NX9la98BcZDRNAdRRRR7OhRaaOdYgAuERSzrGw36Ga9GcYZCEW2WkOsgm+hB3dFKAXwza4UdlkUthBo57IWpkmawuIGBXmquNL6hJfy+OYGOwa+AxJWpsGOds+IeS3lebpOmyHtxPHM5s3wm2XL4LXOjqJdLs9qnQkXzp4DM6qqA+Gb9pfuSmmdZfLQt/px2Pzu9TDU9V7o9ONVk2DivAuhfqezIJ6sN50+5Z0KB76dvWM2ggJMAdjF4FsdP4Xw7VsLBsE3L8NIw7fUsyvZCf4W9DYS26M0fFshVQTf4wC6OZYtW0aWgtjU5sADD4RUKlXyOz509/T0UNEkwjX+MWhjwxw+QMuB9LEQEXRHEUUU47nRDmcz+Tn9KwCU3kePby07sd7e0nbQzXzzNNiijrtZincNNrNO3Nq12YyslKlQ0aaBbxeSFZixjET4iLNMxbQdL4RvBllbxKkdQTRGSvhmCPXh218vBs6XO7bAb5Yth2c3bwrdZ6lYDE5tbqGiy1k1tU4BIeu/lTrBh+8Y9LU/BVve+S0Mdr4eOv14qhEmzDsf6nf+NCRSTY6Wulz45kFH5fCt9ovS0HuZ7hGEbzV/FTxQKch8i+fbDL5ZIjSszDdaDeLcI9nJqEM3wjRaAfIfZrIRsocbmHn4l3/5FwPZKE3hEWAymSTbQNR1Y6fKE044Afbaay/YeeedYTxEBN1RRBHFWIfvMAmKD99BYZ08UF+MRZc2613YXh7/dfW7JoPuOJzwXC0wc4t5q6kVoK5BSGW11W38cuCbvh8I38oKDwcSqiOlhSID/8L1hNfDKbLUAO/4JdoUsYFEhNW3uzvhumXL4Q8bwp3GMLN94vQZcOmcubCgts6xzguGbzLwo/XsX/cMdLxzHfRvfjlQ701fS9bBhDnnQMOuF0AiPakAvtn72tj3yf3PWWOW5owkfAcVWA4DvnEwor1oKMjNB7dVCdkJblvVobMQvgm6RxS+edtJ+NafjeD7w4NubE7z8ssvw+uvv072fgjN6NEtQRz/pkyZUtb08Pt8YjryyCPhmGOOgT333BP22GMP2GWXXSjzjb7gTz31FBx99NEwniKC7iiiiGI8wHcxAPe7XIYBuGlOYwouRWMd3fHSWA5SIxkBxKaRjnZBcbHbSEX4mRBtOFlyA9KmG6bnYmLoR7R3L4BvlckOgm+95azDSgn4Zn2wNkrRRYT6OyLTj/Nc3NsDNyxfDg+vDe9yyS3mL587D3avbygbvrGYtW/Di9Dxt+ugb+Mz4fCdqIam2WdBw64XQrJ6WkmHk5GEbwW/vN3sfpZ7XG/K8uDbaM7VdikG3wnx2Qi+d8wYdXkJOpSgV/eFF14I7e3t0NraCmvWrIGuri46uLCgEm0C77nnnqLTwRPll770JWqiU1VVRc1xvvGNb5jsOa4AdrccT9Ad+XRHEUUU473LpQ/g5bSYd7LVCDhZ9vZ2M98M4azbxjBFkTKzqAskxRws3LPTCWdJhYUfQZvWe2MzHjVZ3+ZPacIZFBn61VcVZKvmNboJDA4UbD/7YcO3zHwHwffKvl64aSV2uWyDoSJ4cCS2mJ83H/ZraKRCUSkHihWB7/7NbxB89657KhS+IZ6CppmnQcNul0Cqttm4v1j4tplaCbiFMCzhWw9wNOjStPT2osHNsOHbZsNNhl431ZHLwsuq4Fvvc/E+DloqhW+eZpT5HieabpR8oNb65ptvJkjGSWEb+P/4j/8gqQi6mSxatKgsTTdqwVFmgl0np02bBv/3//5f+NznPkcQP96gmyPKdEcRRRTjKcK6XEqfb4QOlam2GU56zP9K2OFb6eT17Xa5ZPBWLeY55ylkJg7cFOB9cLGlWBbp+42Zd5ScEEZTFlyLL0RXTPZdVq4gEr4FoFHmm+Gbodtmd/lzppTS9/ZWGygEvvm5gu81A/1wy8qVcGfbaugv0mL+4AkTKfN9SNMEiCWUPSPrus2yse7dwHccBjreg453roee9sfIxi4QvmNJqG85CSbufhkk62eXgG8PfvkY0NsGN5nRVPP+FfBNMGzuXvB3y4PvsKLMDwu++d9kKdkJb50yNd/ssBPJTj4k6G5oaCCoxpbvMvCEePLJJ1Or+O985zsVFVKixSB2nvzjH/8Iu+66Kz3+7Gc/S23hI+iOIoooohifXS7DWsz79oKB8Oa0mM8YlxNqsiOcT1QhoJvhlk1y3GDYRniyIMVgyHhjBwbayUTDtzGzM63jpaRF+2Ez1IumOuz3TTN14FvrvnkqomulD1d2YMEQLoDMg+9NgwPwu9Wr4bZVq6AbrRpDYu/GRvjs3Plw1MRJEEsoF5cg+LZgqtZxsGspdLxzA3S3PUT7w93C2m0E4lDX/HGYuPvlkGpcMKLwzdIYNS1+Xhy+7fTC4VusRFnwTdImXVtAz0Pg28C6B988LRBa762Db3HvIoLvEYNu/yxSUWDr99WrVxdONB6HL3/5y5QBrzQOPvhgAuz777+fCikvv/xy44wSRRRRRBHF2A+EhXQiAdWJBFQlEpCOx6FK/1Xrf/G1pAAJ1ogTQAmwoUD4iCcgnkhBLFkFsXga4nH81/5BLAWJeErDmIZ0AmINYsLnmP7V76usu2q8Qhp10pPr9zGHywMEIaymhi70LQvcLDPhMNl36pejmphwu3h6LIDQrrGYloYpOQDgAjkJX07ZIH3Pghj+b2JVFXxh3jy4/7DD4IvzF8CEEFeyNzo74Suvvwqfful5eGzdOshks6RNd9aKt4N+DdcxVT8Hph78H9D6d3dB/awzSVpiPm6GIVnoaX8YVv3hbFj7zDehf/PbQjaDGWvdrEhrpi0Q+w4kujGTLmRlcMX3qMU83m3RTiiI9TiuyXFxLL2vrRLFkikgVpjOAx27bW0BoyoMFYDMmW29n/FYxuc42KTn3AVTeHYzcNPyxuME10n9x9vT98fHvyHsq5LL0T5RS83FqdwwigeY+vjQziRsa0mDOtnNFRtOsT1mLKHXTTsF4V7nuopsBnKZIW3rKZvyjN/Yqkw36q8XLlxIkIwuIzJQJnLxxRdDb2/vsH26cdFuuOEGkpog3H/605+G733ve6QfHw8RyUuiiCKKKIbXYt5vruOoqXXm27aY95vtoN5bvyez3MS7brMdthRk6YaEMfU9znLazLf6hM18OxlZ0zkTM93Ccs5kqdU0ldtGQLMdYXFotNqOxllLBWiS8SKZb/aydp1VerM5uLu9DW5csRzWDw6GHp5za2vh0jnz4KRp0yGZUFZz3GLe5qRty3bOfA/1rYGOd2+C7hV3QT43YN7zo2bKkTBxjyugavI+xq6QNeSlNN+c3VYyIeVfTm4iJTLfahn1nQ3V2chxlFFdL8vLfDuNbYaR+ZadLBm2+fVcicw3w3rZmW9nCYeR+aZBB9oMjl2rwW0iL0H3EuxI+fTTT8Mll1wCZ555JsyYMYN8tlEWgsWUzzzzzFY3x8HOlz/84Q/hu9/9Ln02qJ38WIwIuqOIIooobMgsXjEAZ12FQYUA+UkwfLuSE9Uym+EbM6u2KBJ8+GaodWwC1fvs923gvUCLLt1R/LBTl50aZYacQXwk4NuZnoBwC9/K/WMgl4f7166hFvOr+/tDD9OW6mqC71NnNNPdC9Ywh8K3BsBM/wboeO9m6FqxEPKZ3lD4rp50KExC+J56oAHufFnwrabHQxbS6FcI37al/OjCN9sEKqBWbeFLwTfWRxh3GW08ntCDQ4Jv7dTjw7fJzJvMdwXwzXdiDHzbLLoB8djYhO9t1hwHD9Krr74afvCDH8CqVavMzlmwYAHcddddsPfeexf9PkpRfLvBMO/vjRs3wn/+53/SvMZDRNAdRRRRRFE5fBdrMS+LL8UETYt5ZTfIvt4awB34Zh2xnKYEO6upNu9rrTQXTBq9uFOoyUWZdhrucovMt2ikEgbfUjJglk8XD/rwLV5wCy9FBhxBKchTfCiXh0fWr4Xrli+HZUXubE+rqoKLZ8+FM1paoaZM+MYP5YY6oeP9W6Fr2e8hN9QVDt8TDoCJe3wWqqZ9hOCS4ZvWMAC+xZYdZfi2c80Hwrfr6x0G37w/JHxz/1OWVPHxYDTf7HfvNHSy8E0ArteZ4VvN37rzjDp8x+KefGXHjA+lIyU2sWlra4PJkyfD7rvvTlnsUoHQfeWVV8JLL700Yt7fYyUi6I4iiiiiCA8Gi0wJALfuJBAqPzHTRF9sLrokW0ErOTGWg46GV+ROjV+0BRjbwEeLTkRbeZafmEJIRU70Oqs8CsDcg28u/uTb+QzZpDHPqUY9xeDbbA/f9q4EfHNTIJYyoBb6qQ3r4dply+C9nu7QfTYxlaL28ue2zoK6ZFLdCaDujfmi8J3P9kDH+7dB59JbIDe4JRS+qxr3gYl7XAbVM45WXT5J863g2065PPjG9cyNMnzbbR4E3/bYipcL30EFl3qQ5B772xd803sotdpB4ftDge7hhJSXjJT391iJCLqjiCKKKCqH76D28r7mW0aQ/pvdThi+pcuJsR3ULebJ41sW6DHCycY4ntOJ7XTJmvDK4NuCvlhyM7+Yk/FWLeo1OpoiPysxkfjttpa3Om/fZzwmIVFm0PMAf960keD7za5wKWhjMgnnzZoNn5k5GxpTKRe+jcWgxlohd8ll+6Br8Z3QueRGyA5sLNyXepGrGnaHpt0uhdrW4yCujRRd+LbbIGgaQfCN68n7l81jeHCQD4VvPRgy+2ccwTc7y0j4Bp7W2ILvHRK6R8r7e6xEBN1RRBFFFMPrclks+x2U+caQF3pr7ZWHHDbZCYRvpQE3cChC2dppCGKQFHBvTAO1vzdnzg2QM8yRc4aFbwYzOZ0g+FZNfNTy+/BtO2ba5ZCFhrZIM1888x0C3wSCuTy8sGUzXLt8Gby0ZUvoPqtLJOCcmbPgwllzYFI67cpOisF3bgC6ltyt4LtvbeG+1OuUbtgJmna5HOpmHQ9xXYrI8K3mw0Mk3lY24x8O37ZPEWb40fmE52eLQiuHb0fjzU43cr8EwTfDsii4lJl5M/0K4ZsdVYYD3+ZuzDiC787RgO6VK1eSYwluhB/96EfkwX3TTTfBPvvsQ5A8d+7crYbukfD+3tEj6kgZRRRRRDGy8B2U/TZFaPK7AoA5DHJoG7R8AHxb5xO30FFBRXH4xsDOlbIojoFcrpMD397yceaWJSj6S6KFfDh8s8RFdqbkjWKlMTx5a39ntOUOeCn5Ck1Hv/ZqRwf8Zvky+OumTaH7DK0gz2hthUtmz4VpVdW6G2fMge8sDkA8+M7nhqBr2X3QsfgGyPauDofv+rnQuPNnoX72JyAeSw4bvrmr5dbCN+/TSuGbpqc9ysPgm2oeisC31HsXwrewKNTfxwFHKoLvbQ/dJ554Iv3hxG+//XaSgVx22WX0GLPRw5F9+NDd3NxMLiUXXXRRwWcfeughuOqqq2Dp0qUwHiLKdEcRRRRRjAx8FwNw5b1sAcsPKRExxZYCvmMeeLNvsy8v4ZQxS0VkxpgD4dv5ntfUxsoKPLu/MuCbCiHFYEAVRha2ljcylRD41kIaA98FmW+xPe138/C37m64dtlSeGrDhtB9hnB3WksrXDp7LrTW1BjZhMk4x+ICvjmzj8uRge7lD8GWxddDtns5v1ywP1N1M6Fpp8uhfu5JEI+lRwS+8QPk802wG3PgW23PXNnw7bud+OvAuyq+A8O3ivyYynyPCnTvt99+8Oqrr9Jj1Fdj0WTQe1sD3SPh/T1WIoLuKKKIIorRge9sAIBXAt9kzZbLQCxnW8pbi0HOhLsNQbioUi2U91zPmWFNwbcofiyAb8VvCN+qYNJ1UGGttm03z0yt5CDc1TEcvtVzBd+uA4ZwlzPOLNZfnJ1d3FJH2qYa/D/o7YXrli2FR9etCyiFVIGyhpNnNMPlc+bBnNpaI5tw4Vs1sXHgG3LQu+JR2PzBdZDpWswvF+zPZO0MaFpwGTTMOxXicQXf3IXRh2/eDxK+GRXD4DtHEqH8VsG3vbswOvDNd15GB75tfUCY5nsswfeoQDcWMb788sv0+IwzziBLQA60+Xvttde2GrpHwvt7rEQE3VFEEUUUIxvoX+xbC8oGOwjgslCtGICbjB523NNWgwjiEALfEoSMb7bWT3tTN9ITbN7ieG6bbopWx83e1gzffoMdpzW8B99sMxjUWt60Ay8LvhVI+tl3XhuJXSyZWN7XB9cvXwYPrl2r/NUDApfuhOkz4LNz58GCuvoA+EbZCQTAdx76Vj8Om9+9Hoa63g2H75pp0Dj/EmhYcDrE49VKS69XlYHWwrce8Eiph/BALwe+qXumgG87kCqR6R4OfEuvbj7+K4BvX2oVBN84ODL+8eMYvjtHA7qPOuooePDBB0l3LWPdunWkt37hhRcqXtCg5jhb6/09ViKC7iiiiCKKbQfffodLajBSEXwr6A6Db7Kko7bx7ncJgHSzEv1OQOabYdp+xghQuKMgg1sZ8E2ghU+M/3aCYBAqhG+zLAyPnva7FHzjd9oHBuCGZcvg3jXtMBTmMAMAx02dBlfMnQ+7NTQY+GZEk/CtstJa843JvPanYNPfEL7fDIfvqknQOP9iaNjpTIgn6oYN3wTMuD8rhG/z3W0M3wS+el9K+Mav892h7RO+Y7bBznYA39vUvWTz5s3UuAa9tSuNUh0ph+P9PVYigu4ooogiitENshoskf2mzJ/WQxeqsN2iRjVRDd260BLlJ6VkJxhcmCg7XUr/bJX51uDCreeF7Z1aPgnfWDBpZSoELlp3Kwv0OPMOOCDQ8K2beesZi0JLhk8PvhlJhwvfOK11g4Nw4/LlcFd7GwyIwYkfH50yBa6YOw/2bpwQCN/KltE2C2LLxf61f4bNf7seBjvCpbCJdBM0zr8IGnc6B+LJ+gL4ZkW7D7xh8I1Amx8h+FZOLvkRh28sfDWDIE/zXQy+uatlBN8wetB93nnnwfe//32YOXMmjETgaPzTn/40fO973xuxaY6ViKA7iiiiiOLDhW/5r2mzHZD9LgBv3eVSWQ3arLfJhJtGO4XTKAXflOHjS7fw9uZMo5pGPAC+rY+3mRoXh3KbeW0BGAuAb369GHzrhSoLvuULEr43ZYbg5uUr4Pa21dBXJCl3+KTJJDs5cMLEkvAtM98D65+DzX+7FgY2K7lsUCRSDdA07zNQv/OnIZFqGnX4NppvPbgaTuZbbkdGOx++eXm5qdHowHcMktqHPjjznTeFvsPNfJtjbzvJfI8adCMkP/vss3DIIYfQc/z6v/zLv8A3vvENykZXGjg93Dio0x6paY6ViKA7iiiiiOLDh28fwBm+McKy3yao4FJltyV8I3Bns0M2G+7Bt4RZCd9yLtZmUH6eM+AqDEhLAHXcUXim8bLgG8ETBHwzNNqiOlWIaOQYIfAtW9SEwXdHNgu3rlgOv1+9GrozuO2C46AJEynzfejESaZ9eyn4xnkMbHgJNr99LfRvei502vFkHTTNPQ8advkMJNITAuFbqXHsOhSsVRH4pkx3mfDtZMI/JPjmxjv4r7S49OEb54eL6MI3iAZOLnyr57mtgG/d7fJDgu9yec2agA4z8HYFWvwtX64sejiwrTt6am8v04wiiiiiiCKKUoGAkE4koDqRgKpEAtLxOP1ViT98jo1DpO0aZQIF7JlACEgkIZZIASSqIA8pNK4DiKUgnqiiv1g8bT24NVignpyzx3hNtFpwO/UsFW8qIMMGMuodnY3XnzHSGJVqpOkyhvDnFAyp7ytNr5qfAhbtZ87ZXa0rV8up5Ap6YgaI1P+s84dOc/KM3A1uXjNLb0CxKZmEK+fNh/s/chhcNW8ePQ+KF7dshr9/9WW46KUX4M8b1zt+4Upaop7LAll8tWry/jDj6J9D81HXQ/WUIwumS+OLTA9s/uBaWPnISbD59R/D0MAGBdx6WSVwS/cbBkYGTfpHAzNuPYJWGuCo9/UeUrp6LTshIOXnZsilp0VMyplwceNDeoULKFZ3aNiqUm8Lr6iSBiksReHBktZ5887CQQz/JUV9gBpAxExDKvVvHgZzORhEhx+5LCDdbtQg0JFA8TFCz23tgspq82cUYKNZOh2H9Je1dp5U3JyhxlbbU2w1dGMEJcuxpfsrr7yyXU0ziiiiiCKKKMoJvNin4vGK4FsCeBB8o8QjnkxDLFkFsVga4nEF3ATdGr6TiRTE4wrGeJrcaCZr4FtOPR8A3wwidlkYvmm6JN+2nt3mc2L5ffimOlEvS8k2eqXhW02Lpmy2FRfX8fcsUJoX9H8bUim4fM5cuP+ww+Er8xfA5DRa/BXG650d8KXXXoXzX3we/rBedamk3L1KEeulkfCtAK9q0t4w48ifQMtHb4aaacd4S6AhNtsHW5bcACsf/RRsfu0HMNi/zoNvC6e8ncqCbw3c1FI+AL5Nznsr4Rs8+KaMNB9jZcN33IXveDwUvrPlwHc+P2z4jscS5cE33UkaY9AdRRRRRBFFFGMdvsMAnOHb3EYPyX7nBXzHkmms2hPwXaX8omM6Cx5PcsrUADQDKruqIGDbQKi28K1AUEGIgS8D3xbSJHzLbLYL30qfbuFbP9bA7cgDHPqT8K0lJSLz7cM3J71ZTKOW3cJ3bTIJF82eDfd+5DD41s67wLSqqsB99nZXJ3z9jdfhnBeehcfWrdH7oTh847zSE3aD6Yf/AFqO+R3UzTjeiC5c+O6HLUtvhlWPfgo2vfpdGOxrHxn4xgEVd7EU8K2GNcXhm/eLD9+sRpF3NsDPfMtBYxH4JlmMvntg4VvJd9i9pFz4Hshm1B0X4fxTKXxr0UxJ+FbdS7efCL5XUyJGQyPzYdu9RBFFFFFEEUWxaxSCRSKfp3/5NjpCRSJA+60pyIB20PRisQTJCAgwSPeNOuksxKjQMkPq6FgM9d74ngVEpUhgiLNtXAj44qrNO8IGZsyl7aFqiIOhZBFKciLgmxvsSPjWc+EOmEqDq51P9PzUyzJzrqbFTXJMQaeGb1Ix84DBFB1qz3Kju+bXaOmc/C4Ofs5rnQlntLTAfe3tcP2K5dDe31+wjd/r7oZ/ePMNmF+7BC6fOxdOmDYD4jGJq8o2kWQh2vkFBxTpxp1h6ke+C02dH0DH366DnvZHtSDERj43CB3Lfg8dK+6ExpmnQuNul0CqtlUDoZVy0NILEGcYpSXQEKxayiv4VrCMe15tA7Ie1PCtBg+6gFfr72ltGLbZAUVqvo2G25Z9WtmJPY5iQsdPA0NP822ei2U3AyW2EMSBpwZiqlQQ2nAqRAZtN6i3USabIc03W2XKQYEadIVovrluwUiqEL71b4H2JQ/2pLfPDgzdn/nMZ6hRzj777AO77babLfoYZuBGGulp7shxzTXX0F8xK8Uooogiiii2L/iWAM7wTWDFmU01gVD4Jugm+FYAzvBNKKPhW3oeS/i20MUabAZ+lhGoZWSgUZ9VMEvoojOiBOy6WU9x+NZZTa01l/DNnR3pMTX3KYRv9cgW+nGwplsOEOi/Gr5V2aF6Fe8wnNXSCqfMmAEPr1sHv1m+DFb29RXssyW9PfAvb78Fv1i6hNxOTp7ebAr+eK7IaWo7CPhumA9TD/1PmND1Oeh453robntQ+62LyA1B54qF0LlyETS2fhIad78EUnVzTPGrWhebSZaZWgOsfBciEL615ltvUwnf9N1y4VuIM2zmm11I1AKYuykefJO0SQN0KfiOeeu4reAb6CB34Rt/V9sbRVbsXoLWfth5Ev/effddA4aTJk2CPffcE/baay/6wx/il7/85ZLgiD/U//7v/x7RaY6ViNxLoogiiii272DIZW/vMOcTk3LUUeAewvIFLeVgu0GEbuvvnRGt5oXTiAYuJQex7crtdG0HTM4W8/fYks63G0T4JvcHky9UIMq3++kznj7XrpcVANDnyf9bF1LScrh2e/yKlbPYaarF0x7hPNkYO6nwNFVycyiXhcfXb4Brly+Fpb29ofuspboaLpszF05rbnWs7ni7GRkQ3z3AZYvFYah7BXS+81voWn2fvhMRELEENLScCI27Xwbp+nllwbfd7vp9gm87PFH7WUtUPPhmmFbPg60G1R0J63biH3fmeGH4Ns8tfMc8+ObvG78RfbdAash52lQYLApN42yJyS4nptkODmSVTKvwmCrldmLhm48bmkcS5VuJsdEcZ2BggNqzMzDj3+uvv07NcoB3UAlA9pvj4DTffPNNms5wpzlWIoLuKKKIIoqxA9/s9e3DmrQdFBMsAt9ZLJ8MhG9rEVcI32yv5sK3AhiCOmO/Fg7fPp5a+BZ2hJw2D4Fv6xIeDN+8TVhzrNxXWA/hLgIPKNheEWE1m8/Bkxs2wLXLlsF7Pd2h+2x6VRVcMmcunD69GapSqUD45oZDdh0TMNS7GjoQvlctgnxuKCSbGof65o9D0x6XQ7php0D41itqM88jDN8+bH/Y8A0avrMjBN/WkjIMvtFvHesm4mOrI6UfK1euhFdffZVgGf22iwX+oPbff3/6Q3kJ/osSk7q6umFPc6xEBN1RRBFFFDs2fHMhWbnwTf9606PiOdNoRwG4cmXgrDc+t/CtLusayhyPbzMnMS/OgmtoY+py/Me1FCUEvmXGlvDGZBttFZ/JbyOYk348HL7FUhpd93DgGzPzT2/aBL9ethTe7uoK3WdT02m4aPZcOLO5BWoqge++duh89yboWnEX5HIDIfAdg/oZx8GE3T8LqaZdHb/sYvBtMuFbAd94hyAItuVzM79hw7dSmZeCb0dSk99G8E03HpJjJ9M9EoE/pCuvvJI8uBGo+/v76TVsKS9BfL/99oMpU6bAeIoIuqOIIooodnz4Nq3lA+A76BIcBN+qcDGnCug0fOc0fMdEwx12B1FZZzuVwmy6hjPdVt6Fby78k1IUC99hEGMz1bGK4Nu+ozS+Zkk1XDMA+vDtt04vBt/PbN5M8P16Z2foPpuYSsGFs+fAOc2tUJdOlw/f/eug692bSduN1oJhUTftYzBhjysgPWGPrYJv3GTKXWbr4Js3cTH4Dm7EUwjfyqrSLcD80OE7Foc4euSP9Ux3JSHlJejD/eKLL8KFF14I7e3t0NraCmvWrIGuri7akC0tLQTh99xzD4yHiKA7iiiiiGJswHe2RPY7KPPtA7iBMZacmMy322peATmDqSh89DLYeg6OdVs58M1FkqHwrR1ZwuBbupQoJxRJe1b8YvBbwLeBeoZvA6XB8E0NcgR8v7ClA369bAm83NERus+akin4zKzZ8OnWmdBQBL4tiCr4zgxsgM73boHO5bdDPuNqyq1RIUDt1KNg4h6fhfTEfSqCb1mQi+9WDt+q4HJbwzcdOx8CfGPEtjPo3q4MDJPJJPzmN7+hosm1a9dSUeWWLVvggQcegIMPPhg2bdo0bh1Noogiiiii2PECr1lYrJfSnt7V7O/teX7j+74LBAZ7GOcFwCBExLGJDjbaQa9varBTBRBD/WpKNduJp+hzqvhROpGwzzNPX3t+axcSdjpRchXtqsFe3zQ40N/Wfsz8PQv2tsCNIIw7Wuo3bVMdvV6iY6RFWguoPF96jXXn7LKiQ1n+ybViS0PbpZOX+dCJE+HX+x9Af/g4KDoyQ/CzpYvhpGf/Aj9fshi2DAyYbe9Mn2BbPcdtlEhPhEl7fwVmfvx+mLDTFRBL1ptvSKPC3vVPw+o/Xgxrnr4K+ja+YoGbhxTCktEArrCf1IipIRW7Q+p9o7cNd7ykQQsOjhDOaRmV1aBqvMQ+4ryNuYBUHHtirwR5gXNLd9mZFZcAvbvJs1xDJg7NcDCQEyDNE2F3FPxOWv8rj3lTI0GDU4ChPHp9Z1XHVrNcrs+3Oa5h+4vtKtON0dDQAIsWLYLjjjvO+Rz+sE8++WRqA/+d73wHxkNEme4ooogiirGd+c6GZL+NM4j8ricTKZ75ptyhk/k2mWoNWAr0rHyBgUV5emtI43lytpqtCoUDCklOdOMS5ZPsZtM58y2/q4BNm8aJx777icl8c8Y6RHZil8+uI2e6Aa3oOANO1oDa/QTy8HpnF1y7bCn8ZdPG0H1Wl0jAOTNnwYUzZ8NE3ZBHL60V1BRkvuOQGeyAzg9uh66lt0BuqDM0810z6RCYuMfnoGrKAeYOgJP59uRG5Wa+aXCiv4mwjT7aatA0splvsaMp8437KV4i850QmW4/860GEKJVvZf5xs8m+F/8ixc59razTPd2B93Nzc3w3e9+Fy666KKCzz700ENw1VVXwdKlS2E8RATdUUQRRRRjH76LSU+C4JtD3vnl7GcumyGv73wJ+LbFlhZqlGZbSFoK4NvKVRigrbRAOZ2MBHxz05ZCKHfhm5e5HPhWkCiKOA18q4/8raubNN9/3LghdJ/hXYqzW2fBxbNmw+TqarXttGd2vAh8Z4e6CL47Eb4Ht4TCd/XEA2HiHldA1ZSDIRFPePCNMg69DbYBfNvp2eOkVMGl2NGlZSd5tR99+GYtfih8a/eXsuCbGvZwx8rRjR0Wur/5zW/CwoUL4cknn4R58+Y5n73jjjvg4osvht4i/ptjKSLojiKKKKIYv/AtAZw9joMA3LX5U4DmwzcXW7LzSb4ofCPoWO9u6ymt25SLDLmEb6XflvBtQVgvqSjytPDNkMZFnfxZ/Bre5Vba8XD4Np/3JSwl4TuuW67bzPX7Pd2U+X5i/fpQeQLKg85smQkXz54N0wi+Y+XBd6YHOj9YCJ1Lb4LcwCazPQum37Q/TNrzs1A19SPlw7c8pgrg22aIRwq+WVriHoijCd95WtZK4FutGLqXRNAdCt3oXnLKKafA008/DZdccgmceeaZMGPGDPID/4d/+AcqpnzmmWdgPEQE3VFEEUUU4ydQp+q3k89UAN/0ugBl8OAbPJtB7nAZVFipH+kW5lZ2IgsKlTbbPjZSFA2wVnYi2pFzUx6CPAvf/F5p+FZyGuNDHgLfpgzTz3zzJwPhm6E5Rl0sf7NsGTyybm0ofKdiMTi9pRUunT0XZtQEwzcvkYTvXLYPOhffDZ1LfgvZ/vXh8N24NxVcVk8/UsG3Ywsp4dvHYje7jZpvhluSfRSDbzNGYbC122zY8B2gD8+VC9/i+xXDdyIRuZeUgm7a+LkcXH311fCDH/wAVq1aZW4XLFiwAO666y7Ye++9YTxEBN1RRBFFFOMbvsOy35XANwEagnc2UwDfnP2mhiIl4dsWqsn8qoRyRkz7ua2FbzuvrYVvkz0VGfNS8L28r5fg++F1a427hh/JWAxObW6By2bPhZbaGgHf7FZhRST2bgHeERiArsWLoGPJDZDtWxsK3+mGPWASwveMj1r4xmJaLloV+8QCfvnwTVl0fQeDh2Dyjsa2gu8Y+n5rTXhp+C4tO8HHiXgSUskkjHbsMPIStv0Ji/fffx/a2tpg8uTJsPvuuxOkj5eIoLu8WLZsmZEiffzjH4dHHnmk4DPPPvssHHbYYSRPuuGGG4a1P/B7l156adHPbM30o4giiihKwbef/ZbwLf+tBL4x4+0WYPrT0IgmwMrVk7vdLbcOvvX6cCUfvYyFkBK+Y0rCQgCq0Kx8+LZSE19+wvDNUhnlBqLmuaq/D65ftgzuX7uGtn9QIOh9ckYzXD57Lsyuq1MFg7p7YyB8a2vDfG4QOpfeBx2Lr4Nsb3sR+N4VJu7+WahpORYSsVGCb6MBLw++cbBmHENCCyzxY67GvxC+NUCXAd/m86XgOxaDVDwB1ak0bC+8Nvr4XyKKATfGzjvvTH9RRFFOPProo/CHP/wBjj322FHbYOisc+SRRwa+h02coogiiihGIlCbmhDwndCwbf7VQEd/CClsmyb1vlxkRzrdOE4UAIvLclmSnii9dxxtHhRwG/hW08P/xQltpB2bJSoFZHnHpk1joAZb6xfOloiUrZYFk2Qpp4FNwzdb5JnCOJ2RJg4n0NPgp/3C1eDDzWAr+DaN5flliYxmfWRTFQX1CLEMoHmYVVMD/7bb7vDZuXPh+hUr4J72tgL4xv2Ar9/X3gYnTm+GK+bOg7m6uza3TrdqbDWgIF/teAoa558BjfNPga6lD0DHB9dBpndVAXwPdr0La5//FqQadoZJu10ONa3HKyjV8E3rpeFbllbKRzg9tN5T8K3WM2e8sBV8Ix/HY2q/4N5T24zdb2RjoLidF8M3NyyS8P3/t3ce4FGV2f8/d2aSEEoSegskgBQRu6jYFsvqioqK/FQUBQUriK5lbbjY1l7+a1nXRUVsKLIqYkFQUQFFERQLrpXee0Inmfk/57z3vfedO3cmbQYmk+/necZJZu7ce2cyhs+cfN9zIvaHKMtfvvV7QC3aVREqLc3yvdF2MGp7+y8T+q8KWr71Pvh8spzhS+nBHpduAJJFcXExLV68mG688Ub66quvUtbT/YQTTqCbbropJfsGAIB48i0TLsNhR7pDZvTEljrdO9sr32aRS8t3IBAiCpdJq8FwuCxGvvkiPZ/lcaIzakdRw0j0Te40Si3fqhpbgXw7iySdToBK4GL6YQcqJd/Oh4wo4XQX5qnd6imc6l6NrpLGyrc+D6I2ubl0S5euNLSoiJ5fvJjeXLGcdnqKh/zdu6tW0HurVtCJLVrSJcUdaa+GDWPk2+mjbp8TK1mjDqdTow6nUumiybTp12eobMvimPfDrtJfadXsmyjrf/+hxl0uofrtWL4DUfKta+rxOo6IfEuQu7ryHdg98k0qvuMn32Ef+ebbZdIruT3J04m0Go4DQE3o2rWrTDPlqabjx4+vlKTzxY/evXtjEBMAIK1gGcn2DNWJGrhjD9kJBblNmi0mxp/nNSxYzp/qg1lkhXIoGMqhQJAH7GRRQIbtqAtZIWm7phc36j/ru42y3QE+9ndObZkjICyVzjb2EBl1m1tdlkEnzvAes0ZrnLk97EbHQvTXWvK1fMu+3TYmzmRM59yc2/SHgejKtyN/9pAg3XpOx3hsk6SW9erR3zp3oUmH96LzC9vJz8ALb8kLMft/9QVd9/08+qW01I0DiXybU0PD7gcDK0iNik6hwhP+S80OvIuyGkZ3ctOUlf5Bq+fcTMs+7E8li96RmJCcBb/G9jb6o5A3rGIHdeRDlfyVxJZvPR1S5aK1xKr96Jy7LGS0hVZ9cFCvqbm41v3e7uLivtCk5Vv/pcP9IEBRMq2G7CiJtmz51u9pGbpj/Gxk+4CaVhmyL5x/T7eBiqh0Zyjyi2zHBqotBHMaJ6WX5p133kmvvvoqjRw5kvr160dZWVlJOT8AAEg3+daVb7/oic59a0mOGpsdFalw5ZvbqwXDQal8W84iS7fqbQU4iqIq33pRIYuOnWuQyqmOBWip5SuWb51v1seVBXQRs7eyHY9xFkm6ix71tEb7DhV5SVj55v1z5ptv1wFyFZRx5DpiVu7Vvuyu4D7y7fZ91pVvGbpDRM1zcujavTrTRUVF9OLixTR++TLa5mkOwXy0ZrVcejdrTpcWd6Tudu5Xy7d/5TtADdv3oYZFJ9PmxVOl8r2r9Hdnn1qkyzYvpDVzR9LGn5+mgi5DqUH7kyloZavWkc5fPKKnfOo9aPn2Vr45216elMq3O7WS9ETL6la+7b/geCvflk/lW5+LMxAqTYB0Zygs3AveOIRqCx36fU2hek1rvJ/27dvTVVddRQ899BA9/fTTNHz4cEo2H374obS29OPcc8+lbt26Jf2YAACQSL7L40RPtIDrvKsWFK+KOJVq6WscUtMtOXJiyLf+Okq+jciK5ZFvhyj5tuLKt44nmPKt9mh8SDCk2ZRvJ7Mu481d+Vbn65Vv49wkWm1X433km+LIt568SLaEN8nOphGd9qIL27enV5YsoVeXLaUtPvL9ydo1cjmqaTO6rLgj7Zef79wn8i3iaXnkm6hhuxOpYfsTacuSKbTxlzG0q/SXqNeHKduyhNZ8M4o2/vwfyu88hBoWn0JBK6ea8k2Vkm9d+dbyHYlYsTGTZMl3QMl0eRXlO53ab0C605Ann3xSLt5WiqBy3HLLLfTMM8/QXXfdJb3eG9pZumTx0UcfySXeQkpINwBgd6K7NbCElFVQ/daVby3gfl1PRJIkUhKMkW+peNtfBwKqz7fETnzlOyx/4tcSpGH5ZplUFXclZ45868E7EkPhzaL7eET33I6Vb7fyHYmSb1lgKJLnlW+7q0mUfEfHTvSrpOVbb+PkydWTEllsnJ1NV3bsRBe0b0/jli6lV5YuodKyspif2Yx1a+XSq0lTuqxDRzowv0A/IZ4f6si3roIr+Y5Qg8ITqUG7E2nL0g9p48/P067Sn2Lle+syWjvvTtr062jK22sINSo+jYLB6sh3OK5869gJy3cgSr7dV3VPyHdAZ8C9L0qagEx3GjJs2DCaP38+zZ49e0+fSq2kcePGstBx9erVUvFONvfee69TWfFezjjjjKQfDwAAKoNqkRagej65b33h70PGuGxdAY+X+5VOJ8FssoI5kvHmvDdnv3Xm2wpwBtzIkPOCPMkI64WIvEhTFZBspbWz1WGn8i232lls1bc54jOd0JNL9/QV11ltt9uJMajHMWjdq9v42jmWjq/oqr99TGWKUfLtLiw16uHG8+fb87Ky6NLiDvROryPoyg4dKT9Or+gv1q+jwXNm0yXfzKG5G4xIqHxQshfE2h9KzMWgDdqeQG2Oe4laHPowZTXaJ/bnJvK9gtZ9dzctndqXNv76KpWHd5J81Kkw860EVmW+VfccqSYbmW+yM9+M6oaiMt8q2qO+N4f2mBnviPGXFb/Md6SymW87R68/HLBsy/f2tirqRGkFpBtkJCNGjKDCwkIZsMTyDQAAdYWK5Du7ivIt5mLLN8niyix/+fZ0JvHKt17AGFe+pdptb2PLN+Ms3jTkW0ubI9+mYNvbqQWj2q8jKZNvp+uKGXGw72sUCtGQoiJ654gj6aqOnaggzjqjrzaspyHffE0Xz51Ns9evd6U0gXzzceu37k1tjnuBWhz2KGXn7ecv39tW0bof7qNlU06jDb+8QuXhHWTJU4kv31Y15LssSfJtVUG+KYF8h+2MejqBeEmGwgsTOSddm843meTm5tIdd9xBQ4YMkWvuauKF/0S1c+dO38dzg3sAAKj18m3ETry5b++Cy3i5b0dbWICCIaKIjp2Uy8A6Z7KlFZTWgwHRMXtkvbGQUxbg6YWIOm6gRU/3+LZz3m5XD7tvt5Yseyy9N3bC4u7GFsJRTi2tCcmILdiiHBM7cc/GiFm4i03dbif2c1J7dVs06jZ5HqnkbRqEQjS4fXs6t107en3pUnpxyWJa5/Pvz5yNG+nSb+fQ/vn5kvk+oklT1S88whVc/TpGx074SPVbHUO5rY6hHatm0vqfxtDOTd8Yz0NRtn0Nrf/xASr5/VnK6ziYGnU6i4JBnqDpjZ2o18byke9EsZOQ/eGD5TtYhdgJE0kQO9HybbZuNH9apnybsRM16Ce98iWQ7gyF38zJWJhYm+HpkI888giNHj1aplH6xVC+//57Kisro5Dxp78tW7bIJFQAAMgo+eYFlnFy3175ZrSAO/txd0iBYIgiOvMd4Qo3D93hlm18mxq6E7TUqHnluf7y7fZR1tVRdWw18MaWb+e4eqGkK98xsZNqyLcc2Yw32P05ZH/GOZvybU/zsYXSii/fuj7O93FBKBikC9q1o7MLC+mNZcvo+cWLaK2PfM/btImunPcN7ZuXJ91Ojm7arFLyXa/lkdS65ZG0Y/Us2vDTs7Rj41zj1VWUbV9H6+c/TJt+H0N5HS+kvL36UzDIQ3zsxaHOGPtIHPm2hwbZf8lQbQpVr3g+i5AVqbJ8W1HyTXHkWz3WqqR8S2tDSi8QLwEZC1dg7rnnHtq1axfdfvvtMff37NlT7nv55Zed2/h/6ptvvlnEGwAAMglZdKZ7e8eJnkifb7vfsRZNv+hJxJBvK6RiJ5blZr519ISjKKpfsv04e9GlrgJ7e3zrI5TbcRTd4UQttNT9tdXWcjvLu1/m225TaPb/NuVbvSBa1GwRd56Y/tDhKLPbX9uRb6PvtH2/Kd/RsRN3T/rY/PqfW1hIk3odQTd27kItc3J8f2bfl5TQVd99SwO+/pI+XbPGOTZ/SNDRGt0r24yd1GtxOLXu/Qy1OuIpyml8SJScasp3rKcNP/0/WvrBqbThf89RedlW/QnBEW7dycV5nH1MHUtRI+jdRYx8P/+dg4WXK99ViZ2Q/WFCdZ3RH4r8YidGJMX4QKGF3JFvLe9pBCrdIKPp27evjGyfMWNGzH3cTnDMmDE0dOhQmjp1KjVv3pymT59OGzdupP3335/mzZtX5ZaBrVq1ossvvzzpzwMAAJKF7vgQTFD5jul2YkRP/PZnGZVvHjFvSZW7zJ5KGd31RPmhncnWUQy7H7fCTRazfEdXvqWhnttOT8undNKwK99ainlLqT5TVOVbH0eNo9cVa91f2u3gEa3MuvLtWaCpXgBH1lU1134W9jfRPdKtqMo3f/A5u21bOrNtW5q0fDk9t3gRrfD59+Wn0lK65vt51KVhQ4mdHNe8hfrQY+Ta+fzVtEu94DJC9ZofSq1bHEY71nwtle/t6790XmF9nuU7N9KG/z1OJX+MpUYdBlJ+53MpEGokr3PYW/nW8zTscfO68q3l26l8cwzF/iRT+diJZVe+repXvp0PV6qDiTk1NR2AdIOM5/7776cjjzwy5vYePXrQ5MmTpbI9YcIEaS3Yp08f6Xhy9tlnV6tlIMs6pBsAUFvluzxB9MS2ZaOCrNCiFSXfLE/lLLEsxLEtB3l4jRYntwe3qjzrhXGx8m1RIGDFyLde2hgt3261VAa3GLETNaZetVmMK98snLyvmOZ6uvKdQL51H3L7MVq+1TPyl2/+a0O/Nm2ob5s29M6K5TRm0SJa6iPfv2zeTNf98B11btCQLunQkf5cCfnmI+U0O5haHXMI7Vj7jZLvdZ/7yHcJbfz5X1T6x4vUqMP5lNd5AAWz8lIs31Rl+TbHy6ue5v7ynW6DcRgrkm4fA4BDSUkJ5efny6K+PHt6FQAAAJAKIp4qt5bvcs/tTmDZs+gyKn/txEfCROXcp1pVvsmcciliWy7iKRpqS5YVI99yJOe/MmDHmTqoH+MumdPnoCvfugqtF2bqCIPW6YBXxO0FgjygR/qFi0BaEuOWSqpe4Klr4vqco56/Fnw31qJ24H3VPZl5Wxz5FXt/5Qp6btEiWrxtW9yfWccGDeiSog50UstWavGgEdLhhY5aaN3uLuoYO9d/J/K9bc30uPsOhBpQXofzKK/LeRTMKnD2o/8OoD5C6P2qbLa3w4heHCt/kbCUdZvj5SUCouXbHkvviLX91wmn17oh384SSbPy7XkN+TorGKIQL/5NE1+DdKcxkG4AAAC7G53jLquCfJNn2I58b+xPoh2OfLN0l8XIt+7v50RY7KqlnlZpVVu+zcWNupJtnqWdX7bl2zmHCuRbx1tM+ZZzjnodaibf/Op8sGolPbtoES3cujXuz6y4fn0aUtSB+rRsJZ25Esm3em1t+d7wo5Lv1Z/E3XcgVJ8aFQ+g/C7nUzC7sdq3/WRi5dv9q0Wl5DuiKuGmfPNkUH699c9M/3WiqvLNr0MwwNKd+pmUkO4MANINAAAg0+SbWw3qNoNVkW9dhdYVWyfeYcu3qj67bee0YPrJtzebbk66VNMtXfl2pS5avlUKQkk5mZMxo1TefRW0lOuTUnVdN16TSL5ZVKeuXEnPLl5EvydY6N8uN5eGFnekU1q2ktcknnyrqrQ2VIt2bvxJyfeqj+PuOxCsR3nFAyiv60AKZjdJKN/O65pAviP2z0LLd9ji841UWr6dn0sc+eY7sgNBCob8e6MnE0h3BgDpBgAAkG7ybea+zYs3rapF0ivgjnxz9dtuL1g9+bYryAnk2xRs38q35wNCIvl27hfJ1u3yYuVbP3dXvt0uIBXJt1Tb7Tu8UQktqh+vXkWjFy6iX7dsjvsza1svly4uLqbTW7VRQ5AqKd+7Nv1CG356hrau5HVLkfjyXXQ25XW9gII5zRz5dhepJpBvy87a69e9GvLtjZ3Ek2+udIeCWah0g8oB6QYAAFDb5FsvbKuefJe72W8niqJlOxAj31G3e2InWr71PWaWW32vHisdTuz8uFmVVzGUSFz55o4q6nZbkSWOUl5N+dbRGD3CniqU70/XrBb5/t/m0rg/s9Y59eii4mI6s3VbaQdZafku+U0q31tXTDUaBPrId/v+1KjrhRSq1zzl8k0S56m8fDPZwRAq3aByQLoBAACks3wnWnTp16fBGz2xdxgl33qxJcu3dM5woihVk2+WNJXTTpV8q7gDV1SdvHg15dvNfFdNvvl6+tq1NHrhAvqxNL58cx/wi4qKqV/rtpQdDPrKt/McTfku/YM2/vQcbVk+OUq+HRGW7HQONWrfj/K6DaJQvZZJl++IPfgnsXz7xUwClBXKlkp/qkG8JAOAdAMAAEh3+XbEu4ryLdfmbbrbSYx881K78krKtz1B0ZykKdKmkDaAuv2dPgdngV4kSr5jYyemfLsynRz5dsfeV1a+nSiMLa2fr1tH/1m4QAbqxKN5djYNLiqm/m0KRb7NzLfun+0n32WlC2nD/8bQluXv2REg+7U1QyiBLMpvdybldRtModzW1ZZvsl+Dmso3g0o3qDSQbgAAALVRvv2iJ1ooIxXId3Tl2817i3DzEHQnhhIt31qETfmOOoYt3+pxVtrItxbpqsu36qBiyjff99WGDSLf327aFPdn1jQ7mwa1L6Kz27aTAT2Vlu/Ni5R8L2P55m409mts/lytEOW1O4Pyul1EWfXbVFq+mUAy5Vsq3VkU4tc9xaDSnQFAugEAANRl+Rbd5G4nhnyH7cq3Kd96H2ZR3ewk4h4nYCzMNBdSVk2+7b2525gDWnzk24mRxMi3O9ynKvLtnkx8+Z6zcaPIN1/Ho0lWNl3Yvj2d07Yd1QuF7IE2HOpxJ0f6xk62LKWS/z1PpUvfTizfhX0pb2+W78KUyLecWxz55mtUukGlgXQDAADIZPn2ilpULMRccGnLN7cbZMkLG51O3KE7Rps/j3zHwtMttdRavvKtRdeVbyXMlZdvsxuK+yxFpo196Z7TUdV5LdimfDsfTKLl202nx8o373juBiXfszduiPsza5yVRQPbFdGAwnaUGwo5Q4Aqku+yrctpk8j3RKLwLs8ror8JUqO2p1D+3kMoq0H73SjfAQqFsmRATqpBpTsDgHQDAADIFPmOt+jSEVX9OJ/qt1e+VeXb7XRiDt1xxsQb8h0t1tWRb4WffLuCXF355iq6lVL55tu/21RC/1n4B83aEF++80NZNLB9e5HvBqEsdwKnMaY9Wr7Vscq2rqCSn1+g0iVvUiS8M758t+mj5LthkY98q0mk5vj2msg3nzcq3aDSQLoBAABkqnx7q9+J5Dvq9irIt7vYUg9miY2cxJdvtRXPWlFWGyvf3DbQjY+43U1ET414iLNQ0BNfUd8HiMJhOVDl5FvJpj5fw/cN+Y7Y0zONXuayaYS+LymVbicz16+L+zNrFArR+e3a0/mF7alhVhXke9sqJd+L36BweIfP68wEqFGbv1De3hdTdqNOVZJvN1XjI98BNUHUkW/LznSj0p35/PbbbzRixAj67LPPqF69enT22WfTgw8+SA0aNKj0PiDdAAAAMlG+E0VPvPIdL/ddOflWGfDoTid2K8E48m2OlveTb90pJRXyrYbsVF2+JXdun68S4Fj5dqTclu+fSjdL7OSzdWvj/swaBkM0oF07uqBdETVi+TbOwZFvbrnoVN1t+d6+hkp+fpFKF0+gcPn2OPJtUcPWJ1F+9yGU3Wgv+2cSiSvfTqW7AvmWn5N9HtlZ2ZDuTGfTpk207777Ups2bWjUqFG0fv16uvbaa+moo46i//73v5XeD6QbAABAppEs+ZavnX3anU6cEfN+8m1Wvt0OJk6hOCoCQlWSbx0VMeXbLD87PaQ98q32TYnl2z5adO7Z3D6xfJsVcPKR7583b5bK97S18eW7QTBI5xa2owvbF1FeVravfMugUF6Eya+zSHCAyrevpZJfXqKSRa9TuHxbfPludQLldx9K2XldqiTfOnbCwm3FyLdF2Vzpxhj4zOaBBx4Q2V60aBG1aNFCbnvjjTforLPOoq+//poOPvjgSu0H0g0AACCTKTckO170JJ58+1e/vfKtoiax8m3vMcnyrfYZjq58G5lv9RAt3GYV3JVvZ2mhId9uc8HUyfevm7eIfH+0dk3cn1f9YJDObltIg9oXU0F2FeR7xzoq+eVlKlk0nsJlW+PIN1HDlscr+c7vFiPfukWkjhtVJN/ELQODWRIxSTWV9bXUj+mpg7z33nt03HHHOcLN9O3blxo2bEjvvPPOHj23TGThwoXqf0LLopNOOsl3m1mzZsn9gwcPrvZxnn/+eec48S7m/s3zMi8cMdpvv/3ojjvuoM2bN1f7fAAAoLbDQstDWrIDAcrxXoJBucj4cp6aaPSS1oho2TKmO1cEQ9lk8SWYTYFANlmBHCJLf83XLGFKCrV/8td6pLsWOfV9RD4Y6JtF6u3bedCOWrSpzoHFXDfT5q9ZfGU/Tmdt9bXbMlFtpwvdKp8tWzgfCIw7nS4f9jO3n7Obdnb2q0fTc8bZPteoziB6CJH9WPW6WdSlYUN6oEcPeq3nYfTn5i18xXhreTk9v3gRnfz5dHr0t19o3Y7t0uHE2Lucq7wuYt8qahPKbkyN9x1BhX+eRAWdLiYr1CDqUZrNqz6iZdMG0OrPr6VtG+e7wm0/U/lwozvfGFMs+XXUPcaZsJ1hN3Ph6UDq+6ikCT///DNNmTKF5syZI5effvqJysvL6a677qKRI0dW+PjXX3+dnnzySZo3bx7t3LmT9tprLzr//PPpr3/9K2VlRX+Kmj9/Pl144YVRt4VCIerSpYscF6QO/hl//PHH8qEnVRx//PESFfLjgAMOiLmtU6dONHDgQPmaf1GsWbOG3n//fbr99ttp8uTJNGPGDAoGU9+8HwAA0lm++bcgC27QrnQ715YVU/k2AxyMmZMW+RX5DkremqveVtgdrhOw1NcBT+WbHyYirhc3Rsk3n4MunlB0hxS7L7euNCs55FNQFXJd+dYi6qay7YqwvcozYMi3iknYz43lXarHAUfEozXa1XHVFlzVwl351pVvt8OJ+5o5MzztE7Koc4MGdN8++9CCrR2k8j1l9eoYQd4eDtMLixfR+KVL6Ky2hTS4XRE1q1cv+qz4ZyUVe7X/CP8ss/Op8b7DKa/rQCr9ZRxtWjiOwmWbYwR/y+ppcmnQ/Bgq2OcSyi7o4fw1Qsu3/rAVJd/24/WkT3n/UPpQZ6T7qaeeon/+85/Veuw111wjj2VxZpnjijWL3Y033kiTJk0S0cvNzXW237BhAxUUFMTsp3HjxpLvBqmhuLiYFi9eLD+Xr776Kir3l0xOOOEEuummmyq9PX9AY8E22bFjB/Xq1Usq8J9++mlKPyQAAEBtlu+QHTnR8q0FvCbyzcN1LEv1+A7aiy1Z2RLJt4pL2CJtyrcRR1FirSIjOofM0svPR8VJWL7dKq1ZBRdB1fESezGgGzvxl2+53VBWR75tA4+ufPvLd1R1Xau7ZVHH+g3onu770KXFHenZRQto8qpVjtSa8v3yksU0YdlS6temLQ1uX0Qt6uXGlW/Lfv2CWXlU0OMKatRlAJX++hqVsHzvih1fv2XNZ7Tlk8+oQbOjlHw33q9i+TYy4OlW6a4z8ZIePXrQ9ddfTy+//LJUmy+44IJKPe6tt94S4WbR/vLLL+mDDz6QxZC//vqrLJbkKuVtt92W8vMHFdO1a1f5uXJufvz48ZWSdL740bt375RJO5OTk0PHHnusfL3Ws3hl2rRpdPHFF8vz4fcdXw455BD6z3/+47svPk8+32XLlslfWFq1aiWZvk8++SRl5w8AALsrdqKjJ/Xsa/me7+Px5baAuWGJ6NgJo+U7EMqmQFaOxE44ZkJWFlmWip9w9CQYyFJVaxFE2YsRO9FizdLPt7nxES3fIvbq6I6083blYRZAcuTbjYG4FW/3KyXfsl+nlV70FEot33bJ2wnduHvQz50zzqaf2/vVFXizOq5OVsVnjP3wk+tQvz7dtXd3euOwXnRaq1by4cfLjnCYxi1dQqfN+pzu+/l/tGLr1hhBJyd24vYcZ/luvM/lVHji21TQ5UoKZPnnobesnUHLPh1Eq6ZfSdvWfSuPNeXb6UdufBDT1fV0os5UuocOHRr1PUtJZbjnnnvkmiubBx10kHN7s2bN6F//+hcdffTR9MQTT4h4c4heV7Q3+oxd5Qp4586daXfA/0Nt2Ok2qE93GmdnJ+UT6Z133kmvvvqqRIb69esXE/1JFziixFLMvyi8kZT7779fWk4efvjhdOaZZ8p7iWMol112mcSkHn744Zj9rVu3TirnTZo0oXPPPZe2b9+ecDEHAADUtsq3jpzoyrc3epKo8u1iiXxz5CNcXuYsuJTqsRWmgN31RCZe2vKtqtayN2dtjpJvaT4o127sJOJUvrXAymRH2w7VmkhLno9UwaMWbrpVafJUvvmBsqhSKu9K+OU+tZozakGlrnxL9dzs6BHW9+iJQXamXB9bPyqq8m3fY1nUPjeXbu+2Nw0t7kBjFi6kd1atlJ+Dyc5wmF5btoTeWL6UTm/Tli5uV0St69evoPIdpkCoITXufgnldT6HSn8bT5sWvEThnZs8P7kIbV33BW397Auq3/RwKuh+KeU0PTBB5Tu9hLtOSXd14Mrh7Nmz5evzzjsv5n7O9bZr146WLFkiiycHDBggt++9994x2W3Oj//yyy+yoHJ3wMJ9yJS3qbbw9Yl9qWlOTo330759e7rqqqvooYceoqeffpqGDx9OyebDDz8UqfWDhbdbt25Rt7FA63gJ/zLgyjb/xYTfX9zphrP+3ihUhw4dom4rKyujPn36yF9drr76anmeJj/88ANddNFFNHr0aOTDAQB1Qr79ct9y4WqyoYz+Aq7kWyTXV75V28FIHPlW8RIlunwbl/G0fDN8m9sa0Cvfdvs7Q76pIvk2F1xy5TwQtBd16paE5vgYu8JfgXzrxibRxzYCL05+XKPua1cvl27r1o2GsHwvWkhvr1wRI9+7IhGJnLy1fBn1bd2GhrQrojYNGsTPfEfsbiehBlSw91BqtNc5VPr7BNr0x4sU3rnB82GC5XsWbZ0+i+o36UkF3S+jnGYHx8i37hSTTkC6E/DNN9/INVcPvRKk4T/7s3Tztlq6WY64MwUvmGvevLncxtlv7lRxyimnxD0e53z5YragAVXnlltuoWeeeUYWyXI3EY5nJJOPPvpILn5w1dor3b///ru8H7yceuqpkg/34vde4/UEl19+OU2dOlXiJ4MGDYq6Pzs7WwQeCzIBAHVBvsN2ddsr31IB1wJuxz+okvJtlZepQTu2fHP+OhJHvtUu3Gy3+s4dua5vU5KuKtzR8i29S4zKtzvAxyvflle+nVZ6pnxTleRbqtzeyreffPNTNOTbHCvftl49urVrV7q4uJjGLlpIb61YIbJtwj+PN5Yvo7dXLKdTWrWmoUXFVFhfDQl0dNhoBejKd30q6HYRNdrr/2jz7/+ljX+8QOEd62Ple/1s2jpjNuU2Plgq3/WaH+rIt8odhSmdVlLWmUx3dViwYIFce6uKJlzpNrdlOAbAon766adLl4pXXnlFhIm/Z0mPx7333isRFX3R+wZVg+M9HAdavXq1VLyTDf+cnDZVnssZZ5wRsz23MTS34Ur3xIkTpTp95JFHyloBk9LSUunzvv/++8sHBv3nTO7zzixfvtxX1DnyBAAAdQEZfGK3FDTbDZq5b76fJV1XP+PlviWqYQVUm0E7801O5juLAoEcyX1bduab0Zlvt2Vh9BGiWgjavab190q+1f0SidF9w235Ns9PHcUj37rCbci3xE6c83HPzZVvt7OHlm+90tKb+XaOrZ+j8mI3J24+fyJqk1OPburSlSYefgSd3aYtZflUl1m+J65YTmd8+QX9ff4PtHjLlpifh4616EFCIt/BXMrvOogK//w2Ndn7WgrkNHU3N+R724Y5tGLmZbTikyG0dfUXKm9v5+jTifQ6mzSD5YdJNLpdV1HNqjR3LuHuJpyp7d+/v8QdWMZeeumlhMe7+eabpbG6vnAFHVSPESNGUGFhoeSfWb7TiaZNm0rMiKMgW7dujWpZyVlvXhTJ2XSuWvPC0FtvvVUkXFe3zb+GaFq2bLlbnwMAAKSjfHsXXeYY8q07msTInhREw4586wWXgVCOyHfElm8l3nzJjuqX7Yi0LY0SmjAWUrpSruXb3tZHvq0qyHekAvl2OoN75NtcOFkV+bYfEnU+pny3ysmhG7t0oUm9jqABbQvltfdSHonQpJUr6MwvP6eRP/5Ai7Zs9vw8rDjyXY/yu14gCy4bd7+egvVUisAr39s3zqUVM6+glZ8MoW0rZ8b8tWNPg3hJiuCcLi9+q2pHC74ka2Ei56RrC3y+yYRbOHKkY8iQIXLt162GF9Oy5PrBH3pSzWGHHSbXet0AwxXwuXPnynlzRMaEF4iOHTvWd1+p7LQCAAC1Rb517MQv962jJ3pwjZ5saP721B1JpNlCMKAmS4bLZdGlm/kOEkX4oqInLHtqf7rHtj1xR+TbnRQp6CiKLZa8EFPHVFzpjZZvFTtRwq6iJcp+TfmWGmpU7ER1B9GxE6l0c36c4yjGQkp7ByK+OnbiDLC0+5N7Yyf2Q9Q5cBcSLch2TKRFdg5d37kzDS4qll7e/12+TFoLmvB3765aQe+vWkEntWxFlxR1oA5SxDQmW/rFTgI5VNDlfGrUqR+V/vEWlfwxlsq3rYqV703f0IrPr6TSJvtT0Z9foUAwOW5VUyDdCWjUqJFcb9myJe42eqJgunWK4F9AyViYWJvhyvAjjzwiFWXu7OEXQ/n+++9lkSJnpjX88+aWkKmGu9mYv+R1/pvhKJKX6dOnp/ycAACgLsm32WLOK98q2ucv3wE7763l2wqwkKtquW2s9ox1I5uthdaWY327LPxLIN8qmhz2yLc5CMdPvilGvnUV3JVvfV6BGPnWiym98u0c3IjRxJPv5tnZdO1ee9HgoiJ6YfFien3ZUl/5fn/VSpq8aiX9uUVLurS4A3Vq2CiqE4u/fGdTQecB1KjjGbR5wSTa9PtzvvKdlds8bYSbQbwkAbqHc6KYh74vXr/n6sCTL7t37049e/ZM2j7rIhzP4JaPu3btihlOw/Dry/dx73YN/wLhmE+iD1rJgj8QMMccc4xzW1FRkVxz/3cTHqDDHx4AAABUP3ZiXni8vI6diIAa3S8Ycy2OCGgwS2InQY6dOHlv1fPb6fsdCDk9qFXV2Q5PGPJtjpJ3Yydh39iJ2SOct3TjEvrclLTr3t/qLi3/rnxrUTYjKNxXXMmyLdZG5Vsrr/5IouXbqZLHxE7c18ltQ6i2bpqVRdd02ove6XUkDW7XnnJ9JjDzdlNWr6L+X82iG76fR7+VltoZdKMNol/sJJBN+Xv9HxWe8BY12fdWCtZvHbXf/O5XpNX/Lqh0J+DAAw90eiDzQkm/rhI8iIUxe3jXlGHDhsmFc+K69zeoHpyd5taOXolluJ3gmDFjpIc7dwXhTjNcTea+2LyIcd68eVVuGciDaXjRbLyWgQxPJZ05c6bESLjazn25Naeddpp8gONOJLzQkoc6cW/ud955R3p2T5gwAW8FAACoonxH7Aq3X8cTXf12+nwbLfxUFdf4Xst3IEQUVt1O+Fp3OuGqt6p8q5mPkhW39VFFRtwOJZqKK99qZI8s9jQr34GgGuXj5LKVmOpWhSLf9uh6fUxZWBin8u0MzDEq3/xBRJ+d3K6z54kq3zZh83jcCS4rRFd12osuaF9ELy1ZTOOXLaUt5W52XfPhmtVyOa55C7q0qAN1lSRBoso3HyeL8judRXkd+1Lpgndo02/PUU6jzpTTeO+0+n8F0p0AXojH1VDO3HIHEl7QZsIix5VuzmFzm0CQnrDUcpcQLyy0nLvnyjbLLC+K5Z8jdzw5++yzq9UykGXdK93eloH8fuH31hVXXCFdVszuOHwOvAj3hhtuoM8++0wG6Oyzzz5SjefFkpBuAACoOixo3FUjZFkx8u2NnuiFjebQGDN64oyaD6rKdiQcjJFvS/LeOnai5Ts6r23uS5+jjqZUSr7tCY9+8i1t/iqUb53V1rGVxPLN+7HP1L45jnzb56ZRUqzyMHxrQVaIhnfsRBe2L5IR8q8uXUKbfeT74zWr5dK7WXOJnextx3jVgljyl28KUl7HM6lRh1MpvHOze35pghVJtxmZuwnu38yL0riXs9k9wm8MPFcYWYb4T/y6os3Vbx7jzZng6667LiWt6XSlmxf1pVtmHAAAAKitmJVvZ6iOMenSqXwb8u3NfZuIbtqVb75WiyhV1Vv1+nblW7a3LLuftNJCPpYekqPbxOpFmSxpQenHrc9Fya3u663GnZvybd8qVWotwm7FWU/PlCE5tnzrjxYitLx4kzPserGnHUERydVDZ+zj6hCJXjxqvl5mDpyPE7EjL3zWrOuqdzlRaVkZvbJkMb2ybCltLuPXzp9jmjYT+d5HEgCWPRCJP5iY8q2fiephnh3Koeys5DZqqImv1Rnp5j/lX3nllVHVR+6XzBXHtm3bOre/+eab1Lp1dCaIJwA+9thjMlL8+OOPlxaCXOnkGAJXUDmawN0ykg2kGwAAAEgP+Wb8Op7UVL5dqbfiyLe7uDFavhWJ5FvJMMWVb/tFqJR8a7GuWL514VtJuJZ2qkC+WbjHLV1CryxdQiUJ5PvIpk3p8qKO1KMgsXwr6c6GdO8J+M/0XJmuCM5u+y2KHD9+vCxw/Pbbb2XxXadOnWjgwIH017/+VaYBJhM+Dl/06HhUugEAAIA9J9/64pVv+boa8q2u9Rj3+PKtb+Ovw77y7fbl5tuco3P0w5RvY99qMaIr3+4Ex6rJN097FIk2KvD6/Oy1jh75ttwplwnkm3Pery1dIrnvTQnku1eTpnRZcQfav6DAkG9uw2g/U8uietn1KCuESjeoBKh0AwAAALVXvtU0GRbv6Gp3VeVbKswe+RZhtTulVEW+vREQXaX2VqRd+bZH1xvy7aAXb0btt/ryHRFZVttv1fK9dAlt3LUr7s/ssMZN6PLijnRg48bqA4kt30ErQDnZ9aTanWoQL8kAIN0AAABA+si3V8CrJt9hVfVOIN9qMWAy5Jur4brmqxdPsoyr0HNl5Fv3+fbKN3+AsKLk242tePer2yfKWVlVkW93qNC28jJ6fdkyemHJYtqQQL57FjSmy4o70iFNmsjjQ9wqMgvSDSoJpBsAAADY8/JdnqD6rbudVFa+ddW7MvLNiPja+2PRNuXbmd4YI9+6w0g8+dYTJb3y7UZQ/CrfKl6yZ+R7e7icJtjyvS7ONGnmoIICury4Ex3WtCnlZOVSDhZSgsoA6QYAAAD2PBFDtCsr33JdgXxza0Gd9w6bVXDJgdutCz3yrbLVlsi0OU3Tle+AEtk48q1vqKl8y94c+dYV8erLt2VW3e3MeCSOfL+xbDmNXbKI1iaQ7wPzC2hE573pT63aRj2vVIB4SQYA6QYAAAAyQ77Na/21THJ0enxHouRbXyeWb7WoMmqfhnw7x/XItyO5dnVZ3xkjyfZ//eTbisjHhZTIt6W7tiSQ7x3hcnpz+XJ6fvFiWrNzh+/Pq0VOPfrs+D4ymTQdfA1j4NMQjIEHAAAA0g8WvpA9Rr5enDHzPF6et5EYiJ371tMuo8bMqx1SIBgiK5RDEStLZhYGgzkUMC5khUSszWmUesy77i5SzuJuzG3UI+h5eA6jR8qrU3JHvjsj4O2+hGYPaTXK3n7ezqj3cNRgHr1w0vxa7d9+lD1oJ6o3dcQ+Jt9utEQ0j65aKtqPNfqWa+nn2/n1P7ewHb19+OF0Y+cu1DInJ+bnNbTDXikX7qpQZ/p010ZQ6QYAAABqZ+Xb2+fbEdg4ue/oyjdLdHlM7MSSKIrb7aSiyrd5FGfIjZ5qKXepaz1QUvfZ1gsr9XOMGrRjVL6dhZ8+lW+uUKs+gP6VbzJGferKt1+3E7PyLXfbfcK9le9dkTBNXL6CxixeRCt3bKdm2dk09Zg/U0FufUoXX8MYeAAAAACA6la+LUvGyJsj5uONlxdZ5q/N4TROLMQW8mCIItyHm+Ma4XIKBtVoeSdyQuUUsFz55qqwXkipK99u9xO9Z65264E8LMvqMc4Z2AN2JBajB9po+bbPU1eznb0a4+L5HFjf1bh3ezy9Y9Bavi2nSq3FXfYmGXF7xLwp325QRj1HLd/OGHq7Um7fx39t6N+2LZ3RpjW9vWKFVMJz06jKzUC6AQAAAACSLN9mxxOvfFMc+XYWRvrIN1ks28G48q2jLE5+m0XYWTxZefnWLQorlG89ndKoUHvlW51PrHxHfORbFm7a56ZGyqt77aPHlW/9zLR8c7ynX5u20QtH0wRINwAAAABAkuVbDWix4so3X7O06liIzlkzMimymvKtL04OWvfbjj5TQ76tKsm3JqqiLsemGPnmJxEJ64o4Kb2OI99uJV3f7i/fVjz5tjPvWr7d/Hf6AOkGAAAAAEihfHujJ/p2LeC68m0/WC2YNNoBViTfus0gy3dYoigqfmHXjZ1MuSzujFrOqXLZ/D1Pm/SNnXBW25Bv74JLP/kOeOVbvo4oefaTb3WWlZLvSDz5dja15dtdoZk2QLoBAAAAAFIdO2HBriD3rSMZ9oOj5Da+fHP3kTIKWir7bUn7QSXfel9avkWeZYiOtlF9j+V0QPHKt86L+8q3UUk25Vt1RKmCfFtqQ1e+1bG88q2q8mpLtYgzEF++o/qhpAfpF3gBaBlYRRYuXOj8z3bSSSf5bjNr1iy5f/DgwdV+hz3//PPOcfr37x93u6eeesrZribHAwAAkBnwvwecMebFfvV82g3qloPcatBp5xen3aBecKlaDWaTFcwmy8omK5BDViBbWg7KdSBbBFrLsa52m/t1cavfLM+6NSDLN190iz9dOZZe5NLWj3zlW8dlVOtC3dGE7EWftnzr6r6unEflvN2KvBOD0XEX5zzUNkq+3cq3E2VJN+OGdKcnw4YNo/nz59Ps2bP39KnUOqZMmUIff/xxSo8RCoVo0qRJtHbtWt/7n332WdkGAAAAqKl8M6Z8y/dmtxPu4W3Ld0DEW0m3vvjJt9PG0JBvs8e3v3yrPt1aeiUCw7dXUr7DieTb/jpavimOfLudU9z4SKx865H16QQq3SBjKC4ulsUiN954Y9T/+Mnm5JNPpp07d9JLL70Uc993331Hc+bMoT59+qTs+AAAADJTvr3Ddli+rSrINwWzEsp3MBiKkW/SklqhfNuSrYfkiPRaCeTb2LeTtY4o+VZNwd12h/bt0fJtjtUx5TtSKflOR1COy1B4tXDZ+q1UWwg1qa9aDNWArl270p/+9CcaO3YsjR8/ns4555wKJV3HU7z07t2bPv30U195P+KII+jXX3+lMWPG0DXXXBN133PPPSc9VQcNGkRvv/120o4JAAAgQ+WboyI68+3T8cS8OGJsi7cp5Hp/xNlu7j4SCZIV1j2+3QE7qpWenfkOR3c30YIso+KNhn5u5dqiQEB3O5HAhzN6XrbRWW4+vt09RfdiCUvuWg+z4eO42XLJfNuLPFWWmyv9rnCrrdXXOocu2W67b7iZg9fGbp57ugDpzlBYuOd0/yfVFg6efzVlNWtQ4/3ceeed9Oqrr9LIkSOpX79+lJXFY3WTz0UXXSQVda5qH3zwwXIbV79ffvllyZW3adMmJccFAACQedREvu0deHdIlq98KwHnrwMcdgjqBZeqV4qW2Gj5VuqqJDdavrU862mWWpMTyXfE06qQDPnW7f6i5Nvo4xIt37ry7cq3npDpvB7p5dyIl4DMon379nTVVVfRb7/9Rk8//XTKjnPhhRdKbpsr25qJEydKznvIkCEpOy4AAIC6EzvJiZP71rETJ2ZiLpTUt6kdemInesGlip6QlUUBvgR07ETFR9zpltGxETfewQspy20x1o+zFzEasRe+rdx+vOX0DVffu9cqr627lfjJt5ZsJe9KvlX4xBlW746k111a1M4pnUCmG2Qct9xyCxUUFNBdd91FmzdvTskxWrVqJbntcePG0fbt2+U2FvDmzZvTaaedlpJjAgAAqHvynZNAvrN8Mt+Vkm/pcJJjZ7+VfHPm2wqEDIlOLN86+x1PvslXviOOfLvDechXvqWKrgfdOLcHouSbEsi306s7jYB0g4yjcePGdNNNN9Hq1avpoYceStlxLr74YtqwYQO9+eabtGzZMumcMnDgwJRFWgAAANRt+Y7X8cRvwaXfoksxXJZvlmtuNWjIN4u3VUn5VmKvhddfvnWnEx1VidgVaC3fHCnRHxD0qelzlzaFTnWcoyp2FdyQb70o00++VZtDe8FmGoFMdxry5JNPyqW8XDWqr+7CRM5J1xb4fJPJiBEj6IknnqCHH36YrrzySkoFp5xyCrVs2VIq3H/88Yf8YmERBwAAAFKV+fYO2vHLfZsVXu+iSyfzbAXJivCCRZnVThTm79ViS4t4uiUPyVE5cHPho1646Eitnee2j+ZkvoN25tuJiYSNBZt2j27pN65TIPr8TPm2F00qQXdz52ryZUSq90rwuYqsIyhh1UbR08IwHYB0p2mfbr6UlJRQfn5+tfbBnUCSsTCxtpKbm0t33HGH5Kv5+oILLojZhv/n58WPfmzatKnCY3Cmm7PdLPY//vgjHXroodSjR4+Ej6npMQEAANRdfOU7waLLiF/UwpDviK98l8niS698WxXIN+/LXUwZX74j9sJHvcqRK9+mfMs5GR8SKiPf3IdcT8E0IyjppdyIl4AMhtv27bPPPjR69GhZWOkXQ+EISllZWdTtW7ZskZaAlYEr21zhXrFiRaWq3Mk4JgAAgLqNjp1kGbETyX57oifmkB0rUe7bN3ai+n0TT7vk6IkdOwmY2W0dO7EnVLqZbjfVzePl9eLLiEi7zm7r3uBavlVkRVr9GZGUKPk2qvaqwm3kv43Yid6vt6XingaZbpCxcL/se+65h3bt2kW33357zP09e/aU+7jNn4b/R7355ptFgitDt27d6P3335dc9/nnn1/h9sk4JgAAAJAK+TYz34FQTpR8y6h5GTev5VvLrqpUa/nWHUq0fNtHIyenrY/oDNtxB/No+bZn5DjyrZ+rrmBXRr69EzLTAcRLQEbTt29fOuqoo2jGjBkx9w0fPlwG3AwdOpSmTp0qnUemT59OGzdupP3335/mzZtXqWP85S9/qfT5JOuYAAAAQEWxk5Cd+/bGTiRPbT/WL3aivmYBt7uehMvlYtk9vonKiSzd91v3+dbRDrdlHwdDtOZbzlActZ2lpdzs1+2clRJ4Ld8yWIcXixrybR7HGzsxF3qmE6h0g4zn/vvv972d89eTJ0+W4TYTJkygF198kbp3706ff/65tBxMBXvimAAAAOpm5dvbblBXv3XlW9eizXy202lE7VCJNMdOQtlETrcTbjMYXfl2K806v62kWLcQjEQN9XHjKbrLiRs7cavleh+mfEdrtCvfbuXbfazk1NMIK5JutXfgoBdS8gK7vLw8vDIAAPNRt/EAAB/7SURBVAAAqDQ6iqEr3FL19ul4Yg6WkcfZ11qetbrqyZIRXiTJ1W9d+ZbqNwu3Hjev9iAZa/01RS+gdPfP0y3VdnqkvK6565Z/7uN40WYgqvIdjbsNH7thdiPKrZfc7mg18TXESwAAAAAA6kDspKKOJ1755hiKVL3tbiWWJ3YSCdvRE1u+pQeJxV1ElHxz5drplR1RFWlZiGmLtZZ4bico0RCuwEulWh1G9+FW0q/6hceLnXgr3/z80i1eAukGAAAAAMhgaiLfagCl3X7PW3muQL4DUfIdcGMsejKlR77Ly8NG5dvOg3vkOxJHvnUPcIWqxptV9XQA0g0AAAAAUAeoaeXbu+hSMt8e+bY4eiIRkzJDvpWQVyTfZPT4VvLtLrKsSL4Zfhz37NbPFZVusFsmUgIAAAAAJJLvoD2cxq/jiSng8eRbCXO0fEvLQe50Eg565DtYgXxzj22zNq16fFdNvi1Dvnl/6VXpxkLKNAYLKQEAAACwO2D5NhdcRl3HkW+NOYTGjItIxMOofJOz4FItvuRJlyzfAncytBdPavnW/bf1nrkzizoHyxV9aRmo7ufH6Qx5KBCi+lkNqWH9Ril/7bCQEgAAAAAAVAoWWrPyzZLtXHuiJ1q+oyVb3+AKcSAUVFERT+U7YKmvVeXbXXAp0yillzd3H1H7IUe+KU7lm7/WXUvsUfL6MVE57z0PMt0AAAAAAKBa8q3xy33L11aAgj7yTRRPvnXshOXbiiPfqg+3Kd+WV75lJGV6/VAh3QAAAAAAoEL5jrfo0hlOEyf3HU4o3+UUsMrjVL7jybcawOOVb8uQb1nQKZXx9AHSDQAAAAAAKpRvXfX2yrcW8OrJd3mF8s2ZEb14srLyLQs3ES8BAAAAAACZIt/e6ElN5NuicrJs+Q7aiy0jpORbT9hU+1Gj7E355n7danS9NB6Mir+kA6h0AwAAAACAast3vNx3ZeU7EOIe30q+yZBvssyqtynf3DYwHCPf5VwZJxUv0aPl0wlINwAAAAAA2CPy7ZBQvs3plvHl2zLlO82Em4F0AwAAAACAGsl32BbsePJdzpdwOEa+KabloC3fLNPlZYZ8e0fLq57fVhz5Vrenl3inVwNDAKrBwoULnf/BTjrpJN9tZs2aJfcPHjy42q/x888/7xynf//+cbd76qmnnO1qcjzvMfWF/2RWUFBARx99NI0ZM6ZG+wcAAACSAVees4NBygkGKTsQoBzPJZsvwaBIOqswK7IaoeMi0ynti/TjDmWTlZVDgWA2WYFsIiuLLIu/zqFAgK+z7KmTqpWgJLm520mEq+sq351OoNINMoopU6bQxx9/TMcdd1zKjhEKhWjSpEm0du1aatasWcz9zz77rGxTVlaWtGMef/zxdNRRR8nXvN8lS5bQxIkT6eKLL6b58+fTgw8+mLRjAQAAADWV73iV7zK+1tVvu+uIxi96IpntUDYRL5YsL5P4ia58WxYLdpk9dKfckW/p5+3MqEwfUOlOQ5588knq3r079ezZc0+fSq2iuLhYqsA33nhjSv+kdPLJJ9POnTvppZdeirnvu+++ozlz5lCfPn2SeswTTjiBbr/9drncfffdNHbsWPr222+pQYMG9Pjjj9O2bduSejwAAAAgFZXvej6VbxmkE6fyzR1J1FCcAFl25dvyVL4DgRypfruVbxlCj3gJqJhhw4ZJ9XL27Nl4uapA165d6YILLqCvv/6axo8fXylJ54sfvXv3dhZkeDniiCOoW7duvtGO5557joLBIA0aNCipx4y3L37OO3bsoNLS0pjzOP3002WbevXqUZMmTSR6M23atJj9fPLJJ3JcFvrPP/+cTjzxRImvVOVcAAAAgMrId7ZHvvmSxblwW765Qq6jJ1755gvLd8CQb7LlO8ACbsi3SDr6dIPdAf/FZt262vNaN23KTe1rvp8777yTXn31VRo5ciT169ePsrKyKBVcdNFFUlHnqvbBBx8st3H1++WXXxa5bdOmDaWaRYsW0c8//0yFhYXUokWLmA9u+++/v1TImzdvTsuWLaO33npLvn/jjTdEyL2wcN9zzz107LHH0qWXXkqLFy9O+XMAAABQN2Mn5T4dT3T0RMRbBFtNpTRLQGFnEI6qfMvESjt2Qs6Cy6Dq1x1IrxR1ep0NSBos3B4PS2tWryZq3rzm+2nfvj1dddVV9NBDD9HTTz9Nw4cPp1Rw4YUX0q233ioVZS3dnLHmnPeQIUOSfrwPP/yQtm/f7mS6ly5dSm+//bbES3ixpRf+S0mHDh2ibluxYgUdcsghdMMNN/hK99SpU+X58AcKAAAAIB3kO+LTbpBxpNyOnUi3k3A5hVnAWb5ZytNMupHpBhnHLbfcIvGIu+66izZv3pySY7Rq1Upy2+PGjXNkmIWVq8qnnXZa0o/30Ucf0R133CGXf/zjH5Lp5kjJ2WefTfvuu2/M9l7hZlq3bk1nnXUW/frrr1Il93LQQQdBuAEAAOzR2EmOT+xE2v8ZHU/iZr6DWRTIyqFgyO54kmYxSUg3yDgaN25MN910E61evVoq3qmCO4ds2LCB3nzzTYlvcOeUgQMHpiTScu+99zptlMrLy6XS/f/+3/+j0aNHU69evWjTpk1R2//xxx90ySWXUKdOnSTTrdsN8qJLZvny5THHwMJdAAAAtUG+I8bCS2+rQUe+g6mJl9aE9Kq7A5AkRowYQU888QQ9/PDDdOWVV6bkdT3llFOoZcuWUuFmyeVP2yziqYZzbG3btpXcNkdGuPLNz5XjLsxvv/1Ghx56KJWUlEg+myvveXl58jheNPnpp5/K4ksv/FwAAACAPSnfETte4tduUEdPnAmXdiVbOpaJcLsDcWTEfJoB6c5QeGEi56Rr0/kmk9zcXIlicL6ar7mriReWUF786Ie3cuwH9+LmbDeL/Y8//iii26NHj4SPqekxvRx22GFybXa6efTRR6UC/+KLL0rl3eTyyy8X6fYj3f4MBwAAoO5hWRZlWRaFLCtGvr25b1lwacs2o7PfmnSbSAnpzlC4E0gyFibWZrht3yOPPOJEMPxiKN9//70sTGSB1mzZskVyz5WBK9s8mIYrzqNGjapw+2Qc04Tl2lzNzfz+++9y7V0syb98Zs6cWeVjAAAAAOkg3+VxFl165dvZR5r92JDpBhkL98vmFni7du2SHtR+GWa+j9v8mWJ68803iwRXBu7X/f7770uu+/zzz69w+2QcU8MLOP/1r3/J18ccc4xze1FRkVzPmDEjavv77ruPfvjhhyodAwAAANjj8h0IUL0Eue9s3efbjpX4LbpMB1DpBhlN3759ZXy6V0AZbifIA26GDh0q7fK488j06dNp48aN0uN63rx5lTrGX/7yl0qfT3WPabYM5Kr2ypUrRfZ5QeUBBxwQlVvnCAkfgzuVcHeTpk2b0qxZs2ju3LmSQ3/33Xcrfb4AAABAbax8k75OI1DpBhnP/fff73s7568nT54sfbYnTJggGeju3bvLkBhuOZgKqntMs2Ugt0J85ZVXqFmzZjISniMj9evXd7Y98MADpZMKtwDkQTi80JP3zdtxn24AAAAg0yvfIT1iPo2wIumWMgcO3H0iPz9fFthx9wkAAAAAAOBidjvRiy35wuSFQiLf6eJriJcAAAAAAICMip1YvLYrzSrdkG4AAAAAAJBR8m35dDPZ00C6AQAAAABARsl3OpJedXcAAAAAAAAyEEg3AAAAAAAAKQbSnYY8+eST0kaOB6kAAAAAAIDaD1oGpjFoGQgAAAAAkN5U1tdQ6QYAAAAAACDFQLoBAAAAAABIMZBuAAAAAAAAUgykGwAAAAAAgBQD6QYAAAAAACDFQLoBAAAAAABIMZBuAAAAAAAAUgykGwAAAAAAgBQD6QYAAAAAACDFQLoBAAAAAABIMZBuAAAAAAAAUgykGwAAAAAAgBQD6QYAAAAAACDFhFJ9AFB9IpGIXJeUlOBlBAAAAABIQ7SnaW+LB6Q7jSktLZXrdu3a7elTAQAAAAAAFXhbfn5+3PutSEVaDvYY4XCYli9fTo0aNSLLsqLu69mzJ82ePTvuYxPdH+8+/qTGgr9kyRLKy8ujdKai559Ox6jOfqrymMpui/dM7XjPVHcfeM/U3d8zmfyeqU3/LjF4z9TN90wkEhHhbtOmDQUC8ZPbqHSnMfyDKyws9L0vGAwmfDMlur+ix/J96f7LraLnkE7HqM5+qvKYym6L90zteM9Udx94z9Td3zN14T1TG/5dYvCeqbvvmfwEFW4NFlLWUoYNG1bt+yt6bG1gdzyHZB2jOvupymMquy3eM7XjPVPdfeA9U3d/z+A9kz7gPVP112JYHfIZxEtA1J9k+JPapk2bakVFAex58J4BeM8A/I4B6URJGrsMKt3AIScnh0aNGiXXAFQGvGdAVcF7BuD9Aurq7xhUugEAAAAAAEgxqHQDAAAAAACQYiDdAAAAAAAApBhINwAAAAAAACkG0g2qxYQJE+jMM8+k9u3bU/369Wmfffahhx9+mHbt2oVXFPjyxhtv0FFHHUXNmjWTBS4dO3aka6+9ljZs2IBXDFRIWVkZ7bfffjIo7NVXX8UrBnz55JNP5D3ivfTo0QOvGEjIa6+9Roceeqg4TZMmTej444+nFStWUDLBcBxQLR566CEqLi6mBx54gFq2bEmff/45jRw5kr777jsaO3YsXlUQw/r166l37950ww03SDun77//nu644w6aN28effTRR3jFQEL++c9/0po1a/AqgUrxzDPPSDFIwyIFQDy4aHjzzTfT9ddfT/fffz9t2bKFPvvsM9q+fTslE3QvAdWC//Fr3rx51G1333033XbbbbRy5UoRcQAqYvTo0XTppZfSokWL5K8mAPixdOlS6t69Oz3xxBM0aNAgGjduHJ177rl4sYBvpfvYY4+lL774gg4//HC8QqBCfvvtN/n9wh/sr7jiCkoliJeAauEVbubggw+W6+XLl+NVBZWC/4THIJYEEnHNNddQ37596ZhjjsELBQBIKs899xxlZ2fTkCFDKNVAujOIn3/+mR5//HEaPHgw7bvvvhQKhSTLxhXoyvD666/Ln/8bN25MDRo0oP3331/iI5UVIv5TDL9xO3XqVMNnAjL5PVNeXi5/svv6668lXtKnTx+8Z2oRu/s9M3nyZJoyZQo9+OCDSX4mIJN/z5x++ukUDAblr6781zSOt4Haw8+78T3D8dhu3bpJNLaoqEiOxdu///77yX9iEZAxXH311RH+kXovd911V6UfGwqFIieeeGKkX79+kYKCArntqKOOimzdujXh43/88cdIbm5uZPjw4Ul8RiAT3zP5+fnOcfhxmzdvTsEzA5nwntm2bVukU6dOkYceeki+X7BggWw7bty4lD0/ULvfM3Pnzo1cd911kUmTJkWmTZsWue++++R3To8ePSLbt2/Hj7eWcPVufM907do10rBhw0jr1q0jL7zwQuSDDz6InHrqqfL4H374IanPC9KdQYwePTpy/fXXR15++eXITz/9FLngggsq9SZ98803ZTt+082ZM8e5fc2aNZF9991X7uNfYvHg7Tp37izbQqBqF3viPfPNN99EZs6cGfn3v/8dKSwsjBx77LGRsrKypD83UPvfM7fddltk7733juzcuVO+h3TXTvbUv02aKVOmyLZjxoxJyvMBmfWe6dy5s9z+7rvvOrft2LFD/n3i4yYTSHcGM2jQoEq9SXv27Cnb3X333TH3TZ8+Xe7LycmJbNy4Meb+kpKSyCGHHBIpKiqKLFu2LKnnDzLzPWMya9Ys2fb111+v8bmDzHrPLFy4UL6fMGFCZMOGDXKZN2+ebPfss89W+N4C6cvu/j3DNGnSJHLllVfW6LxBZr5nDj30ULndWwE/55xzIgcddFASn0Ukgkx3HWfZsmU0e/Zs+fq8886LuZ/7Krdr14527NhB7733XtR9fBvn5hYuXEgffPABtWnTZredN6id7xkvBx10kOT0ePU4yFyq855ZsGCBfN+/f3/JZfKFc5YML3hq27btbn4WoLb+ntHw7xqQuSyr5nvGbC1pwoXpZLcMhHTXcb755huni0SHDh18tznkkEOittWL4bhlF7/B+c3btWvX3XTGoLa+Z/yYOXOm/GLjQTkgc6nOe+aAAw6gadOmRV24VSDDrUlTssgJZOTvGS4K8UJKHnwCMpdvqvme4c5IjDkvgsV8xowZzvbJAsNx6jhcTWIS9UjmT4bmtsywYcPorbfeorvuuksEfNasWc593O8yLy8vpecNat975qSTTpIJX1xV4ImU/EuPO1LwlMEzzjhjN5w5qE3vmYKCAuk+YMJ/VdO/Y44++ugUnjGorb9nBg4cKMLFLWwbNWpEX375pQw74Q9x6O2e2Syo5nuGpbtXr140dOhQuvfee6lVq1bSOYWnJf/tb39L6jlCuus4paWlcs0tdeLRsGFDuS4pKYlq46UrTnwx4YqU9x9LkDlU9z3DVaaXXnrJ+WXHE02vvPJKGQXPrSZB5lLd9wyou1T3PcMf6l955RUZdLJt2zYqLCyUONKoUaPweybDKa3meyYQCNA777wj0yivu+46ed/07NmTPv7447jRk+oC6QbVQlecAKgs/FcRvgBQXfiDGseRAIgHj/LmCwBVgSMpPCSHL6kEme46Dv/5jdmyZUvcbTZv3izXiIwAvGcAfs+A3QH+bQKZ+J6BdNdxuHLELFmyJO42+j69Lajb4D0D8J4B+D0D0o3iWuAzkO46zoEHHijX69ati1pYYMLjunV7NwDwngH4PQPwbxNINw6sBT4D6a7j8CITXjDA8OITL9wyhz8ZcreJPn367IEzBOkG3jMA7xmA3zMg3SisBT4D6QZ0yy23yKtw33330dy5c51XhD8tcncJZvjw4ZSfn49XCwh4z4CqgvcMwHsG1PXfMxaPpdwjRwZJh99g+k3F/P7777R27Vr59GdOb3vzzTepdevWUY+9+uqr6bHHHqOsrCzppcwtd7hR/MaNG+nII4+kqVOnUm5uLn5qGQbeMwDvGYDfMyDdmJupPpPUofJgjzJt2jT+AFXhZcGCBb6Pf+211yLHHHNMJC8vL5Kbmxvp0aNH5L777ovs2LFjtz8XsHvAewbgPQPwewakG9My1GdQ6QYAAAAAACDFINMNAAAAAABAioF0AwAAAAAAkGIg3QAAAAAAAKQYSDcAAAAAAAApBtINAAAAAABAioF0AwAAAAAAkGIg3QAAAAAAAKQYSDcAAAAAAAApBtINAAAAAABAioF0AwBAEikuLibLsiq8PP/883jdK8HChQtjXru777477vbbtm2jp556ik477TRq164d1a9fn3Jzc6mwsJBOOukkuu++++iPP/6o8Wv/+++/UyAQkPP53//+V+H2u3btoubNm8v248ePl9tWrlwZ89xuv/32Gp8bACA9Ce3pEwAAgEzkyCOPpL322ivu/YnuA7E0aNCA+vfvL1/vv//+vi/R1KlT6YILLqBVq1aJEB9wwAF06KGHUnZ2tgjuzJkzacqUKTRy5Eh64IEH6Nprr632S92pUyf605/+RJ988gk999xzsr9EvP3227R27Vpq2rQpnXHGGXIbfxgYNGiQfP3tt9/SvHnz8KMHIIOBdAMAQAoYOnQoDR48GK9tkmjWrFnCvw688847IrPl5eV00UUXSTW8TZs2MdVmlt977rmHfvnllxqf05AhQ0S6X3zxRdlnKBT/n1QWc2bgwIHyIYDJz893nhNXuCHdAGQ2iJcAAACo1axbt05kloX7r3/9qwiuV7iZrKwsOuuss+irr76iSy65pMbH5X0VFBRIFf3999+Pu92KFSvogw8+kK8vvvjiGh8XAFA7gXQDAEAaoDO9zH//+1866qijKC8vT2IVHFV577334j62rKyMnnnmGerduzc1adKEcnJyqEOHDnTFFVfQkiVLYrbn6iwfi7ffunUr/f3vf6e9995b8s+cSddEIhER2EMOOUTu42jEySefTJ9//nnUPjRjxoyR2zg7HY/ly5eL/HK0gmU5GTz++OO0adMmatWqlWS2KyIYDNLBBx/se9+GDRto1KhREk1p1KiRPO99991XKuf8WpnwczjvvPOiKtl+jB07Vj4Q8Ou43377Vfn5AQAyA0g3AACkESx8//d//ydf9+nThzp37iySe+qpp9Kbb74Zs31paSn9+c9/lsrtnDlzROr69u0r4v3vf/+bDjzwQPrmm298j7V9+3aR5kceeUQknR/Hx9MMGzZMIhT8eM5Gn3jiiSLxxxxzjMQ5vLCA8mJBzlbHi288/fTT8iFhwIABIvHJYOLEiXJ99tlnO9GN6jB//nzJi9955520evVq+eBzwgkn0Jo1a+i2226TDz8s9yb8+jDvvvuuPMYP/jBibgsAqKNEAAAAJI2ioqII/2odM2ZMlR7Hj+FLQUFBZNasWVH3jRo1Su7r0qVLzOPOO+88ue/UU0+NrFq1Kuq+Rx99VO7r3LlzpKyszLl92rRpzvH222+/yIoVK2L2O3HiRLm/YcOGkZkzZ0bd9/DDDzuP/9Of/hR136233iq3jxgxImafO3fujLRq1UrunzNnTqVelwULFsj2/Lr6sWvXrkggEJBtXnzxxUh12bp1a6RTp06yn5EjR0Z27Njh3Ldly5bIgAED5L6LLroo5rEHHHCA3Mevi5cZM2bIfbm5uZGNGzfGPb7+GfM1ACAzgXQDAEAKpLuiy4YNG6J/Gdu3P/bYYzH73L59eyQ/P1/uX7x4sXP7/PnzI5ZlRdq0aRMpKSnxPZ8+ffrI4yZNmuQr3Z999pnv44477ji5/+abb/a9v2fPnr7SvWzZskhWVpac7+bNm6PuGzdunDymV69ekcpSkXTzBw39XCZPnuy7zRNPPBEZNGhQzMXkqaeecj68+FFaWhpp0aJFJBQKRdavXx913+OPPy6P7dGjR8zjLr74Yrlv4MCBCZ8npBuAzAfdSwAAYA+0DIwXg+D+0l44KtKxY0eJeSxbtkz6TzOc82Zf55w154/94PgIb6cjKiYtWrSgo48+OuYxHP/g7Znzzz/fd78cJZk9e3bM7byAkVv7jRs3Trp6XH755c59Tz75pFwPHz6cdifTpk2TnLwXsxsKx0OYc845x3cfDRs2lEw2v5b8vDlqo+FFnDfccAP98MMPskiTozjMli1bnJ7ciJYAACDdAACQRi0D27dv73s7L6rUOWyNHvLy7LPPyiURnEv2Yi6aNOF+0vo48baJdzszYsQIkW6WbC3d3333Hc2YMYNatmzp9NtOBrxwlBdv8ocPv+fITJgwwfl66dKlzocWE/1acp9vviTCexzuYNKvXz965ZVXZEGllm4W7s2bNzs9vQEAdRtINwAApBE81KWyhMNhueZOG/EGxmgOO+ywmNu4+0Z10Z1W/Dj88MNFPLnq++mnn4pw6ir3pZdeWqPFjl64NzYvHuUe119//bVUnauDfi3/8pe/yAeDRBQVFcXcxpVslu5XX32VHn30UXlt9QJKbhOY6PUCANQNIN0AAFBL0RVbjrI88cQTSdsvdxXhSMuOHTto0aJF1L17d9/x7IngajcLMJ8XfyB4+eWXRZDNuEmy4K4rLN1cWX7wwQelJWF1Xkse587yXJ1K/LHHHisRIK6Yv/HGG/IhZ/r06dKeUE+dBADUbdAyEAAAaimc5WZ4yqIZO6kpLK29evWSr7l66wfHRxLB7ftat25Nb731Fv3jH/+QfPOZZ57pO7SmprDgc/yGh9DceuutNXotdQa7qnAlWw++4YiJ7tvNPcvbtm1brX0CADILSDcAANRSuAc3T0Xk3tmcKfarPrPscpV51apVVRZZ5rHHHqNZs2ZF3ffPf/6TvvzyywrFnYfz8KLMhx56KKULKHlE/AsvvCDRHK50c89yFnAvnPueOXOm7z449sKxkddff51uvPFG6X/uhSdPjh49Ou55cIafK9u8cPM///mP3IYFlAAADeIlAACQAnhCJE9tjAd3v9DTDGsC54Y3btwoY8i7du0qUQ4edMOCyRLOsYudO3fSTz/9VGFW2YSr0iyiLI88JIa7nHDl+vvvv5d98bh1zi4nymdfdtllUuXmmArnrnmoTqo4/fTTpQPJhRdeKK89vy6cdecFn3r6JXd/YXFmOfdmv3nyJz+eO7w88MAD8rz5nAsLC2USJQ/74efNHV/ijZDnijZXtrnDCR+PBwX5daMBANRNIN0AAJACuKIar6qqO14kQ7q5VeCUKVPotddeo5deekmmUn777bcSt2BJ5pZ/nHnmDhpVhSda9uzZk5566impdterV08WSP7rX/9yqupcZY4HCyqLL1fFebplquFFkAsWLJBWgCy+/IHjxx9/lA8gnFPv0aOHnAe/7py/9rLPPvtIlxV+3jz9k7/+4osv5DmyfF9//fXyYSQRXNnmYzPcBaU6+XIAQGZicbPuPX0SAAAAahecX+Zq8sMPP0zXXnut7zZcHe7WrRvl5+dLf/H69etX+Tgs91y55+hHRYs3azO333473XHHHTRq1Cj5GgCQeaDSDQAAwBeuEnM8g6MXZms97gnO1WSufA8YMCDuq/f3v/9dqsyc7a6OcHt7h+u+55xjz4TYxqZNm+jqq6+Wr/mvEwCAzAbSDQAAwBdelMjdPHjBJueVeVHm/PnzpeLMCwY5ZsIRFhPupDJx4kQRdo6VtGrViv72t7/V+BXmY48dO1a+5kmfmSDd27Ztc54TACDzgXQDAADwhUeil5SUODlx7kTCOW2+/ZprrpEhOF7mzp0r7fI4a37CCSfQI488Ivn16sKV9kxNQfIHkkx9bgCAWJDpBgAAAAAAIMWgTzcAAAAAAAApBtINAAAAAABAioF0AwAAAAAAkGIg3QAAAAAAAKQYSDcAAAAAAAApBtINAAAAAABAioF0AwAAAAAAkGIg3QAAAAAAAKQYSDcAAAAAAACUWv4/zgzGCt0RMhsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "flux = nuflux.makeFlux('honda2006')\n", + "nu_type=nuflux.NuMu\n", + "erange_atmo = np.logspace(2,6,100)\n", + "cosrange = np.linspace(0,1,100)\n", + "atmo_flux_tables = {}\n", + "cycler = plt.rcParams['axes.prop_cycle']()\n", + "for particle,c in zip([nuflux.NuE,\n", + " nuflux.NuEBar,\n", + " nuflux.NuMu,\n", + " nuflux.NuMuBar],cycler):\n", + " color = c[\"color\"]\n", + " siren_key = siren.dataclasses.Particle.ParticleType(int(particle))\n", + " atmo_flux_tables[siren_key] = np.zeros(len(erange))\n", + " for cost in cosrange:\n", + " plt.plot(erange,erange**3*flux.getFlux(particle,erange,cost) * 1e4 * 2 * np.pi,color=color,alpha=0.01)\n", + " for i,e in enumerate(erange):\n", + " f = flux.getFlux(particle,e,cosrange)\n", + " atmo_flux_tables[siren_key][i] += 0.01*np.sum(f) * 1e4 * 2 * np.pi\n", + " plt.plot(erange,erange**3*atmo_flux_tables[siren_key],color=color,label=particle)\n", + "\n", + "plt.xlabel(\"Energy [GeV]\")\n", + "plt.ylabel(r\"$\\frac{E^3 d\\phi}{dE dA dt}$ $[ {\\rm Gev}^2 {\\rm m}^{-2} {\\rm s}^{-1} ]$\")\n", + "plt.legend()\n", + "plt.loglog()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2660aa66-03ac-4f01-a16b-509af8710140", + "metadata": {}, + "outputs": [], + "source": [ + "# Number of events to inject\n", + "events_to_inject = int(1e5)\n", + "# Expeirment to run\n", + "experiment = \"IceCube\"\n", + "os.makedirs(\"output\", exist_ok=True)\n", + "\n", + "for primary_type in particles:\n", + " \n", + " if os.path.isfile(\"output/IceCube_DIS_%d.siren_events\"%(primary_type)): continue\n", + " \n", + " \n", + " controller = SIREN_Controller(events_to_inject, experiment)\n", + " \n", + " # DIS cross section\n", + " if int(primary_type)>0:\n", + " xs = siren.interactions.InteractionCollection(primary_type, [DIS_xs_CC,DIS_xs_NC])\n", + " else:\n", + " xs = siren.interactions.InteractionCollection(primary_type, [DIS_xs_CCbar,DIS_xs_NCbar])\n", + " controller.SetInteractions(xs,physical=False) # only set injection cross sections\n", + "\n", + " # Primary distributions\n", + " primary_injection_distributions = {}\n", + " \n", + " # mass\n", + " primary_injection_distributions[\"mass\"] = siren.distributions.PrimaryMass(0)\n", + " \n", + " # energy\n", + " primary_injection_distributions[\"energy\"] = siren.distributions.PowerLaw(1, 1e2, 1e6)\n", + "\n", + " # direction\n", + " primary_injection_distributions[\"direction\"] = siren.distributions.IsotropicDirection()\n", + "\n", + " # position\n", + " muon_range_func = siren.distributions.LeptonDepthFunction()\n", + " position_distribution = siren.distributions.ColumnDepthPositionDistribution(\n", + " 1200, 1200.0, muon_range_func, set(controller.GetDetectorModelTargets()[0])\n", + " )\n", + " primary_injection_distributions[\"position\"] = position_distribution\n", + "\n", + " # set processes\n", + " controller.SetInjectionProcesses(\n", + " primary_type, primary_injection_distributions\n", + " )\n", + "\n", + " controller.InitializeInjector()\n", + "\n", + " events = controller.GenerateEvents()\n", + "\n", + " controller.SaveEvents(\"output/IceCube_DIS_%d\"%(primary_type),hdf5=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8c1f7bf7-93df-4e1d-ab72-66317536101c", + "metadata": {}, + "outputs": [], + "source": [ + "def ReweightEvents(primary_type, mode):\n", + " \n", + " controller = SIREN_Controller(0, experiment)\n", + " \n", + " # DIS cross section\n", + " if int(primary_type)>0:\n", + " xs = siren.interactions.InteractionCollection(primary_type, [DIS_xs_CC,DIS_xs_NC])\n", + " else:\n", + " xs = siren.interactions.InteractionCollection(primary_type, [DIS_xs_CCbar,DIS_xs_NCbar])\n", + " \n", + " controller.SetInteractions(xs,injection=False) # only set physical cross sections\n", + "\n", + " # Primary distributions\n", + " primary_physical_distributions = {}\n", + " \n", + " # mass\n", + " primary_physical_distributions[\"mass\"] = siren.distributions.PrimaryMass(0)\n", + " \n", + " # energy\n", + " if mode==\"astro\":\n", + " edist_astro = siren.distributions.PowerLaw(2, 1e2, 1e6)\n", + " norm = 1e-18 * 1e4 * 4 * np.pi # GeV^-1 m^-2 s^-1\n", + " edist_astro.SetNormalizationAtEnergy(norm,1e5)\n", + " elif mode==\"atmo\":\n", + " edist_atmo = siren.distributions.TabulatedFluxDistribution(erange_atmo,atmo_flux_tables[primary_type],True)\n", + " primary_physical_distributions[\"energy\"] = edist_atmo if mode==\"atmo\" else edist_astro\n", + "\n", + " # direction\n", + " primary_physical_distributions[\"direction\"] = siren.distributions.IsotropicDirection()\n", + "\n", + " # set processes\n", + " controller.SetPhysicalProcesses(\n", + " primary_type, primary_physical_distributions\n", + " )\n", + "\n", + " controller.Initialize(injection_filenames=[\"output/IceCube_DIS_%d\"%(primary_type)])\n", + " \n", + " controller.LoadEvents(\"output/IceCube_DIS_%d\"%(primary_type))\n", + "\n", + " controller.SaveEvents(\"output/IceCube_DIS_%d_%s\"%(primary_type,mode),hdf5=False,parquet=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb5cdb96-7878-4013-a92a-b6f6ccc7ffb1", + "metadata": {}, + "outputs": [], + "source": [ + "data = {}\n", + "for mode in [\"atmo\",\"astro\"]:\n", + " data[mode] = {}\n", + " for primary_type in particles:\n", + " if mode==\"atmo\" and abs(int(primary_type))==16: continue\n", + " if not os.path.isfile(\"output/IceCube_DIS_%d_%s.parquet\"%(primary_type,mode)):\n", + " ReweightEvents(primary_type, mode)\n", + " data[mode][primary_type] = awk.from_parquet(\"output/IceCube_DIS_%d_%s.parquet\"%(primary_type,mode))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "561a46e0-7ff2-4faa-8d5c-d8cc19ba7e70", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJOCAYAAADBIyqKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABugUlEQVR4nO3dCXhTVfr48bcLLQXasu+roDgVZK2ioAIuKK4oriOKAz+dAWRXwAGR5Q+IuKBU3EVH1BEEZhSHRRYZQJBVUBgXBGWHsrSUQumS//MeTEzbJE1y0zZJv5/nCaHJvTcn994k573nnPdE2Gw2mwAAAACAnyL9XREAAAAACCoAAAAAWEZLBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAign3/+Wbp37y6VKlWS6tWrS79+/eT06dOBfAkAAAAg6ESXdgHCRVpamnTt2lXq1q0rc+bMkePHj8vQoUPl8OHD8umnn5Z28QAAAIBiQ1ARIK+//rocPXpUNm7cKDVr1jSPxcXFyV133SWbNm2Sdu3aBeqlAAAAgKBC96cA+eKLL0xLhT2gULfddpvpCvX5558H6mUAAACAoBPWQcUPP/wgr7zyivTu3Vtatmwp0dHREhERIRMnTvRqfe3G1LlzZ6lSpYpUrFhRWrVqJVOnTpXs7OxCy+7YsUP+9Kc/5XtMX++iiy6SnTt3Buw9AQAAAMEmrLs/zZw5U6ZPn+7XuoMHDzbramCgLRDa4rB8+XIZMWKEfPbZZ7JkyRLTvcnuxIkTUrly5ULb0YBEx1cAAAAA4SqsWypatGghw4cPl9mzZ5vWgl69enm13oIFC0xAoYHE+vXrZfHixWaw9U8//WRaPFavXi1jxowp9vIDAAAAoSCsWyr69u2b7+/ISO9iqEmTJpn7kSNHStu2bR2Pa5rYV199Va666iqZMWOGCSwSExMdLRInT54stC1twbjwwgstvhMAAAAgeIV1S4U/9u/fLxs2bDD/f+CBBwo936lTJ2nQoIFkZWWZwdl2Op6i4NiJ3Nxc+fHHHwuNtQAAAADCCUFFAVu2bDH3VatWlSZNmrjcae3bt8+3rNJJ71asWGHSytrp2IuMjAy5+eabi+PYAQAAAEEhrLs/+WP37t3mvmHDhm6X0ZYK52XVY489ZjJN3X777aZblHZ70snv9G97EOKKtnjozS4vL88M7K5WrZrJVAUAAAB4y2azyalTp8yEzN52/Q8EgooC9CAoTSHrjg7gVunp6Y7HNPOTZocaOHCg9OzZU8qXLy933323TJs2zeMBmDx5sowbN87KMQQAAADy2bt3r9SvX19KCkFFAOmcFIsWLfJpnVGjRpkWDbu0tDTTSqInQkJCQiCLBwAAgDCXnp5uetXEx8eX6OsSVBRgPwCnT592u9N0nIQKRKU/NjbW3ArSbRNUAAAAwB8l3Y2egdoFNG7c2NxrS4E79ufsywIAAABlGUFFAW3atDH3x44dyzcQ29nGjRvNvfMcFlalpKRIUlKSJCcnB2ybAAAAQEkgqChAB7TYK/YffvhhoR2ms2lrS4V2WdI0soHSv39/2bFjh2OODAAAACBUEFS48NRTT5n7KVOmyObNmx2Pa+tFv379zP8HDBjgmE0bAAAAKMsibJrMNkxpQGAPAtSuXbskNTXVtEbUq1fP8fj8+fOlTp06+dYdNGiQvPzyy1KuXDm59tprTYrZZcuWycmTJ6Vjx46ydOlSiYuLK5YR+xqsaBYoBmoDAAAgFOqS0eG+U9evX1/o8X379pmbnfPkc3bTp083wYOOdVi7dq1kZ2dL06ZNZeTIkTJkyBCJiYkp9vIDAAAAoSCsWypCiQYvesvNzZUff/yRlgoAAACETEsFQUWQofsTAAAAQq0uyUBtAAAAAJYQVAAAAACwhKACAAAAgCUEFQAAAAAsIagIEpr5KSkpyTGbNwAAABAqyP4UZMj+BAAAAH+R/QkAAABASKL7EwAAAOClTZs2SZ8+feTCCy+UihUrSlxcnDRt2lR69eolS5cuDdg6oYbuT0GG7k8AAADBJy8vT4YPHy4vvviiREdHS9euXaVFixZSrlw5+eWXX+TLL7+UEydOyPjx42XMmDF+rxOqdcnoEnslAAAAIESNHj3aBAetW7eWuXPnmpYGZ2fOnJEZM2bIsWPHLK0TqmipCDK0VAAAAATO5s2bpV27dtKjRw+ZN2+e43FtIWjYsKFcdtllsmzZMo/b+Pnnn+Xiiy+WypUry/fffy+1atVyu2xWVpbExsb6tU4g0FJRxmlKWb3l5uaWdlEAAEAYs9nyJDfrhISKqNgqEhHh/zDgevXqmft9+/ble7xKlSpy1113yfvvvy+pqalSvXp1t9uYNWuWqaM99thjHoMDZQ8O/FknlNH9KUj079/f3OzRJQAAQHHQgGL3vPYhs3Ob3LlRostX83v9mjVrmjEMBYMKpeMbbDabbNu2zYx3cGfNmjXm3tMygVgnlJH9CQAAAGErIiJC6tSpI4cPH5acnByXy2RmZnrcxqFDh8x9/fr1vX7dQ36sE8oIKgAAABDWtGKvmZgOHDiQ7/EVK1aY+5YtW5ZSycIHQQUAAADCmqtxFRs2bJBFixZJly5dpFGjRh7Xr127trnfv3+/169Z2491QhljKgAAAMoQHfis4xRCqbyBDioyMjKkd+/eZu6IF154ocj1O3bsKCtXrjRZorwdI9HRj3VCGS0VAAAAZYhmUtKBz6Fys5L5qWBQsXfvXjMw+6GHHpKdO3fKm2++aeaQKIoGIFFRUfLGG2/I0aNHPS6blZXl9zqhjKAiSGg62aSkJElOTi7togAAAIQV+2BpDSr69u0r8+fPl+nTp5vgwhvNmjWTJ5980qSevemmm2T37t2Fljl79qxp9XjmmWf8XieU0f0pSJBSFgAAoHjYWypee+010yrw0ksvyeOPP+7TNiZOnGiCAJ0hu3nz5qZLk6ak1XS1u3fvli+//NLMjK3LWVknVDGjdpBhRm0AAIDA+uWXX6Rp06ZmDIV2R3rkkUf83tbGjRtl5syZsmrVKjMIW7NK1alTR6688kqz3euuuy4g64RaXZKgIsgQVAAAACDU6pKMqQAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgIkgwozYAAABCFfNUBBnmqQAAAIC/mKcCAAAAQEii+xMAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAAAAACwhKACAAAA8GDPnj0SERFhbt26dXO5zLp168zzvXv3dvn8pk2bpE+fPnLhhRdKxYoVJS4uTpo2bSq9evWSpUuXhvz+J6gAAAAAvLRkyRJZvny51/srLy9Phg4dKu3bt5f3339fLrjgAvnrX/8qgwYNknbt2snChQvlhhtukAkTJoT0MYgu7QIAAAAAoaBx48by22+/yYgRI+Sbb74xLRNFGT16tLz44ovSunVrmTt3rmmdcHbmzBmZMWOGHDt2TEIZLRUAAAAIW5s3bzaV/zvvvDPf4ydOnJD4+Hi59tprvd5W8+bNTXeljRs3yieffFLk8j///LNMnTpVqlWrJosWLSoUUCjtBvXEE0/IuHHjJJTRUhEkUlJSzC03N7e0iwIAAMJYns0mJ86dk1BRJSZGIr1oEXCnXr165n7fvn35t1ulitx1112mS1JqaqpUr17dq+2NHz9ePv74Y9MCoYFKuXLl3C47a9YsU7d77LHHpFatWh63GxsbK6GMoCJI9O/f39zS09MlMTGxtIsDAADClAYU7Zf8W0LFxhtuk2oWKtw1a9Y0Ff+CQYVq0aKF2Gw22bZtm3Tt2tWr7TVs2FAef/xxmTZtmrz++usyYMAAt8uuWbPG3Hu77VBG9ycAAACELe36VKdOHTl8+LDk5OS4XCYzM9OnbT711FNSuXJlM7g6IyPD7XKHDh0y9/Xr15dwR1ABAACAsKaVes3CdODAgXyPr1ixwty3bNnSp+1p16mRI0fKkSNHTIsFCCoAAAAQ5lyNq9iwYYMZPN2lSxdp1KiRz9scOHCgCVaef/55E1y4Urt2bXO/f/9+CXeMqQAAAChDdOCzjlMIpfIGOqjQLks6SV10dLS88MILfm1TszZpxiad0G7cuHEmK1RBHTt2lJUrV8qyZcvCflwFQQUAAEAZopmUrAx8DkX2oGLv3r1mYPZDDz0kO3fuNNmZdP4Ifz388MMmKHnzzTfliiuuKPS8Bi5TpkyRN954QwYPHiw1atRwu62srKyQzgDFmAoAAACENftAaQ0q+vbtK/Pnz5fp06eb4MKKqKgomTRpkmRnZ8szzzxT6PlmzZrJk08+aVLW3nTTTbJ79+5Cy5w9e9YEJq7WDyW0VAAAAKBMtFS89tprpkXgpZdeMmlhA+G2226TTp06yerVq10+P3HiRBM46KzaOnmedoPSVLaa5laDjC+//NLMpq3LhTKCCgAAAJSJoEInonvnnXfkkUceCej2n332WTN+wpXIyEjTEvHAAw/IzJkzZdWqVeam2ag01W23bt1Mea677joJZRE27ViGoGGf/C4tLU0SEhJKuzgAAAAIIaVVl2RMBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAgSKSkpkpSUJMnJyaVdFAAAAMAnTH4XZJj8DgAAAP5i8jsAAAAAIYnuTwAAAAAsIagAAAAAYEm0tdUBAACA4LdgwQLZunVroccHDx4slStXLpUyhROCCgAAAJSJoOK9994r9Hjv3r19Cio2bdokr776qqxatUoOHDggeXl5UrduXbnyyivloYcekuuvvz4g64Qasj8FGbI/AQAABB8NBIYPHy4vvviiREdHS9euXaVFixZSrlw5+eWXX+TLL7+UEydOyPjx42XMmDF+rxOqdUlaKgAAAIAijB492gQHrVu3lrlz50rTpk3zPX/mzBmZMWOGHDt2zNI6oYqWiiBDSwUAAEDgbN68Wdq1ayc9evSQefPmOR7XFoKGDRvKZZddJsuWLfO4jZ9//lkuvvhi003q+++/l1q1arldNisrS2JjY/1aJxCYpwIAAAAIsHr16pn7ffv25Xu8SpUqctddd8mKFSskNTXV4zZmzZolubm58thjj3kMDpQ9OPBnnVBG9ycAAIAyxJZnk5zjmRIqoqtWkIjICL/Xr1mzphnDUDCoUDq+wWazybZt28x4B3fWrFlj7j0tE4h1QhlBBQAAQBmiAcWmpOkSKtrtGCTlqlf0e/2IiAipU6eOCSpycnLMgOmCMjM9B1mHDh0y9/Xr1/f6dQ/5sU4oY/I7AAAAhDWt2GsmJk3n6ky7PqmWLVuWUsnCB0EFAAAAyty4ig0bNsiiRYukS5cu0qhRI4/r165d29zv37/f69es7cc6oYygAgAAAGUqqMjIyDCT3mlXqBdeeKHI9Tt27Gjui8oSZXWdUEZK2SBDSlkAAFCcytpAbTVt2jR54oknzP3QoUNN1iedYVszNOmM1kWxp4fVjFE7duyQGjVqeJ1StooP6wQCk98BAACg2GkF3crA51BkHyy9d+9e6du3r8yfP19efvllrwIK1axZM3nyySdl8uTJctNNN8mcOXOkSZMm+ZY5e/asvPrqq3L06FGznD/rhDKyPwEAAKBMdH967bXXTKvASy+9JI8//rhP25g4caIJAnSG7ObNm5tUsZqSVtPV7t69W7788kszM7YuZ2WdUEX3pwDRJi5tUvvmm29k+/bt5uTds2ePz9uh+xMAAEBg/fLLL9K0aVMzhuKNN96QRx55xO9tbdy4UWbOnCmrVq0yg7A1q1SdOnXkyiuvNNu97rrrArKOv0qrLklQESD/+te/pH///maqd408dep3ggoAAACUpNIKKsj+FCC33nqrySgwb948ufzyywO1WQAAACDoEVQEakdGsisBAABQNoVMTfiHH36QV155xeQU1lkPtU+cTrvu7cAWHXHfuXNnk9arYsWK0qpVK5k6dapkZ2cXe9kBAACAcBYy2Z90cMv06dP9Wnfw4MFmXQ1EdNR9pUqVZPny5TJixAj57LPPZMmSJRIXFxfwMgMAAABlQci0VGj6reHDh8vs2bNl586d0qtXL6/W04lNNKDQQGL9+vWyePFi+fTTT+Wnn34yLR6rV6+WMWPG5FtHJ0LRVpCibnPnzi2mdwsAAACEjpBpqdCJSvwZwzBp0iRzP3LkSGnbtq3j8erVq5vJRq666iqZMWOGCSx0pLzq0aOHdOjQweucxwAAAEBZFjJBhT80D/CGDRvM/x944IFCz3fq1EkaNGhgZlf84osv5P777zePa3BhDzAAAAAAhEn3J39s2bLF3FetWrXQtOh27du3z7csAAAAAN+EdUuFTkKnGjZs6HYZbalwXtZfmZmZprXDPmuj/m0fc5GcnCyNGjVyuZ5OFa835wlLAAAAgFAS1kHFqVOnzL2mkHVHB3AHojJ/5MgRufvuu/M9Zv/73XffNalwXZk8ebKMGzfO0msDAAAApSmsg4qS1LhxY7HZbD6vN2rUKBk6dKjjbw1u7K0nAAAAQCgI66AiPj7e3J8+fdrtMhkZGeY+ISFBSkNsbKy5AQAAAKEqOtxbD5Rmd3LH/px9WQAAAIQfnbts69atLidJrly5cqmUKZyEdVDRpk0bc3/s2DEzENtVBqiNGzeae+c5LEpDSkqKueXm5pZqOQAAAMI1qHjvvfcKPa7jXosKKvbs2eOoR95www1mMuWC1q1bJ1dccYU8/PDDZiLlgjZt2mTmSFu1apUcOHBA8vLypG7dunLllVfKQw89JNdff72EsrBOKVu/fn2TeUl9+OGHhZ7X2bS1pUK7H3Xv3l1KU//+/WXHjh2OeTUAAAAQOFrR1/GvBW++9lZZsmSJLF++3Ovl8/LyzPhZncbg/ffflwsuuED++te/yqBBg6Rdu3aycOFCE6hMmDBBQllYt1Sop556ysyQPWXKFLnpppscLRLaetGvXz/z/wEDBjDZHQAAADzSAOS3336TESNGyDfffCMRERFF7rHRo0fLiy++KK1btzbTDTRt2jTf82fOnJEZM2aYumkoC5mWis2bN0uHDh0cN43q1Ouvv57v8YMHD+Zb74477pCBAweaAdn6vAYWPXv2lGbNmsn27dulY8eOIR8ZAgAAwH0dUiv/d955Z77HT5w4YZL6XHvttV7vuubNm0uvXr1M9/lPPvmkyOV//vlnmTp1qlSrVk0WLVpUKKBQcXFx8sQTT4T8FAMh01KhqVbXr19f6PF9+/aZm53zRHJ206dPN8GDjllYu3atZGdnm4M6cuRIGTJkiMTExBR7+QEAAFDy6tWrZ+6d64uqSpUqctddd5kuSampqVK9enWvtjd+/Hj5+OOPTQuEBirlypXz2OVKx8s+9thjUqtWLY/bDfVsoCETVHTu3NmveSDs7rnnHnMLVgzUBgAAJSEvT7uBh86+rlZNJNJC35qaNWuain/BoEK1aNHC1C+3bdsmXbt29Wp7DRs2lMcff1ymTZtmesxoN3p31qxZY+693XYoC5mgItzpQG29aYtMYmJiaRcHAACEKQ0oataUkHHkiEiNGv6vr12f6tSpY4KKnJwciY4uXP3NzMz0eczuW2+9ZbrQa/aoSpUquVzu0KFDjuRB4S5kxlQAAAAA/tBKvWZh0lSuzlasWGHuW7Zs6dP2tOuUdqM/cuSIabEAQQUAAADK4LgKTeOvg6e7dOkijRo18nmbmghIg5Xnn3/eBBeu1K5d29zv379fwh0tFQAAAChTQYVmBdVuS9oV6oUXXvBrm5q1STM26bbGucncpImC1LJlyyTcMaYCAACgDNGBz24urAclLW+gggqd9FgHZusM1jt37jTZmXT+CH/p7NkalLz55ptmNu2CNHDRudLeeOMNGTx4sNTwMDhEM5iGcgYogoogQfYnAABQEjSTkpWBz6HIPlBag4q+ffvK/Pnz5eWXXzbBhRVRUVEyadIkuf322+WZZ54p9LzOi/bkk0/K5MmTzVxpc+bMkSZNmuRb5uzZs/Lqq6/K0aNHzXKhiqAiSJD9CQAAoHjYWypee+010yLw0ksvmbSwgXDbbbdJp06dZPXq1S6fnzhxogkcdFZtnTxP08tqKltNc7t792758ssvzWzaulwoI6gAAABAmQgqdCK6d955Rx555JGAbv/ZZ591jJ8oKDIy0nSReuCBB2TmzJmyatUqc9NsVJrqtlu3bqY81113nYSyCJuVGeUQcPZ5KtLS0iQhIYE9DAAAgKCvS5L9CQAAAIAlBBUAAAAALCGoAAAAAGAJQUUQpZRNSkqS5OTk0i4KAAAA4BMGagcZBmoDAADAXwzUBgAAABCS6P4EAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBVBgpSyAAAACFWklA0ypJQFAACAv0gpCwAAACAk0f0JAAAAgCUEFQAAAAAsIagAAAAAYAlBBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUBAlm1AYAAECoYkbtIMOM2gAAAPAXM2oDAAAACEl0fwIAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBUAAAAALCGoAAAAAGAJQUWQSElJkaSkJElOTi7togAAAAA+ibDZbDbfVkFxSk9Pl8TERElLS5OEhAR2NgAAAIK+LklLBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBUAAAAALCGoAAAAAGAJQUWQSElJkaSkJElOTi7togAAAAA+ibDZbDbfVkFxSk9Pl8TERElLS5OEhAR2NgAAAIK+LklLBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlkT7snDXrl0lECIiImTZsmUB2RYAAACAEAoqVq5cGbCgAgAAAEAZDCrUjTfeKCNGjPD7BadMmSJLlizxe30AAAAAIR5U1K5dW6655hq/X3DWrFl+rwsAAAAgxAdqX3TRRVKnTh1LL6hBiW4HAAAAQHhgRu0gw4zaAAAA8BczagMAAAAI/+5PLVq0kJdeeklSU1OLr0QAAAAAwjeo2LFjhwwbNkzq168vd999tyxatEhsNlvxlQ4AAABAeAUVzz//vGmtOHfunHz66ady8803S8OGDeXpp5+WX375pfhKCQAAACC8Bmpv3LhR3nnnHfn444/l5MmTjsnsOnfuLH369JG77rpLYmNji6O8YY+B2gAAAAi1uqSl7E9ZWVmmxeLdd9+VFStWSF5engkw9I3cf//98pe//EXatWsX2BKHOYIKAAAAlKmgwtnevXtN68V7770ne/bscbRetGzZUvr27St//vOfpUqVKoF4qbBGUAEAAIAyG1Q4W758uQkw5s+fL2fOnDEBhnaHyszMlHA1d+5cmT17tmzatMlkx2rSpIlpqRk4cKCUK1fO6+0QVAAAAMBfYRVU2C1cuNBUrI8ePWoCi9zcXAlXHTp0kMaNG8sdd9whtWrVkrVr18rEiRPlnnvuMa033iKoAAAA4SInL0/SsrPdPp9YrpxER/qUNwhBWpeMDvQGDx48KO+//74ZZ/HTTz85Us5qN6hw9tlnn0mNGjUcf3fp0sW89zFjxsjUqVNNoAEAAFBWzN/3q4zdvkVO5bgPKuKjy8m4lm2kR/1GXgUiOTkieRnuAxHtaR8doNqtvtaJE+LT6+R4WMef8hW1PVdOnZJSEZDdnpOTI//+979Nl6clS5aYFgmtUGt0pAO2NSNU+/btJZw5BxR29kHqBw4cIKgAyrBQvlIX6B/IsnY8gn3/FbUv/BHM53Ow83Q8Smq/BurzodspKqBQ+vzQLd9Ix+o1JSoiUhbs+1Um7vjW5bIZKxrKsTfaiO20+9dPTBSZMUPkwQfFkg8+EBkwQCQtzfvX+cCsY5O0tPPjil2vZ5MZMyK8Kl9RZQg2lro/fffdd/L222+bsQTHjh1ztEpcddVVJpDQCfLi4uICUtAffvjBBCw6ZkFvO3fuNMHLhAkTZPTo0UWuP2fOHElJSZFvv/3WzLPRrFkzM3h8yJAhPo158MWoUaPkhRdeMN2/vG1+CnSTlT9Rdigra+8X4XulLhh484MWqB/wUDgevn6/eFsheOGF/PtPK2ORlbLdfl8FqnLpzb7wR7Cez8EeBBR1PNyelwEMkgP5fXUsK0vaL/m3BIotN0J+e/A2sZ2O8Wr573Zn5fsMVfZQByi4j/SzXr160Z9d/f5LTT2/3ZwckcRqeZKZXvS+jovPld0Hc/KVx98yuJauWwz+MRVaQA0itHvT5s2bzWO6idq1a8vDDz9sxlBceOGFAS/o4MGDZfr06YUe9yaosK8bHR0tXbt2lUqVKpnB5DrHRqdOnUywEqjgx3n2cW2d0eDqlVde8Xo9f4IKW06e5Jw8U+jx2XOiZPDIWElLdx0xJybY5KUpWfLnuwuPdYmuHCcR0d5/GdryciT3nPszPyomUSIiowPTtOjmC/STDyNl5JBoSXdzhSCQlR93+9w8l5crERWyfNp/RXG3/9yVw1MZzDppWW5fK7ZGTYmM8e5Luzj4u2/d7aOAl8+Hc13P1baL/+1VpU1/qDd3u81yZTFgVxl9+EFz/mG1+vlwdRw9bc+X7yv78UjPyjHdJ1yJzBWJjzwj8TFRsuTKyyXq93310acVZOiYypLmpsJQ8PtU91+d5hXcfv8WJaLiOan26Bap1OU3y5V2V9+zui+uXbFIMnKyTQATERX44ZXrr7/FXHm2KqAtR362zLgqg6cKuFaAK5ytIE/+qaXcXLdBkb9vXp2blbIlITY63/eEluGZTVsk+2Ce27JHxsfK8BaX5iuHq8A115Ynly/93JTdXRnclePsuTz59Uj+/XAy+5zcvWa52+04b8+b8y83LUb29rpdrKjSZ6tU6vyry+eGXtRCbqpb3/z/+LEIubK1d7+DR45obxWRg4fzpG5t78/TuimLJCrhj9/ixMoi41u3dnyujx4VqVlT/BQCQcUDDzwgCxYsMPNT6GpRUVHSvXt3U3HW2bX17+Ly1ltvmdaKNm3aSNu2bWXSpEnyj3/8o8igQsvbo0cPE0h89dVXZl2lGZo0wNi+fbsMGzZMpk2b5lhn1qxZ8sgjj3jV+tGzZ89Cj+u2r7zySilfvrx8/fXXUrFiRZ+Dit1Hjki804lgKjLZepLkl7Fglxwbt07yTp3L93iOLUJuOjZEMmzlPb5epYiz8p9qL0p0hC3fupmVEqXB6C5S/bY/FfllmL57vhzdOFbysj134qvedrTEN77D8ffsj2Jk0JCKkpbm3Y+0+uLgPnl2x3Y5HJsneVERfl3BKHj1QjWqWU7Kx3j3ZXB0zneyZ9RiyU13XzFXFe74WmLb/1zo8Yi4LJ9/wCPLxUuN9uMkoUkPr8sRUT5LKvZcm68MWRubScbcK0XOup6cUo99RmyU1Hq8gdT/y/2Ox/POnZMKOUfcXuXxNRBxV0lMnfu9/Pr0l0WuX3Df5uRGyam88lKtzRCp1OCmQstXr5Ug5WKsB2Wn9iyQ1M0T3ZbLlONcPane6kmJb3SzHM/KkutXLvL6h3PjDbdJNaeJQz1Vpl1VpIu6yhiZa5NaWRHyxIVN5cZaNT0eQ19/0H799oDUqJYnx+b/JPvGf13k8u4+H1EJMVLz8mcc57q3n7dG46+T6j0v8bif9MrpxaO2/t59Isbj9+KwSovlxvLf+/19eiKvgnQ/Nlis0MCi4Qf/znfe6DGsmJkrlaLKybIuN0p05PnvwZw8m5yuGFXonCjqYovZZoVzUvfhTVKl055836mn8uIkz83PenEFIt5WzotqzXHFU7caTxVpe6A57E+XOCqdebY86fbVEvP/0xWi8v0e/dFFx/N34oSpOXL3/bmOCvhN/2+XnHi7dZHHaePoi6VqTIw55nf22iirl3Yo8tz0tpKdsbKRxzI4r/efvzeVyuVi5OmZafLJJL9rvy4DaFfHIzc9Vg70v1GCzdqt56RqNZvsPpQtNyVXsrwfvp90qQnGU4+KXNwgNnyDisjfI1LtOqQtEr179zYtFKVBX1uzKhUVVFx22WWyYcMGk4np73//e77nVq9ebbpqabrbw4cPm8q80oOgA86LUq9ePYmPj8/32KlTp0ywol2eNANU3bp1fXpf9qCi4cezJLJCBY8fMP2ie/7ve6TCWZvER5zJFxj48oP2RbWXpErk+XS/i85eIs9ndCvyC+rZsSflvjsztWCy/8t7zWMJFdIlOqpwq4e9wuf8A6SPdRrwjVfl+6zqdIlyem9K3++H91WT1Vec3/856bGy8293ir8iK56TAROOyPN/i/N45VQreRsumirnTtnklM1961bB4+FthcoV3Vfpmee/FOpd90+RiChTjh03zPXqtSLHzxPRfa/n0NPu91FRx75gRSuf8llSe3gNqf/oH4GIyj6bJ8cPlJcIpyt8xz/7QfY+u8ptubUC52nfuir3y6ev97hMfIV0eW7sZukz8I+EEcfm/Si7Rq+VtHTXtab4uDSpfPdqr4/Tv1bfIePfGyenfj9W3lTc7OyVEuegQivTP49cIifdBN26/xqP7SDVepxvGc7Ny5Mb1q6XjNycQpUc1enrdOn1QarkZrr/karWp6LU/vPN5v/6g9buOu+/vz6q8rokRv4RABV1XnpS8a7N0nzcOyK2SNnc8mWxqv7TV5j9dDQzW5q0rid5mUUHwP4GCPbv00AEFQWvZl6+MUPum5sqtbIyXe7b03GRMuvPNWT1FQk+X2xxfr/e/A64a0mxBz2+0HLmuijjyTWN5eAH5y8EuvtMVX2scBm8udLu/HvkTRDg7vtPv68Ox1aQj3tWl/XtK4ktN1L29b5ViovzcfI22A0V9Wd9JhFReV4HNs6fj+Le7/bXUr4ENh/9/r2Ylhcn9594rMjl9ZxOem2eOT9tJ2LluwF3evyedScz76z0PDEquIMK7d6krRJXX321lDZvgor9+/dL/frnryr88ssvZu6Igho2bGgm7vvwww/NoHIrtAXnpptuMq0fGrA0b97c523Yg4qLXviHxNSIEm05PrG6sRx4r12RP4QDKy51fOF5ewI7n6S5tgi59fggn8vsrgzeVvj8UfALPhA/4DExWbLhpWSJjcou1LJQI/nvppUlOzVDnk3aWuQPrqcfIHcVZleVMG9+3D1W9l1wVQZvj72rli3HduNypObEWY4f67n/eEwmLR4kGW7er6tyexvU+mvV1KslOjLHBFgfj3/G47mp5Rtc9T/S68Vh+SogWmGxnYktFPhdMWytnDqT4Nf+s1cGp43sLtViYkzQOLnpN/Lc0Wt9DvLsx/eTO6qaSo7SWL/riHjLn0VffiD9+QxYDUaK4uv3hD8Bgqd1Php3t1Stdej8ch89JNO/+j/xh6fPvJ5Lj06/wASVvnYX0bLr/velovpFSmeJisqVXImUd3Y+6jbocXfcA/EbcfGM+Y7PaFGBSMEAXz/PO/56p8+BZkl8X5VU4BrK/jRznkT/HnTXnFVL1n95ZbEcD3uroQarvn6mqkRm+hQAejq+zheBPTmdd1auOzYhuFPK+jLfQjDYsmWLua9atarLgELpuAcNKnRZK0GFDhq/7777TKuIjtfwJ6Bw9uPQ2+TDKh+bL/hbj3tXLv1i9vTlrBUCVbAy4G3wEYgyBIp+MMedul3al9tjWjG0kuPq/eqPgLeB0rlzsbLj7/0LXQXQY3C2xwKJbT9NzqVVlOczVhf5xVCwfN7+eDoHZVrR120UxdVrWQlSinotrRhUicgsXFk4LWLb3ViiK56VnOxoeWrRyCK3pWW5LnaH46pbcf9AX/3kKq+X1XJMPNZDrt01U2LjM8xjWVubyJn/JBdaVs+/ogIK+zb35VYtfI5lnpHes4/Kr0k3SHpkhjnPnju60eO+KLj/Ch3ft+X87XffiXVabm9+0Lwqnw8XJ4pSXIGI/XvF3feLr9+fL1S4V87GZ5sgb+aO3dKz+uR8FW1vLwa52rd2Fc/kSe3D2XIqPlJyMnzvkqzl8eUz2L3/ynx/z3VxDIvr4pLd/wb80S3UGxpA7Jt5hcz85zfmvd7vRUBR8PPr7fdzcfB0XpYl+vv+xpgfnD4DuyWn2vpCwavV809f5/Ir18qRzGyx2XJkf4VzXgeh8RHnv+u1jHohwJvvv1A+vtGBHJis3X20288ll1wit912m3k8Ly/PpJyNKYWBn7t373a0RrjToEGDfMv6q3///mb8hracaICxbt06x3NJSUluI0Vt3dCbc0uF3QMnHpVA8qbJrDR9NuUmiTwbLTc/85nX63gKGOwVoLHx//K6suruB33gh0vlxnnfmw+5Lz+4vrb8WAnKCr6Wq37hgai0O3/RFfqyHuvbVTPnH2lf921J6TLufL/pQHF1jpljlbVYuh+Nl7yKOXLyaE2v9oVzkFfcQZmWcdS02pIXYzNXd2P6ZplAvKjyPTqhubmSqOv82PdGOWeLLZbPgTeBiLvgwF3ri6cKvrvv0yfHNZSIKllS/kA5kSfyPzduyr58QZlWNJwDdK2A6H729tgXDFDtwdXzY873kTdXOn14v4FUUheYrPCnZd6ffebchdfbCq79fPb1vPz3M7dK9UrHJD2zsuRNv8HlMr6WwZf1vL0gYLVnhP33rWBQXfAzpe6vsEHujtvoU7daZ+ZztdUm8vvP26Ko/8jzEd71IKg26hOJrHRW8jLKy41TxFwIKOpCgqfjGznic4msXPSkFRFnckWsdTwpnaBCr/LroOYVK1bk6yZlDyrefPNN6devn8mwdO2110pJ0vENytNAaR3AXbAy749Fi873tdPJ7vTmTPdN586dXa43efJkGTdunBQ354jZ2x8tf78M/SmbfviqP3+V+duXIMAb+gVX8IOsfPlRDYUfSG9ac3zZp3rszVW8YmzZCvT2Crb0WO3OZ4UvV7IdV54n7ZATETZJz/tjPFVxXWH2RcWIs3LpLetkfPkXJcF2WtLLVZT7+jeR46+3KfKKXUalKImKjzZdcYoKQqzw9zPqS+uLN15NvlKqVo+Qwz+fE19/8Xy5munu3CrYDdaX92vr93uShAmDi62LrL/s76skyhCowMvx2xZ12qcKrpWWt5q1DkjVhONSOfeIHKx4lVQ4U3g7vpShyrgPzJg8rRTfP+XufOtFDloiUv6c5D17i1/l9ua33l2Q4utruQo2Al2ncFU+DSj0ZhK0lM+S6LOxlspROf6EVKl4vMjlykW4zwYWtEHF8ePH5ZprrpE9e/ZIixYtzFiLV199Nd8y99xzjwwYMMBMjlfSQUVJ0n3g71wWQ4cOdfytwY299SRQFf2CEb03P1r2PqdPdXLO6JAqLXI/LjSgzps+rL58ORT8wF78ZU8pX62CHD2TLa2a1/I5iHL+Qnn/3uoyeuj1UiWmnGSdy5PYi7Mky2JFp/7L/5GIKudKZKCYve+wXvX1tsnf1x9g52OvA+DlbxIQl7w8X86djZGfnjw/ENiflHt2laLPZ75Jz86W0dPmuu3H7W2A2u7adTLqnrGSey5a7n18oVil51/9qPNf/L5ceS7YtczZhVMXmuw+BQcJDpvY0LQE+HKs9P0e6X04X9KHCnply42zNXLlQIxIQsZpqWw7X0HSwbEVr96bb0Csq+ws+pjzfbCJHzVXqsQfkwq55SRq+N88DmS3i6qQJfUmvCOnMyuJDM9fAb/6cv+Sl/zt+SaSG6UD6g/Lfz5+0e+LIFYugNw84XOXjzsHIoG+6ONs/MCv5eE+v6fJ/T0JiI7V0EQazklAxn4o8vxXj/nUjc6XcWP62dXvEl9ajlwlFbEnFHn0Ctfdr9Vbp6dJoi3/Zz4yupJUa/2kxDfsfn7ug+Y2r1ITJybmSasHlzgyYu0+tUFk6lapkJnncyXbnj0wMvGM+/Ve6fR7gb2vJLf5tp9ElisneZrWt9WrHivnBQMbewbDzAVXFPk6NQZUkrp9zg9yPvD2PDk643wX1kDxJkiJKJ9lggnz/yib2Z+n514pNqfsi76cY5pwJKFicM+CZymoePbZZ01levjw4eb/ERERhYKKKlWqSMuWLc3A5ZJmz8x0+vQfVwkKysg4f6KV5EAWZ5p5Sm/esKdY7XZ3X/O3ppObsGKRtDj3sdvUf/ZUePOibPLYNY9JZESkqXf8X84ZOZVnc5vb/fwkMRoonA8WTpzT1JiLf38yf+Uj9p5d0uiuX4pMx7ciyib9r7xfEmNiJDc7R35LfrPID6wOOsxpVEliKsRJhXNZUn3I+iKzdGiluPLDW6Rfp8b5HteMOBVjY6Rmo0Ymt7Z+jf31uVR55akIyfNyMp2CysVmSVSD045Bgt6Ur2AaP28yXdgzrZxtmON4zNvX8mTHjvNzEaiFB/bK1J3bJbN8pnk/pyRabBXyzGtbeQ29yt3qlnVyoHGO2HJzvd6eLleubobLtJVn5JzEVM4WLfrGa2Nkc+c6jowzc6/sas4xTfk476sl0jh3gcvMMs4V5nMVouXmaz6QtJwcuXLJSvn28w5y2s9KU8Hzr/LqLZLpRaKFopyrmSNRUX8cf7u0vAoSlRcluXmxbrtC2GkFLbq2SO3Lhkp8w5vzfa696RzZ8OalZiC5pvOM/2q1nJIciUrMn866IE+ZUuznn26v3Zjv5eCbf2TnKgkV4nOl/WP/clTC+p89KjPG1PT4faAV3P4TjkrSIyvk6NEIkeHWyhAZHyPVxnaQRbc3NX+fvvQ/knr5h9IoM0+iJC9fMoD4Yfd7NXbHk0uW32NS/x49FinSyrt1Ko/6RKrEn+9ycefGZnLdfNcVQW8ucj337Gn58/1ZbtI+568sVk54wmW68j//30tyz8MzJO1YDamc9DepWK/wBcvq1StJuZgrRURv570756zHuZsKXoDztuXI+bdZf5fN/B+52S6zsDmLj46WS+9YVGj+C+eMg/qrOiPF20koI6V8pWqOx7r3u1Gy+14nx1Ndp3tPiNa5N/KX79RvX8ixrVPFVu5YQFMGR8SdkzojGktsncqOx+o+U1cOPrtHqrhoTXEX2MR1/k7KX/W9SZZR9dKhLlOIF0yP3fTpgdJk5DnJOnrEbfmiyiVIRGRUvrTiP4z9i5z+tOgLpp7KfkHPdSZjo3GniG18gXmibLny9NNPy4SPR3v8bGtA8fTDY11m2AybGbUvvvhiMzv1zz//7Eg3q/eamemdd95xLKdzOaxZs8arNK2BzP702WefmW5Y1apVM3NHuHLnnXfK/PnzTWD03HPPSWmzZ3/atStN4uMTipwMrqRm6/VlEi9PnFNmLnp9pcRMXufyKoqr9Iiu0gUu7XyjVP19ewUrxd7uB3eT9niTM9xTOkPniXR0UqEbf89p7iq/u/N7WnTNDY4Jo/5zYJ+88ON3bnPCF0yd6EtrScEJy9xNDOVNnntV58HNUrnjHpeVdluMHqtuUiUm1qvteZr4y/lcUgVnbHU+x3z9fNhngI04J1L+qPtBrplxWllw/Zy741sw1/7PB84VmlzJU7eLdb+cMjnhfclbfuC341Kjhq1YJudztW99zTZknzTKvr2nt26VtJNer+5T6smCEhNtMmNGRKHJMF19H7ib08anCQITbHLwh8xC3+Gu5htxN8FiUXP7FFmGArP/ejdjcJ4c2nciX7k1O5ktMzZfJcxOt6sBh6sLVu4mNPV3skl/Jrx0NRHgqV8XytHNz0ml3FS3adEzoqpLjbZPmPlninpfxfG77GmiWFdlsMLVPtdjvrX1e5Kb7vkigrp0w4OFjr+7uYx0DiR3lf3oxFifJskMNJ2D68j6Z7x6z0XNt1PU6xxcP15OnnT/udYWitrJo/LN9eVxm+mnpFqtJsGdUrYgnYVaJ72bO9ee78F1UKGT5n366af5BiSXRFCxb98+R1eikkgpa0VKSoq56SDvH3/80acTIVAz6BbFmy9KX2cMzj6Xk+8qStq5c9Jz7fkZOIu6yuNqsjBP+8KX/eDt7KZaeXQ1a6yvs696+pFx957cTeTkTc51X2cXd/WDZmViN08/kK4mtcrXUua0vaKCCl8/H4EKnlXB86LgOeHr7KsHDuWZ9X2ZkM650u6OlQpQwX2rx/WiejFFBqDeBrX2GX49KWpOAu0q52pW40BVwj74wNuryN5/3jxx9dnRMjj1ovW6DEWVPZDlDnaeghd/KrEl9btckoqaiDIqIVYaT+4mNe5uIWXlvAjU+WIL8Plnv0Ad1CllC9IZo+2DoT357bffHBPLlSSdoyI5OdmkedWgwdXkdxpQaPcjnRm8NGn2KL3ZTwRf6BeTcyWquGiF4ta6DQp9UXqapbRgpaTgl6jOclyrbhXH39Xy8kR2xnl95VS/mItjX+h2tLymshV1zuN7qlk+ztL+K+pHxt176tP0Inm4SbPC27tBJGeCDqw7Xwl1xdcKlS5bsHJaJa+cVK5m8+tYudreH7TMgTuffTkn8h13C8GzN+eFrxUKXV6Pm349eHVlPPH8cbZ6Xvp0bsaKpMzwvpJd6Kq9i2P1QpvLPB4PDWa1C9bopFZyh4urvsVdedMK9333ldxVZFefnSFDRB5/3PcyFFX2QJY72GmFLbr8H12HrCqp3+WSpMFC9R5JknPSdWdJV61uoS7Q50Vpv05xs/R1od2fNm/ebMYsuMuwpN2Ovv32W7n88sulNDz11FPSo0cPmTJlipmYrm3b8/3jjh07ZrJSKR1IXhpBTyhy9UXptnLrxw+7t5U6d0FKIPkbBJTkD43b7elD7pOeBey1S/NYaetFcfCmku2Jt+eFPwGCVvBmWKi0l8R5GehKtpWgp6R4DpKDuwzBUHaEDg0aylUv5h8XlM2gQsdKPPHEEyZ70cyZMx3jKpzp85mZmXLvvfdaeSkTvNiDALVr1y5z//rrr8vnn//RPK7jI+rUqeP4+4477pCBAwfKyy+/LB06dDAZqDQAWrZsmZw8eVI6duxoulDBmkBWSoKpEhGOV5sCqTSPVcHuUKF23P0NEEr6yrg/Al1R5XMIAMHP0piKs2fPymWXXSbff/+9tGnTxgx61vENV111ldx+++0yZ84c+eabb6R169ZmMrhyBbqq+GLlypXSpUuXIpfTSewaN86f9Ud98sknZszC1q1bJTs7W5o2bSoPPvigDBkypFQm5gu2fnBAMLMPoPZGwTEVwa4kB2ACAMJfeinVJS0FFUozOt19991mNm1NKaub03ul/9cxDTrTtHPrAQI7UBsId94OoHaVDAAAgLIkPVSDCrvFixfLwoULTZalvLw8k3VJxzBoi4U9yEDRaKkAXPM3exYAAGVJeqgHFQgMggrAvUClDAYAIFylh2JKWQAoSQzYBQAgOAUsqNAxFTqztivt27eXpKSkQL0UAAAAgFAOKtq1a2cGEq9YscIEC3ZvvvmmvP/++y7XufTSS2XLli3WSgoAAAAg9IMKndtBg4M+ffrkCyjsdHiGzgPhbN++fbJt2zZZvny5dO3a1XqJy0D2JwAAACBsgwpNDauZnHRuB1f0uaVLl+Z7bM+ePWZOiE8//ZSgwoP+/fubm31wDQAAABAqfEqVohPZNWrUyKfxEToRXcuWLc26AAAAAMp4ULFr1y5p0aKFy+c8Zaa98MILzUzXAAAAAMp4UOGpa87QoUPl3//+t8vn4uLi5NSpU/6VEAAAAED4jKmoVKmSmUjDXYYnvbly8uRJqVChgn8lBAAAABA+LRV16tSRrVu3+vwiuo6uCwAAAKCMBxVXXnml7N+/X1atWuX1OrqsppXt2LGjP+UrMzSdrA6AT05OLu2iAAAAAD6JsHkaYV3AV199JV26dDGVX51BOyEhwePyOo7iiiuukJ07d8qXX35p1oV341a0m1lR+xcAAAAIhrqkTy0V11xzjVx//fWyY8cOM/ndwoUL3S77xRdfmKvuGlDohHgEFAAAAEB48qmlQh07dsx0Zfrxxx/NZHdVqlSRtm3bSo0aNczzR48elc2bN8uJEydMmtlmzZqZVo3q1asX13sIK7RUAAAAINTqkj4HFUoLOWDAAPnoo48kLy/v/IYiIsy9fXORkZFy7733mrEClStXDnS5wxZBBQAAAMpEUGH3yy+/yOeffy6bNm2S1NRU85i2SGjLxS233CJNmzYNZFnLBIIKAAAAlKmgAoFHUAEAAICwHqiN4kNKWQAAAIQqWiqCDC0VAAAACOuWikmTJnlMI+sNXV+3AwAAACA8+BRUjB49Wj799FNLLzh37lwZM2aMpW0AAAAACB6MqQAAAABgSbQ/LQ0rV670+wXtqWcBAAAAlNGgIiMjw9yssE+UBwAAAKCMBRW7d+8uvpIAAAAACP+golGjRsVXEgAAAAAhiYHaAAAAACwhqAgSzKgNAACAUMWM2kGGGbUBAAAQ1jNqAwAAAEBBBBUAAAAALCGoAAAAAGAJQQUAAACAkgsq6tWrJy+99JK1VwQAAABQdoOKgwcPyrZt21w+t3TpUjl16lSgygUAAACgrHV/6tatmwwePNjlc998843s2LEjUC8FAAAAIFzHVNhsNpePz5w5U1q2bBnIlwIAAAAQJBioDQAAAMASggoAAAAAlhBUBImUlBRJSkqS5OTk0i4KAAAA4BOCiiDRv39/M5h9w4YNpV0UAAAAoHiDio0bN5qr6l999ZUcO3bM19UBAAAAhJloX1f47rvvZODAgY6/a9asKS1atDD/P3TokOzbt0/q168f2FICAAAACI+g4pNPPpFNmzaZ2+bNm+X48eNy+PBhc1OLFy+WRo0aSbVq1aRdu3bm1rZtW7McAAAAgPAUYXM3uYQXfv31V0eQYQ80UlNT/9h4RES+5XNzc62VtgxIT0+XxMRESUtLk4SEhNIuDgAAAEJIeinVJS0FFa7s3bs3X5Ch90eOHDEBBkFF0QgqAAAAEGp1SZ+6P+3fv1/q1avncZkGDRqY2x133JFvPQ0uAAAAAIQfn4KKhg0bSu3atc1Yifbt25s5FfS+Ro0aHtfTQKSoYAQAAABAaPKp+5O2QGirQ8HxEvq4c5ChN212ge/o/gQAAICwH1Nx8OBBWb9+vbmtW7fOdGvKyMgoNCi7adOmjiBD7zULVIUKFQJd/rBDUAEAAICwDyoKmjhxoowdO9bMTXHRRReZN7Jt2zbJysrKF2hERUXJuXPnAlHmsEZQAQAAgFCrS/o8o7azt956ywQU06ZNM+llly5dalowdF6Kt99+2wQaGrNo96iYmJjAlRoAAABA0LDUUqEzacfFxcmGDRtcPn/q1Cnp3r27/PbbbybY0EHe8IyWCgAAAJSplopdu3ZJs2bN3D4fHx8vc+bMkaNHj8qLL75o5aUAAAAABClLQYWmkt25c6fHZbR1onPnzrJw4UIrLwUAAAAgHIOKG2+8UbZv3y6LFy/2uJx2kdqzZ4+VlwIAAAAQjkHFqFGjTMBwzz33yL/+9S+3/brWrl1r5WUAAAAAhGtQ0aRJE5k9e7ZJFXvnnXdK165dZdasWaZLlGaDWrRokWnNOHLkiHTo0CFwpQ5DKSkpkpSUZOb0AAAAAEKJ5XkqlE6C17t3b/nxxx8LTYKnm4+NjZWVK1fK5ZdfbvWlwh7ZnwAAAFCmsj/ZaSvEjh075IMPPpAePXpIw4YNpXz58mYgt7ZgfP311wQUAAAAQJgKSEsFAoeWCgAAAIR1S8XcuXMlMzOz+EoDAAAAIOT4FFRolift0nTXXXeZAdoaCQEAAAAo23wKKsaMGSMXXHCBzJ8/Xx566CGpWbOm3HzzzfLOO+9Iampq8ZUSAAAAQHiNqdAsT9oVat68ebJ582aT8SkyMlKuvvpq04qhg7Xr1KlTPCUOc4ypAAAAQKjVJS0P1Nb5KD799FNz09SyujkNMDR9rAYYmv2pcePGgStxmCOoAAAAQJkLKpwdOnTItF5ogLFq1SrJzc01rRht2rQxwYXeLr744kC9XFgiqAAAAECZDiqcHT9+XBYsWGACjGXLlplZtzXAePbZZ2X48OHF8ZJhgaACAAAAoVaXjC6uDVetWlX+8pe/mJu+uc8++8wM8C444zYAAACA0OZTS0WVKlWkbdu2jlu7du3koosuKt4SljG0VAAAACDU6pI+BRU6ANus5NTaUKlSJWndurUjyND7P/3pT7RI+ImgAgAAAGEdVGzdulU2bdrkuG3fvl3Onj37x8Z+Dzbi4uKkVatWjiBD7y+55BJHUAL3CCoAAAAQ1kFFQZrd6fvvv3cEGTpnxbfffitnzpwpFGiUL19eTp8+HZhShzGCCgAAAJSpoMKVvLw82bFjhyPI+Pzzz2X37t0muNAgBJ4RVAAAACDU6pIB74+kXZwqVqwoR48elfXr18uePXsC/RIAAAAAgkjAUsr++OOPMnfuXDMvhY69UNoI0qBBAzPpnc6uDQAAACD8WAoqvvvuO0cgoV2e7IFE06ZNTRCht+TkZCkLdCbxF154Qf73v//JqVOnpF69enLHHXfImDFjTCpeAAAAIFz5HFToOAl7IPHzzz+bIEIlJSU5AolLL71UyhqdQbxz587yxBNPmH5smhlr3LhxZuC6zigOAAAAhCufgooLLrhAfv31V/N/DSbatGnjCCSaN28uZVnfvn3z/a0Bhma8evTRR+W3336Thg0bllrZAAAAgKAJKnTQtWZx0laJ8ePHy6233irR0QEblhF2qlatau6zs7NLuygAAABA8GR/0hYKHT/Rs2dPiY+PN2MmHnvsMXnjjTdk48aNcu7cuWIp6A8//CCvvPKK9O7dW1q2bGmCGQ1wJk6c6NX6c+bMMa0HOr5Bs1Pp5HxTp04NeIVf0+bqhIC6L7T7U/fu3c0YEwAAACBc+dTM8Mknn+Sb6E7HEdj/fuutt85vMDratGQ4z6atFXjtCmTFzJkzZfr06X6tO3jwYLOulq1r165SqVIlWb58uYwYMUI+++wzWbJkiZkFPBCqVatm8gKrG264wewzAAAAIJxZmvxOx1fYgwp7oJGamlpoNu2oqCi5+OKLZdu2bX4XVIMWba3QcRwarEyaNEn+8Y9/yIQJE2T06NFu11uwYIH06NHDBBJfffWVWVdpOTXA0AHVw4YNk2nTpjnWmTVrljzyyCNetX5oi40zTaebmZlptqutKBdeeKEsXbrU7ANvMPkdAAAApKzPqL137958QYbeHzlyJOAzams3qPfee6/IoOKyyy6TDRs2mAr+3//+93zPrV69Wq666iqJjY2Vw4cPmwOg9CAcPHiwyDJo2ljtAuaOTv7XoUMHl8GHOwQVAAAA8Fdp1SV96v60f/9+U5H2RCe705vO0eC8ngYXJU1fVwMK9cADDxR6vlOnTqasGgh98cUXcv/995vH9UDYAwwrtFVEgylNvQsAAACEK5+CCk2LWrt2bTNOon379maQtt7XqFHD43oaiBQVjBSHLVu2OLIwNWnSxOUyWn4NKnRZe1ARKGvWrDED2zUVLwAAABCufAoq6tata67+f/7557Jw4ULH43q13znI0FsgrvRbtXv3bnPvaY4ILbvzsv7q1q2bXHvttXLJJZeY7lQapDz33HNmIkDnVpuCsrKyzM25yQoAAAAI26BCr+jrWAMdK6C3devWmW5NOrmbPjd//nzHsppG1R5k6L12BapQoYKUpFOnTpl7TSHrjg7gDkRlXsdufPDBB47gpHHjxtKvXz8ZOnSoxMTEuF1v8uTJJvUsAAAAEKp8nrmuTp065sq7/eq7DoAeO3as1K9fXy666CJTOdcsTzqOYNeuXfLxxx+b5TT7UXHNYREMdMC43nw1atQoE3jY6f6zt54AAAAAYTn5XcE0rxpQaDpWTS+rqVO1BUPnr3j77bdNoKFjCrSS7OlqfXGxZ2Y6ffq022UyMjLMfUmOjnemXaX0tZ1vAAAAQJkJKl566SXTrWnIkCH5HteJ5HSeh++++046duxoAovSyICkXZCUds1yx/6cfVkAAAAAJRhUaPemZs2aeWwp0Dkajh49Ki+++KKUNJ0oTx07dsztQOyNGzeae/ukeKUlJSXFzESu408AAACAMhNUaCrZnTt3elxGU9B27tw5X7aokqLdr+yV9A8//LDQ8zr5nbZUaBek7t27S2nq37+/7NixwzGvBgAAAFAmgoobb7xRtm/fLosXL/a4nHaH2rNnj5SGp556ytxPmTLFzPBtp60Xmp1JDRgwIChS4AIAAAChKMKmAx78pF2KWrZsaTI7vf/++3L77bcXWkazGTVv3tykd7UPivaHBgT2IMDe9So1NdW0RjhPrKdpbTVDlbNBgwbJyy+/LOXKlTNzSWiK2WXLlsnJkyfNmA8dYK6BT1meWh0AAAChL72U6pI+p5R1prNUz549W+677z6588475ZprrpGHHnpILr/8cjMnhXaNGj9+vBw5ckS6dOlieQdpZqmC9u3bZ252zhPJ2U2fPt0EDzpuYe3atZKdnW3m0Rg5cqQZZF4amakAAACAcGGppcJOJ8Hr3bu3/PjjjxIREZHvOd28jllYuXKlCTbgmgY8esvNzTX7kZYKAAAAhEpLRUCCCpWXl2cmups3b56ZZVtbJzT7U6dOnWT06NHSunXrQLxM2KP7EwAAAMpsUIHAIKgAAABAqNUlfcr+pAOidcI7AAAAAPArqDh48KBs27bN5XOaQUkzPAEAAAAoWyzNU+GsW7duMnjwYJfPffPNN2ZiNwAAAADhJ2BBhXI3PGPmzJlmPgu4p5mfkpKSHDOAAwAAAGUyqID/+vfvb1pzNmzYwG4EAABASCGoAAAAAGAJQQUAAAAASwgqAAAAAJRsULFx40YzqPirr76SY8eOWXt1AAAAACEv2tcVvvvuOxk4cKDj75o1a0qLFi3M/w8dOiT79u2T+vXrB7aUAAAAAMIjqPjkk09k06ZN5rZ582Y5fvy4HD582NzU4sWLpVGjRlKtWjVp166dubVt29YsB8+09Udvubm57CoAAACElAibu8klvPDrr786ggx7oJGamvrHxiMi8i1Phblo6enpkpiYKGlpaZKQkODvoQEAAEAZlF5KdUlLQYUre/fuzRdk6P2RI0dMgEFQUTSCCgAAAIRaXdLnMRVFadCggbndcccdjsf2799vggsAAAAA4SfgQYUr9erVMzcAAAAA4Yd5KgAAAABYQlABAAAAwBKCiiCh6WSTkpIkOTm5tIsCAAAAlG72J1hD9icAAACEWl2SlgoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCiiDBjNoAAAAIVcyoHWSYURsAAAD+YkZtAAAAACGJ7k8AAAAALCGoAAAAAGAJQQUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAAAAACwhKACAAAAgCUEFQAAAAAsIagIEikpKZKUlCTJycmlXRQAAADAJxE2m83m2yooTunp6ZKYmChpaWmSkJDAzgYAAEDQ1yVpqQAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBUAAAAALCGoAAAAAGAJQQUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAAQVAAAAAEoPLRUAAAAALCGoAAAAAGAJQUWQSElJkaSkJElOTi7togAAAAA+ibDZbDbfVkFxSk9Pl8TERElLS5OEhAR2NgAAAIK+LklLBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBUAAAAALCGoAAAAAGAJQQUAAAAASwgqikFOTo5ceumlEhERIR9//HFxvAQAAAAQNAgqisH06dPl6NGjxbFpAAAAIOgQVATYvn37ZNy4cfLss88GetMAAABAUCKoCLDBgwfLbbfdJldffXWgNw0AAAAEpZAJKn744Qd55ZVXpHfv3tKyZUuJjo42YxYmTpzo1fpz5syRzp07S5UqVaRixYrSqlUrmTp1qmRnZwesjIsWLZIlS5bIc889F7BtAgAAAMEuWkLEzJkzzVgFf1sPdF0NRLp27SqVKlWS5cuXy4gRI+Szzz4zgUBcXJyl8p09e1YGDBggY8eOlTp16siePXssbQ8AAAAIFSHTUtGiRQsZPny4zJ49W3bu3Cm9evXyar0FCxaYgEIDifXr18vixYvl008/lZ9++sm0eKxevVrGjBmTb51Zs2aZVpCibnPnznWsM2nSJImJiZGBAwcG/L0DAAAAwSxkWir69u2b7+/ISO/iIa3sq5EjR0rbtm0dj1evXl1effVVueqqq2TGjBkmsEhMTDTP9ejRQzp06FDktuvVq2fuf/31V9OVSgOe06dPm8fS09PNfWZmpqSlpTm2DQAAAISbkAkq/LF//37ZsGGD+f8DDzxQ6PlOnTpJgwYNZO/evfLFF1/I/fffbx7XAMCXIGD37t2SlZUlPXv2LPRcnz59TOtFRkaGpfcCAAAABKuwDiq2bNli7qtWrSpNmjRxuUz79u1NUKHL2oMKX7Vu3VpWrFiR77FDhw6Z7WkLyPXXX+/XdgEAAIBQENZBhbYgqIYNG7pdRlsqnJf1R+XKlU1mKWf2gdpJSUmmi5U72sKhNzt7tykAAAAgVITMQG1/nDp1ytxrCll3dAB3aVbmJ0+e7OhupTd7kAMAAACEirBuqShNjRs3FpvNVuRyo0aNkqFDhzr+1uCGwAIAAAChJKyDivj4eHNvz8jkin0AdUJCgpSG2NhYcwMAAABCVWS4txYoHYjtjv05+7IAAAAAfBPWQUWbNm3M/bFjx9wOxN64caO5d57DojSkpKSYQd3JycmlWg4AAADAV2EdVNSvX99RSf/www8LPa+zaWtLhXY/6t69u5Sm/v37y44dOxzzagAAAAChIqyDCvXUU0+Z+ylTpsjmzZsdj2vrRb9+/cz/BwwYwIzXAAAAgJ8ibN6kKAoCGhDYgwC1a9cuSU1NNa0R9erVczw+f/58qVOnTr51Bw0aJC+//LKUK1dOrr32WpNidtmyZXLy5Enp2LGjLF26VOLi4iQYaPYnTS2blpZWaoPHAQAAEJrSS6kuGR1KO2j9+vWFHt+3b5+52TlPJGc3ffp0EzzouIW1a9dKdna2NG3aVEaOHClDhgyRmJiYYi8/AAAAEK5CpqUi3GnAo7fc3Fz58ccfaakAAABAyLRUEFQEGbo/AQAAINTqkmE/UBsAAABA8SKoAAAAAGAJQQUAAAAASwgqAAAAAFhCUBEkNPNTUlKSYwZwAAAAIFSQ/SnIkP0JAAAA/iL7EwAAAICQRPcnAAAAAJYQVAAAAACwhKACAAAAgCUEFUGC7E8AAAAIVWR/CjJkfwIAAIC/yP4EAAAAICTR/QkAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgAAAABYQlARJJinAgAAAKGKeSqCDPNUAAAAwF/MUwEAAAAgJNH9CQAAAIAlBBUAAAAALCGoAAAAAGAJQQUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAQJZtQGAABAqGJG7SDDjNoAAADwFzNqAwAAAAhJdH8CAAAAYAlBBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUFFkEhJSZGkpCRJTk4u7aIAAAAAPomw2Ww231ZBcUpPT5fExERJS0uThIQEdjYAAACCvi5JSwUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAAAAACwhKACAAAAgCUEFQAAAAAsIagAAAAAYAlBBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUFFkEhJSZGkpCRJTk4u7aIAAAAAPomw2Ww231ZBcUpPT5fExERJS0uThIQEdjYAAACCvi5JSwUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAAAAACwhKACAAAAgCUEFQAAAAAsIagAAAAAYAlBBQAAAABLCCoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgJk5cqVEhERUejWokWLQL0EAAAAEJSiS7sA4eatt96SSy65xPF3hQoVSrU8AAAAQHEjqAgwDSg6dOgQ6M0CAAAAQYvuTwAAAADKRlDxww8/yCuvvCK9e/eWli1bSnR0tBmzMHHiRK/WnzNnjnTu3FmqVKkiFStWlFatWsnUqVMlOzs7oOW8/fbbJSoqSmrVqiWPPvqoHD9+PKDbBwAAAIJNyHR/mjlzpkyfPt2vdQcPHmzW1UCka9euUqlSJVm+fLmMGDFCPvvsM1myZInExcVZKl9iYqIMGzbMBC66/fXr18vkyZPl66+/lo0bN0psbKyl7QMAAADBKmRaKjSL0vDhw2X27Nmyc+dO6dWrl1frLViwwAQU9or+4sWL5dNPP5WffvrJtHisXr1axowZk2+dWbNmuczkVPA2d+5cxzpt2rSRadOmyS233GICCw1YtHXku+++k48++ijg+wMAAAAIFiHTUtG3b998f0dGehcPTZo0ydyPHDlS2rZt63i8evXq8uqrr8pVV10lM2bMMIGFtjaoHj16eDXYul69eh6fv/7666Vq1aqyYcMG020LAAAACEchE1T4Y//+/aZCrx544IFCz3fq1EkaNGgge/fulS+++ELuv/9+87gGF/YAIxC0VQMAAAAIVyHT/ckfW7ZsMffaWtCkSROXy7Rv3z7fsoGkXa10oPZll10W8G0DAAAAwSKsWyp2795t7hs2bOh2GW2pcF7WXw8++KAJXNq1ayfx8fFm/Mazzz4rrVu3lvvuu8/tellZWeZml5aWZu7T09MtlQcAAABlT/rvdUibzVairxvWQcWpU6fMvaaQdUcHcAeiEq+T3n344YdmUPiZM2ekfv360qdPHxk7dqzExMS4XU8zRI0bN85tsAMAAAD46tixYwHtzl+mg4qSNGrUKHPzZ72hQ4c6/j558qQ0atRIfvvttxI9EQItOTnZMZ4llF/T6jb9Wd+XdbxdtqjlPD2vAbd97FFCQoKEKs5J//cD52Tx4JwMnnPSyjLh8h2pOCfD45xMS0szvXS0+39JCuugQrshqdOnT7tdJiMjw9yX1heBzl/hag4LDShC+ctJJwAs6fIXx2ta3aY/6/uyjrfLFrWcN9vR5zknfcM5yTlZ0udHUTgni2+ZUP+OVJyTwfPbHRWAZbzNlBooYT1Qu3HjxuZerx64Y3/OviwCo3///mHxmla36c/6vqzj7bJFLVcax6ukcU76vx84J4sH52TwnJOBWibUcU76vx/6c05KhK2kR3EEiM778N5778mECRNk9OjRLpfZt2+fY2zCL7/84jIDlDYPaWCh4yHsKWVLkzajaiuFNl2F+hUPhAfOSQQbzkkEE85HBJv0UqpLhnVLhQ6W1v5mSoOGgnQ2bQ0otPtR9+7dJRhoWXRwt6suUUBp4JxEsOGcRDDhfESwiS2lumRYt1SoBQsWmBmyNcvTV1995ZhVW0fEd+nSRbZv3y7Dhg2TadOmlWDpAQAAgPARMkHF5s2bpV+/fo6/d+3aJampqaY1ol69eo7H58+fL3Xq1Mm37qBBg+Tll1+WcuXKybXXXmtSzC5btsxkWurYsaMsXbpU4uLiSvT9AAAAAOEiZIKKlStXmpaFougkdq4GXX/yySeSkpIiW7dulezsbGnatKmZsG7IkCEe55EAAAAAECZjKjp37mxmBizq5i6L0z333GO6P+mglczMTNPtacSIESEdUMydO9d07dLB5hUqVDAT8D3//PMmaAJKw7x586RTp05SvXp105fzggsuMPOwnDhxggOCUpeTkyOXXnqpREREyMcff1zaxUEZpRdJ9RwseGvRokVpFw1l3D//+U+57LLLTJ1S57jQ3j0HDx70ev2wnqci3Ok4EA2ipk6dKrVq1ZK1a9ea8SXbtm0z402Aknb8+HFzAeCJJ54wmSc0eNcZ47/99lvT5RAoTdOnT5ejR49yEBAU3nrrLXMx0E4rckBp0YvSOiHz8OHD5dlnnzVzvK1atUrOnj0bft2fUJj+ONaoUSPfYxMnTpQxY8bIoUOHTKABlLY333xTHn30Ufn1119NqxpQGjTFeFJSksyYMUMefvhh+eijj+S+++7jYKDUunN//fXX0qFDB44ASt3PP/9svh/1wsvf/va38O/+hMIKBhSqXbt25v7AgQPsMgQFbUJVdMtDaRo8eLDcdtttcvXVV3MgAMDJO++8Y4YD9OnTR6wgqAiwH374QV555RWT8rZly5YSHR1t+kpqC4I35syZY7qPVKlSxWSpatWqlene5G2FTJuq9MTQgehAaZ2Tubm5psl048aNpvuTzgPDOYnSOicXLVokS5Yskeeee46DgKD5nrz99tslKirK9CrQ1lztPgqUxjmp3ecvvvhi03W+UaNG5rV0+f/85z/iE+3+hMAZNGiQdicrdJswYYLX60ZHR9tuuOEG25133mmrXLmyeaxTp062zMxMj+t///33tri4ONuAAQMC+I4Q6krjnExMTHS8jq6XkZFRDO8Moaokz8kzZ87YmjZtaps2bZr5e/fu3WbZjz76qNjeH0JPSZ6Tmzdvtg0bNsz22Wef2VasWGGbMmWK+c5s0aKF7ezZs8X4LhFKBpXgOdm8eXNbpUqVbHXq1LG9//77tsWLF9tuueUWs/53333ndZkJKgLszTfftA0fPtw2e/Zs286dO229evXy6iSYP3++WU4P6qZNmxyPHz161NayZUvznH4JuaPLXXjhhWZZKnAo7XNyy5YttjVr1thee+01W/369W1dunSx5eTkcGBQ4ufkmDFjbH/6059s586dM38TVCCYfrvtlixZYpZ99913OUAo8XNS64/6+MKFCx2PZWVlmd9vfV1vEVQUs4cfftirkyA5OdksN3HixELP/fe//zXPxcbG2k6ePFno+fT0dFv79u1tjRo1su3fvz+g5Uf4KYlz0tm6devMsnPmzLFcdoSn4jon9+zZY/6eO3eu7cSJE+b27bffmuXefvvtIs9dlF0l/T2pqlatauvXr5+lciN8PVyM5+Rll11mHi/YgnHvvffa2rZt63UZGVMRBPbv3y8bNmww/3/ggQcKPa95/xs0aCBZWVnyxRdf5HtOH9N+mXv27JHFixdL3bp1S6zcCF9WzsmC2rZta/qBanYJoCTPSZ0MVf/u2bOn6VesN+0nrHRAYr169TggKNFzsij6XQmU9DnpnNrYmTY++JJSlqAiCGzZssWRJadJkyYul2nfvn2+Ze2DYTUlop5AenI0b968hEqMcOfvOenKmjVrzBeTToQHlOQ52bp1a1mxYkW+m6aSVZp62+dBiIDFc9IdvSioA7V14jGgpM9JzYynnOeT0sBj9erVjuW9weR3QUCvpilPOfw1snReVvXv318WLFggEyZMMAHGunXrHM9pvuGEhIRiLTfCl7/nZLdu3cwMnHrVQ2fU1i8tzbijsxjfcccdJVByhCt/zsnKlSub7CfOtFXX/h151VVXFWOJEe78/Z588MEHTYVPU8DHx8fL+vXrzWRjGgQzdwpK45zUoOKKK66Qvn37yuTJk6V27dom89SJEyfkySef9Pr1CSqCwKlTp8y9pvxyp1KlSuY+PT09X5pE+xU3vTnTK3IFf0yB4j4n9SrbBx984Piy0hnf+/XrJ0OHDjWpjoGSPieBYDsn9aLLhx9+aCYaO3PmjNSvX990xxs7dizfkyiVczIyMlI+//xzM5v2sGHDzHmZnJwsy5cvd9s1yhWCihBmv+IGBAttNdMbEKw00NXueEBpGTVqlLkBwUS7TOkkeHrzF2MqgoA2f6rTp0+7XSYjI8Pc06UJnJMoi/ieRLDhnESwiS/l+iRBRZBcOVN79+51u4z9OfuyAOckyhK+JxFsOCcRbBqXcn2SoCIItGnTxtwfO3Ys38AZZxs3bnSk5wQ4J1HW8D2JYMM5iWDTppTrkwQVQUAHaemAGKWDtwrSlF4aWWo2ne7du5dCCVHWcE4i2HBOIthwTiLY1C/l+iRBRZB46qmnzP2UKVNk8+bNjsc12tTsOWrAgAGSmJhYamVE2cI5iWDDOYlgwzmJYPNUKdYnI3Ra7YBvtQzTA2g/aGrXrl2Smppqokfn2Vvnz58vderUybfuoEGD5OWXX5Zy5cqZXP+aEkwnIjl58qR07NhRli5dKnFxcSX6fhD6OCcRbDgnEWw4JxFsNodifVKDCgTOihUrNEgr8rZ7926X6//zn/+0XX311baEhARbXFycrUWLFrYpU6bYsrKyOEzgnERY4HsSwYZzEsFmRQjWJ2mpAAAAAGAJYyoAAAAAWEJQAQAAAMASggoAAAAAlhBUAAAAALCEoAIAAACAJQQVAAAAACwhqAAAAABgCUEFAAAAAEsIKgAAAABYQlABAAAAwBKCCgAAAACWEFQAAAAAsISgAoDPGjduLBEREflusbGx0rBhQ7n33nvlv//9r6Xt7tmzh6PiZt/MmjWLfVNM57CrG/vbO/qZLbjvJk6c6HGdlStXyv/93/9JUlKSVKlSRcqVKyfVqlWTyy67TAYMGCBffvml2Gw2y8f6oYceMuW57777vFr+xRdfNMtruewuvvjifO+tc+fOlssFhJvo0i4AgNDVsWNHadasmfn/yZMnZePGjfLJJ5/InDlzZNq0aTJ06NDSLiJKsJL+66+/yu7du83/Q/EcdsXTcyisYsWK0rNnT/P/Vq1audxFqamp8uc//1mWLFli/q5Xr545DomJiZKWlibfffedpKSkmFubNm1k8+bNlnZ1nz595B//+IcsWLBATpw4YQIYT959913HenY9evSQgwcPyqFDh2Tx4sWWygOEK4IKAH7r27ev9O7d2/H32bNn5bHHHpP3339fnnzySbnlllvkoosu8np7y5Ytk+zsbFPJAErjHIY11atX99i6oxcfOnXqJD/88IO5+v/qq69Kly5dCi2ngYW2GHz88ceWD8nVV19tgsOff/5ZZs+ebVpB3NmwYYNs377dtJr06tXL8fjkyZMdrSsEFYBrdH8CEDDly5c3Vxf1amVubq7MmzfPp/WbNm1qKhr6gw4g/Dz++OMmoLjgggtk7dq1LgMK1aJFC3n77bdlxYoVll9Tuyv95S9/ydcK4Y79eb0gUrNmTcuvDZQlBBUAAqpSpUrSvHlz83/nsRH2vsj2H+4rrrjCdHdwHkPhbkyF87offPCB6XOtr1OjRg25//775bfffjPPaf/rGTNmSOvWrU1go1dN9Sr0kSNHXJb1m2++MS0qur3atWtLTEyM1KpVS2699VbTn9sdT+9l165dEhUVZbpYZGZmut3GJZdcYpb/4osvpLicOXNGnn/+eenQoYNUrlzZBH16bPQ9Hzt2rMj39uabb0q7du3MvtT1u3fvLuvWrcu3vF6V1uW165Nq0qRJvr7nemXX2b59+0zF8sILLzTl0f2mXV9ef/11E4h6Ks+nn35qrnInJCSYMul6xbn/XLFSHqvHw93nxn5l/6677jLnfIUKFaRly5by0ksvSV5eXqHPVWmdo/q6H374ofm/tkIU1Q1J6WczEPtSvwf0PWtXqm3btrncpra0fvTRR4W6PgHwkg0AfNSoUSMdPWl79913XT7frFkz8/zAgQMdj+nfehswYIAtMjLS1qlTJ9v9999vu/zyy2179uzJt93du3fn25593ZEjR9qio6NtXbt2tfXs2dPWsGFD83iDBg1sx48ft91zzz228uXL22688UZbjx49bDVr1jTPX3rppbasrKxC5bz22mtNWVq2bGnr3r277e6777a1bdvW8XovvfSSy/dX1Hu59dZbzfNvvPGGy/WXL19unm/atKktLy8vIPu8oP3795v3petUrVrVdt1115l9Yt9O48aNHfvd1XsbMmSILSIiwvHeWrRoYR7X/T9v3jzH8v/9739tDz/8sK1ixYrm+bvuusv8bb/t3LnTsew333xjyqLL6bG79957zbHSY6aPdevWrdBxspfn6aefNuXp2LGjWa9Vq1bmcX3MuTze8nV/Wi2P1ePh6XOzcuVKW1xcnOOcuu+++2zXX3+9LSYmxpTN1ecq0OeobluX19dyRz9PukyVKlVsubm5Nn/5uy/t79n5e8nZ7NmzzfN169a15eTkuFxmxYoVZplrrrnG7/ID4YqgAkBAK2Tffvutqfzo8++8806hylFCQoLt66+/9rhdd0FFtWrVbFu3bnU8npmZaSpZ+pxWMrQC5FyZOHr0qCPA+eCDDwq93hdffGE7cOBAocfXrl1rylmuXDnbvn37Cj1f1HtZunSpeV4rmq5oxVuff/75523FUQnWSqBWdnX5Pn362NLT0x3PZWdn24YNG2ae69Kli9v3ppXUZcuW5Xtu6tSp5rnExETb4cOHvTp2dmfPnnUs89e//tV27tw5x3O7du0yFUF97qmnnnJZnsqVK9vWrVuX77mxY8ea5y666CJbSQcVvpQnEMfD3bmmn4F69eqZZXQ7zpX177//3larVi3HNpyPTaDPUW+Cil69epllNJj3l5V9uWDBAsf3iKuLDBqcuDoHnRFUAO4RVAAISIXs5MmTtoULF5qKvf1qX0ZGxh9fNr9XbMaPH1/kdt0FFSkpKYXW0avC9uf19QvSSpE+98gjj/j0HkeNGuX2Nb15L5dccolZRq/kO9u7d6+52l+hQgXbiRMniqUS/J///Mcs27p1a1PRKkgrnvaWh+3bt7t8b4MHD3a57fbt25vn/9//+38+BRX/+Mc/HOeFBhgFzZ071zwfHx9vO3PmTKHyvPzyy4XW0e1ogKPP//bbbzZf2Mtb1K3gMfKnPIE4Hu7Otffff99RmXcO1OxmzJjhMqgI9DnqTVBx0003mWW0JcUVvWDg3MplvzmXz8q+1OVr165tnpszZ06+53799VfHxZCffvrJ7XsgqADcI/sTAL898sgj5uZqwLX2N9d+5gXZ0036Q/v0F6R981V0dLTccMMNbp8/cOCAy21q/+uFCxeaPumablKzT6mffvrJ3OugUnc8vZeBAweaTFg6xkP73dvp2IGcnByz37QveHHQ96O0j73ul4IiIyNNRhx9zzpYVgfFFvTwww+7zfmvqYN1rMRTTz3ldZnsYyt0rgCd06SgO++80/Sx12OwadMmMz7BmY5zKUi3owN+t2zZIvv375cGDRpIoFPK6jgbV3wpTyCOh7tz7auvvjL3d999t8sEB5q61V22o9I8R13Zu3evvPfee4Ue1zkh7OWzsi91eT2vn332WXnnnXfy7VMdr6LjT6655hrSCAN+IqgA4DfnCplWvjRbig6cvPHGG13+4Csrcxjo5HoF6YBtVadOHZevGR8f7xiEWZAORB4yZIicPn3a7Wump6e7fc7Te3nwwQdl5MiRJgOW5rfX8p07d868pvKU1tKqX375xdyPGTPG3Dw5evSoy8d1wLWnx3XAtS+0ku1puzogWJ/ToMK+bFHHXukgaXfHtzhTyvpSnkAcD3fnmv04uHtegwL7/A+lfY7qIHJP71EzLjlPdnfdddeZNNPOrO5LzQKlQYXOkaHnmaav1te0p8FlgDbgP4IKAH7zp0IWFxfn9+vpVUh/nnNFr4brVVrNCKOVDL3yrBVFzZyjFdw33njDPO9pRl9P70W3o7MFT5061Wxr7NixpvXm8OHDctVVV8mll14qxUWvuCq9uqutRp5ohh9/BGKmY1/4enyDqTyBOB5FfW7sGaJ8ea6kz9G2bduaSeg0A5PuE3+OqdV9qfPm6Hv773//a+bTGTVqlElbq5mxNPiy0pIKlHUEFQDKJJ31WyvGmt5U01AWZO/+ZEX//v1N2kutsGlXIe1mUtytFMre7eb222+X4cOH+7UNnRlbU/MWZE9LWr9+fZ+2Z5/Q0H6l2d1rOi8bLgJxPNyx76uCaZjttIVCJ5wLhnNUWyKGDRtmWqM0Ta3+XRr7UlsjNKjQLk8aVGhXKHvXPCsXPYCyLrgu/QBACTl+/Li5b9SoUaHntOuKXrG1Sls+7rjjDjOe4+mnnzZ9vOvWrWvGDxSnm266KV/g5A+9ouzpce3n7mrsgfbFd8W+/D//+U+XXZXmz59vKpvaXU3nxggngTge7uj4Afu2Xe17+7wQwXCOalfJe++91/x/6NChLrtklcS+1PEn2k1NLxx8/vnnjkk66foEWENQAaBM+tOf/mTudWDoqVOnHI9rhbdfv36Oq+ZWDRo0yNxPmTLF3GuXKnfjTQJFr+ImJyebyf10sK2rvuVagX/ttdfcBgEzZ84sNHGdTlim29SKf8EKmL3l4vvvv3dbkdMKrFZetULp/Lq6r/UKttKWI53ILJwE4ni4o/tVx0JoS8Xf//53R/cg9b///U/Gjx8fVOdoSkqKCS60Qn/llVc6BpoXpO/H1bidQOxL7falk2bax1joRHo6WaBuF4D/6P4EoEzSCsn06dNNph4dIKz9rHV8hXaL0EqGVrT0eat0u23atDGvo9l5Hn30UUvbmzBhgqkwufPqq6+avusLFiyQm2++2QRNc+fOlVatWplKvQ7E1S5I27dvNzNY65gYVxVIrVh27drVlF+72Gg2HV1H95F2F9EZyJ1pNh7tm66DfzULl3225CeeeMLMdKyZkbQcOohfAxbt/qKD+jWgW758uQnmunXrZvr1l6S33nqrUPDkTN/LAw88YOk1dOyA1ePhjlaQdZZ53baOjdCr7u3btzctcfq+tBK+fv16M+u8u0xWgT5HPdHzYs2aNWaf6iBsbcHSgFS72umgcv3sacCh+0NbIrSyr+8n0PtSg2LNcmUPSmilAALAQ7pZAAjYxGH2XPmeFDVPhT/58T3lldfJ8fr162fm1oiNjTVzKDz44IMmT72+N11P8+T7816cjRgxwiyvMyH7y9t5FfT9Os+b8Nprr5mJwHTCL517QGcZ1xz//fv3ty1evNjje5s5c6ZZVifC08nXdPbrNWvWuCyfzg8wefJkM/eBfYbsguVROn+DvvYFF1xgZnzWeSmuuOIK81qu5h0oal/rcXX1OoHan4MGDQpYeaweD0900kmdVVpnmNb9n5SUZHvuuefMJG+6n3UOBuf5PwJ9jnozT0VBX375pe0vf/mLrXnz5ub80v2hs23rrPaPPfaYmaDP3czb/uzLguyzcuv+SU1N9arMzFMBuBeh/wQiOAEAFKZXTDVLza+//mr6q19xxRVBvZvsmYL4aQgPq1atMnMv6BX/bdu2Fds5qt2VtMVPxyi5GzQeDrT1p0uXLmafemrhAsoiuj8BQDHSrDpaWdOKWrAHFAhN2oUnIyOj0Bwg2mVNU8YqV5NUFsc5mpqa6kgzrV3iXE0SGIo0S5TO5XHo0KHSLgoQtAgqACDAdBbu5557zlRAFi1aZPqBT5s2jf2MYqGD4/XqeVJSkpnRW9Oi6uB3+3wQ119/vRkAXxLnqE4kaZ8VWwdkh0tQodnJdJ8BcI/uTwBQTF0kdGDsxRdfLM8884z06NEjJPYz3Z9Cj2bUmjRpksmkpLNE6+B3zdClk7/pgGhtrSg4YDmUz1EAwYmgAgAAAIAlzFMBAAAAwBKCCgAAAACWEFQAAAAAsISgAgAAAIAlBBUAAAAALCGoAAAAAGAJQQUAAAAASwgqAAAAAFhCUAEAAADAEoIKAAAAAJYQVAAAAAAQK/4/RGfOevGOY3AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMI0lEQVR4nO3dB5wTdfr48WcbC9J776AeglI9FRsoovwUBXtB4fTOO0AEzoIenidygp6Vo3h2ET0VBP4qnjRBTlSkCSpWpKPC0pYOu5v/6/lyWbPZJDuTmZRJPu/Xawwkk2Q2ics8+T4lw+fz+QQAAAAAHMh0cmcAAAAAILAAAAAA4ApWLAAAAAA4RmABAAAAwDECCwAAAACOEVgAAAAAcIzAAgAAAIBjBBYAAAAAHMt2/hCwq6ioSLZu3SqVK1eWjIwMXkAAAAC4Qmdf7927Vxo0aCCZmfFdQyCwSAANKho3bpyIpwYAAEAa2LRpkzRq1Ciuz0lgEUcTJkwwW0FBQfEbXqVKlXgeAgAAAFJYfn6++QJbM2PiLcOn6yWI+xtetWpV2bNnD4EFAAAAUuI8k+JtAAAAAI4RWAAAAABwjMACAAAAgGMEFgAAAAAcI7CII+0I1aZNG+nSpUs8nxYAAACIObpCJQBdoQAAABALdIUCAAAA4GmkQgEAAABwjMACAAAAgGMEFgAAAAAcI7AAAAAA4BiBRRzRbhYAAACpinazCUC7WQAAAMQC7WYBAAAAeBqpUAAAAAAcI7BAWlm+fLncfPPN0rp1a6lYsaJUqFBBWrZsKf369ZO5c+e6dh8AAIB0Q41FAlBjEX9FRUVyxx13yBNPPCHZ2dnSvXt3adu2reTk5MiPP/4o8+bNk127dsmoUaPkvvvui/o+AAAA6XqemR3XZwMSZOTIkSZAaN++vUybNs2sOAQ6ePCgjB8/Xnbs2OHoPgAAAG7xFRRJwe6Dtu5zdO9+SRRWLBKAFQvrVqxYIZ06dZI+ffrI9OnTi6/XlYImTZrIqaeeKvPnz4/4GD/88IOceOKJUq1aNfnqq6+kbt26Yfc9fPiw5ObmRnUfAAAAt2yf+qWsv2e2FOYftnW//UWH5PwdDyZkxYIaizhijoV9DRs2NJebN28ucX316tXl8ssvlwULFkheXl7Ex3jppZeksLBQbr311ogBgvIHCNHcBwAAwC5fUYEUHNpRYju6b7usv+d920FFopEKFUeDBg0ym3/FIho+X5EUHt4lXpGVW10yMqKPX+vUqWNqGoIDC6X1Dj6fT1avXm3qH8JZvHixuYy0jxv3AQAAsCN/3QzZvux+KTq6t8T1RfvKS2F+P/EaAguP0aBi3fTO4hXN+y6T7PI1o75/RkaG1K9f3wQWBQUFpog62IEDByI+xs8//2wuGzVqZPl5o7kPAACAnZUKDSoKD+0T38HypQILLyKwQNLTk/uNGzfK1q1bTV2Fn6ZBqXbt2iXw6AAAACLTIKLwyJ4S1xUd3iUHP6kr+6f1Ed+hstOqq46YKpmVDpW5X87BQpGhiXlHCCzgqToLf2CxdOlSef/996Vbt27StGnTiPevV6+efPPNN7JlyxY54YQTLD1nNPcBAADprejIETm8fVuJ6/Zt+o/sXP24ZFQ4LBlZvuLrfYUZsn9aP0tBhdKgwkpgkZlZJIlCYAHPFXDv27dP+vfvb9KiHn/88TLv37VrV1m4cKHpHmW1ZiKa+wAAgPS1ceJL8tPD68V3sFyIW4/VSxx32SeS2/mH4nQnq0FFVpVy0uK6RZKRXXbdan7+XpHfN5dEoN2sx9rNplvxtnr00UflzjvvNJfDhw833aBmzpxpOjfdeOONZd7f3zpWO0mtWbNGateubbndrJ37AACA9F2pWNr6oTBBhTNZVXKl2ZieUvvKtpb2Z0AeLNOTdCfF0F7kL6DetGmT3HLLLTJjxgwZN26cpaBCtWrVSu666y4ZM2aMXHTRRTJ16lRp3rxkJH/o0CGZOHGibN++3ewXzX0AAEB60vQnnwtBxSkf/UGya1QocV12tQqWViqSAalQ8Ewq1NNPP21WB5588km57bbbbD3G6NGjTSCgk7S1ZkLTm7RdrbayXbduncybN89M0Nb9nNwHAAAg2pWJ8i1qeCaICIVUqDgPyNNNB6999913CZmI6EU//vijtGzZ0tRUPPPMMzJgwICoH2vZsmUyadIkWbRokSnMLioqMu1szzjjDPO4559/viv3AQAA6dPh6fDWn+SL094ucd1v/nOhlKtXR3bM+F42j/rE1XSnZE2FIrBIgES+4QAAAIh+oN22JX+TwvwjJa7XQuw9Y68scd0pK2+UCg2PpXP7CoqkYPfBsI/rZroTNRYAAABAglceAmWVqyoZmdkl9t808QXZ98Zllrs5+WnQkFOroqQ6aiwAAACQdisPOvW66OjekLfrjAnfwVypcfJwqdT4InNd0YFdsvfl0y0/R1ZO+mWlEFgAAAAgbejKQ6Sg4vCyVrJ/2hlmVWKXbBeRybafI7NSpuTUqCTphsACAAAAaUPTnyKtVPiDimhl/a8Q28vdnaJFYAEAAIC0qaUoijBoWNOf7AQVHVYNlMycHM/OnXAbgQUAAABSshB77/qZkrdidMQ6CtXo/KmSmVtNCnYekl3yZpnPl1HhiNS/u5nk1q/mwtGnDgILAAAApHwhdnAdxYGZvxZi7xpZcgZFoJPmXyXZNcqXuC63dh3JLOd80naqIbAAAABAyhdiR6t8/fpp0SrWDQQWAAAA8GS6k9ZLxLoQW2smYA2BBQAAAFIu3UmnYdPdKb4ILAAAAJC26U5NR50vta44qdT16dzdKVoEFnE0YcIEsxUWFsbzaQEAADzLzbkTp3z0B8mu8WtqE8GDuwgs4mjQoEFmy8/Pl6pVq8bzqQEAADw9d8JpupPWS5RvUYNViBgisAAAAEBSz51wmu6UztOw44nAAilv/fr10rx5c/PnCy64QGbPnl1qn08//VROP/10uemmm+Sll14qdfvy5ctl4sSJsmjRItm6dasUFRVJgwYN5IwzzpAbb7xRevToEZefBQCAtCvELsyQfVO6WX784HQnRcpTfBBYIK3MmTNHPvjgA+nevbul/TWAuOOOO+SJJ56Q7Oxsc7/evXtLTk6O/PjjjzJr1iyZMmWKjBo1Su67776YHz8AAJ5elfAVyi+fDA97HzdWJkh3ShwCC6SNZs2aycaNG+Xuu++Wzz77TDIyMsq8z8iRI01Q0b59e5k2bZq0bNmyxO0HDx6U8ePHy44dO2J45AAApNaqRCzmTpDulHgEFkhqK1askE6dOkmfPn1k+vTpxdfv2rVLmjRpIqeeeqrMnz/f0mOdcMIJcs4558jLL78sb775plx99dUR9//hhx/kkUcekZo1a8r7778vdevWLbVPhQoV5M4775TDhw9H8dMBAJB+7WHD3u9gruWgouMXQyQjq+QXhKQ7JR6BhccU+Xyy68gR8Yrq5cpJpoWVgXAaNmxoLjdv3lzycatXl8svv1wmT54seXl5UqtWLUuPpylLr7/+ulmJ6Nu3r0lpCkdrLbQ18K233hoyqAiUmxv9VE8AANJlGnYozfssEcnIkqM7DsqukZMtrUqUq1sp6mNG7BBYeIwGFZ3nvC1eseyC3lLTwUl3nTp1zMl/cGCh2rZtKz6fT1avXm25ZkJXOW677TZ59NFH5V//+pcMHjw47L6LFy82l1YfGwCAdBJNulNg2lPG0ZpSs/1d4ttf8diV+32l9mPuhLcQWCCpaR1E/fr1TWBRUFBgCqiDHThwwNZj3nvvvfLcc8/Jgw8+KP3795dKlUJ/6/Hzzz+by0aNGkV59AAApOjKRBlF2MHdnRqdP1Uyc6uZP++Y8b1sHvXJsT/L9yLyVNjH0O5OObX+F3gg6RFYIOnpib0WXWubV11x8FuwYIG5bNeuna3H0zSqESNGmE1XLv72t7+5fswAAKTzykRwd6ddI72TbYHoMSUESS9UncXSpUtNQXW3bt2kadOmth9zyJAhJmB57LHHZNu2bSH3qVevnrncsmVL1McOAEC6FWI77e4UWE+hBdnwDlYsPEaLobVuwUvH63ZgsW/fPpPCpGlRjz/+eFSPqd2cHnjgAbn55pvNZb9+/Urt07VrV1m4cKHpOkWdBQAgHWn6U6SgIjDdqUmv900RdsHOQ7Lz0JuOnpfWsd5EYOEx2mHJSTG0F/kDi02bNplibZ10/fXXX5uuTTpfIlo6ZVsDk2effdZM3Q6mwcvYsWPlmWeekaFDh0rt2rXDPpa2m6UzFAAgnZROd3rV9mM0HXW+1LripFLX0zrWmwgskPT8xdMaWNxyyy0yY8YMGTdunAkwnMjKypKHHnpILr300pB1Fq1atZK77rpLxowZIxdddJFMnTpVmjdvXmKfQ4cOycSJE2X79u1mPwAAUq11bLCm/zdXMrKqyud/fVl8h6y1wA/u7qQIHlIPgQU8s2Lx9NNPm5WBJ5980rSMdUPv3r3lzDPPlI8++ijk7aNHjzbBg07f1gF7mhKlbW61Be66detk3rx5Zuq27gcAgBeDB7V3/UzJW2Ht37LM3Ori21deCvOPWE5rKt+ihmRkU9qb6ggs4JnAQofVvfDCCzJgwABXH//hhx829RShZGZmmnSp6667TiZNmiSLFi0yW1FRkWmD27NnT3M8559/vqvHBABAvLs7BdZLhJJR4bBkZJWeNREJtRLpJcOnSeuIiwkTJphNT5C/++472bNnj1SpUoVXHwAAxHyl4se3OoYNKoLrJULJKH9YKl29Qto8PEMKdh6W5W1Kzp8g3cl9BQUiu0pno0W0d2++tGxZNSHnmaxYxNGgQYPMlp+fL1WrVo3nUwMAgDSvlYi0UmGlPazevvfl0+XoHYekcM+hUrczzM5dU6aIDB7skz17MsQrCCwAAADSeJidpj/ZmTmxot24KI8OdlYqbh1UJAfyvVWXQmABAACQhsPstLuTFmIf3XFQdo2cHPPjg3Xbd3gvqFAEFgAAACmQ8hQp3SlYZk5lyancTDIys8WXu7/U7f56CV+hz9IKBVOyo1dQVCR7jh4tcd3GA9pxq7J4DYEFAABACreHLfF4hRmScbSmVD/xLlOALXJYCnYejFgv0XJCb1l/z2wpzNf9S6PzU/RmbN4g93+xUvYWlAwsCveUE5FLS1zXYML7klUl9HsQqOjgAdnyB0kIAgsAAIAUqZcIl+6kdkz/TjY+sNjMn9gh34tIya5O4dS+sq3U6tNGCnaXDkAUg+6iX6m4P0RQEc70i7pKqwYacES2Nz9fmhNYAAAAwGq9RKS5EzpzIqt8pV/TnQqKZONfP7Y81K7U42VnFq9gwJ10p11HDlsOKlST4ypKzdyy6y5ycq0X4ruNFQsAAAAPtYe1Onei7tA6JdKdwqUyBaNeInqHjhTJhm0lg4X/bN0sj3/3ZZh7HFuByKx0tMzhg9mZyV/MTWABAADgpfawFudO/PLkNvnlSWvpTn7US0Rv6Lg8+ee9VaVof/D70vJ/W3gZFY9IzT+slE8e+I1UL5credtFThTvIbAAAADwWHvYnYect4dlUra7KxX/NEFFTlT39+0vJzuf6SiNxmZJ+XKZUpS4bCZHCCwAAACSMN3JTntYu3RlonyLGqZ2AqEH1O3aFf6VqV5dJDvgLFrTn4pKrVTYo0HJ3j0i5Wt79x0hsAAAAEjS7k5W28P6Vx/ypn0lG/46L+Jjku4U2ZQpIoMHi+wp3eW3WNWqIuPHi9xwg7gqL6/kpddk+Hy+yJUicF1+fr5UrVpV9uzZI1WqVOEVtmDmzJny+eefl7p+6NChUq1aNV5DAEDSrlT8+FZH2+lOxe1h/3qsPWxZOq25vbhrk3aACtcaVtEeNnynJl2pOL5hOcnfk1Hma67BhQYAunLx7ebDcmLjkisW/1m6T5rX+zU1qkpOTokCbL1vmzZi2bZtIrVrJ/d5JisW8Exg8fLLL5e6vn///rYCi+XLl8vEiRNl0aJFsnXrVikqKpIGDRrIGWecITfeeKP06NHDlfsAAKA0/SmqdCcH7WFpDetsMF3+npKD6cLRFY3vvxepVUtk547SgYgGFSc08mixRJRIrIMnvPTSS6KLa8Fbs2bNLN1fg4Hhw4dL586dZfLkydKiRQv54x//KLfffrt06tRJZs2aJRdccIE8+OCDju4DAEA0NKio3fkBE1QoXXGgPWxyDKaLRFcc6tQROaN92YPrQtVp6KqHFbqf7p/sWLFAWhg5cqQ88cQT0r59e5k2bZq0bFmy7dvBgwdl/PjxsmPHDkf3AQCkZyF2OFqgHSndyTxeQZH4DuRKRmaWHM07Vpgdqo4iFOol7NP0JztBxcefHzETr+2mLpVFU6i0TsNqPUdgsXiyosYiAaixsG7FihVmdaBPnz4yffr04ut37dolTZo0kVNPPVXmz58f8TF++OEHOfHEE03K1FdffSV169YNu+/hw4clNzc3qvsAAFKfk0Jsv+Z9l0l2+Zrmz9unfinr75ltaXWC9rDu1FLoxOseC2eH3FdToTb1K5kK9c2mwyalSesvqtYskgP5ZSf8ZFQ8Ij/94pO6FXNd70BVFmosgDAaNmxoLjdv3hz0P1l1ufzyy02KUl5entTSBMcIaVSFhYVy6623RgwQlD9AiOY+AIDUZnfuRJmPV1BkOahQ2vXJX6ANZ7UUweae29MMpvth6xE5LdxOmUVS4w8r5OCkk83cibKG3WVnt7d0jBo0WCnK9gIPLKogkK/IJwU7D3jmRcmucZxkZJbdWSGcOnXqSE5OTqnAQrVt29bUWaxevVq6d+8e9jEWL15sLiPt48Z9AACpzU4hdqi2sb6DuZKZXUmK8nPk6L79Jt2JOorkqKXQoKJmbq7kRZhvp6se2WevkyZd10vRvvA7ZlY6KlVys6VqThdJNwQWNv2///f/ZMyYMbJmzRopX768dOnSRf7+97+bPPx40KBieZunxCsC299FIyMjQ+rXr28Ci4KCAskOsRZ44EDkQOvnn382l40aNbL8vNHcBwCAUA4vayX7p50hvkPHVrh3jBhv64WijiK2tRSVs3Okak74QGH30SOy4/CxFCqVkeWTrKpHIj7eA+06lGgtmy4ILGyYO3euyfW//vrrZdSoUbJ//3556KGH5LzzzpMvv/zSnADDfXpyv3HjRtPqVesq/BYsWGAu27Vrx8sOAIjLpGwrhdgFew6X+PvqoVMsPy91FO7NpPAHApFWkY47dJwM/0072bXjWBAQqm3slYs/CBtI+FOoAlUNmleRTggsbHjttdekadOmJq9fv0lXp5xyiukWNHv2bDNTAe4LrLPwBxZLly6V999/X7p162bek0jq1asn33zzjWzZskVOOOEES88ZzX0AAOlXoK1BRTSF2OFWJsq3qGHmUMB6kfOsrZvkka+/kAPlD5jVhFABhD91aWrX7lItp5xM/XeW3HfXsdPgASX2ttc21p9ChWMILGw4evSoVKpUqTioUDrZ0D/zAPEp4N63b58J4jQt6vHHHy/z/l27dpWFCxea7lFWayaiuQ8AIH0LtO0WYgcj3SmyKVMitWVt/L9NpPrNn0ulczcU37JvYVPZ9fyv6ephC7OjUFYKVTryfGDx7bffypw5c8x0ZN2+/vpr081Hh5bpHIKyTJ06VSZMmCCrVq2SI0eOSKtWrUyq07Bhw0zRcKDf/e530rNnTzPbQE9s9QT37rvvlsaNG0vfvn0lXsXQWrfgFXq8bgUWmzZtMsXaOu1a32ft3GSltkXfq7Fjx8ozzzwjQ4cOldoRWi/4W8dGcx8AQPpNys4qV9X2QLuOXwyRjKySKTfZ1SqwUhFhpaKsWQ9+GkQEBhJOaYcnLcYOls51FCkdWEyaNEmeeiq6YmY9YdT76jff+q20rkZ88MEHJlh45513TMBSoUKF4v11H52loIGHTmRWzZs3l3nz5pl5B/GgHZbSrdWcv4BaA4tbbrlFZsyYIePGjTMBhhUaLN51112m6P6iiy4ywaS+b4EOHTokEydOlO3bt5v9orkPACB9J2XbWZUoV7dSTI8t1eol8rZrUBH/L/CqVPXJ2Ccy5KqLLil1WzrXUaR0YKEtR++44w7p0KGDdOzY0RRTv/LKK2Xeb+bMmSao0GDiww8/NPdVOhNBA4iPPvpI7rvvPnn00UeL7/Ppp5+ak9nrrrtOrrzySrNi8cgjj5gTz48//rjMeQdwtmLx9NNPm9WBJ598Um677TZbjzF69GgTCOhqk9ZM6Husnx1dlVq3bp0JDnWCtu7n5D4AgNQT7aTs4EJsViWimzuhQ+tESg6tc5NmVd9wQ+nrq1fPkOxsUp3SevK2prC8/PLLZaZC6cRmLQDWk8K//OUvJW7ToOKss84y6S2//PJLcR2FtpbVuQqzZs0qMd1Qi4d1kJqmzljB5G17fvzxR1MgrytLmpo0YEDJMis7li1bZla5Fi1aZAqztTZGu3mdccYZ5nHPP/98V+4DAEjuDk/haOenDbN6FM+dUE3+b65k/y+wyJv2lWz467y4tFxPty5Ohb4i+e3cdy1Nw24w4X3JqnI4ZB2FnQDC7lRrL8jPzzfnrnv27JEqVarE9blT7KW0Rk8ONahQuvoQ7MwzzzR1E5p6895778m1115rrv/qq6/M6kQgfcM0beb777+P09GnnxYtWpjaCjd07txZnn/++ZjfBwDgvQ5P4eZO7Bo5OYZHmF7Bg5q5eYOMXrPK0WNrUOFvAVv10u+lysU/mM5PlbJzZH63C0ulKaViAJGM0vIlXrlypbmsUaNGqbz5wJNJDSx0X39g0axZM/PtdXBU+MMPP8g555wThyMHAACWVyV8hfLLJ8dqIq3SlYrAoCJaWk+hqU/pKlRKUyxpm9lqNX3yQLuTpH5dah8SJS0DC82PV4HD1oLpikXgvmrw4MEyaNAgk/Z0+eWXmxqLxx57zOT9//73vw/7WHq7boHBCAAASNyqRDia/uRGUKFF2uk6j0JXKpwEFYFzJ94/5wLZszNLzgjaZ+65F0qtoIaNFFQnXloGFnv3HvvFU7Fi+LxHLeoODgL+9Kc/Sfny5WX8+PFmWJ52jNKib50AHWmImnYMeuCBB1z9GQAASDdurUq4pemo86XWFSeVuj7di7Q1/SnaoGLfgiay45kO4tt/bFBd6Vf3mBq5OpjOwUEiJtIysIiWDsbTWRa62XHPPfcUt6f1Byv+FREAABC/VYnmfZZo3kzY24/uOFiqpiK4u5NK9+DBLSPbnCKXNWpaPK/i+H7lxLe/5IwPeEdaBhaVK1c2l/v3H2sRF4qmOSk3qum1uxQD1AAAiO807FBzJ7Ir1Cn52AVFZrhdsf2lm4VoUEF3J+sF2ruOlB4UOPfcnlK93K9LDBpEaLqTFlkX/S85ZGeeSL6F5l3arFOLsZF80jKw0CJspcXZ4fhv8+8LAACSfxp2uFUJnZAdPMxu+9QvZf09sy1PzEb0BdoaVNTMPRZYTJlifZJ2qKBi/Hg6PCWrtAwsdJie0uFmWpwdqjOUv/uTf3CeGyZMmGC2wsJC1x4TAABEXpUIRVcqCCpiW6AdWISt07OLco+tVPTrZ/151qwRqVXr17/TNja5pWVg0ahRIzPsTmdZaBF2qAF5umKh6Uu9evVy7Xm1o5Ru/sElAADAnWnY4VYlQqY7/W9StpWVinRvGxttgXZwEfaJUTyHniq1bs3qhJekZWCh7r33XunTp4+Zlq1D7/wrE7qKMXDgwOL2sgQAAAAktvuTTsMOpkFFdvmaZT6Wk3SndGsbG26gnd12rrpSERhURIOUJ2/K8Lk10jhBVqxYURwIqLVr10peXp5ZlWjYsGHx9TNmzJD69euXuO/tt98u48aNk5ycHDnvvPNM+9n58+fL7t27pWvXrjJ37lzTUjaVRq0DAJAK3Z+a911WZmChKxXLTnzCclAR3P0pnTo/Wa2X8Hdx0gLtHgtnl0h3mtq1u1TLKSc7d2TIGe2tBxVbt5ZelSDlyZvnmdmp8OItWbKk1PWbN282m1/ggDq/p556ygQQWvfw8ccfy9GjR6Vly5YyYsQIGTZsmJQrF32kDQAA4jeTwkm6k391onyLGmkTSEQ70G70mlVmC5XudFqUqxJB3/vCwzwfWJx77rniZNHlqquuMls8ULwNAIDzmRRapK31FG51d0q3lCc3BtrZTXcKLsJWrEqkHs8HFl5C8TYAIN05nUnh7/zkL9K2290p3YfdWZ07URZNf7IaVFCEnT4ILOAJM2fOlM8//7zU9UOHDpVq1aol5JgAAPbTnbQQO9qZFBpE+A7kSkZmlhzNOzbklnSn2MydCBxoN3PzBnnwi9XFtRSqMP/XYXeRUISdXggs4JnA4uWXXy51ff/+/csMLNavX188q+SCCy6Q2bNnl9rn008/ldNPP11uuukmeemll0rdvnz5cpk4caIsWrRItm7dKkVFRdKgQQM544wz5MYbb5QePXo4+vkAINW4ke4UOJOCdKf41VEED7TL/eR42T24tezZkxHxPqQ7gcACnqAn+6FO+O2aM2eOfPDBB9K9e3dL+2sAcccdd8gTTzwh2dnZ5n69e/c2ncR+/PFHmTVrlkyZMkVGjRol9913n+PjA4B0THcqayYF6U7xraOonJ1jWssqHWh3bEp25KBCaQ1F7dqODxUeRmCBtNGsWTPZuHGj3H333fLZZ59JRkbZvyRHjhxpgor27dvLtGnTTNewQAcPHpTx48eb+ScAkI6cpjvpykRO5WYhB9v5abcnujvZmzthdeZEqKDigXYdiu+7a5cGFdZSnrQYG+mNwCKO6AoV3ZySTp06mWGG06dPL75+165d0qRJEzn11FPN7BErTjjhBDnnnHNMStWbb74pV199dcT9f/jhB3nkkUekZs2a8v7770vdunVL7aNzTu68886Q7YwBINW5le4UHFQEt47VOgor0qm7U1n1Ev4AoU+jpiWuDzV3IlDTOjlSvpy91486CvgRWMQRXaHs8w85DJxJoqpXry6XX365TJ482QxErBXcwy4MTVl6/fXXzUpE3759TUpTOJp6VVhYKLfeemvIoCJQ7v/yUAEgbVYmbM6cCE53ClWIrfKmfSUb/jqvzMdL5+5OVuol9Dbd55IGjYtXH6zOnXj8cZEbbjj257y8smspaBsLPwILjykqEvFS1k3NmiJRrMQWq1Onjjn5Dw4sVNu2bc0Mk9WrV1uumdBVjttuu00effRR+de//iWDNXE0jMWLF5tLq48NAKnKjZWJwHQnp4XYSoOKnFoVJR1ZrZfQfXRfLcLWWgmrcyeGDz+2hUMtBcIhsPAYDSrqHGuQ4Qnbtjkr5NI6iPr165vAoqCgwBRQBztw4ICtx7z33nvlueeekwcffNB0lapUqVLI/X7++Wdz2ahRoyiPHgC8L9FzJ8KlPOnqBMrmn1GxftsR8e2vzEuGmCKwQNLTE3stutY2r7ri4LdgwQJz2a5dO1uPp2lUI0aMMJuuXPztb39z/ZgBIFVo+pPVoCJw5kSo7k52C7HTpY4iUhG21UJsnTuheiws2VLd//fCPbpScanjY6VIG5EQWMBTdRb+wGLp0qWmoLpbt27StGnJwjQrhgwZYro5PfbYYzJw4MCQ+9SrV0+++eYb2bJliyn8BgBYmzlRogjbFF4ftl2IrZqOOl9qXXFSStdRWBlaF64QO5B/mF1wgXakgXYff35EWjU4lho1ZUrk9CdFkTbKQmABzxVw79u3z6QwaVrU41phFgXt5vTAAw/IzTffbC779etXap+uXbvKwoULTdcp6iwAIHwhdvCqhN06inQtxLY6tC5UIXa4lY2CRc1ly6STLdVSNKuXXZyuPGyYyG23HWsvGw5F2igLgYXH2s1qMbTWLXiFHq9bgcWmTZtMsbZOuv76669N1yadLxEtnbKtgcmzzz5rpm4H0+Bl7Nix8swzz8jQoUOldoRiEW03S2coAOlCg4rs8uF/wduto0jXQmw7Q+sCC7HDKsqUnc90FN9+awFZcJCiZYwMuIMTBBYeazervwPS7X96f/G0Bha33HKLzJgxQ8aNG2cCDCeysrLkoYcekksvvTRknUWrVq3krrvukjFjxshFF10kU6dOlebNm5fY59ChQzJx4kTZvn272Q8AvDjQLhIddmeX3YF2FGJHJzDlKW+7yLa9IgfyrQUV1EogFggskPT8KxZPP/20WRl48sknTctYN/Tu3VvOPPNM+eijj0LePnr0aBM86PRtrbPQlChtc6stcNetWyfz5s0zU7d1PwBI9baxbkvFQmyntAhb6yW0m1NwIba/w5NeBs+kONHGc1ArgVghsIBnAgtNIXvhhRdkwIABrj7+ww8/bOopQsnMzDTpUtddd51MmjRJFi1aZLaioiLTBrdnz57meM4//3xXjwkAkq1tbNjHDZqSHa5AO13rKOzSoCJcupM/0NCVih3P9LZURxE8zM48R/VjaU+A2/hYIem1aNHC1FZEq1mzZhHvf8YZZ5T5+J07d5bnn38+6mMAgESnPGlKkxtBhXaA0mJtuwXa6VpHEQua/mQlqNCVidatCSIQPwQWAACkmFilPAUOu3Nj0B0kYocnbTObf7jAUuvYUvevKjJ+PEEF4ovAAgCANE15Cm4bW5bAtrIUaDsfguevmQguwi4ycUOmdP70bHlxVA1Ljx+c8kS6ExKBwAIAgDSclK2rDzmVm5WaP+E2CrQjD8GLXIRtLahQGlSkW9dIJB8CC4/NsQAAIFLrWCvtYQNTmtxEgba9IXjHirB/DSqiRetYJAsCC4/NsQAAwG4dhZVJ2Xa7P4Xq/JQuBdqh0pqC6yP8w+ciDcGzWoQdCbUUSCYEFgAApHjr2LImZUdqHavypn0lG/46L6pjTae0Jj8tun6gXQfp06hp8XWBdRR2irD9Hn9c5IYbSl9PLQWSCYEFAAApWkcR3B5WETzEJq0pkN6u+13SoHHIOopImDsBLyOwAAAgRQXXUtiZOxFNkbYOvEtlkdKaglcmdovI2q1HpaBAJO+J31p+Doqw4WUEFgAApECBdqjWsYG1FLGcO0HnJysdnspGETa8jsACAIAUKNAuq47CztyJSJqOOl9qXXFSiet0pSIj+1ixcrqZe25PqV4uV7YfOCxtri0fdTE2RdhIBQQWAACkQIG2m0IFD+kWQEQaaBdIg4qaublmsJ3VoOLLdYelTsWShdsUYSMVEFgAAJBiBdpWpcvcCTvtYa12fopGRsUjUvMPK6Ve/fZS03pDKMAzCCziiAF5AAA3B905HXaXDnMnrAYJI9ucIpc1aiqFviIZvvIzV567wYT3JavKr6scmZWOSkaWT0Tau/L4QLIhsIgjBuQBANwcdBdp2J2VgXapzmp7WDV6zSqzWeHv/FQpO0eO7M6R7ZkiR/aUnFGhNKjIqnqk1IwLXSEBUhGBBQAAKTboLpZtZVOtPazTzk8Nim8pO33MPzgvMO0KSCUEFgAAJCjlSdOd3K6jiGVb2XS1pMfFkpWRaWZSHN+vnPj2Z1i639xzL5RatcPXcgCphsACAIAY10uovetnSt6K0VE9pp06CqttZVNtoJ3VLk7+9rBq5uYNEdOf/CsMdcofe52254vkl35rw7aPbVkvV7I500Ia4eMOAEAC6iXcqKOIVqoNtLPTxcnfHlbd3PJ4ub5xK9mwLfT9mtbJkfLl7L9GzKRAuiKwAAAgSeZO6MpETuVmloOI4ALtcEXawW1lU6mlrJ0C7WBTpogMHpwpe/bkRgwQbrgh/GOsWSNSq1bJ65hJgXRFYAEAQJznTthJdwoVPKi8aV/Jhr/Ok3RvK2unQDuwI5PWSwweLLInQmqT3tavn8h554lJacrLK72PBhW1A+oogHRGYAEAQBznTqhaHUdK5WaXlZnuRHcn9wR3ZNq1K3JQEajBr62fAERAYAEAQBLMnYhVd6dUK9K2IrBA24+OTEDsEVgAAJDguRNOujulU5G2VYEF2nZovUS1atZXKLQGQ+spABxDYAEAQAzqKKzOnXBD01HnS60rTip1fSoVadtpKRstf73EK6+UXX9B5yegNAILAABcZmfuhB3B3Z1SMXgIF0CUNXMi4uMVHKupCBSqENtPu0Bdc03p+wSi8xNQGoFFHE2YMMFshYWF8XxaAEAMuTF3wmrb2FTu7hTNTIpAvsIMKdp3rONT3naRotxfW8oOH27/OLQLFN2eAHsILOJo0KBBZsvPz5equoYKAPB85ycndRSKzk/OZ1LsW9BEdjzTQXz7y5m/nxj1uwHACQILAEBaCxVA7F0/U/JWjI79c7vU+SmV6iWiWakIDCqiRSE2kMDAonv37i48vUhGRobMnz/flccCACBWrWPdEJzypOlOVoOKVGobG226k9/INqfIZY2aFqc9nehCUKETtjX9CUD0ov5faOHCheJWYAEAQLK3jnXa+clJypNX28aGWpUo9BXJ8JWfRTWTQouwtY5Ch9wV5R+7vcjG2/f448cKs4NRiA24w1FsfuGFF8rdd98d9f3Hjh0rc+bMcXIIAADEvHWs085PdlKeUqXzk9NVCf+07GYVK5lAQouwy2oBGziPQlvHBiJ4AJI8sKhXr56cc845Ud//pZdecvL0AADEXK2OI6Vys8tKXW+n85PVYXe6MlG+RQ3PBRFuFWEHBxUPtOtgggpdqbAaVATOowDgkcDi+OOPl/r164vTwEQfBwCAZGwda7dtrBOplO5ktwh7SY+LJSvj1587MOVp+/ZjMyesBhUUYQOJE/Vvy2+++cbxk48ZM8ZsAAAkA6utY0PNnbCbuhSc8pTs6U5uD60LXJWoU/7X18FOylMwirCBxKL/AQAg5VmdSeFmEXbTUedLrStOSolhd27USwQWYftVzTm2KuFnJ+WJOgog+RBYAABSmpstZe0UYW/46zyzpVsXp7KKsCPZtctaUKErE61b0x4WSPnAYuPGjaYV7Y033uj2QwMAYGtVQnyF8ssnw1171awWYXuRG6sSZRVhu4F0JyCNAoulS5fKgAEDCCwAAJ5albAzk8KpZBt250YXp8ChdZHSnYqfs+DYCkUgLdIuK+WJtrFA8iIVCgDgaW4NurM6kyJSEXbetK/KTH9Kxu5Pmv7kpItTuOAhHDsF2rSOBbzD8m/QFi1aWNrvwIEDTo4HAICYDrpr3meJSEZWieuctJUNLMKu/8dTpd4tnR13jEpEe9houzhFfK4QqxJ6Xb9+1o8XgHdY/i26efNmadeunZx66qkR9/vxxx9l3jxvFasBAFKff1Uiu0KdmD6PBg3J2u3JTh2FlS5OkThpG1v8fFWPpT4BSLHAQoOK5s2by6RJkyLu99ZbbxFYAAAS2jY2eNBdNKsSoWZVhGob6xV26yg0qKiZmxvdc9mclB0KRdqA91j+DdulSxd57733LO3r8/mcHBMAAI4KtK0OugsXQFiplfAaO3UUmvKkqxPRsto21m/r1tKtYynSBlI4sLjzzjulV69eZe6n+6xbt87pcaWkCRMmmK2wsDDRhwIAaVeg7WTYXTpxuz2slVWJ+vVj/lQAkimwaNmypdnKUqFCBWnatHS7OYgMGjTIbPn5+VJVf5sCAFwv0LbaNtbOsDuvtI21y2kdhR1MygZSH+1mAQBJX0sRqo7CadtYp8PukrFtrF1O6ijszqOgbSyQ+hwHFtOnT5eePXtKxYrJ2QEDAJCatRRuFGhb0XTU+VLripOSrm1sMnCj8xOA1OH4t++VV14pX3/9tRx//PHuHBEAIG3ZqaWwU6AdzbA7rwcPwfMqrM6qsLoywTwKAK4HFnSAAgC42TrWUlBhsY7CybA7L7MzryIeKxPMowDSAzUWAICkbh3rpI4iVWdSRJqiXegrkuErP4vu8WIwKZt5FED6ILAAACR169jgWgq7dRSp2lLW6apE8KwKN+olmEcBpDcCCwBAUqY7+Vcncio3i7og242WsqkwRbusWRVOJ2UzjwKAIrAAACRdulM0KU/h0p2sBhVemklhZ4q2WtLjYsnKyAw7q8LppGymZANQBBYAgKRLd7Kb8uQ03SkVZlJEWpmoU96dgImVCQCREFgAABI+KTue6U7BLWW93lY2VlO0mZQNwC4CCwBAwiQi3al8ixpJF0SE6u4USaiZFMFTtE2Hpx2h728ldYlJ2QDiHli8+OKLUr9+facPAwBIoSJtLdAORrpTfGZOWOnw5E9puuEG154SAJwHFjfddJO53Lhxo2RkZEjjxo15WQEgjVgt0nYyKTtV052cdncK+ZgWOjzpbbrPNdeUvXIBAFa59uukWbNmcvrpp8vixYvdekgAQIoVaUdL05+8nu7kRncnKzMprHZ40n2+//5YylNenuNDAAD3AosqVapI8+bNeUkBIEU5mUmhtRTa5SnWUrW7k52ZFHa0aROTQwKQplwLLNq0aSObNm1y6+EAACkyk8JugXaoIm0t0PZqupMb3Z0isdL5STs8KQIJAJ4ILH7/+9+bbenSpdKlSxe3HhYA4PGZFHbmUdiZSaFBRU6tipJqgrs7uUHTnbQTlBZtW0mT0v10fwCww7WvdQYMGCADBw6UCy64QB566CH59ttv5fDh6AYVJatzzz3XFKiH2saOHZvowwOApJlJoUXa/s3uSoWTQXfJTou1dxw+XLyFahsbK1qkrZ2gNGiIxN8xiqJuAAlbscjKyir+83333We2cPREvEDbVnjMxIkTJT8/v8R1r7zyirm+V69eCTsuAEgG0aQ8RVukrbUUmvbkJbFoK2uXtpfVTlBa4B2OlRkXABCKa786fD5fTPZNJlpHEmzIkCHSrl07OfnkkxNyTACQCE5nUkQadpeKBdqxaCsbLQ0aatdO9FEASEWuBRZFRUWSbr7//ntTU/Lwww8n+lAAIKadn9ycSWGnjiJUkbYXC7SttpUNbBtrhZmuHfT20DoWQKJ4frFTaznmzJkjy5cvN9vXX38thYWF8uCDD8rIkSPLvP/UqVNlwoQJsmrVKjly5Ii0atVKrr/+ehk2bJjklPHLfcqUKZKZmSnXXXediz8RAHiv85MddusokrFIW1cgNFiwykothd22sWVN1waAePN8YDFp0iR56qmnorrv0KFDzX2zs7Ole/fuUqlSJfnggw/k7rvvlnfeeccELBUqhM/hffXVV+Wcc86RRo0aOfgJACB9Bt1FM+wu2Wop3KqVCG4ra6VtrJ3p2gAQb66tJb///vuSCG3btpU77rjDnOTrakW/fv0s3W/mzJkmqNBgYsmSJTJ79mx56623THqT1kx89NFHEQvQP/30U1m7dq3coJVwAOCxIKLg0I4S29G96211fkrXYXdu1kr428r6t3BBhQYR27eX3HRittWggtaxADy3YqFdkVq3bm1azmrrWZ3EHQ+33HJLib9rapIV2hJXjRgxQjp27Fh8fa1atUyXp7POOkvGjx9vgouqIXrzaRpU+fLl5YorrnD8MwCAV9Kd7HZ+slqg7ZVhd1ZrJcLxFWZI0b4cqZSdI0d258j2zMjdmJymO9E6FoAnA4vf/OY3ZsVg+PDhprZBv8kfNGiQWVFINlu2bDFF1ypUfcSZZ54pjRs3NpPE33vvPbn22mtL3K6tct944w255JJL4hZAAUCiB93Z7fxkp0A7Geso3LZvQRPZ8UwH8e0vZ/7eIEwQ4F8It5vupNO1dRBeIFrHAvBkYPHVV1/JwoULzbf8b7/9tvzrX/+SZ555Rs4++2wZPHiw9OnTx/JqQqytXLnSXNaoUUOaN28ecp/OnTubwEL3DQ4sNG0qLy+PNCgAKT/oLtqZFKkw6C5UgXaoIuzgWomQj1Ugcny/cuLbnxF2Hw0gNJv3vPOOrVxodyc76U6tWzN/AkAKFW/rZGrddEXg6aeflueee04+/PBDWbRokTRo0ED++Mc/yu9//3upU6eOJNK6devMZZMmTcLuoysWgfsGp0HVrFlTLrroIkvPpxPIA6eQBw/ZAwCvD7oLTnnSdKd0KdD210pEsj1fJN9ikNAgeCmjDKQ7AUjprlANGzY07V7/+te/yrRp08wqxieffGL+rtdfeeWVZhXjt7/9rSTC3r3HvrGrWDH8srsWdYcKAvbt22dWZG666aYy29H6jRkzRh544AFHxwwATmdShJpH4cagOzspT+lWoO020p0ApG27WT3x1jQiDSQ0qBg7dqyZFaEdnF577TU544wz5NFHH01YgBENDTj2799v6z733HOPqT3x02DFvyICAIks0nY66M5OylMqFmiHGmhndWidBgnVqllfoSDdCUCyi+lv819++cWsUGgdg386dYcOHcycCD2xXrx4sSmU1hWAeKpcubK5jBQg6MqEcqM4Ozc31zxO4AYA6TSTQlcmyreoYQq0A7dkCyrsCDXQTrs4aQG1ZvwGbm3alL6/7le/vsgrrxwLGiIh3QlA2q5YfPzxxyb9afr06XL06FFTtN23b1+5/fbbTSCh/v73v5sC7yFDhsjf/vY36d27t8RLs2bNzKUWZ4fjv82/LwCkWpF2Os+jsCtUgXbwQLtoh9ZpF6hrrim9yhGI7k4A0iqwOHTokElxmjBhgqxatUp8Pp9Ur17dFGtr29ng1B8NNv70pz+Zdq7z5s2TeNJVE7Vjxw5TnB2qM9SyZcvMZeCMC6f0tdGtsLDQtccEgHgVaFsVnPKUDOlOoTo8hROq85OVAm0NDKIdWqddoGrXtnZfAEhW2W4WbO/evdsEFCeddJJZidBZFhUqRO70UbduXVN3EU+NGjWSLl26mFkWWuvxl7/8pcTtOnVbVyw0hUkH/7lFAyzdtMYi1NA9AIiV4CJtuwXadiTbTAo7HZ7igbQmAKnKtX9VNKi4+OKLTUBxnjbhtuiuu+6Sftq4O87uvfdeM1tDC8q1bax/ZUJXMXR6uNLOVQQAAFKB0yJtO1O0k0miOzzRxQlAOnEtsPj++++lRYsWtu93/PHHmy1aK1asKA4E1Nq1a82l1m+8++67xdfPmDFD6muV3P9cdtllJggaN26cnHbaaSYY0vaz8+fPN0FS165dTeE5AHippWy4trJOOWkp65UOT3Y6P1mlBdqkOAFIF64FFtEEFW7QtKIlS5aUun7z5s1m8wscUOf31FNPmQBC6x604FwLzVu2bCkjRoyQYcOGSbly5WJ+/AAQ65ayTqXCFG03Oz8BABIwxyIedNK31nVE66qrrjJbPFC8DcCtVQnxFcovn/w6H8ct4dKdvDxF20qHp3CCOz8BAFI4sPASircBJGJVwmpbWafpTl5pK2ulwxMAwD4CCwBI4UF3VtvK2k138soUbSdCTdAOxGwJACiJwAIAPD7ozq95nyUiGVklrrPaVtbqBO3AKdrJFkSEmlURaiaFFTpB28qwu8cfPzbgTuXlRfVUAJAyCCwAwOP8qxLZFerE/LmSNd3JzVkVdiZoDx9+bAMAEFgAgKcH3cVy2J1X0p3cnlVhZ4I2AOBXUf9L1LZtW7nlllvMdO1a2qgbZaIrFACn8yjiOegu2SZouzGrwslMimgmbGsdBgCkiwxflL1aMzMzJSMjQ3JycuSSSy6Rm2++WXr27GmuQ9mzN3Si9549e6RKlSq8XECas9P5qXnfZY4CCzudnzqtud0TgcWOw4el85y3Lc+k6NOoacT9tm8XqVMn/ARtrb8oK/1Jg4rx43+tvwCAdDjPjHrF4rHHHpOXXnpJvvjiC3nrrbdk+vTp0qBBAxkwYID0798/YQPzACDdOj9Zfq40GnQXalaFk5kUgRO0hw0Tue02OkYBQLCoE2V1MvWqVavks88+kz/+8Y8mMtqyZYv8/e9/l9atW8t5550nr732WsiJ1wAA+52frM6jcKvzUzIOutN6Cl2hCNxCdX7yz6oI3NwcdJedfSzQCLfp7QCQbhz/6uvcubPZnnjiCbNy8eKLL8qCBQvMtnDhQhk8eLBce+218rvf/U46derkzlEDQJqxOo8iUi1FqDqKdOn8VNZMikC0jQWAONdYRLJp0yZ54YUX5OWXX5b169cX1120a9fOFHxff/31Uj2NK9qosQDgV3Boh6yb3tn1zk9Waym81Pmp4+y3LQcVyy7oXTxd2+pMiki2bfs1FQoAkll+AmssYvIvR+PGjeX++++XH3/8UebNm2dWLMqXLy+rV6+W22+/XRo2bBiLpwUAT9RUaDDh3yJ1fgrc7K5UWK2l8Hd+CtySLahw0vnJzkwKAIAzMc8C7d69u9lmzZpl0qG2b9+etnUXtJsF0pud7k9OWK2lSNY6Cif8nZ/89RRuzKSgbSwAJEFg8dNPP8nkyZNN3cX3338v/qwrTYlKR4MGDTKbf4kKQPqIZ/cnL9dRJLLzU6S2sRRjA0ACAouCggJ5++23TY3FnDlzpLCw0AQUmuOlKVE670KLvQEg3YbdWQkqnHZ+slpLkYx1FME1FZr+5Bep85NdgTMpyqLlgAQVABDnwOLLL7+U559/Xl599VXZsWNH8erEWWedZYKJK6+8UipUSK0ldwBwM90pms5PVnllirbT7k92Z1IAANzj6F8vrTbXQEJTnVasWGGu04CiXr16ctNNN5maCp1pAQDpwG66U3D3J7udn0K1lLXTVjYRKw9lKfQVyfCVn8X0mAAASRZYXHfddTJz5kxTiK3BRFZWlvTq1cusTvzf//2f+TsApBO7w+5yKjdztDphtaVsKq48BHZ+AgAkh6j/RXv99dfNZatWrczKRP/+/c1KBQCkcx1FvFKe7LSUTdRKRSyDisDOTwCA5BD1v2r9+vUzqxNnn322u0cEAClUR+HGsDsnLWUT1VbWztyJsizpcbFkZWSW2fkp1HRtpmgDQPxE/S+bTtWGPcyxANKvjsI/7M7Rczqoo/ByW1n/ykSd8mUHRW5M1wYAJOEcizVr1sjHH39shuGddNJJ0rt3b3N9UVGRaUdbrlw5SUfMsQC8n/JktW2sW61j7dRRBLeUTba2sqHmTkRidSYF07UBIAUDi02bNsmAAQNkwYIFxddpdyh/YPHss8/KwIEDzXyL8847z82nBoCUax1rt44i2VvKRjt3oix2pmszRRsAPBBY7Ny5U8455xxZv369tG3b1tReTJw4scQ+V111lQwePNgM0COwAJAqKU/pWkeRCE7qKJiiDQAeCSwefvhhE1Tccccd5s8ZGRmlAovq1atLu3bt5KOPPnLraQEgoa1j3Wgbmwp1FFYmZTtlp44i1HRtpmgDgEcCi//3//6fNGvWTMaOHWuCinBatGghixcvdutpASBh3JqU7fU6ilhPyo6mjoLp2gDg4cBiw4YNZjBeZhmFdlq4rWlTAOA1bkzKTrU6iljNqwhOedJ0J+ooACBNAovy5cvL3r1lpw1s3LhRqmqiKwB4bNidG61jU62Owuq8CjuTsp20jqWOAgBSILA48cQTZcWKFbJ//36pWDH0t2l5eXmyatUq+e1vf+vW0wJAwjo/xVMy1FHEY1K2nZQn6igAIEUDiyuuuELuvPNOGT58uEyaNClkSpTefuDAAbn66qvdeloAiNuwu3hJZB1FcBF2WUIVaQfPq7A7KdtKUKErE61bi2THZBoTACAa2W4Of9Np3M8995wsX75c+vbta65fu3atPP744zJ16lT57LPPpH379tK/f39JR0zeBrzZ+cmtYXdWJaqOwq0ibCvzKkh3AoDUk+Hz+XxuPdhPP/0kV155pZm6rZ2h9KH9HaL0z126dJGZM2dK/fr1JZ3l5+ebOpM9e/ZIlSpVEn04QNoqOLRD1k3vbLn7U5XmfVw/hqN5+2V5m6dKXNdpze1xDyx0paLj7LddKcJedkHviIGFrlRo1yarNRTBKU+0jQWA5DzPdHURWQMGnVExe/ZsmTVrlvz4449SVFQkjRs3losuukguvfTSiK1oASDRYjXsLty8CquzKpKlCNuNIm27k7JJeQIAb4hJdmrPnj3NBgDJIpGdn6KZV+FFoYq0mZQNAOmDsjcAKS/enZ9CTdH2Ffpk7aC3xUuCi7DLElykzaRsAEgvMQkstMbihx9+CHlb586dpU2bNrF4WgBIeOcnp6sSyTSrwkoRdjhMygaA9OMosOjUqZN89913smDBAhMw+D377LMyefLkkPc5+eSTZeXKlU6eFgCSsvOT3SnaqTSrwmkdhRZkAwDSNLCYP3++CRBuvvnmEkGFn3aBOu+880pct3nzZlm9erV88MEH0r1792ifGgAc1VFE6vzkpEjbzhRt1fGLIZKRlZEUsypCzaOIByZlA0DqiPpfUG0bqx2ehg0bFvJ2vW3u3Lklrlu/fr20bNlS3nrrLQILAAmro4h15yerKxPl6lYSr86qiAaTsgEgtUX9r6gOu2vatKmteolmzZpJu3btzH0BIFF1FLHs/JTMU7QLfUUyfGXifv/qLIratRP29ACAZA0sdKL2GWecEfK2SDP3WrdubWoyACDVJ2jHY4p2qLQmNXPzBhm9ZlVM51EAAOBKYOGf6hfK8OHDzQTuUCpUqCB798anOwuA9KiliGcdRaSWsvEedhertKZQ8ygAAChL1P+6VqpUyYwKD9f5SbdQdu/eLccdd5ykowkTJpitsLAw0YcCpHwtRSzrKJJh0J2uVLgRVCzpcbFkZWRGnEdR/JwFx7o9WZGX5+iwAAAeFPW/sPXr15fPP//c9v30PnrfdDRo0CCzRVrtAeBOLUWs6iictpR1i6Y/OQkq/KsSdcpbm5lhZ9gdACA9RR1YaH3FCy+8IIsWLZKzzz7b0n10X205qy1qASBWtRSxrKOw01I2WYbdjWxzilzWqGnUqxJ6Xb9+sT5KAEDaBhY33HCDPP/88zJw4EAzabtKlSoR99e6Ct1X29Bed9110T4tAMStjiJULYXVOopEDLube25PMy3bSgAR71UJhuABQOqL+l/ec845R3r06GFmVeiAvCeeeEL+7//+L+S+7733nino/v77783QvG7dujk5ZgBpwOqwu+BaCjfnUVitpUhkS9lAGlTUzC0ZWFilqxKxDCrGjxfJjs+YEABAgjj6Nf/aa69J165d5bvvvpPevXtL9erVpWPHjlL7f43Kt2/fLitWrJBdu3aZFrStWrUy9wEAt4bdJUMtRaxbysaDpj/ZCSq2brUeKFSvTlABAOnAUWBRs2ZNWbJkiQwePFj+/e9/y86dO2XevHkm3SlwnkVmZqZcc801piNStWrV3DlyACnJ7rC7WLFaS5EsdRTx4l99SNMeHACACBwvTGt3o1deeUUeeOABeffdd2X58uWS978+g7Vq1TIrGBdffLG0bNnS6VMBSAPJPOwuGeoo4mnNmmPTsgOx+gAACMe1jNcWLVrIkCFD3Ho4AIhrkbYVwbUUiaijiCcNKv6X2QoAQJkopQPguQJtt4u0rU7RTlQthQ7D07kVgXYdiX6ORqiWsgy0AwA4RWABIG0LtJNlinYkMzZvcGXCth+D7gAAsRL1Gv5DDz0ks2bNcvTken99HADpJREF2roqcTRvf4ntyC/7ZO2gt5M2qNCVCjeDili2lAUAIOoVi5EjR0r//v3Dzq6wYtq0aTJ58mS59957eSeANBLvAm03ViUS0f1J05+sBhWVs3PMMDy3Wsoy0A4AYBepUABSukDbzjyKRHZ/clJHoUHFA+06WJ6wXRYG2gEA4h5Y6IrDwoULo76/vy0tgNSV6AJtq/Mo/Dp+MUQyso7N4olX9yc7dRRzz+1pJmwH0pWKUEFFcJF2qF+5tJQFALjF0b/Y+/btM5sT/mF6AFJPshRo21mVKFe3UkxWHwIFBgJ26yg0qKiZWzKwcFKkTUtZAEDCA4t169a5dhAAUk+yTNC2Mo/CzVUJK6sP/tSlPo2aul5HoSjSBgB4KrBo2rSpu0cCIKUk8wTtWM2jsLr6oLfrfpc0aGz5se3UUVgt0qZAGwDgJoq342jChAlmKywsjOfTAmkzQdvqoLtYsbP6oPuFS5eyU0cRLQq0AQBuI7CIo0GDBpktPz9fquq/6kCaieUE7WQfdBdKuK5PVuso7Agu0q5eXSSbfwEAAC7inxUAcROrAm03WsrGin/1QYOIHgtnl7gt+O+xRJE2ACDWCCwAeJ6dlrLxHnQXi9WHSC1lFZ28AQCJQGABICbzKkLNqki0eAy6C0drJLQAu6waDKudn+y0lAUAIB4ILADEdV5FKrSUjYYWXmtXp0hdo+x0fqKlLAAg2RBYAPDcvIrg7k+hOj/FqqWsEzq3QlvMhusGZafzk9WWsuZxqx4r1gYAICkDi4YNG8qdd94pQ4cOdfeIAHgm3cmf8mRpsrZLsyq82P0pkAYOsay5CEZbWQBA0gcWP/30k6xevTrkbXPnzpXTTjtNKleu7OTYAKRIupNbsyqSuftTMghuKatoKwsA8HQqVM+ePWXAgAHy/PPPl7rts88+k0qVKkmbNm1i8dQAkiDdKXhehVuzKqx2f4pH5yedsh2c0hRuLkW03Z3sBgi0lAUApGSNhc/nC3n9pEmTZPLkyUyfBjxE05+sBhW6OpFTuZkrqxPRTNGOR+enGZs3RCzCtstKdyd/StMNN7jylAAAuI7ibQCucSvlyU4dRXD3p1h3ftKVCjeDCqvdnfR23e+aa5iYDQBITgQWACwVaJeV7hRNylOoVQlfoU/WDnrb8mPEu/uTpj9ZDSqszKSw091J99P9a9e2tj8AAPFEYAEgqgJtDSqyy9dMaHeneE/RtsPOTAo7/FO1ma4NAEg2BBYA4j6Pwo3uTomcoh1s7rk9pXq53KhnUoTr7qTBQ3CfC/peAABSMrBYtmyZTJgwQdq2bWu2mjWj//YSgLcKtJ3MpLDa3cmv4xdDJCMrIyFTtIO7P4Xq/KRBhZuzKejuBABIu8Diyy+/lCFDhhT/vU6dOibAUD///LNs3rxZGjVq5PwoAaRcgbadVYlydStJIrjd/ckubTGr3aCs1GAwXRsAkGhRnxm8+eabsnz5crOtWLFCdu7cKb/88ovZ1OzZs6Vp06ZmFaNTp05m69ixo9kPgDe4UaBtVXB3p3iuSsSj+1M0dG6Ftpi12oq2rDkXAADEUtT/DF1xxRVm89uwYUNxoOEPNvLy8symQcacOXPcOmYAcer85LRA2454d3dyq/uTlc5PTujcCm0x63R4HgAAsebaP0W6OqFb3759i6/btGlTiUBDL7dt2yYZGSVzpb3mjTfekMcee8ykgpUvX146dOggU6ZMkfr16yf60ABXOz+5IdpBd14Qq85PwTRooMUsACBlA4stW7ZIw4YNI+7TuHFjs1122WUl7qcBhldpQHHPPffIHXfcIQ8//LDs379fFi1aJIcOHUr0oQFlr0z4CuWXT4bH7ZVyo6VsrIqwyxKqSDu4+5OTzk8AAKSaqAOLJk2aSL169UztROfOnaVLly7msnYZX6tpMFJWQJKsfvjhBxNUPPXUU/KnP/2p+PqLL744occFxGJlwmnnJzdayiZbEbYb3Z900nZgWhPzKAAAku6BRYMGDczqw7vvviuzZs0qvl5XKAIDDd2qamVhCnjhhRekXLlycvPNNyf6UICYzqRwo/OTnZaysRx0lwxF2H5TppRdiA0AgFdFfdag9RM//fSTLFmyxGyffvqpSXHauHGjuW3GjBnF+7Zs2bI40NBL7Q513HHHufIDfPvtt6Yw3F/L8fXXX0thYaE8+OCDMnLkyDLvP3XqVDOLY9WqVXLkyBFp1aqVXH/99TJs2DDJCSrI/Pjjj+XEE0+Ul19+WUaPHm0Cq5NOOknGjh0rF110kSs/DxDvmRTN+ywRyciKS+enRAy6s1qE7WaRdvCqhP+6fv0cHwYAAEnL0ZmDFitr/YS/hkJPtu+//34zu+L444+X/Px8Wb16tUkhWrt2rbz++utmv6ysLHMS74ZJkyaZ1KRoDB061Nw3OztbunfvLpUqVZIPPvhA7r77bnnnnXdMwFKhwq/foupsDg0m9GfU+oq6devKP//5T+ndu7d8/vnnJsgAvMK/KpFdoU7cnjPZWso6KdIOFTz4VyWGOyhjYR4FAMCrXPtK8rnnnjMn3I8++qj5tt/v4MGDJqD429/+ZlYytDZDW9C6RQfyaSG1dmbSlZCHHnpIXnnllTLvN3PmTBNUaDDx4YcfmvsqPTYNMj766CO57777zM/jV1RUJPv27TNdoXr16mWuO/fcc82KjAYakydPdu3nAmI9k8LtVYng7k+hOj8lS0vZ4CLssgQXaccqpYl5FAAAL3PtrOLJJ580J+eBQYXSb/wHDBhgZl7oybimSukKhltuueWWEn/PtNihRQMQNWLEiOKgQtWqVUsmTpwoZ511lowfP94EF/4akeraLF5EunXrVry/1lx07dpVvvrqK1d+HsCLMymSqftTrIuwdaXCraBi69aS8yeYRwEA8DLX8g801UnrE8KpXLmyqWfYvn27PPHEE5JIms60dOlS8+frrruu1O1nnnmmKUI/fPiwvPfee8XXh0t18vl8tJtFwjo//fhWR1k3vXOJbcOsHnE7hmTq/qSF2jsOHy6xhWob64SmPzkNKvS7Cl1Y1dE32kjPvzHkDgDgZa4FFtpmVgunI9H2tJo6FNhFKhFWrlxpLmvUqCHNmzcPuY8Wmgfuq7SWQs2fP7/4Og0+NG3Kvz/glc5PbrHa/SmWnZ/8LWU7zn5bOs8pufVYOFsS5fHHRbZtK71pNqhO1AYAIJW4lgp14YUXyvPPPy+zZ8+Wnj17ht1PU6PWr18vibRu3TpzqfUe4eiKReC+/sDi9NNPN+lXY8aMMYGSFm/v2rVL7rrrrrCPpcGHbn5a1A7Es/OT05kUyd75KdEtZdes0TTKkteR1gQASDeuBRY6OO61116Tq666yhQxX3rppaX20RNqbdmaaHv3HjsZq1gxfBGpFnUHBwFav6FzO7RY/M9//rMpTNf2udpJKlJHKA1CHnjgAVd/BiCeMymcdn+KdecnOy1l7bSNtUqDijJmgwIAkPJcO9PQlKJXX31VrrnmGunbt6+cc845cuONN8pvf/tbM7NC06RGjRol27ZtK1H87DWaPqWD8nSzE3QND+g/qcGKf0UEiGXnp3jPpIhX9yddodBgws9qHUWotrFlPheTsgEAsMTVsw1dpViwYIH0799fFi5caNq4Bhc55+bmyt///ndJJC0kV/v37w+7j7aVVVWqVHH8fPoz6wZ4ufNTstBaCitpT6Fayga3jS0Lk7IBALDO9a8xTzvtNFmzZo2ZXTF9+nQzDVtXKfRkXrst6TTs9u3bSyI1a9bMXOpcjXD8t/n3BRLZ+SkZirRDzaoIN68iVuzUUjhpKet2W1kAANJBTPIjtBZB27iGauWaDHSYntqxY4cpzg7VGWrZsmXmMnDGhVMTJkwwW2FhoWuPidSWLJ2fkmVWhdVaCjfqKKy2lWVSNgAAx0RdTTlt2jQ5cOCAeFGjRo1M0bXSgvNg2j5WVyw0fck/YdsNgwYNMqs5/hkagFc6PyXTrIpY1FFEi0nZAAC4sGKh3Z+0day2mdVi7UsuucSVeoR4uffee6VPnz4yduxYueiii4pXJnQVY+DAgebPgwcPLp66DaRL56dw6U5Wg4pYz6soq5bCbh1FqAJtpbMmymorS0tZAAB+leHTiuoo3H///aaG4quvvpKMjAzJycmR8847Ty6//HIz76FWcFP3GFmxYkVxIOCfAJ6Xl2dWJRo2bFh8/YwZM6S+jrkNcPvtt8u4ceOKj13bz+rwu927d0vXrl1l7ty5Jnhym3aF0oBlz549ngrGEH8Fh3aYSdrx6vzkNN3JP6+i9pVtJRZ0krYOvQu07ILejmop7BRo63A72soCAJJZfgLPM6MOLPy+++47kxalQYae5GuQoTUWZ599tgkydFUg+ITeTdp9ykr7Wq2lCFWI/eabb5q6h88//1yOHj0qLVu2lBtuuEGGDRsm5cqVi8kxE1jAavcn7fy0YVaPEvs077ssJp2fdKVi2YlPWA4qgmdVxGNehduBha5U6HcgVgu0CSwAAMku38uBRaANGzbIW2+9ZbZPP/3UtJfVIENnWWiQoSlTdFkisICz7k+xCiyO5u2X5W2esrwy0fmbYTENItwOLMKlO7VpY+25NStS98+O70gQAAA8E1i4elbQtGlTMwhu8eLFsmXLFhk/frwZlPfZZ5+ZadW6GtC5c2d56KGH5JtvvpF0oysjbdq0KS4cB5Kx+5PVdKd4BxVOaLqTrkzUqVNysxNUjB9PUAEAQNxWLMLZuXOnzJw506xkaA3DkSNHTMrUww8/bAKOdEMqVHoLN+wuOOUpXJF2i8tXOK6nCFegverMZ+Ka7hQ8QTtYcCF2NCsWdtOdggu0FUXaAACvyE/gikVcFvVr1Kghv/vd78ymP+w777xjiqk1uADSiZNhd251frJToK1BRU6tipKoCdr+1rF9GjWN+TwK/8pE69asTAAAEI2oz1CqV69uWrT6t06dOsnxxx9f5v00crr++uvNBqQTu+lOwd2f3Oj8lCzzKKxO0Nbbdb9LGjSO+VwK0p0AAHAm6rMUXV5ZsGCB6crkV6lSJWnfvn1xoKGXv/nNb1iZAKIYdpdTuZkrLWQDafpTMsyjsDpBW+l+ur+TlrLBSHcCAMB9UZ+1aGvZ5cuXF29ffPGF7N27V/773/+azZ/mpHMgTjnllOJAQy9POukk0y0qHYu3dSssLEz0oSBNh91pHYUXC7R3HTlc4tIpraFgHgUAAElavK0nyzoszx9oaOCxatUqOXjw1xMZf7BRvnx52b9/v6QrirdTn9UC7WQYdpeIAm0NEHosnB1ygnao2yIJLN622lKWeRQAgFSVnwrF21lZWXLyySebbcCAAea6oqIiWbNmTXGg8e6775pBdYcOHXLraQFPF2hrUBGrYXdeKdD206AiXhO0AQCA+2Ka56DpThUrVpTt27fLkiVLZP369bF8OiDhkmUehdVailjWUVgt0A7VYla7QVmh++n+ulJBUAEAQGLFpN3sd999J9OmTTNzKz7//HNznWZcNW7c2Ezf1incQCqyW6CtaU+JEus6CjsF2v4AQWn3J20xGyko8RVmyHGHjpPhv2knu3ZkmnQnOy1ldS4FAABI0sDiyy+/LA4mNP3JH0zotG0NJHRj4jTgfoG2VcG1FG7WUTjhn1UR2E5W51Zoi9lQw/PefC1TRgzLlg17MuRY0qV1tJQFACB2HJ3VaN2EP5j44YcfTCCh2rRpUxxMaM0FkM5iWaBtRyxrKazyF2hHmq7tp9cF11xoytM9w0TyLaxO0FIWAID4ivrMpkWLFrJhwwbzZw0oOnToUBxMnHDCCW4eY8qg3Wx6dH6KV4F2uJaydtrKuim4+1Oo1rBOC7StTtFmgjYAAB4KLLQQW9vH6urEqFGj5JJLLpHs7Ph+A+s1gwYNMpu/DRjSo/NTLFltKRtrdro/xRrpTgAAJIajSEBXKrSe4oorrpBy5cpJ27ZtS0zd1jQovR5IJcnS+clOS9lYirb7k1uCU560MJvvOAAA8FBg8eabb5YYhrdz587ivz/33HPHHjw726xoBE7d1incOiAP8KpEdH4Kl+5kNaiIZVtZq92fAjs/WRFu2F0wpmgDAODxwEJXKXTz03oLf2DhDzby8vLM9G3dXnzxxeJBeieeeKKsXr3anZ8ASPHOT07TnWLdVjbazk+RMOwOAADvca0oomnTpmbTORV+mzZtKhFo6OW2bdvkq6++cutpgbgXaYcq0I5V5ye76U7BLWUT1VY2uPtTuM5PoTDsDgAAb4r6rGfLli3SsGHDiPvoQDzdLrvsshL30wADSKUi7Vh1frI6Qdu/MlG+RY2kmE3hpPuT1c5PimF3AACkQGDRpEkTqVevnqmb6Ny5sxl+p5e1a9eOeD8NRsoKSIBkkCxF2l5Jd4o3uj8BAJAigUWDBg3M6sO7774rs2bNKr5eVygCAw3daK16DHMsUrNI260Cbatine4UPI8imJ20Jrcw7A4AgBQOLLR+4qeffpIlS5aY7dNPPzUpThs3bjS3zZgxo3jfli1bFgcaeqkdoo477jhJN8yxSD1uFWgnywRtq/MoRrY5RS5r1DTsIDyr6PwEAEDqyPDpMAqXjB49Wu6//35p1KiRHH/88WYQnHZ/Onz4sBmm56edoY4cOSLpyj8gb8+ePVKlSpVEHw7CKDi0Q9ZN7xyxSNuNAu1Ijubtl+VtnipxXac1t8cksNCVio6z33ZlHsWyC3qXWWNhp/PTtm0iZWRZAgAASex5pmv5DDq7QoOKRx991LSenTt3rlnJ0PkWzz//vAk2NIbRVCmG5sGr/EXa/s3toEK7QGkw4d90VkW8WJ1H4QY6PwEAkHpcOyt68sknTYrTsGHDSlxfoUIFGTBggJl50atXL5Mq9cMPP7j1tEBMWsqGaysbS07nVSQLK4Pw6PwEAEDqcS2wWLt2bYm2ssEqV64sU6dOlRYtWsgTTzwhDz/8sFtPDcSlpWws2Z1XkYh5FDM3b5DRa1a5OgivLHR+AgAgDQMLbTP79ddfR9xH29Oee+65posUgQWSQbK0lLU6r0LbymoHqETMo7i55fFyU/NWMesYRecnAAC8zbXA4sILLzS1FLNnz5aePXuG3U9To9avX+/W0wJxaSmbiLaysZxVEaqlrJXuTho0RDv4riy1alGgDQCAl7kWWNxzzz3y2muvyVVXXSWTJ0+WSy+9NGSV+scff+zWUwJxq6Nws62spj3pCkWgUEXawfMq3JpVYbWlrFustpQFAADe5lpg0bx5c3n11Vflmmuukb59+8o555wjN954o/z2t781Mys0TWrUqFGybds26datm1tPC7heRxHcUtbNtrJ2CrTdmFcRvDJR6CuS4Ss/k3ix01IWAAB4m6u9MnWVYsGCBdK/f39ZuHChfPjhhyVu13azubm58ve//13SEZO3vVFH4W8p6/UCbacrE1a6O0VamdC/9+sX1VMDAAAPcm2Ohd9pp50ma9askSlTpkifPn2kSZMmUr58eVPcrSsZn3zyiVnFSEc6eVtfm6VLlyb6UNJKstRRWC3QdqNIW1cqnAYVdro76cqE1kjUqfPr1qCBve5P1UsuEgEAAI+JycjgzMxMue6668wGeIWbdRSJLtK2M+xuSY+LJSsjM+ruTk6H3dFSFgCA1JDYMyggQQXasayjcFKg7WaRttVViTrlnbWvtTPsbutWkeygl1hXKoKvAwAA3sM/50jLAu1Y1VEkokA7mmF3TmdORLsqUb9+XJ4OAAB4IbDYvn27bN26VVq2bCmVKlUqdfvevXtl5cqVcvbZZ7t1jIBnBt0lYoK21ZkUgcPuYi142B2rEgAApD7LgUVBQYH8/ve/NzMqVLly5eTWW2+VMWPGmKF3flqcrO1kCwsLY3PEQAjpWKCdiJkUVjHsDgCA9GM5sBg3bpy88cYbZhZFp06dTCtZvU4v33//falbt25sjxSIUEuRzIPuYlWg7bTzEwAAgJssn1298MILct9995kJ2+rCCy+Ufv36yWWXXSZnnHGGzJ49W1q1auXqwQFOaimSZdBdrAq07XR+sjuTIhymaAMAgHAsn2GtW7fOBBCB2rRpY+ZSaJDRtWtX+c9//mP14YCY11Iky6C7eBZouzGTIhymaAMAAFcCi1q1askvv/xS6vqaNWuaadu9e/c2tRV333231YcEYlZLkUp1FE46P7nV/cnprAoAAJD6LJ9taF3FzJkzQ96m3aG0zqJ79+4ycuRIN48PSOtBd3b5Oz8Fbm60lLUzq4Ip2gAApCfLZ146Rfuxxx6THTt2mFWKYNol6q233pKBAweaeguUNmHCBLPRMctdwbUUbg66C1WknWyD7pIJU7QBAEhfGT6fz5fog0g3+fn5UrVqVdmzZ49UqVIl0YfjuSnaG2b1KHFd877LEj7srtOa2+NeR7Hj8GHpPOftEtctu6B3TGZVbN8uUqdO5FkVinkVAACk73kmk7fh+SnaqTTszukQvHhiVgUAAHAlsGjYsKHceeedMnTo0GgfAkjqKdpWi7RjXaAd7yF4tJQFAABxDSx++uknWb16dcjb5s6dK6eddppUrlw52odHGkuWKdrJUKAdqyF4oYIHf0vZ4cNdfSoAAJAmYpIK1bNnTxkwYIA8//zzpW777LPPTBcpnYEBeK37U3CRttsF2sEpT5ru5PYQPOZRAACAWIjZGVm4mvBJkybJ5MmT6YwEW2I5RduOWA67c5LyZHUInlvzKGgpCwAAglG8jaTs/BSvKdrJwk7Kk5MheHbmUYRDS1kAABAKgQXSuvNTstD0JytBha5MNKtYyZWhd2V5/HGRG24ofT0tZQEAQCgEFkjrzk9eYjXdyS7mUQAAADcQWCAhkq3zU/B07XATtuM5kyI45clqupNdzKMAAAAJDyyWLVsmEyZMkLZt25qtZs3UzYFH6nZ+sjpdO94F2hpUOJ2iHdxWNi/P0cMBAACE5ehs7csvv5QhQ4YU/71OnTomwFA///yzbN68WRo1auTkKZCiRdqhCrQT0fkpntO1YzWTIhzaygIAgHiK+oztzTfflOXLl5ttxYoVsnPnTvnll1/MpmbPni1NmzY1qxidOnUyW8eOHc1+SC9Wi7Rj3fkpXLqT1aDC6YRtqwXadmZSxLqtLAAAQMwDiyuuuMJsfhs2bCgONPzBRl5entk0yJgzZ060TwUPS5YibafpTrGesO12kbbVtrLMowAAAG5xLcdEVyd069u3b/F1mzZtKhFo6OW2bdskIyPDradFihRpx7JA2266U/B07VhM2HZjJoVTzKMAAACe6QrVuHFjs1122WXF123ZssUEGEjfYXfxLtDW9Cc76U7lW9SIy8qEWwXa0baVZR4FAADwdLvZhg0bmg3pO+wuuEjbzQJtJ21j3Ux3stpSNp5oKwsAAGKJORZxpK15dSssLJR0rqOIVZG2nTqKWKY72WkpCwAAkCoILOJo0KBBZsvPz5eqmuCeQulOiR52Z7eOQoOKnFoVPd9SFgAAIFkQWCAm6U7xrqWwW0fhpG1sWelO8WopG24InmIQHgAAiDcCC8Qk3SkRw+7iWUfhNN3JjZayiiF4AAAgWRBYwNW2sf6ViZzKzRIeRMSqjsJuupMbLWVDrUrodf36WX4IAACAmCKwgKti3TrWjljVUdidoN2sYiVHKxNurEowCA8AAMRa4s/+4FmJTHcKbitrtaVsPLmR7qSrEm4EFePHi2TzfzsAAIghTjUQtVi1jXWzrWy8xGqCtqY/2Qkqtm4tHUAwCA8AAMQDgQVcm6AdD3bbyrohuPtTqEF3bk3QDq6lsNrdyb8qUb++40MAAACICoEFXG0pG2tW28q61VI2nsPurNZSrFlzbIp2IFYlAABAohFYIOqWsvGuo7BaS+FWS9l4DruzU0uhQUXt2jE/JAAAAFsILBB1S9lYTNCOpo4iuK2sGy1l7XR/cmPQndVaCro7AQCAZEVggaRrKWu3jiJWbWXjOejOCro7AQCAZEZggaRrKWu1jsLNWopouz+50fnJai0FdRQAACCZEVggoS1lo62jcLOWwg63uj9ZQS0FAADwEgKLNBbcVjbeLWWd1FG4WUsRqqVsuLayrjxXUEtZO21lAQAAkhWBRZpKdFvZZKqjSMaWsgAAAF5DYJGGw+7EVyi/fDJcEikRdRShViUKfUUyfOVnjh/b7ZayAAAAXkNgkcKcrkrEuqVsPOso3FiVcNpW1mpLWUVbWQAA4DUEFjYsXLhQunXrVur6k046Sb788ktJpWF3sW4pG886CjcG3dltK+ukjoK2sgAAwIsILKLw3HPPmWDC77jjjhMvD7tTzfssEcnIiltL2VjVUYQrwrYTVCzpcbFkZZQMIOy0lbVTRxHcUlbRVhYAAHgRgUUUNKg47bTTJBX4VyayK9QRr3Oa7uRflahTvkLc6ihoKQsAAFIFgUUaScSwu3ixm+4UPOjOrWF31FEAAIB0Fb/JYjHy7bffyj//+U/p37+/tGvXTrKzsyUjI0NGjx5t6f5Tp06Vc889V6pXry4VK1aUU045RR555BE5GpROE+jSSy+VrKwsqVu3rvzhD3+QnTt3SqLrKQoO7SixhZpJ4R92F7ilQlChNP3JalChKxPNKlYyg+4Ct1hN0A6FOgoAAJBqPH9WOWnSJHnqqaeiuu/QoUPNfTUY6d69u1SqVEk++OADufvuu+Wdd96ROXPmSIUKv6bFVK1aVf785z+bQET3XbJkiYwZM0Y++eQTWbZsmeTGaSJzMs2jiHbCttXp2m6zW4TtBuooAABAOvB8YNG2bVu54447pEOHDtKxY0d56KGH5JVXXinzfjNnzjRBhQYIH374obmvysvLM0HGRx99JPfdd588+uijxffR59DNTwMMvd8FF1wg//73v82qiZc6PyXjhG03xSrdyS7qKAAAQDrwfGBxyy23lPh7psWTRg1A1IgRI4qDClWrVi2ZOHGinHXWWTJ+/HgTXOhKRTg9evSQGjVqyNKlS+MeWNjp/BSPmRTBqxLmukKfrB30tiSCBhWa4hQrTlrKAgAApBrPBxbR2LJliwkE1HXXXVfq9jPPPFMaN24smzZtkvfee0+uvfbaMh9T6zqSVTxmUjhdlXBruna82GkpCwAAkA7SMrBYuXKludSVhubNm4fcp3Pnziaw0H0jBRazZ882xdunnnqqpGvnJ12pcBpUuDFdO17stpQFAABIB2kZWKxbt85cNmnSJOw+umIRuK+64YYbTCDSqVMnqVy5sinefvjhh6V9+/ZyzTXXhH2sw4cPm80vPz8/qnoKTX0KFKnzUzxp+pOdoKLjF0MkIyujzOnaoYbdJaJeIjjlSdOdrAYVmkWnA+8AAABSXVoGFnv3HqtL0Pay4WhRd3AQoIPxXnvtNVP0ffDgQWnUqJHcfPPNcv/990u5cuXCPpZ2jnrggQdSvvOT1ZWJcnWPvbZuDLsb2eYUuaxRUzNdO9lSnmgpCwAA0klaBhbRuueee8wWzf2GDx9e/HcNVvwrIl7r/BSqQDtU69hTPvqDZNcoWTMRbmXCybC70WtWmS3RKU+0lAUAAOkuLQMLTWNS+/fvD7vPvn37zGWVKlUcP5/Ot7A64yI45UnTnZKl85OdAm0NKnJqhV8RisTOsLtYsjpFW1cmWrcWyU7L/5sAAACOSctToWbNmplLLc4Ox3+bf994cJLyFOvOT04LtBMxCE9rMGKNdCcAAIA0Diz8Q+527NhhirNDdYbSSdoqcMZFLNlJeUpE5yc7BdqxaB0bOOxu5uYNEdOfYjldOzjlSQuzWakAAABI08BCi667dOliZlloMfZf/vKXErfr1G1dsdD0pV69ern2vBMmTDBbYWFh1MPudGUip3KzmAYRTsSqdWzgsLubWx4vNzVvFbZjVCy7RTFFGwAAILTkPDuNg3vvvVf69OkjY8eOlYsuuqh4ZUJXMQYOHGj+PHjw4IhTt+0aNGiQ2bR4O5rHjcegu3gVaDulgUMsp2oDAAAgzQKLFStWFAcCau3atebyX//6l7z77rvF18+YMUPq169f/PfLLrtMhgwZIuPGjZPTTjtNzjvvPNN+dv78+bJ7927p2rWrPPjgg5JIwSlPsU53imeBdrIJnlXhn1cBAACANAks9Nt/HVQXbPPmzWbzCxxQ56fzKDSA0PSkjz/+WI4ePSotW7aUESNGyLBhwyLOpnBDwaGdUlDuaNIMu/NagXYyzKoAAABAigQW5557rvh8vqjvf9VVV5ktETa8fY5UOi72aUNeKdBOBDuzKgAAABBe8pzVpgFdGWnTpo0pHPeyWBVoJ/OsCqVlMdoFCgAAACm4YuEldoq3Yz3sLlSRdrIVaCcT5lUAAABERmCRhOLR/clqkXY6FmgHz6pQzKsAAACIjMAiwRIx7C6ZirQLiopKzaPYdeRwQgu0mVUBAABgH4FFgsW785OdIm03C7RDBRBlTdB2a1VCr+vXz9WnAQAAQBACiziKNHk70cPuYlmgPWPzBrn/i5WytyD0pOxkahtLgTYAAEB0CCziyOnk7VgOuwsu0narQFtXKpwGFZWzc6RqTk7M28ZSoA0AABA9AosUZbeOIlZF2pr+5DSoeKBdB8nOzIyY8qRF2HaCiq1bRbKDPv0UaAMAAESPwCKBmvb+ULKCCre9POzOSSH2yDanyGWNmpa6XlcqgoMKJylP/lWJ+vXt3xcAAADhEVgkUHb5GpKRkdh5EG7VUtipo5h7bk+pXi43YvDgRsoTbWMBAADih8AijcRq2J3dOgoNKmrm/hpYxGJStq5MtG5dOt0JAAAAscFpVxpJhjoKK4XYTlGEDQAAEH8EFinebjaZhCvEdio45YkibAAAgPgjsEiBdrPRzqqIpeA6Cru1FHYwKRsAACDxCCw8zs6sinhyUkcBAAAA7yGw8IhQqxK+Qp+sHfR2wo4JAAAA8COwSJNVCbdmVQAAAAChEFik2ATtWM6qcDoEDwAAAKmLwCLJ2ZmgrTp+MUQysjJcn1VhdwieG3QYns6tCJSXF5enBgAAgE0EFinCvypRrm6lmDy+3SF4Tk2ZYn3CNgAAABKPwMKDcyxiNUG7rHSneA3B05UKggoAAABvIbDw4ByLWE3QdiPdye4QvHDpTlZXKvRl1IF4AAAASCwCizQWvDJR6CuS4Ss/i9sQPKfpThpUjB8vks2nGAAAIOE4JUvyeRWxmqDtxspEs4qVop6kbTfdac2aYxO2A+lKBUEFAABAciCwSMMp2k4Lse2mO4VKebKb7tS6NUEEAABAMiOwSKF5FVZp+pPVoGJJj4slKyMz6nQnpylPpDsBAAB4A4GFx+ZVxGuCtn9Vok55Z89lJ+WJdCcAAADvIrBIoKM79svRI1mWayncnKBdViG23VWJcDT9yUpQQboTAACAtxFYJNDnXSZJxczyludVRDOrItxMimAaVNTMLdnhKV5IdwIAAPA+Aosk5nRehdPOT7ESnPJEdycAAADvI7BI0snbTmspnHZ+iiUNKmrXTvRRAAAAwE0EFkk4eduNWgo7nZ+0UFtrKpwKN0UbAAAAqY/AIsGC6yiiqaWwWkfh1kyKWEzRBgAAgLcRWKRRHUVw5ye3uj/ZnaINAACA1ENg4WF26yhi1fnJaktZpRlgWqwNAACA1OL+QATETSLqKJygrSwAAEDqYsUiDbhVR2EHU7QBAADSC4FFArVf+ifJrnGcq48ZqzoKu52faCkLAACQXggsEiinZkXJyMxw9TFjOUGbzk8AAAAIh8DCI5y0lHXl+en8BAAAgAgILDwQQMzcvEFGr1kliUTnJwAAAERCYJFE7MykSFZ0fgIAAEhPBBZxNGHCBLMVFhY6nkkRy5ayVgu06fwEAAAAvwyfz+cr/hviIj8/X6pWrSp79uyRKlWqmOt2HD4snee87bilbJ9GTeNWoL1tm0jt2o6eDgAAADE+z4wXViw8ZmSbU+SyEMGDGy1lKdAGAABAtAgsEmjn4cNy9PDhsB2egmdSuDmPIhQKtAEAABAtAosEOueD9yTzuOMSMpMiVC1FqDqKUCjQBgAAQDACizRltZaCAm0AAABYQWCRpNzq8OS0lqJWLQq0AQAAULbYJezDcYenWNVTWK2l0JSn6tVjcggAAABIMaxYJFhwgXY8irStoI4CAAAAdhBYJFisC7StCq6l0JWKbD4dAAAAsIhTxxRndYo2tRQAAABwgsAihdmZog0AAAA4QWCRQB927yXVy5WLyaqEXtevn+OHBgAAACwhsEigGrm5kpmRkfBVCbo/AQAAwCnazXqYnXkU4dD9CQAAAG5gxcLDrM6j8Nu6tXSnJ7o/AQAAwA0EFmnAvypRv36ijwQAAACpisAixQTPo1CsSgAAACDWCCziaMKECWYrLCyM2XMwjwIAAACJkOHz+XwJeeY0lp+fL1WrVpU9e/ZIlSpVon6c7dtF6tQped22bSK1azs/RgAAAKTveWY06AoFAAAAwDECCwAAAACOUWPhEaGma+flJepoAAAAgJIILDzAjenaAAAAQCyRCpUG07UBAACAWCOwSKHp2joIT2dWAAAAAPFGKlSS11JYraPwT9fO5h0FAABAAnAa6sFaCqZrAwAAINkQWHiwloLp2gAAAEg21Fh4rJaCOgoAAAAkIwILD6GOAgAAAMmKVKgkFlxLoR2fKM4GAABAMiKwSGLUUgAAAMArCCwSSFvJHj78658BAAAAryKwSKCWLRP57AAAAIB7KN4GAAAA4BiBRZKirSwAAAC8hMAiSgUFBXLyySdLRkaGvP76666+KbSVBQAAgNdQYxGlp556SrZv3+56S1lFW1kAAAB4DSsWUdi8ebM88MAD8vDDD7vWUjZwY1YFAAAAvIbAIgpDhw6V3r17y9lnn+3+OwIAAAB4kOcDi2+//Vb++c9/Sv/+/aVdu3aSnZ1t6h5Gjx5t6f5Tp06Vc889V6pXry4VK1aUU045RR555BE5evRoyP3ff/99mTNnjvzjH/9wfOxr14rUrOn4YQAAAICE83yNxaRJk0y9Q7QrD3pfDUa6d+8ulSpVkg8++EDuvvtueeedd0wAUaFCheL9Dx06JIMHD5b7779f6tevL+vXr3ecBpXp+dAOAAAASIEVi7Zt28odd9whr776qnz99dfSr18/S/ebOXOmCSo0mFiyZInMnj1b3nrrLfn+++/NysdHH30k9913X4n7PPTQQ1KuXDkZMmRIjH4aAAAAwJs8v2Jxyy23lPh7psUlAA0S1IgRI6Rjx47F19eqVUsmTpwoZ511lowfP94EF1WrVpUNGzaYFCkNYPbv32/2zc/PN5cHDhyQPXv2mP0AAACAdOT5FYtobNmyRZYuXWr+fN1115W6/cwzz5TGjRvL4cOH5b333jPXrVu3zvz9iiuuMPUYumk9hrr55pulYcOGcf4pAAAAgOTh+RWLaKxcudJc1qhRQ5o3bx5yn86dO8umTZvMvtdee620b99eFixYUGKfn3/+2dymqxo9evSIy7EDAAAAySgtAwtdfVBNmjQJu4+uWATuW61aNdM9KpC/eLtNmzYmdSocXenQzc+fQgUAAACkirRMhdq7d6+51Pay4WhRt1tBwJgxY0z9hX/zBy0AAABAqkjLFQu3NGvWTHw+X5n73XPPPTJ8+PDiv2uwQnABAACAVJKWgUXlypXNpb+7Uyj79u0zl1WqVHH8fLm5uWYDAAAAUlVmuq40KC3ODsd/m39fAAAAAOGlZWDRoUMHc7ljx47i4uxgy5YtM5eBMy4AAAAAhJaWgUWjRo2kS5cu5s+vvfZaqdt16rauWGj6Uq9evVx73gkTJpgOUv7nBgAAAFJFWgYW6t577zWXY8eOlRUrVhRfr6sYAwcONH8ePHiwq9O0Bw0aJGvWrCkezgcAAACkigyflbZGSUyDAn8goNauXSt5eXlmVSJwGvaMGTOkfv36Je57++23y7hx4yQnJ0fOO+880352/vz5snv3bunatavMnTtXKlSo4Poxa1coDVj27NnjSnE4AAAAkOjzzOxUePGWLFlS6vrNmzebzS9wQJ3fU089ZQIITVH6+OOP5ejRo9KyZUsZMWKEDBs2TMqVKxfz4wcAAABSgedXLLyIFQsAAACk2nlm2tZYJALF2wAAAEhVrFgkACsWAAAAiAVWLAAAAAB4mueLt73IX9aiESUAAADgFv/5ZSLKqAksEkBnZajGjRsn4ukBAACQBuebVV2cx2YFgUUC1KhRw1xu3Lgx7m+423SKeLwH/sXiOZ0+ZrT3t3M/K/s63Ue/5dCAVyfPe33GCp/N6F8Htz+XVvcLtw+fy+T7/8GNx/PKZ5PfmbGTKv+eJ9vvzD179kiTJk2KzzfjicAiATIzjzXj0qDC6ydvWVlZcf8ZYvGcTh8z2vvbuZ+Vfd3aR2/ns5m+n023P5dW9ytrHz6XyfPZdOPxvPLZ5Hdm7PA7M7a/M/3nm/FEu1k4MmjQoJR4TqePGe397dzPyr5u7ZMK+GxG/zq4/bm0ul86fDYT9TO6/bxuPJ5XPpvp8LlU/M6M/nXgd+avaDebALSbRbLis4lkxOcSyYrPJpJRPgPy0ktubq7cf//95hJIJnw2kYz4XCJZ8dlEMspN4HkmKxYAAAAAHKPGAgAAAIBjBBYAAAAAHCOw8IBp06ZJnz59TE/i4447Tk466SR57LHH5OjRo4k+NKSx6dOny5lnnim1atUyeZwtWrSQ4cOHy65duxJ9aIBRUFAgJ598smRkZMjrr7/Oq4KEWrhwofksBm9t27blnUFSeOONN+TUU08155o6A+O8886Tn376ydZjMMfCAx599FFp1qyZPPLII1K3bl35+OOPZeTIkbJ69Wp5+eWXE314SFM7d+6Uc889V+68804zk+WLL76QBx54QFatWiXz589P9OEB8tRTT8n27dt5JZBUnnvuOfMFoZ+exAGJpl9Y33PPPXLHHXfIww8/LPv375dFixbJoUOHbD0OxdseoP8w1q5du8R1o0ePlvvuu09+/vlnE2wAyeDZZ5+VP/zhD7JhwwazwgYkyubNm6VNmzYyfvx4uemmm+Tf//63XHPNNbwhSOiKRbdu3eSTTz6R0047jXcCSeOHH34wvy/1y5g//elPjh6LVCgPCA4qVKdOnczl1q1bE3BEQGi6dKpI00OiDR06VHr37i1nn312og8FAJLaCy+8IOXKlZObb77Z8WMRWETp22+/lX/+85/Sv39/adeunWRnZ5tcSV1JsGLq1KkmjaR69epSsWJFOeWUU0yqk9UTMl2e0g9By5Yto/0RkIIS8bksLCw0S6XLli0zqVC9evXic4mEfi7ff/99mTNnjvzjH//gnUDS/c689NJLJSsry2Qb6AqvppUCifxsaor9iSeeaNLrmzZtap5L9//Pf/4jtvkQldtvv92nL1/w9uCDD1q+b3Z2tu+CCy7w9e3b11etWjVz3Zlnnuk7cOBAxPt/9dVXvgoVKvgGDx7Mu4eEfy6rVq1a/Dx6v3379vGuIGGfy4MHD/patmzpe/TRR83f161bZ/b997//zbuChH42V6xY4fvzn//se+edd3wLFizwjR071vz+bNu2re/QoUO8O0jYZ/OEE07wVapUyVe/fn3f5MmTfbNnz/ZdfPHF5v5ffvmlzw4Ciyg9++yzvjvuuMP36quv+r7++mtfv379LL3hM2bMMPvpG7h8+fLi67dv3+5r166duU1/8YSj+7Vu3drsywkckuFzuXLlSt/ixYt9Tz/9tK9Ro0a+bt26+QoKCnhzkJDP5X333ef7zW9+4zty5Ij5O4EFkvHfcr85c+aYfV988UXeKCTss6nnlXr9rFmziq87fPiw+Tddn9cOAguX3HTTTZbe8C5dupj9Ro8eXeq2//73v+a23Nxc3+7du0vdnp+f7+vcubOvadOmvi1btrh16Ehh8fhcBvr000/NvlOnTnV87Ehdsfpcrl+/3vx92rRpvl27dplt1apVZr/nn3++zM8vEO/fmapGjRq+gQMH8uIjYZ/NU0891VwfvJJx9dVX+zp27OizgxqLONqyZYssXbrU/Pm6664rdbvOBGjcuLEcPnxY3nvvvRK36XWal7l+/XqZPXu2NGjQIG7HjdTm5HMZrGPHjiYHVDtMAPH+XK5bt878/YorrjB5xbppnrDSosSGDRvypiCpfmf66e9NIFGfzcD2x4F0AcJuu1kCizhauXJlceec5s2bh9ync+fOJfb1F8dqm0T9sOgH4YQTTojTESMdRPu5DGXx4sXmF5EOywPi/bls3769LFiwoMSmbWaVtueOqhARcOGzGY5+UajF2zqUDEjUZ1M76KnAGVQafHz00UfF+1vFgLw40m/TVKT+/hpJBu6rBg0aJDNnzpQHH3zQBBmffvpp8W3ad7hKlSoxPW6ktmg/lz179jRTOfWbDp28rb+ktAuPTjq+7LLL4nDkSGXRfC6rVatmuqAE0lVe/+/Ks846K4ZHjHQR7e/MG264wZzsabv4ypUry5IlS8wgMg2ImbGCRH42NbA4/fTT5ZZbbpExY8ZIvXr1TEeqXbt2yV133WXrGAgs4mjv3r3mUtt+hVOpUiVzmZ+fX6J1ov8bN90C6Tdywf+QAvH4XOo3bFOmTCn+5aTT4QcOHCjDhw83rZCBRHwugWT9bOqXMK+99poZQnbw4EFp1KiRSdG7//77+Z2JhH42MzMz5d133zVTt//85z+bz2eXLl3kgw8+CJsmFQ6BhQf4v3EDkomuoOkGJDMNeDU9D0i0e+65x2xAMtL0KR2Up5sT1FjEkS59qv3794fdZ9++feaS9CbEC59LJCM+l0hWfDaRrConwXkmgUWcvzlTmzZtCruP/zb/vgCfS6Qjfl8iWfHZRLJqlgTnmQQWcdShQwdzuWPHjhJFM4GWLVtW3LYT4HOJdMXvSyQrPptIVh2S4DyTwCKOtFBLi2GUFnAF07ZeGklqh51evXrF89CQxvhcIhnxuUSy4rOJZNUoCc4zCSzi7N577zWXY8eOlRUrVhRfr9GldtRRgwcPlqpVq8b70JDG+FwiGfG5RLLis4lkdW+CzzMzdPx2TB45xemb5X+D1Nq1ayUvL89Ei4HTXWfMmCH169cvcd/bb79dxo0bJzk5OWYOgLYF06Eku3fvlq5du8rcuXOlQoUKcf15kBr4XCIZ8blEsuKziWS1wqvnmRpYwL4FCxZoQFbmtm7dupD3f+ONN3xnn322r0qVKr4KFSr42rZt6xs7dqzv8OHDvB2IGp9LJCM+l0hWfDaRrBZ49DyTFQsAAAAAjlFjAQAAAMAxAgsAAAAAjhFYAAAAAHCMwAIAAACAYwQWAAAAABwjsAAAAADgGIEFAAAAAMcILAAAAAA4RmABAAAAwDECCwAAAACOEVgAAAAAcIzAAgAAAIBjBBYALGnWrJlkZGSU2HJzc6VJkyZy9dVXy3//+19Hj7t+/XreiTCvzUsvvcRrE6PPcKiN19sa/X82+LUbPXp0xPssXLhQfv/730ubNm2kevXqkpOTIzVr1pRTTz1VBg8eLPPmzROfz+f4vb7xxhvN8VxzzTWW9n/iiSfM/npcfieeeGKJn+3cc891fFxAqstO9AEA8JauXbtKq1atzJ93794ty5YtkzfffFOmTp0qjz76qAwfPjzRh4g4nqhv2LBB1q1bZ/7sxc9wKJFuQ2kVK1aUK664wvz5lFNOCfkS5eXlyfXXXy9z5swxf2/YsKF5H6pWrSp79uyRL7/8UiZMmGC2Dh06yIoVKxy91DfffLO88sorMnPmTNm1a5cJYiJ58cUXi+/n16dPH/npp5/k559/ltmzZzs6HiBdEFgAsOWWW26R/v37F//90KFDcuutt8rkyZPlrrvukosvvliOP/54y483f/58OXr0qDnRABLxGYYztWrVirjKo19AnHnmmfLtt9+aVYCJEydKt27dSu2nwYWuHLz++uuO35Kzzz7bBIg//PCDvPrqq2Y1JJylS5fKF198YVZP+vXrV3z9mDFjildZCCwAa0iFAuBI+fLlzbeM+q1lYWGhTJ8+3db9W7ZsaU429B91AKnntttuM0FFixYt5OOPPw4ZVKi2bdvK888/LwsWLHD8nJq69Lvf/a7EakQ4/tv1S5E6deo4fm4gnRFYAHCsUqVKcsIJJ5g/B9ZK+HOT/f94n3766Sb1IbCmIlyNReB9p0yZYnKw9Xlq164t1157rWzcuNHcpvnY48ePl/bt25vgRr891W+jt23bFvJYP/vsM7Oyoo9Xr149KVeunNStW1cuueQSk98dTqSfZe3atZKVlWXSLQ4cOBD2MU466SSz/3vvvSexcvDgQXnsscfktNNOk2rVqpnAT98b/Zl37NhR5s/27LPPSqdOncxrqffv1auXfPrppyX212+ndX9Ng1LNmzcvkYuu3/AG2rx5szm5bN26tTkefd00DeZf//qXCUYjHc9bb71lvu2uUqWKOSa9Xyxfv1CcHI/T9yPc/zf+b/gvv/xy85k/7rjjpF27dvLkk09KUVFRqf+vEvUZ1ed97bXXzJ91NaKslCSl/2+68Vrq7wH9mTWtavXq1SEfU1dc//3vf5dKgwIQJR8AWNC0aVOtqPS9+OKLIW9v1aqVuX3IkCHF1+nfdRs8eLAvMzPTd+aZZ/quvfZa329/+1vf+vXrSzzuunXrSjye/74jRozwZWdn+7p37+674oorfE2aNDHXN27c2Ldz507fVVdd5Stfvrzvwgsv9PXp08dXp04dc/vJJ5/sO3z4cKnjPO+888yxtGvXzterVy/flVde6evYsWPx8z355JMhf76yfpZLLrnE3P7MM8+EvP8HH3xgbm/ZsqWvqKjIldc82JYtW8zPpfepUaOG7/zzzzevif9xmjVrVvy6h/rZhg0b5svIyCj+2dq2bWuu19d/+vTpxfv/97//9d10002+ihUrmtsvv/xy83f/9vXXXxfv+9lnn5lj0f30vbv66qvNe6XvmV7Xs2fPUu+T/3j++te/muPp2rWrud8pp5xirtfrAo/HKruvp9Pjcfp+RPr/ZuHChb4KFSoUf6auueYaX48ePXzlypUzxxbq/yu3P6P62Lq/Plc4+v+T7lO9enVfYWGhL1rRvpb+nznw91KgV1991dzeoEEDX0FBQch9FixYYPY555xzoj5+IF0QWABwfFK2atUqcwKkt7/wwgulTpCqVKni++STTyI+brjAombNmr7PP/+8+PoDBw6YEy29TU809CQo8IRi+/btxUHOlClTSj3fe++959u6dWup6z/++GNznDk5Ob7NmzeXur2sn2Xu3Lnmdj3ZDEVPvvX2xx57zBeLE2E9EdQTXt3/5ptv9uXn5xffdvToUd+f//xnc1u3bt3C/mx6ojp//vwStz3yyCPmtqpVq/p++eUXS++d36FDh4r3+eMf/+g7cuRI8W1r1641J4N627333hvyeKpVq+b79NNPS9x2//33m9uOP/54X7wDCzvH48b7Ee6zpv8PNGzY0OyjjxN4wv7VV1/56tatW/wYge+N259RK4FFv379zD4a0EfLyWs5c+bM4t8job5o0AAl1GcwEIEFYB2BBYCoT8p2797tmzVrljm593/rt2/fvl9/wfzv5GbUqFFlPm64wGLChAml7qPfDvtv1+cPpidGetuAAQNsvbv33HNP2Oe08rOcdNJJZh/9Rj/Qpk2bzLf+xx13nG/Xrl0xORH+z3/+Y/Zt3769OdkKpief/hWIL774IuTPNnTo0JCP3blzZ3P73//+d1uBxSuvvFL8udAgI9i0adPM7ZUrV/YdPHiw1PGMGzeu1H30cTTI0ds3btzos8N/vGVtwe9RNMfjxvsR7rM2efLk4hP6wGDNb/z48SEDC7c/o1YCi4suusjsoysqoeiXBoGrXf4t8PicvJa6f7169cxtU6dOLXHbhg0bir8Q+f7778P+DAQWgHV0hQJgy4ABA8wWqghb88817zyYvxVlNDTHP5jm6qvs7Gy54IILwt6+devWkI+p+dizZs0yOerailK7Uqnvv//eXGqhaTiRfpYhQ4aYDlla86F5+H5aS1BQUGBeN80NjwX9eZTm3OvrEiwzM9N0ytGfWQtotVA22E033RR2JoC2FdbaiXvvvdfyMflrLXSWgM48Cda3b1+Tc6/vwfLly029QiCtewmmj6NFwCtXrpQtW7ZI48aNxe12s1p3E4qd43Hj/Qj3Wfvwww/N5ZVXXhmy6YG2dQ3XBSmRn9FQNm3aJC+//HKp63VmhP/4nLyWur9+rh9++GF54YUXSrymWr+i9SjnnHMOLYYBlxBYAIj6pExPwLSLihZTXnjhhSH/0VdOZhzoAL5gWsSt6tevH/I5K1euXFyYGUyLk4cNGyb79+8P+5z5+flhb4v0s9xwww0yYsQI0xlL+9/r8R05csQ8p4rU8tKpH3/80Vzed999Zotk+/btIa/XIuxI12sRth16oh3pcbVIWG/TwMK/b1nvvdLC6XDvbyzbzdo5Hjfej3CfNf/7EO52DQz88yES/RnVwvJIP6N2YgociHf++eebFtSBnL6W2h1KAwudoaGfM21trc/pb5FL0TbgHgILADE/KatQoULUr7J+GxnNbaHot+L6ba12itETDf0GWk8WtaOOnuQ+88wz5vZIk38j/Sz6ODpV+JFHHjGPdf/995tVnF9++UXOOussOfnkkyVW9JtXpd/y6upRJNr5JxpuTES2w+77m0zH48b7Udb/N/7OUXZui/dntGPHjmZQnXZm0tckmvfU6Wupc3X0Z/vvf/9r5u3cc889pqWtdszSAMzJiiqAkggsAKQNnQ6uJ8fa+lRbVAbzp0I5MWjQINMSU0/aNG1IU05ivVqh/Ck4l156qdxxxx1RPYZO0Na2vcH8LUsbNWpk6/H8Qw/93ziHe87AfVOFG+9HOP7XKrhFs5+uVOhQumT4jOqKxJ///GezKqUtbPXviXgtdVVCAwtNf9LAQtOi/Gl6Tr74AFBScn0dBAAxtHPnTnPZtGnTUrdpGot+c+uUroBcdtllpr7jr3/9q8n5btCggakniKWLLrqoRPAUDf1mOdL1mvceqhZBc/ND8e//xhtvhExbmjFjhjnh1NQ1nZ2RStx4P8LRegL/Y4d67f1zI5LhM6ppk1dffbX58/Dhw0OmZ8XjtdR6FE1Z0y8P3n333eJBnqRBAe4isACQNn7zm9+YSy0W3bt3b/H1etI7cODA4m/Pnbr99tvN5dixY82lpleFqz9xi36b26VLFzMAUAtwQ+Wa60n8008/HTYQmDRpUqnhdjrUTB9TT/6DT8L8KxhfffVV2JM5PYnVE1g9qQx8Xn2t9ZtspStIOuwslbjxfoSjr6vWRuiKxV/+8pfiVCH1zTffyKhRo5LqMzphwgQTYOhJ/RlnnFFcfB5Mf55QdTxuvJaaAqaDNf01FzpsTwcK6uMCcA+pUADShp6UPPXUU6aDjxYNa9611ltoioSeaOjJlt7ulD5uhw4dzPNo154//OEPjh7vwQcfNCdN4UycONHkss+cOVP+7//+zwRO06ZNk1NOOcWc2GtxrqYjffHFF2bStdbIhDqJ1JPL7t27m+PXdBvtsqP30ddIU0d0Unkg7dKjuepaEKzdufxTle+8804zEVk7JulxaGG/Bi2aCqOF/hrUffDBByag69mzp8nzj6fnnnuuVAAVSH+W6667ztFzaC2B0/cjHD1J1mn0+thaK6Hfvnfu3NmsyOnPpSfiS5YsMdPpw3W4cvszGol+LhYvXmxeUy3M1pUsDUo17U4LzfX/PQ069PXQFQk94defx+3XUgNj7X7lD0xYrQBiwEZrWgBpLJrhYv5e+lYeN9wci2j650fqO68D9AYOHGhmb+Tm5poZCzfccIPpY68/m95P++hH87MEuvvuu83+OjE5WlbnLujPGzhX4emnnzbDwnQomM4m0GnkOgNg0KBBvtmzZ0f82SZNmmT21WF5OqBNp2QvXrw45PHp/IAxY8aY2Qj+SdrBx6N0voM+d4sWLcxkaJ1bcfrpp5vnCjWXoKzXWt/XUM/j1ut5++23u3Y8Tt+PSHQwpU6f1knU+vq3adPG949//MMMgtPXWWc0BM4HcfszamWORbB58+b5fve73/lOOOEE8/nS10Oncnfs2NF36623miF+4SZ0R/NaBvNP79bXJy8vz9IxM8cCsC5D/xOLgAUA0pV+c6rdazZs2GDy108//XRJZv4OQvxzkBoWLVpkZjPoN/+rV6+O2WdUU5d05U9rlsIVkqcCXQXq1q2beU0jrXQBIBUKAFyn3Xb0hE1P1pI9qIA3aTrPvn37Ss0I0fQ1bSerQg2yjMVnNC8vr7gFtabHhRok6EXaPUpnffz888+JPhTAM6ixAAAX6LTuf/zjH+Yk5P333zd54Y8++iivLWJCC+b1W/Q2bdqYyd/aMlUL4v3zInr06GGK4uPxGdVhk/7p2VqknSqBhXYt09cMgHWkQgGAi+kSWix74oknyt/+9jfp06ePJ15bUqG8RzttPfTQQ6bDkk6T1oJ47dylA+K0SFpXLYKLmL38GQXgDQQWAAAAABxjjgUAAAAAxwgsAAAAADhGYAEAAADAMQILAAAAAI4RWAAAAABwjMACAAAAgGMEFgAAAAAcI7AAAAAA4BiBBQAAAADHCCwAAAAAOEZgAQAAAECc+v9DuUyxakP5jwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJNCAYAAABHt1gkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ+UlEQVR4nO3dCZwT9dnA8WeXXVZAdjmW+1gOr65QkatV8ABUlFYqaKu1olBtbQUvvK2UqtTrtV4viPWqUrSewGvVioBQq1blUFHBVhQQ8OBmudkj7+f546zZ7CSZZCbJTPL7fj5jJJkks0lY5sn/OfJCoVBIAAAAACBJ+cneEQAAAAAIKgAAAAC4xkoFAAAAAFcIKgAAAAC4QlABAAAAwBWCCgAAAACuEFQAAAAAcKXA3d2RjJqaGvnyyy+ladOmkpeXx4sIAAAAT+gIuu3bt0v79u0lPz996wcEFRmgAUWnTp0y8dQAAADIAWvWrJGOHTum7fkIKjJAVyisN7u4uDgThwAAAIAsVFFRYb68ts4304WgIgOslCcNKAgqAAAA4LV0p9hTqJ1GU6ZMkfLycunXr186nxYAAABIqbyQVnMg7ctSJSUlsm3bNlYqAAAAEPjzTFYqAAAAALhCUAEAAADAFYIKAAAAAK4QVAAAAABwhaACAAAAgCsEFQAAAABcIagAAAAA4ApBBQAAAABXCCoAAAAAuEJQkUZTpkyR8vJy6devXzqfFgAAAEipvFAoFErtU8Av49MBAACQ3SoydJ7JSgUAAAAAVwgqAAAAALhCUAEAAADAFYIKAAAAwKHFixfL+eefLwcffLA0adJEGjVqJN27d5dRo0bJnDlzPLtP0FConQEUaue2UE2VVO/bFvX2Bg1LJC+/IGOPBwAA6qupqZErr7xS7r77bikoKJDBgwdLjx49pLCwUD7//HOZO3eubNmyRW666SaZMGFC0vcJ6nkmZxpAGlWsnCkbFk2UmsrtUffJL2wqrfreKMVdR3jyeKq09w3StMtpda4j2AAAwLkbbrjBBAe9evWS5557zqw0hNu9e7dMnjxZNm3a5Oo+QcVKRQawUpEd4q0Q1L9Dtayc+QNHu2pg0e30JTFXGPT5P3++d9yAItHgJd0rKbEQ+AAA3FqyZIn06dNHRowYITNmzKi9XlcIOnfuLP3795d58+bFfIwVK1bIYYcdJs2aNZOPP/5Y2rRpE3XfvXv3SlFRUVL38QIrFUCAOF0hSJY+rp6IFxzQMuo+erub59f76s/QtOzU2iAhUyspXjwXAMCZUKhGqvduCczL1aCoueTlJV8G3KFDB3O5du3aOtc3b95cTj/9dJk2bZps3LhRSktLoz7GY489JtXV1XLhhRfGDA6UFRwkc58gI/0JSPSb9lC1fPPv8Wl93ey+7a/x4B8EPdmv3L5K8ouaO/657IKRaMfsNvBy+lxuJbuawkoKgCDSgGLljL4SFF1HLor5JVs8rVu3NjUMkUGF0voGnQO9dOlSU+8QzZtvvmkuY+3jxX2CjKACyOCKRNcR74jkNTABwuqXTnR9DGU/mrM/QBCR7atmycYlk+LeJ9rzZnolJZHncpO65eY9ZiUFAPwvLy9P2rVrZ4KKqqoqUzAdadeuXTEf4+uvvzaXHTt2dPy8XydxnyAjqACinYymcEXCOhktaNTa/LnKZh8NNKoSPAYNKKyT7+aHnS/NDjmvzs8VK3jxM/NaxNnHSRAVGQS4XU1J10oKAMAdPbH/4osv5MsvvzR1FJb58+eby549e/ISu8S/gggkL9NVvFiNsFYc3BxHpERP/vWEWR83nD5H+Df8oYYlZj+nP6uTlZREhK+kRGP3XF4FQvpza5DWuO2A2p/L7WpKIispAIDMCK+rsIKKhQsXyiuvvCKDBg2SsrKymPdv27atfPLJJ7Ju3To59NBDHT1n2yTuE2QEFWk0ZcoUs2nRDpLnNgio017V5WpE5IpDpljHES9Q0dt1P6fF2HFXUmI8l13NR/hKSjTxViS84LQLFwBkIy181jqFIB2vW5HF2jt27JDRo0ebVKi77ror7v0HDBggCxYsMF2inNZIDEjiPkFGS9kMCHJL2WRy1r1sUeq2japbkSsSXhXqJvJz2a2KpHpgXtWeTZ4U9Tkptsv0exxvNcVuJcXuPhRxA4B/3HnnnXLVVVeZy/Hjx5uuT7NmzTIdms4999y497faw2rHqGXLlkmrVq0ct5RtnsB9vEBLWfheMu1G3Qxns+NFuoofVyScrCB4eQyRaVF+4nQ1JZHVqETmgxQ27RIzQLNbSbFLz6KIGwD8wyqWXrNmjVxwwQUyc+ZMue+++xwFFOqggw6Sq6++Wm699VY55ZRT5Nlnn5WuXbvW2WfPnj1y//33y4YNG8x+ydwnyEh/giNOC1rDC1eV0xNDLbB10qkoHbxYCUiGBmL6ukVbQcjkN98NEqzFcFrzkexrEYvd69TmqLscB8RevcYUcQOAf1jpTw888IBZFbjnnnvk4osvTugxJk2aZIIAnZCtNRKa0qQtabVd7cqVK2Xu3LlmMrbu5+Y+QUX6Uwakc1nKq3SlRAt1NR1EpaPTkJPi32Q6A0GyqvWqV2l4iaZnue2vDgBw7/PPP5fu3bubGooHH3xQxowZk/RjLVq0SKZOnSqvv/66KcKuqakxLWuPPvpo87gnnHCCJ/cJWvoTQUUGeP1mRztZSuZEOtVzGbymx9/t9CWOTwa9qu3IVQyJczc7xMJnDQCQKgQVOSTWmx3rpC1V7VCtE3OVyDew1slSIqsYyQxn8/O338hdblb0+OwCAFKFQm3EDRC8Htxl0ftXbl9V+/+JFrQ6nX0QWQRrN5wtEXzbi0yyK3Z32g6XegsAQLYh1yODqvZslqqGlY7nJUSeiOjJuFdpSonUPkQWtCbSuShypcXPXYiAVBa0MzQPAJBNCCoyaPULx8mBjfOTWlWw0o6SabGZbLpSrBUCP3cuAoLUDhcAgCDiLC+AYgUEToKAZNOV4mHVAYgeYNsF8/Gmksf6ewwAgJ/wL5SP6byEmn0ViaUmFTWPm07kJl0JgHf1FsmkHdKYAADgR5wx+lD45ORQUQvHOdpeDhfjW1HAX/R3gNZdNW47ICPDGQEAiIV/hTKs849elQZFLaKeIDjN0U5mZYF0JSBYU8nVypk/qHcdqxgAgExj+F0G+wdv+malNG/VWfLy4hdrM7gNCL5UDpe0GwSZ6NwbAEDwVWRoojb/omRQwQEtHAUUilUFIPjipR3WE6q2XZmI1xnOyXBJVjcAAF5ipSKNpkyZYrbq6mr573//m/YIEkDwpHJ1w2oIQY0GAGSPigytVBBU5NCbDSCY7NKYEpk3kyhWMQAguCoydJ6Z2OQ1AEDaWemP4ZvOkNGT/1TQVRFdHdFgBgAAJwgqACCArM5wTgKL0t43SNeRi/anOiUQWDiu/QAA5DwKtQEgiwu/I7s8tTnqrpTWaABANlq1apV07drV/P9JJ50ks2fPrrfP22+/LUcddZScd9558thjj9W7ffHixXL//ffL66+/Ll9++aXU1NRI+/bt5eijj5Zzzz1XTjwxNSmt6UJQAQABlmhnuGiBSCprNAAgm7z66qvy2muvyeDBgx3tX1NTI1deeaXcfffdUlBQYO43fPhwKSwslM8//1xeeuklmT59utx0000yYcIECSqCCgDIMXaBiJPqCeblAMh1Xbp0kS+++EKuueYaeffddyUvLy/ufW644QYTUPTq1Uuee+456d69e53bd+/eLZMnT5ZNmzZJkBFUAABs6eqFFWzEm3uh6BoFBENNKCRb9u2ToGjesKHkOzh5j2bJkiXSp08fGTFihMyYMaP2+i1btkjnzp2lf//+Mm/ePEePdeihh8pxxx0njz/+uDzzzDNy5plnxtx/xYoVcscdd0jLli3llVdekTZt2tTbp1GjRnLVVVfJ3r17JcgIKgAAthJNh7K6Rml6FdO6Af/SgKLvqy9IUCw6abi0LCpK+v4dOnQwl2vXrq1zffPmzeX000+XadOmycaNG6W0tNTR42ma0lNPPWVWIEaOHGnSmKLR2gqdT3bhhRfaBhThilz8jH5A9ycAgGesyd5VezbVbrSmBZBJrVu3Nif+kUGF6tGjh4RCIVm6dKnjx9PVjYsvvtisQvz5z3+Oue+bb75pLp3WXwQZQQUAwHSJ8mruha5wrJzRt3b7/PneZjI4AGSC1j20a9dOvvnmG6mqsq8g27VrV0KPef3110uzZs3k5ptvlh07dkTd7+uvvzaXHTt2lGxHUAEASG7uxchFUvajOXH3Z5gegEzTk3rtwqStXMPNnz/fXPbs2TOhx9PUqWuvvVbWr18vd955p6fHGlTUVAAAkp57Efp2hSPe3AsrLSq/qHnMxwOQnsJnrVMI0vG6FV5XoelLauHChaZ4etCgQVJWVpbwY15yySWma9Of/vQnueiii2z3adu2rXzyySeybt06U+SdzfhNDgBIeu6FtcLhZKCeXeE3HaOA9NNOSm4Kn4MoslhbU5ZGjx5t5kbcddddST2mdm268cYb5fzzzzeXo0aNqrfPgAEDZMGCBaa7VLbXVZD+BABwvcLR7fQltSlRTtOiFKlRANIZVKxZs8YUZusE6+XLl8tDDz1k5kckS6dnH3744eZxtHA7kgYuDRo0kAcffFA2bNgQ87GC3lKWoAIA4NkKh7UVNu3iuPBbA4tYKVcA4JZVKK1BxQUXXCAzZ86Ue++91wQXbmjAcMstt0hlZaX84Q9/qHf7QQcdJFdffbVpWXvKKafIypUr6+2zZ88es1pid/8gIf0JAOC5RNKiACBdKxUPPPCAWRG45557TFtYLwwfPlwGDhwob7zxhu3tkyZNMoGDTtXWugpNg9JWttrmVoOMuXPnmmnaul+QEVQAANJa+K2TuiPrK8Knd1so4gbgdVChg+geffRRGTNmjKcv7u23327qJ+zk5+eblYizzz5bpk6dKq+//rrZtBuVtrodOnSoOZ4TTjhBgiwvpIllSKuKigopKSmRbdu2SXFxMa8+gJyiA/F0fkU8FHEDQHDOM6mpAAD4EkXcABAcBBVpNGXKFCkvL5d+/fql82kBILDTuyniBoBgIP0pA0h/ApDrKlbOdFzEre1pw4fmUWsBAP47zySoyACCCgAQCdVUOSrijkStBQBER00FACCnZ1voFr4iEQ21FgDgP9RUAAACV29BrQUA+AtBBQDAd0PznBZyAwD8geF3AADfD81zUmsBAMgcggoAgG/rLSyR07YVU7gBwD8IKgAAgWS3ckFnKADIDGoqAABZg85QAJAZrFQAAALTFcrJsDzdp3L7qnrtaRmaBwCpQ1ABAAhMVyinU7hJjQIQadasWfL+++/Xu/6yyy6TZs2a8YK5xETtDGCiNgCkdwq3RVc7up2+xAQpsR7TwuoGkD1Gjx4tjz/+eL3rV65cKV26dHH8OIsXL5b7779fXn/9dfnyyy+lpqZG2rdvL0cffbSce+65cuKJJ3pyn6CdZxJUZABBBQB4R4OCz5/v7WgFQ3Uduai2s1TFypkxVz8o/AZg0UDgyiuvlLvvvlsKCgpk8ODB0qNHDyksLJTPP/9c5s6dK1u2bJGbbrpJJkyYkPR9gnqeSfoTACCnUqPCg5F497EKv3VuRvjqBoDcc8MNN5jgoFevXvLcc89J9+7d69y+e/dumTx5smzatMnVfYKKlYoMYKUCADKXGlX2ozmmiDuRtKnw1Q0AwbJkyRLp06ePjBgxQmbMmFF7va4QdO7cWfr37y/z5s2L+RgrVqyQww47zNRefPzxx9KmTZuo++7du1eKioqSuo8XWKkAAMDDgXnRhuYxmRu5LlQTkqrNuyQoClo0lrz8vKTv36FDB3O5du3aOtc3b95cTj/9dJk2bZps3LhRSktLoz7GY489JtXV1XLhhRfGDA6UFRwkc58gYy0XAICwVQxF4IFspgHF4vJ7JSj6LLtUCkubJH3/1q1bmxqGyKBCaX1DKBSSpUuXmnqHaN58801zGWsfL+4TZAy/AwBk/XwLJ3S/wqZd6s23ABBseXl50q5dO/nmm2+kqspu/VJk167YKzdff/21uezYsaPj5/06ifsEGUEFACDri7jjBRZWlyeKsYHspCf22olJ27mGmz9/vrns2bNnho4se5D+BADIasVdR5juTdFmUSjmUQDZLbyuQouz1cKFC+WVV16RQYMGSVlZWcz7t23bVj755BNZt26dHHrooY6es20S9wkyggoAQE4WcSdCO0VFJk0QiCCotPBZ6xSCdLxuRRZr79ixwwzD09kRd911V9z7DxgwQBYsWGC6RDmtkRiQxH2CjKACAIA47Aq3GYyHoNJOSm4Kn4PICirWrFljCrN1ivXy5ctNhyadIRGPBiC33XabPPjgg3LZZZdJq1at4raHHZ3EfYKMmgoAAJJgDcbT+RgA/M0qltag4oILLpCZM2fKvffea4ILJw466CC5+uqrTevZU045RVauXFlvnz179phVjz/84Q9J3yfIWKkAAMCmY5ST6dy6T+X2VQl1jCJtCsjcSsUDDzxgVgXuueceufjiixN6jEmTJpkgQCdka42EpjRpS1ptV7ty5UqZO3eumYyt+7m5T1AxUTsDmKgNAP5WsXKmWYVwElgkirQpIP0+//xz6d69u6mh0HSkMWPGJP1YixYtkqlTp8rrr79uirC1q1S7du3k6KOPNo97wgkneHKfoJ1nElRkAEEFsF+oqkaqtu6O+nIUNGskeQVkaSIzNK0psmOUFmx7MRhPA4tupy+hhS2ArDnPJP0JyPITc7+esG949iNZdd1sqa7YG3WfBsVF0uXWodLqpz3SemxAtI5RoQRSo2LR+2vA4qYjFQD4CUEF4OKkPV0n5tGOYeNzH8vq389N6jG9PmFP5HXSfeMFFEpv1/1KR5SzYgFfDdNLVWoUAAQVQQXg4tv0dHyT7uQb/WR4ecLu5BjLbjpBSs843Px/1ebdjn8e3U+DlVxrf4hgD9OL5FXaFAD4FUFFGk2ZMsVs1dXV6XxaJMnJt+l622djX5CSY7tIXoM8z1cxnH6jnywvTtidHqOuqCS7qqJBiN/St5DbEh2mR9NZANmOoCKNxo4dazargAb+pifbTk/ml/S8LyWrGIkcQ6aKp706xiPe+LUUtGhkAogPBj5Y57bIPyvqLQAA8A+CCiBFoqUXparjUXh6UTR2J+x+KJ7WxzygW4uEfu5E07foNAUAQOoQVAAJfpveoOQA25WJaCe+ez7fbL6BT6Sw2goQ7NJ+rG/0vUoFsp4jVB0yqVxenMxbx+jk57WCFOux9GfR65ysfjhN36LTFAAAqUVQgYx+o+v1cyXbXtXpc+mJsp7Adp8y3HGtQ6yVgWTqD6xj8EoyxxfvZN46xna/6S9tL+ib0Hus/69Bhle1JHSaAgAg9QgqkLFvdL1+LrddkhJ5Lt1Hv6mPPFmOl16UizRISDQI8vL1TaTmg05TSCftCBVewN2gYQnD8AAEFkEFMvKNbiLP5aS7khddkhL9uexOlhNJ3UmGPrY+R7ISPb7eH15iXvdMBEvJBCNAkES2mNWhejoDQ1vWAkDQEFQERDpSktL5jW6iHYOi1TCE1x54cSLv9udKJHUnsrA6Xv1BZO1BKo/Peq6GbQ4Uv7OrO4l3e6xOU+Eo7kY66TA9HaqnMzC0ZS0ABAm/tQLATZpQKk+K4p3MefU8qZp9kCrRUnfivR7x6g+8eg2TPb5o738in4NUSGYFxUldCsXd8JKmNulKRLwp3Hq7DtVLZAYGAPgBQUUWpyR5cVKU6OyAZJ8n/Lm0C5HT7kqxlL02WvIjuiQVFxRKQf53aVR2P5cXJ8vJpu6kK+XHi+eJ9f5v3rdPCvZ+9+ulpFBf92AMqtP33ctOWIDSlQdNbdKViHiBBQAEEUGFzyWbkpRMzUL1tj0p6zTk5OTLeq6qmhp55Nft5ay/fi1Ndtck9Xw7G+XLwBVvSE1EHUbTgkK5seeRMqJjWdT7prp2QH++bZWVUW/38gQ81nOl8kT/xAWvyPamBQm97k54UbOSX1wk2xrlS97evVK1b5/r95/ibjiltRKa2qQrEeHF2pG1FQBSY9asWfL+++/Xu/6yyy6TZs2a8bK7RFCRpbyqWfDyZM7pyZeeBM/9QRN5rW83abKrut7tA/+9Xc59emPMgOKxX7SqF1Co7VWVMvHD9+TU9p0y8s35zLWrzfPrccRyQ/kRclrECXi0ICBa4DBr7WqZtOyDqM+RyIl+Iu+/vv47GzdIyevutt2s+Wz8rJm88dqL5s9Nt1eJFyFkoqtadull1G/kzopFeGpTePenaF2hFJ2hAG+Ciscff7ze9aNHj44bVKxatUq6du1q/v+kk06S2bNn19vn7bfflqOOOkrOO+88eeyxx+rdvnjxYrn//vvl9ddfly+//FJqamqkffv2cvTRR8u5554rJ54Y7C8YCCoyqHLTTqncV/fky0k+e6yUpFTluXs1OyCR49OgIPzbbss/Tmous4c0qw045hx/cu2340pPaO0CivATXD0Jb1lUlNDJstvOS3ry7ySgUBoMRAYEdkGA0yDFTrQT/WhBSunNg2XDhNekJsZrFS+gW7VzhzRvWORqxcRJTUi4qpqQDJn/iuyorqz32dA/6zE7WRGL1Qkr0dWNyHRA6jcQzm7lgs5QgHt6om93sp+oV199VV577TUZPHiwo/1ramrkyiuvlLvvvlsKCgrM/YYPHy6FhYXy+eefy0svvSTTp0+Xm266SSZMmCBBRVCRQe/3mypN8g9IuP4gVkpSrJObRGsWIk+iEz6Z8+DkyzLn+KHmZHTLvr1y4oLZdQKOgpaNzaVdAOJ1NyQ3efN6op7MyX+0ICCRICXWY4af6Mdc3ThQJP/OTtJmb75cU95ThrXrWFs/4TSg0/cuUjKpUYnUhFTs3StfNQ7Z/rrTY9UgaPQTG6IGFqnohKWftU+v+Yf5+6TS1coZwUVnKMAfunTpIl988YVcc8018u6770peXvR/8yw33HCDCSh69eolzz33nHTv3l3C7d69WyZPniybNm2SICOo8KHwkwcvhQcj8SZCRzuJztTsAD3p1ZUFN4FIOL3Okj/8YOk6rLs02Vldp4g7/JvunU0amJ990969SackhT9nssJXWdwGKbFO9KPRk3A9QZ+wdrn86PCDzc+uBdmRAZ2+9k4fW3+G8e+9KwNKW0uDvHxXqxjJvO5vHFUsb/VvWmflq0XDhlFXDr2aRZK/o1L2bN5lPnMM58tdTrtCKTpDAclZsmSJ9OnTR0aMGCEzZsyovX7Lli3SuXNn6d+/v8ybN8/RYx166KFy3HHHmTSqZ555Rs4888yY+69YsULuuOMOadmypbzyyivSpk2bevs0atRIrrrqKtkbcY4RNAQVPmXVH8TiJnUn3qqDF+1L05lalGgg4vQb83jpRW5TkqzAx0kNRORJciJBilWjYRdguQ1u7OjPpAGBvj5OA58fzNlf5+BkFcMueHD6+jlZ+SqMEcB6lQqoKqoq6wQwTtilDkb7+xqrTiNVbZ6R3q5QoZqqOoXfkajFgJ2aGpEgfSnesqWImzLIDh06mMu1a9fWub558+Zy+umny7Rp02Tjxo1SWlrq6PE0Tempp54yKxAjR440aUzRaLpVdXW1XHjhhbYBRbiiBL889RuCigBzm7qT6lWHdKYWeSGZ9CK3KUnhgc/53Q+R87oeVOdk2S4IiBUUhAcpdt/2J3qi74Y+pwYEblK07Oo+3NSRuFn5ChctKA9PBYvUdHuN/GnCakePn2grZ7uUyXh1Gk7aPCNzXaGidYYKL+LevmqWbFwyKeZjU4sBOxpQtG4dnNdm/XqRVq2Sv3/r1q3NiX9kUKF69OghoVBIli5d6rhGQlc3Lr74Yrnzzjvlz3/+s4wbNy7qvm+++aa5dPrYQUZQkWHf/9evpLBl45hF1+kYZOYFu2+P46UWpeP4EjmRTia9KNmUJD0mPbZweuLs5mQ33slyIif64R2okl3h0BUGDQgiPxfVoRrblYl4r68XdSR2r3sy7ILyaKlg+r5s+mqrbJ7wSJ3bajbvlqqG1a5bOUfWWzhpKU2Nhr+7QkXrDJVo+1lqMQAxdQ/t2rUzQUVVVZUplo60a9euhF6q66+/Xh5++GG5+eabTfeoAw+0r7v7+uuvzWXHjvvrELMZQUWGaUCRTNG1H+ocwiWTJpQuXnxj7jXr9YhXL5BIQOT0ZDnaiX7k83rVcjdaoHTXkf0Tfk/c1pE4fd29ZAV6VQ0byuaI21YPfkxWe5RCGN6y2WlLabs2z7S2zT7UYgD7T+q1wFpbuepKg2X+/PnmsmfPngm9TJo6de2115pNVyz+8Ic/5PzLTFCRQb0W/lYKWuzvXJQJXg1GSyZNKN2inUgn+g18tALkWHUO8VKSvAiIEj1Zdrsi4qf3xOmcj6BN9k6mfsOaZG431M8JWtsGt4gbgPO6CiuoWLhwoSmeHjRokJSVJf6l5yWXXGK6Nv3pT3+Siy66yHaftm3byieffCLr1q0zRd7ZjKAigwpbNpG8b1OCnH4j6VVBs5crC8mkCXnJacGyFyfSkcGBJdZJsNv8/XSvLKSTF+9JZNCWrtci0U5TDUoOcDQTw2lTBbuUSWuSud1QP63TUNHSLLXV9GdjX5B4SJvyZxF3ae8bpGmX08z/M6UbTgqftU4hSMfrVmSx9o4dO0zakqZC3XXXXUk9pnZtuvHGG+X88883l6NGjaq3z4ABA2TBggWmu1S211UQVAToG0mvCpozubJgd9Ll9iTQi25GfueHlQW/chu0JSOZYnH9e+t0JoaTpgra6jghzQ6wrWtKZnaMXdoU0lvEHavDk10tBhBO/8l1U/gcRFZQsWbNGlOYrROsly9fbroz6fyIZOn0bA1KHnroITNNO5IGLrfddps8+OCDctlll0mrGC+8tpQNcgcogooM2rx3r1SG9SR+oXdDueXOTrX98iPlFx8gE3s1lREunzeRlYVkJyBHSxPyavhZJqWiziGIkmltmw3cFIsnOhMjXjtauw5Tekq5/9J9+1qvWtvC+yJuAImxCqU1qLjgggtk5syZct9995ngwo0GDRrILbfcIj/5yU9s6yoOOuggufrqq+XWW2+VU045RZ599lnp2rVrnX327Nkj999/v2zYsMHsF1QEFRl03GsvS37jiJqKsH759YSq0l6XkGwQEC1NyO2qiNMT+lSezKeqziFocmGFyI7bDl+JzMRIVLyWtYkO7uv94SWS1yDPVWtbAPDTSsUDDzxgVgTuuece0xbWC8OHD5eBAwfKG2+8YXv7pEmTTOCgU7W1rkLToLSVrba5XblypcydO9dM09b9goygImBSVZeQ6ARkJ0FAsq1c3Z7Quz2Zd/INfDbXOcCbyeiJfg5jNU7w6vOU6OyYhm3sWyRGo4+pdRklx3YxwYiFFQwAfgkqdBDdo48+KmPGjPH08W+//XZTP2EnPz/fpEidffbZMnXqVHn99dfNVlNTY1rdDh061BzPCSecIEFGUJEF4p2MRLI7KUp0ArKTICBVrVzjndCnq0Yjl+occinly/r7kcyE7mQ/h05qNCJXCJ0WfivdT/dPdrZNoiscS3reV+fPrGBkXvjQPMWkbeSabt26mVqKZHXp0iXm/Y8++ui4j9+3b1955JG684qyCUGFT1ktMe3aa4YHBYmc+MSTiiAgVW1Dc+mE3g9yKeUrmc+lm2JxpzUakSuETgq/rYBC97snLEhIdLZNoq1tI9ExKvMih+YxaRuA1wgqMuifg4dJ0+LietfH+4YzlbnsqQgCnAYAmSj8zaVv4N0i5cv7z4V+1nVzGsRHrhBGK/zWeRXaXlbtbNzA1HG4FW2FQ1vRRq5M2KFjlL8waRuA1wgqMqhFUZEU++Db9siTokytAmSi8DeXvoH3QqY+G6kKOBMJKlPxufDiM29X+K0D8KI2fHAh2gpH9ynDHa1i0DHKX0Pz9PbK7askv6h5zBa1AOAEvzV8zu1JTzycLPMNfBCkKuB0GlSme0K3VaPhxXTxdLBbxaBjVDCG5kWmRSlSowAkg6DC5xKpc4h24hNLpjoU+S3tiBqN3JXqwv9k2iF3aXJgxlbFku1ClWidRryOUYquUd4OzXM6aZvUKADJIKgIgGzMZSftCH4KONMRVHrVDjmVtUfJdKGKxm3HKEXXKG+H5oUcpkUp3UcDEobuAXCKoCIg/PhNutuTm2wMluBeNgecXqyKJJsOFfn3NPK5ku1ClaqOUYquUZlLiwKARBFUIGle5Hr7MVhC5mVzwOmXRgiRKw6JTAp3OqzSbccoRdeo1KdFJZIaBQDREFQA8CUCztSmgjldcch0xyi7rlHUWnibFmVeY5ePCQAEFQhkYTWQC5JNBXP691VvX7VzR22nqXR2oYq2iuGkaxS1FgDgPwQVkFzPcweyLRUska5xsYIFN5PCnXDTMUpXOTQo0ccAAGQeQQUcy+Y8dyDbUsHs/r4GYe6F065R1FoAgL8QVCCxDwyF1UBg/74GIY0xka5RTOhOr1BNVb0CbwtTuAEQVABAjghKGiMTuv1BO0JZBdzbV82SjUsmRd2XKdwACCoS9H//939y6623yrJly+SAAw6Qfv36yR//+Efp1asXnyYAOZPGaFfY7WX6I/UWmZdIi1mmcAMgqEjAnDlzZMSIEfKLX/xCbrrpJtm5c6fccsstMmTIEPnoo4+kXbt2fKIA5EQao11thtNp28lIZEI39RaZwRRuILdRUZuAJ598UsrKymTatGly0kknmQDj6aefls2bN8vs2f4ufgSAVLNmX+h07lTVWmhg4YTWW1Ru3FlnC1V5f1zZQmsiNIUJAJLFSkUCKisr5cADD5S8vLza60pKSsxlTQr+EQUAP0ikwNvptO10z7ZQzLeIPRCvVd8bZcOiiWbFIZbS3jdI0y6nMYUbQHYFFf/5z3/k1VdflcWLF5tt+fLlUl1dLTfffLPccMMNce//7LPPypQpU+SDDz6Qffv2yUEHHWTSmy6//HIpjOh88stf/lKGDh0qd999t4wePVp27Ngh11xzjXTq1ElGjhyZwp8SADInkbkXkXTVwss21MnWWijmW8RW3HWENC07NWqHp8guT0zhBpBVQcXUqVPl3nvvTeq+l112mblvQUGBDB482KxCvPbaayZQ+Pvf/26ClUaNGtXur/vMmDHDBB3jx48313Xt2lXmzp0rzZo18+xnAoCgFHjHmn0xc+1qx52m3NRhUG/hHQ0YCg5o6eEjAsgVga+p6NGjh1x55ZXyxBNPmFWKUaNGObrfrFmzTEChgcQ777xjaiKef/55+fTTT6Vnz57yxhtvyIQJE+rc5+2335Zzzz1Xzj77bBNI6GNocfYpp5wi33zzTYp+QgDwV4F3+KZTt6OtUDhZ2fCiDiPReotIWmsRWX9BHQYA5NhKxQUXXFDnz/kOl9G1a5O69tprpXfv3rXXl5aWyv333y/HHHOMTJ482QQWVt3ExRdfLEcffbQ88MADtfsPGjTIFG9rStRtt93m0U8FAMGmKxpOU6W8qMNIpN4ifGjexuc+ltW/nxv1canDSH62hV3KFIDslZN/y9etWycLFy40/6+rDpEGDhxo6iTWrFkjL7/8svz85z8313/88cdmVSJccXGxqcPQFQ4AgP0Mi3RwWm9hV8QdDXUY7mdbMBgPyA2BT39KxnvvvWcuW7RoYWoi7PTt27fOvqpLly6yaNGiOvtVVFTIihUroj6O2rt3r9kvfAOAbKU1FnZ1FnOOHyqLThpuLoPEmnuB5FiD8UI1lHYD2Swng4qVK1eay86dO0fdR1cqwvdV48aNk3/84x9y4YUXmiJuLdrWlQsNGn71q19FfSydwK0pVNZmPTYA5BKtv4hVh5EKVhE3MjvbwhqMByB75WRQsX37/h7cTZpEXybXAm4Vvqrw29/+Vh555BGTOnX66afLb37zG2natKnMnz9fDj300KiPdd1118m2bdtqN02rAoBsmmERj+6j+8ZKmdq0t+7mxRC9RIq4y246Qfosu1SOeOPXrp83l2ZbMDQPQM7WVCRLh97prArdElFUVGQ2AMjFGRZW29hY8yjs0qW8aDcbq4g7ckVDAxB4M9tCC7Yj6yso4gayW04GFbq6oHbu3Bl1Hx1sZxViAwASn2GR7IC7yHaz+tjJ3N+roXnR2tASpESfbWFXPUERN5Ddkg4qdBCcV9/+z5s3T9JJC65VrDQk6zZrXwBA/BkWiaRMOWk560W7Wa9tePYjWXXdbFPAHQ2taBMr4tbVDtrOAjkaVCxYsMCzoCLdjjzySHO5adMmU4ht17nJ6vIUPsMCAJCelKlkaA1GtNUSNysmkSsU8QIKleutaK0ibg0anBZxM8kbyOH0p5NPPlmuueaapO+vw+K0i1K6dezYUfr162cKrp988kn53e9+V+d2naatKxVaBzFs2LC0Hx8A5GrKlBZs29VXxDNz7eq4QYoXNRqa8hQvoIhsRetl2lXQirh1FcJJYAEgx4OKtm3bynHHHZf0/R977DHJlOuvv15GjBhhAhttC2utSOjqxUUXXVTbQtaapu2FKVOmmK26utqzxwSAXEiZirdC4WTVw8saDXhbxA0gh4OKQw45RNq1aydugxJ9HDeWLFlSGwSozz77zFz++c9/lhdffLH2+pkzZ9Y53tNOO00uueQSue++++SHP/yhDBkyxLSY1fqOrVu3yoABA+Tmm28WL40dO9Zs2qbWy2AFAHKFXYqTrm44TaPS/Vbt3FFvVka81KiqzbvrXIbTFrQFLRqZ2xKZ1p0LnBZxA8jhoOKTTz5x/eQ6FE43N/QE/Z133ql3/dq1a81m0QF1ke69914TPOjqwVtvvSWVlZXSvXt3ufbaa+Xyyy+Xhg0bujo2AIB3nKQ4OZFM+9pYwYIGFLmY4uQl2s0CwRf4lrLHH3+8hEKhpO//s5/9zGwAAP9ymuJkmXP8ULMa4bRGIzw1CulHu1kg+EgqBQD4nqY8OQ0odNWhS5MDTb2GXjqZ+B3evlYH4TmZwK10P90fqWs3G6ohYQrIyaDiiy++kGnTpnn9sAAAxBU5vdtqX+s0sFDaAnbTVX1kV+PY/0Tq7bpfLraM9aLdrBNWu1kA/ud5+pO2aR0zZoyce+65Xj80AAD1UpziFVwn2r5WU62u7rxVdt7TTZrsit6tb2fjBtKkaKucUFNDN6kE0G4WyE6Br6kAAOQmDSictqRNpH1tbapVgzzZ3rTAcTepqn37HD0+aDcL5HRQ0a1bN0f77dq1y83xAABQb0XBz6zVjqbbq4SGss7RbhbI0aBC27P27NlT+vfvH3O/zz//XObOnevFsWUdht8BQOKSmbDttUS7SVmqakLivJoDTtrNak2GBiQA/MXx30oNKLp27SpTp06Nud/zzz9PUBEFw+8AINipVlqzoUXfTjtRbV1fIQX5eY721S5SFH3HbzerRd6t+t5oJnYDCGBQ0a9fP3n55Zcd7etmbgQAIHc5PWnXfXTfdLO6STmdmbF68GOy2uFja3vaLrcOlVY/7eH6OLOZdoT65t/jpXHbASJ5DercxioGEICg4qqrrpJhw4bF3U/3WblypdvjAgDkICcn7ZFtY9NdvxGtm9Smr7bKZnkk6eeurtgrq66bLaUjynN2xcJqN6uBQzwrZ/6g3nWsYgABCCq6d+9utngaNWokZWVlbo8LAJCjop20x2ob6xWn9RJ23aRCrYplTaN8abK7xlVgUbV1txSWNpFc5LbdrDUwr2nZqdRdAGlGpRMAwHcSaQHrF7q68NgvWsnoJza4CiyqNu/O6XoLrZXQoKDO0LtQte3KRKyBeQUHtEzdQQLwPqiYMWOGDB06VJo0yc1vVYAgqqoS2bIl+u3Nm4sU8JUDslwq6jfeOKpY3urftHZo3pzjT5YWDRvGDCA+GFi3EW3kny1lN50gpWccnhMBh1272TZH3ZX0CgaA1HN92vDTn/5Uli9fLocccog3RwQgpaZPFxk3TmRb2JeAkUpKRCZPFjnnHG8CFYIU5FL9Rk3Y0LyClo2l0KMVl9W/n2u2XC3wtl3B+LblbGSHKAABDCro9AQEh574xwsolN6u+511lrMVi3iBSjJBCpDt9RvWKoMGBVpLkaxcKvBmYB7gX9n928eHw+/Ky8tNe14gXUHEhg3fbZ9+Gj+gsOh+sVKkEglUrCBF9wX8Wr9ht6UyoFAaBOgqgwYWblgF3gCQKWRNpxHD77yTrak2Xv5cTtKcvKDH6+Q5rCClVSv3z5mt7z9yk6Yt6SqDXVCw8bmPbVOeAMBv+KcXgSsKztZUGy9/LqdpTmrZMpHSUpGNG0XKy8X3nw0nwdJdd9m/TgQc8CtdsbBrI9vuN/2l7QV96wUcdgXeAJBJBBUIVFFwIqk2TusB/PCtuNOfa9QokSFD6j9n5HE4XT3Q1/7gg53/DHavhQYjdoGKihWkJPPZcBosjR+/f4v3eECQAw5Ep8XbkdmWTNsGUougAoEqCk53qk0qVkWinZg7TVNq396b47Du4zSgSCSdSlc+UvHZcPr+O308ANnJrhsU07aB1OKf1Szg15kDiZwAeplvH+sb9ERei1SsiqSqzsHJcVhpTql6LRJ5TxIJonQ/LTC3UrTcSsVnDYD/MW0bSC2CioBLxcyBZIOUyPu5PQF0m2pjl3qTyGvhZlXE7tj1Ok1fckp/rmbN7FcmnB5HOD0pT/ZEOpEAUV9j/YzYfYaSrdmIdT8rWNK/C3YpT7kWzMNftuzbm/Y2tblG05p0FcLJUDymbQOp4/qfvL/85S/Srl07b44GGU8vSjZIcfoNfKyi4PCAIZETxHipNulOf/FiNSK81uGvf01PFycvJJpS5UXBuBUsXX65yMUX2weiyQYz0QIHJ59P6jegTlwwO+pAPZ2RUftZq6mJOivDfJ4IRGLOrmjV90bH07aptwBSIy/k0fS6L774QvLy8qRTp05ePFxWq6iokJKSEtm2bZsUFxcn/Tg6d6B1a+f7r18f+5tqPYHSEzSnBb56sqYnj4nczzqGRI893mPqt8JOjyH8OGKxO8ZoqyLWCbG+Fk5XFhI5GY22ahN5HLFe33g/c6z7RHstIgO68G/n0/F5Cr9fIj9XvGP3MjiMd3zIHpv27pW+r77gaF8NLJYMHW5WLGauXR1zqrddIFK5cacsLr+3zj59ll2a0wXdoZqqpKdtU2+BbFLh0Xlmojz7p65Lly5y1FFHyZtvvunVQyLF7NKVkqmBSKTTkJ64ecl6TD1p0xPxVH+jH21VJNlvwr/8Mn4nJ6V/9lsNQLx0KqfvSeTqRrL3S0S81Divakio38gtupqgJ/+xggOL7qMrE3qfeAGFtb/up9O/o6VOaZtZu4nd2T5l24tp29RbAD4KKjQS6tq1q1cPhyQ5TSHx4lvY8KLbeCJPAPXEWa9z+y1w+GPqyaCmNTn5Rt9tEbdb1rF7nTmYyHuSjseL9p7Ee92TvZ8b4alxbrtMITfpyb6uJjgJEiwaWDjd1wpEdNK3Hbu5FTqpWyd264A9S6iqJub07WwKRKi3ANLHs3+Sy8vLZc2aNV49XFaaMmWK2aqrq1NWtOykGNerwWhOimejnQAmsrKQyCAzp9/ouyniTjQgcroa4QWvh9d58XjJrrJ4tTqTyPtlrSwkIvzzmYkBgvAXTU/S1YTI+ggt2Larr0i16oq9suq62WZitwYKG579yPxZr4/GLhDJlXoLAMnz7LTmV7/6ldkWLlwo/fr18+phs8rYsWPNZuW6OeV1G9JUDUZLNLjJxLfRsUQOl4v27Xyi6Tn0Mcgsr1LjnNRhAOYzl58fdTUhXmcoNef4odK8YVHMQERXE/TkP1ZwYNF9dGVC7xMvoLALRIKuuOsIaVp2atL1FgCc8eyfwzFjxsh7770nJ510klx11VVy+umnmzqLIge/WBGdV7nd6UxXSqR2Ih21AomuLDgptPZDQOT1e5Kq99gP3KbGuWnJm+lUO/hXtIBBA4p4QYme7OtqgpMgwaq30M3JvuGBSLYUfruptwDgjGf/rDVo0KD2/ydMmGC2aLRLVJWeLec4PdnYuzf2CUcy8wGiSUe6kpvi2VRJVRF3pounvX5PgvweO+EmNc4Nt/NSgGg0PUlXEyLrIzR4iKyvsKu3AAAveXZakEhnWo+62AZe9+721ydzwuH2RC+I6UqJiHbsibSA9eO3816/J0F+j4PEbl4Kw/Sym9POULqP7uuUrli4WU044o1fS0GLRraBCAAkwrNTg5qaGq8eKueF5/Zv3ZpcbneQ05VSJdqxOxku5+dv571+T4L8HifK6d8Tp39HkikK19c62aGTyK7OUNYsCrfTtp3WW+g+B3RrkRV1EwAyz4enSLBE+wbdyapCtqeyeIlv53OXk78nifwdSSbVzmndVDLT4GOtfrDi5J/OUF5PzXZSb2F1eCKgAOCVHD6VzH6cLDuXS9/OI7G/J4mefCdSFJ5o3VQiw/TirX6w8uHvzlCJdoyKlD/8YOk6rLs02VktBfl5WT2LAkCWBRWvvPKKnHzyyV49XM74+OP9JwhOc/sTzevnZBlI/9+TTP+9c7L6kczKBzIv0VkXVkqVrpIAQCp59jXFsGHD5NBDD5V7773XzGGAM3rioZvOMtDc/ljjK0hVAnKD1k2tX7//MhlOVz+SGfaHYNH6Da3jqKLuEUCKefb91Pe+9z1Zvny5jB8/Xm644QY555xzzKC3Hj2CP5EzVT77TKRly9SlYQAIpkRmYtjVTTiZRZPI44Xj95D/OkbFo/fXOg43aVeoK1RTVW+YXrgGDUvMbAwgl3j2if/4449lwYIFMnnyZHnhhRfkz3/+szz44INy7LHHyrhx42TEiBGS70EBWradOES+JJlOmwCQPm5O/pWTrlEWa9Uj1rA/fbzx42M/DrUY/uoYlQxdtYgsFq/at6/+fpt351wthk7ZjjdFa/uqWbJxyaSY++QXNpVWfW8007yBXJEXSsHQiHXr1skDDzwgDz/8sHzzzTdm2F379u3lN7/5jfzqV7+S1q1bSy7T9LCSkhLZtm2bFBcXZ/pwAKTBhg0iTn/1aeqTfrlgdx/rNl1R0C8mnBZ56/2UF79+NbDQYISV0/SwCwLiFXNH1l4sOmm4WamYuXa1bZDSdHuVPHjZyriPbXWN0sF7QVe1Z5OsnNE3ZY+vgUW305ewYoGcOc9MydcNHTp0kJtvvlm++OILeeKJJ+SHP/yhCTR+//vfS+fOnWXUqFHyzjvvpOKpASAnJNI1yuvBjfq8n366P+gJ3zTQQeo6RjndmjcsihqcuF310Ba12qo2VMVsqnhqKrfHTJECsk1K1zALCwvl5z//ufzzn/+Ua6+91kzS3rdvnwk0jj76aDnmmGNyKriYMmWKlJeXS79+/TJ9KADSzBqMl+4AILzBg9NjcELTqHTVI3zTlRNNoYI/6WpHtIBiZ+MGsrNRvuPAompr/dSooNG6B11NABCAoEJTn3TFomvXrnL77beb64488ki55pprpFOnTvLmm2/KwIEDTQ1GLtDC9WXLlsnChQszfSgA0swajJfKDm9W16jwTdOUrCncTo7Bctdd3z2G0y5UVpva8BUL/f/IFQ1WN/ynpkGePPaLVo4Di2yghdRa9+AmsCjtfYN0HbnIbGU/muPp8QFBk5LWBG+99ZYp2J4xY4ZUVlaaAu2RI0fKpZdeaoII9cc//tEUc19yySXyhz/8QYYPH56KQwEA30h1hzcnXaOSGYpprXAk0qZWj8NJITmF35k15/ihJl3K1GHIbHmrf1Npsqv629tOlhYNG5qC7Q8GPijZSAupm5admlSaUmSHJ7L/kOs8Cyr27Nlj0po0xeeDDz4wqU7Nmzc3hdn6Db2uTITTQOO3v/2tvPzyyzJ37lyvDgMAfM1thzerW5ObzlGJHoO1wuG005TTAXyKIXyZpQFFeKtZXbHY3nT/qUFBy8ZSGKUNbWRnqCB3hdLAoOCAsP7uADIbVGhx9tatW00wcfjhh5sVCJ1V0ahRo5j3a9OmjamzAADEF9kSNl2irXBocGN3TIkUkoevbiAYIlcusqkrFIAMBxUaUPz4xz82wcSQIUMc3+/qq6823aAAAP7GHB3E6wpVOqI8sCsWAHwSVHz66afSrVu3hO93yCGHmA0AUFcitQxed41KBS341rqPaKsb8CdNbdKVCA0cnHSFKixtkrZjA+Afnn2dkExAAQCIzmm3Jrddo9LFKiTXS/ifFm9v2rtXNldXSunNgyW/2L6+IrLWonLjzjobMy2A3ODzf4IAILcl060JsAsQElVnKveBIvl3dpI2e/PlmvKeMqxdR9uuUHZdoqi3AHID/wwBgM9RywC36gQISdLOUF81DsmEtcvlR4cf7PgEgnoLIDcQVAAAkONKCgulaUFh1Inb4XQfnc7dwmGthdJ99ny+WQpaNMqaVrQA6iKoAAD4js65SNWQwGznNEDQfXRfVZCfLzf2PFImfvieo8BCaTCgbWS165OTwCLaAL2ym06Q0jMOr3d9NgQcNXu31BmKFzkwD8gmfLIBABkXPsxPJ3GPHx99X6Zwx+YkQNCAQvfRfS0jOpbJqe07mVWIcGbadpT0KZ1LoW1ktetTuESmcK/+/VyzZWMtxuqXTqzz5/zCptKq741mkjeQbQgqAAAZl0iLWaZwxxctQLDoCkV4QGHR68InbDuhqwmRbWSdtqHNtVqMmsrtsmHRRGladiorFsg6Sf8t7dGjh9xzzz2yMfzrJQAA0sCawo3orADBbrMLKLxkpUZpYOGGNfsiCDS1SVcinAQWldtXSdWeTXW2UE14ohSQQysVy5YtkyuuuEKuvfZaOfXUU+X888+XoUOHSl5enrdHCAAIlHjfNSUy1A/BaFFrt/IRLTVKbXzuY9uUpyDTWglNbdKVCA0cEkmLUqRGIejyQqFQKJk73n333fLYY4/Jhx9+uP+B8vKkffv2MmbMGBk9ejTD8GxMmTLFbNXV1fLf//5Xtm3bJsXFxS7fQgDInA0bRFq3drbv+vX7h99ZdRPjxsUPLO66a/+sDrsp3OGPh9TRAXh9X30h5j5WjYamXTmlQ/Gc1GL0WXZpoKZ064pD9b5tdYq17YIIOxpYdDt9CalRcKWiokJKSkrSfp6ZdFBhWbRokTz66KPy1FNPydatW2tXKo4//nizenH66adLUYL5mdkuU282APglqIjX4Smyy5Pd8xBU+CeosAKLJUOHu0qt0gnci8vvDXRQYRdkfP5877irF5auIxdJwQEtU35cyF4VGTrPdJ1U2bdvX7n//vvlq6++kunTp8vgwYNNYDF//nwZNWqUtGvXTsaOHSuLFy/25ogBAL5hpTLFo/vovnZD/aJttI31V4tap/MrYJ8W5aTeAggyzyq1dDXi7LPPljlz5sjKlStl4sSJUlZWZlYvHnjgAenfv7/06tVLJk+eLFuorgOArKAn/pMnxw4srBawmQwSdFVEVzuibXo7YreodRJYwJ62kNW0Jl2FCN/KfjTHfrYFRdwIINfpT/G89tprJj1q5syZsnv3brOKoQHIrl27JFeR/gQg26R6WJ2b9Ccn9RvMvoivqqamzkqE3fyKRScNT7glbbz0pyPe+HWdSdzZMBTPosHDyhl94+5HETeCcJ6Z8u+NNB1Kt5deekl++ctfyoYNG2Tv3uT7VgMA/MdKZfJbYKPXjRoV/77MvogvmRkWXogs3M6GoXiJYr4FgiClob7WWdx+++1y2GGHyfDhw01AoXr27JnKpwUA5BhdjSgt3b+aEb61b+/8MZh94Z6uXmhhd/imKxxesobiafeooHM628IKLMK7SgF+4/lKRVVVlbzwwgsm5enVV1817VM1w0qXX37+85+bjlBa3A0AgDf/7jhrT4vUi0yHSrTdrNNJ3Hr7ns8310mLCmJqVCKzLYCcCSo++ugjeeSRR+SJJ56QTZs2mUBCHXPMMSaQ+OlPfyqNGtX9yw8AgNshe3qZSEDx5Zf707XsZl/Ae9oVauKH78mp7TvFbTdrTeLWlYh4gUVkWlRQU6O0iLtp2an1ViESmW8BBD6o0AIQDSL+8pe/yJIlS8x1Gky0bdtWzjvvPFNDcfDBB3t1rAAA1Eo0ILCKsdu140X0stWsBg3x6D6rdu6Q5g2LkprEbTcUL1ZqlN4/aCsWkbMpaEiGnAkqtH3srFmzTNG1BhINGjSQYcOGmVWJH/3oR+bPAABkwrJl+2ss3HShSmQ4Xy63mtVVCCeBRSKpURoQhA+8c5oWpXQfDUiCPDAvGtNu1qYuQ4MSILAtZfO//WbhoIMOMisSo0ePNisUiI+WsgCQGD3B1yDBSZqTrkhoalO8E/5YbWrdtKHNtWAkstVstHazbidxb3j2I0dpUdkwhVvRbhY501JWp2XrqsSxxx7r7REBABBlyJ7TE303J+1OC7/t2tDm4kwMu1aziaZGaVASr12tXVpUIqlR2Yp2s/CLpH/tPv74494eCQAAMehJuJ7Ap3oVQB/faeG31YZWVzfcBCO5nhrlVGRaVDaz2s066QpltZuNrMsA0iklv86WLVsmb731lplLcfjhh5sZFaqmpsa0nG3YsGEqnhYAkOX8MGTP62AkW2mdhHZ8cpMalctoN4ucDirWrFkjY8aMkfnz59dep12grKDioYcekosuusjMrxgyZIiXTw0AQMoLv2lDG4wp3NmCdrMIEs/6rW3evFmOO+44ee2118zqxG9/+9vaWRWWn/3sZ6bAW4fjAQAQFBpQ6KpCZEcpJ8GIFn/rJeCm3Wz4ll/UnBcT2RtU3H777bJq1Sq58sor5YMPPpDJWoUWoXnz5tKzZ0954403vHpaAAA8oysR1lC9TAYjuUZTojbtrbtpVykAOZj+9H//93/SpUsXue222yQvLy/qft26dZM333zTq6cFAMAzTNjOjERmWADI8qBi9erVZuidNb8iGi3S1lQpAAByWeSKSLbNr3BLu0Zp9ygt9o43wyKStpmNpAP0gjRl2+1gPIbiId08+/V1wAEHyPbt8dueffHFF2YgRy6aMmWK2aqrqzN9KACQ8/QkXv85itexSffRfVO9KpJt8yuiScUMi0h2cyt0IneXW4eaeRfZaPVLJ9b5s7ajbdX3RlPsDaSDZyH7YYcdJkuWLJGdO3dG3Wfjxo2m3uL73/++5KKxY8eadrsLFy7M9KEAQM6zBurF+p7Li2F6TlnzK3TeRTazZlhoYJFOOolbJ3KHqmpyaiheqCbLP1DwDc9+TZ5xxhly1VVXyfjx42Xq1Km2aVB6+65du+TMM8/06mkBAEjZQD2vUpKcrorkwvwKr2dYaFqTrkJo0BCP7qMTuYM+QM/pYDyG4iGQKxX6LXyPHj3k4Ycflv79+8stt9xirv/ss8/krrvukqOOOkqmTZsmvXr1ktGjR3v1tAAAeDJQz27zaoXCyapIrs6wCN+aN0x8poXWSWhakwYWTustKjfurLMFbfXCGoyngQXgF3mhyGESLnz11Vfy05/+1EzT1g5Q+tBWJyj9/379+smsWbOkXbt2kssqKipMXcm2bdukuLg404cDAHBowwaR1q3rXqdzKDQAiXWbRVObwldF7IbpRd4nl2gr2b6v1p1lteik4Y5qKjQw0FWIyADCrr4iW+otNLWpet+2OsXakbUVXUcuMrMtkDsqMnSe6WmWqAYLOoNi9uzZ8tJLL8nnn38uNTU10qlTJznllFPkJz/5Scx2swAA5MKqCLynKxbJpjVZ9RalI8oD1SHKGoxnoXoCmZSS0rOhQ4eaDQCAXGkN6+XQPNSts4jsHuW0xWwu1lsAmUJHbAAAXGBgXmpFFm4nMhTPqrfQVQgngUUuzK9QzLBAYIIKralYsWKF7W19+/aVcn4DAwCANAzF0zoJTWtyUm8ROTQvGwbmRdZYKGZYwHdBRZ8+feS///2vzJ8/3wQLloceesh0erKjMyree+89N08LAEBGOG0Nm8qhednM6WC8RIfiOa23sCvqLrvpBCk94/B61wc54LBmWDQtO9XUZQBeSPqTNG/ePBMcnH/++XUCCot2exoyZEid69auXStLly6V1157TQYPHpzsUwMAkBFWa1gdUhcrsEjn0LxsHIynKxFOJm6nw+rfzzVbEDpGOZ1foZhhAa8l/etOW8NqJ6fLL7/c9na9bc6cOXWuW7VqlXTv3l2ef/55ggoAQFYOzPNyaF4ushuMl8xQPC+LuIPSMcqaX6GrEE4CC8BLSf/Ke/fdd6WsrCyh+oguXbpIz549zX0BAAiqVLaGtesilWtBijUYL5W8KOL2Y8eo4q4jTFpT+PyKaDMsAC8l/StKJ2UfffTRtrfFmqd38MEHmxoMAABQn913dVY6la6SwDvRirg3PvexbcpTUOdXRJthQWco+CKosKb12Rk/fryZrG2nUaNGsn07S3IAADil9Rtax6FpV7m0YuGVqpqaOulUkUpaNKrTSardb/pL2wv6Jj2hOyjoDAUvJf2r6cADDzTjv6N1eNLNztatW6Vx48bJPi0AADnZTUr30ToOJnLbD8WLZtba1TJp2Qcx97GbfeFmQneQ0RkKaQ8q2rVrJ++//37C99P76H0BAMh1TrtJoT4vC7cTnX0RRHSGQqol/TdH6ynWrVsnr7/+uuP76L7aVnbAgAHJPi0AAFlF6yS0OHv9+rrbsmXuHreqSmTDBvtNb4P97ItsZXWG0pazgK9WKs455xx55JFH5KKLLjITtIuLi2Pur3UUuq+2mj377LOTfVoAALKO192kpk+PvfoRtMJvp0PxEBudoeDLlYrjjjtOTjzxRFm2bJkZfvfSSy9F3ffll1+Wfv36yfLly81AvEGDBiX7tAAAIAZdhYiXTmUVfgdlxcIaiqeBhRs3lB8hi04abrY5xw+VXGR1hgrf8oua23eG2rOpzhaqCcgHBhnhqofEk08+aVKZ/vvf/8rw4cOlefPm0rt3b2n17dctGzZskCVLlsiWLVtMm9mDDjrI3AcAAKRmhoUWc2dj4bfdULxEVzuytV4iFegMhbQGFS1btpR33nlHxo0bJ3/7299k8+bNMnfuXJPiFD6vIj8/X8466yyZMmWKNGvWzM1TAgCQs6LNm73rru9SmewCj2yRjqF4idI2s4lM8fbL9O1k0BkKsbjudq2zKv7617/KjTfeKC+++KIsXrxYNn77G620tNSsXPz4xz+W7t27u30qAABgY/z4/Vs0VtF3tKAEyUtkbkWD4iIzxVuH7gW5M1Tl9lV1Uqb0/ppWhdzm2SegW7ducskll3j1cAAA5LREZljEU1rqxRHBreqKvbLqutlmirefViyszlAbFk10FFhEpkZpQKL310Jw5C7CSgAAsniGhQYmGqBo/QRcvifNGpnVBg0OkqX31Undfhus56YzFGlRUP4JkwEAgKMZFrppHUU8VuvY8EJuJE9XFzR9SQOLXOkMVdi0i6PZFhpYRAYkyC1J/5q55ZZb5IgjjpAf/ehHST+5tqH94IMP5Prrr0/6MQAAyMUZFpdfLnLxxbFXICI7Q8E9rYfQ9CVdbXBayJ1I3YXfJJoahdyV9K+aG264QUaPHu0qqHjuuedk2rRpBBUAAPhgaB6cr1j4LX0p3alRTtKikFv4/gIAAACOUqMsjMGDp0GFrjQsWLAg6ftbrWcBAAAybcu+ugXYDMwD0hRU7Nixw2xuWIPycoEO/9Oturo604cCAAAinLhgdp0/Ny0olBt7Hmmmead6YF7QB+MBSQcVK1eu5NVL0NixY81WUVFhhgYCAOAnVVUUfofbXlUpEz98T05t38lM8/aKXeG2XwfjASkPKsrKvI3aAQBA5kyfHn8mhtWiVlvdBp2mNulKhAYOsejt2yorpWVRUU4OxgOc4lMLAECO0xUKJ0P29HbdT/cPOl150NQmDSzSMTAvkcF4QBDR/QkAgBynsy6cTu3W/XT/bGhlq7USmtqkKxHhxdqRtRVeDMzTVQg3k7gBvyOoAAAAOUtXLFKd2hRtYF7QB+NF0tkVkYtYDRqWmHa0yH68ywAAoJ5ly0RKS7X9u0h5OS+QW7kwMM9uGF5+YVMzkVsH6CG7EVQAAIB6NKDIhhSnVKiqqamTMhXJzXyLbGs3W1O5XTYsmmgmcrNikd0IKgAAyFHWDNpEZ9FG7t+8uUhBQW4MxZu1drVMWvZBzP3dzLcISrtZTWvSVQgNGuLRfar3baszkRvZJ4t/BQAAgFiSTWuKvF82tZq1k2jhttfzLfzYblZXHTStSVchHAUW1FtkvaSDig4dOshVV10ll112mbdHBAAAAsVqNXvWWdm9YpEIJ/MtrHazTrpCWe1m/VSXoXUSmtakqxCRAURkfQX1Ftkv6XD3q6++kqVLl9reNmfOHNm+PX7UCgAA0kNTlHRFwQndT/dP5H5Wq9lsGYqXDla7WadzLLTeonLjTkdbqKpG0rVioWlN4Vt+0bcfHof1FqGaLBh8gtSkPw0dOlTGjBkjjzzySL3b3n33XTnwwAOlnFYSAACkja4gaIqS06nZ1oqD0/tlC2sonqYvxZu2fUP5EXLat3UTyc63SKTdbCLtZzNZh0G9RW5K2SJlKBSyvX7q1Kkybdo0qa6uTtVTAwAAG1rzoClKsVYU7Iqu7e6Xza1m7YbiednhKR3tZjNZh5FovQWyA5mPAADkEA0YkmkVm8z9qqoSD2ByaShezOdPoN7Cj3UYidRbIDv4o4UAAAAIPF292LBh/3b33SKFhSKtW0ffdBbG9OmZPmp/SrTewo/c1FsgeHz6/QAAAAiaRNOh6BqVXL1FNHZ1GEC6EFQAAICMsbpGMb07ffUWgO/SnxYtWiRTpkyRf/7zn7Jp0ybvjgoAAGRNi1og7mC8PZvqbLSZzbGVio8++kguueSS2j+3bt1aevTY37rs66+/lrVr10rHjh3dHyUAAPCVRFrN3nXXd9O2s7lrFJLDYLwcDyqeeeYZWbx4sdmWLFkimzdvlm+++cZsavbs2VJWViYtW7aUPn36mK13795mPwAAkLstagGng/G0g5QWfMP/kn6XzjjjDLNZVq9eXRtkWIHGxo0bzaYBxquvvurVMQMAgIC3qEVuYjBe9vIs9NNVCd1GjhxZe92aNWvqBBl6uX79esnLy/PqaQEAABAQDMbLXkkHFevWrZMOHTrE3KdTp05mO+200+rcT4MLAAAAq84i29Omqmpq0jah2+8YjJedkv7r2rlzZ2nbtq2plejbt6/069fPXLaKswaqgUi8YAQAAOQOu8Jt7SylheBWgXeQzVy7WiZ++J5sr4oeVKgbyo+Q0zqW5UTAYQ3GC1eVsaNBRoOK9u3bm1WHF198UV566aXa63VlIjzI0K2EnnMAACAB2lFq1CiRIUPqrlgEbQVDVyicBBRq0rIPzBapaUGh3NjzSBlhE3AAfpH0X0utl/jqq6/knXfeMdvbb79t0pq++OILc9vMmTNr9+3evXttkKGX2gWqcePGXv0MAAAgYPMt4rWhtbRvH+wVDE15chJQxKL318Dk1PadEl6x0CnbkQqaNTJD9QAvuYr127VrZ+olrJqJSZMmycSJE81sikMOOUQqKipk6dKlsmLFCvnss8/kqaeeMvs1aNBA9u3b581PAAAAsnK+hR29j95XW9kGacXCLQ0sNEBpWVSU0P0+GPhgvesaFBdJl1uHSquf7p8tBnjBszD14YcfNgHFnXfeadrLzpkzx6xg6FyKRx55xAQaoVDIpEc1bNjQq6cFAAABo6sMWpy9fn3d7csvnQcWsWZj+N2c44fKopOGm03rKNKtumKvrLputoSqatL+3MhensX499xzj0lruvzyy+tc36hRIxkzZoyZaTFs2DCTHqUrFwAAIHdFm2/x178mv4rhN1v27bW9vnnDotoVh/O7HyLndT2oXmcove+JC2Yn9Hya1qSrEBo0xKP7VG3dLYWlTcTPavZuqVPArXMuGIaX5SsVmt500EEHRb29adOm8uyzz8qGDRvk7rvv9uppAQBAlq9iLFsmgaRBgZPAQOskNMgI3zTwSJTWSWhakwYW2WL1SyfKyhl9a7fPn+8tFSu/q9tFFq5UaCvZ5cuXx9xHW9Aef/zxplvU7bff7tVTAwCALMKU7uRpnUTpiHKzChFZsG1XXxE0NZXb5Zt/j5fGbQeI5DWocxurGFkSVJx88smmdmL27NkydOjQqPtpOtSqVau8eloAAICM01kS2vo1Xqcn3Uf3TSVdsUgmrUlrLCKDkXR2jdKgIL+wqQkc4lk58wf1rtP7tup7oxmuhwAHFdddd508+eST8rOf/UymTZsmP/nJT+rto92g3nrrLa+eEgAAwBc0hUlnScSaSWHNm/DjILsNz35kirdj1WOkumuU1kpoULBh0URHgUUkvY/et2nZqdRdBDmo6Nq1qzzxxBNy1llnyciRI+W4446Tc889V37wgx+YmRSaGnXTTTfJ+vXrZdCgQV49LQAAgC/ocDqdJRFZdO33ydi6QhEvoAjvGqXpValasdBVBg0KqveFVeqHqm1XJqIFFnrfyGndSD1POzzr6sT8+fNl9OjRsmDBAvnnP/9Z53ZtKVtUVCR//OMfvXxaAAAAX7CKrtPVTcpNoGINxtNLJx2j0tU1SlcsIoOCNkfdlfQKBtLD87ExP/zhD2XZsmVm0N2MGTPMlG1dndDuTwMHDpQbbrhBevXq5fXTAgCAHKIdouymdWfzQDy7TlJWSpWukiQqSIXbtisY37ac1Q5RyLyU/NXLz8+Xs88+22wAAABeKy+vf11Jyf5p3dqWNldo/YbWcWjalZepVUe88WspaNHIV12j7FYwwmdYRJttoegM5eOg4rnnnjPD7LReAgAAINN0YN6oUSJDhtRfsQjaKobTblJK99E6jlhpV4kMxtP9DujWIqWdnlLJbuWCzlCpl/SnRbs86WyK008/3RRoa2cnAAAAr2lAoKsQTrVvL9K6dd2ttFRk+vTgdZPSwMILTgfjWR2eghpQxOsMFaqxW9uAF5KO2SdMmGBqJmbOnCmzZs2SwsJCGTJkiAkyhg8fLqX6tzfL6OC+yOJzy6233irXXntt2o8JAIBspysMmtY0btz+1Yhk6P30/medFZwVi2jdpLRg28mkbqeD8dI5iyKTsy3oDJVaeSFtyeTCf//7X5MKpQHGkiVLJC8vz9RUHHvssSbAGDFihLRr106ygRagR67I/PWvf5X7779fPvjgA/n+97/v6HH0MUpKSmTbtm1SXFycoqMFACC7VFWJbNlS/zpdmXBq/XqRVq0k0Dbt3St9X32hznWLThqekq5TlRt3yuLye+tc12fZpSnt/pSoipUzHXeG6jpyUda3m63I0Hmm66Ai3OrVq+X5558329tvv21ayGqAobMqNMDQ+RVdunSRbNK/f3/Zs2ePLF261PF9CCoAAPCOpjU5XcUgqMi+oEJpWpOTzlAEFanj6fpWWVmZjB8/Xt58801Zt26dTJ482QzBe/fdd+XKK6+U7t27S9++feWWW26RTz75RILu008/lYULF8o5udRmAgAAn9F/hrXFrAYM4duyZZk+MqS7M1T4ll/UnDcgjVKWNNe2bVu56KKLZN68efLNN9/Iww8/LCeffLJ89NFHZlbF4YcfLnfeeafr5/nPf/4j//u//2sG7vXs2VMKCgpMCtakSZMc3f/ZZ581tRLNmzeXJk2ayBFHHCF33HGHVEaZhhlu+vTpte1zAQBA5midhKY1hW9ZWN4ZldZZaFqUtVXV1GT6kJBj0lKq1KJFC/nlL39pNk39+fvf/24KvPXk362pU6fKvffWXZZz6rLLLjP31UBk8ODBcuCBB8prr70m11xzjTnGV199VRo1ahT1/tr1SldiOnbs6OInAAAAcCeycNvNUDwgrSsV+s2+dnu66qqr5G9/+5sp2HZCC0Z+8YtfmOLuK664Qtzq0aOHSa3SE/zly5fLKG1Q7YB2rNKAQgOJd955R2bPnm1qQTSlSVc83njjDdPhKhqtGfnss89IfQIAAL4diseKBXy/UqEV5fPnz5cFCxbUXqcn6L169ZLevXtLnz59zOX3vvc9T1Ykorngggvq/FnTkZzQug6lbWD1OC3aCle7OR1zzDGmJkQDC62gt0t9OuCAA+SMM85w/TMAAAB4PRjPyVA8IONBhbaPXbx4ce324Ycfyvbt2+Vf//qX2axAQtOHtE7BCjL0UuspnJ78p4IWkWuBtbKrhxg4cKB06tRJ1qxZIy+//LL8/Oc/r3N7VVWVPP3003LqqafSEhYAAGRkMJ6uRDiZuI26HaGqIuZcaJE33Ev6VdQVCd3OP/988+fq6mr5+OOPa4MMDTp0dsOuXbvk3//+t9msQEO/4d+5c6dkynvvvVdb69G1a1fbfbRLlQYVum9kUKGpUhs3bnSc+rR3716zWZg+DgCAf2dfhE/y9uugPLvBeMkOxXMjVFUTqGF6kS1mdXBeq743SnHXERk7pmzh2V+VBg0amOFvuo0ZM8ZcV1NTYwbGWUHGiy++KCtXrjRzHTJJj0F17tw56j66UhG+b2TqU8uWLeWUU05x9Hw6bfvGG29M+ngBAED651to9rNO8vZr53hdsYiX2qSBhl36lN7XrQ3PfiSrrpst1RX1n8PSoLhIutw61Ezz9iMdmKeD85qWncqKhUspjb81xUnbtG7YsMEUQ69atUr8QNO0lB5bNFofYreqsGPHDnnhhRfkvPPOk8LCQkfPd91115n5HRZ9TCtoAQAAmVmhiDcwT2/Tfc46y78rFvHYrVx40RlKVyjiBRRKb9f9SkeUp33FQlObdCUi3qRtvV0H52X7pO1US8lfEe0Epd2dtJvS+++/b67T6dp6Iq1TtXW6dlBpsJFo6lZRUZHZAACAP2jKk5MJ3LqP7qtzL7KtM5SmTyWzYlG1ebfZ4gUUFt1PU6TSPYVbayU0tUlXIuIFFvBRUKFD7axAQlOerEBCp2hrEKFbv379xA+aNm1qLmMFB7oiYbXABQAAyJauUG47Q30w8EEJCq2V0NQmXYkIL9aOrK2ILOBWFHGnMajQOgkrkFixYoUJIlR5eXltIKE1Fn7TpUsXc6mF2NFYt1n7AgCA4Nu4se5luG+/E5XycgmkTHeFOuKNX0tBi0ZmFcNPgYeuWISnNkUGDyoyyFAUcacpqOjWrZusXr3a/L8GE0ceeWRtIHHooYeKn+mxqk2bNplCbLsOUIsWLTKX4TMsAABAsMUKGEpLJfDsukJF6wxlV8QdKdQoX/KLi6QmTqqTFmQf0K2Frzo9uUURd5qCCi261haxuipx0003mZkNBQGpYurYsaNJxdJZFU8++aT87ne/q3O7TtPWlQqtgxg2bFjGjhMAACAVXaGU0/azA3/WTEY/sUGa7K6J2eEpVkChqxd+aTfrtIBbUcTtnKsoQFcotH5Cp0o3bNhQevToUWeatqY+6fV+dP3118uIESPktttuM61hrRUJXb246KKLzP+PGzfOdpp2sqZMmWI2nekBAABSS+dM6D/jTgqydT/dP9rMilz2xlHF8lb/ptJkV7Uc2KBQ5g06WQry988ecxoc2KVDZardLAXcqZEXsgohEqS1FOGD7jZv3vzdg3475E5XLnQlI3yatk7X1uF3XtHntoIA9dlnn5nBdLoa0aFDh9rrZ86cKe3atatz30svvVTuu+8+0xp2yJAhpsXsvHnzZOvWrTJgwACZM2eOmQjuNW0pq8HKtm3bKAQHACCDsygi51Fs2CDSunXd29evD373p6qaGuk9+wVPai0WnTQ85kpI5cadsrj8XkePpYFF308uz8iKRaimqk4Bd7Qi7q4jFwWq3WxFhs4zkw4qIml9hRVkWIGGntxHBho6JO+www6TpUuXevG0smDBAhk0aFDc/bR2wq7o+plnnjGrB9r6trKy0nSr0knZl19+ecpWWQgqAADwx9TsyMnZ2RpUqJlrV3tSxB0vqNAZFosOu9txy9k+yy5Ne7vZaKr2bJKVM/rWuY6gIs1BhR2tSwgPMvRy/fr1JsDI5RQgggoAAPzJbVARK4AJD14yuWIRWcQdi12Bd7ygwum0bQtBRXacZyb90V63bl2d9CI7OuxOt9NOO63O/TS4AAAACAK79rN2AUK8VKvwNCu/F3G7pXUSOkVbh96F81u7WfggqOjcubO0bdvW1En07dvXdFPSy1ZxQnkNROIFIwAAAH5uQxsZIOgKRbzaDb1N9znrrMyvWKSD1kn4Ja0JqZf0R7p9+/Zm1eHFF1+Ul156qfZ6XZkIDzJ087KDEgAAQKZFBgia8uSky5Tuo/tmQ40G4ElQofUSX331lbzzzjtme/vtt01a0xdffGFu025LFi1+toIMvdROUI0bN072qQEAADLehpYAAfiOq8U3bdGq9RJWzcSkSZNk4sSJpp3rIYccYgpFtMvTihUrTKvXp556qrYD1L59+9w8NQAAgOd01UHTmuKlMjmxbFn8Kd5AtvCsKfDDDz9sAoo777zTtJfVGQ+6gqHzKx555BETaGijKU2P8utAvFTT1rU6t0NXawAAgD9pnYQWZ2vXp/DNChKcKi3dvyHYdHaFtpoN33TGBeryrEzonnvuMWlNOt8hnA6PGzNmjJm6PWzYMJMepSsXuWjs2LFms1p9AQAA/65YOKl7sDpD2XWIylbaZjZcSWGh6SqVrSKH4an8wqbSqu+NUtx1REaOKauDCk1vCm8dG6lp06by7LPPSrdu3eTuu++W22+/3aunBgAAyIhcTG2KnFvRtKBQbux5pIzoWObJ4+vwvMhWtJaCZo0yMn07Uk3ldtmwaKI0LTtV8vJzoJWXA569CtpKdvny5TH30Ra0xx9/vOkWRVABAAAQfDqhWyd1n9q+U1IrFjq7wrLxuY9l9e/nRt23QXGRdLl1qJmDkQoNGpaYVQgNGuLRfar3bZOCA1qm5FiCxrNQ7+STT5YPP/xQZs+uG71G0nSoVatWefW0AAAAae0M5YTup/sHnaY26UqEk8AikUnd4XQY3uLye80WK6BQOqFbJ3XrakYq6KqDpjVpYIEMBRXXXXedCRh+9rOfyf/93//Z7qO1BG+99ZZXTwkAAJD2zlDxAgtrMF42DLjTlQdNbXISWKSLBhbR0qO8oHUS3U5fIl1HLqqzlf1oTsqeMxt49nHv2rWrPPHEE3LWWWfJyJEj5bjjjpNzzz1XfvCDH5iZFJoaddNNN8n69etl0KBBXj0tAABAWjtD6cA7HWAXja5QZENAYdFaCU1tCl+J0GLtyNoKJ7QmQlOYNDDwM12xiExrot9TbJ5+5H/yk5/I/PnzZfTo0bJgwQL55z//Wed2bSlbVFQkf/zjH718WgAAAN91horGrlOU3wMRXbFoWVTk+nG0yFprIjSFKV5gUXbTCVJ6xuGm5kJTpHzbbtamLiMvB4u3Pf+Jf/jDH8qyZcvMoLsZM2aYKdu6OqHdnwYOHCg33HCD9OrVy+unBQAACGzHKCtlSldCsqXVbDT5ww+WrsO6S5Od1VKQn+frLk/x0G72OykJo/Lz8+Xss882G+oOv9OturqalwUAANTS6d06xVtTq/y8YhFLoulQblrRhneM8lsgUlO5Xb7593hp3HaASF6DnFnByAtpThLSyhp+t23bNikuLubVBwAgS1VV7Z+qrUGDEzq5201qVbps2rtX+r76guvH0cBiydDhMVvRVm7caTpDxZPqdrM6Rfvz53s7ajdrJ10D8zJ1npn5cA4AACDHO0Zla6vZVLaiDVq72ZpvB+ZpcJKNEl6D2bBhg3z55ZfSvXt3OfDAA+vdvn37dnnvvffk2GOP9eoYAQAAsq5jlBZsB3Uit9VqVofeaWCQ0udKoGOU1W62sLRJSo5FVxl0irYOvasjVC0rZ/4gpwfmOQ4qqqqq5Fe/+pVMmzbN/Llhw4Zy4YUXyq233mrmU1i0SFtbxlI3AAAAkFjHqCB1hrJrNRtPMq1oE+kYlal2s6rNUXeZlYhk06OCzvFH9L777pOnn37azJro06ePaRer1+nlK6+8Im3atEntkQIAAGS5oHWG8qrVbDxaJ1E6orze0Ds/tZsttlnF0Jazdh2ispHjmopHH31UJkyYIL/73e/k5JNPNisUCxculJ07d8rRRx8tK1asSO2RAgAA5HBnKC36zmW6YqFpTeFbQYvvsmX8IO/bVQxryy9qLrnCcVCxcuVKEzyEKy8vl3//+9/SokULGTBggCxZsiQVxwgAAJB1NK3JaQG3BhaxpngDgQkqSktL5Ztvvql3fcuWLc0U7cMPP9zUUsybN8/rYwQAAMg62doZCrnJcVChdRSzZs2yvU27QGldxeDBg83EbAAAAMSndRJanK3zKcK3Zcvq76v7bdhQd8v1lCgEMKjQ6diaArVp0ybb27Ub1PPPPy+//vWvpXPnzl4eIwAAQNZ3hgrfdGCeXRF369Z1N91v+vRMHDWSVbN3i1Tt2VRny4bZFY67P51xxhlmiyU/P18eeOABL44LAAAADou4dQ6GH9vOZoJ2hLKbdaGF3n6w2qYbVLqmbacSH780mjJlitmY4QEAAJwUcWvQ4LSI28kcjFxg12JWh+fprAttTetHNd9O29aWtNpBKoiSDtk6dOgg99xzj7dHk+XGjh1rhgNqK14AAIBoKOL2lg7N0+F5oaqatH7oGjQsMasQTljTtoMq6aDiq6++kqVLl9reNmfOHNm+PTenCQIAAKS7iDtXaVqTrkI4DSz2fL5ZKjfurN1SHWTk5ReYtCangUWQpWR9ZejQoTJmzBh55JFH6t327rvvmm5ROuMCAAAA8Yu4s9mWfXvrXVdSWGimdcejdRKa1qSrEBo0JJoalY60qGKbSdvZOG07ZUlboVDI9vqpU6fKtGnTqCsAAACAnLhgdr1XoWlBodzY80gZ0bEs7iukAUHpiHKp2rq7XsG2XX2FXVqU3j+Vhdx5307arnN8kl38UQYPAAAAfGt7VaVM/PA9qapxlp6kAUFhaZM62wHdWjhKjdLAIjIgQeIIKgAAAAIucjCeX4fiaVqTrkI4DSy2VVYm/VxWapTTmgu4E8yeVQAAAKgVWaqq7WgnT95f7O0nWiehaU26CqFBQ6L1Fk5rLWKlRjlJi0LiCCoAAACyjJ+H4mmdxKntO9VbhdAAIrK+IvLPidRaRKZGBWbattRvSxuE2RWujnDRokVmmFuPHj3M1rJl3QIUAAAAZGYwnp+H4ulqQ8uioqRrLTQoSWTFIihWB3jatqt346OPPpJLLrlEBg8eLK1bt5Z27drJiSfufzG+/vprWbt2rVfHCQAAgCwejOe03sJtrUXQ1Hw7bTtU49NCGbcrFc8884wsXrzYbEuWLJHNmzfLN998YzY1e/ZsKSsrM6sXffr0MVvv3r3NfgAAAEie1kpoapOuRIQXa0fWVuh1disdfkuJSqbeIugafDttW4MGp9O2I9vS+kleKNpAiQStXr26NsiwAo2NYZ/kvLy8OvtXV1dLrqqoqJCSkhLZtm2bFBcXZ/pwAABAFtCuT61bx9/Pr0XcFm0jG74SYVdrseik4UmlTymdpL24/N461/VZdmlG6i4qVs40qxBOAouuIxc5CioydZ7pWZyqqxK6jRw5sva6NWvW1Aky9HL9+vX1AoxcofUnuuVyQAUAADLLz0Xcbuotgqg4i6Ztp/Sj1KlTJ7OddtpptdetW7fOBBe5aOzYsWazIkgAAIB0F3D7vYg7E7TNbKSCZo1SOmU70Wnbdp2h7FTtib/qkQppj087dOhgNgAAAHhfwK2rEE4CC3zHbm6FDs3T4Xk668IPVjtcudixy9kUcq9lXy8uAACAHKV1ElrSun593W3ZsvhTuP08iTsTqiv2yqrrZkuoKjMn6UHjw0w6AAAAuFmxcJLWFNkpKghF3F7QtCZdhdCgIR7dR6dxp7uIu0ECnaH8gpUKAAAA1CnizuYVC62T0LQmDSz8Ki+/wAy808AiKFipAAAAyHIUcdeldRKlI8rNKkRkwXZkfUWmiriLo3SGiqeiYrvIr7pKuhFUAAAAZLlsK+LW2RV2E7m1Ha1TGhQ4SWvKZBF3nk1nqHgK9sWfSp4KBBUAAAA5OoU72iRuv4schqeaFhSaidwjOpalrYhbVzvS0XY2CHgVAAAAcqyIO3wrLZWssL2qUiZ++J6ZyO22iNsJq4gb+xFUAAAAwLc0rUlXIZwGFtsqK7O6iNuvSH8CAACAb2mdhKY16SqEBg1+KuLGdwgqAAAA4GtaJ3Fq+071ViG0YNuuviKcpkNFW72IVtzttIgb3yGoAAAAgO/pyX/LosTSkmauXR1zhSOdxd3ZjqACAAAAWUdXKOKlTFnF3boKkkg72mhCVTVRi7fTMdsikwgqAAAAUK/NrN0APe0eFRSa8uSkBsMq7k50FSRyMN7G5z6W1b+fG3XfdM22yJQAfTSCb8qUKWarrq7O9KEAAABEZTe3oqRk/wA9nXcRhMF4dgPyvJZI4XZ1ls+2IKhIo7Fjx5qtoqJCSvRvJgAAQEDoJG6dyK0D9Py8YhGrcHvO8UPj7pNK1d/OtsjGInAffyQAAACQaprWpN91atAQj+6jE7l1aJ6qqqo/oTvysf0UgDRvWOR6MJ4GBqgv+9ZeAAAA4Jie9GtaU6JJFNOn75/G3bp19E1v1/38MBhP99P90zEYr+ymE6TPskvliDd+LbnCR7EjAAAAMkHrJDStKXLVQQu2I+sr9DpdoRg1KvMpU04H41mtY912eIo2GC+XujxFQ1ABAAAAc9JvpTUlWsSdSMpUugbjORlylwwG49kjqAAAAEDODcaDt3JvbQYAAAAJFXE78eWXIuvXiyxbxoubiwgqAAAAkHQRt97217+KtGu3P8VJi7ORe0h/AgAAQMJF3H5tG5sMu0F5XtZh5IKAfwQAAADglyLuoLIbhmd1jNJCcMRH+AUAAABE0Ba12qq2qqaG18YBggoAAADkjEQG5mlgEatVLb5DUAEAAICcYQ3McxpYeK1q826p3LizzhaqCv5qCDUVAAAAyCnRBuZpwbZdfYWXPhj4YL3rGhQXSZdbh5qJ3UHFSgUAAABydmBe+Na8YWYG6FVX7JVV180O9IoFKxUAAABIqY0bs7MVbTwFzRqZVQgNGuLRfaq27pbC0iYSRKxUAAAAIKXKy0Vat6676ZC86dOz+4XPK8g3aU0aWGS7LI8PAQAA4EfbtomMG7d/sF42r1i0+mkPKR1RblYhIgu27eorgiqL30IAAACkm6Y1lZTsDxri0X10Unc2D9azViycpDVpoGGXQqX39zuCCgAAAHh3clkgMnny/lUIJ4EFvhNt5aLsphOk9IzDxYnK7TslEwgq0mjKlClmq66uTufTAgAApNU55+xPa9JViMiCba2viLwuF4u4E7H693PN5sTOmj2SCf5fS8kiY8eOlWXLlsnChQszfSgAAAAppUGBpjWFb1qcHSlXi7gLvu0MlS0IKgAAAODLIu6qKslaeVnWGYqFJQAAAKQFRdzOOkOpjc997DjlyQ8IKgAAAJCeE0+KuB13hmr3m/7S9oK+tgFHLBXbK0S63SzpRlABAACAwBRxR5ONxd15DlvRhitsmJmGQFn20gMAACAoRdzxRAYZsehsDG1lq0GLl7bs21v/uQoLpSCf0uRwBBUAAAAIvFRN6D5xwex61zUtKJQbex4pIzqWefdEAUeIBQAAAN8UcbthTehOte1VlTLxw/ekqqYm9U8WEAQVAAAA8E0Rt9vAwg1Na9JVCKeBxbbKyjrXVdXUyKa9e223bA9ASH8CAACAr4u4o7Er7nZD6yQ0rUlXITRoSMTMtatj3i/bU6YIKgAAABC4Iu5U0ZP+U9t3qrcKoQXbdvUVqqqmJm4gYqVM6WNnY5E3QQUAAAAQfoKcny8ti5xPut5WWeloZcNKmUrksYOCoAIAAABw0W52i03b2VxDUAEAAAAkIVo6lJpz/NC4+2QTggoAAADAY80bZl+KUywEFQAAAMga2hHKbgaG24F4VrtZJ7UTTQsKzf6Rxd7ZLPtKzwEAAJCztMVs69Z1t9JSkenTvWk3G2+ORdNvW8dG6/Ck9RfZOMMiLxQKhTJ9ELmmoqJCSkpKZNu2bVJcXJzpwwEAAAikDRv2Bw1O6FA9XcVwu2KhAUCsFYiSwsLagEIDhr6vvhD3Mb2cYZGp80zSnwAAABBImtakwcK2bfH31X10qJ7bGRiJtpt1IhtmWATzqAEAAJDzdNVh8uT9gYUflXxbh+GENcMiqAgqAAAAEFjnnLM/rWn9+rrbsmWZPjJxXIeRDUh/AgAAQOBXLNymNaXKiI5lJq0pchVCC7azaYYFQQUAAACQyhPufO/rMPyGoAIAAADwgS379sbsJuVnBBUAAADIycF4XgzF89KJNulQXrabTSX/hz0AAABACgbjeTEUL9W2f9tu1u8D8ggqAAAAkJN0dsW4cSJVVel/7pIsazdLUAEAAICsHYzndCheuhVkWbtZH2WRZb8pU6aYrbq6OtOHAgAAkNWswXi6EuFk4nYmjMiidrN5oVAolOmDyDUVFRVSUlIi27Ztk+Li4kwfDgAAQNbS1KbwlQgt1tbainA6LC98zkXkfSKlusB709690vfVF+pct+ik4Y7a0mbqPJOVCgAAAGStRAfjaeF2vNUNTavSVRCd5o39qKkAAAAAvl2hcJIulckCb79ipQIAAAA5zZpfoZdO6y+sAu9EVkGyGUEFAAAAclpkjUVQpm3b2b7X2X5eI6gAAAAAoli2bP+QPLsC73Q60WE3qJpduyQTCCoAAACQc/MrnKQ56X4HH5zaTk/ZgkJtAAAA5Nz8iniD8awOT5kIKEoSmLbtF8RdAAAAyCnaCvasszI7i8LJtO2JH74n26vqDsbzK4IKAAAA5JxE51f4Zdp2PNsrKqSrpB9BBQAAAOBDBfn5jqZohytMcH+vUFMBAAAAwBWCCgAAAACuEFQAAAAAcIWgAgAAAIArBBUAAAAAXCGoAAAAAOAKQQUAAAAAVwgqAAAAALjC8DsAAAAgCRs3Ot+3efP9U7yzVRb/aAAAAEDqlJc737ekRGTyZJFzzsnOd4T0JwAAACDFtm0TGTdOpKoqO19qggoAAADAQfqSrja4DSy2bMnOl5qgAgAAAIhD6yE0fcltYJGtqKkAAAAAHNB6iLPOcr7asHFjYnUXQUZQAQAAADg9eS4QadWKlysS6U8AAAAAXCGoAAAAAOAKQQUAAAAAVwgqAAAAALhCoTYAAACQJhs32s/A0ALwIGOlAgAAAEiT8nKR1q3rbqWlItOnB/stIKgAAAAAMmjbNpFx40SqqoL7NhBUAAAAACnQvLnzCdwaWDgdqudHBBUAAABAChQUiEye7DywCDKCCgAAACBFzjlnf3H2+vV1t2XLsuslD3idOQAAAOD/FYtWrSSrsVIBAAAAwBVWKgAAAAAfqqpKvHh7+3bJCFYqkvD0009L//79pXHjxtKiRQsZMmSIfPXVV96/OwAAAMhJ06fvn18ROdMi3ta9e2aOl6AiQX/6059k1KhRcsIJJ8hLL70k06ZNkz59+siePXtS8w4BAAAg51Yoxo3b32Y2KEh/SsCKFSvkuuuuk3vvvVd++9vf1l7/4x//OBXvDQAAAHLQli3BCigUKxUJePTRR6Vhw4Zy/vnnp+4dAQAAAAIm8EHFf/7zH/nf//1fGT16tPTs2VMKCgokLy9PJk2a5Oj+zz77rBx//PHSvHlzadKkiRxxxBFyxx13SGVlZb1933rrLTnssMPk8ccfl7KyMvNcuv8//vGPFPxkAAAAwH461yJy1oXd9tlnkhGBT3+aOnWqSUdKxmWXXWbuq8HB4MGD5cADD5TXXntNrrnmGvn73/8ur776qjRq1Kh2/6+//lrWrVsnEydOlNtvv13atGljAprhw4fL+++/L4cffriHPxkAAACwnxZtO5l1UVQkGRH4lYoePXrIlVdeKU888YQsX77cFFE7MWvWLBNQaCDxzjvvyOzZs+X555+XTz/91Kx4vPHGGzJhwoQ696mpqZEdO3bIww8/bJ7npJNOMvdp27atCTIAAACAXBT4lYoLLrigzp/z853FSbfccou5vPbaa6V3796115eWlsr9998vxxxzjEyePNkEFiUlJeY2TZFSgwYNqt1faywGDBggH3/8sSc/DwAAABA0gV+pSIamMC1cuND8/9lnn13v9oEDB0qnTp1k79698vLLL9deHy29KRQK0VIWAAAAOSsng4r33nvPXOrguq5du9ru07dv3zr7Kq2dUPPmzau9TgMPTZWy9rej+1RUVNTZAAAAgGyRk0HFypUrzWXnzp2j7qMrFeH7WkHFUUcdZVKu/vKXv5iuTyNGjJAtW7bI1VdfHfWxbr31VpNCZW3WYwMAAADZICeDiu3bt5tLbSEbjRZwq/BVBa3XePHFF2XYsGFyxRVXyMiRI03htnaMitX5SQfmbdu2rXZbs2aNpz8PAAAAkEmBL9RON02Z0iF4ujlVVFRkNgAAACAb5eRKRdOmTc3lzp07o+6jKxCquLg4bccFAAAABFFOrlR06dLFXMZKQ7Jus/YFAAAAUmnjxrqXQZKTQcWRRx5pLjdt2mQKse06QC1atMhchs+wAAAAAFKlvDy4r21Opj917NhR+vXrZ/7/ySefrHe7tojVlQqtg9CibAAAAADR5WRQoa6//npzedttt8mSJUtqr9fVi4suusj8/7hx42qnaXthypQpUl5eXhvQAAAAIDc1by7i9DRT99P9/SwvpOOgA0wDAisIUJ999pls3LjRrEZ06NCh9vqZM2dKu3bt6tz30ksvlfvuu08KCwtlyJAhpsWsDrbbunWrDBgwQObMmSONGjXy/Ji1Ta0GK9pelkJwAACA3DR9un6JLbJtW+yAYvJkkXPO8fd5ZuCDigULFsigQYPi7qe1E3ZF188884xZQXj//felsrJSunfvLuecc45cfvnl0rBhw5QcM0EFAAAAVFWVyJYtEpWuUBQkUAVNUJFDCCoAAACQTeeZOVtTAQAAAMAbBBUAAAAAXCGoAAAAAOAKQQUAAAAAVwgqAAAAALhCUJFGDL8DAABANgr8nIogoqUsAAAAUoGWsgAAAAACifQnAAAAAK4QVAAAAABwhaACAAAAgCsEFQAAAABcIagAAAAA4ApBBQAAAABXCCoAAAAAuEJQkUZM1AYAAEA2YqJ2BjBRGwAAAKnARG0AAAAAgVSQ6QPIRaFQqDaSBAAAALxinV9a55vpQlCRAZs2bTKXnTp1ysTTAwAAIAfON0tKStL2fAQVGdCiRQtz+cUXX6T1zU6Ffv36ycKFCwP/nG4fM9n7J3I/J/u62Ue/2dBAd82aNVJcXCxBx2cz+dfB68+lk/1i3Z5Nn81MfC5T8bxePB6fTX/hd2awfmfG2mfbtm3SuXPn2vPNdCGoyID8/P1NtzSgCPo/kA0aNEj7z5CK53T7mMneP5H7OdnXi330tqB/LhWfzeRfB68/l072c/I42fDZzMTnMhXP68Xj8dn0F35nBut3ppN9rPPNdKGlLFwZO3ZsVjyn28dM9v6J3M/Jvl7tkw34bCb/Onj9uXSyH5/L1PL69fXi8fhs+gu/M4P1O9OPvzdpKZsBtJSFH/G5hF/x2YRf8dmEH1VUVJhsGE2DSufKKCsVGVBUVCQTJ040l4Bf8LmEX/HZhF/x2YQfFWXoPJOVCgAAAACusFIBAAAAwBWCCgAAAACuEFQAAAAAcIWgwueee+45GTFihBli0rhxYzn88MPlT3/6k1RWVmb60JDjZsyYIQMHDpTS0lJTDNatWzcZP368bNmyJdOHBhhVVVXy/e9/X/Ly8uSpp57iVUFGLViwwHwWI7cePXrwzsAXnn76aenfv78539TBeUOGDJGvvvrK8f0Zfudzd955p3Tp0kXuuOMOadOmjbz11ltyww03yNKlS+Xxxx/P9OEhh23evFmOP/54ueqqq0zrug8//FBuvPFG+eCDD2TevHmZPjxA7r33XtmwYQOvBHzl4YcfNl8QWvQEDsg0/cL6uuuukyuvvFJuv/122blzp7z++uuyZ88ex49B9yef038QW7VqVee6SZMmyYQJE+Trr782gQbgFw899JD8+te/ltWrV5vVNSBT1q5dK+Xl5TJ58mQ577zz5G9/+5ucddZZvCHI6ErFoEGD5N///rf88Ic/5J2Ab6xYscL8vtQvYn77298m/TikP/lcZECh+vTpYy6//PLLDBwREJ0ulyrS85Bpl112mQwfPlyOPfbYTB8KAPjao48+Kg0bNpTzzz/f1eMQVCThP//5j/zv//6vjB49Wnr27CkFBQUmL1JXEJx49tlnTdpI8+bNpUmTJnLEEUeY9CanJ2K6HKVvfvfu3ZM5fGSxTHw2q6urzfLookWLTPrTsGHD+Gwio5/LV155RV599VX5n//5H94J+O535k9+8hNp0KCByTTQlV1NJQUy+dnU1PrDDjvMpNWXlZWZ59L9//GPf0hCQkjYpZdeGtKXLnK7+eabHd+3oKAgdNJJJ4VGjhwZatasmblu4MCBoV27dsW8/8cffxxq1KhRaNy4cbxz8MVns6SkpPZ59H47duzgnUHGPpe7d+8Ode/ePXTnnXeaP69cudLs+7e//Y13BRn9nblkyZLQFVdcEfr73/8emj9/fui2224zvz979OgR2rNnD+8OMvbZPPTQQ0MHHnhgqF27dqFp06aFZs+eHfrxj39s7v/RRx+FnCKoSMJDDz0UuvLKK0NPPPFEaPny5aFRo0Y5eqNnzpxp9tM3bvHixbXXb9iwIdSzZ09zm/7CiUb3O/jgg82+nLjBL5/N9957L/Tmm2+GHnjggVDHjh1DgwYNClVVVfEGISOfywkTJoS+973vhfbt22f+TFABP/57bnn11VfNvn/5y194o5Cxz6aeW+r1L730Uu11e/fuNf+m6/M6RVDhgfPOO8/RG92vXz+z36RJk+rd9q9//cvcVlRUFNq6dWu92ysqKkJ9+/YNlZWVhdatW+fFYSMHpOOzGe7tt982+z777LOujx3ZK1Wfy1WrVpk/P/fcc6EtW7aY7YMPPjD7PfLII3E/v0C6f2eqFi1ahC666CJefGTss9m/f39zfeQKxplnnhnq3bt3yClqKtJk3bp1snDhQvP/Z599dr3btd9/p06dZO/evfLyyy/XuU2v0xzMVatWyezZs6V9+/bpOmzkADefzUi9e/c2OZ/aSQJI9+dy5cqV5s9nnHGGySPWTfOClRYgdujQgTcFvvqdadHfm0CmPpvhLY7D6eJDIi1lCSrS5L333qvtjtO1a1fbffr27VtnX6sIVtsg6odEPwCHHnpomo4YuSLZz6adN9980/wS0kF4QLo/l7169ZL58+fX2bSVrNI23AkXHQIefTaj0S8KtVBbB44Bmfpsaqc8FT5jSgOPN954o3Z/Jxh+lyb6DZqK1btfo8fwfdXYsWNl1qxZcvPNN5sA4+233669TXsKFxcXp/S4kf2S/WwOHTrUTNvUbzh0orb+gtJuOzrB+LTTTkvDkSObJfO5bNasmel2Ek5XeK3fl8ccc0wKjxi5Itnfmeecc4450dO28E2bNpV33nnHDBnTYJgZKsjkZ1ODiqOOOkouuOACufXWW6Vt27am89SWLVvk6quvdvz8BBVpsn37dnOpbb2iOfDAA81lRUVFndaI1rdsuoXTb+Ei/wEF0vXZ1G/Wpk+fXvuLSSe/X3TRRTJ+/HjT8hjIxOcS8OtnU7+AefLJJ82Asd27d0vHjh1NWt7EiRP5nYmMfjbz8/PlxRdfNNO0r7jiCvP57Nevn7z22mtRU6PsEFT4nPUtG+A3unqmG+BnGuxqSh6Qadddd53ZAD/SlCkdgqdbsqipSBNd6lQ7d+6Mus+OHTvMJSlNSCc+m/AjPpfwKz6b8KumGT7XJKhI47dlas2aNVH3sW6z9gXSgc8m/IjPJfyKzyb8qkuGzzUJKtLkyCOPNJebNm2qUxwTbtGiRbVtOQE+m8hl/M6EX/HZhF8dmeFzTYKKNNGCLC16UVqoFUnbdmn0qF10hg0blq7DAvhswpf4nQm/4rMJv+qY4XNNgoo0uv76683lbbfdJkuWLKm9XiNK7Zqjxo0bJyUlJek8LIDPJnyJ35nwKz6b8KvrM3iumadjtT1/1Cynb5L1xqjPPvtMNm7caCLE8ImtM2fOlHbt2tW576WXXir33XefFBYWmh7/2vZLh41s3bpVBgwYIHPmzJFGjRql9edB9uCzCT/icwm/4rMJv1oSxHNNDSqQmPnz52sgFndbuXKl7f2ffvrp0LHHHhsqLi4ONWrUKNSjR4/QbbfdFtq7dy9vBVzhswk/4nMJv+KzCb+aH8BzTVYqAAAAALhCTQUAAAAAVwgqAAAAALhCUAEAAADAFYIKAAAAAK4QVAAAAABwhaACAAAAgCsEFQAAAABcIagAAAAA4ApBBQAAAABXCCoAAAAAuEJQAQAAAMAVggoAAAAArhBUAHCkS5cukpeXV2crKiqSzp07y5lnnin/+te/XD3uqlWreCeivDaPPfYYr02KPsN2G6+3M/p3NvK1mzRpUsz7LFiwQH71q19JeXm5NG/eXAoLC6Vly5bSv39/GTdunMydO1dCoZDr9/rcc881x3PWWWc52v/uu+82++txWQ477LA6P9vxxx/v+riAbFaQ6QMAECwDBgyQgw46yPz/1q1bZdGiRfLMM8/Is88+K3feeaeMHz8+04eINJ6kr169WlauXGn+P4ifYTuxbkN9TZo0kTPOOMP8/xFHHGH7Em3cuFF+8YtfyKuvvmr+3KFDB/M+lJSUyLZt2+Sjjz6SKVOmmO3II4+UJUuWuHqpzz//fPnrX/8qs2bNki1btpgAJpa//OUvtfezjBgxQr766iv5+uuvZfbs2a6OB8gFBBUAEnLBBRfI6NGja/+8Z88eufDCC2XatGly9dVXy49//GM55JBDHD/evHnzpLKy0pxkAJn4DMOd0tLSmKs7+uXDwIED5T//+Y/59v/++++XQYMG1dtPAwtdMXjqqadcvyXHHnusCQ5XrFghTzzxhFkFiWbhwoXy4YcfmlWTUaNG1V5/66231q6uEFQA8ZH+BMCVAw44wHy7qN9WVldXy4wZMxK6f/fu3c2Jhv6DDiD7XHzxxSag6Natm7z11lu2AYXq0aOHPPLIIzJ//nzXz6npSr/85S/rrEJEY92uX4i0bt3a9XMDuYqgAoBrBx54oBx66KHm/8NrI6xcZOsf7qOOOsqkO4TXUESrqQi/7/Tp003OtT5Pq1at5Oc//7l88cUX5jbNv548ebL06tXLBDb6ral+C71+/XrbY3333XfNioo+Xtu2baVhw4bSpk0bOfXUU00+dzSxfpbPPvtMGjRoYFIsdu3aFfUxDj/8cLP/yy+/LKmye/du+dOf/iQ//OEPpVmzZibo0/dGf+ZNmzbF/dkeeugh6dOnj3kt9f7Dhg2Tt99+u87++q207q+pT6pr1651cs/1m91wa9euNSeWBx98sDkefd009eXPf/6zCURjHc/zzz9vvuUuLi42x6T3S+XrZ8fN8bh9P6L9vbG+2T/99NPNZ75x48bSs2dPueeee6Smpqbe36tMfUb1eZ988knz/7oKES8NSenfTS9eS/09oD+zplItXbrU9jF1pfVvf/tbvdQnAEkIAYADZWVlWj0Z+stf/mJ7+0EHHWRuv+SSS2qv0z/rNm7cuFB+fn5o4MCBoZ///OehH/zgB6FVq1bVedyVK1fWeTzrvtdee22ooKAgNHjw4NAZZ5wR6ty5s7m+U6dOoc2bN4d+9rOfhQ444IDQySefHBoxYkSodevW5vbvf//7ob1799Y7ziFDhphj6dmzZ2jYsGGhn/70p6HevXvXPt8999xj+/PF+1lOPfVUc/uDDz5oe//XXnvN3N69e/dQTU2NJ695pHXr1pmfS+/TokWL0AknnGBeE+txunTpUvu62/1sl19+eSgvL6/2Z+vRo4e5Xl//GTNm1O7/r3/9K3TeeeeFmjRpYm4//fTTzZ+tbfny5bX7vvvuu+ZYdD99784880zzXul7ptcNHTq03vtkHc/vf/97czwDBgww9zviiCPM9Xpd+PE4lejr6fZ43L4fsf7eLFiwINSoUaPaz9RZZ50VOvHEE0MNGzY0x2b398rrz6g+tu6vzxWN/n3SfZo3bx6qrq4OJSvZ19L6mcN/L4V74oknzO3t27cPVVVV2e4zf/58s89xxx2X9PEDuYCgAoDrE7IPPvjAnPzo7Y8++mi9k6Pi4uLQv//975iPGy2oaNmyZej999+vvX7Xrl3mJEtv05MMPQEKP5nYsGFDbYAzffr0es/38ssvh7788st617/11lvmOAsLC0Nr166td3u8n2XOnDnmdj3RtKMn3nr7n/70p1AqToL1JFBPdnX/888/P1RRUVF7W2VlZeiKK64wtw0aNCjqz6YnqfPmzatz2x133GFuKykpCX3zzTeO3jvLnj17avf5zW9+E9q3b1/tbZ999pk5EdTbrr/+etvjadasWejtt9+uc9vEiRPNbYccckgo3UFFIsfjxfsR7bOmfwc6dOhg9tHHCT9Z//jjj0Nt2rSpfYzw98brz6iToGLUqFFmHw3mk+XmtZw1a1bt7xG7Lxk0OLH7DIYjqACcIagAkPQJ2datW0MvvfSSObG3vu3bsWPHd79gvj2xuemmm+I+brSgYsqUKfXuo98KW7fr80fSkyK9bcyYMQm9u9ddd13U53Tysxx++OFmH/0mP9yaNWvMt/2NGzcObdmyJSUnwf/4xz/Mvr169TInWpH0xNNaefjwww9tf7bLLrvM9rH79u1rbv/jH/+YUFDx17/+tfZzoQFGpOeee87c3rRp09Du3bvrHc99991X7z76OBrg6O1ffPFFKBHW8cbbIt+jZI7Hi/cj2mdt2rRptSfz4YGaZfLkybZBhdefUSdBxSmnnGL20ZUUO/qFQfgql7WFH5+b11L3b9u2rbnt2WefrXPb6tWra78M+fTTT6P+DAQVgDN0fwKQkDFjxpjNruBa8801zzyS1W4yGZrTH0lz81VBQYGcdNJJUW//8ssvbR9T869feuklk5Ou7Sa1+5T69NNPzaUWlUYT62e55JJLTCcsrfHQvHuL1g5UVVWZ101zwVNBfx6lOfb6ukTKz883HXH0Z9ZiWS2KjXTeeedF7fmvrYO1VuL66693fExWbYXOCtCZJpFGjhxpcuz1PVi8eLGpTwindS6R9HG04Pe9996TdevWSadOncTrlrJaZ2MnkePx4v2I9ln75z//aS5/+tOf2jY40Nat0bodZfIzamfNmjXy+OOP17teZ0JYx+fmtdT99XN9++23y6OPPlrnNdV6Fa0/Oe6442gjDHiAoAJA0idkevKl3VK0cPLkk0+2/QdfuZlhoMP1ImnBtmrXrp3tczZt2rS2CDOSFiJffvnlsnPnzqjPWVFREfW2WD/LOeecI9dee63pgKX97fX49u3bZ55TxWpr6dbnn39uLidMmGC2WDZs2GB7vRZcx7peC64ToSfZsR5XC4L1Ng0qrH3jvfdKi6Sjvb+pbCmbyPF48X5E+6xZ70O02zUosOY/ZPozqkXksX5G7bgUPuzuhBNOMG2mw7l9LbULlAYVOiNDP2favlqf02qDS4E24A2CCgApPyFr1KhR0q+yfguZzG129Ntw/ZZWO8LoSYZ+86wnito5R09wH3zwQXN7rIm+sX4WfRydFnzHHXeYx5o4caJZvfnmm2/kmGOOke9///uSKvqNq9Jvd3XVKBbt8JMMLyYdJyLR99dPx+PF+xHv743VISqR29L9Ge3du7cZQqcdmPQ1SeY9dfta6twc/dn+9a9/mXk61113nWlbq52xNPhys5IK4DsEFQByhk791hNjbW+qbSgjWelPbowdO9a0vdQTNk0V0jSTVK9SKCvt5ic/+YlceeWVST2GTsbW1ryRrLakHTt2TOjxrIGG1jfN0Z4zfN9s4cX7EY31WkW2YbboCoUOnPPDZ1RXIq644gqzGqVtavXPmXgtdTVCgwpNedKgQlOhrNQ8N196APiOv74GAoAU2rx5s7ksKyurd5umrug3tm7pysdpp51m6jl+//vfmxzv9u3bm/qBVDrllFPqBE7J0G+UY12vee52tQeai2/H2v/pp5+2TVWaOXOmOdnUdDWdjZFNvHg/otH6Aeux7V57ay6EHz6jmip55plnmv8fP368bUpWOl5LrT/RNDX94uDFF1+sHdJJ6hPgHYIKADnje9/7nrnUwtDt27fXXq8nvBdddFHtt+ZuXXrppebytttuM5eaUhWt3sQr+i1uv379zHA/Lba1yy3XE/gHHnggahAwderUeoPrdGCZPqae+EeegFkrFx9//HHUEzk9gdWTVz2hDH9efa31G2ylK0c6yCybePF+RKOvq9ZC6ErF7373u9r0IPXJJ5/ITTfd5KvP6JQpU0xwoSf0Rx99dG2heST9eezqdrx4LTXtS4dmWjUWOkhPhwXq4wLwBulPAHKGnpDce++9plOPFghrnrXWV2hahJ5k6ImW3u6WPu6RRx5pnke78/z617929Xg333yzOWGK5v777ze567NmzZIf/ehHJmh67rnn5IgjjjAn9VqIqylIH374oZlgrTUxdieQemI5ePBgc/yaYqPddPQ++hppuohOIA+n3Xg0N12Lf7ULlzUt+aqrrjKTjrUzkh6HFvFrwKLpL1rUrwHda6+9ZoK5oUOHmrz+dHr44YfrBU/h9Gc5++yzXT2H1g64fT+i0RNknTKvj621Efqte9++fc1KnP5cehL+zjvvmKnz0TpZef0ZjUU/F2+++aZ5TbUIW1ewNCDVVDstKte/expw6OuhKxF6sq8/j9evpQbF2uXKCkpYpQA85rD1LIAcl8zgMKtXvpPHjTanIpn++LH6yutwvIsuusjM1igqKjIzFM455xzTp15/Nr2f9slP5mcJd80115j9dRJyspzOVdCfN3xuwgMPPGAGgenAL509oFPGtcf/2LFjQ7Nnz475s02dOtXsq4PwdPiaTr9+8803bY9P5wPceuutZvaBNSE78niUzm/Q5+7WrZuZ+KxzKY466ijzXHZzB+K91vq+2j2PV6/npZde6tnxuH0/YtGhkzpVWidM6+tfXl4e+p//+R8z5E1fZ53BED7/w+vPqJM5FZHmzp0b+uUvfxk69NBDzedLXw+dtq1T7S+88EIzoC/a5O1kXstI1lRufX02btzo6JiZUwE4k6f/8TpQAYBcpt+Yapea1atXm3z1o446SvzM6hTEPwfZ4fXXXzezF/Qb/6VLl6bsM6rpSrripzVK0YrGs4Gu/gwaNMi8prFWuIBcR/oTAHhMu+royZqeqPk9oEAwaQrPjh076s0A0ZQ1bRmr7IZUpuIzunHjxto205oSZzckMIi0S5TO8vj6668zfShAIBBUAIAHdAr3//zP/5gTkFdeecXkgd955528tkgJLY7Xb8/Ly8vNRG9ti6rF79Y8iBNPPNEUwKfjM6qDJK2p2FqQnS1BhXYn09cMgDOkPwGAhykSWhh72GGHyR/+8AcZMWJEIF5b0p+CRztq3XLLLaaTkk6J1uJ37dClw9+0IFpXKyILloP8GQXgfwQVAAAAAFxhTgUAAAAAVwgqAAAAALhCUAEAAADAFYIKAAAAAK4QVAAAAABwhaACAAAAgCsEFQAAAABcIagAAAAA4ApBBQAAAABXCCoAAAAAiBv/D1B7vNGvdZepAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "bins = np.logspace(2,6,100)\n", + "bw = bins[1:] - bins[:-1]\n", + "livetime = 60*60*24*365 # s yr^-1\n", + "\n", + "# unweighted astro\n", + "rates = {k:np.zeros(len(bins)-1) for k in labels.keys()}\n", + "for primary_type,dataset in data[\"astro\"].items():\n", + " NC_flag = np.squeeze(np.any(dataset.secondary_types==int(primary_type),axis=-1))\n", + " nu_energy = np.squeeze(dataset.primary_momentum)[:,0]\n", + " lepton_energy = np.squeeze(dataset.secondary_momenta)[:,0,0]\n", + " nNC,_ = np.histogram(nu_energy[NC_flag],weights=nu_energy[NC_flag],bins=bins)\n", + " yNC = np.array(nNC/bw)\n", + " nCC,_ = np.histogram(nu_energy[~NC_flag],weights=nu_energy[~NC_flag],bins=bins)\n", + " yCC = np.array(nCC/bw)\n", + " if int(primary_type)>0:\n", + " rates[\"CC_nu\"] += yCC\n", + " rates[\"NC_nu\"] += yNC\n", + " else:\n", + " rates[\"CC_nubar\"] += yCC\n", + " rates[\"NC_nubar\"] += yNC\n", + "for k,rate in rates.items():\n", + " rate /= np.sum(rate)\n", + " plt.step(bins,np.append(rate,rate[-1]),label=labels[k])\n", + "plt.xlim(1e2,1e6)\n", + "plt.ylim(1e-5,1e0)\n", + "plt.loglog()\n", + "plt.legend()\n", + "plt.ylabel(r\"$E dN/dE~{\\rm [GeV]}$\")\n", + "plt.xlabel(r\"Primary Lepton Energy$~[{\\rm GeV}]$\")\n", + "plt.tight_layout()\n", + "plt.savefig(\"figures/rates_gen.pdf\",dpi=100)\n", + "plt.show()\n", + "\n", + "# astrophysical\n", + "rates = {k:np.zeros(len(bins)-1) for k in labels.keys()}\n", + "for primary_type,dataset in data[\"astro\"].items():\n", + " NC_flag = np.squeeze(np.any(dataset.secondary_types==int(primary_type),axis=-1))\n", + " nu_energy = np.squeeze(dataset.primary_momentum)[:,0]\n", + " lepton_energy = np.squeeze(dataset.secondary_momenta)[:,0,0]\n", + " nNC,_ = np.histogram(nu_energy[NC_flag],weights=livetime*dataset.event_weight[NC_flag]*nu_energy[NC_flag]**2,bins=bins)\n", + " yNC = np.array(nNC/bw)\n", + " nCC,_ = np.histogram(nu_energy[~NC_flag],weights=livetime*dataset.event_weight[~NC_flag]*nu_energy[~NC_flag]**2,bins=bins)\n", + " yCC = np.array(nCC/bw)\n", + " if int(primary_type)>0:\n", + " rates[\"CC_nu\"] += yCC\n", + " rates[\"NC_nu\"] += yNC\n", + " else:\n", + " rates[\"CC_nubar\"] += yCC\n", + " rates[\"NC_nubar\"] += yNC\n", + "for k,rate in rates.items():\n", + " plt.step(bins,np.append(rate,rate[-1]),label=labels[k])\n", + "plt.xlim(1e2,1e6)\n", + "plt.loglog()\n", + "plt.legend()\n", + "plt.ylabel(r\"$E^2 dN/dE~[{\\rm GeV~yr}^{-1}]$\")\n", + "plt.xlabel(r\"Primary Lepton Energy$~[{\\rm GeV}]$\")\n", + "plt.tight_layout()\n", + "plt.savefig(\"figures/rates_astro.pdf\",dpi=100)\n", + "plt.show()\n", + "\n", + "# atmospheric\n", + "rates = {k:np.zeros(len(bins)-1) for k in labels.keys()}\n", + "for primary_type,dataset in data[\"atmo\"].items():\n", + " NC_flag = np.squeeze(np.any(dataset.secondary_types==int(primary_type),axis=-1))\n", + " nu_energy = np.squeeze(dataset.primary_momentum)[:,0]\n", + " lepton_energy = np.squeeze(dataset.secondary_momenta)[:,0,0]\n", + " nNC,_ = np.histogram(nu_energy[NC_flag],weights=livetime*dataset.event_weight[NC_flag]*nu_energy[NC_flag]**2,bins=bins)\n", + " yNC = np.array(nNC/bw)\n", + " nCC,_ = np.histogram(nu_energy[~NC_flag],weights=livetime*dataset.event_weight[~NC_flag]*nu_energy[~NC_flag]**2,bins=bins)\n", + " yCC = np.array(nCC/bw)\n", + " if int(primary_type)>0:\n", + " rates[\"CC_nu\"] += yCC\n", + " rates[\"NC_nu\"] += yNC\n", + " else:\n", + " rates[\"CC_nubar\"] += yCC\n", + " rates[\"NC_nubar\"] += yNC\n", + "for k,rate in rates.items():\n", + " plt.step(bins,np.append(rate,rate[-1]),label=labels[k])\n", + "plt.xlim(1e2,1e6)\n", + "plt.loglog()\n", + "plt.legend()\n", + "plt.ylabel(r\"$E^2 dN/dE~[{\\rm GeV~yr}^{-1}]$\")\n", + "plt.xlabel(r\"Primary Lepton Energy$~[{\\rm GeV}]$\")\n", + "plt.tight_layout()\n", + "plt.savefig(\"figures/rates_atmo.pdf\",dpi=100)\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "lienv", + "language": "python", + "name": "lienv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/resources/Examples/Example1/DIS_ATLAS.py b/resources/Examples/Example1/DIS_ATLAS.py index 4c07adca2..fcbe7a7b3 100644 --- a/resources/Examples/Example1/DIS_ATLAS.py +++ b/resources/Examples/Example1/DIS_ATLAS.py @@ -1,7 +1,7 @@ import os import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Number of events to inject events_to_inject = int(1e5) @@ -10,7 +10,7 @@ experiment = "ATLAS" # Define the controller -controller = LIController(events_to_inject, experiment, seed=99) +controller = SIREN_Controller(events_to_inject, experiment, seed=99) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu diff --git a/resources/Examples/Example1/DIS_DUNE.py b/resources/Examples/Example1/DIS_DUNE.py index 13b493a89..7bf411915 100644 --- a/resources/Examples/Example1/DIS_DUNE.py +++ b/resources/Examples/Example1/DIS_DUNE.py @@ -1,7 +1,7 @@ import os import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Number of events to inject events_to_inject = int(1e5) @@ -10,7 +10,7 @@ experiment = "DUNEFD" # Define the controller -controller = LIController(events_to_inject, experiment) +controller = SIREN_Controller(events_to_inject, experiment) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu diff --git a/resources/Examples/Example1/DIS_IceCube.py b/resources/Examples/Example1/DIS_IceCube.py index a8bf9e5c8..db9913512 100644 --- a/resources/Examples/Example1/DIS_IceCube.py +++ b/resources/Examples/Example1/DIS_IceCube.py @@ -1,7 +1,7 @@ import os import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Number of events to inject events_to_inject = int(1e5) @@ -10,7 +10,7 @@ experiment = "IceCube" # Define the controller -controller = LIController(events_to_inject, experiment) +controller = SIREN_Controller(events_to_inject, experiment) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu diff --git a/resources/Examples/Example1/PaperPlots.ipynb b/resources/Examples/Example1/PaperPlots.ipynb index fc5eb903e..442e563ee 100644 --- a/resources/Examples/Example1/PaperPlots.ipynb +++ b/resources/Examples/Example1/PaperPlots.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "249e815d-3d83-4c81-bce7-bac786f95549", "metadata": {}, "outputs": [], @@ -12,12 +12,15 @@ "from matplotlib.pyplot import cm\n", "from matplotlib.colors import LogNorm\n", "plt.style.use(\"../figures.mplstyle\")\n", - "import numpy as np" + "import numpy as np\n", + "import os\n", + "try: os.mkdir(\"figures\")\n", + "except FileExistsError: pass" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "c80f20e3-357d-4157-a279-c8f491f0c50d", "metadata": {}, "outputs": [], @@ -28,16 +31,16 @@ "\n", "Erange = {\"IceCube\":(1e-1,2e6),\n", " \"DUNE\":(1e-1,2e6),\n", - " \"ATLAS\":(5e-2,3e5)}\n", + " \"ATLAS\":(1e-2,1e6)}\n", "\n", "Crange = {\"IceCube\":(-1,1),\n", " \"DUNE\":(-1,1),\n", - " \"ATLAS\":(0.9,1)}" + " \"ATLAS\":(0.8,1)}" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "ef6c4d55-6687-425e-a521-de52d27de2f0", "metadata": {}, "outputs": [], @@ -54,23 +57,23 @@ " #twin0 = ax[0].twinx()\n", " #twin1 = ax[1].twinx()\n", " \n", - " for _ax in [ax[0],ax[1]]:\n", - " _ax.set_prop_cycle(color=['red', 'green', 'blue'])\n", + " # for _ax in [ax[0],ax[1]]:\n", + " # _ax.set_prop_cycle(color=['red', 'green', 'blue'])\n", " \n", " \n", " # initial nu\n", - " nu_flag = data[\"primary_type\"]==\"ParticleType.NuMu\"\n", + " nu_flag = data[\"primary_type\"]==14\n", " nu_momenta = np.squeeze(data[\"primary_momentum\"][nu_flag])\n", "\n", " # muon\n", - " muon_flag = data[\"secondary_types\"]=='ParticleType.MuMinus'\n", + " muon_flag = data[\"secondary_types\"]==13\n", " muon_momenta = data[\"secondary_momenta\"][muon_flag]\n", " # mask out entries that are not muon\n", " muon_momenta = awk.mask(muon_momenta, awk.num(muon_momenta,axis=2)>0)\n", " muon_momenta = np.squeeze(muon_momenta[~awk.is_none(muon_momenta,axis=1)])\n", "\n", " # hadron\n", - " hadron_flag = data[\"secondary_types\"]=='ParticleType.Hadrons'\n", + " hadron_flag = data[\"secondary_types\"]==-2000001006\n", " hadron_momenta = data[\"secondary_momenta\"][hadron_flag]\n", " # mask out entries that are not hadron\n", " hadron_momenta = awk.mask(hadron_momenta, awk.num(hadron_momenta,axis=2)>0)\n", @@ -81,7 +84,6 @@ " \"histtype\":\"step\"}\n", "\n", " # Energy\n", - " \n", " nPhys,ebins = np.histogram(nu_momenta[:,0],bins=kwargs[\"bins\"],weights=kwargs[\"weights\"])\n", " bwPhys = ebins[1:] - ebins[:-1]\n", " ax[0].step(ebins,np.append(nPhys/bwPhys,(nPhys/bwPhys)[-1]),where=\"post\",label=r\"Initial $\\nu$\")\n", @@ -137,10 +139,11 @@ " ax[0].loglog()\n", " #twin0.loglog()\n", " ax[0].set_xlabel(\"Energy [GeV]\")\n", - " ax[0].set_ylabel(r\"$dP/dE [{\\rm GeV}^{-1}]$\")\n", + " ax[0].set_ylabel(r\"$dN/dE~[{\\rm GeV}^{-1}]$\")\n", " #twin0.set_ylabel(\"Generated Events\")\n", " ax[0].set_xlim(*_Erange)\n", - " ax[0].set_ylim(0.5*min(nPhys/bwPhys),10*max(nPhys/bwPhys))\n", + " ax[0].set_ylim(1e-8,1e-2)\n", + " #ax[0].set_ylim(0.5*min(nPhys/bwPhys),10*max(nPhys/bwPhys))\n", " #twin0.set_ylim(0.5*min(nGen/bwGen),10*max(nGen/bwGen))\n", " \n", " ax[1].legend(loc=\"upper left\" if k==\"ATLAS\" else \"lower right\")\n", @@ -148,7 +151,7 @@ " ax[1].semilogy()\n", " #twin1.semilogy()\n", " ax[1].set_xlabel(r\"$\\cos \\theta$\")\n", - " ax[1].set_ylabel(r\"$dP/d(\\cos \\theta)$\")\n", + " ax[1].set_ylabel(r\"$dN/d(\\cos \\theta)$\")\n", " #twin1.set_ylabel(\"Generated Events\")\n", " ax[1].set_xlim(*_Crange)\n", " #twin1.set_ylim(1,2*max(m))\n", @@ -160,45 +163,195 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "eeb54511-c655-478e-9fac-43246279faf4", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAJOCAYAAADMPVrNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChpUlEQVR4nO3dB5gTVdcH8JNs7yxLr0tHpAiCgPQiCEiVJiooKBYQEFEBReUVEbGCAtYPKyJIURSQjtKrIL0uZWm7y/Ze8j3nYtYtSe4lmWRT/j+eIdnkTsnMJJmTW47OYDAYCAAAAAAA4Dbpb3cGAAAAAAAABBMAAAAAAGA11EwAAAAAAIBVEEwAAAAAAIBVEEwAAAAAAIBVEEwAAAAAAIBVEEwAAAAAAIBVEEwAAAAAAIBVvK2bDVxFXl4eXblyhUJCQkin05X05gAAAICT4fzFycnJVKlSJdLrS+535oyMDMrKyrL7enx9fcnf39/u6/EUCCbcHAcSVatWLenNAAAAACd36dIlqlKlSokFEqUCSlEmZdp9XRUqVKDz588joNAIggk3xzUSxg+I0NDQkt4cAAAlGbl5Fp/390IrXQCtJCUliR8ejdcMJYFrJDiQ6EqdyduOl6c5lEMbrm0S60PthDYQTLg5Y9MmDiQQTACAq/BFMAHgcM7QHNqXfMmHfOy2fD26C2sOP+0AAAAAAIBVUDMBAAAAAE5Bx//sWEOiM5R87Yu7Qc0EAAAAAABYBTUTAAAAAOAUuE+DPfs1oM+E9lAzAQAAAAAAVkHNBAAAAAA4Bb1OJya7LZ90RAa7Ld4jIZgAACghyKVgHvJIAAC4BgQTAAAAAOAUdKLuwH6t8O25bE+FPQoAAAAAAFZBMAEAAAAATtVnwp4Ta9GiBTVo0IDmzZtX0i/Z5aGZEwAAAAB4lL1791JoaGhJb4ZbQDABAAAAAE4BfSZcD5o5AQAAAACAVVAzAQAAAACek2cCNIWaCQCAIrkfZJOWuRQsTQDgPnQ6HXXs2LGkNwNAc/i2AgAAAKcRFRUlLrzvv/9+h643Pj6eZsyYQa1bt6aIiAjy8fGhsmXLUteuXenjjz+mlJQUh26PJ/eZsOc/5JnQHpo5AQAAgEfbuHEjDR48mG7evEl33HEHDRo0SAQUcXFx9Oeff9K4cePoo48+orNnz5b0pgI4HQQTAAAA4LEOHTpEvXv3Fve///57evjhh4uV2bJlC02ZMqUEts7zcK0UT3ZbPvpMaA7NnAAAAMDpZWVl0YcffiiSjYWEhFBwcLBIOjZx4kTRRKmgGzdu0PPPP0+1a9cmPz8/KlOmDD344IN05MiRYsvlWof09HTRlMlUIMG4rwMHFEZff/21uODl26K4HD/3xhtvmFzW5cuX6aGHHhLbFBgYSG3atKENGzaYfc0ffPABNWvWjIKCgsTrbteuHf3666/S/QXgKAgmAAAAwKnxxX7nzp1F4JCYmEiPP/44PfPMM1S3bl367LPP6MKFC/lluSnS3XffLZol1apVi5577jnq2bMnrV27llq1akW7d+/OL3vmzBnRjKlq1apimZZwUGIrDno4eDh9+jQ98cQTIqjgmhHuH7Jy5cpCZTMzM6l79+70wgsvkMFgoFGjRtEjjzwiXmvfvn3pk08+IXekd0CvCdAWmjkBAAC4kJiYmEJ/h4eHk7e3t1LZUqVKiY7FpsTGxoqLVqOwsDDy9fU1WZb7EuTl/TeyGWcS1uJi25xp06bR9u3b6dFHH6WFCxeSl5dX/nMcXBT8e/jw4XT16lURPPDFuNGrr75KzZs3pyeffJIOHz4sHuNlsg4dOpBeb//fV3m9w4YNE82pjE15xo8fL2pbRo8eLbY3ICBAPP6///1P1HLwa58+fXp++eTkZBFYcZAxYMAAqlSpkt23G8AS1EwAAAC4kHLlyhWaTp48abZsZGRkobJ///232bLc8bhg2R07dpgty7/8FyxrrpmOFnJycujzzz8Xwc2cOXMKBQ6MH+cmT+zgwYNiu0eMGFEokGBci8GBxD///JPf3OnatWvitkqVKuQIvO0zZ84s1CegcePGIkjiwG/16tXiMQ7UFixYIGpWCgYSjJs6vfbaa6IJ1PLly8ld80zYcwJtoWYCAAAAnNaJEyfEr/E8RCvXwliya9cucXv9+nWTfRZ4Wcbbhg0bkqNVq1aNqlevXuxx7gfx1VdfiWCI+3ZwgMhNorjWgYMJczVOxtcDUJIQTACAXcmSvDlbcjZn2x4AT8fNmFjlypWlZXloV/b777+LyZzU1FRxW6FCBXEbHR1NjlC+fHmLjxtfq/F1HD16VEyy1+FOdHbOBWFcNjct45qiMWPGiAmsh2ACAAAAnBb381C94Oe+G4xHZho7dqy0PHeGZtw3gZsWqfabMJbjJlhFGQMCU7jGxNLj3GSr4OvgWoqff/5ZaZvg9uzduzd/P4NtEEwAAAC4EB72tCBLTX84m7SpC3NTjh8/XqwDtjn79+8v1gHbXurVqyeWzxd/3PTH0utt2bKluN25c6dSMMFDx7Zv316M6PTNN99YHNGJR1cydjI3boOpAIebKplz8eJFMRpT0aZOf/31l7ht2rRpfv8Vfs379u2j7Oxss53m3ZFepxeT3ZaP7sKaQ30+AACACylbtmyhydxITqbKWroo5bwHBcuaG8mJcXbogmXtOZITv76nnnpK/OLPIx/l5uYWep4fT0lJEffvueceEVD8+OOP9NNPPxVbFgdAW7duLfQYd+rmEZQ4+DA1j/Fin0dQKtgBnTtFL168mDIyMvIf5yFfeXnm8LZPnTq1UNDGIzx99913Yj/yELbG18xD33LgMWnSJBFQFMWdyIsGlgAlATUTAAAA4NR4mFTuXM0X3Xzbo0cPEcCcO3dODAG7bds2uuuuu0RZDiQ6depEQ4cOFbkmOOEbBwtcK8A1Ftx5uWAAwPOtWrWKBg8eLObhdXFtRenSpUXfBR4+lkeA4loMI+4YzTkiFi1aJAILzhPBF/YrVqwQ95ctW2bydfDITbyt3F6fO5TztnAAYxyxyjgsLOOO1wcOHKC5c+eK/h+8TTxyFteG8PZwfgp+PfyYO+EM1fbMUo0M2NpDMAEAAABOzd/fn9avXy8StXGOhi+++EJ0nuXRkZ5++mkxBK5RjRo1RFMjzhzNieCMeSkqVqwoLsgHDhxYbPldunQRtQrz588XF+58gc8jSHFTr0aNGokL+pEjRxaa58svvxS1OVx23rx5ojkWBwQcaJgLJrh5FC+faxv4NaSlpYmmTRw43HfffYXKcrC0Zs0aMcrTt99+K5bJTa24szZn/ubXzdsGUNJ0hoJ1beB2kpKSxIchVwOjoxGUBFcbzQkAwNM4w7WCcRse9xtOvjrzTexslWXIooWZ3+K6SEP4FgcAAAAAAKugmRMAAAAAOIVbWSbs12fCnsv2VAgmAMCu0IwJwD2bKDrj+xvNKgEcD8EEAAAAAHhUBmzQDvYoAAAAAABYBTUTAAAAAOAU9DqdmOy2fPSZ0BxqJgAAAAAAwCqomQAAAAAAp8B9GvifPZcP2sIeBQAAAAAAq6BmAgAAAACcgk6nE5Pdlo8+E5rzyJqJl156Kf9knTFjhtlyGzZsoJ49e1KZMmUoICCA6tevT6+88gqlpKRYXP6ZM2foscceoypVqpCfn5+45b/PnTtncb7k5GSaOnUq1atXT6yP19urVy/atGmT1a8VAAAAAMBePC6Y2LFjB73//vvSqPfDDz+k++67j9auXUt33nkn9e7dmxITE2nmzJnUvHlzio2NNTnf9u3bqUmTJvTNN99QqVKlqH///uKW/27cuDHt2rXL5Hw3btwQy3377bdFUMHr4/WuWbOGunbtSh9//LEmrx8AAEAFJ6STTZwkTjY5kmx7PZkzHSdL9A74x1q0aEENGjSgefPmlfRLdnke9c5KS0sTNQQVK1akvn37mi138OBBeuGFF8jLy4t+//132rp1Ky1ZsoTOnj1LXbp0oZMnT9LTTz9tcvmDBw8Wt1OmTKEjR47Q4sWLxS3/nZqaKp5PT08vNu/o0aPp1KlTYvlcs8Hr4/X+9ttvpNfracKECXT48GHN9wkAAACAp9m7dy8dO3aMxowZU9Kb4vI8KpjgC/rTp0/T559/TmFhYWbLce2AwWCgxx9/nHr06JH/eGBgIH311Vfi4n7ZsmV04sSJQvN9/fXXdOXKFapbt26x5lP8Nz9+6dIl+vbbbws9xyfzL7/8IoIXXj6vx4ibWXEAlJeXJ7YLAAAAwF3pdf/lmrDPVNKv0P14TDCxZcsW0VRo+PDh4gLdnKysLFEbwYYNG1bs+erVq1ObNm3E/RUrVhR6zvj30KFDRcBREP89ZMgQcX/58uUm5+Pl8vKLMm7HqlWrKDs7W/EVAwAAAADYl0cEE9xheuTIkVS+fHn66KOPLJblpkbcTIlxHwZTjI9zc6iCjH/baz5uJsU1KwAAAADuiPNA2HsCbXnEHp00aRKdP3+eFixYQOHh4RbLcjnGnaZDQkJMlqlatWqhsow7TcfFxYn71apVszhfTEyMCAyKrtPcfKGhoWIquk4AAAAAgJLk9nkm1q1bR5999ploetSvXz9peQ4KWFBQkNkywcHB4jYpKanYfJbmNc5nnNdYTnWdPE/BdZqSmZkppoLrAQAAAHAFxr4Ndls+8kxozq1rJngo11GjRlHZsmU9ZmhV7qTNncuNk7E2BAAAAABAa25dM8HDqV6+fJl++uknkQBOhbFpU8FmSEUZk9YZmx4VnM/SvAWT3Zma93bXaW7EqokTJxaqmXC1gEJlvGtPHy8c4HbgPeUc3PE4uNr2ejJLxyrLiY6jvfs1oM+E9tw6mOBRkry9vWn+/PliKsg4rCsPxcqZritUqCByQkRGRorHExISRPMjU/0meHhXZizLuFzp0qXp5s2bdPHiRZG4ztx8HNgUbNLEyzlw4ICYz5SCzZsKrtMUzrjNEwAAAACAvbl1MMFycnJE8jdzoqKixGQckrVevXoizwOP6LRv3z7q1KlTsXn4cdasWbNCj/PfHJjw85zB+nbm4+Fijc+bm48DEM5VAQAAAOCO9Dq9mOy2fPdu4V8i3HqPcu0CJ58zNY0YMUKUefPNN8XfHFAwX19f6tWrl7i/aNGiYsu8cOEC7dixQ9zv379/oeeMf3MNByeZK4j/5uZWbMCAAYWeM3YM3759u8naCeN2cIDi4+Nj9f4AAAAAANCSWwcT1po8eTLpdDpauHAhrV27Nv9xrq3gDt25ubn04IMPUv369QvNx5mqK1WqJHJVTJs2rdBz/Dc/XqVKFZE4r6A777yT+vbtK5bLy09PT89/bs2aNSKzNie94/4QAAAAAO7K/lkmkAJba27fzMka3Ozo/fffFx2ZOVt2hw4dqFy5cvTXX3/R1atXRVOoTz/9tNh83DxqyZIl1K1bN5o5cyb9+uuv1LBhQzpy5IiYuJnS0qVLKSAgoNi8n3/+OR07dkw0k6pVqxa1a9eObty4IZpocc3JnDlzqHHjxg7aAwAAAAAAcqiZMOP555+n9evXU/fu3enw4cP0yy+/iFwPXDuwd+9es6NDtWnThg4dOiRqH7gz9rJly8Qt/82Pt2rVyuR8HKxw3wiuFeH18Pp4vbx+DjDGjRuncDgBAAAAXJdOp7f7BNrSGfhnb3BbPAoU55vgnBuyYWWdhTsOnwhQkvCecg44DuCsnOFawbgNL4Y8T346+41KmWnIpHeTP3Sp6yJnh2ZOAAAAAOAU7N2vAX0mtIdgApwOah0A8J5yR/hsK/naHxwDAO0hmAAAAAAAp6Czc54JZMDWHhqeAwAAAACAVVAzAQAAAABOQffvP3suH7SFmgkAAAAAALAKggkAAAAAcA56nf0nImrRogU1aNCA5s2bV9Kv2OWhmRMAAAAAeBROQIw8E9pAMAEAAAAAzkGnuzXZbwV2XLZnQjMnAAAAAACwCmomAADcOEkXQ6Iu8BQ4112fTqcj3b/9Guyy/DzUTGgNNRMAAAAAAGAV1EwAAAAAgHPgigN79plAxYTmUDMBAAAAAABWQc0EAAAAADiHArkg7ANVE1pDzQQAAAAAAFgFNRMAAAAA4BxQM+FyUDMBAAAAAABWQc0EAAAAADhPngk7juZkz2V7KgQTAFCiSdWQZMo22H8AAFCSEEwAAAAAgHNAnwmXgz4TAAAAAABgFdRMAAAAAIBz4D4Nds2AjT4TWkPNBAAAAAAAWAU1EwAAAADgHNBnwuWgZgIAAAAAAKyCmgkAAAAAcA46/a3JnssHTSGYAPBAstwPWuYvQB4EAAAA94VgAgAAAACcgk6vE5Pdlk8YzUlrqOsBAAAAAACroGYCAAAAAJwDRnNyOaiZAAAAAAAAq6BmAgAAAACchJ0zYKPPhOZQMwEAAAAAAFZBzQQAAAAAeEafCQNGc9IaaiYAAAAAAMAqqJkAZRcvXhS3wcHBVLp0aew5F4ZEcuDsSRNd7Rx2ZCJIAABbpKen06lTp6hKlSoUERFBtsInGyiLjIykGjVq0OLFi7HXAAAAQHM6nc7ukyf466+/aOLEiXTo0KFCjy9atIjKlStHzZo1o4oVK9L//vc/m9eFYAKUBQQEiNsWLVpgrwEAAIDL4muZBg0a0Lx588gdff755/TJJ59Q5cqV8x+7dOkSjRw5klJTUyksLIxycnJo+vTptHXrVpvWhWAClBlPyNzcXOw1AAAAsF8HbHtORLR37146duwYjRkzxi2P4u7du6lJkyZUpkyZ/Me+++47ysrKojfeeINu3ryZH0TMnz/fpnUhmABl3bp1E7fbtm3DXgMAAABwUrGxsaJPREGbNm0iX19f0fyJtWvXjlq1akUHDx60aV0IJkDZ+PHjRVOn9957j6Kjo7HnAAAAQFvcp8HekwdISUnJb57ODAaDqI1p3ry5GEinYH/YK1eu2LQuBBOgrE6dOqLjTlpamohk+T5XlwEAAACA8+BRN6OiovL/5tqH5ORkuvfeewuVy87OFrUVtsDQsKCsc+fO4rZs2bJ0/vx5evTRR2nUqFEiyAgPDycvLy+z8/LoCRs3bsTeBgAAAPOQtE6zDuZr1qyhnTt3UuvWrWnOnDniWsx4LWd0+vRpMaqTLRBMgLItW7YUGlKNq8wyMzPpyJEjZufh8lzOU4ZiAwAAAHCGpumrV6+mtm3bipGbEhMTqWbNmvn9X439Kv755x8aOnSoTetCMAHK2rdvj6AAXBoSizkHd0ze5o6vCaBEoGZCE127dqX/+7//E0O/3rhxgzp06CBGbdLr9YVGd8rLyxPP2UJn4J+NwW0lJSXlR6ShoaElvTkAJQrBBACAc14rGLdhWsN3yN/L327rycjNoDePvIzrIrqVCZv7vnKHbEtN1WXwUwoAAAAAOIVbAy7ZMwM2eYQ///yTTp06ZbEMj/bEtRbbt2+3aV0IJgAAAAAA3EjHjh3pnXfekZabPXs2derUyaZ1oc8EAAAAADgH9JnQjKN6MiCYgGIuXryYf79atWomH7dGwWUBAAAAQMmKj48nf3/b+qggmIBiatSoIW65bWFOTk6xx61RdFkAAAAAJi4Y7Jul2o07TVws8qMvZ8E290MwX5MdPXqU1q1bR7Vq1bJpvQgmQLlaDAN/AQAAADinyMjIQkP4L1u2TEyW8LXdI488YtN6EUxAMQsXLrytxwFcBXIB2J87Dr/rjq8JwGmhz4RNzcmNwQTXSAQGBlKZMmVMlvX19aUqVarQgw8+SM8884z1K0UwAaaMGDHith4HAAAAgJIVFRWVf5+T0w0aNEgkrrM3/JQCdnfw4EF6/vnnsacBAADAIvvmmLg1eYKFCxfSqFGjHLIuNHMCu7h69Sp9//33IlU7d/BhH374IfY2AAAAgJ05sjUJggnQNC378uXL6dtvv6VNmzZRXl5efuceT/klAAAAAGzA1wvcb8Je8jzveiQ3N5fi4uIoIyPDLsP3I5gAm23evFkEEBxI8DBkBUd+qlixIvXv31908AEAAAAAx9i7dy+99tprtHXrVsrMzLTb8P0IJsAqJ06cEAHEDz/8QJcvXy4UQBhHBxg4cCDde++9qJUAAAAA5xjNyZ7LdiK7du2izp0759dGhIeHU2hoqF3WhWAClHEV2Y8//iiCiP379xcKIEqVKkUJCQkicHjvvfdo8ODB2LMAAAAAJeD1118XgcTIkSPprbfeovLly9ttXQgmwKLs7GxatWqVCCDWrl0r/jYGEDxGcc+ePUWyk169elFAQAD2JgAAAFgPGbA1sXv3bqpXrx598cUXdm8hgmACzFaPcQCxZMkSio+PL9SRuk2bNiKA4NoHrjYDcCeemqBMq9ftqH0THZ8mLVM5PFCTdeF4A4CrycnJobvuusshTc0RTIBJxr4OxloIjm45gHj44YdFunYAAAAAzaHPhCbq169PsbGx5AgIJsCikJAQmjt3LrJfAwAAALiI0aNH07hx4+js2bNUq1Ytu67L/erqQTNcK8FDvXLnnWbNmtEHH3wgktEBAAAA2AMyYGsXTDz00EN033330erVq0WuCXtBzQSYtGXLFvr6669p2bJllJycTH///TcdOnSIXn75ZerYsSM9+uijNGDAAAoODsYeBAAAAHAiNWvWFLdRUVHUu3dv8vb2Frm/9Hq9yQCOazCshZoJMKl9+/b0f//3f3T9+nWRS6J79+7iBOTIlrNbP/7441ShQgUR9do74gUAAAAP6zNhz8kDREVFicnY0oRH47x48WL+40UnW6BmAizy9/cXAQNP165do++//15Mhw8fprS0NDHaE08RERHYkwAAAABO4Pz58w5bF4IJUMY1EZMmTRITN3n65ptvRBI7rr3gEQOMw49NnDiRtm/fLjJgt2vXDnsYAAAA1CDPhCaqV69OjoJmTmCVJk2aiA7Zly9fpt9++03knPDz8xNVaVeuXKFPPvlE9K3g9nnPPvssbdy4EXsaAAAAwM3oDMZEAuCWkpKSKCwsjBITEyk0NNTu6/rpp5/ou+++EzUTxlPLODIDJ1ABAAAAz71WkG3DGx3mkb93gN3Wk5GTTm9sHVOir9XR+5Wbp+/YsYNiYmKoS5cu9NJLL4nnTp06JfpLcD9ZbtZuLTRzAs3wm/LJJ58UE5+c3AyKT2BbRggAAAAAgNu3bt06GjZsGMXHx4sfePmH3cqVK+c/f/LkSerXr59oss4tTKyFZk5gF5wl+/XXX6fTp0/TX3/9JQIMAAAAAIt0Dpg8wPHjx6l///6iBuaZZ54RLUeKNkbikToDAwPpl19+sWldqJkAu2vTpo2YAAAAAMD+Zs6cSRkZGbR06VKRF4wNGTKkUBlfX1+66667xKA6tkDNBAAAAAA412hO9pw8wObNm8VgOcZAwpwqVarQ1atXbVoXggkAAAAAADcSExNDdevWlZbjwXFSU1NtWheaOQEAAACAU9DpdWKy5/I9QVhYGEVHR0vLnTt3jsqVK2fTulAzAQAAAADgRpo1a0b79++nixcvmi1z5MgR0V+iZcuWNq0LwQQAAAAAOAeM5qSJJ554QnTAfuihh+jatWvFno+NjRVleIQnvrUFmjkBgEkZuXnSPePvhd8jwP3hvQAArmbgwIE0aNAgMZpTrVq18kfV5KTCffr0oS1btlBKSgo9/PDDYohYWyCYAAAAAAAnYe8RlzyjzwRbtGgR1a5dmz766CPasGGDeIzzf/HEw8K+8MILNGvWLLIVggkAAAAAACfx888/0w8//CD6PHBzpBo1atDIkSNp3Lhx5OPjo7wcLy8veuutt2jSpEliqFjubJ2Xl0dVq1alLl262Nzx2gjBBAAAAAA4Bx5tyZ4jLrnAaE7vvfceRUZG0uzZs6l8+fK0Y8cOevXVV+nw4cP0zTff3PbywsPDpfkmbIFgAgAAAADASaxatYrKli2b/3enTp1ER+lp06blBxgyH3/8MT3yyCMikLA39J4EAAAAAOeA0ZyoYCBhdPfdd4vbK1euKO3G8ePHU6VKlWjIkCG0du1aEYzYi9sHE9nZ2bRx40Z68cUXqUWLFlSqVCnR3qxChQqiN/vvv/9ucX7usNKzZ08qU6YMBQQEUP369emVV14RPeAtOXPmDD322GMiTbmfn5+45b+5vZolycnJNHXqVKpXr55YH6+3V69etGnTJqtePwAAAADY5uTJk+LXfr6Wa9SoEXl7e5NOp6MZM2Yozc+jKnXs2FHUFAQFBVGTJk1ELQNfp6r4888/RadpHplJBTdr4gCC18vXkdxPgq9fufO11nQGe4YqToCDgfvuu0/c5wCCIzs+iMeOHRPJOtjo0aPp008/FSdFQR9++CFNnDhRPN6uXTtRrfTXX3+J8Xr5Yn/btm3iYr8oHnarW7dulJaWRnfeeSc1bNhQrOvo0aNi3bxNrVq1KjbfjRs3xHpOnTpFFStWpLZt29L169fFOtmcOXPoueeeu63Xn5SUJLIgJiYmUmho6G3NC54Nw2EC4L0AnsEZrhWM2zD9/s/J3yfAbuvJyE6n19eOvu3XOmHCBHEdVtSbb74p+jOozMsBSOfOnSk4OFj8SJyQkCCu9datWyd+QDaHr1mbN29Oo0aNEgGNqps3b9L3339PCxcuFMnpjNe5PEzs448/ToMHDxbXpbZy+5oJvV5PDz74oIjorl69Sr/99hv99NNP9M8//9DixYtFT/fPP/+cvvvuu0LzHTx4UAyZxc9z7cXWrVtpyZIldPbsWdEDniPUp59+utj6OIDgg8O3U6ZMEUEEr4dv+e/U1FTxfHp6erF5OajhQIKXzzUbvD5eL28zvw4+Gbnzjb0uHGUTeBbOISGbHMWR56c7vhei49Okkzu+bgAArfAPwzwqEo+ydPz4cXr00UeV5lu5cqUIJDiA2L17N/3xxx+0bNkyUUPANRz8wzT3hTCHR3Pq16+fGOL1dodxLV26tBgBiq9peRo7dixFRESIdXKiOv6RnUeJ4mtkW7h9MMERIA+xxb/4F8XtyLi6in377beFnnv77bdF9RBHbj169Mh/PDAwkL766itxcc8nw4kTJwrN9/XXX4v2bHXr1i1W9cV/8+OXLl0qtj6OOn/55RcRvPDyeT1G3MyKt5OH8+LtAgAAAHBLegdMVuCL73fffZeGDRsmmrzzdaCKmTNnitvJkydTs2bN8h/nli3z588X9z/55BNRU2Kq6Ttfg2ZlZYl+D7bUInCzKg5q+BqVr4v52jIzM1Nct/K1si3cPpiQadq0qbjlC3wjPmjGvhR80hRVvXr1/EyCK1asKPSc8e+hQ4cWO9H4bw5g2PLly03Ox8vl5Rdl3A7u4a/avg4AAAAASkZ0dDTt3bvX7PUkN3Hivgx8Ub969epCz/Fjffv2paioKFGbwZ2ptcBNrbg/xYIFC+ipp54Sj9na48HjgwljRxTuo2DETY24mRLjNmqmGB/naqOCjH/baz5uJmWPzjMAAAAAzjGak86Ok+NeysF/r+24uREnnlO9LszNzRU/SnMgwkEG99PVAgco3PS+e/fuYnuMNSPcv9cWHp1ngjtSc/UO434VRufPnxe3PPJTSEiIyXk5kixY1lgdFRcXJ+5Xq1bN4nwxMTEiMDBWWRmXY24+7iTEE3dQ4rINGjSw4hUDAAAAAF9PFcQjb/KkpfOSaztz15NjxowRfS24czcHFrt27cp/jq//breTPPfV4Otd7jPMzam4JoI7u3PAws3577nnHrKFxwYTOTk5IpkH71TuAGOs6jEGBcxS2zTuSFP0ZDTOZ2le43zGeY3lVNfJ8xR9AxSNOnkquA4AAAAAV8AjDhUdXVPr5Re8iDd6/fXX6Y033tB0XclWXk9y/wjGHbOLds7evHmzGGJWhgcd4sGFOGM29+/lAIJfOyfA4wCCf0T39/cnLXhsMMEjMXH+Ce7Vzh1ReOxed8AdtKdPn25yNICCQUZRGAYUnJkjz093fC/EJdxqtmlJXqa/271urbjjOQFQUMEfQz0F95Ut+Au/1rUStuB+Erbi2hAeuIeDCO6LO2LECBFEmOqXayuPDCY4KyCPmMSJQ9avXy9GWCrI2LSJmyGZY0xaV/BELNgkyty8BZPdmZr3dtdZFA8/y7kxjDjS5ehbNckJAAAAQIlnwLbn8gs0H7enEI2u7WzpaM1Dv3LKAXvyuGCCc0fMnTtX9IfgJCHG0ZwKioyMFLecTISjdVP9JoyjPxnLMi7HnWw4ScjFixfFMFzm5uMhwQpWe/FyDhw4IOYzpWDzpoLrLMoebf4AAAAA4PZE/nu9VnDEUJXrSa36BXO/CEfwqHrZl156iT744AOxczmQMDdyEveaN+Z52Ldvn8kyxscLjhlc8G97zccBSNGaFAAAAAC3oNfZf3KQpv/+YM2D8xTsYK1yXWgrRwUSHhVMcLIQTjbCO5ebNrVo0cJsWe4/0atXL3F/0aJFxZ6/cOEC7dixQ9zv379/oeeMf/PQW9xWrSD+m3vSM656KoizG7Lt27ebrJ0wbkfv3r3Jx8dH8VUDAAAAQEmoUqVK/vWmqetJzkTNNRPcooSTyNnif//7H/36668mnzt8+DBdvnzZ5HMff/xxsWvS2+URzZxeffVVeuedd/KbNlkKJAoGH9wxe+HChaLH+/333y8e5/wTo0aNEkN18eOcBbEgzlT91ltviVwV3AOf7xvx3/w4n1zDhw8vNB+P8cvJSTgLNi+fT4iAgADx3Jo1a8SQXpz0jvtEWOPz5X9SQNB/I0kV5evtJV1GWJDlICYxVZ5M7/JV+ehS5crKMzwmp8vXlZZkvsO5UWZylrQMqXS+LH3rWJmTcTNdvh6FDpw5Cq/boLAunwrmzwWjbJVtVpGZY/n5HPn+pXj5sSQ/+TlMuQqJeXJy5WUy5WUMKsvJkWyPl8IvaHny12TIku9jna9Gvy0pHE6DwjbrAi1/Pel8FI63yrmlct4ofD5SqMIgHoE+tr9fmK9ke9LknxO68vLPAEOGfDlewfLXrdPJzy297DXxunzky/H2t3zehIbJBxpISZF/L3grnDf+CudotsL3i4/Cd4PKcvx9ze+b9LQUGjOwAzkFYz4Iey7fgaZOnSp+aJ41a5bIZm2sgeDaimeffVbcHzt2rM01CTwSFV+D9unTx2QNCT/H/YWL4ib2fO1pC7cPJvii3HhBX7t2bZo3b57JctyH4b333sv/mw/2+++/Lzozc7TYoUMHKleuHP31119iuC1uCvXpp58WWw43j1qyZAl169ZNpFDn9Tds2JCOHDkiJm6mtHTp0vxAoaDPP/+cjh07Rhs2bBAdptu1a0c3btygrVu3it74nAa9cePGVu2H0FKlKTDYdM4M5qfwZVkqxPKXhs5X/gGcmCY/5cLC5V9yOj+FLzldhrSMr05+kWpQ+JAOCLvVLM4c7xz5aDo6lS8Mb4VgIlPeZ8YnNES+riyN+t54axBMZGY4LpjIVggC9ArBhMpyZK9dZYQglWBCYXt1ChdzSlS2RyWYCPBxnmBCZV1BCu8XyQ8ySu8XlW3WKQQTZnIoFWRQ+LzxknwviHXp5eexl0owoVBGGkyEW/7hh+m85d8LPn7y7zJ/he3NVjhHfbz1miwnwMI2+7jJiJb2xBfdxot/dvbsWXH72Wef0W+//Zb/+IoVKwolQuaWJ+PGjRP9dVu1aiU6Q/O1II8oyn1z27RpI/JJ2BNfQ9qa5dqjgwnuDF2wXZq5Pgk8VFbBYII9//zzIgcFBxV79uwRvfF5qC2uHeDJXEI7PjEOHTokTg4ODJYtW0Zly5YVtRGvvfaa2ZGVOFjh7ePhXXkejhT5hONMhZMmTbJ7b3wAAAAATxjNiVupeHl5iQRxPMnwIDic/K2oy5cvF2pCZGoYfv4xmK8N+QdtbiafnZ0trgW5FQxfa7p6egK3Dya4Wocna3Xt2lVMt4trQThRyO3iocE4mOAJAAAAALS3d+/e2xqOlRPF2fLr/uDBg8Xkjtw+mAAAAAAAF2HvEZccOJqTp/CY0ZwAAAAAAEBbqJkAAAAAAI/qMwHaQTDhIbLzDJRtYSSbsED5qBOXYy2PSJSiMGypl8IIGPEKw/KFKwxHmJYsH5HDS2WUFoUyqTdSLD6fmyLfN5ShMIqLZKQSQWXkjziFYV8TFEZQUhkBKCHT5hFuDArD/KqMIqRTOG/yFF63yvboVIYBla3HREc+a0aoUhmpyZCVq8nIZjoLw0/mL0fhs4LSc2w+b7Q4Bsyg8FmiUxm9yxCgzQhUKmVkm6LwOavyeaPy2aZTWI6hSF4mUwIkQ3CzPMm+URn1KF1hWOxchc+SyFoR0jKxCudWusJwwc1ql5GWOXAm1qZ1gPP7+++/Rb6J23mOH7cVggkAAAAAcA5ulmfCkXgkUZ5u5znuVK6zcZ8gmAAAAAAAcGHt27e3OSiwFoIJAAAAAHAKfEGss+OISyV1wW1vW7ZsoZKC0ZwAAAAAwKNw0roGDRqIRHJgG9RMAAAAAIBHjeZ0u0nrwDzUTAAAAAAAgFVQMwEAAAAAzgGjObkcBBMewkevIx8v8/WGl2JTpcvIlYzjHxwgH9M9QWFM7WyF8a4vXE2WlvFSGFs/M0meU8Bb4XXp9Hrbx1lXyA+h91GoTAyQrytPJW+DwusmheMprf/MVBifX6EznlouBfm5pdLxT57ZQS1vgzS3iMI5YZDlY2AqHQ5V8kwo5PKgHIW8F34Kxyrbcj4AncK+UckZoo+Q5y7QKeSaMSTL8zaofA4oHaswP8vPpymcE/EKuWYqh2jzmjSSdClRWsY/3PLxvKlwTvgo5CdR+ZyIkuQfUpWZKj+3zlyR7xsAe0EwAQAAAADOgQM1O47mZNdleyj0mQAAAAAAAKugZgIAAAAAPGo0J9AOaiYAAAAAAMAqqJkAAAAAAOeA0ZxcDoIJAAAAAAAX5uUlH3XOHJ1ORzk5CqPAmYFmTgAAAADgHPQOmIioRYsW1KBBA5o3bx65A4PBYPWUl2d5KG4ZBBMAAAAA4FH27t1Lx44dozFjxpA7yMvLKzZNnDiR/P39afz48XTgwAGKj48X08GDB2nChAkUEBAgytgaTKCZk4dISs+mHH222ecD/OSnQrCkTIxKAjiFRFMqibryQv00SbDlE+QrLZOtkDBIvi3yN6pSEq5E+T4mlc8EhcSAlKOwIEmCKJXEdoZr8sROutL+0jKGOHkSLoMsSRyXSZAn4lNKQqiyrlzJOZqbq0kiPsrN0+Q16SwkvsynkFjRkGr+syif5P1gUDmHFahsiy5IIYmZwmcSyY43C1VIFplo+Rz1rlVauogchc+SwDJB0jIZCsnvDCpZHhWofF77hVn+rAgtq5DMVCGBY6bC/gtT+HwsFSh/TSkqCUQVWEo8m6eSkNJR0GdCEwsXLqSPPvqI1q9fT506dSr0XJMmTeiDDz6gPn36UNeuXemOO+6gUaNGWb0u1EwAAAAAALiR+fPnU5s2bYoFEgV17NiR2rZtSwsWLLBpXQgmAAAAAMApcGdge0+e4MSJE1S1alVpucqVK9PJkydtWheCCQAAAAAAN+Lt7U3//POPtNyRI0dEWVsgmAAAAAAAjxrNyd21atVKBApz5841W+bjjz8WAUfr1q1tWhc6YAMAAAAAuJHXXnuNNmzYQM8//zwtWbKEhg0bRjVq1BDPRUVF0Q8//EA7d+4UtRKvvvqqTetCMAEAAAAAzgGjOWmCaxsWLVpETzzxBO3YsUMEDgVxfong4GD64osv6N5777VpXQgmAAAAAADczKBBg6h9+/b05Zdf0tatW+ny5cv5na47dOgghoOtWLGizetBMAEAAAAAzgE1E5oqX748vfLKK2KyFwQTHqJWxVAKDgkx+/yR8/E2J63LSFdI/uSlkNBKIcFWrkJSobxs+XJCK5rfJ0YpN1KlZTIlCft8FJIOZScoJP1TSCKlkoxKJTEgKRxPSlFI6OdjOUmUTiUhU6b8eOsk6xEUzgmDr8I5qpKFy09he2QJERXeL1q9p/Li5Oe5PsBXk32skqCRZEm0VNYTorC9KrQaSlIl6V+aQjI+SRK9nHPyz3OvyDBtPmfT5J8TgZVDpWVyFJI8+gbLj2fGTctJ9LIUkiqmKiTSDKoQTFo4ezbO5kR8rHYl+T5Ot3A887IVPq8AzPCQPu0AAAAA4PQcNJpTixYtqEGDBjRv3jxyZ0lJSSKB3SOPPELdu3en2bNn5z936tQpWrduHWVkKPwIaQFqJgAAAADAo+zdu5dCQ+U1Oq5s3bp1YhSn+Ph4UaPOCfu4v4QRJ6vr168f/fjjjzR48GCr14OaCQAAAABwrj4T9pw8wPHjx6l///6UmJhIzzzzDP3000/FmuhyTUVgYCD98ssvNq0LNRMAAAAAAG5k5syZovnS0qVLacCAAeKxIUOGFCrj6+tLd911Fx06dMimdaFmAgAAAACchL1rJTyjZmLz5s3UpEmT/EDCnCpVqtDVq1dtWheCCQAAAAAANxITE0N169aVlsvJyaHUVPlofpagmRMAAAAAOIcCIy7ZbfkeICwsjKKjo6Xlzp07R+XKlbNpXR6ySwEAAAAAPEOzZs1o//79dPHiRbNljhw5IvpLtGzZ0qZ1oWbCQ8QkpFNqjvnD7a2QROpaguVkQOUiAqXLiFdIcpatkGBLhXeA/PSOOR4jLePlL0/m4xNkOZlSXrY8+VNABXkCvfRrydIyvgrHIetCAmlCJXmb7JirjKyhkuRMYR8rLSdX4TWRvIxBIdGeIcNywq+8zGzbk7upUth/uamZ0jL6cHliRVJIVKgP9LP4vEHleCfKt1enkAiN8hQ+k7y8tEkEqbI9stdeVn4McuPl48rnGix/5gv+8s/ZbFlyRsWPkrwc+XHQS5LSZSsk2WvUupq0TNQl+WdoYrx8/3n5ys+bsqXkSetUlAo0f2755GmU4FELyICtiSeeeEIMDfvQQw/RsmXLqEKFCoWej42NFWV4hCe+tQVqJgAAAAAA3MjAgQNp0KBBtHPnTqpVqxZ169ZNPL59+3bq06cP1axZk/bs2SPyUPAQsbZAzQQAAAAAOAfUTGhm0aJFVLt2bfroo49ow4YN4rHTp0+LiYeFfeGFF2jWrFk2rwfBBAAAAACAm/Hy8qK33nqLJk2aJIaK5c7WeXl5VLVqVerSpYvNHa+NEEwAAAAAgHPAaE6aCw8Pl+absAX6TAAAAAAAuJHOnTvT7NmzpeXee+89UdYWCCYAAAAAwDnYM/t1gf4YLVq0oAYNGtC8efPIHW3ZsoVOnDghLXfy5EnaunWrTetCMycAAAAA8Ch79+6l0NBQ8nTZ2dmk19tWt4BgwkP4enuRn7f58ayzM3OkywgJ8bM5h0S4whjq2Qpj0F9XWFcplXwLCsvxVhhHPUOSg0PvJX+jZimM4a9T2DdZN1K1yU0QrjC2uY/C2PreknHdFfYvJcv3DWmTnkRpHxsy5O8XQ7J8HH9DVo7ty1A5lrm5muRJ0Psr7Jv0LE3K6CQ5QVTyQ+gC5dtLvgpfoiq5UFTOY5UcEl4K65LlHVDIx+Cl8P7OzcrV5H2Xo5JzRWWbFXIyhFa0nK8nPinT5pxKTKeXH6dAyXcmy1TYxyrfrbUrhUnL/LX/stnn0tNSyGnoFN9ztiwf8v3zzz8UERFBtkAwAQAAAADg4kaOHFno723bthV7zCgnJ4eOHTtGf//9t8g7YQsEEwAAAADgHDCak9W+/vrr/Ps6nY7OnDkjJksqVaokho+1BYIJAAAAAAAXt3DhQnFrMBhEjUTbtm1p1KhRJsty0roqVapQq1atyMdHoUmoBQgmAAAAAMA5IAO21UaMGJF//4033hCBQsHH7AXBBNjsn33baeuaZXTynwOUeDOWsrMyacaXq6hyZJ38MicO7aHoqNMUUTqMOvWwX+IUAAAAAE8XFRXlsHUhmACrZWak07wZk2jPn3/cesDw76gyJkZh0Ht50Xdzp4s2fPXubEqVqtXAngcAAAAToznZcadgNCfNIZgAq3302lg6uGurCCJq3dGE6jZqTmuWfGWybN2Gd1PlGnXpStRp2rF5DQ0c8Sz2PAAAAIAdZWZm0ubNm0VyuqSkJNGfoij+oXfatGlWrwPBBFhl95Y1dHDnFlEL8eRLM6lL7yGUkZVrNphgzdt2o1/On6IjB3YhmAAAAIDiOIeHQh4Pq9lz2U5mxYoV9NRTT1FcXJzZMhxcIJgAJalZOWSwkJiuUW15wpLr8f8l8tn2xwpx2/H+/vTAg8PE/YS4tPznM1OzKaNIorFKVeuJ28tRZy2uJ14hYZAhV56oq+D22JJMLjtNknSNiILKBducvCjxmjxpUHa6fFvk6dR4g+QjN3gplMmVJBZTTjinQXK8vBT58dYpJARTSUinkhRM6QtLcv7lpcv3XVaq/HWn5sgTGZbyKyUtY8iUnxP6XPm+0YcG2LxvlBIvKpyfOl+F39RM/JJXjEJiNpXtkSakU1mXSh4+lYy3qfKkiT5l5MlBfRU+/1ToFfZf0tVki8/7hSp8FkcnScsEKrxuH5XjrSBD4XP/wJlYmxK5+vornL/gUvbt20dDhgwR94cOHUpHjx4VCeomT55Mp0+fpvXr14uaCh7tiUd1sgVqJsAqZ44fFpFsu/seUJ4nLLyMuE2MNx8hAwAAgAfDaE6aeO+99yg3N1fUTnBSuscff1wEE8acEjExMTR8+HBas2YNHTx40KZ1aRM2g8dJSkwQt6XLlleeR//vL2EGg8KvugAAAABgle3bt1ODBg3MZrcuW7YsLV68mFJTU2n69OlkCwQTYJWg4BBxezPmuvI8sdejxW1oWGnsdQAAADA/mpM9Jw8QExND9evXz//b2/tWY6SMjP+aL4aFhVGHDh1o9erVNq0LwQRYxTi06/nTx5Xn+Xv3RnFbs96d2OsAAAAAdhISEkI5OTmFAgd25cqVQuU4+/W1a9dsWheCCbBK8zadxQgAvy/5mrIy5Z30Th/dT3v/Wiv6WbRo1xV7HQAAAEz3mdDbcTKRC8sdValShS5dupT/t7GWgoeJNcrOzqZdu3ZR+fLqTdZNQTABVuk1cDgFh5aihJuxNGvyM5T8bx+KonJzc+ivdT/TJzPGiL4SZcpXoi4PDMReBwAAALCTtm3bihGcEhMTxd+9evUSTZ0mTpxI8+bNo1WrVtGAAQNETUW7du1sWhdGcwKrBAaH0EtvfULTn3+cDuzcQiN7t6I6dzbPf375N+9TTk42XThzlNLTUsTQit4+fvTSzHnk7S0fXhIAAAA8kINGc2rRogV5eXnRmDFjxORu+vXrR2vXrqWtW7eKTtgVK1akqVOnis7W48aNE2W4hUl4eDjNmDHDpnUhmACrNbmnLc2Yv4g+eG0CxVyLpqMHtuW/SY/w/VtnqrgJL1OBRr/4PtW98y7scQAAAChRe/fupdDQULc9Cl26dBH5JAp6/fXXqVGjRrR06VK6efMm3XHHHTRhwgSqVq2aTetCMOEhfPQ68rGQsOvEpVvVYJZkm0h6V6bKnfTmF2toz9bVdGjXZoo6fYSSE25SXl4uBYeUoqq17qC7WnWie7v2I28fX0pSSACXflOetC6gtELSKwVZKVmaJCeSiT0fLy2j8kOMStIm8tVrkmAr94RCPpBgX3mZAElNVLZCsiSFRHL6MD9NEtLpfOT7z6CQMC0vVZ5wLu+m5USFiUnyRFTx2fL3blqu/D2VkGO6qWJBpTLlie3Cs+WjtXmFB0nLWEqyKSi8X3QKyQWVzonS/raf58xfo6/cQG+bE07mqbzvFD6UsuPk51aOwueNyuesTiERpK/kMyk3S74t/gqJA/MUzi2VxKlBYfJ1VS1/a/RESzJzbEs6Z8iSJwZ1GHuPuOQZXSbM4qZNPGkJwQTYzMvLm1p37iMmAAAAAChZnTt3Fp2wv/32W7uvC8EEAIATSc9Lp7x/EzumGdLIl3zJW2f6ozrDkEnphv9GU/Mhb7NlswxZlEf//ZrqfRtlvciLfHSmf+3ONGRRLv33q2igIYv8dAo1VgAAphhHXbIXey7biezYsUP0m3AEBBMAAE7kmxsLKTr7VoJH1t23KzX0aWCy7C8Zv9HlvP/KtvJqSQ28/ktSVNDOvN10la7m/91E15ju0Jkuuz1nJ0UZLub/fZe+MTX1bmKy7JasrXQs90T+322oNXUP6mbxNQIAgH1xrURmpry5rcOCiZo1a2qyMs4xcPbsWU2WBSUr5tpl+uajV0Xjw1GTZlF4GctjFMfHXqev3ptMei8dPT3lXSpdtoLDthUAAABchINGc3J3DzzwAH3//feUmppKQUHyfmp2DyaioqI0CybAPezc+AudPLyHajdoJg0kGJfJy82hk/8coG3rVlKfh592yHYCQMnKzMuk9WkbCj3WM3cY+XkpdGoGAACr8MhNxlwSn3/+OVWvXp1KvJnTwIED6d1337V6RZMmTaLly5dbPT84l+N/7xTRfdM26tmsm7W5T2TCPrJvG4IJAA+RQzm0J2NfocfuyxuEYAIATMNoTpp44YUX6M4776TffvuN6tWrR02bNqXIyEgKCAgw+WP/V199Zf9gIjg42KaohucH93H14jlxW72W6bbcplSteat9dnTUGbttF4AryMnLoeNJ/5Ah7b/O0/UD7hAdokeUezy/A3Ziwg3RAducvv4P0M3shEIdsM1prW9ZrAO2OW28W1NralmoA7Y5HX07UDtqm/93mcCyZssCAIBjfP311/ktgrKysmj37t1iMsUhwUT37t1Fkgtb8PzduqFTnrsQWa1FJmz1hC/Gsqkp8nHxAdxZZl4GLb7wdaHHJleaSt5e3hSg/+9Xo2yd5bH3/XV+FKBTay7kexsjLN1O2aIjN2EkJwCwCUZz0sTChQvJUZSCiTVr1ti8ookTJ4oJXFfBxDlBwcGUkpRIgV5ZSgl1WNyFWwni/P0DqWyo+QugTIWkQjnp2ZokFdJKtiQZX06KwogKeoVkcwqvyTtUnrwt56pCQrqIAG2ScKVm2z5Mn0LSK4PK8dbqnFBIWmexjInnuBaiaPBwI0uetC4jV35uZeVlaVImx6CQfCyz8HmTa8imu32aFnrMKz2P8rIsb7d3RbXPFVsT0umrhGpz3igkOySFJJmk8NlGkn2TGyNPlkYhfpokwFRJkKdT+WxToJJwLiTCcgCemvhfbaA5fkHaDG2co3DeqHzfpcgSOCqylLgW3M+IESMcti4MDQtWKV+xqggmDu3fQXfd00ZpnkP7dojbshUqYa8DeAg/nR/d739f4cfQ+RoAzMFoTi4HwQRYpWnLtnTmxD+0ask39MDA4RRR1vKITrE3rtKvS26132vash32Ong0HemonF8Fys3675dqHWnz6y0AAEBBx44dE0nsYmJiRKfsPn36iMfz8vIoJyeHfH19SzaYuHz5Ml25coUyMsxXHbZv397W1YCT4QBixQ9fUmpyEk1+eihNeXse1axrujP22VPH6O3Jz4qy3t4+1HvQcIdvL4AzCfQOovF1J9PNc7cGMgAAgH/x7yr2/G3Fg363uXTpEj3++OO0efPmQs2fjMHEF198Qc8++yytW7eOunTp4vhgYunSpfTqq6/SmTOWR+bhX6I56gH3Ur5SFRox5iX6as5bdPnCWRrzcA9qfHdratT0HipdppwoczP2Bv1zYDcdPrCLyGAQ58KjT0+kSlUjS3rzAQAAANzWzZs3qUOHDiJXXMOGDcUP+/Pnzy9UZvDgwTR27Fj69ddfHR9MLFmyhB566CEyGAxUunRpMW5tSIjtneXAtQwa/jRlZWbQ959/SIa8PDq8b4eYiuLzhDvgPfrUCzTk8bElsq0AAADgAtBnQhPvvPOOCCQ4zxvf5x90iwYT4eHhYrTVbdu22bQuq4KJmTNnits5c+aI6hEvL/NjkIN7e/jJCdSq/X205Jv5tG/HFtGUqaCgkFBq2bYLPTj8aaplphkUAAAAAGjnl19+ET/2z5o1Kz/fhCk1a9ak7du3Oz6YOHnyJLVu3Zqee+45m1YO7qFWvTtpysx5ogbiWvRFSky4KR4PK1WaKlSuZvEkBgD3lmXIor8yC39Rdct9kPy8FIYmBQDPg5oJTVy4cIF69epFesnQzNz5mptEOTyYKFWqlE3ZsMHxfL29yM/bfA1ShVLynAIXoi0nmwsM8SPv0PIUEfrfyE6xyYXHkk8r8rcpEWWCpGXSfeW1YTcvyZPjBZaxPCa5Sg4JliV7Xd7a9PgKUhgTP3XfFfmCKmiUkT4+XV4mTdJnKls+zjoFKYxlrzCmu0EhPYRK7gxDvHysekO6PKdApiS3g0ruh4w8+bboFXocFsyObU56rvx4X828XngeQwbtyt5b6LFOmT3I10tv0z7WV5Y3rdVJ1iFkKfTpC1QY6SRbIRdFsK82uVtknzcq7xeFzySdTpvPLV+F163yOavyeR0XFW/xeW9/+b5JUPhcCyofrElejFKSvBhaCrNwHnvnaZNbA5yHv78/JScnS8tdvHiRwsLCHB9MdOrUiQ4ePGjTigEAPFWOIYfOpp2m+Nxr+Y9V1VchLx2ajAKAh8NoTpqoX78+HThwgFJTUykoyPSPtLGxsXTo0CFq2bKl44OJ1157TayY22FNnjzZpg0A58cdrFlikuVfCn385KdT9r+ZPB946FmNtg7A9WTmZdB3VxcWemyU/wgKIIWs4wAAABIDBw6kF198kSZOnEgLFiww2dyJn09LS6MhQ4aQw4MJjnZ4TNqhQ4eKDh49evSgatWqmW2XNXw48gq4su8/+0D0e1BpIaIKwQSAZ/AiPdXW1yr8mA75UgGgZPtMtGjRQgwgNGbMGDG5mzFjxtA333xDX375Je3fv58GDBggHj979ix98MEHIsXDnj176K677qLHHnvMpnVZ/YnOmfS4wwa3teKNsQTBhOvjztWaQYdsAI/hq/Ol9t5tCz3mr/cvse0BAGB79+6l0FB5P0RX7jPxxx9/0KBBg8Q1u7F7Ag8DyxNf13FAtXLlSvLxkfcl0jyY+L//+z964YUXxP3GjRtTnTp1KDhYow6dIKLFefPmiXZsWVlZVLt2bXr44Yfp+eeft/mAW2P250vE7bWYVIvl/APl25ah0MkOwN3pSEelvMMpN7fg+wGjngEAYDQn7VSsWFEEDhxU/P7773Tu3DnKy8ujqlWrilZFffv21WTETauCiQ8//JC8vb1p+fLl9MADD9i8EfCfCRMmiPwdvH87d+4sgrRNmzbRyy+/TKtWrRLNywICHNuumjNbszCF0ZxkVEZzAnB3gV5BNClyCl2LPlfSmwIAAG6ue/fuYrIXq8Z94/ZWnJYbgYS2uKqJAwkOIHbv3i0iyWXLltHp06fzMxROmzZN47UCAAAAOAldgRGd7DGhEtg5gglOv122bFntt8bDGTOL8whZzZo1y3+8TJky+SnQP/nkE0pMlOdPAAAAAADIzc2lGzduiH7O5iaHN3PidlYbN24U7a5kmfVATXR0tOgMxIYNG1bs+bZt24o2bpcuXaLVq1fTQw89dFu79kZiOgXkmD/ckeWCbU4mF6wwNGyKQpn4BHnCoJRrKdIyfqF+miQVkiakI6IASeKhvBvy7S1do7S0zM3zClkqqyl0KMtUSBSnQqFpmyYfQ0ny5G3ko1GOBoXBBnQKSRMNCkn0UnMt90PKzsvRJCGdVoMs+HrJE1v56X012Tekt/zzoUGh/5WubKA25423wk+ZXgpl0hX6jKkkcSxr+bNY76OQpDBZ/p7yVUhumZkgT5roVUab92ZmovyzOC83z6bnmX+4vClxOYVkc5cvJEjLZCh8B2Vnyl+3ytDsCRa+y9JT5d9RDoMM2Jrh60pO57B161bKtHAecb+JnByFBJ5aBhNvvvmmuKAdN26cGF6KU3GDbYy97EuXLk01atQwWaZ58+YimOCytxtMAACUhGxDNv2dc7jQYz3yqpKvQtABAADW2bVrl+h7m5GRkd+qyF6jV1kVTHzxxReidoKTYHDvcM6IbS7PBEc7aOcvd/78eXHL+9EcrpkoWBYAwNnlUA7tyz1Q6LGuhp7kSwgmAMAE1Exo4vXXXxeBxMiRI+mtt96i8uXLk71YFUy88cYbt5KYGQx04cIF+vrrr4uVMT6PYEJNcnKyuDWX8pwZh99NSkoyW4arsQpWZVkqCwAlI8eQQ5cyLtDVvGv5j5XTlSUvnUZNtQAAwKPt3r2b6tWrJyoAtBj+VfNggttf2XvDwDpvv/02TZ8+HbsPwIll5mXQ/13/otBjD/kMIi9CMAEAHs446pI9l+8BcnJyRHZrR1yvW10zAdoKCQkRt6mp5jtkpqTc6iBlqc3blClTaOLEiYVqJozNowAAHE1PXlRTX7gfmJfOqq8eAABQVL9+fYqNjSVHwCe6k4iMjBS33MHaHONzxrKm+Pn5iQkAwBn46Xypu2/XQo/56/1LbHsAwLnxL+n2/DXdU1rWjB49WgyUxLnhatWqZdd1eUhlj/Nr2rSpuI2LizPbwXrfvn3itmAOCgBwRToK1AeRX4F/AAAAWgYTPPLnfffdJ0Zg5VwTJVozsWjRIhHVtGzZ0qaOIBwdmcqhAERVqlShFi1aiDGBeX+/8sorhXYLZ7/mmgmudejZsyd2GYALC/IKoinVptG5K0dLelMAAJwLRnPSRM2aNcVtVFQU9e7dm7y9valixYpmR17la3S7BhOPPPIIPfbYYzYFE59++il9++23CCYsmDp1KvXv359mzZolht411kBwbcWzzz4r7o8dO5bCwsJue//7+XqRv4VEW4lp8gRGKZKESz4KSZviYi0n6WI5GfLEKQGl5UmFdJKkV1pKOhdvuYCvvBIw7kycJtvipZBQLVch+RMF+MjLxCgkOpIdhxx5sjRSOCdU6ALlrykvOllhQfIien/5umTNfdL08gSOnDxUi4R0Wo0klUcKx1PhFzK95D2uciyVzi0V6Qrnn8L7TinJo7dCgwFJ0r+8uDTpIvQKCen0XgrbkiL/7ki/KT+PVYRUlo+Rny35ngpXWEaASnJVhdcdUfFWX0hLkhWSoqpQSTxrSWqKZzT98SRRUVGFvgOys7PNZrq2tekX+kw4kX79+on2bXPnzqVWrVpRly5dxFCxnG08ISGB2rRpIxIGAgAAALgjVExow5E5yZSDibVr14pMetY6ceKE1fN6kjlz5oigYd68ebRjxw4RSXITs8mTJ9Pzzz+PbOMAAAAAYFH16tXJ6YKJa9euickWntKD3laDBw8WEwCAq8s25NDR3GOFHiuXV5l89ciADQDmaibsOZoT9nqJBBObN2/WfMUAAOD+ciibdufsKfRYJ0NX8iUEEwAA9sb5xr7//nvR2iUmJkY0oX/ppZfEc6dOnRJ9K9q3b0/+/v72DSY6dOhg9QoAAKCwXEMuXc2Ipht5MfmPRegiyEuH0boBwMMhA7Zm1q1bJwY+io+PF52wucancuXK+c+fPHlS9Nf98ccfbWoRg28uAAAHy8hNpwUX5tCyrJX5UxZpM6oLAADA8ePHxQihiYmJ9Mwzz9BPP/1UbGS/7t27U2BgIP3yyy827TCM5gQAAHajJy+qpq9ql2FoAcD9IAO2NmbOnEkZGRm0dOlSGjBggHhsyJAhhcr4+vrSXXfdRYcOHbJpXQgmPET5sAAKCjY/bvu1BPk44Ck3LOeI8FLI6+AX5KtJmVSFcdRVePvL3wIBEYHSMnm58rH+ZXQmEslYk18j+bwk5wXnBFEYYz5bJd+Cylj/jsr3IRlfXlA4TPpw69uNFqS7YWH/ZRffb+V8y1KQPqjQYxl5GfL1KFQwG1ReuAI/hU7TFf3KF3tspP/wwsuJrCJdjiHPYFOuBaYL8NbmvFHJD5Ekzzugss1K+SpkZRTO4bwY+Weoj0KeBKpeSlokPV6+Lt9g+T7OUThWBknelVzZeUVEV87dlJZRyVehkkPCXyGfT2qi/HMgVmFdZVTOY3AbmzdvpiZNmuQHEpaSJh87VniQjNuFYAIAoAT48IW5woUNAIBHQaIJTXBn67Zt20rL5eTkUGqqPKGwJQgmAAAcLNgnhKbf9T5ln72OfQ8AAJoLCwuj6Ohoablz585RuXLlbFoXOmADAAAAgFNVTNhz8gTNmjWj/fv308WLF82WOXLkiOgv0bJlS5vWhWACAAAAAMCNPPHEE6ID9kMPPWQy6XRsbKwowyM88a0t0MwJAAAAAJwD+kxoYuDAgTRo0CAxmlOtWrWoTZs24vHt27dTnz59aMuWLZSSkkIPP/ywGCLW4TUTnTt3pm7duonqE0veeecdURYAADxTtiGb9mTuKzRl5yqMfAQAADZZtGgRTZkyRdzfsGGDuD19+jT99ttvlJWVRS+88AJ9/fXXtq3E2poJjmZ4HOCOHTuKJBg9e/Y0We7EiRO0detWW7cRAABcVJYhi1Zn/FHosaZ595GPl3yYWQDwQHod6ew5pLijhit3Al5eXvTWW2/RpEmTxFCx3Nk6Ly+PqlatSl26dLG547XNzZyqV69Oly9fFmm4582bR08++aQmGwQA4O5yDbkUm3GDcnLj8h+L0EeQlw7d2AAAQFvh4eHSfBMlEkxwrcTgwYNFe6ynn36aLly4QDNmzNB260AzSWlZlKM337Qg7qo8QVnDhsWTUd1u4juVZHP+Col1crNyNUlIV71ymLTMmVOxNiec81JIRKX3kl9IJl9JkpYhP/m6smMVkv6VUkjelqLQXMVL8ivQDYVtkSSiEhSSP1Gm/LwhH4UkcOk50jJeZc0n/ErPSqI5m2cWemxqo5nk71N4nupn5XkobmTKz0+9wvAleoVWr6E+8kRdvjUKf05k5SQTHSmyrjB/0vtZTsCokyRE1MnOKy4TrFD7kZGjzXleNlCbMjczbD/XFc7zgFqlpWXSNUoOqvL55xcq/9zPiJd/x/gGWV5OksJ3ncr2Zigk0FNJSBfgJ/+eqlorQlpG5fs3Mc38eZxm4bkS4YDKgxYtWohf7seMGSMmKKEO2Pfff79oxtSrVy96++236dKlS/TVV1+Rtzf6dQMA2CIlO5my8/5LJOSv8ycvnemLnHRD4QsJX/K1UJYvVg1KZTMMGZRXoGygIZC8dd5ml5tnyKM8Dh5Etmx/8tH7kBd5UY2g2oXKeukVsjwDANjR3r17KTRU/gOJO9ixYwedOXPG5HPNmzenBg0a2LR8by3Gsd21axf16NGDvv/+e7py5QqtWLGCgoODbV00AIDHevfoG5Sd99+vhU8GPU6VvSuZLPtj5hLKoP9+0e7r05sqe5kuuyTzZ0o2pOT//YBvD4r0qm6y7M+ZK+imIT7/7wG6ftTAp77JsotSF9PVvGv5tRAPVn2Y7o5oSQHegfRknXGFynr5BJl+0QDg8bhPLk/2Ys9ll7S7776bTp06JfpHcJBg9MUXX9C3335rcp7GjRvTwYMHbVqvJlUI3H+Co56+ffvSxo0bRfru1atXa7FoAAAAAACwgK+/OSgYNWpUoUDCiPNJcKfrgrjv8+HDh2nTpk02jb6qWXukUqVK0fr162n48OG0ZMkSatWqlegtDgAAhQX7htI73b+m3Bh5+20AAE+CNBPWWblypah1ef75500+z8/xdXpBUVFRIgfFsmXLnCOYYL6+vrR48WIRRLz//vsUHR2t5eIBAAAAAKCIPXv2iJZCt9P/ITIykho1aiTmtYVVwUSHDh2ofn3T7WbZu+++K17Q+PHjbdk2AACP9eKdb1B21I1CHbDNechvcKG/uVO1OYP9BhbrgG3OQL/+hTpgl/E2P6rMsKChogN2QGT5/A7YAADgGGfPnqV7773X5HPcxMmcOnXqiD4WDg8mVFY6duxYMQEAwO0L9gmhLP1/ozlZEqCzPMxq4bLqF/lFAxhzIznlL1dHFOhtfkhcAAAptHOySlJSEoWFmR7ufuLEiSKVgykBAQGUnGxbk1uM4QoAAAAA4MKCg4MpMTHR7IhNPJmSkJBAgYEKOXAsQDDhIcqWCqDgEPO/XsYkyBMlXYpNtTn5TqkI+Ql78/p/w1bakpAuO02eVOjs2f8yEJvjEyRPPOQXZjlRUso1+WvyCpaPve8bLE/sZMiVJ3jLVkneppKwKkghKZjstXsrZH1WyCtGmfLjbchWeN0GpRTW0iK6cHkNgCzvmp+3/JyolBguLWPIlO9AfaD8WOpD5TUg+gj5sK86hQRllGP5PNaVUvjyUxkCUuGzROkcVUg6qZSQTun9kGdz4sqMxAxNdp9fqL8mye+yFBIDqiQr9ZUkPdUrJKXUKxwDle0NUUjAGq+QbC5d4f3ro3LeuAgMDWudihUr0t9//33b8/E8PK8t3OfsAwAAAADwQPfee68Y+OjPP/9UnofL8vCwbdq0sWndCCYAAAAAwDnoHTC5oUceeUR0tH722WdF/wkZ7ifBZbkmaNiwYTat2013KQAAAACAZ+jQoQPdd999dOzYMZG07vfffzdblhNLt2jRgo4fPy4S2XXq1MmmdaPPBAAAAAA4BfSZsN6iRYtEk6VTp05Rnz59KDw8nJo1a0Zly5YVz8fExNCBAwcoPj5e1GLUrl1bzGMrBBMAAAAAAC4uIiKCdu/eLVIz/Pjjj3Tz5k3asGGDCNAK5pvQ6/U0dOhQmjdvHpUqVcrm9SKYAAAAAADngDwTNuFcE9999x1Nnz6dfvvtN9q/fz/FxsaK58qUKSNqKh544AGqVasWaQXBBAAAAACAG6lZsyaNGzfOIetCMAEAAAAATgEVE64HwYSHuHIzjQIzzScy8lZIeJMpSRgUHy0fiiwnQ55YzDdInuhHJfFQ1k15MqCseHkZXcUQaRlDcqblAomZ8n2jUIaC5Qn0SCGxE5WSJ5qiFPmxomR54iaSJIozKCRMpGx5Ij5DqsL2yrLEKe6/vFh5Ei5DlkKmvTzLye8MOfJt0Su8X+R7T41KQkSDQrLIvDjLCTBVkt/lJsWTFlnXdCHyZH06Xy9NlqNE5b0pe88ovG6DQjJOQ7D8NaUrHG/ZZwDLTJcvR6+Q7DBVliQzQyGBo8o5ofBZkl1WIYGjQrLDVIUEg14K52h2gPljnqaw/wHMQTABAAAAAE4Bozm5HgQTHiIp4SZlZ5n/FTlVocYgN8fyr6hpSfJfa3Mz5evxyZX/KqRXqElJS0mWlqFU+S8+umT5L1mGFMkv9KkKtQ5pCr/y67w1+RWffDK02R7Lp4RazYTKL2I5Cr+IZyrUBOh1mvyKmpclr9EyZDumZkKFIUd+LHUGhbRD2fLl6LPkx9OgspxMyWvPU6lvUaiZ8FH4FTpPoWbCW6HWUIWvwntT8lms8LL5Q0BlY+RF5LtG7TNJoTZFr5NvT55sXbLzSiTg8tGkZsIvQVqEsrLyNKnR9/KRH4isTPPfH+lpkhodAAsQTHiIMQM7lPQmAAAAAFhm7yzVSNesOexSAAAAAACwCoIJAAAAAHCqPhP2nNzRn3/+KTJflwQEEwAAAAAALqxjx440a9as/L87d+5Ms2fPdsi60WfCQ8z7eSsFBAbbtwN2nEYdsAM16oB9VaEDtsKwpLry5vebcgfsJIUO2EkKHZ6DNOqAHeanzbCvWnTATtOoA3aaAztgx7lYB2yFzvQqQ1SSynszSD60qSFDoQN2eKBjOmAHazQ0rMqwzSpU3ptadMAOVNjeICfrgB3ioA7Ywdp0wI6IDHeqDth+AZY7YL8wrAs5BSSasJrB8N9nw5YtWygyMpIcAcGEh8jJ9ReTOeGlw2we6zqkVmn5Mq7LR4zwUfiSy1S4OPcuK7+oyQtSuJBVCQRyJR/kXgpf3KEKV+a+Chd8vvLlGK7LL4ZJr3AhoTKevSQoMSgMXqNyAaCyj1XyQ6gkZTDkyi/4dF4K55+FEdbE8wojpJFC7gfyUjiWWQrnn0J8qVe4ODLk6m2+ODLkqozUJL/A0gcESMtQqsK+yVDYHn9vTUaOki4jUOGrXWGkIcpSiEpUmox4y7fHq36EtEyeLIji8yJJ8oFSWmHf6OXnp69Czoschd+zwiuHypej8GNKqRD59gT7mX/tqSqjH4JTCwkJoatXr5bIuhFMAAAAAIBTQMWEdRo3bkybNm2i1157jWrXri0eO3PmDH377bdK8w8fPtzKNSOYAAAAAABwaS+99BINHDiQ3nrrrfzHtm/fLiYVCCYAAAAAwPWhasIqvXv3pj179tDKlSvpwoUL9PXXX1OtWrWoTZs2ZG9o5gQAAAAA4OKaNGkiJsbBRNu2ben//u//7L5eBBMAAAAA4BR0ep2Y7Ll8T/D6669T06ZNHbIuBBMAAAAAAG4WTDgKggkAAAAAcApcb2DPJNWeUS/xn5ycHPr5559p8+bNFB0dLR6rXLkyderUSXTY9lYYulkGwQQAAAAAgJv5+++/RcBw/vz5Qgnt2JdffknTpk2jpUuX0l133WXTehBMeIjQUv4UGGQ+OVNysjwxm78kKU52pjzjb5BCNulcheV4KWSkDSwTKF+OhSQ+RmkxqdIyuVmWk6rl3FRIEqdwDEgl6VqAjyZZfw0q26zS9lRSRiWxmMp6DJJs0mJdQQrZhRWWQwoZaQ1ZChmwJfShgZpk7CaF81wlA7ZBIUGe3s9Hk+2R8ZJlyBZZyOX7Rhfko805katw/ilkcCaFzMrSxIoqycErBMnLeOs1eW96KyRmk32GMl+Fz60cb8vb4xcqTybpFyYvo6J2JfnrvhQr/36pX0OeSfvEpUSyRZoGn1eawWhOmrhy5Qp169aNYmNjqXz58jR06FAxuhM7d+4cLV68mM6ePUvdu3cXQUfFihWtXheCCQAAAAAAN/LOO++IQOKJJ56gOXPmUEBA4R+UZ86cSePGjRM1FLNnz6YPP/zQ6nUp/OwAAAAAAGB/Op3O7pMnWLNmDVWrVo0WLFhQLJBg/v7+NH/+fFHm999/t2ldCCYAAAAAANzIpUuX6N577yUvL/NNibnzdevWrUVZW6CZEwAAAAA40XBOdl6+B/Dz86OkpCRpueTkZFHWFqiZAAAAAABwIw0aNBDDwVqqdbh48aIoc+edd9q0LgQTAAAAAOBUGbDtOXmC4cOHU3p6OnXt2pVWr15d7PnffvuN7rvvPsrIyBBlbYFmTgAAAAAAbuTJJ5+kZcuW0caNG6l3795UunRpqlGjhniO807cvHlT5J7gYIPL2gI1EwAAAADgVF0m7Dl5Au54zaM0vfTSSxQUFERxcXG0b98+MfF9fuzll18WNRR6vW3hAGomPES1ssEUHGI+YVxCoDwZUClJwqWE5CzpMjJz5ImJwhS2JVYhwVucQjKgDIXEbH6h8o5JGQkZFp/3iTCfMNAoWyVBlCRxoHLyO4XkTzqV5FmZticFM1yXHydDjkIWriT569arJOtLlyeko2z5sdKFyY85BVjenqIZS01SSPKoshyV5IEqie2Uhl1UWY6/5OtJ4f2i85O/JoPC/tMpJNnTl1VIMKjyHlcpI0u0p/J+UUkcqPI5ITtO/+Yg06KMSmLKEEmiOB+F1+2vkBQ17mqytEyswud1x8byRGFnr8g70VYoFWDT96+PhzT9cRVnzpyh9957j/bs2UP//PMPVa5cmaKiom57Ob6+vjRr1iyaPn26CCKio6PF47y85s2b29zx2gjBBAAAAAA4UQJs+wU3rpBm4ujRo6LG4J577hE/BsXHx9u0PA4a2rRpQ/aCZk4AAAAAAE6id+/edPnyZVq+fDm1bNmSnB1qJgAAAADAiWom7Lt8Z6e3sQ+Do7nW1gIAAAAAONjJkyfp448/pscee4waNWokskdzc6wZM2Yozb906VLq2LEjhYeHi87PTZo0odmzZ1N2tkI/PSeHmgkAAAAAcArOWjOxYMECmjNnjlXzTpgwQczLAUjnzp0pODiYNm3aJEZTWrVqFa1bt44CAhQG7XBSqJkAAAAAALCgYcOGNGnSJPrhhx/o+PHj9Oijjyrtr5UrV4pAggOI3bt30x9//CHyP5w+fVrUcGzbto2mTZvm0vseNRMAAAAA4BR0//6z5/Kt8cQTT1jVr2HmzJnidvLkydSsWbP8x8uUKUPz58+ndu3a0SeffCICirCwMHJFqJkAAAAAANBYdHQ07d27V9wfNmxYsefbtm1LVatWpczMTFq9erWm67548SJdunSJHAE1EyBULWc+oZ3RmSuJFp/385Yn+snONWiSkM5HIaFak/plpWUux6Zpsq5rkufTFNYTWClEWiZdIcmeQpozojyFpFbkLy8Sl25zYjtdFfnr1qXJO6ipvCLKViilkIRLX0ph32TJE/rJDpZSAr0w+bYYMuSJ2ZROHJXEVioJ8lQSpknWpfPRa5IcT2XfqCRmI5UkjyoJ6VTOLVlSOoUkmSoJ6bz9feTvu2z5ee4TpJIkU34c/BX2jX+A5W3OVHhfBijsmyrVS2mSgFVFWYWEdCou3Ugx+1yOwve3w9i5z4QjU2AfPHhQ3JYuXZpq1Khhsgwnj+OLfi770EMPabbuyMhIat26NW3fvp3sDcEEAAAAAHiUpKSkYondtMoIbXT+/HlxW61aNTKHayYKlmVpaWn5NRXnzp0Tf//888/i7xYtWlD16tVJJjQ01GwAozU0cwKrHN63w+o99/m7r2KvAwAAgNnRnOw5GS/iuY+CcXr77bc1PxrJycniloeCNYc7ZhcNbm7cuEGDBg0S0/r16ykmJib/782bNyutu0GDBg5r5oRgAqwy88XRdOb4P7c934JZU2j9ykXY6wAAAFBi+EI7MTExf5oyZYrTHI3IyEgyGAwmJ85zoeLJJ58UTZyMfTbsCcEEWCU9LYWmP/8YXb5wVnmeD/83iTb+uhh7HAAAAEziRHD2nozNgApOWjdxYiEht/oEpqamkjkpKbf6svA2aOnxxx+nZ599lrp16yZGlOKke9zR2x4QTIBVKlaJpKT4OHpt7CMUc/2KtPx7rz9P635dIu636dobex0AAADcWmRkpLi11NzI+JyxrFa8vLxo3rx5ovkUDzvLzZ4CAwPF40UnTqZnCwQTYJX/ffI9RZStQHE3roqAIuFmrMlyXCU3+9VxtOG3n8X99t3707jXP8ReBwAAgGJ0DpgcpWnTpuI2Li6uUAfrgvbt2yduC+ag0IK5ZlKmpjylER7NQzABVilXsQpN//g7CgkLp6uXztMb44dTasqtjkZGfHLOemUsbVqzQvzd9YFB9Nxr7ysnegEAAABwVVWqVBGjL7FFi4r3F+Xs11wzwU2sevbsqem6+RrsdiZbYGhYEGIS5PkCyocXHuu6fHhjmvPVjzRm+IMUdfo4vfXiSPryhxXk5+9Pubm59OLYJ2jrH7+KsgOGPEL/e3cuXY4x327QKCUzR5N8FSEB8jG+U9It585gFRTG+NZLxo8PKC1fRk66/HWXqRMhLRN/IUG+rsQMaRkqpzBGeq7CB5DsUCUqtOEMlW+LPk0hl4KffCz1vOjCQbFJCmPV6wLlY/QbZPkzfOTbq5RvQSWHhMpyVHIyqIyJL8k9opS3QWF7dQp5JvSVg23P68BCFNpbB/loco5KzwuFz0ffYPn2Zivkd/FXyHMSFBEoLROpkOvIX2HfXI+3/F1WeDBQ66nkkNAqP4TK97PKvrGUTyolwLaLSS0V7Ndgr+U70tSpU6l///40a9Ys6tGjR34NBNdWcJ8GNnbsWJfNfs3wEzHYpEHjpvTugm/Ix8eXDu7dTeNHD6eM9HSa+PRj9MdvK0WZgcNG0JvvfezwNzAAAACAFg4cOECtWrXKn37//Xfx+GeffVbo8atXrxaar1+/fjRu3DjR0Zqf54Bi4MCBVLt2bfrnn3+oTZs29Oabb7r0QULNBNiseet29OaHn9LUcU/Qti0b6L57m1B83K0+FEMeHUmvzXwfexkAAACkCuaCsAfjsrn5EXc+HjNmjJhkuCPz7t27iz1++fJlMRmZGjFpzpw5ImjgDtE7duyg7OxsqlWrFk2ePJmef/558vXVJlu6KWfPnhUBD6+X81X07duXZs+eLZ7j13Po0CEaMmSITTUjCCZAEx3u60nTZ8+haZOeo5uxMeKxh0Y8Qa/OeBd7GAAAAJwK51+4neFYO3bsKDorW2vw4MFicqRvvvmGnn766fwAh1uIxMb+N2AOZ9Z+5plnRDCjmr/CFAQTYNH1q/9F236+lttktmzTnh4Z+RR999Wn1K1XXxr5zDi6El14OLQbsWnitlzFytjzAAAAUIi9R1zylAbXu3btoieeeEIMB8vNqDp06EAtW7YsVIYf4xqJVatWIZgA+xnavfCJp4Ij3/WrfxWTmQK0Zu8F2zcOAAAAAIrhpkxck8J9O9q2bWu647ReT3fddRcdO3aMbIGaCbDIlio9T/9VAAAAADx7NKeSsn37drrnnnvMBhJGFSpUEJ3LbYFgAiyaPOOj/Ps+3pbfgP6+8tPpZpJ9UrkDAAAAwC0JCQlUrVo1kklPT6esrCyyBYIJsOj+voOVx7FWyetw6UYK9jgAAACU6GhO7i4iIoIuXJA3KT9z5oyonbAFgglQTngjU6NCiCZllvx5TlomPFibwEUlIZ2/pOM5KydJypSkkPwpleSJ5LIVEvr5hSokz9JIbmX5SBiGLMk2qzSlS5XvPwpTeN3p8uXoK8mTZxkSFGrY9ArfWJJkh3qFxHd5/w5qYIkuwMf2JHFM4dzSK5TJS5H/Cqbzt/z1pAtU+PpSSPqnlEhO5ViqiJB/3uj0tqd/UkmSqaJ8jXBpmQyFBI4qn1sqy1H5nvLztlwmwE/+eVO7UpgmieRUyiSnZ2nyuitHBEnLRISaTzCYFKh9k2YoWZzTgjtWHz16lO68806zTaH4+UceecSmdSFpHQAAAAA4VZ8Je06eYMyYMZSbm0sPPvgg/f3338WeP378OI0cOVLsD2MmbmshmACrZGSk0+oVP4nJmKDOEk6U8sN334qJk7UAAAAAlBROWtegQQORSM4ddenShSZOnEinTp2iu+++m+rWrSsChz/++IMaN25MjRo1otOnT9OLL74oajFs4dbBxI0bN+jbb7+lYcOGUZ06dcjf31+Mt1u/fn2R2jwqKsri/Nwh5Z133qEmTZpQUFAQhYeHi6QlP//8s3TdS5cuFWV5Hp6Xl8HDdMkupPfv30+DBg2i8uXLi+2tUaMGPffcc+K1OJONq3+h/708jhZ88DaFhJWSluf98Pq0aTR61ChasXyZQ7YRAAAAXDPPhD0nY9I6HhJVJfu1q3rvvfdE9mvuE8F9I3iEzqtXr9KRI0eodOnS9PHHH9OsWbNsXo9bBxMckY0YMYJ++uknEUT06dOHOnXqRDdv3hQ7sGHDhrR+/XqT83JWQC7Lqc4vXrxI999/vxhii9uX8cX+pEmTzK53woQJIsuhcVgunpeX8fLLL1Pnzp1Fz3lTOEjh6JBvq1evLlKe8xjAn3zyiYgi+URwFn9tWiduu/bqS97e8rbLXGbQ4CHiRF71yy8O2EIAAAAAz/bkk0/S5cuXad++fbRkyRJavHixuD69cuWKZoGUW3fA5qhr+vTpNGrUKKpc+b+MyykpKWLn8g4dOnSouEjnX84Lmjp1Ku3YsUNUA23atInKlCmTX3PANQ7vv/++uH3ggQcKzbdy5UqaM2cOBQcH09atW6lZs2bicU5fzoHEtm3baNq0aSJaLIgPKgc+OTk5IoocPXq0eJzbu3GK8++//17UsOzevdsp2vudPHpYbEfTFq2V52nbrh3N+fADOmjjeMYAAADgnjCak/b4eo2vR43XpFpz65qJuXPn0muvvVYokGB8of/VV19RSEiIqKXg7IAFxcfH04IFC8R9vjUGEozbnXENA3vrrbeKrXPmzJnilms0Ch40Xsb8+fPFfa5pSExMLDTfRx99JGpDunbtmh9IMC8vL7ENnO6cq+TWrbtVI1DS4mJuNbsqX6HwvrWkcpUq4vbqlSt22y4AAAAAKIxbhvAP29yHNS8vj7Tk1sGEJdzsqV69euL+pUuXCj23evVq0V+Ck320adOm2LxcQ8B27dolahSMoqOjxQV/wTIFcRbCqlWrUmZmplhHQStWrDA7Hwc/3ESLLV++nJyB3uvWqZOVpZ6EzpgUxR5ZtQEAAMD16cjOoznl95rwDOvXrxfN7fkHdO6Py/0n+D4/xp2xteCxwQR3hDZ2wK5YsWKh5w4ePChumzdvbnLemjVriiZUrOBwW8b5+DnuOG2KcZnGsiw5OTm/P4S5dZqarySVjigrbs+dPqE8z9Ej/4jbMmVvzQsAAAAA9sEjNXHQwK1auPUL/5jLE/fd5cd69uxJL7zwgs3rces+E5ZwMyeu7gkICKAePXoUeu78+fPi1lIa8ipVqogmUsayqvNxzUTBsqzgqFLm5jU13+1oGFmaQkPNJxg7fD5OuozGNSLy77dv35YWL1pE61Yupmkvj7+1bdeSLc4/f/6n4leBe1q2tFhucPua0m2RrUs1GdBlhYRfmTm5Nic52vHPVekydAqJsfxVko8pCJEk2WOJ17TJVp6TZDkZn66qPEGUQbIM4Yb8WJJG+0+p35JCGV225XPLkCFP9uUVqbD/MuXnMOUatEne5iv/jUpfXp5gSyrcfAKufCqVoCoJEVW2V5KAkIVUkid5TL6cJC3jK0kMqPJZolfYXu9/a6Atyc6U107rFJZzIbpw019TEsLlyfgiy1tOOlm1nDwpZahCskiVMipUEpqqJHt1JwVHXLLX8j3B999/L/r38nUu55HgfrnGH7r5uvObb74Rze+5mX3Tpk1tSlznkTUT//zzj4jWGHeG5mqfgrimgPGQruZw0yOWlJSk2XyW5jU1nynchIrLFJzsYcjQh8Ttgf376IXnJ1hsusTPzXztZTp6+FYtzpCHbs0LAAAAANrjUUu53+3atWvp3XffFSOY8jUmT5wRm9MV8HP84xj35XXLmomXXnqJfv3119ue78svvxR9E8zh4bF69+4tRnTifgjcUdqdvP3222IEK3vr3qMHdezUmbZs3kSfzptHu3fuokGPPkF3t2xNZctVEGViblyj/bt20A8LP6ej//wtTti27dpT7z597b59AAAA4HowmpM2OJcEXw+3a9fObBnj88b+vm4XTHDH5pMnT972fBwkmHPt2jWREfDChQvUvXt3Md6uqeYK3DGFpaamStdTsOmQrfMZ5+WRm1TmM2XKlCkiv4YR10wYm0hp7fvFi6l7l8509MgROnhgv5gs1U7Urd+Afly61C7bAgAAAAC3cOLjSpUqkQyX8fX1JVvonbmtl7GjyO1M3NHEFM4gzXkeOK04D7/K+SD8/Ey3O42MjBS3nGjOUg1HwbIF7xcdHaog43MF5+MEdUbm1mlqPlP4NXHAUXCyF+5o/ueOnTR23HjRJs/cMfEPCKQRo8fQj79uyO+4DgAAAFCUXUdy+ndiLVq0oAYNGtC8efPc8iDcfffddPjwYWk5LmNu8B+Xr5nQEo+py4HE8ePHRc0EN5/iiM0cY34IzhZoyrlz50Tna8adVoyM9+Pi4kRHaVMjOhmXWTAHBV/w165dW4zoxM9zojyV+ZwBBxGz33+fXnntNVqy/Hc6fuQwxcff2jfh4aXpjkZNqOW97SgkVN5JFAAAAMARuGmPPX9wLWmvvPKKuOblvhHcdcAU7kvB18bcv8IWbh9MGDNPHz16VOzUVatWiQtgS3ioLK7y4VoCTjleNNfEokWLxG2rVq0KVSHxCE8c6fIJymX4QBbE2a+5hoFrD3gdBfXv318cVJ7v8ccfL9bEibebDRgwgJwRN83q2qO3mAAAAACsgT4T1vnzzz8L/c01MGPHjhXN35cuXUqPPvpo/o/c/IM3twDav38/jRs3jvR62xoquXUwwbUHHEBwJxRu2sQ1ErJAgoWHh9MzzzxDc+bMEcNpbdq0iSIibg2LeuDAAXrnnXfE/aLBAps6daoIDGbNmiWGnDXWJHBtBS+L8cEt2i9iwoQJoqptw4YN9MUXX9CTTz4pHs/NzRXzJSQkiEClW7duGuwZAAAAAHAXHTt2NNkPmJubc9DA169FH2dz584VNRM5OfKhyM3RGdw4HTH/is+ZpXnnDho0yGwg0a9fPzEVxMk9OADZuXOnCC64doM7R2/cuFEkvONOzjx+rynjx48XB8fHx0cEMzwMF8/HAQHXcnA2QlPbwpHjQw89JAKIli1biv4RXMvBzap4+Fqu2eDmULeDO2Bz4LJ61ykKCjY/VvU99ctJlxUnGev/8MnzdO7UCUpKTBB/h4aVopp161NEmf+WHRJgWyef2xnj+2hUvLRMqRDf28qvYc7qveb7ybCcXHnq+oQ4eZ6E+rXk2xKbLB/3PUGhjLfCOPQxJ2OkZXwkuR2yFbZF7yf/3SPvhvmBD26LSg6JVHkOE/L1sj23Q6JChvlSlnMOCDfTbd8WFqKwLoXjSX4K+yZH8p6pGKJJzguSvzWJAuXnn28p+Q9VKrx85PvGJ8jyeypHIT9JLYXPkmsJ8vMmPNjX5jw8qrkU/BXyVaw7GG3x+Tsjw6XLqBwuz8Oz54z8s0+FyveLViztP+O1QmJiYok1/TFuw9ItxyjQwvWKrdJSkmlQxwYl+lodGUyo2rx5s9Xzun3NBON4iUduMocv2osGE4GBgbRlyxb64IMP6IcffqDVq1eLpk+tW7cWNQscnJjDNRocNHBNw44dO0TwUatWLTEM7fPPP2+21zwvk7Nrz5w5k/766y+R7Zqzc48ZM8ZkPgxnwPv2h2/+jxZ+8SmdPmk6G3aN2vVo0KOjqN+QRx2+fQAAAADubsuWLSW2brcOJmzdsXzRzwGANbkoBg8eLCZret8vW7aMXEFCQjyNHDaY9u3ZJf42V8l1/sxJmv36S7Tml6X02Tc/iRoLAAAAgKLQZ8L1uHUwAfbDgcOoh4fQ3t07xd/hpSOo0/29qWGTZlT632ZNN2Nv0NHDB2nj6l8pIT6O/jmwl8aOHEbfLluNQwMAAADgBhBMgFVW/PwT7dm1Q7TP6zdwMM189yNKzCreHrNn/yE0ZtKr9O70ybRm5VI6sHcX/b7yZ+rVbyD2PAAAABSmU+u6ZjV7LtsJZWRkiPQCnAya75szfPhwq9eBYAKssvLnW31QWrVpS3M//UrcT4wz3QE2MCiYXp/9CV27Ek0H9+ygVcuXIJgAAAAAsCNOOcD9cLlzuwyCCXC4I4f/FrUSjz3xtPI8gx8dJYKJ40flGRkBAADA8+hJJyZ7Lt8TfPLJJ/Tyyy+L+5wMuU6dOhQSYp9RslAzAVZJiL817Gq16tWV56lU5VbZxAT5kK0AAAAAYH0w4e3tLQb16d3bvgmFbUt5Bx4r5N+xma9fu6Y8T2zMdXEbbMfxowEAAMD1R3Oy58Q4EXCDBg3EMP7uKCoqitq3b2/3QIKhZsJDtLmjvM3JWSJC/fPvN2zYiP76cyutWPIDDR7Yr9jzpsyafGvI2/oNGiglnbMkKS1bWqZquWBpmeR0efKxPw9flZa5o6rl4W7PXEmULiNAIQlXYppCsjQFwQr7PzFeIWGVQuIrP0nytsysXOky4o/LE0TpygaRFgyyZGlMIVGXUvK2AEmCMklyMkGlp2KQwvYmWk5KyXzvKCstk3X2Vn4fi1T2cSnLnydKVBLxhcr3jV4hWZpfqDyhn7ckgSMrq/C6oy9Z/jwJipAnXbt0PVlappzCclSofM7uOXFDWiZD4bNCi+8OInkCUZUErCrfcyqJ+DIUkp6qLAcK46TA7pS0rqhy5cpR2bLyz2wt4OwDq/R/8EExPOyvK1fSjOnTzeaYMHp7xgxauXy56GfxQN8B2OsAAABQYjUT7q5Hjx60c+dOystT+PHGRggmwCojn3iC6tarJ4KIt9+aQfc0a0pzPvyQdmzfTmdOn6azZ86I+/wYPzfjf9PFfLXr1KNhwx/HXgcAAACwk9dff52ysrJo3Lhx4tae0MwJrOLj40O//PY79eh2H0WdP0/Hjh6lqS+/ZLY8Bx01atak75auEB2CAAAAAIriFgw82Ys9l+1MKlWqRNu2baM+ffpQvXr1qFOnTlStWjXS6/Um98m0adOsXheu6sBq1SMjae/Bv0Uzp28W/h8lJCSYLFeqVCl6bOQomjptGmXm4ZQDAAAAsCf+EXfOnDl04sQJ0dTp66+/NhlEcDkEE1CigoKC6O3Zs2n6jBl0YP9+Onb0CN28eWvo19Klw6nBnQ2p2d13k6/vrc5qmUkZdPjvg9T4rqY4cgAAAFAI1xsgAbY2Ces+/vhj0RrkgQceEHkmgoPlA9NYAz8TgyY4WGjVurWYzNm5Ywf9b/r/6K8tm+hCjDwbIwAAAADcvi+//JICAwPpr7/+oqZN7fsDLoIJsLvNGzfSrJkzadtff2JvAwAAgFnoM6GNS5cuUceOHe0eSDAEE6CM29X9snKFCA4uX7pE3j4+VL16pBgmtvW99xYr/+eWLfTaq6/S3j278+dn7Tt1wV4HAAAAsJMKFSpQSIhjkgQjmPAQJ68kUnCy+VwQd1QOszj/hQsXqHvPB+j0iWPFnpv38Vzq/kA/Wrp0MXl5eVFcXBw9M/pJ+n3VKvG8sXPPA3360KOjJ1DDJk0tJg6qUUF+8kfHpUrLVI4I0iSpUEZmrs1JmbIVkmf1bFFVWubXXRekZbwVkhcFSBLJsewQP032X0yCPBmadD01w6Vl0uPkiaa8/eXbm5stP965WTnydZWRJ/ziPkQWpcnXQwrbSwrJ0kgheZPK6yZ/+deKTwV5u11J6hqlJHGGPPn7Li1W/lniJ0nIqaWrV+XJ5GrWKG3zelIy5ccyLFCemO2Swv6rXcny98stWZokrZMlK1X5zJIlYFUtoyI6Pk2TRHsq35uuktjO3rkgPGQwJ+rfvz/9+OOPlJGRQf7+9v0Mc40zC0oUj0/MnXdOHT8qAgNT0x+/raRpU6eKarW2rVqKQIIf5yHIBg8dKkZ9WrJsuQgkAAAAAMB+3njjDSpdujQ99NBDFBsba8c1oWYCFPzwww909OhRUbtQqUpVemrcJKpb/07y8fWhc6dP0f99OpeOHzlMX3z2Ke3etYsuREWJ+foNGED/m/EW1a5TB/sZAAAApFAzoY0JEyaI/BIrV66kTZs20d13320xz8RXX31l9brQzAmkli9fLm7LV6xEK9Zvp6Cg/6qR6zdoRPf37k/DH+xJB/ftpp07toumTp9+8QU9/Ohw7F0AAAAAB+O8EsYEfcnJybRlyxazZRFMgN0dOnRInGgjnx5XKJAw4ih37KQpNGpoP1Fu2COPIJAAAACA26b795+9GJfdokUL8ePnmDFjxORuFi5c6LB1oWYCpLhDNatT7w6zZerd0TD/fv8BD2KvAgAAgNPau3cvhSoMPOGqRowY4bB1IZgAqfT0dFHjULpMWbNlwktH5N+vXKUK9ioAAADcNvSZcD0YzQk0x6nbAQAAAMD94aoPAAAAAJwCMmBrY+TIkcpl0QEblNSrFGaxbaBK4pw/ln1HB8uVk5abM/cTKmOmSVTov8mzXnvtNbPzZ+TmSddxT23zTa5ux/HoRGmZsqUCpGVkSf9CAuTrOX9NnqyqgsK2xCZnSsv4ecuT1gX4GTRJSOftbbkCNFsheVauQrKqgIhATZKY+ZeW7+MshX3sq5D0L/Om5fddQGV5e96MRPkx8A/z1yTpn0rytiwTww4WlZ0qT8IVWs3yeyonQ37e+Cm8bp1e3tHTSyHJY6DC8a5aJkiTJHAxkmSHKonZtNKxcUVNkq6pJBlVSSCqxbaoJKRT+bxWoXKsZN8vAOZGc7LEONKTMbEwhoYFh1iwYIHSifnd/30hXZalYAIAAAA8E/pM2Hc0p7y8PLpw4QKtXr2a9u3bJ/JRNGnSxKZ1oZkTKOHIVSvGoAMAAAAAHD+aE2fIfumll+iLL76gAwcO2LQuBBMgteTXNeK2bIjlqt+YZHlzC9kyAAAAwHOhz4TjzJw5kxYvXixai3z33XdWLwfBBEi1btNO3FYOt9wmXaXfhWwZAAAAAOCY0TebNWtGGzZssG05mm0RAAAAAIANuCG0PRtDo6F18Vxi8fHxZAvkmQAAAAAA8DDHjx+nbdu2UdWqVW1aDmomAAAAAMApYDQnbXz77bdmn0tOThaBBPeTyMjIoGHDhtm0LgQToDyuthZUckj4e8krzP48ek2T/BAqY3yfvZIkLROTkG7x+VqV5PkCDpyJlZYpHy5/TVX85P1SEpKzpGXKKIybn66QI6Ks5NySjZnPqpYPkZa5oJAzJC9Hfv7lpGdrkkNCRWAFy6+rfJUwTY5B4rUUaRmfIG1yEwRXCJaWCVHYf9mSYyXvoUWUq7BvAhXeU5Hl5K8pMS1LkxwwKrkoZMtR+ZwICfCVlrl0Q37eRMfJ82KoqCF5L2iV/+HMlURNtkXlu0Or71WV/ogq+TMsvS6V72ZwLY899pjF0TONo3T27duXXn31VZvWhWACAAAAAJwCRnPSxvDhw80GE76+vlS5cmXq2rUr3XvvvTavC8EEAAAAAIAHZcDWEoIJAAAAAHAayG3rWjCaEwAAAAAAWAU1EwAAAADgFHT//rPn8lmLFi3Iy8uLxowZIyZ3Hr1JtY+FtRBMAAAAAIBH2bt3L4WGykdadJfRm2QQTAAAAACAy0OeCet07tz5toOJnTt3Ulpamk1BCEPNBAAAAACAC9uwYYNy2b/++oteeuklSk+/lSOrUaNGNq0bwYSH4IQ0vhaS0qgkijsuSQqmkugnTiFBmUqiH5UkcFrRKvmdTO1K8gRlKgmXwgLlyahUqCThkiWk08rlWHlirECFRGg+3vLzPMDXS1omPkW+b4ID5OdEGcl5fOJsnHQZuVm50jL+peXnMJG8jLfC/vNX2H83r8uToYVEWE6+6OUn//oyKCTiUklIp8LPW/66iXI1SWwnSyhZOSJIk2Scd0aGa5IsTeXzUZZsTnU5sgSiKp+zWn1PabWcyuHyRKQqaRwtfc9nKVwDOAryTNjPkSNHaMqUKbR69WqRtK5atWr0v//9jx599FGblotgAgAAAADATV26dImmTZtGP/zwA+Xm5lJERARNnTpVdDznBHa2QjABAAAAAE4BfSa0Ex8fT2+99RbNnz+fMjIyKDAwkMaPH08vv/yypp3PEUwAAAAAALiJjIwM+vDDD2n27NmUlJQkhsAdPXo0vfHGG1ShQgXN14dgAgAAAACcAmomrJeXl0dffvml6Adx9epV0S9iwIABNHPmTKpbty7ZC4IJAAAAAAAXtnz5cnrllVfo1KlTIojo0KEDvfPOO3TPPffYfd0IJgAAAADAKXDGA/tmwHZPAwcOFCNhGftF9OzZk3JycmjHjh1K8997771WrxvBBAAAAACAG0hLS6O3335bTKo4COHAw1oIJgAAAADAKaDPhHU4Z4StmaythWDCQ1y4nkzBaeZPsjsqhzkkMZtK8p3o+DRNEv3sOXFDk4R0yelZDtk3KutRSUinktBPJdGUSoI8FSmZOTYnklNJjnfpujzplY9CYrt0hSRwKonOLikk2kv0svzBHxQmf90BCsnbbigkKKtcVf4ZoOJGXJom65IdB5XzJjtHnrROK1U1Sn6n8r6TfW5Fx6U6VeJPle25p3ZZTb4b2t9ZQZrAVYtkcyplVL7vVLZHhcp3Iri3qKioEls3ggkAAAAAcArIgO16nCd/OgAAAAAAuBTUTAAAAACAU0CfCdeDmgkAAAAAALAKaiYAAAAAwClwjgn75plw10wTJQc1EwAAAAAAYBXUTAAAAACAU0CfCdeDYMJDVC8fQqGhIXYd69rfS++wHBIq67qnfjlyFJUxx7WgkhdDZUz3yhFB0jL3NasiLbN67yVpmTuqlrL4/KUbKdJl+Pt6ScvUkaxHLMdPvhwVUdfl26ySB0GW70Mlh0S6JI8HK6dR7hGVfCpVy5v/nFHNPaKilELOlVIh8jKno+U5ODo2rqjJ/lPJJVO7UpjNuSjKh8s/J84q5B6R5WxgEaHy747z1+Q5YI5HJzokn4/KtqhQ2RatckhoxdL2ONu2gmtBMycAAAAAcAp6nc7uE2vRogU1aNCA5s2bV9Iv2eWhZgIAAAAAPMrevXspNNRxmeDdGYIJAAAAAHAK6DPhetDMCQAAAAAArIKaCQAAAABwCqiZcD2omQAAAAAAAKugZgIAAAAAnAIyYLse1EwAAAAAAIBVUDPhITjJm0qiN0sqhwfanJBOtgzV5EV3VJYndlJ5vX8evaZJ4ibZ61JJCKSSrE/F4fNxmqxrz4kb0jI9W1S1OaFf1XLB0mVoldguJMBXk3VplTAtIzPX4vOxyZnSZeTmGaRlyoT4ScuUVUj690/UTWkZP2/5cfDxujXOuyU5lneNZprVLuOwRJAqSetUkqHJEkqqfAaoUPlMV0l+p5Jss0aFEE0SzsmS6KmsRytaJXJV+d609fs9y8b5tYQ+E67Hec4eAAAAAABwKaiZAAAAAADnoNOR7t8s1fZaPmgLNRMAAAAAAGAV1EwAAAAAgFNAnwnXg5oJAAAAAACwCmomAAAAAMAp6OzcZ8Ku/TE8FGomAAAAAADAKqiZAAAAAACnwPUG9qw7QL2E9hBMgGZUEuuoUElIp5IETiXBUa1KoaQFlcRDWnBkYjt/P3nyMS22OSktW7qMbk0rS8vsOROjSdKwOyPDpWWORsXbnJBOhUpyt/BgeXI8leR3Ksc7srw8wWBCcpYmie1kidlkyRDZgTOx0jKNa0Ro8lmiQuWc0CKxp0pyxsoR8uR4KlSSeqp8Xmv13aAFle21NUnc7RxvrfafVtsMUBSCCQAAAABwCugz4XoQpgIAAAAAgFVQMwEAAAAATgF5JlwPaiYAAAAAAMAqqJkAAAAAAKeA0ZxcD2omAAAAAADAKqiZAAAAAAAnobvVccKeywdNoWYCAAAAAACsgpoJcMlEPypqVAjRZHu0SBikkmxOq22pHBGkSdI1lURxKsn6ZK9dJRGVLEmXKpUEZSpKhciTgqkkDpMl0fP3CyAtaJFAT5W/rzwh3T31y0nLyJLSqSQ7LB+uzf5zJK3OdS0+k1QSA2r1ua+yHJXPGy2SpyK5W8lCnwnX43E1EykpKVSzZs38pCiXL182WzYrK4veeecdatKkCQUFBVF4eDh17NiRfv75Z+l6li5dKsryPDwvL2P27NmUnW35C3D//v00aNAgKl++PPn7+1ONGjXoueeeoxs3blj1egEAAAAA7MXjgokXX3yRoqKipOXS0tKoU6dONHnyZLp48SLdf//9dM8999D27dvFxf6kSZPMzjthwgQaPHiwKMvz8Ly8jJdffpk6d+5M6enpJufjIKVVq1bitnr16tS3b1/S6/X0ySefUOPGjenMmTM2vXYAAAAAV8gzYc8JtOVRwcT69evp008/pTFjxkjLTp06lXbs2EGNGjWi06dP07Jly+iPP/6gXbt2UXBwML3//vv022+/FZtv5cqVNGfOHFFm9+7dYh6el5fBy9q2bRtNmzat2HxXrlyhESNGUE5ODn322We0Z88e+umnn+jUqVP0yCOP0PXr12nYsGFkMBg02x8AAAAAALbwmGAiKSmJRo0aJZoNzZo1y2LZ+Ph4WrBggbjPt2XKlMl/7u677xY1DOytt94qNu/MmTPFLddoNGvWLP9xXsb8+fPFfa5pSEws3C72o48+ErUhXbt2pdGjR+c/7uXlJbYhLCyM9u7dS+vWrbNyDwAAAAC4Rp8Je06gLY8JJrjpEfeP+PLLL0UfBktWr14t+ktUq1aN2rRpU+x5riFgXEvBNQpG0dHR4oK/YJmC2rZtS1WrVqXMzEyxjoJWrFhhdj6u5ejTp4+4v3z5csVXDAAAAABgXx4RTPz++++0cOFCevLJJ0WfBZmDBw+K2+bNm5t8njtwly5dWtz/+++/i83Hz3ENiCnGZRrLsuTk5Pz+EObWaWo+AAAAALfioE4TLVq0oAYNGtC8efNK+hW7PLcfGpabLHEQwTUC7777rtI858+fF7dcM2FOlSpV6ObNm/llVefj7ShYlhXsEG5uXlPzAQAAAMDt45YkoaGh2HUacPtgYuzYsXT16lVas2aN8knDNQXMUnMobnpk7Iuh1XyW5jU1nynchIonI1l5LTlybO7z1/7bZ7bkL9hzJsZhuQm02JZ7apfVZF1a5ZBQcfh8nM35GFRyhqiMia9y3sQkmB5traBalUI1Gcff1n2nuv9CFNItyHJeqL4XVI6DShlZHokzV+T5GGpXUvgMOHFDk+OtkvdCq/NGtv+0OPdUX5PKurTKRaGSQ0KLvECO/L5z1Pa6EuSZcD1OG0y89NJL9Ouvv972fNwngvsmGPsXLFq0iB5//HExPKsnePvtt2n69OklvRkAAAAA4AGcNpjgjs0nT560Kikdi42NpWeeeYYqVapEH3zwwW0tIyTk1q+gqamp0vUUrO2wdT7jvDxyk8p8pkyZMoUmTpxYqGbC2EQKAAAAwJnZOxcE8kx4UDDx/fffi8lanM+Bs0Zz34Z+/fqZLccJ6Pz8/Oixxx4TE4uMjBS3nGjOHGPmbGPZgvcvXbpkdj7jcwXn4wR1RrxOzkehMp8p/Fp4AgAAAADw2GBCK3zRb7zwN4WHd2UdO3bMf8yYH2Lfvn0m5zl37pzofM2aNm2a/7jxflxcnOgobWpEJ+MyC+ag4NqG2rVrixGd+HlTwYSp+QAAAADcC3pNuBq3HRqWayM4W7S5qeAv/vz3G2+8kf9Yz549ydfXV9QSbN++vdiyuR8Ga9WqlWhGZcS1IDzUWMEyRWtLeH1cc8DrKKh///5m5+MmTqtWrRL3BwwYYNX+AAAAAADQmtsGE7YIDw8X/S3Ys88+K2oajA4cOEDvvPOOuP/KK68Um3fq1KnilrNsc1kjXgYvyzjCVNF+EZxULzAwkDZs2EBffPFF/uO5ublivoSEBBGodOvWTfPXCwAAAOBBaSZAQ27fzMlaM2fOpD179tDOnTupTp06Itkdd47euHEjZWdni07ODzzwgMkakXHjxtHcuXNFzUWXLl3EcK88HwcEnFH7zTffLDYf13B8/fXX9NBDD9Ho0aPpq6++Ev0jeBxkblZVvnx5UWuhw7sAAAAAAJwEaibM4FqCLVu2iKFWK1euTKtXrxaBRevWrWnJkiX0/vvvm92pc+bMoZ9++kmU3bFjh5iXm0BxbcWmTZsoICDAbGfw3bt3i6ZMHECsWLFC1EyMGTOGDh06JPpVAAAAALh7jwl7TqAtnaFgBwJwOzw0LDepSkxMtDnToyyJmUryIpVEPypJfFSSXqnQapsdlbTJkVSS1jkqiZRWSQoduW+i48wPEW1UOcJ8gkvV81Nl34QG+kjLaJXozFFUEvrJ9q/qOXw8OlGTxIoqCfLa31nB5veUVp+zKlQ+ix353SBbjiM/i7Val1bHytK6tLxWsJZxG05fuk4hdtyG5KQkqlO1fIm+VneDZk4AAAAA4BSQZ8L1ONdPoQAAAAAA4DIQTAAAAAAAgFXQzAkAAAAAnASS1rka1EwAAAAAAIBVUDMBAAAAAE4BHbBdD2omAAAAAADAKqiZAAAAAACngB4TrgfBBCgnxZElHnJk8iKVRFMqtEoGpMVytErWp7JvtEpIp0XytsY1IkgLKtuitBwNks2xe2qXtfmYqxxvlWRpKrRKfqdCq3NLi8+bPWdiNDmWKturkpBOqwR5jkqWptVnscrrdmRiSldLROpsSU/BsyCYAAAAAADngKoJl4NQFgAAAAAArIKaCQAAAABwCrp//9lz+aAt1EwAAAAAAIBVUDMBAAAAAM5BdyvXhD2XD9pCzQQAAAAAAFgFNRMAAAAA4BQwmJPrQc0EAAAAAABYBTUTHoIT7PhaSLKjRcIblQRRWiVdc8fkRFolbVLZ3qS0bGmZiFBtElbJzgutkqVpdd6cvZKkybpUjoPstau87j8PX5WWad+4oiaJ0A6fj5OWCQnwlZapHE42n6MqiQNVqCRNdOR7U+U4aPF5o1XCTq1olXxRljxQq88JV0xIZ+mYO9X5oLNzpwm7dsjwTKiZAAAAAAAAq6BmAgAAAACcAvpMuB7UTAAAAAAAgFVQMwEAAAAATgFdJlwPaiYAAAAAAMAqqJkAAAAAAKeAPhOuBzUTAAAAAABgFdRMeAgep9rWsapl41CrLF+r8fkdma/CUeOJazVOvcq+0WpMd63G33fUsVTZf/fULycts+dMjHw5tcvafBxUckh0a1pZWkarMeRVcjKo5A1RITtvZPkEVPNiqBwnLc5hLWlxPB2ZJ8GR2yPNTxLuuNxCWuSa0fLz2tI2ZznT+YBOEy7Hic4eAAAAAABwJaiZAAAAAACngD4Trgc1EwAAAAAAYBXUTAAAAACAU0CXCdeDmgkAAAAAALAKaiYAAAAAwEmg14SrQc0EAAAAAIATOXPmDPXs2ZOCg4OpTJky9Oyzz1Jqaio5I9RMAAAAAIBTQJ8JosTEROrcuTNVqlSJli5dSjdv3qSJEyfS9evXadmyZeRsEEyAMlmSHq0SY6kkA4oI9XfYurSgVRIkRybrc1SivdBAH022xZHnn0qiMy0S+rVvXFG6DJXkbVoli9QqCZwW26zyGaDyulW2RYXK9mj1eSPbZkcmedTqM8lRCTm1+ixWobK9zpYQEZzDZ599RjExMbRv3z4qV+5WItWAgAB68MEHaf/+/XT33XeTM0EzJwAAAABwqh4T9pyc3erVq0XNhDGQYH369BFNnn777TdyNggmAAAAAAAsOHnyJH388cf02GOPUaNGjcjb25t0Oh3NmDFDab9xc6WOHTtSeHg4BQUFUZMmTWj27NmUnZ1drOyxY8fojjvuKPQYr69u3bp0/PhxpztOaOYEAAAAAE7BWftMLFiwgObMmWPVvBMmTBDzckDANQ5cw7Bp0yZ6+eWXadWqVbRu3TrRjMkoPj6eSpUqVWw5HIhw/wlng5oJAAAAAAALGjZsSJMmTaIffvhB1A48+uijSvtr5cqVIpDgAGL37t30xx9/iE7Up0+fFjUc27Zto2nTprn0vkfNBAAAAAA4CefMM/HEE08U+luvV/s9fubMmeJ28uTJ1KxZs/zHebjX+fPnU7t27eiTTz4RAUVYWFh+DURCQkKxZXGNRZ06dcjZoGYCAAAAAEBj0dHRtHfvXnF/2LBhxZ5v27YtVa1alTIzM0WnayPuL1G0b0Rubi6dOnWqWF8KZ4BgAgAAAACcqs+EPSdHOXjwoLgtXbo01ahRw2SZ5s2bFyrLOFnd5s2bxfCwRty3IiUlhXr16kXOBs2c3JzBYBC3SUlJdl+XVuP8ZymM8a2yLpXlOIpW25ucJB8TP8krh5yJ7LUnK4zFrvKaHHn+qUhJlr/nkpJ0Nr8mR+6/lORk+bqS/BxyHjvyPaXCh7I02R4Vsm3W6jPA2c4/lXWpHAdnOU7O9HltvEYwXjM4w7bYe/lF1+Pn5ycmLZ0/f17cVqtWzWwZrpkoWJY99dRTYuSovn37iuZP3LyJk9bx38bgw5kgmHBzyf9++RtPVgAAAABz1wzGdvuO5uvrSxUqVKA6kdXtvi7uDF30uuj111+nN954wy7XYEFBQRa3pWhwwyM58WhP48aNo4EDB5K/vz8NGjSI3nvvPXJGCCbcHKdiv3TpEoWEhIjxkF0dv9n4A4BfU2hoaElvDpiAY+T8cIycG46P83O3Y8Q1Enzhy9cMJYUvmPnX+aws22uXVF5v0WsirWslbMU5JdauXUuuAMGEm+PRBqpUqULuhj+83eED3J3hGDk/HCPnhuPj/NzpGJVUjUTRgIIndxESEiJuU1NTzZbhfhDMlc8j52lUDgAAAADgJiIjI8Ut12CZY3zOWNYVIZgAAAAAANBY06ZNxW1cXFyhDtYF7du3T9wWzEHhahBMgEvhNo3cScrZ2jbCf3CMnB+OkXPD8XF+OEagokqVKtSiRQtxf9GiRcWe5+zXXDPB5xMPB+uqdAZnGAcMAAAAAMBFPPbYY/TNN9/Qm2++Sa+++qrZcitXrqT+/fuLUZu2bt2aXwPBtRWdOnWif/75h1544QWnHalJBYIJAAAAAAALDhw4QM8++2z+32fPnqXY2FhR+1C5cuX8x1esWEEVK1YsNO/48eNp7ty55OPjQ126dBFDxW7cuJESEhKoTZs2tH79egoICHDZ/Y9gAgAAAADAgi1btoiaBJnz58+b7Ey9ZMkSmjdvHv3999+UnZ1NtWrVokceeYSef/55kWPDlaHPBJQoHhKtZs2aYrxnni5fvmy2LI89/c4771CTJk1EVB8eHk4dO3akn3/+WbqepUuXirI8D8/Ly5g9e7Z4Q1uyf/9+kSimfPnyYri6GjVq0HPPPUc3btwgd8Ov6dtvv6Vhw4ZRnTp1xOsNDAyk+vXri8Q5UVFRFufH8XF+1r4P4D+8r/gXxRdffFG0hebkUvxrIyfb6tOnD/3+++8Wd9eGDRtE2+gyZcqIXyL5/fXKK6/kDw9pzpkzZ0SzCv4VlNtX8y3/fe7cOYvzce6AqVOnUr169cT6eL29evUSCbE8yUsvvZT/PTNjxgyz5XB8wBz+7OSeAbIp0syoTIMHDxbNnBITEyktLU00b3r55ZddPpAQuM8EQEl5+umnDTqdjvvtiOnSpUsmy6WmphruvfdeUaZUqVKGAQMGGLp162bw9vYWj73wwgtm1zF+/HhRhsvyPDwvL4Mfa9u2rSEtLc3kfEuXLs1ffosWLQyDBw821KxZU/xdvnx5w+nTpw3u5OGHHxavTa/XGxo3bmwYNGiQoWfPnoayZcuKx4OCggzr1q0zOS+Oj/Oz9n0Aha1fvz7/86pChQqGXr16ic+Ghg0b5j8+evRoQ15eXrFd98EHH4jn+TOvffv24j3Gy+DH6tWrZ4iJiTG5u7dt22YIDAwU5e68807DkCFDxK3xfblz506T812/ft1Qt25dUa5ixYpifbxeXj9Pc+fO9YjDu337dvG5ZvyuefPNN02Ww/EBsA6CCSgxfGHKH+xjx46VBhPGC6FGjRoV+sLdt2+fITg4WDy3atWqYvOtWLFCPMdl9u/fn/84L4OXZS4QiY6Ozv/y/uyzz/Ifz8nJMTzyyCP5AYapCwZX9dxzzxmmT59uuHz5cqHHk5OTDUOHDhWvuXTp0oabN28WmxfHx7lZ+z6A4jZu3Gh48MEHDX/++Wex5xYvXmzw8vIS+/Obb74p9NyBAwfExSw/v3r16kKBeJcuXcQ8vNyi+PlKlSqJ56dMmVLoOf6bH69atarJYLBv377ieV4+L8fo999/F9vBF9iHDh1y68PMr7tOnTqGypUrG/r162c2mMDxAbAeggkoEYmJieILsEaNGoaUlBSLwQRfvPr6+orn+Re6oviLgZ9r1apVsef4gp+fmzFjRrHn/vrrL/Gcn5+fISEhodBzL774oniua9euxebji+uwsDDx/Nq1aw2egL+QQ0JCxGv+7rvvCj2H4+P8rH0fwO0bNWpU/gV8QVwrwI8/8cQTxeaJiooSF/b8/PHjxws9N2/ePPE41zDk5uYWeo7/NtY8fPrpp4WeO3r0qHicgwZevrnt5B8K3Nm4cePE6+QAasSIEWaDCRwfAOuhzwSUiAkTJoj+EV9++aVou23J6tWrRXv8atWqiVEPiuI2/mzXrl105cqV/Mejo6Np7969hcoU1LZtW6patSplZmaKdRTEozGYm4+Hd+O20Wz58uXkCbjvBLe5NpXJE8fHudnyPgDrk1QVfJ/w55exL4WpY1C9evX8zzbjZ4+R8e+hQ4eSXl/4K5v/HjJkiMnPIuN8vFxeflHG7Vi1apXb9pnhDrMff/wxDR8+3OIY/jg+ALZBMAEOx1+qCxcupCeffJI6d+4sLX/w4EFx27x5c5PPcwfu0qVLi/s8SkLR+fg57jhtinGZxrLGDovc2dHSOk3N5874YsPYAbvokHc4Ps7N2vcBWOf06dPF3ienTp0SHS4L7mvVYyB7f9k6X2pqav42uxPu0D5y5EgxeMZHH31ksSyOD4BtEEyAQ8XHx4sggn8Jfffdd5XmMaag55oJc3hkk4JlVefj7Sg6X8FRi8zNa2o+d/bVV1+J8bR5NJgePXoUeg7Hx7lZ+z6A23ft2jX6+uuvxf0HH3yw2DHgkZ9CQkKUjwH/sMGJrSwdP+N8MTExIjAouk5z84WGhoqp6DrdxaRJk8TrWrBggRi9zBIcHwDbIJgAhxo7dixdvXqVPv/88/wvMhn+QmWWmkNx0yOWlJSk2XyW5jU1n7vi4et4GEw2bdo08UtfQTg+zs3a4wO3JycnR4wZz8M+NmrUiJ566imHfhaZm9cTj/u6devos88+E03D+vXrJy2P4wNgG28b5wcPGqP7119/ve35uE8Et8k2tuldtGgRPf7443T//ffbYSs9lxbHxxTu19K7d2/RZID7iUyePNnGLQVwT08//bTIPxERESFy37jF2PEuiIO5UaNGUdmyZUV/CQCwPwQToIQ7Np88efK295YxERM3kXnmmWeoUqVK9MEHH9zWMozNAgpW4ZtbT8HaDlvnM84bFhamNJ8rHx9zTTa6dOlCFy5coO7du4vsnZzwqSgcH+dm7fEBdePHjxdNAbk5zfr166lu3bqaHIOin0WW5jM3r6cdd+PgHj/99JNI0KcCxwfANmjmBEq+//57pcyPRSdjDcS2bdtEhmUefYSrnTmTZMHJiLNN89/GdsfMmE3y4sWLZrfPmDm7YOZJ4/2iow8VZHyu4HwFRz4xt05T87ny8SmKjxV3jueOiV27dqWVK1eKrLum4Pg4N2vfB6DmhRdeoLlz54r+ENy8xjiak6ljkJCQUKjpkuwY8EWucXAJ2WcRXzgXbNIke19y0yZj8yZ3Ou48ipW3tzfNnz+/2PfM2rVrRRkO/PhvbgbFcHwAbINgAhyKL/o5nXzRyYiHd+W/C3aCbtasmbjdt2+fyWWeO3eObt68Ke4X/CI33ucOjOY6GBqXaVyH8Ve62rVrW1ynqfncBXfk5EDi+PHjomaCm0/5+/ubLY/j49ysfR+AWvNCrmnl2ksOJMyNnMTDKvPwygX3teoxkL2/bJ2PA5CiNSnu0H/F1PfM9evXxfP8/cJ/8/cNw/EBsJENOSoANONqSetKlSrllknrOCNyw4YN85NumcqqWxSOj/ND0jrtvfzyy+J9wgks9+zZIy0vS4pmzJytVdK6I0eO5Cetu3DhgscmrSvIlqR1OD4A5iGYAKcPJtj48ePF840bNzbExsbmP75//35DcHCweG7VqlXF5luxYoV4jstwWSNeRqNGjcRzL7zwQrH5oqOjDYGBgeL5zz//PP/xnJwcw6OPPioe5wu0vLw8g7uIi4sT+9cYRKkEEkY4Ps7N2vcBmPbKK6+IfcY/KqgEEoz3u06nExela9asKZRdngN3Xt6DDz5YbD5+vlKlSuL5qVOnFnqO/+bHq1SpYvL92rdvX5Pv59WrV4vt4Kzbhw4d8pjDbCmYwPEBsB6CCXCJYIK/UFu3bi3KhIeHiy/d+++/3+Dj4yMemzhxotlljxs3TpThsjwPz2usWWjTpo3Zi+YlS5bk/xrVsmVLw5AhQww1a9YUf5cvX95w+vRpgzvp37+/eG18wTN48GDxxWtq4gvTonB8nJ+17wMo7Jdffsn/vGrevLnZ94mp4OyDDz7If4917NhRvM8qVqwoHqtXr56oGTSFa2SNP25wzSHXJhhrEIOCggw7d+40Od/169cNderUEeV4Pbw+Xi+vnx+bM2eORx1eS8EEw/EBsA6CCXCJYIJlZmYa3n77bfElGhAQIJoXtG/fXlz0y/z000+ibGhoqJiXlzFr1iyxTEv27dtnGDBggKFs2bKiqVX16tUNY8aMMVy7ds3gbjp06JB/HCxNr7/+usn5cXycn7XvA/jPwoULld4n/Flhyvr160UwV7p0adHEki/2p0yZYkhKSrK4m/nHi+HDh4taCg4I+Zb/PnPmjMX5EhMTDZMnTxbr4fXxenn9GzZs8LjDKgsmGI4PwO3T8X+29rsAAAAAAADPg9GcAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAADcUGRkJOl0uvypa9euDlnv4sWLC62Xpy1btjhk3QAA4HjeJbBOAABwkAcffJCCg4PpzjvvdMj6atSoQSNGjBD3165dS9evX3fIegEAoGQgmAAAcGPvvfeeqKVwlJYtW4qJdezYEcEEAICbQzMnAAAAAACwCoIJAIASdPbsWfLy8qLw8HBKS0szW46bKXH/g9WrV2uy3qioKLE8rrXIy8ujuXPnUuPGjSkwMJAqVqxITz/9NN28eVOUzczMpDfffJPq169PAQEBVKlSJRo/fjylpqZqsi0AAOC6EEwAAJSgWrVqUa9evSghIYF++OEHk2U2b95Mx44dE2V79Oih+TY88sgjNHnyZKpcuTJ1795dBBefffaZ6LTNAQPfcnOpevXqifsc9HDwMWjQIM23BQAAXAv6TAAAlLBx48bRqlWraN68efTkk08We54fZ88++6yoTdDShQsXyNvbm44fP07Vq1cXj8XFxVHr1q3p4MGD4pZrI86dO0cRERHi+fPnz9Pdd99Na9asoe3bt1ObNm003SYAAHAdqJkAAChh/Gs/N2M6dOgQbdu2rdBzly9fpl9++UU0Pxo5cqRd1s+1DMZAgnHQ8Mwzz4j7R44coa+++io/kDCO2MS1GWzjxo122SYAAHANCCYAAJykdoJ98sknhR7n5kY5OTn08MMPU6lSpTRfL9dKdOvWrdjjderUEbfVqlWjhg0bmn3+ypUrmm8TAAC4DgQTAABOgH/p507Yy5cvp6tXr4rHsrKy6IsvvhD3x44da5f1cmdrDiiK4twUxmDClJCQEHGbkZFhl+0CAADXgGACAMAJcDMm7i+RnZ1Nn3/+uXhs2bJlIk9Du3btxEhL9qDX6216HgAAPBu+JQAAnMSYMWPEMLEcTHBQYWzyZK9aCQAAAFshmAAAcBLcpKhfv36iH8Jrr71GO3bsEDkdBgwYUNKbBgAAYBKCCQAAJ8LJ4NisWbPE7VNPPWWyTwMAAIAzQDABAOBEuH9E06ZNxX0fHx8aPXp0SW8SAACAWQgmAACcjHGo1oEDB1KFChVKenMAAADMQt05AIATyc3NpcWLF4v7zz33nN3WExkZSQaDwezzHTt2tPj8Y489JiYAAPBsCCYAAJwIj+R04cIFat26tZhsNWnSJJEzgjNsv/jii2Rvu3fvpgULFoj7J06csPv6AACgZCGYAAAoYSdPnqR3332Xrl27RmvXrhW5Hd577z1Nls25KliXLl0cEkycP3+evvnmG7uvBwAAnIPOYKkeGwAA7G7Lli3UqVMn8vX1pfr169Mbb7xB/fv3x54HAACnh2ACAAAAAACsgtGcAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAADAKggmAAAAAACArPH/7iFaWet2To0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAJOCAYAAADMPVrNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoSklEQVR4nO3dB3xTVfsH8Cfp3hNKoWwQRLagKKAIiFtxIK7Xra97obhe11/F8aqvqOjr3jgQt7gAQZZYpiJ7lFGgdDfdzfh/nsOb2pHkPCQ3bZr8vn5iaHLuyL03Nzk595yfyeFwOAgAAAAAAOAQmQ91AgAAAAAAAFQmAAAAAADAa2iZAAAAAAAAr6AyAQAAAAAAXkFlAgAAAAAAvILKBAAAAAAAeAWVCQAAAAAA8AoqEwAAAAAA4JVw7yaDtsJut9PevXspISGBTCZTa68OAAAABBjOL7ZYLNSxY0cym1vvd+bq6mqqra31+3IiIyMpOjra78sJFahMBDmuSHTu3Lm1VwMAAAAC3O7duykrK6vVKhLJMclUQzV+X1aHDh1ox44dqFAYBJWJIMctEs4TRGJiol+XtbekSlumY3KMtky1za4tU2Qx5mQjWR8jXrtkOZv3lVJbEx8TqS2zv6jS4/OlFfp92adzChkhNSFKW2bu6j3aMh1T4wxZn1355R6fP6pPe5+3r3QbV9RYW+x1S+jWWXJMSLZNv676+azfWUxGiI8x5iP3sMwkj8//8ufeFntPSc5t367YpS0zfoj+C+yqLfnaMkN7t/N5X0r2k+TcJznfRIeZDflMlMzHk7KyMvXDo/M7Q2vgFgmuSIynsRTux6+nVrLS3P3z1fLQOmEMVCaCnPPSJq5I+LsyYbFHaMskJuo/eCIFJ846kzGVCcn6GPHaJcuJL3dQW5MQq/9ALa8L8/i81aSfR4JBx26i4MM9Nk7/YRqfYMyX6thKk8+vW7d9pdvYEW5tsdctoVtno7aN5LwYn6DfNhLxMfpzpIRunePiLS33nhKc2yTvKcl+iIuv9nk+kn0p2U+Sc5/kfCOpBES2QGXCKRAuh46kSIogY94rrpj/1114+PDhFBYWRjfeeKO6gfdQmQAAAACAkJKdne33H1lDBSoTAAAAABAQTPyfH1tITI7Wb30JNhgaFgAAAAAAvIKWCQAAAAAICNynwdmvwV/zB2NhiwIAAAAAgFfQMgEAAAAAAcFsMqmb3+ZPJqK2N3hiQENlIkRwDoKn4UvTBEPY6XQyKLNBwlJZa8jQfRKSMb51VmwraLHhCFtyG+8rrNCWqdLkFyTH6489yfG5eN0+bZmoCP1QoVnpxgx/KtmfyXGey2zYWaSdR41Vf3xmCN6bkv0g0b9bqrbMupyiFlmfknL9ENKFgsyalnxvSt5TG/d6zqQ5vGuqIe8pyXCjuYJ8oYlHdzXkPNvOgM8Yo4bnlcjedMCQ19QtIyEgsigA3EFlAgAAAAACgkm1Hfiv4uPPeYcqbFEAAAAAAPAKKhMAAAAAEFB9Jvx5cyZg9+vXj2bMmNHaL7nNw2VOAAAAABBSkIBtHFQmAAAAACAgoM9E24PLnAAAAAAAwCtomQAAAACA0MmZAEOhMgEtOv60EZkNrG/HJEOyHSRZCvmCcdSH92nv89jxkrHEJePzZ6bFGfK6t+0r05ZJFIzZXlNn83mc9XlrcrVlxg3uZMi475Jx6CXbJk9w3Jx2ZGePz3+3crch+0CyLj0zE7VlyqvqDNnGZYL56F7XsvV5Pud4SLM8strFa8tI3uOSY0uXyyKZjyRDQvKekuSTSNZXQnJOkpwjdbkhks8OCV3WB4uJavwVa3ivdjT0qGPp1ZlfHVI+ieTzWbI+nrafUZ/NEJpwmRMAAAAEjNzdO+nwTsl0zcXntuhyi4uL6bHHHqNjjjmG0tLSKCIigtq1a0fjx4+nF198kcrLy1t0fUK5z4Q//0POhPHQMgEAAAAhbd68eXT++edTUVERHX744TRp0iRVoSgsLKRff/2VbrnlFnr++edp27Ztrb2qAAEHlQkAAAAIWWvXrqUzzjhD/fuDDz6giy++uFmZBQsW0L333tsKaxd6TCaTuvlt/ugzYThc5gQAAAABr7a2ll54/nkaOeJoapecROlJiTRkQH+aOmWKukSpoYL8A/TwfVNp5ND+1CMjmQb07EzXXHohrVu3rtl8udWhqqpKXcrkqiLBxowZoyoUTl988qG6FIvvm/p96SL13GvTn3Y5r7x9e+n+266l8cP7UK+OaTTxpLG0aMF8t6/5ueeeo6FDh1JcXBwlJCTQ6NGj6euvv9ZuL4CWgsoEAAAABLTqqio6efx4uvvOKVRWWkr/uPxyuuaf11Gv3r3pzddfo107d9aXzdmxnU4ZM5LeeOUl6ta9B11x7fU09sSTaMG8n2nEiBG0fPny+rJbt25VlzF17tyZrrjiCo/rEBWl79iuYykrpasnn0a7c7bTWZMuprPOnUTr//qTLjnvLPrhu8YVhJqaGrr43DNpypQp5HA46KqrrqJLLrmEdu7cSWeddRa99NJLFIzMLdBrAoyFy5wAAADakKLCxiPVJSYlU3i464/z/Pz8Rn8nJyerjsWulJYUETkc9X+nxraniEjXow2VFBeRw26n6tqDoznFxidQZKTvX7bdeeHfj9OypUvooksuodfefIvCwsL+Xu/S0kZ/33bd1XQgbz998NlXNGbcifWP33rn3XTa2FF0zTXX0B9//KEeW7Jkibo//vjjyWz2/++rWzb+RSedeS49+uwr6lIeHn3vqn/eSKePG01333YzHT/2RIqJOTiK1vNPT6Nli3+lBx54gB555JH6S38sFguNHTtWVTLOOecc6tixo9/XG8ATtEwAAAC0ISMH9mp027Fti9uyfXv2oC6ZHepva9escVv2+vPG0sUnDqm//bEq223ZSyeOpwlHH05njh6gbiuXLSJ/sVqt9OmH71JSUhI985/nG1UcGD8eH39w+N51f6yhFb//RuddeHGjigTr0au3qkj8+eef9Zc77d+/X91nZWVRS+B1v3HK/Y36BPTrP4DOmXwhFRbk0/yff1SP2e12eu+tN6hr9x6NKhKML3V68MEH1SVQn3/+OQVrzoQ/b2z48OHUr18/mjFjRmu/5DYPLRMAAAAQsLZv3UwV5RYaO24cpaSkeCy7Kvt3dV9w4AA9++RjzZ7ftHGjut+4cSP179+fWlpGxyzK7NQ8X+boY0bSx++/S3/9sYZOO3MibduymUpLiqlDh0xVmXDX4sSvA7yTnZ1NiYn6fB3QQ2UCxIE3urCfXEEwVidBCJIkbK5/t1RDwtskJEFJOXkWn9dFEkhnVPiTJHxscM90QwLKrLa/L5twJasdGRKoJtl+ukAraYhenVUf8BQfrT+9frn87+u8XenbOVk7j3U5jTueutK/m+cvYNJwRqNIwtD2FHgOgYuJavzrtCtREfoyeSXVgvkYs22MCnhrqkf7hEbn54bn4qbvvtLKWvU+cBXyGBlubhY46W6d+Rr+RtNGmJuFtHkbSGeqOtjKEBMZph7fu/XgOiSmtteea/MOHPz8mPfTD+rmTonFooLa0tofDBzdtWdPfXCb5Dwh0TE1loY1OY926ZTZ7DHWt/vBCoa9plJ9TuZYK9Xfmzaud1mZcCorL1frLfmc8hR+V9tCwbUSJj9nQSBnwnioTAAAAEDA4n4eLG//Pm3Z+ISDX6r/9djTdPEV1zZ7vumX7mOOHanuf124UF1aJO03YfpfOavN1uw5i6XM7XR5eXkeH+dLtpjzF/Nzzz2XPvjkU9E6AbQWVCYAAADakAMHGrcIerr057e1G5p11nZn9bq/GrU4bNnv/hf612f9qDpgR0ce/BoRF6//Zdxbh/Xpo75cr1u7ikpLSijpf5ULVwYOGabu16zMdlmZaKpnr140avRxtHjRr/TBe+/SpZe7H9GJR1dyjuiU9L/teGD/3mblNqw72LnblV27dqnRmLp27dro8UWLDvY5GTJkiLrn4Dx+zStWrKC6ujq3neaDkdlkVje/zR/dhQ0XOO1aAAAAoNWuXbtGN3cjObG09HaNbp6+lKanpzear7uRnFhSciolp6ZTStrBW6QBw6a6w6/vqmuuJUtZGU178G6yNWkN4OFWKyrK1b8HDjlSVSi++/IzmvNV887J3PqwaOHCRo8985//qBGUbr/lFpr16Scu12H50iU0+cxT6v8+YuBg1Smal1FT/felcjnbt9H7b/7X7Wvhdb/vvvsaVdp4ZKn3339fbfNTTz21/jVff/31quJxz9S7VIWiqb/WrWtWsQRoDWiZAAAAgID24COP0K+Ll9DXsz+htatW0HFjx1NEZBTt2ZlDixfMow+++J4O7z9QlX325Tfoskln0JQbrqT33niF+g0YRNHR0bQvdw/9uWYFFeTnU0nFwT4JbNDgwTT7y6/okgsvoEsvuogO63u46hCdnJJCJcXFlL38N9q4fh1169Gzfpr2HTLptInn0bdfzKJzTxlDo8eMU6MxzfvhOxo1Zhz9NMd1qNzAgQNp8eLFaiSh8ePHq47Un3zyiRqx6rXXXqsfFpZxX4lVq1bRyy++SD/MmUOjRo+mdu3a0969uaoi8cfatbRg8RJq/79+H8GCE6r9mVKNBGzjoTIBAAAAAY0rA2999CV9+PZr9M3nn9KsD98jc1gYZXbKosn/uII6de5SXzarSzf6/MdF9M5rL9G8H+eolGou2659hvpCfva55zab/wnjxtGfGzfRa6+8Qt98+y19/cVsNYJUQmIS9e13BP3fU8/SBRdf2miaR//9AqWkptL3X39BM999g7r36EWPPP08tc/o4LYywZekfffdd3TnnXfS66+/TpWVlerSJq44nHhi46Fs+ZKq77//nv77+uv04fsf0Jeff64utWqfkaEug7r62mup/4ABhm1jAG+ZHE2HZICgUlZWpjp0bdi5nxI8DIEmGW2jrY3mZNSIHGkJ+uZ73QgjCbHuLxdw2lfoefQaqfiYCENGc5KMQGXEaE6SkYYkJK9JN0KQdASljbtLDBnNqbzaGpKjObkb9edQ9lVEk5GHXEkUvBckozllJEdTIBndr4PP52LJeU3y/pbsS8k5yYhR8yQky5F8dhjxmSnlHGXKV55Gc3J+V+AAwNYaLtW5DldEXUqRJv1nprdqHbX0ds17rfpagw36TAAAAAAAgFdwmRMAAAAABISDKRP+6zPhz3mHKlQmQkRqQhQlemjWljR565paJfOQkFxeI2mGNmp9jCC5XGB4n/aGvKbF6/YZEuYlWZbkUh7dsiSXJ0lILmEqr9KHhm3b536MeKfq2uZjy3uzP9doLumTrIvkEhzZfGIMCV0rE+xPDkPz9dhKjtcfn1v36l+3hCTI0KjjWHIJp+5SUMl+2iDYB1ntDobHebIn/+AoSr5e5iQJnZR8NkguP2qpzw6jLjeTkFwCZtRlVwBNoTIBAAAAAAEBCdhtD/pMAAAAAACAV1CZAAAAAICAYDaZ/H5jnPXRr18/mjFjRmu/5DYPlzkBAAAAQEjJzs7G0LAGQWUCAAAAAAKmzwT/58/5g7GwRQEAAAAAwCtomQAAAACAgGAymdTNb/NHzoThQrJlYurUqfUH62OPPea23Ny5c+nUU0+l9PR0iomJob59+9L9999P5eWex9XeunUrXX755ZSVlUVRUVHqnv/evn27x+ksFgvdd9991KdPH7U8Xu5pp51G8+fP9/q1AgAAAAD4S8i1TCxdupSeffZZVZFwOBxuy/3nP/+hO+64Q5UbPXo0ZWRk0KJFi2jatGk0e/ZsWrx4sfqy39SSJUtowoQJVFlZSUcccQSNGjWK1q1bR++++y599tlnqoIyYsSIZtMdOHBALWfz5s2UmZlJZ5xxBuXl5dH333+vbtOnT6ebb77Z69ddZKmhOlONX4NzosPMhoT4SEjWVxKCNKxn8314qAFRkjAlq839sXYoYUv7CvXBbCUV+vCs/t3iDQlBkoTf6ZdTbkgwm0R0pH5984r0x2jvTomGBBUWlXkOX4wVhAJK1Fk9B05K94MkrE+ib+ckn4POJCFx4YJzkuTYkiyrpFwfpCkJ2pOETpZXew6ly0rXh7sZpUZwbEmC7STbZvveUm2ZHppgNsn7UjcP6bpIwg47CcpIPje7ZSRoy2z0sM7lFmMCHo1wsMeE/37r9ue8Q1VIbVH+gs8tBPxl/ayzznJbbvXq1TRlyhQKCwuj7777jhYuXEiffvopbdu2jcaNG0ebNm2i6667zuX8zz//fHV/7733qkrExx9/rO7574qKCvV8VVXzE8O1116rKhI8f27Z4OXxcr/99lsym81022230R9//GH4NgEAAAAA8FZIVSb4C/2WLVvotddeo6Qk9788PPHEE6rV4oorrqBTTjml/vHY2Fh688031Zd7bp3YuHFjo+neeecd2rt3Lx122GHNLp/iv/nx3bt303vvvdfoufXr19NXX32lKi88f16OE19mxRUgu92u1gsAAAAgWJlN/s6aaO1XGHxCpjKxYMECevHFF+nSSy9VX9Ddqa2tVa0R7KKLLmr2fNeuXWnkyJHq31988UWj55x/X3DBBarC0RD/PXnyZPXvzz//3OV0PF+ef1PO9fjmm2+ork7f3A4AAAAA0BJCojLBHaavvPJK1e/h+eef91iWLzXiy5TYsGHDXJZxPs6XQzXk/Ntf0/FlUtyyAgAAABCMOAfC3zcwVkhs0TvvvJN27NhBr7zyCqWkpHgsy+VYcnIyJSS47tDUuXPnRmWdIzEVFhaqf3fp0sXjdPn5+api0HSZ7qZLTEysT2lsuEwAAAAAgNYU9KM5/fTTT/Tqq6+qS48mTpyoLc+VAhYX5340jPj4gyPhlJWVNZvO07TO6ZzTOstJl8nTNFymKzU1NerWcDkAAAAAbYGzb4Pf5o+cCcMFdctEaWkpXXXVVdSuXTvVXyIUcCdt7lzuvDlbQwAAAAAAjBbULRM8nOqePXvok08+cZkJ4Yrz0qaGlyE15Qytc1561HA6T9M2DLtzNe2hLtPdiFWcj9GwZUJSoSi01Pg8HrZkLGxJPoRkXSRlJBat368tExMV7nP+Q7cMfa5DvmD7lQnGu4+J0mcpbNtXZkg2gSR3ID0xyudtIxnDPyJc/9tIaYV+Pqma9WV5JdVkhC7tPecB7DqgzxUpFuRDRCXpsxQiBZkh4WH6XwsH90wz5PjL07wfii21huRZbN1bZkheRXKc51wMtqdAvz+NyIioqvGcQyElyYfIEOQk6DJDpFkew/u09zkfR5IhIfmcsghed1/BsiQ5RhKSvApPWRRlMfospJbi734N6DNhvKCuTPAoSeHh4fTyyy+rW0POYV15KFYOkuvQoYPKhOjWrZt6vKSkRF1+5KrfBA/vypxlGZdLTU2loqIi2rVrFw0aNMjtdFyxaXhJE89n1apVajpXGl7e1HCZrnDiNt8AAAAAAPwtqCsTzGq1qvA3d3JyctTNOSRrnz59VM4Dj+i0YsUKOuGEE5pNw4+zoUOHNnqc/+aKCT/PCdaHMh0PF+t83t10XAHhrAoAAACAYGQ2mdXNb/MP7iv8W0VQb1FuXeDwOVe3yy67TJV59NFH1d9coWCRkZF02mmnqX/PnDmz2Tx37txJS5cuVf8+++yzGz3n/JtbODhkriH+my+3Yuecc06j55wdw5csWeKydcK5HlxBiYjQNxcDAAAAgHvDhw+nfv360YwZM7CZfBTUlQlv3XPPPWQymejtt9+mH374of5xbq3gDt02m43OPfdc6tu3b6PpOKm6Y8eOKqvigQceaPQc/82PZ2VlqeC8ho444gg666yz1Hx5/lVVf18r/P3336tkbQ694/4QAAAAAMHK/ykTB/t+ZWdn0/r16+nGG29s7Zfc5gX9ZU7e4MuOnn32WdWRmdOyjz/+eGrfvj0tWrSI9u3bpy6F+u9//9tsOr486tNPP6UJEybQtGnT6Ouvv6b+/fvTunXr1I0vU5o1axbFxDTvKPXaa6+pg5ovk+rZsyeNHj2aDhw4oC7R4paT6dOn08CBA1toCwAAAAAA6KFlwo3bb7+dfv75ZzrppJPojz/+oK+++kplPXDrANdm3Y0ONXLkSFq7dq1qfeDO2LNnz1b3/Dc/PmLECJfTcWWF+0Zwqwgvh5fHy+XlcwXjlltuEexOAAAAgLbLZDL7/QbGCtmWCb50iG+ejB8/Xt0OVa9evejdd9895Ol42FfOieAbAAAAAECgC9nKBAAAAAAElob9Gvw1fzAWKhOgWCr1AVAbNWUkoUPb95Zqy0hChSTzkQQcZW86YEhgWla7eJ+3jeR1b9hZpC1TXm01JJQpt7BSWyY6Uh90dnjXVI/PL1ufp51HRrI+dK2kQr+N05OiDAnrk7Da9PPZus3z/owRBFFJAumOPSJDW2bF5gJD9vfyjfnaMlER+ssMrDbfQ7RyBIF+ndJiDQmLzC3Uh05aa40Jk9OFRUr2kyRwcvSATG2ZRX/u05ZJiNWPQtgz03MgK1u8bp/P5xvJZ52kjCSQbu7aXG2Z5Hj9OSkzzfcgQxbtIXyxVhDMCOAOKhMAAAAAEBBMfs6ZQAK28VAVBQAAAAAAr6BlAgAAAAACgul///lz/mAstEwAAAAAAIBX0DIBAAAAAIHBbOKOE/6bvwMtE0ZDywQAAAAAAHgFLRMAAAAAEBhMfm6ZQJ8Jw6FlAgAAAAAAvIKWCRCHqg3rme7x+Y2CILm8En2w077CCkMC3tbl6APedh7QL6tre31gULeMBI/P/7Bit3Ye8TH6YKcaQaCaJJCu0FJjSJjX9v3lPgcDhoeZDNlPEt0yPIcLsj+264+bMEHAU6c0feCcTrhgOWUV+oCtPfn6/dQhJbrFgtmiIiK1ZSTBa0aoqdOHt1XV2AwJ4gsz69/j+fn6Yz0lNdbnwM412woMCQeVBNJFhZsN+QwyguS9IAmSk3ze6cJMpSQhevp4PM+fDdWCkM2WYjKZyMT9Jvw1fzv6TBgNLRMAAAAAAOAVtEwAAAAAQGDghgN/9plAw4Th0DIBAAAAAABeQcsEAAAAAAQG7i/hxz4TaJowHlomAAAAAADAK2iZAAAAAIDAgJaJNgctEwAAAAAQUoYPH079+vWjGTNmtPaqtHlomQAAAACAwMmZ8ONoTs55Z2dnU2Jiot+WE0pQmQAxXahNQqw+iGrc4E6GbHFJIJ0kIO+EwR0NCW7S6ds5WVtmXU6xtkxGsj5YLK+kmoxQJgiRkgSz6YKbJK87JUF/bBWU6oP49hToA8G6CEIKC8r0y9q5z6ItExXtOfArf5f+OI9rH2/I+lptDkOC2Yz6WLFqzjeV1fpwvIxU/fFZLpmPYe87fTBYx0zPAZjMUlnncyCdbh5SPTMTDQmKy0yLM+ScvmGn5/fM+EH6z6BcwXIkQXKSz0RJSKsuMFYaoudpWeUW/fkKwB1UJgAAAAAgMKDPRJuDPhMAAAAAAOAVtEwAAAAAQGDgPg1+TcBGBLbR0DIBAAAAAABeQcsEAAAAAAQG9Jloc9AyAQAAAAAAXkHLBAAAAAAEBpP54M2f8wdDoTIBho1jXS7IJZCMzZ0vGOM7Jkp/6EaFm30ek5yVVOhf17fLd/k0Zj5LT4yilhIepu+AVmfVr3NVjU1bpqTCc45EhWCc/+Q4z3kMzFqrn48kMaRIkMngEOzPDu304+bv3Or5+IuI0b/uxDj9WPbFRZXaMu0E6yvJoqio0L/Hw8z611Vbpz+2jMgekWRnSDIkJMeoRG5hlc/5LpLsDMn5RrIuRGXaEsUW/TFRY9VnYyQK3g+6zwZJHkO3DH3WR1pClCF5SBKSde7bMcmn/AxLhO/vNwhdqEwAAAAAQEAwmU3q5rf5E0ZzMhraegAAAAAAwCtomQAAAACAwIDRnNoctEwAAAAAAIBX0DIBAAAAAAHCzwnY6DNhOLRMAAAAAACAV9AyAQAAAACh0WfCgdGcjIaWCQAAAAAA8ApaJkBZsa3A52C7akGQV06exZBAuqoaQdBZvDEhcEbNR6ekXB+wVSYIBpSEZ0mC+CQkYXxGhIbt3Kc/buyCkD0r6Y+b8Ej98Vcj2A/78yu0ZaJTPYeP1Vr0x0TeTs+hgMwcEaYts2uT/hwQJthXkmVJ9pVZEzop2U82yfEpeE2S41wSFFdYrA+Bk7yuKM02rhFs3/3F1YZsP0m4Zdf2+kDEHoLQtexNB7RlsjSfH3vyy7Xz2LavzJAAPcn5umdmoraMZJ0TYiN9CtqLcLRcaCq0vqqqKtq8eTNlZWVRWlqaz/NDywQAAAAABASTyeT3WyhYtGgR3XHHHbR27dpGj8+cOZPat29PQ4cOpczMTPq///s/n5eFygQAAAAAQBB57bXX6KWXXqJOnTrVP7Z792668sorqaKigpKSkshqtdIjjzxCCxcu9GlZqEwAAAAAQGB1wPbnLQQsX76cBg0aROnpf1+i/v7771NtbS09/PDDVFRUVF+JePnll31aFioTAAAAAABBpKCgQPWJaGj+/PkUGRmpLn9io0ePphEjRtDq1at9WhYqEwAAAAAQGLhPg79vIaC8vJxiYv4e5MPhcFB2djYNGzaM4uPj6x/v1q0b7d2716dloTIBAAAAABBEUlNTKScnp/5vbn2wWCx07LHHNipXV1enWit8gcoEAAAAAAQG9JkwxPDhw+n333+nZcuWqb+nT5+uRrIaO3Zso3JbtmxRozr5ApUJAAAAAIAgcuutt6pLm0aNGqVaKT744APq0aMHTZgwoVG/ij///JOGDBni07IQWhciUhOiKNFDYI3Exr2lPgfr6MKWWLtkz0Fe0tC6vBJ9QJRElCY8SxQiVWczJPTKanOQESQhXBUVtdoySYnR2jIHdpf6FNwmZau1GVKm4oA+bC4pSx+wJVFZVOnxeZNBo45I5uMQHBOS4ybCrH+/1AlCE6OSPJ+vagQhj9Ul+mC2MMG+lIS3WUqrDXnd4e30H8s7BceoEWTHhP6clCfYDxKSZe0p8LxtstLjDPnskITsWSr151CJ8YP+HtrTl9DY6DD3781aD8+1OH+PuOQIjT4T48ePp7feeksN/XrgwAE6/vjj1ahN5gbnaB7dyW63q+d8gcoEAAAAAECQueyyy9TNneuuu07lTjTskO2NAKqKAgAAAEAoOzjgkj8TsCkk/Prrr7R582aPZXi0J261WLJkiU/LQmUCAAAAAEIKd1Du168fzZgxg4LRmDFj6KmnntKWe/rpp+mEE07waVm4zAkAAAAAQqrPBGcuJCYmUjBzOIzpZ6mDlgkAAAAAgBBUXFxM0dH6wVQ8QcsEAAAAAAQGf6dUB3GniV27djVLwW76mJPVaqW//vqLfvrpJ+rZs6dPy0VlAgAAAACgjevWrZvqZO40e/ZsddNdCnXJJZf4tFxUJkLErgMWiq9yXxvvlpGgnce+Qs/jdyfH63MsMtP0Y3xv2FlkSF5FYkyEIWOFL1ufpy0THuY5IyJCkFUhKWO16XMSii36sc07pOibNCsFuRcVgjLmCN+vpjQZNAZ6egf9cV6kGaeeledZtGVqy/X7IT4zwedcAkl2hlWwnxIEeQulOcX6ZQkyYKKTfWtSZ+GC93eEYNuU7vGcgyIVEatfn9SO+uNPoqzYcw5CYoo+uyVBsL6UEKktUlWj38bJcfpllVXpj/UMwXETE+X5a0284LiRSBPkNklyJhJi9ds4V5B7IVkfT/OxlBmTy2QI5Ex4rUuXLvWVCW6RiI2NpfT0dJdlIyMjKSsri84991y6/vrrvV8oKhMAAAAAAG1fTk5O/b85nG7SpEkquM7f0DIBAAAAAAHBmQfhz/mHgrfffpt69erVIstCZQIAAAAAIIhc5iH52mioTAAAAABAYDD5OWfCHhotEw3ZbDYqLCyk6upq8tTfwluoTAAAAAAABJns7Gx68MEHaeHChVRTU+Px0i8eKtZbqEwAAAAAQGiM5uTPeQeQ3377jcaOHVvfGpGSkuK3xG9UJgAAAAAAgshDDz2kKhJXXnklPf7445SRkeG3ZaEyAQAAAACBAQnYhli+fDn16dOHXn/9db+PYIXKRIiIj4n0GI6TvemAz8vQhQWxTsn6MCWiVDKCJDBIEkgnoQsMKrS4v1bxUEhCmyTLKijTlwkTBMXVCrZxWKQ+YFCnukgfqBQhCMbas1F/nDtsDm2ZmLRYbRm7YJ0dds/Lctjt2nlIgu2iBSGFFQfKtWXsxe477zmFdYjXlrFW6a/NtezwHJAXIQhmkwTJxaTGGLKNY1NjDQmCTE3Uh4+R5rWHC967BaX6c0CUIHBS8pqqBeGBKYKAPMlnTEm559e1RxBKKQkQrRJ8ZrYTfN7pwmCltu8t9Wl9yqv053JoW6xWKw0ePLhFhsJFZQIAAAAAAgP6TBiib9++VFBQQC1BX/0GAAAAAIA249prr6VFixbRtm3b/L4sVCYAAAAAIKASsP15C5XKxIUXXkgnnngizZkzR2VN+AsucwIAAAAACCI9evRQ9zk5OXTGGWdQeHg4ZWZmktncvB2BK1i+tGCgMgEAAAAAgQF9JgzBlQgnh8NBdXV1tGvXLpdlfW2tQWUCAAAAACCI7Nixo8WWhcoEAAAAAAQG5EwYomvXrtRS0AEbAAAAAAC8gpaJEJGaEEWJHoLV9gnCgPp38xwml5Nn0c5j7tpcbZmoCH3IWVmVPkSqqsaYkQtiovTrk1tY6fH5BEF4VrFFHxpULgj7qizTB4vZrXZDAr8kzJoAqPK9Zdp5RGpCAVnZrlJDgu3CBWUqthRqy1C0/j1VqQnQsgnCvoz6Sai2UB+yZxaE30nUCcIO1a+Tvs7DoQ8gtNfZDAlNNIXprzmuqxSctwShajHpcR6fT4zTB8B1StMHquUKjgmJcMm2EZyTjAicG96nvXYeG3YWacvsPFBhSGidRGaa5/0tDb/rlpHg9rmyGP17pcWgz4ShysrK6IMPPqClS5dSfn4+jRs3jqZOnaqe27x5s+pbcdxxx1F0tPfnd1QmAAAAAACCzE8//UQXXXQRFRcXq07Y3NG6U6dO9c9v2rSJJk6cSB999BGdf/75Xi8HlzkBAAAAQGAwtcAtBGzYsIHOPvtsKi0tpeuvv54++eQTVaFo6KSTTqLY2Fj66quvfFoWWiYAAAAAAILItGnTqLq6mmbNmkXnnHOOemzy5MmNykRGRtLgwYNp7dq1Pi0LLRMAAAAAEFijOfnzFgJ++eUXGjRoUH1Fwp2srCzat2+fT8tCZQIAAAAAIIjk5+fTYYcdpi1ntVqpokLfgd8TXOYEAAAAAAHBZDapmz/nHwqSkpIoN1c/gub27dupfXv9KGeeoGUCAAAAACCIDB06lFauXEm7du1yW2bdunWqv8TRRx/t07JQmQAAAACAwIDRnAxx9dVXqw7YF154Ie3fv7/Z8wUFBaoMj/DE977AZU4hYv3OYopPsHodSMfW5RT5HKwjCaTr0TFJW2bZ+jxDwuaiNAFHUlGJnkPVSir0YVUpCZGGrO+mffoQuAhBqFVtuT4UzGHTBx3VaEL0ohL1QTk1pfogvvAY/emsrrRGWyYsUn/ckCCEyxRjQOhfpT6kkATHefVWfQgXtYvVFrFX1PocUsis+Z5DHhVdmJwgdE2iThCAGS4IcJQcN5LLKyr2l/scWlctCDvcvFsf8ti+s/5cXFyk35fp7fWfDTv36UNP01L0+zxR877bvlf/urPaxWvLjB/091j97mwULCtecJ6wCAIaJYF+nj6jLRb9uRHalvPOO48mTZqkRnPq2bMnjRw5Uj2+ZMkSOvPMM2nBggVUXl5OF198sRoi1heoTAAAAABAgPD3iEuh0WeCzZw5k3r16kXPP/88zZ07Vz22ZcsWdeNhYadMmUJPPvkk+QqVCQAAAACAIBMWFkaPP/443XnnnWqoWO5sbbfbqXPnzjRu3DifO147oTIBAAAAAIGBLwf054hLITKaU0MpKSnavAlfoAM2AAAAAEAQefHFF6m4uLhFloXKBAAAAAAEBozmZIhbb72VOnbsSJMnT6YffvhBjdrkL0Ffmairq6N58+bRXXfdRcOHD6fk5GSKiIigDh06qN7s3333ncfpucPKqaeeSunp6RQTE0N9+/al+++/X/WA92Tr1q10+eWXq5jyqKgodc9/8/VqnlgsFrrvvvuoT58+anm83NNOO43mz5/v1esHAAAAgNByzjnnqAoEj+bE3yO5nwR/f+XO10YL+srEwoULafz48fTMM8/Qnj17aNSoUWoDt2vXjr755hs6/fTT6Z///KfLGtt//vMfOvHEE1WN7ogjjqAzzjiDSktLadq0aTRs2DA1Rq8rPOzWoEGD6N1331WVl7PPPlvd898DBw6k3377zeV0Bw4cUPN94oknVKWCl8fL/f7779Vr4CYrAAAAgKDFIzn5+xYCPvvsM9q7d68ayYm/e/K/eeQm/lH8uOOOo7fffpsqKvRDCkuYHP5s9wgA/Iv+yy+/rJp7Ro8e3ei5Tz75RI2va7PZ1Bf9Sy+9tP651atX05FHHklms1lVOk455RT1eGVlpWrR4NaOc889V+2shvj53r17q5127733qoqHE7c4cEWBa4ebNm1SLQ8NTZw4kb766ivVw/7rr7+m2NiD477PmTNHLZN3Fa8XHxRSZWVlKlJ9w879lJCY6NM41t0yEjw+/+1y9ymLTv27pZAR1uXorwPMSNbnF8REhRsyfnd8tOf57Dqgn0eVYDmRCZ7zLFhCkiC3oc6uLVO6Rz9GeliE/veI6mJ9RoRORJx+LHabYGx9SRaAJIvCLMi0kGQyhGv2lbVSn4FAgmOLBMc5CfIWKEl//JEgS4as+uOPdOPvC9Y3Jkufk1AlOM7juuvPW5UF+ryFhI6ez6GsXJC3EBnvOSfGZDbmd0JJdoskO6O7IK9CkjNx8oiuPmcQSXIx+vZINeSzIydPnxmSLDi3Jcfr33fDeqb7lHtRbimj4X27qB9MEz18V/An5/eVR05+jaIjjMmRcaW6rooe+uHaVn2trYGTrt966y366KOP1I/hJpNJfc/kLAq+coYrGN4K+paJsWPHqi/8TSsSjK8j4w3I3nvvvUbP8Zd+/vJ+xRVX1FckGG/4N998U1UyZs+eTRs3bmw03TvvvKMqEocddhg99thjjZ7jv/nx3bt3N1ve+vXrVUWCh/Hi+TsrEowvs+L15OG8eL0AAAAAgpK5BW4haNCgQTR9+nT1HZW/F/N3y5qaGvW9lb8r+yJEN+nfhgwZou75C75TbW1tfV+Kiy66qNk0Xbt2rU8S/OKLLxo95/z7ggsuUBWOhvhvrsCwzz//3OV0PF+ef1PO9eBWEu4HAgAAAABwKMLDw9Xl/q+88oq6zJ/5epFSyFcmnB1RMjMz6zfK5s2b1eVKjPswuOJ8nC87asj5t7+m4+vb/NF5BgAAACAwRnPyZ58JCnifffaZ6m/bpUsXdaUK95999tlnff4xmVsiPv74YzrppJOoe/fuqhsA4/n7IqRD6/bv36+adxj3f3DasWOHuudO0wkJrq9x5X4PDcsy7jRdWFio/s0HgKfp8vPzVcUgLi6u0XzcTcfX9fGNrynksv369fPiFQMAAABAIHvmmWeoW7du9PTTT1NGRgYtXbqU/vWvf9Eff/yh+vgequXLl6vvu9xXmPuKcEsE90/hq2j4cv6jjjrKp/UN2cqE1WqlSy65RG3UAQMG1Df1OCsFzPlF35X4+Hh1z1/um07naVrndM5pneWky+RpGi7TVa2Tbw2XAQAAANAWcMdgvvlz/oHum2++UaOOOp1wwgmqAvDAAw/UVzB09u3bR++//76qfHD/Xp6eXzvPiysQ/CN6dLR+wBaJkK1MXHfddWpEprS0NNWcFBnpeXSMtoI7aD/yyCOtvRoAAAAA4IWGFQknHmGUcQdqSWWCr3ThgXu4EsF9cS+77DJViXDVL9dXIdlngoeJ5RGTUlJS6Oeff1YjLDXkvLTJ0/i7ztC6hsOKNbwkyt20DcPuXE17qMtsioej5dYW561hx3IAAACAgBagCdg8pD/nffHomnxFC3dk5l/6H2sycqc7HB43ZswY9d2Tr0Lh0ZW4lUHaD+LXX39VP3z37NlTVJ7Xjy9j4u+5fHn8ww8/7JeKhFoWhZgpU6bQCy+8oPpD/PTTT/WjOTXE16mxkpISdfmRq34Tzi/pzrKMy6WmplJRURHt2rVLHSjupuNk64aXNPF8Vq1apaZzpeHlTQ2X2RSnbfMNAAAAAIzBox/x0KreuO2229S0/AWfh2Hly9Y5B+3uu+9WlzTx99Gm2WNN4wN4+muvvVacjcH9grlfREsIqcrE1KlT6bnnnlMbl3ecu5GT+vTpo3rP84hOK1asUNeXNcWPs6FDhzZ6nP+eO3euep4TrA9lOh4u1vm8u+m4AtK0JUWivKqWKNx9iFZ+SZV2Htv2ee5/cUw/fbPbdg+hOU5lgjAqSfjdmm0HO8N7Eh6mb5yLiRKEcGmkJuorePk1Vv26CMKLKgRhabXlgkA1QSiTJNTKiCC+MkGwmFmwL+sEwWJUow+/s5cKgvgE4YHWIs37ThCgR5rAREXyS5wkSK5Kf4xSrWQ+gl/idK89PVa/mOJKQ0L2qgXnR4m6Cv3rDo/Vh5jFawJEawUhpA67fijIcF1wIGcvCY6/EsHr7tDOfX9Bp0V/7tOWsdo8v652guVIPoPySqoNCU6tqdOfbySqbfr3XbmH11UueW+3FA5CFIQh+jR/L/Tv35/uvPNO9SM0f2fjUGLuk6Dz5ZdfqooAVyAWLlxY//2Pg+O4YrF48WLVF4I7XbvC5TjUuFevXirBWqqlKhIhdZnTPffcQ//+97/VxuUmn+HDh7sty81Ip512mvr3zJkzmz2/c+dO1bOe8dBdDTn/5qG3+Fq1hvhv7knPeIzfhvhAYUuWLHHZOuFcD66gREToT/AAAAAAYIyrr75afY/k3K++ffs2yxJzhysdzu+hDX9I5itUnEOzvvTSS+rS9Kb46hgOTub8sx9++MHjID3/93//R19//bXL53gUqD179rh8ji/davqd9FCFRGWCh9N66qmn1KVNuoqEE+90vhbu7bffVjvQiVsrrrrqKrLZbKonPB9QDfG1dB07dlRZFVzTbIj/5sezsrLo0ksvbfQcj/F71llnqfny/Kuq/v4l7Pvvv1dDevGBy30iAAAAAIKSXzMm/ndrIbm5uZSdne02BHnUqFEqMoBH4ZwzZ06j5/gx/l6Yk5NDP/74o/pu6Qn3ieBWEFe4NeWhhx5y+RxfYv/VV1+RL4L+MieupT3++OPq39xENGPGDJfluIbYsImJa48cEHLHHXeoyPHjjz+e2rdvT4sWLVLDbfGlUP/973+bzYcvj/r0009pwoQJqjbKy+emsXXr1qkb1yq5E46ra+Nee+01dV0cXybFHWxGjx5NBw4cUM1i3Bufm8kGDhxo6PYBAAAACDVNh873R5/T1f8LJOb+tBwS5wpfcs/9abnshRdeqB7jH5a58zRXRLhvBX/n9AV/h/Q15TqkKxPcGbphvwN3fRK4h3vT69Vuv/121WOfKxW///67GmmJh9ri1gG+uQu0GzlyJK1du5YeffRRVTGYPXu2GuaLWyMefPBBtz3xubLC68fDu/I0XFPkygcnFfJ1euPGjfNpWwAAAAAENB9GXBLPv0GIsBP/cs+/7htphyaQ2F0I8o033qhaGfh7JFcsfvvtt/rnOLRY2gm7pQR9ZYIvO+Kbt8aPH69uh4pbQbxJKeQDhCsTfAMAAAAA43FrQMMv5f4YCdPiZQiy8/J6vjy+6SXzv/zyixpiNpAEfWUCAAAAANqIFhrNiSsSgfYLvxP3k2hLQqIDNgAAAABAS0owKJA40KFlAgAAAABCqs9ES+j2v5BhZ2CxK65CkNsaVCZALFETYLRh59+d3d3Janfw2kBfA4PW5RRryyQIwp+iwvWNc/uL9eFENk0AVJigyVYSIlWqCQ5kGV31gX7V0fptU7ijyJBQsLBIz6Fg1Qfc/2LjZBKEZ9nL9AFvZkF4oN2iD/yiWMGpc4c+aI90o2tIhjCUhF4Jth8JQrhIEwgmJnjfkdXme/BdtcmQdbEZFOhVtbtEXyg+UlukjDyfB6IEQZCJKe7Tdp2K8w7+YupJrUW/jdM7eA7ZY3v3Hby23NfAuTTNa48RhHHGS94vAhsF+7tv52RtmT35+v2wLkdwvvYQjFpdG0ChdUFkyJAh6r6wsFB1sHY1opO7MGNvrFmzRuVNHMpz/LivUJkAAAAAgMDg7yyIFsyZyMrKUtlmPMQrhw/ff//9jZ7n9GtumeDO3xxD4CseSZRvh/IcDxnLuWq+QGUCAAAAAMAP7rvvPjr77LPpySefVGnWzhYIbq244YYb1L9vuukmSkpK8mk5xx13nM+VAm+hMgEAAAAAAYG/EJv8OJqT8ws3txiEhYWpTAe+6XBStPPLP9u2bZu6f/XVV+nbb7+tf/yLL76gzMzM+r8nTpxIt9xyC73wwgs0YsQIlRnGQ8XOmzePSkpKVDYZ50n4asGCBdRaUJkAAAAAgJDClx4dyghKnAOxfPnyZo/v2bNH3Zxqapr335s+fbqqNMyYMYOWLl1KdXV1KsD4nnvuUQHJkZH6vlKBDJUJAAAAAAgMATqaEwfFcf8Cb51//vnqFoyQMwEAAAAAAF5BywQAAAAABIYgGs0pVKAyAWLD+7T3eZxrI/IsWEGpPlMgPEx/wqiq0Y/RX16kz1KI1I7rrm8EtFvt2jIRcfrrKosKKnzOflDLio00ZJ1tupwOwYndUSbIQBDkQ+jXljdglb5MRbgx+Q+aY9QhyH4wGZUhIZmP5DVJSPIqdO/fCkHOhITgPBGeoh9lxVqoP0+QWXAxQLn+OHZo3puSzquFe/Q5KGGCTIaYZH1eRank/SuQ81eetkx173SflzO4Z5oh2Q/x0frtVy7JSzGIp4wNWy2+DoL3cPQAAAAAQGDgyrAfR3Py67xDFPpMAAAAAACAV9AyAQAAAACBIUBHcwL30DIBAAAAACGFQ+v69eunsh/AN2iZAAAAAICQGs3pUEPrwD1UJgAAAAAA2rCwMP0oje6YTCayWq1eT4/KBAAAAAAEzgX4/rwIP0gv8Hf4kM7ty7RBvEkBAAAAAEKD3W5vdrvjjjsoOjqabr31Vlq1ahUVFxer2+rVq+m2226jmJgYVYbL+gItEyGivMpKFF7nVZiNU06exef1SBAEoUnCgMIE40RHhOvrytW1+sCg+NRYbZmUBM+va/fOEkOC5CIF289aq2+qrC7WB7NZq/XzsZfV+ByGFhGnD0ury9MH8ZFmHygFgmAxyTk1XzAfyTW/BgSv2SWvSRAuaIq3G/PzkyCQziTY59oQPUnYV2KU4OSon491v/6cRHbBL3vR+mMiMjNBv6haz+GBtRb9+9JWJwicrNMH6KV30K9vteB8XSkItosWBORVas5bvTvpr5HfuLvEmEA6wTk0OV5/jB7eNVVbJnvTAW2ZNA/hqtWCz40WgwRsQ7z99tv0/PPP088//0wnnHBCo+cGDRpEzz33HJ155pk0fvx4Ovzww+mqq67yellomQAAAAAACCIvv/wyjRw5sllFoqExY8bQqFGj6JVXXvFpWahMAAAAAEBA4M7A/r6Fgo0bN1Lnzp215Tp16kSbNm3yaVmoTAAAAAAABJHw8HD6888/teXWrVunyvoClQkAAAAACKzRnPx5CwEjRoxQFYUXXnjBbZkXX3xRVTiOOeYYn5aFDtgAAAAAAEHkwQcfpLlz59Ltt99On376KV100UXUvXt39VxOTg59+OGHtGzZMtUq8a9//cunZaEyAQAAAAAhNZrT8OHDVdDbjTfeqG7B5phjjqGZM2fS1VdfTUuXLlUVh6bZEvHx8fT666/Tscce69OyUJkAAAAAgJCSnZ1NiYn6oYLbskmTJtFxxx1Hb7zxBi1cuJD27NlT3+n6+OOPV8PBZmZm+rwcVCYAAAAAIDAgZ8JQGRkZdP/996ubv6AyESI6pMZSQmKc2+fXbCvQziMnz3NwU7IgiGpPQYUhYUA2SUCUQKc0fSDdzgP6da7ThIJJgu+qyvVBU3GCbbNXELjkEGw/uyDojATBgFTnOWCrrsTz84ogZI8i9KF/VCoI2YvSz8dRXmtIMJtdNx+H4Div1m8/h2RfSkj2t2RZkhA9A+bhKNEHoZniBWGHdYKQPcl8KvTHTe2eMm2ZCE2wnU0TasfCo/WvKTxGf74pE7ymxDj9tkkRhMnpzrMShYJAP6sgeFESNlciCKXcuLtUW6aqxmpISGuPjklun7OUhcZwqeAfqEwAAAAAQGDw94hLITKak1NZWRl98MEHqt9Efn4+jRs3jqZOnaqe27x5s+qMzZdCRUdHk7dQmQAAAAAACDI//fSTGsWpuLhYdbjmwD7uL+HEYXUTJ06kjz76iM4//3yvlxNi9TMAAAAACPg+E/68hYANGzbQ2WefTaWlpXT99dfTJ598oioUDZ100kkUGxtLX331lU/LQssEAAAAAEAQmTZtGlVXV9OsWbPonHPOUY9Nnjy5UZnIyEgaPHgwrV271qdloWUCAAAAAAKEv1slQqNl4pdffqFBgwbVVyTcycrKon379vm0LFQmAAAAAACCSH5+Ph122GHaclarlSoq9KNWeoLLnAAAAAAgMGA0J0MkJSVRbm6uttz27dupffv2Pi0LLRMAAAAAEFKGDx9O/fr1oxkzZlAwGjp0KK1cuZJ27drltsy6detUf4mjjz7ap2WhZSJEpCZEUWKC+5Cd047srJ3Hdyt3e3w+q108GWFdTrG2TFSEvh6ckRyjLZNXog9Di47Uh5iledi2rFQQXiQJktu7tdCQMCqHXR/+VL3Pc0ihUqV/XVSpKZPk/djWjQiC5ESha4LAKkkZ2259+Jh2VJE6QUiXJMAxTH+NsEMQdEaC49iUIAhvCxPsh1rNaxfMwpQsOLYq9YFgVCgJTRSskGTb6F437yub5zIRsZGGBNLVCQLpJGWqi6oMWZ/UdPfBq07dMjx/Dm3dq39fpifqA+kk87GU6kMTUwSBppKgvZOH6T/Dc/Isbp8rrxKcP4MsATs7O5sSE/VhiW3V1VdfrYaGvfDCC2n27NnUoUOHRs8XFBSoMjzCE9/7Ai0TAAAAAABB5LzzzqNJkybRsmXLqGfPnjRhwgT1+JIlS+jMM8+kHj160O+//65yKHiIWF+gZQIAAAAAQqplIhTMnDmTevXqRc8//zzNnTtXPbZlyxZ142Fhp0yZQk8++aTPy0FlAgAAAAAgyISFhdHjjz9Od955pxoqljtb2+126ty5M40bN87njtdOqEwAAAAAQGDAaE6GS0lJ0eZN+AJ9JgAAAAAAgsjYsWPp6aef1pZ75plnVFlfoGUCAAAAAAID+kwYYsGCBdStWzdtuU2bNtHChQt9WhZaJgAAAAAAQlBdXR2Zzb5VB9AyESJ2HbBQfJXJp2yHmCjPeQsbd5eQESqqrYbkTPy1U78+YWZjRnXYecBzFL21VjCWvYCtRj+f+MwEbZlywRjpokyGGH2mBdVo8gsEY7GL1sUqyGSo0mcp2Ev1Y7o7dNkZ0rwKq+f1cei2HZfRzEOpsxmS/WCO14+/by+o1C8qU59JYy8RbGMNsyBvgSIFx1a04KNSkEcjOiYc+jJWzfFnE+STxEbo8w3CovSv2y5YVnSqPvPHqM+GknLP79+EWP05K1eQKyL5DOrbI5WM0E6QmbR43T5tmagI98doRbngPNxS+GPZr6M5+W/WbdGff/5JaWlpPs0DlQkAAAAAgDbuyiuvbPT34sWLmz3mZLVaaf369bRmzRqVO+ELVCYAAAAAIDBgNCevvfPOO/X/NplMtHXrVnXzpGPHjmr4WF+gMgEAAAAA0Ma9/fbb6t7hcKgWiVGjRtFVV13lsiyH1mVlZdGIESMoIkJwybIHqEwAAAAAQGDAaE5eu+yyy+r//fDDD6uKQsPH/AWVCQAAAAAIKcOHD1cJ0TfeeKO6BZucnJwWWxYqEwAAAAAQQKM5+Xn+RJSdnU2JiYl+XFDoQGUCAAAAACAI1dTU0C+//KLC6crKylR/iqa4s/YDDzzg9TJQmQAAAACAwMD5TwZlQLmdf4j44osv6J///CcVFha6LcOVC1QmwBDH9MvQltlX6DmYrUoQqCYJ38kv0QcGlVXpA60qi/TzCTPrg6aqNCFILFITjhUVrR8pQb8UougU/fYrFQQQ2ov1AUURGXHaMnV5no8JEUHolSSQziEIm6Nam0Fhc4IyNv0628s87wd7hSBAz6Lfl7YS/X4yJ0Rry5ii9SFwYe31lw3YD1T6HAJnTtIH6DkE5wBTtCBsrlIQOikIGCRN8KeSrN8POg7NccVqBUF8MYKwuVqL/hgNC9OfSyTBnpWCgMtdmvddrOB1S8JMO6XpQ/8279IHpw7qnW7IZ6KnQDqnGg/hlZ6eg7ZpxYoVNHnyZPXvCy64gP766y8VUHfPPffQli1b6Oeff1YtFTzaE4/q5Au0TAAAAABAYMBoToZ45plnyGazqdYJDqW74oorVGXCmSmRn59Pl156KX3//fe0evVqn5alz4MHAAAAAIA2Y8mSJdSvXz+36dbt2rWjjz/+mCoqKuiRRx7xaVmoTAAAAABAYI3m5M9bCMjPz6e+ffvW/x0efvBipOrqvy8XTEpKouOPP57mzJnj07JQmQAAAAAACCIJCQlktVobVRzY3r17G5Xj9Ov9+/f7tCxUJgAAAAAgcPpMmP144/mHgKysLNq9e3f9385WCh4m1qmuro5+++03ysjQD8LjCTpgAwAAAAAEkVGjRtEbb7xBpaWlqlXitNNOU5c63XHHHepSpy5dutBrr72mWiouvvhin5aFlgkAAAAACKzRnPx5CwETJ05UrRMLFy5Uf2dmZtJ9991HFouFbrnlFvX8d999R8nJyfTYY4/5tCy0TAAAhIgfKn6kPNsBspGNzGSmfpGH01HRw1t7tQAAwGDjxo1TeRINPfTQQzRgwACaNWsWFRUV0eGHH0633XabaqXwBSoTISK3oILiqt03RB3eNVU7jz0FnoOvstL1wUQbd+tDfOIFoUJR4fpGtQxB4JKlss7nQDpm0wQlScLxbIJANZMgTMks2Db2RP1rqqvQbxuTIGDLUV7re9iXXRBsF6bfNnbduqgfxQS/WgmK2AVBU7bCco/Pl+zN1c6j2v73yBxldgslmOKbvYY6x8FOeDtqc2i/I6/+8RRHMu21H+yMZ65sPE2ZvYxqqJbSTWn180uOSNauT5wgrM/UNd33oMJkfWidaNQWs6CBPl0QJCc4tihBsM6S84AmoMykCfxjEbH6IM2KA56PTxYtCCKtyNeHJkYJQgglbJrwVKsg3K1WEOC280CFIYF0eYLzRM9MfRCkRIKHzzJLWQB9HfT3iEuh0TDh1jnnnKNuRgqgowcAAA6V1WGlzbYttMG2ifbZ99OFUedTmsn1jwMRpgiiBuHd0Sb3X5I32jbTSttqSjIlUt+wPuqWTPrKBAAAtL6xY8eqy5zee+89vy8LfSYAANqoWkcdvVf9Ic2vW6gqEmyHLcdt+Qhq/Gu0p8rEbvvBVpFSRxktt2bTt7VzyOFoUBMBAPAHf47k5LyFgKVLl1JtraDFtKVaJn799VfDFnjccccZNi8AgFAWaYqgTHMmbbNvr3+MKxPDIoa6LN87rBdlmNuTmcLIQXZqb2rvslyNo4byHfmNHhsUPlB2CRgAALQ6bpWoqakJnMrEmDFjDPkQ4Xk0DNAAAADfDIkYRNtq/q5MlDnKVIsFVzSa6hbWVTTPckc5xZviyOI4eM18oimRept7YlcBgP/5e8SlEPlR5PTTT6cPPviAKioqKC5O36e1RfpMtG/fvlEs96HauHEjHThwwOvpAQCguQ7mDMo0d6BwCqcB4UdQV3MXCjPpO5l6kmZOo4sjL6A8xwH6y7qBssI6ktnk/qpYvvwJrRYA0JYMHz6cwsLC6MYbb1S3YPPQQw/RN998ozpbc55E166yH5P8Wpk45ZRT6K233vJ6QVdccUWLdAIBAAgmdY46WlW3hoZHHOn2C/1ZkadTuMnY8TS4ctDBlEEdIj0no+627qH5NQvonJiJlGCON3QdACAEtdBoTtnZ2ZSYaMxIWYFoypQpdMQRR9C3335Lffr0oSFDhlC3bt0oJibG5fn+zTff9HpZGM0JACBAVTmq6Yvqr2ivfR9VUzUdHznaZTmjKxJSlfZK+qr6G3U51LuV79PkmEkUR+1aZV0AAOBv77zzTn2LMXfEXr58ubq50iKViY8++oi6d+9Ovrj++uvp5JNP9mkeAAChotJWQZ9Wf0b59gL1d3bdStV5um94HwoEfGnTt9Xf1/er4PsPqz6mK2v+SZlRHVt79QCgrfL3iEshMprT22+/3WLLElUmJk+e7POCjjrqKHWD1hEVEaZuvrDaHD6H70gC6Wp0YVX8i60g6Ky4qFJbxmHXD3UZFa8PU3JogrrKLfoRFex1gtedJwiRaherLWMt0u8rEhwvjkrBsHO64US7J+nnsblIW8QkCL0yler3g0MQZOgQHH/2Ev3xZ9l3cDhXV/6sW1dfkXCaV7OAUuzJjVoiqmz612Rz6Nc3yhx5SAF5VY4qOmBrPOKT2WGmuiILVZgbP95UfIx+WeEdPWdaOAShiqIvDYLOmKZqwcAhtYJgRcl8BKvsyC3z/HycfvtaBaF1ce31l62V77NoyyR2TjIktDMqSR8eGCv4jNHz7bPSKUdwvo6JMmZZ3TIStGUKBZ9DEDwuu+yyFlsWciYAAALQgIj+dFTYsPq/YymGTgof12qXNDUVY4qh0yNOpnamg5c1JZuS6LSIkynN7DowDwDgkEZz8ucNDBUYn0oAANDMEWGHUxiZ6U/bX3RyxImUYNL/+tiSOPSOKzirbGtocNhAijLpW4cAAKBlrV+/XoXY5efnq07ZZ555pnrcbreryIbISH1rpt8qE8uWLaN58+bR3r17qbr67+ZvIzt1AACEsr5hfainuQdFuMiNCAS8XkeHD2/t1QCAYGH283UzIXRNzu7du9Voqr/88kujy5+clYnXX3+dbrjhBvrpp59o3LhxLVuZqKyspPPPP5++//77+o547qAyAQDgm0CtSAAAQGAqKiqi448/nnJycqh///503HHH0csvv9yoDH+Xv+mmm+jrr79u+crEfffdR3PmzKGUlBS65JJLqHfv3pSQEFjN7wAA0PpqHbUqUM9T6B0AQD0kYBviqaeeUhWJO++8U/2bf9xvWpng7/EDBgygxYsX+7QsryoTs2bNouTkZFq1apVfE/UAAEIBj4q007aLhkYM9jm9OlBwi/Um62aaWzOfRkeOpEGRA1t7lQAAQsZXX32lQuqefPLJ+rwJV3r06EFLlixp+cpEcXExnXjiiahIAAAY4NfaxbTNtp1W162lE6KOo15hPT2e/ANdsb2YfqyeSztsOervxbVL6YiIfgEzEhUABDC0TBhi586ddNppp5HZ7LlVmDtf8yVRvvDqzM6tEbqVg7Zl+95Sn+dRbNFnDtgEuQ7jh3bSllmzrfH4+64kC8Y231/seuCAQxbp+a1UcaBCOwtTmP7LozlG/5a1SsayF+QtUFqMvkyhIK9Ctz6S9ZVkXhQJ9qX+8CMS7AdHtSCLolb/uqpsVXTAnq8qEqzYUUyfV39F4yPGUr/wvlRjrzUkQ6LWoPlEk360pqK6Ytpt21NfkWBlDgstr86mw8P7qr9jCxO183GkxHkuIKhrmdtr5sGzkeQSCLJvtHkqLE7Q96VEcBynxPi8nFrBcqyCzBVJhkRtuf74qxMsq2O6fn8aQ7+/w8PMhmRI9MzUvxfKq/TbZl2O/stgZlpLbT8IBNHR0WSx6HNgdu3aRUlJgrwnD7yqEVx00UW0YMECKikp8WnhAAChbq31z0Z/R1M09Q7rSW1ZlrkTZZo6NHrsL9v6VlsfAGiDozn58xYC+vbtq7ojVFS4/zGzoKCA1q5dSwMH+nYZqleb9O6771Y9w0855RTasGGDTysAABDKOpjbU4rp77TnweED2/zoTXyJ1pDwwerfHGo3MvwYOi3y1NZeLQCAkHHeeedRYWEh3XHHHSpPwpW77rpLjdA6efLklr/Mia+v+vHHH+mYY45RvcC7dOmibq4ufeIPFc6iAACA5gaE96f+YUdQrn0vrbP9Rf3D+wXFZuLWicmR51Gy+e+KEgCAFvpMGOLGG2+kd999l9544w1auXIlnXPOOerxbdu20XPPPacGU/r9999p8ODBdPnll7deB+x169apETt46Cm+udKWOxECALQEPk9mhXVSt2B6TckNWlwAAKBl+0zwD/+TJk1S6derV69Wj/MwsHzj7+/Dhw+nL7/8kiIifGsN9zpngq/D4nyJ66+/Xt3Hx8f7tCLwN64tzpgxQ13HVltbS7169aKLL76Ybr/9dp93OAAAAEDAQsuEYTIzM1XFgSsV3333HW3fvl1d8tS5c2fVVeGss84y5Ef/cG/Hrs3IyKDffvtNBV6AcW677TaaPn06hYeH09ixY1Ulbf78+aqfyjfffKMiz2NiBKPsAAAAAEDIO+mkk9TNX7zqgF1aWkrHHnssKhIG46YmrkhwBWL58uWqJjl79mzasmVLfULhAw88YPRiAQAAAAKDyc8jOeHq+8CoTPBlN9XVBo3PD/WmTZum7u+55x4aOnRo/ePp6en1EegvvfSSqswBALRFtQ595gAAABjHZrPRgQMHVKaEu1uLX+Z01VVXqX4Te/bsoaysLJ9WAA7Kzc2l7Ozs+hyPpkaNGqWucdu9ezfNmTOHLrzwQkM3XZkgFKd/txSfg3UkJIF0dZIQKYGqckF4m0BYlOe3UnRytHYedsFrstXog9AiYiO1ZawdDOrjpAvPYvmawL4YfT8gR2m5MaFhkuPGJpiPIHzRXuX52FpesZxK64opwZRAiaYEdR9m0odcNVXn0L/v7IIQLkmgX51df/zV2RuvT5WjitbY/qASRwmVOEqphmroIcdDZDZ5/i3LYfUcomeKErynyvTvb3O44De1OpMx4Xd5+vBKSo/Vl9Gca8PS9e9LW7XNkEC66mJ9cGWMIGwuXLD9iosqtWXatfO8rAjB/rZUGvP5Igmk27hbn9fVt7N+IIP8Ev1+sFS6r8iXVwVQJR99JgzD3ysffPBBWrhwIdXUuD8fcr8Jq1UQIGtkZeLmm29Wl+HwNf0vvviiGtkJidi+cfayT01Npe7du7ssM2zYMFWZ4LJGVyYAoGUtLl9Mpfa/WxknRIyn7mHdgm43OMhBG+wbGz1Waa+k+DAM2gEArYdHMgoLC1NDqPIt2Pz222/qe7rzSiLu45yYqK/gtlhlomfPg+msPBzsqaeeqjoLc49xdzkTPKYteLZjxw51z3kd7nDLRMOyANB28S/2DcWYgnNgBU70bqrCXoHKBAC0assE/2rvry/XgeChhx5SFYkrr7ySHn/8cTVwkr94VZlomCnB49TW1dW5vd4KORMyFotF3cfFuW+idQ6/W1ZW5rYMN2M1bMryVBYAWofdYW/WdyCSgnPYZ76cKYzCyEa2Q7o0CwAAvMdXEPXp04def/11v38X96oygV/GA9cTTzxBjzzySGuvBgBopIWlkbVB/4Iw707HbcKIsKPIRCZVqeB+Ianhqa29SgAQqJyjLvlz/iHAarWqdOuW+FHfq0+vrl27Gr8mIS4hIUHdV1S476BXXn6wE6qnZrl7772X7rjjjkYtE87LowAgcH6tv7X9rZRb7NsIGm1Fn7DDGv0daxZ0MgYAAK/17duXCgr0A9oYIUTqZ4GvW7eDHS+5g7U7zuecZV2JiopSlY2GNwAAAIC2gH9J9/ctFFx77bW0aNGiFum3jMpEgBgyZIi6LywsdHsZ2YoVK9R9wwwKAIBAVumopMXWpbTKupo22DbSTvsu1WcEAAD8W5ngkT95xFWOFOCsiVa9zGnChAkqhnvKlCleL+iZZ56hn376Sd2gOc7r4GHKeHSBmTNn0v3339/oeU6/5pYJbnngEbQAANqCYkcxbbZvqf87giLoeDqhVdcJAAIYciYM0aNHj/pBk8444wy/jrwqqkzMnTvX53C6v/76i+bNm+fTPIIdBwGeffbZ9OSTT9Ipp5xS3wLBrRU33HCD+vdNN91ESUn6IKHWCNexCsK+dMF3bPWGA9oyKan6a67jo/UNbx0zD/ZV8aTYog/zsRR4DqOyCsLmwsL1gWXmMP1rqtp/cGQwj6IE4WgHKlskYIsqBCP71Ol/yTYl6MP6HNWCUJ5aY369MQn2lZl8b243SxqYTcbMxyy4PCDa3HgoWIu9ceBgiimFTFH6fWWKDPfpeSVMEDYXqX/d9jL9OcAUH2lMsKJgfUizLJsgrI8EIXElOcX62STpwwMrDuhDJyME4ZURsfoyus+hwmJ9cGBcXKQhn2V78vWvOy0hSltm+cZ8bZmj+7bTlvEULFte5X1gGQSmlhx5VdwBmzv/+hK37ew8DO5NnDiRbrnlFnrhhRdoxIgRNG7cODVULFfCSkpKaOTIkfToo49iEwJAm7Hfntfo7zQzRnICAPfQMGGMlhx5VVyZmD17trqBf02fPl1VGmbMmEFLly5VNUkOCbznnnvo9ttvp8hIwa9fANAm2Bx2ynfk0x57Lu2x5dIJEcdRktn4lsfWNCR8ELWzt6P99v2qYtHB5L/gJAAAaPmRV0WVCU5lDpXe74Hg/PPPVzcACG6f1H5GpY7S+r9z7LtokHkABZMMc4a6OZva7YTO1wCga5nw33dOfJ1tpcpEw+uuAADAGB3MGVRq+7sysdW2jQaFB1dloiH+gsDBdQAA0DI4b+yDDz5QV7vk5+erS+inTp2qntu8ebP6jn/cccdRdLS+/5M7wRu5CgAQ4Hqae9Am2+b6vw848qnMXkaJZuTDAECIQgK2YXgE1YsuuoiKi4tVyzD/oNOpU6f65zdt2qT663700Uc+XRGDnAkAgFaSZe5EsRRLMRRDQ8IG08WRk1GRAAAAn23YsEGNEFpaWkrXX389ffLJJ6pC0RDHPsTGxtJXX33l07LQMgEA0ErCTGY6PfIUSjYlUZgJl/8AAPg7pTpU+gBPmzaNqquradasWXTOOeeoxyZPntyoDA/qM3jwYFq7dq1Py0JlIkRER4ZTTJRvuzsrPc7j8/GCccJ1WRUsMlY/YlWMICdhf3G1tkxVuX489ph4/TjgtRbP84lJ0+cxmMz6E1xNmf41mQT7wVGpHzc/sqd+HPXaPP2Y7RSh2VfVVdpZmATjyzvKBVkAunXh+YQLPmhs+k7EYe31ozKllqZQKrnfzpU2/baxmfW5GHZBvoEkQyIuzPM5gKVGptCK2pW035ZHo6NGuhydyiQ4FzlqNePeWwXZI4IMBElvTHOqYD7hvudDiPNdMjT7IS7CkMyasEj9+8VudxiSISFZVlpKjM85E0mJ0YZ8vmzbV0ZGqBEcx5IMCYkSD593FRWCbBJoU3755RcaNGhQfUXCHc6RW79+vU/LQmUCAAAMU24vp1+qf6UaqqE/6/6iIyOH0MjIYyjOrK+IAAAgaMIY3Nl61KhR2nJWq5UqKgQ/DHqAPhMAAGAIvh53TvUPqiLBbGSj32tXUKG9CFsYAKAFJSUlUW5urrbc9u3bqX379j4tC5UJAIAAZLFbaJ3Nt6bnlsaViCJ740sZB0QcQV3CO7faOgFA20zA9uctFAwdOpRWrlxJu3btcltm3bp1qr/E0Ucf7dOyUJkAAAgw26076I3Kd2mlfRVtsG2ktiLaFE1XxV1GR0UOU3/HmmJpfNTY1l4tAICQc/XVV6sO2BdeeCHt37+/2fMFBQWqDLco832L95n44Ycf6OSTT/ZpwQAA0NySmt9oQe2v9X9n21eqL+VdzV3axOaKMEXQhOjx1Cu8JznIgb4SAHBo/N18ECJNE+eddx5NmjRJjebUs2dPGjlypHp8yZIldOaZZ9KCBQuovLycLr74YjVEbIu3TJx66qnUp08fmj59ukrWAwAAY6SaG4/uxF/Id9hzmo0PHuh6hHennuE9Wns1AABC1syZM+nee+9V/547d66637JlC3377bdUW1tLU6ZMoXfeecfn5XjVMnH44YerMIw77riD/vWvf9Ell1xCN954I/Xv39/nFQIACGWHR/Sh4+wj6dfaJervrqYudFzYqIAcG93usJPZhKtlAcBAZpNoqHRf5h8qwsLC6PHHH6c777xTDRXLna3tdjt17tyZxo0b53PHa58qE3/99ZdqHnnppZfo66+/pldffZVee+01Ou644+imm25SiXtmMz5gAAC8MSryWLI4yqnUWkojw44NuC/s3Eqyyb6ZNtu30MnhEyjSJMhPAACAVpGSkqLNm2iVnIkxY8aoGw879d///pfeeOMNWrhwIf3666/UsWNHuu666+iaa64xrNYDvomPCfcYKpcgCIrbk1/udSCOU3mVVT/msS6sSokSvWYjQuvK8sr1y8pM8Ph8XWWddh4xyfpAJsmVLmER+i+ekVn6QLXKXaVkyArt12y/dH2gH5UIwvrC9L822Qv0gWAmQZiXSRBkaKrVH38x7dLcPne24wIqO7BfW5Eot+pfU7Vdv/2izfowr4TweKqwV9BPNfNos22Lemyp/Tc6N3pi/XrGdO2gnY85Wb/PzYL3g1a1PtCPEqJ8D15kkvqeIFiRuiXry2jOkZJAOnudPiwtUhCyZ5ZsGwGHIPzugOBcnKoJV5UE0kkkCoL4aur0x195tf7zrrxK//lRVaOfT5SHfWU1aD8aJnQaD4KCz6F1nTp1okcffZQefPBB+uyzz1RrxbJly9Tf/Dh3/uDWCl+HnQIACCX85dxTRWKXdTftsO2kAeb+Ldoy8Ftddn1Fgm237aD5tQswahMAQIBaunQpbd261eVzw4YNo379+gVGAnZERIQafoorD1yRePLJJ1Xnjg8//FB1ADn22GPpmWeeQaUCAMBHNoeNfq6ZT4WOIlpLf9KQ8EHUL+xwijIJfmX30ajIY2iTdZO6DMspjMLUpU+B2K8DANoWPo/481wSzOepI488kjZv3qz6R3Alwen111+n9957z+U0AwcOpNWrVwdGZSIvL0/1m+Db3r171WNDhgyhCRMm0EcffaSGouJY79mzZ6shqQAAwDsr6lapigSrpmpaZl1Onc2dDa1MWB1WCjc1/4jgZZwUdSJ9Vv0FRVM0nRp9EvUO72XYcgEA4NDNmzdPVQquuuqqRhUJJ/7BhztdN7Rnzx76448/aP78+TR27NjWq0xw0wlf2vT5559TXV2d6njNnTxuvfVWVXlg3JOcO2nfcsst9PDDD6MyAQDgpVpHLf1Wm93osSxzJ0o3u+5/Ue2oFo26VOOooT32XNpn30+77bspxZRCJ0dOcFmWh3w9MWoc9QnrjRwJADAUYia88+WXX6pWl9tvv93l8/zczz//3OixnJwclUHBP/S3eGWCE/X48qUZM2aoGG6u7XBPce5wzUPE8pBTDXEF4/rrr6c5c+bUj3MLAACHjvtHXBI7mRbWLKGttm3qsUFhA92WX1S3hLbat1EcxVGsKYaODBtKmebmnaQtDgv9WPf3B02Zw6IqLu76YwyNGIzdBwAQIH7//Xfq2rXrIfV/6NatGw0YMEBN64twbztdl5SUqErEEUccoVocOGsiJsbz6BsZGRmqHwUAAHgvzZxG58ScSfts+2lt7Z/Uxdz4B5yGihzFKviunP9zlFMduR4ZhlsiuO+DjQ6OQMP3OfaddFhYb+wqAAg6w4cPVzkM/CM439q6bdu2qf7JrngKPe3du7fqY9HilQmuSJx++umqEtH0+itPpk6dSv/4xz+8WSQAADSRGdaBEiISPXbULnYUN3osglwPaRlmCqN0UxrlOQ7UP7bLthuVCQAIyuucsrOzKTHR/fmzrSkrK6OkJNfDvnPINA+Q5Ao3BFgslpavTHAUd48ePQ55usMOO0zdAADA//hSJTs1zhOI8HDazzJnUaQjUl0Gxf9ub2rXAmsJAAC+io+Pp9LSUrcjNvHNXQNBbKwg78noyoQ3FQkIbJZK3y8/O7xrqrZMbmGutsyg3unaMnsKKrRl0gRhVKIQPUGokC6ULixSHwhks+lDpOI7xGvLWAWvqdZSY0wgXbggqStJsx8q9IFMJAmaEgREiX7tErxss+DYcgiCpsK7e/6ynhSnX05Cifv3QiZ1ofvsvamwJp9KbaUqcO6ImP4Ua3bxwRERRhOpq8dlhaXEGxLwZk7UB+SZdMeW5JgQBDg6BO8Fk+B9JzqO2wk+sCWhnWbPr8tepn9NsV0F4XgCkmC78Ej9V41awWfQkMP1Ibh/bD84ypk7Vpsxg1hmCEIVywTngOpa/XnLU+CsU15JlU/rbBOEbLYUDA3rnczMTFqzZs0hT8fT8LS+kGR2AgBAGxVjjqGsyCw6IuYIOiruKNcVCQAAaNOOPfZYys3NpV9//VU8DZfl4WFHjhzp07JRmQAAAACAwGBugVsQuuSSS1RH6xtuuEH1n9DhfhJclluCLrroIp+WHaSbFAAAAAAgNBx//PF04okn0vr161Vo3Xfffee2LEc18GhWGzZsUAMpnXDCCT4tO3AukgMAAACAkIY+E96bOXOmumRp8+bNKiCaM+CGDh1K7dod7J+Xn59Pq1atouLiYtWK0atXLzWNr1CZAAAAAABo49LS0mj58uV000030UcffURFRUUqLJoraA3zJjhM+oILLlDh08nJvg/GgMoEAAAAAIRUzkSwSkpKovfff58eeeQR+vbbb2nlypVUUFCgnktPT1ctFZwV17NnT8OWicoEAAAAAEAQ6dGjhwqXbgmoTAAAAABAQEDDRNuDykSIKCitpiqb++CbQkFwU4QmROqXNXu18+iUFmNIQI8k6KdGEGIWH6N/C0R3TNSWsWoC5yoFwXe2Gn2Z6mJ9MFF0in4b15RVGxNIJwkOM5t8H1NOsP1IECxmrtUHAzp066tmZDJm+2lCrcJS4vSrkqAPgHMIji1zsiB/wq5P9DPF6t+/JAhopBh9YJ92XUTBdmHGBNLpwhlZneB1hwnKxIf7fOxJgivjMxP08ynXh83ZIm2GhG3m5JWTrzql6Y/zHh2TtGW273WdNNxQsUW/bfp21i9r2z79MJ91VrtP26+ywvdtC6ELlQkAAAAACAgYzantQc4EAAAAAAB4BS0TAAAAABAY/J1SjZ/RDYdNCgAAAAAAXkFlAgAAAAACqs+EP2/B6Ndff1XJ160BlQkAAAAAgDZszJgx9OSTT9b/PXbsWHr66adbZNnoMwEAAAAAgQFBE15zOP4evnvBggXUrVs3agmoTISIob3bUWKi+7yExev2+byMYYela8us2VaoLVMjGC+7lyD7YeNu/TjgNdX68ePTBLkN1bUOnzMkYuL149SHRenfsiU7irVlHJKcCUHeBwnGmKcwTQOoYDEihfoMDoqP1BYxCdprHZLcgQYndbfLitRkHCTpMyRMbbAt25QU43Mmgykp0qCVMSgzRHJMCHJ2JMdNuCYfx6w7rjgiJkF/vqkp1WdRpHbUZ1FIcnbCBOscHtYyR/uabQXaMomC82OHFP37t0rw2RAlOf4Ehvdx/xltKRMcmxDQEhISaN8+37/LeQOVCQAAAAAICGiY8M7AgQNp/vz59OCDD1KvXr3UY1u3bqX33ntPNP2ll17q5ZJRmQAAAAAAaNOmTp1K5513Hj3++OP1jy1ZskTdJFCZAAAAAIC2D00TXjnjjDPo999/py+//JJ27txJ77zzDvXs2ZNGjhxJ/obLnAAAAAAA2rhBgwapG+PKxKhRo+itt97y+3JRmQAAAACAgGAym9TNn/MPBQ899BANGTKkRZaFygQAAAAAQJBVJloKKhMAAAAAEBC43cCfIdWh0S7xN6vVSp999hn98ssvlJubqx7r1KkTnXDCCarDdni471UBVCYAAAAAAILMmjVrVIVhx44djQLt2BtvvEEPPPAAzZo1iwYPHuzTclCZCBFFlhqqM7kPIEoWBKb175bq8XlJ8F20IJhIEgZUUq4PU7LZHYYE0hnBIVgXyfrWlOrD5mLTY7VlKrUliMIi9EFJJkHwVZ1Fs68EwViUEacvs7PUkEAwUUBZRJgxv37pAv0EgVZkM+Y1mQSBYI4aGxnBnBjpczCgKVYQWpesPz5JEJIpkhpjyHEjOUatlZ63TYTgmvCKvHJtmUhByGNJfoW2jFlw/CUKzsVWwbEeG+35a832/frX3UkQLtguWV9m274ybZnDu3r+XGXb9+rPbVnt4rVl9hW631flFsmnQgvBaE6G2Lt3L02YMIEKCgooIyODLrjgAjW6E9u+fTt9/PHHtG3bNjrppJNUpSMzM9PrZaEyAQAAAAAQRJ566ilVkbj66qtp+vTpFBPTuAI8bdo0uuWWW1QLxdNPP03/+c9/vF6WMRntAAAAAAA+MplMfr+Fgu+//566dOlCr7zySrOKBIuOjqaXX35Zlfnuu+98WhYqEwAAAAAAQWT37t107LHHUliY+8srufP1Mccco8r6Apc5AQAAAEAADefk5/mHgKioKCor0/fbsVgsqqwv0DIBAAAAABBE+vXrp4aD9dTqsGvXLlXmiCOO8GlZqEwAAAAAQEAlYPvzFgouvfRSqqqqovHjx9OcOXOaPf/tt9/SiSeeSNXV1aqsL3CZEwAAAABAELnmmmto9uzZNG/ePDrjjDMoNTWVunfvrp7j3ImioiKVPcGVDS7rC7RMAAAAAEBAdZnw5y0UcMdrHqVp6tSpFBcXR4WFhbRixQp143/zY3fffbdqoTCbfasOoGUiRJRX1RKF1/o0D10oXZQkkEkgr0QfzJYcpw+2S0/SdyjKzdV3TkpN1wemWQo8BzeFCcL6ogQhcRWC0CZJE65DENRlF5xx7RbBMWXXLEsQlkZ1NmPKSI5RSRmzPkzO1EEfIuXI9xwUZRIEOJpiw40Jm6vTHxOmeEFYX5QxwWza1y44B1CVIPRPEFBGmgA9qbB4/TrbyvXLikyO9vi8Q3CeiEr0PA+W2jFBW6asuEpbJlxwHFdW6/dVdZF+WXHt4nwOpCsoEwRpCvTMTDRkPjFRxnxVy0xzv20sEcYEUkJgiYyMpCeffJIeeeQRVYnIzc1Vj3fq1ImGDRvmc8drJ1QmAAAAACCAArD9134QIjETjXClYeTIkeQvuMwJAAAAAAC8gpYJAAAAAAiglgn/zh+MhZYJAAAAAIAAsXXrVrruuuto6NChFBERQd26daNAhpYJAAAAAAgIaJkg+uuvv9QoS0cddZQavrW4uJgCGVomAAAAAAACxBlnnEF79uyhzz//nI4++mgKdGiZAAAAAICAYPrff/6cf6Az+5j70NLa1toCAAAAALSwTZs20YsvvkiXX345DRgwgMLDw9UQto899pho+lmzZtGYMWMoJSVFBcYNGjSInn76aaqrMybHpqldu3bR7t27qSWgZSJEdGmfQImJ7gOIcvIs2nnEC4KHdPbkl2vLdMvQh33l5OnnI5GYog8wqq7Vh/kkCILtdCyl+rC+CEFQV61FH7gUHqN/60cl6UOtKgsq9cvShJjV5XsO/GOm2EhtGYfk+JT8ICUIOxT9riUIBjQlR/k+7IggrM8ULvjdSLKsdEHAmyTIUBCqRpma95RNv30pQX/cmFP1r8kuCVYUbD/bzlJtmei+6doy1cWezxXRKfr3rs2qP27yd5VoyyQKgtmSJAGDAtY4/f7UyS2sMiTwtEbw/t62r8yQYDtPYXNOG3YW+bTOleX67wAtxs+jOXnbMPHKK6/Q9OnTvZr2tttuU9NyBWTs2LEUHx9P8+fPVwnU33zzDf30008UEyM4vx4C7rR9zDHH0JIlS8jf0DIBAAAAAOBB//796c4776QPP/yQNmzYQP/4xz9E2+vLL79UFQmuQCxfvpx+/PFHmj17Nm3ZskW1cCxevJgeeOABw7d9YmIide/enVoCWiYAAAAAICAE6mhOV199tVf9GqZNm6bu77nnHjXUq1N6ejq9/PLLNHr0aHrppZdUhSIpKYmM0q9fvxa7zAktEwAAAAAABsvNzaXs7Gz174suuqjZ86NGjaLOnTtTTU0NzZkzx9BlX3PNNeoSJ+fy/QmVCQAAAAAICNyp2d+3lrJ69Wp1n5qa6vaSo2HDhjUqa5QrrriCbrjhBpowYYJqHeEO5Fxp8Qdc5gQAAAAAIaWsrHEH+aioKHUz0o4dO9R9ly5d3JbhlomGZVllZWV9S8X27dvV35999pn6e/jw4dS1a1ftssPC/h78hC+h8tQvgytYVquVvIXKBAAAAAAEBG43aInBnJxf4p0eeughevjhhw1dlsVycJQsHgrWHe6Y3bRyc+DAAZo0aVKjcs6/3377bTU8rQ4nZ0sdSllXUJkAAAAAgJDCnZN5xCMno1slfB3W1dcv+Ha7YPhsg6AyESKWrd9PcfHux/NPjte/ifJKPI/PXVWjH7c8WTDeuGRM7aoa75vjGioUZDJECMboj9KU2a8ZF5457PoTh8ms/70mQjAWu61Of5KxCbaxOdyA34/iBRkSlYLsAk2ehSLJoijR7yvD6DIOIgWvab8gcyVGMB9JloJV8OEWIVhWsmA/RGjed4Jx/ilWvxx7lf44j2jne44MM2Xo52MXnAfMmm1jFuyDyGj9x3+CIGumRnAukWT1SOYj0SktxufPoPJq/TGRlqD/zBzep722zLqcIkPyKhIF57bDu6a6fc5S5nuGh1H83a/BOW+uSDSsTPhDQsLBfK+KCvffv8rLD57D/b0u/oQO2AAAAAAAfmhhYJ6GaHU+5yzbFqEyAQAAAAABlTPhz1tLGTJkiLovLCxs1MG6oRUrVqj7hhkURtq2bRtNnTpVDUPbp08f9W8nDtF77bXXqLS01KdloDIBAAAAAGCwrKwsNfoSmzlzZrPnOf2aWya4v8app55q+PZ/9913VXL3M888Q0uXLqWtW7dSQUFB/fM8StT1119PX3zxhU/LQWUCAAAAAAJqNCd/3lrSfffdp+6ffPJJWrVqVf3j3FrBORDspptuMjT9mv32228qtTsyMpKefvpp1QrRtFP38ccfr5b7zTff+LQsdMAGAAAAAPCAKwLOL//Oy4fYq6++St9++2394/wrf2ZmZv3fEydOpFtuuYVeeOEFGjFiBI0bN04NFTtv3jwqKSmhkSNH0qOPPmr4tucKBFcevvvuO3WJkytms5kGDx5M69ev92lZqEwAAAAAQEiN5sSXH3Gw24033qhuOpwDwb/uN7Vnzx51c3KVMj19+nRVaZgxY4a63Kiuro569uxJ99xzD91+++2q9cBoS5YsoaOOOsptRcKpQ4cOjVpMvIHKBAAAAACElOzs7EMajnXMmDE+ZT+cf/756tZSuNXDU/K2U1VVFdXWCoZf9wCVCQAAAAAICP4ecaklR3NqTWlpabRz505tOe6Uza0TvkBlApT4GN/D5Lbv1Q8tVlZVZ8gWzxMEi1lt+hCk9ER98FCNIBxLV6a2Th/aFJuoD4iqKq8xJNhOIiZdELB1QB+YZq30vM/Do/SnIUk+WXgX/fazWgS/vqTq50NmwdgV5YJl6V5YmNmQ0D8ShHCJuiW2jzUmRC9dMB9deqsk0M8gdQadtyIFQWcOwcGe2jPN4/PWWv3+tguWEy44/ioFx5b+rEWUJAiTk4jSBPZJPoMkQaXtkjWBk0T0wwr32QJOWYLzbIZgWZIg1w073QfkVZRbtNND2zJixAjVsfqvv/6iI444wu2lUPz8JZdc4tOyMJoTAAAAAARUnwl/3kLBjTfeSDabjc4991xas2ZNs+c3bNhAV155pdoeDTuWewOVCQAAAACAIDJu3Di64447aPPmzXTkkUfSYYcdpioOP/74Iw0cOJAGDBhAW7Zsobvuuku1YvgiqCsTBw4coPfee48uuugi6t27N0VHR1NsbCz17dtXDdOVk5PjcXrukPLUU0/RoEGD1DBeKSkpqgPOZ599pl32rFmzVFmehqflefAwXdyD35OVK1fSpEmTKCMjQ61v9+7d6eabb1avBQAAACCYBVvORGvisDoeupb7RHDfCO5Avm/fPlq3bh2lpqbSiy++qPIvfBXUfSa4Rvbhhx+qcXQ5AfDMM8+kiooK1YOfN+Bbb72lxgM+8cQTm03LqYD8OA/hlZycTCeffDKVl5fT/PnzaeHChTRlyhS1k1y57bbb1DBg4eHhNHbsWIqPj1fT3X333er6tZ9++oliYppfA8mVlAsvvJCsVqsasowrEhyz/tJLL6nKCScl9urVyy/bCgAAAACCyzXXXKPC61avXk3bt28nu91OnTt3Vt8z+XuqEYK6MsG1rkceeYSuuuoq6tSpU/3jXCngjfvxxx/TBRdcoGpr3ILQNLGQKxLcDMQVgfT09PqWA25xePbZZ9X96aef3mi6L7/8UlUkuALBlY6hQ4eqxzm+nCsWXCF44IEHmlVE9u7dS5dddpmqSHAt8tprr1WP8/Vul19+OX3wwQeqhYXHOA6V6/0AAAAgtGA0J+Px90b+Pur8Tmq0oL7MidMGH3zwwUYVCcZf9N98801KSEigoqIilQ7YUHFxMb3yyivq33zvrEgwvu6MWxjY448/3myZ06ZNU/ccRNJwp/E8Xn75ZfVvbmkoLW088tHzzz+vWkPGjx9fX5FgHKjC68Bx59yiwq0aAAAAAOA9/mW+X79+KkguFDgcDvXDdn5+vmqdMFJQVyY84b4Tffr0Uf/evbvx8G1z5sxR/SU47IMTC5viFgL222+/qRYFp9zcXPWFv2GZhjiFkJuWOB2Rl9EQX27lbjqu/PAlWuzzzz/36vUCAAAABDoT+Xk0p//1muDva+vXrxelX7dlP//8s7pUn39A5/643H+C/82PcWdsI4RsZYI7Qjs7YGdmZjZ6jq8rY8OGDXM5bY8ePdQlVKzhcFvO6fg57u/ginOezrLMYrGoS608LdPVdAAAAAAArvBITVxp4Kta+OoXbp3gG6de82Onnnqq6gPsq6DuM+EJX+bEzT3cEfqUU05p9NyOHTvUvacY8qysLHWJlLOsdDpumWhYljUcVcrdtK6mOxRJcVEUH68PTPJFoUUfTWS16aPoJeF3MVH6wKqqGt8Djli5IJQpPtr3t1J5UaW2jMOu337hgnXp2Mtz6BUrKqjQL0sQOGfThClZq/Tb1yQIkbIKQptMgm3jkITNRRsUJufQ7E/JugiOYUrRh16RJJhNt74sOdqYED3NJo5opw/7qisVnAQEzf0xKfGGHH9h4fp95RCETkZFeN44Npvg+BSE1kmCP1MFwZ+S8+PhXQ/+QOdt6Jo00DQ8TL990wThgnvyyw0JpJPQBcZK1znaQwhhWVkZBQp/j7gUKr1OP/jgA9W/l7/nco4E98t1/tDN3zvfffdddfk9X2Y/ZMgQn4LrQrJl4s8//1S1NcadobnZpyFuKWA8pKs7fOlR0zegr9N5mtbVdK7wJVRcpuENAAAAAELHiy++qPrd/vDDD/Tvf/9bjWrK3zH5xonYHFfAz/GlX9yXNyhbJqZOnUpff/31IU/3xhtvqL4J7uzZs4fOOOMMNaIT90PgjtLB5IknnlAjWAEAAAC0NRjNyRicJcHfh0ePHu22jPN5Z3/foKtMcMfmTZs2HfJ0XElwZ//+/SoRcOfOnXTSSSfRp59+6nKYVe6YwjiTQrecxMREw6ZzTssjN0mmc+Xee+9V+RpO3DLhvEQKAAAAAIJfdHQ0dezYUVuOy0RGCi7LbYuVCb7Wi29G4QRpznngWHEefpXzIKKiXF9j2K1bN3W/a9cujy0cDcs2/HfT0aEacj7XcLquXbvW/5uXydkWkulc4dfk7nUBAAAABDLnqEv+nH8oOPLII+mPP/7QluMy7gb/kQqJPhM8pi5XJDZs2KBaJvjyKa6xuePMh+D0aVc4QZA7XzPutOLk/HdhYaHbjtLOeTbMoODWBmeytbtlupoOAAAAAKCp+++/X33v5b4R7nBfCi7DQc2+CPrKhDN5+q+//lIViW+++Ub1bPeEh8riJh9uJViyZEmz52fOnKnuR4wY0agJiUd44hCUhmUa4vRrbmHglgNeRkNnn3222+n4Eideb3bOOecIXzkAAABA2+wz4c9bMPr1118b3bgF5qabblKXv/N3Uw5y5u+SfON/H3XUUarf8M0330xmszk4L3MyArcecAWCO6HwpU3cIqGrSLCUlBS6/vrrafr06Wo4rfnz51Na2sGhNFetWkVPPfVUfa2vKa7dccXgySefVEPOOlsSuLWC58V45zbtF3HbbbepFMa5c+fS66+/Ttdcc4163GazqelKSkrUwTBhwgQDtgwAAABA6OLvVDzaEYfWBUNw3ZgxY1xewsW5EitXrlTfX5s+zrhiwSM/Wa2CIbvdMDmccwtC/Cs+J0vzxp00aZLbisTEiRPVrSEO9+AKyLJly1Tlgls3uHP0vHnzVOAdd3Lm8XtdufXWW9XOiYiIUJUZHoaLp+MKASdqcxqhq3WZNWsWXXjhhaoCcfTRR6v+EdzDni+r4uFruWXDeTmUFHfA5orLpwv+otj4vzt6N9Uz03PHblauGYe+fzf9OOE5eRafl8M27tZnUaQk6DsUSV73tn364XWjNDkIkqyK6lqbtkxZcZW2jEkwTn1dhX4bRyUZ0/emVpOVYK/Tv+6IOP2+rBTkYtit+tOdQ5A7QJL8AgFzqucfN+x7LYbkOkQIytQV6HNOSJD3QYIsmfAU/fpYizwf62ZBvoFJkCkQJshKkeRDVAnOE8l922nLJCXqt03upnyPz0cKMgciBTkoaZJ8EoH8fP17MyU11qB8IZvP89Cdz1UZQb5LjeDcViPI+xg3uJNPGRJOGz1kOJVbymh43y5UWlqqHejFX5zfV2YtWO/x+4qvKsstNGlMv1Z9rS1ZmZD65ZdfvJ426FsmGNeXeOQmd/hLe9PKRGxsLC1YsICee+45+vDDD2nOnDnq0qdjjjlGtSxw5cQdbtHgSgO3NCxdulRVPnr27Kmak26//Xa3veZ5npyuPW3aNFq0aJFKu+Z0bq4xu8rDAAAAAABYsGBBq22EoK5M+Lph+Us/VwC8yaI4//zz1c2b3vezZ88+5OkAAAAA2jrkTLQ9Qd8BGwAAAAAA/COoWyYAAAAAoA3x94hLQTqakzvV1dUqXoDDoPnf7lx66aXkLVQmAAAAAACCzL///W/VD5c7t+ugMgEAAAAAbZ6ZTOrmz/mHgpdeeonuvvtu9e8BAwZQ7969KSHBP6NkoWUCAAAAACDIKhPh4eFqUJ8zzjjDr8tCZQIAAAAAAgJGczJGTk4OHXfccX6vSDBUJkLEgO5plOAhnMVS6TlYTBJKN29NriEhcZlpcdoyJeXGhIatyynWlgkXBF/VaYKHSgUhcUlxEdoyJAiRspS672B1KGFedZX6da4RLCsi1nM4VnyGvtm1XBB2aBYEizls+vDA6BR9eJY1Rr+v6gTBdrr9YMrUbxuH4L3rsAuySaMFHweaQDBmEoShWS36dSbN+yFesG0qBWFp4YLQOmuN/riJ65Lsc4AjKxaEmMWk6Y9RnQ7t9OfZ3Fz9ddaxgpC9vj30gaYxgv1QJdgPRpAE0pUJwlV1nwssTRAwKAmkW7R+v7bM8D7t3T5XFhO0+cUhq3379tSunT4o0wgYGhYAAAAAAqplwp+3UHDKKafQsmXLyG7XV2p9hcoEAAAAAISU4cOHU79+/WjGjBkUjB566CGqra2lW265Rd37Ey5zAgAAAICAYDKZ1M2f82fZ2dmU6OHy77auY8eOtHjxYjrzzDOpT58+dMIJJ1CXLl3IbDa73CYPPPCA18tCZQIAAAAAIIg4HA6aPn06bdy4UV3q9M4777isRHA5VCYAAAAAIChwuwECsI0JrHvxxRfV8LCnn366ypmIj48nf0DLBAAAAABAEHnjjTcoNjaWFi1aREOGDPHrslCZAAAAAICQ6jMR7Hbv3k1jxozxe0WCYTQnAAAAAIAg0qFDB0pI0OfxGAEtE6Dkl1Rpt0SCJnxscM907Tz2FVb4vByWHK8P+pEor9aHIEkC5zqleQ6Tq67Vh32VV+nXpWt7fdBUWaw+UG3n1iJtmUhB+Ji9Tj9+tTnC828WZfv0wVgOmz5QqU4QCEaC/S2JQ5Rsm7pI/W81Ns1xEddef31rrUUfsCVhjhTMR1BGEiZXtqtUvz6aoC7dtmMJWUnaMpY9+nVJ7ppiSLBiTLr+/Vtr0R+B5nDP2yZcEKqYkawPwMwr0n8u9O2s38Ybd+u3sYRkWT06ei6zbH2edh6Jgu132pGdtWU27i015PMuV/D5LAn9K/RwbFkEx11LQQK2Mc4++2z66KOPqLq6mqKj9eGSvkDLBAAAAABAEHn44YcpNTWVLrzwQiooKPDrstAyAQAAAAABAS0TxrjttttUvsSXX35J8+fPpyOPPNJjzsSbb77p9bJQmQAAAAAACCLvvPNOfWdzi8VCCxYscFsWlQkAAAAACAqm//3nz/mHgrfffrvFloWWCQAAAACAIHLZZZe12LJQmQAAAACAgIA+E20PRnMCAAAAgJAyfPhw6tevH82YMaO1V6XNQ8sEAAAAAIRUAnZ2djYlJiZSsLryyivFZX3tgG1yOBz6NChos8rKyigpKYnyiop9ftOsy/EcdBYvCPqRkIT4rNlWYEgok1FKymt8DtnTzUMaste3c7K2zJpthdoyCYLwu2KLPiiuts5zuFhVgT7IMDpFvy8lIWZ2q92Q0LAwScCbQLUmFCxcsA8kYXNmszEfzJJtXFelD3kMFwRsRQjOAzoOu35/Rybo35tWwfuurlL/utt314ffRQv254G8co/PH94rTTuP7fs9z4NFaQInpeu7P1cfTNmhU6Ih5zadcsHxmZmmDxe0VOrPfX01AXqs2qY/Rhev26ctM6p/prZMtIcgSOd3hdLS0lb7gu1chx9+30Jx8f5Lbq4ot9DJR/Vu1dfaElwNAeuqUsXVAP63zaY/v7uDlgkAAAAACAjoM+Hf0Zzsdjvt3LmT5syZQytWrFB5FIMGDfJpWahMAAAAAACE0GhODz/8ME2dOpVef/11WrVqlU/LQgdsAAAAAAioPhP+vMFB06ZNo4SEBHrwwQfJF6hMAAAAAACEmPDwcBo6dCjNnTvXt/kYtkYAAAAAAD7gdgN/th2gXaKxqqoqKi4uJl+gZQIAAAAAIMRs2LCBFi9eTJ07d/ZpPmiZAAAAAICAgNGcjPHee++5fc5isaiKxPvvv0/V1dV00UUX+bQsVCZCRJGlhupM+vHzPRnWM93j8xv3lmrnsSdfP7a5JJNBkiFRVaMfG76HYBzwfYX6HIQaTX6BJENCQje+PIuP1r+ta+r0Y5vXlOrX2Vqr38bhkZ7Xp9thno8rlqfJY1DrUlVjSO6AJNPCJMhtqBKssy5HQhIDJMlsqDygP4Yj4gW5DoKOi7Hp+jH66yr0Y/SbNRkH8amx2nmUF1UK1qXO53VhqV18z0BgRWX64zhck+mTV1KtnUeY4BgO95BL4FQq2H6SDAnJeWtdjv5SjOQ4z9vm8K6p2nmkCbJHJDkTks9ESRaFJENClwMl+QyH4HL55Zd77Gzu/Hw566yz6F//+pdPy0JlAgAAAABCKgE72F166aVuX2tkZCR16tSJxo8fT8cee6zPy0JlAgAAAAAgiLzzzjsttixUJgAAAAAgYIRI40HQwGhOAAAAAADgFbRMAAAAAEBAMP3vP3/OP9RGb5L2sfAWKhMAAAAAAEE8epMOKhMAAAAA0Oa1VM7E8OHDKSwsjG688UZ1a+vGjh17yJWJZcuWUWVlpc8jXKFlAgAAAABCSnZ2NiUm6jNQ2oq5c+eKyy5atIimTp1KVVUH85AGDBjg07JRmQBxSE9uiT6ESycqIkxbRhLwJpmPUa87e9MBnwOXdKF2zFKpD386vFeatowksKpGsI3bZ8RryxQKQuviNNtGEkjnsOm3X4QmrIqZw/VjTtgF+0oSdBadHK0tU13s+bUnCAKtynaXaMvEttcHySUIwuYsBfrwO6sgLDK+Y6LP+7xKcAxLwtIkoWtJgmOrutZmSFiktUq/PrGJno8tq+D90iFFf3zu2K0PXUsRhAdKtrHV5vA5kI5ltfN83lqzrSCgQlGN+Fxl/bul+rQsS5kx62EE5Ez4z7p16+jee++lOXPmqNC6Ll260P/93//RP/7xD5/mi8oEAAAAAECQ2r17Nz3wwAP04Ycfks1mo7S0NLrvvvvU5V0cYOcrVCYAAAAAIKT6TISC4uJievzxx+nll1+m6upqio2NpVtvvZXuvvtuQy/xQmUCAAAAACBIVFdX03/+8x96+umnqaysTHU0v/baa+nhhx+mDh06GL48VCYAAAAAICCgZcJ7drud3njjDdUPYt++fapfxDnnnEPTpk2jww47jPwFlQkAAAAAgDbs888/p/vvv582b96sKhHHH388PfXUU3TUUUf5fdmoTAAAAABAQOAuDf5NwA5O5513nhoJy9kv4tRTTyWr1UpLly4VTX/sscd6vWxUJgAAAAAAgkBlZSU98cQT6ibFlRCueHgLlQkAAAAACAjoM+EdzozwNcnaW6hMhIiOyTGUmOg+iGfu2lztPMYP6uTx+Y2VtYaE+Ehs2FlkSLCdJJAuSxDmZUTAUc9M/TBtKzbrA5eGHZauLbMtSr9tCkr1oWBpKTGGBAPqlJbpg/giY/VjZdcKjtGwKP1p0SYIKAuP0Qdstddsv+K8cu08YgXHpySIr1KwjaOS9EFn7eL0++GAIAwtrp3n12ULEwQZCkIKbYKAN0mgWkWF/tiKE2ybME0gnSRwrrxaf745vKs+5ExCMp9l6/O0ZWIE5ySJfE0IXKLgfSkJgJN8dkhIQvQknw0SFg/nv/Iq/fELgS0nJ6fVlo3KBAAAAAAEBCRgtz36n20AAAAAAABcQMsEAAAAAAQE9Jloe9AyAQAAAAAAXkHLBAAAAAAEBM6Y8G/ORLAmTbQetEwAAAAAAIBX0DIBAAAAAAEBfSbaHlQmQsTekiqy2N2Prz2qf6Z2HtWC8diNIMkl0GVeSLMzkuP1y8rTjFvOBvdM93lM8kKLPtehb2d9TseabYXaMumJ+tcdZtY3BReV1fg81r8kQyJJMPa+hCRTIFWwbQoF84mN9v30Gpsaqy3TKU2f9bF1W5Eh2RmpgkyL4qJKbZno1Bif91WkIEcmSpAz0btToiHvTVOYMQ398TH642Z/cbXP81j05z5tmdEDMn3KLjA6Q0LyObUux/OxHi/ImcjJs2jLDO/T3pDjJiNZ/17oa1A+k8dPRKs+AwXAHVQmAAAAACAgmE0mdfPn/MFY6DMBAAAAAABeQWUCAAAAAAKqz4Q/b2z48OHUr18/mjFjRmu/5DYPlzkBAAAAQEjJzs6mxER9nynQQ2UCAAAAAAICRnNqe3CZEwAAAAAAeAUtEwAAAAAQEJCA3fagZQIAAAAAALyClokQkZoQRYmCMDhPog0IZZIEHO0rrNCWkQQPGRVIJ7Fhp+egpJOHddbOY94afcheSbk+BGlwzzRtmRWbC7RlJMFXpXaHz8FhHdrFGRI+lluo35eSoDNdyJ40RK9gvz74qlfPVM/zEIQC7jqgf7+YBa9JEkhXUW3VlomM1YdflQtCwZIyPXeMTEnQL0ey/Soqag3Z35KQwnDBOVQS2hmvWVaN1ZiAUcn5Ol9wDk0UnK9r6vShiZLwz5go37/WJAiOYUkgXSdBIJ3k804SwHp4V8/nkrYEfSbaHrRMAAAAAACAV9AyAQAAAACBwWQikz9TqpGAbTi0TAAAAAAAgFfQMgEAAAAAAQF9JtoetEwAAAAAAIBX0DIBAAAAAAHB5Oc+E37tjxGi0DIBAAAAAABeQcsEAAAAAAQEbjfwZ9sB2iWMh8oEiK3Y5jnoLDNNH3rVkiTrIwm/k4Qy9eiY5PH5dTmeQ+2kwU5GBS6dN7q7tsyXS3O0ZY7u205bZuPuEp8CuKQhXOlJUYZsY0kYVZkg6CxGEFile12SkLMwQZnYFP26lJZVGxLelpGsL7O5Vh9+1yEl2uewvsQ4/XshKlp/TISH6b9+xERFGHL87RS8rq7t43x+v/TtnKwtsy6nWFumf7cUbZk9+eXaMlGCQEndeVYStCc5P27fW2pIOJ5kPsP7tNeWyRGEPAK0JlQmAAAAACAgoM9E24M+EwAAAAAA4BW0TAAAAABAQEDORNuDlgkAAAAAAPAKWiYAAAAAICBgNKe2By0TAAAAAADgFbRMAAAAAECAMB3sOOHP+YOh0DIBAAAAAABeQctEiIgOM6ubO7mCYDZdCNy+wgpDQuL6CoKJJOsrCQwqq6rTlhk3uJO2zOJ1+zw+n9UuXjuPknJ9WFpyvD6YTbIfJNsmOlIfIlUu2H5Z6Z6Pmz+26wP9endKNCRsrp0gSE4SGiYJiuuUJljWPs9hVIN6pxty3JRU6PeTUST7oUO7OJ9DzGIFYYeSAL28En1YX6lg+/XooH+Pb9+vD2+LE7wu3XzGD9Wfsxb96fmcxUYPyNSWyd50wOdzgFQnwft37s4inwP9BvdMN+Q8Kwmk8/S5fChBe5Jt4yl4ttxSSYECfSbanpBrmSgvL6cePXrUh6Ls2bPHbdna2lp66qmnaNCgQRQXF0cpKSk0ZswY+uyzz7TLmTVrlirL0/C0PI+nn36a6uo8fyitXLmSJk2aRBkZGRQdHU3du3enm2++mQ4c0J+wAQAAAABaUshVJu666y7KycnRlqusrKQTTjiB7rnnHtq1axedfPLJdNRRR9GSJUvUl/0777zT7bS33XYbnX/++aosT8PT8jzuvvtuGjt2LFVVuf5VnSspI0aMUPddu3als846i8xmM7300ks0cOBA2rp1q0+vHQAAAKAt5Ez48wbGCqnKxM8//0z//e9/6cYbb9SWve+++2jp0qU0YMAA2rJlC82ePZt+/PFH+u233yg+Pp6effZZ+vbbb5tN9+WXX9L06dNVmeXLl6tpeFqeB89r8eLF9MADDzSbbu/evXTZZZeR1WqlV199lX7//Xf65JNPaPPmzXTJJZdQXl4eXXTRReRwOAzbHgAAAAAAvgiZykRZWRldddVV6rKhJ5980mPZ4uJieuWVV9S/+T49/e/rJ4888kjVwsAef/zxZtNOmzZN3XOLxtChQ+sf53m8/PLL6t/c0lBa2via9eeff161howfP56uvfba+sfDwsLUOiQlJVF2djb99NNPXm4BAAAAgMBmaoEbGCtkKhN86RH3j3jjjTdUHwZP5syZo/pLdOnShUaOHNnseW4hYNxKwS0KTrm5ueoLf8MyDY0aNYo6d+5MNTU1ahkNffHFF26n41aOM888U/37888/F75iAAAAAAD/ConKxHfffUdvv/02XXPNNarPgs7q1avV/bBhw1w+zx24U1NT1b/XrFnTbDp+jltAXHHO01mWWSyW+v4Q7pbpajoAAACAoIJOE21O0Fcm+JIlrkRwi8C///1v0TQ7duxQ99wy4U5WVlajstLpeD2aTtewQ7i7aV1NBwAAAADQmoI+Z+Kmm26iffv20ffff0+Jifqx6p0tBczT5VB86ZGzL4ZR03ma1tV0rvAlVHxz0pU/lDGqddISogwZg36jIANBIiYq3JBxwCV0+Q8bd5cYsv1y8vTj1PfvliIokypYlucMBLYnX78+h3dN9Sm/RJqLYbUZMzhBSoJ+THeJ8mqrtkzXzASfMyQky4mJ0meGZHRJ1pbpIciAkYy/v6egwue8D0kOiiQzJD5Gf55IT9K/NyWiIsyGZGPozm2S90t6ojGvSZIhIdnfkvlIPht0mT7dMjy/5yS5QZLzmlS1zW7IZ4OEx5wna3jI5UwMHz5c9UvlQXkkA/OAe4Fz9DQxdepU+vrrrw95Ou4TwX0TnP0LZs6cSVdccYUanjUUPPHEE/TII4+09moAAAAABCzu4yr9kRnaaGWCOzZv2rTJq1A6VlBQQNdffz117NiRnnvuuUOaR0LCwV8uKioqtMtpeCD6Op1zWh65STKdK/feey/dcccdjVomnJdIAQAAAAQyf2dBIGcihCoTH3zwgbp5i/McODWa+zZMnDjRbTkOoIuKiqLLL79c3Vi3bt3UPQfNueNMznaWbfjv3bt3u53O+VzD6TigzomXyXkUkulc4dfCNwAAAACAkK1MGIW/9Du/+LvCw7uyMWPG1D/mzIdYsWKFy2m2b99ORUVF6t9Dhgypf9z578LCQtVR2tWITs55Nsyg4NaGXr16qRGd+HlXlQlX0wEAAAAEl5bqNQFGCdrRnLg1gtOi3d0a/uLPfz/88MP1j5166qkUGRmpWgmWLFnSbN7cD4ONGDFCXUblxK0g3KGnYZmmrSW8PG454GU0dPbZZ7udji9x+uabb9S/zznnHK+2BwAAAACA0YK2MuGLlJQU1d+C3XDDDaqlwWnVqlX01FNPqX/ff//9zaa977771D2nbHNZJ54Hz8s5wlTTfhEcqhcbG0tz586l119/vf5xm82mpispKVEVlQkTJhj+egEAAAACAWIm2p6gv8zJW9OmTaPff/+dli1bRr1791Zhd9w5et68eVRXV6c6OZ9++ukuW0RuueUWeuGFF1TLxbhx49RwrzwdVwg4UfvRRx9tNh23cLzzzjt04YUX0rXXXktvvvmm6h/Bow3wZVUZGRmq1cKEnkMAAAAAECDQMuEGtxIsWLBADbXaqVMnmjNnjqpYHHPMMfTpp5/Ss88+63ajTp8+nT755BNVdunSpWpavgSKWyvmz59PMTExbjuDL1++XF3KxBWIL774QrVM8PjHa9euVf0qAAAAAIK9x4Q/b2Ask6NhBwIIOjw0LF9S9cvq7RTfYAhab0LMosM81z1zS6ookBgVoicLk7P4HO6mC1uSBi5JwuYSYiMNCTL8bOnf6e3ehnDV1NkM2Tbb9ukDGntm6scUX7G5QFumQ4o+WKykok5bJjnOQ4iUkCS0ThLoJ1kXXTijNKAsPtr3RvEaqz7sq05QRrJtwsP0Xz/6dk425BiVrLMk4M2nALNDCNs8eVhnQ85JfQWBiJLQuvKqOp9DMiUk50dJIJ1RJJ9lnljKyujwrh2otLS01bIXnN9XtuzOowQ/rgO/1t6dM1r1tQYbXOYEAAAAAAEBORNtDy5zAgAAAAAAr6AyAQAAAAAAXsFlTgAAAAAQIBBa19agZQIAAAAAALyClgkAAAAACAjogN32oGUCAAAAAAC8gpYJAAAAAAgI6DHR9qAyESL6dU3xGM5iRKiQEeFuRgazGcWIZY3qn6ktk73pgM+BTNJQpu2C8CdJmf7dUnxe53aC8Kd1OcXaMt0y4g3Zfn07JxkS+JVbmO9zGFphsT4IcuTATENed54gdFJSpqjMmCBII0LrJIFqvoZ9HcprkoTAScLvdPtTcnxKgjSH92nfYud0SeipJGxTt232FepDFY0KtpMwKmTU16C9MrP+HAHgDioTAAAAABAY0DTR5qDPBAAAAAAAeAUtEwAAAAAQEEz/+8+f8wdjoWUCAAAAAAC8gpYJAAAAAAgMpoNZE/6cPxgLLRMAAAAAAOAVtEwAAAAAQEDAYE5tD1omAAAAAADAK2iZAHGoULVNHxLla/AdW7GtQFumqsbaYkE/knU2YttIGBWmZFQYVb4gaComKtzn8KyM5GhtGUlQl4Qk4E0SPpYUp1+f+GjP2yainTH7u6RcH8w2uGe6IcvaEF6kLVNTZ9OWiYoI8/h8z0z3IZxOi9ft05Ypr7YaEiQnERHeMr/fSY7hrHb6kMc1gnOxZD+syyky5P0red/pzm2egtsO5Xwu+ZwaJnhPST57JaLDzD69rpb6DBMx+bnThF87ZIQmtEwAAAAAAIBX0DIBAAAAAAEBfSbaHrRMAAAAAACAV9AyAQAAAAABAV0m2h60TAAAAAAAgFfQMgEAAAAAAQF9JtoetEwAAAAAAIBX0DIRIngMask41J4YMQ61ZB6SLIW0hChtmexNB7RlRvfrYMg66zIZJGOJ9xDkWUhYKmu1ZTbs1I/7fnjXVEOyPHT7qtCiz0BYtj6vRbILjGS1ObRlRvXP9Pj8Dyt2t1imwPa9pYZsY4n9xdXaMl3bx/n8uiX7W7cPpOcSSeZKoiBLQXKu0K1PO0GWguS9myGYj1E5CZLzgCQfR3e+keRDSDIvjMq1MWrbSEg+NwMCOk20OWiZAAAAAAAAr6BlAgAAAAACAvpMtD1omQAAAAAAAK+gZQIAAAAAAgK6TLQ9aJkAAAAAAACvoGUCAAAAAAIEek20NWiZAAAAAAAIIFu3bqVTTz2V4uPjKT09nW644QaqqKigQISWCQAAAAAICOgzQVRaWkpjx46ljh070qxZs6ioqIjuuOMOysvLo9mzZ1OgQWUiRGzeV0rx5Q6fAqD6d0v1KbjNyICjdTn60DVJcJMRQXyS1zVvTa52HuMGdzLkdev2kzSwSmJfYYUhIXo6px/dRVtGcvxJjnNJGJVRAXm646Jv52RDwtIkr0kSCCbZxhJGhAdKwi0lQXyS91RMVLgh21hy/EkC8nQBl5L3nFEBZpJjoq8gkLOT4Hy9UbA/dfORHDeSdZEw6vOlzYTNgWFeffVVys/PpxUrVlD79gfPzTExMXTuuefSypUr6cgjj6RAgsucAAAAACCgekz48xbo5syZo1omnBUJduaZZ6pLnr799lsKNKhMAAAAAAB4sGnTJnrxxRfp8ssvpwEDBlB4eDiZTCZ67LHHRNuNL1caM2YMpaSkUFxcHA0aNIiefvppqqtr3mK5fv16Ovzwwxs9xss77LDDaMOGDQG3n3CZEwAAAAAEhEDtM/HKK6/Q9OnTvZr2tttuU9NyhYBbHLiFYf78+XT33XfTN998Qz/99JO6jMmpuLiYkpObX+bKFRHuPxFo0DIBAAAAAOBB//796c4776QPP/xQtQ784x//EG2vL7/8UlUkuAKxfPly+vHHH1Un6i1btqgWjsWLF9MDDzzQprc9WiYAAAAAIEAEZs7E1Vdf3ehvs1n2e/y0adPU/T333ENDhw6tf5yHe3355Zdp9OjR9NJLL6kKRVJSUn0LRElJSbN5cYtF7969KdCgZQIAAAAAwGC5ubmUnZ2t/n3RRRc1e37UqFHUuXNnqqmpUZ2unbi/RNO+ETabjTZv3tysL0UgQGUCAAAAAAKqz4Q/by1l9erV6j41NZW6d+/ussywYcMalWUcVvfLL7+o4WGduG9FeXk5nXbaaRRocJlTkHM4DmZLlJd7Hgu8vMqqnVdZmefDpdyiH2+8LMZ91oWTxVKjLVNuqdSWIWu4IetjhErN9lfrUlamLSPaxpr9JN3GEkbtByP2k2TbSI5zyfpWlOvzNayCLIVKTe6A4LChivJqbZmYsLoW28YSknXWsZTpvxFUCDagrdagj0HBcSM5/qprrT6/9vKq2pY7F0uWJdhXEuWWMp+XZSnT57KUmfXvl5bMmWgJlv99/ji/M7QmyWehEfNvupyoqCh1M9KOHTvUfZcu7rOSuGWiYVn2z3/+U40cddZZZ6nLn/jyJg6t47+dlY9AgspEkLP878P/hGFHtPaqAAAAQIB/Z3Bet9/SIiMjqUOHDtS7W1e/L4s7Qzu/xDs99NBD9PDDD/vlO1hcXJzHdWlaueGRnHi0p1tuuYXOO+88io6OpkmTJtEzzzxDgQiViSDHUey7d++mhIQENR5yW8dvNj4B8GtKTExs7dUBF7CPAh/2UWDD/gl8wbaPuEWCv/jyd4bWwl+Y+df52lp9a5cRr7fpdyKjWyV8xZkSP/zwA7UFqEwEOR5tICsri4INn7yD4QQezLCPAh/2UWDD/gl8wbSPWqtFommFgm/BIiEhQd1XVLi/NJb7QbC2fByhAzYAAAAAgMG6deum7rkFyx3nc86ybREqEwAAAAAABhsyZIi6LywsbNTBuqEVK1ao+4YZFG0NKhPQpvA1jdxJKtCubYS/YR8FPuyjwIb9E/iwj0AiKyuLhg8frv49c+bMZs9z+jW3TPDxxMPBtlUmRyCMAwYAAAAA0EZcfvnl9O6779Kjjz5K//rXv9yW+/LLL+nss89WozYtXLiwvgWCWytOOOEE+vPPP2nKlCkBO1KTBCoTAAAAAAAerFq1im644Yb6v7dt20YFBQWq9aFTp071j3/xxReUmZnZaNpbb72VXnjhBYqIiKBx48apoWLnzZtHJSUlNHLkSPr5558pJiamzW5/VCYAAAAAADxYsGCBaknQ2bFjh8vO1J9++inNmDGD1qxZQ3V1ddSzZ0+65JJL6Pbbb1cZG20Z+kxAq+Ih0Xr06KHGe+bbnj173JblsaefeuopGjRokKrVp6Sk0JgxY+izzz7TLmfWrFmqLE/D0/I8nn76afWG9mTlypUqKCYjI0MNV9e9e3e6+eab6cCBAxRs+DW99957dNFFF1Hv3r3V642NjaW+ffuq4JycnByP02P/BD5v3wfwN95W/IviXXfdpa6F5nAp/rWRw7bOPPNM+u677zxurrlz56pro9PT09Uvkfz+uv/+++uHh3Rn69at6rIK/hWUr6/me/57+/btHqfj7ID77ruP+vTpo5bHyz3ttNNUIFYomTp1av3nzGOPPea2HPYPuMPnTu4ZoLt1czMq0/nnn68ucyotLaXKykp1edPdd9/d5isSCveZAGgt1113ncNkMnG/HXXbvXu3y3IVFRWOY489VpVJTk52nHPOOY4JEyY4wsPD1WNTpkxxu4xbb71VleGyPA1Py/Pgx0aNGuWorKx0Od2sWbPq5z98+HDH+eef7+jRo4f6OyMjw7FlyxZHMLn44ovVazObzY6BAwc6Jk2a5Dj11FMd7dq1U4/HxcU5fvrpJ5fTYv8EPm/fB9DYzz//XH++6tChg+O0005T54b+/fvXP37ttdc67HZ7s0333HPPqef5nHfcccep9xjPgx/r06ePIz8/3+XmXrx4sSM2NlaVO+KIIxyTJ09W98735bJly1xOl5eX5zjssMNUuczMTLU8Xi4vn28vvPBCSOzeJUuWqPOa87Pm0UcfdVkO+wfAO6hMQKvhL6Z8Yr/pppu0lQnnF6EBAwY0+sBdsWKFIz4+Xj33zTffNJvuiy++UM9xmZUrV9Y/zvPgebmriOTm5tZ/eL/66qv1j1utVscll1xSX8Fw9YWhrbr55psdjzzyiGPPnj2NHrdYLI4LLrhAvebU1FRHUVFRs2mxfwKbt+8DaG7evHmOc8891/Hrr782e+7jjz92hIWFqe357rvvNnpu1apV6sssPz9nzpxGFfFx48apaXi+TfHzHTt2VM/fe++9jZ7jv/nxzp07u6wMnnXWWep5nj/Px+m7775T68FfsNeuXRvUu5lfd+/evR2dOnVyTJw40W1lAvsHwHuoTECrKC0tVR+A3bt3d5SXl3usTPCX18jISPU8/0LXFH8w8HMjRoxo9hx/4efnHnvssWbPLVq0SD0XFRXlKCkpafTcXXfdpZ4bP358s+n4y3VSUpJ6/ocffnCEAv5ATkhIUK/5/fffb/Qc9k/g8/Z9AIfuqquuqv8C3xC3CvDjV199dbNpcnJy1Bd7fn7Dhg2NnpsxY4Z6nFsYbDZbo+f4b2fLw3//+99Gz/3111/qca408PzdrSf/UBDMbrnlFvU6uQJ12WWXua1MYP8AeA99JqBV3Hbbbap/xBtvvKGu3fZkzpw56nr8Ll26qFEPmuJr/Nlvv/1Ge/furX88NzeXsrOzG5VpaNSoUdS5c2eqqalRy2iIR2NwNx0P78bXRrPPP/+cQgH3neBrrl0leWL/BDZf3gfgfUhVw/cJn7+cfSlc7YOuXbvWn9uc5x4n598XXHABmc2NP7L578mTJ7s8Fzmn4/ny/Jtyrsc333wTtH1muMPsiy++SJdeeqnHMfyxfwB8g8oEtDj+UH377bfpmmuuobFjx2rLr169Wt0PGzbM5fPcgTs1NVX9m0dJaDodP8cdp11xztNZ1tlhkTs7elqmq+mCGX/ZcHbAbjrkHfZPYPP2fQDe2bJlS7P3yebNm1WHy4bbWroPdO8vX6erqKioX+dgwh3ar7zySjV4xvPPP++xLPYPgG9QmYAWVVxcrCoR/Evov//9b9E0zgh6bplwh0c2aVhWOh2vR9PpGo5a5G5aV9MFszfffFONp82jwZxyyimNnsP+CWzevg/g0O3fv5/eeecd9e9zzz232T7gkZ8SEhLE+4B/2OBgK0/7zzldfn6+qhg0Xaa76RITE9Wt6TKDxZ133qle1yuvvKJGL/ME+wfAN6hMQIu66aabaN++ffTaa6/Vf5Dp8Acq83Q5FF96xMrKygybztO0rqYLVjx8HQ+DyR544AH1S19D2D+Bzdv9A4fGarWqMeN52McBAwbQP//5zxY9F7mbNhT3+08//USvvvqqujRs4sSJ2vLYPwC+CfdxegihMbq//vrrQ56O+0TwNdnOa3pnzpxJV1xxBZ188sl+WMvQZcT+cYX7tZxxxhnqkgHuJ3LPPff4uKYAwem6665T+RNpaWkq+yYoxo5vg7gyd9VVV1G7du1UfwkA8D9UJkCEOzZv2rTpkLeWM4iJL5G5/vrrqWPHjvTcc88d0jyclwU0bMJ3t5yGrR2+TuecNikpSTRdW94/7i7ZGDduHO3cuZNOOukkld7JgU9NYf8ENm/3D8jdeuut6lJAvpzm559/psMOO8yQfdD0XORpOnfThtp+dw7u8cknn6iAPgnsHwDf4DInEPnggw9EyY9Nb84WiMWLF6uEZR59hJudOUmy4c2J06b5b+d1x8yZJrlr1y636+dMzm6YPOn8d9PRhxpyPtdwuoYjn7hbpqvp2vL+aYr3FXeO546J48ePpy+//FKl7rqC/RPYvH0fgMyUKVPohRdeUP0h+PIa52hOrvZBSUlJo0uXdPuAv+Q6B5fQnYv4i3PDS5p070u+tMl5eVMw7XcexSo8PJxefvnlZp8zP/zwgyrDFT/+my+DYtg/AL5BZQJaFH/p5zj5pjcnHt6V/27YCXro0KHqfsWKFS7nuX37dioqKlL/bvhB7vw3d2B018HQOU/nMpy/0vXq1cvjMl1NFyy4IydXJDZs2KBaJvjyqejoaLflsX8Cm7fvA5BdXsgtrdx6yRUJdyMn8bDKPLxyw20t3Qe695ev03EFpGlLSjD0X3H1OZOXl6ee588X/ps/bxj2D4CPfMioADBMWwutS05ODsrQOk5E7t+/f33olqtU3aawfwIfQuuMd/fdd6v3CQdY/v7779ryulA0Z3K2UaF169atqw+t27lzZ8iG1jXkS2gd9g+Ae6hMQMBXJtitt96qnh84cKCjoKCg/vGVK1c64uPj1XPffPNNs+m++OIL9RyX4bJOPI8BAwao56ZMmdJsutzcXEdsbKx6/rXXXqt/3Gq1Ov7xj3+ox/kLmt1udwSLwsJCtX2dlShJRcIJ+yewefs+ANfuv/9+tc34RwVJRYLxdjeZTOpL6ffff98oXZ4r7jy/c889t9l0/HzHjh3V8/fdd1+j5/hvfjwrK8vl+/Wss85y+X6eM2eOWg9O3V67dm3I7GZPlQnsHwDvoTIBbaIywR+oxxxzjCqTkpKiPnRPPvlkR0REhHrsjjvucDvvW265RZXhsjwNT+tsWRg5cqTbL82ffvpp/a9RRx99tGPy5MmOHj16qL8zMjIcW7ZscQSTs88+W702/sJz/vnnqw9eVzf+YtoU9k/g8/Z9AI199dVX9eerYcOGuX2fuKqcPffcc/XvsTFjxqj3WWZmpnqsT58+qmXQFW6Rdf64wS2H3JrgbEGMi4tzLFu2zOV0eXl5jt69e6tyvBxeHi+Xl8+PTZ8+PaR2r6fKBMP+AfAOKhPQJioTrKamxvHEE0+oD9GYmBh1ecFxxx2nvvTrfPLJJ6psYmKimpbn8eSTT6p5erJixQrHOeec42jXrp261Kpr166OG2+80bF//35HsDn++OPr94On20MPPeRyeuyfwOft+wD+9vbbb4veJ3yucOXnn39WlbnU1FR1iSV/2b/33nsdZWVlHjcz/3hx6aWXqlYKrhDyPf+9detWj9OVlpY67rnnHrUcXh4vl5c/d+7ckNutusoEw/4BOHQm/p+v/S4AAAAAACD0YDQnAAAAAADwCioTAAAAAADgFVQmAAAAAADAK6hMAAAAAACAV1CZAAAAAAAAr6AyAQAAAAAAXkFlAgAAAAAAvILKBAAAAAAAeAWVCQAAAAAA8AoqEwAAQahbt25kMpnqb+PHj2+R5X788ceNlsu3BQsWtMiyAQCg5YW3wjIBAKCFnHvuuRQfH09HHHFEiyyve/fudNlll6l///DDD5SXl9ciywUAgNaBygQAQBB75plnVCtFSzn66KPVjY0ZMwaVCQCAIIfLnAAAAAAAwCuoTAAAtLKbb75Z9S0YPXo0Wa3WZs/ff//96vmhQ4dSdXW1IcvMyclR8+RWC7vdTi+88AINHDiQYmNjKTMzk6677joqKipSZWtqaujRRx+lvn37UkxMDHXs2JFuvfVWqqioMGRdAACg7UJlAgCglT377LM0bNgwWrx4Mf3rX/9q9Bz3O3jiiScoMTGRPv30U4qOjjZ8+Zdccgndc8891KlTJzrppJNU5eLVV19Vnba5wsD3fLlUnz591L8rKytV5WPSpEmGrwsAALQt6DMBANDKIiMjVUWBWx6efvppOv744+mUU06hPXv20D/+8Q9yOBz0xhtvUK9evQxf9s6dOyk8PJw2bNhAXbt2VY8VFhbSMcccQ6tXr1b33Bqxfft2SktLU8/v2LGDjjzySPr+++9pyZIlNHLkSMPXCwAA2ga0TAAABAAeBemdd95RFQeuQPAX9gsuuIAKCgropptu8msrALcyOCsSjCsN119/vfr3unXr6M0336yvSDjXlVsz2Lx58/y2XgAAEPhQmQAACBBnnXUW3XHHHaplYMiQIepXf778iS+D8hdulZgwYUKzx3v37q3uu3TpQv3793f7/N69e/22bgAAEPhQmQAACCBPPfUU9evXj0pLSykuLk5d/sSXQfkLd7bmCkVTnE3hrEy4kpCQoO6N6hAOAABtEyoTAAABZPny5bR582b1b+78/Oeff/p1eWaz2afnAQAgtOFTAgAgQHD/CO4nwcPDXnHFFWro1ssvv1x1kgYAAAhEqEwAAAQAZ8drHsHp0ksvpbfeeoumTJlCxcXFNHnyZKqrq2vtVQQAAGgGlQkAgADAWRKcKcH9JV5++eX6x3hoVr70aerUqa29igAAAM2gMgEA0Mp+/fVXevDBB1X69KxZs1THa8Ydoz/++GNKTU2l559/nr766qvWXlUAAIBGUJkAAGhF+fn5dOGFF5LNZqMZM2aolomGeDQlzp/g/hPcjyInJ6fV1hUAAKApk4Mv1AUAgKDSrVs31XGbw+/4361hzJgxtHDhQvrll1/UvwEAIPg0H1wcAACCxp133qkyI4444gi66667/L487t/xyiuvqH9v3LjR78sDAIDWhcoEAEAQmz17trofN25ci1QmuCXk3Xff9ftyAAAgMOAyJwAAAAAA8Ao6YAMAAAAAgFdQmQAAAAAAAK+gMgEAAAAAAF5BZQIAAAAAALyCygQAAAAAAHgFlQkAAAAAAPAKKhMAAAAAAOAVVCYAAAAAAMArqEwAAAAAAIBXUJkAAAAAAADyxv8DTmmyqlqH1mUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAJOCAYAAADMPVrNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh00lEQVR4nO3dB5gT1drA8TfbOyy9FwHhgoAiKAoKghfbFbGA2LD7qSgqYsN+VewFFbvXjgpiFxVRQQGliQWl995he8/3nINZdyHJOSST3Wzy//mMYTNnSmaSybw55XW53W63AAAAAMABijnQBQAAAACAYAIAAABAwKiZAAAAABAQggkAAAAAASGYAAAAABAQggkAAAAAASGYAAAAABAQggkAAAAAAYkLbDHUFGVlZbJx40ZJT08Xl8tV3bsDAADCjMpfnJ2dLU2aNJGYmOr7nbmgoECKiopCvp2EhARJSkoK+XaiBcFEhFOBRPPmzat7NwAAQJhbt26dNGvWrNoCidrJtaVQCkO+rUaNGsmqVasIKBxCMBHhVI2E5wKRkZFR3bsDAAhSQWmZ3/lJsbRgxoHJysrSPzx67hmqg6qRUIHE8dJP4kJ4e1oiJTJ183d6e9ROOINgIsJ5mjapQIJgAgBqvgSCCYRIODSHTpAEiZf4kK0/hu7CjuPnCwAAAAABoWYCAAAAYcGl/gthDYnLXf21L5GGmgkAAAAAAaFmAgAAAGFB9WkIZb8G+kw4j5oJAAAAAAGhZgIAAABhIcbl0lPI1i8uEXfIVh+VCCYAAKhByCMBIJwQTAAAACAsuHTdQeha4Ydy3dGKIwoAAICo0qNHD+nYsaOMGzeuunelxqNmAgAAAFHVZ2Lu3LmSkZERsu1EE2omAAAAAASEmgkAAACEBfpM1DzUTAAAAAAICDUTAAAAiJ4+E3AUNRMAUEFBaZlxAoAD5XK5pG/fvhw4RByCCQAAEDZWr16tb7xPPPHEKt3url275P7775ejjjpK6tatK/Hx8VK/fn05/vjj5ZlnnpGcnJwq3Z9o7jMRyv/IM+E8mjkBAICo9u2338qQIUNk586d8q9//UsGDx6sA4odO3bIDz/8ICNGjJCnnnpKVqxYUd27CoQdggkAABC1fvvtNzn11FP1v99++20577zz9iszbdo0ue2226ph76KPqpVSU8jWT58Jx9HMCQAAhL2ioiJ58skndebi9PR0SUtL0xmMR44cqZsoVbR161a54YYbpG3btpKYmCj16tWTM888UxYuXLjfelWtQ35+vm7K5C2QUFRfBxVQeLz++uv6hlc97kuVU/Puuecer+tav369nHPOOXqfUlJSpFevXjJ16lSfr/mJJ56Qbt26SWpqqn7dxxxzjHz66afG4wVUFYIJAAAQ1tTNfr9+/XTgsGfPHrn44ovlqquukoMPPlhefPFFWbNmTXlZ1RTp8MMP182S2rRpI9dee62cfPLJ8tVXX0nPnj1l9uzZ5WWXL1+umzE1b95cr9MfFZQESwU9KnhYtmyZXHbZZTqoUDUjqn/Ixx9/XKlsYWGhnHDCCXLjjTeK2+2WSy+9VM4//3z9Wk877TR59tlnJRLFVEGvCTiLZk4AANQg27Ztq/R3ZmamxMXFWZWtXbu27ljszfbt2/VNq0etWrUkISHBa1nVl6Cs7J+RzTIyMhy52fblzjvvlJkzZ8oFF1wgr732msTGxpbPU8FFxb+HDRsmmzZt0sGDuhn3uOOOO6R79+5y+eWXy++//66fU+tU+vTpIzExof99VW333HPP1c2pPE15rrvuOl3bcsUVV+j9TU5O1s//97//1bUc6rXfe++95eWzs7N1YKWCjDPOOEOaNGkS8v0G/KFmAgCAGqRBgwaVpiVLlvgs26pVq0plf/31V59lVcfjimVnzZrls6z65b9iWV/NdJxQUlIiL730kg5uxo4dWylwUNTzqsmTsmDBAr3fF154YaVAQlG1GCqQ+OOPP8qbO23evFk/NmvWTKqC2vcxY8ZU6hPQpUsXHSSpwG/y5Mn6ORWoPf/887pmpWIgoaimTnfddZduAvXhhx9KpOaZCOUEZ1EzAQAAwtbixYv1r/FqiFZVC+PPzz//rB+3bNnitc+CWpfn8ZBDDpGq1qJFC2nZsuV+z6t+EK+++qoOhlTfDhUgqiZRqtZBBRO+apw8rweoTgQTqJFsEoclxVLxhgPH+wYIL6oZk9K0aVNjWTW0q/LFF1/oyZfc3Fz92KhRI/24YcMGqQoNGzb0+7zntXpex59//qkn0+uIJK4Q54LwrFs1LVM1RcOHD9cTAkcwAQAAwpbq52F7w6/6bihqZKZrrrnGWF51hlZU3wTVtMi234SnnGqCtS9PQOCNqjHx97xqslXxdahaig8++MBqn3Bg5s6dW36cERyCCQAAahA17GlF/pr+qGzS3m7MvVm0aNF+HbB9mT9//n4dsEOlffv2ev3q5k81/fH3eo888kj9+NNPP1kFE2ro2GOPPVaP6PTGG2/4HdFJja7k6WTu2QdvAY5qquTL2rVr9WhM+zZ1+vHHH/XjYYcdVt5/Rb3mefPmSXFxsc9O85EoxhWjp5Ctn+7CjqMdCAAANUj9+vUrTb5GcvJW1t9Nqcp7ULGsr5GcFJUdumLZUI7kpF7f//3f/+lf/NXIR6WlpZXmq+dzcnL0v4844ggdULz77rvy/vvv77cuFQBNnz690nOqU7caQUkFH96W8dzsqxGUKnZAV52i33vvPSkoKCh/Xg35qtbni9r30aNHVwra1AhPb731lj6Oaghbz2tWQ9+qwGPUqFE6oNiX6kS+b2AJVAdqJgAAQFhTw6SqztXqpls9nnTSSTqAWblypR4CdsaMGXLooYfqsiqQOO6442To0KE614RK+KaCBVUroGosVOfligGAWu6zzz6TIUOG6GXUtlRtRZ06dXTfBTV8rBoBStVieKiO0SpHxPjx43VgofJEqBv7jz76SP970qRJXl+HGrlJ7atqr686lKt9UQGMZ8Qqz7Cwiup4/csvv8jTTz+t+3+ofVIjZ6naELU/Kj+Fej3quUiiMlSHMks1GbCdRzABAADCWlJSknzzzTc6UZvK0fDyyy/rzrNqdKQrr7xSD4Hr0bp1a93USGWOVongPHkpGjdurG/IzzrrrP3W379/f12r8Nxzz+kbd3WDr0aQUk29OnfurG/oL7nkkkrLvPLKK7o2R5UdN26cbo6lAgIVaPgKJlTzKLV+VdugXkNeXp5u2qQCh3//+9+Vyqpg6csvv9SjPL355pt6naqpleqsrTJ/q9et9g2obi53xbo2RJysrCx9MVTVwJHU0YjRnAAAiJx7Bc8+XJw4TBJcvpvYBavIXSSvFb4ZcfdF1Yk+EwAAAAACQjMnAAAAhIW9WSZC12cilOuOVgQTqJFILAbYo1kgACBUCCYAAAAQVRmw4RyOKAAAAICAUDMBAACAsBDjcukpZOunz4TjqJkAAAAAEBBqJgAAABAWVJ8G9V8o1w9ncUQBAAAABISaCQAAAIQFl8ulp5Ctnz4TjovKmombb765/M16//33+yw3depUOfnkk6VevXqSnJwsHTp0kNtvv11ycnL8rn/58uVy0UUXSbNmzSQxMVE/qr9Xrlzpd7ns7GwZPXq0tG/fXm9PbfeUU06R7777LuDXCgAAgMp69OghHTt2lHHjxnFoghR1NROzZs2Sxx9/XAcSbrfbZ7knn3xSRo4cqcsdc8wx0rBhQ/nxxx9lzJgxMmnSJJkxY4a+2d/XzJkzZcCAAZKXlyedOnWS3r17y8KFC+WNN96QDz74QAcoPXv23G+5rVu36u0sXbpUGjduLKeeeqps2bJFvvzySz2NHTtWrr32WsePB1ATkHSNY8P7D4gOe3tMhO63bs+6586dKxkZGSHbTjSJqpoJdYOvagjUzfppp53ms9yCBQvkxhtvlNjYWPniiy9k+vTpMmHCBFmxYoX0799flixZIldeeaXX9Q8ZMkQ/3nbbbTqIeO+99/Sj+js3N1fPz8/P32/ZK664QgcSav2qZkNtT233888/l5iYGLn++uvl999/d/yYAAAAAIGKqmBC3dAvW7ZMXnrpJalVq5bPcg8++KCutbj44ovlpJNOKn8+JSVFXn31VX1zr2onFi9eXGm5119/XTZu3CgHH3zwfs2n1N/q+XXr1smbb75Zad5ff/0ln3zyiQ5e1PrVdjxUMysVAJWVlen9AgAAiFQxrn9yTYRmqu5XGHmiJpiYNm2aPPPMMzJs2DB9g+5LUVGRro1Qzj333P3mt2zZUnr16qX//dFHH1Wa5/l76NChOuCoSP199tln639/+OGHXpdT61Xr35dnPz777DMpLi62fMUAAABAaEVFMKE6TF9yySW638NTTz3lt6xqaqSaKSndu3f3WsbzvGoOVZHn71Atp5pJqZoVAACASKTyQIR6grOi4oiOGjVKVq1aJc8//7xkZmb6LavKKbVr15b09HSvZZo3b16prGckph07duh/t2jRwu9y27Zt04HBvtv0tZzqIOTpJFRxmwAAAEB1ivjRnKZMmSIvvviibno0aNAgY3kVFCipqak+y6SlpenHrKys/Zbzt6xnOc+ynnK221TLVNymN4WFhXqquB0AAICawNO3IWTrJ8+E4yK6ZmLPnj1y6aWXSv369XV/iWigOmmrzuWeyVMbAgAAADgtomsm1HCq69evl/fff99rTghvPE2bKjZD2pcnaV3F8YkrNonytWzFZHfelj3QbfoasUrlx6hYM0FAgVDZsGtv/yJ/mmb+MzpZoJJiI/p3j6BwbCLrGJNTBdEu1P0a6DPhvIgOJtQoSXFxcfLcc8/pqSLPsK5qKFaVSK5Ro0Y6J0SrVq3087t379bNj7z1m1DDuyqesooqV6dOHdm5c6esXbtWunbt6nM5FdhUbNKk1vPLL7/o5byp2Lyp4ja9URm31QQAAACEWkQHE0pJSYlO/ubL6tWr9eQZkrV9+/Y6z4Ma0WnevHly3HHH7beMel7p1q1bpefV3yowUfNVBusDWU4NF+uZ72s5FYCoXBUAAACRKMYVo6eQrT+yW/hXi4g+oqp2QSWf8zZdeOGFusx9992n/1YBhZKQkCCnnHKK/vf48eP3W+eaNWtk1qxZ+t+nn356pXmev1UNh0oyV5H6WzW3Us4444xK8zwdw2fOnOm1dsKzHypAiY+PD/h4AAAAAE6K6GAiULfeequ4XC557bXX5Kuvvip/XtVWqA7dpaWlcuaZZ0qHDh0qLacyVTdp0kTnqrjzzjsrzVN/q+ebNWumE+dV1KlTJznttNP0etX68/Pzy+d9+eWXOrO2Snqn+kMAAABEqtBnmSAFttMivplTIFSzo8cff1x3ZFbZsvv06SMNGjSQH3/8UTZt2qSbQr3wwgv7LaeaR02YMEEGDBggY8aMkU8//VQOOeQQWbhwoZ5UM6WJEydKcnLyfsu+9NJL8tdff+lmUm3atJFjjjlGtm7dqptoqZqTsWPHSpcuXaroCAAAAABm1Ez4cMMNN8g333wjJ5xwgvz+++/yySef6FwPqnZg7ty5PkeH6tWrl/z222+69kF1xp40aZJ+VH+r53v27Ol1ORWsqL4RqlZEbUdtT21XbV8FGCNGjLA4nQAAADWXyxUT8gnOcrnVz96IWGoUKJVvQuXcMA0rC4Tr0LBAtGBoWETrvYJnH25Kv0ESXaEblbLQXSiPZj/JfZGDaOYEAACAsBDqfg30mXAewQSAgFHrAER3EkJqUgAQTAAAACAsuEKcZ4IM2M6rWT+BAAAAAAgb1EwAAAAgLLj+/i+U64ezqJkAAAAAEBCCCQAAAISHGFfoJxHp0aOHdOzYUcaNG1fdr7jGo5kTAAAAoopKQEz+LWcQTAAAACA8uFx7p9BtIITrjk40cwIAAAAQEGomAABAVCTZQ/hzuVzi+rtfQ0jWX0bNhNO4CgAAAAAICDUTAAAACA+q4iCUfSaomHAcNRMAAAAAAkLNBAAAAMJDhVwQoUHVhNOomQAAAAAQEGomAAAAEB6omahxqJkAAAAAEBBqJgAAABA+eSZCOJpTKNcdrQgmgAhTUFpmLEOiKQAA4ASCCQAAAIQH+kzUOPSZAAAAABAQaiYAAAAQHlSfhpBmwKbPhNOomQAAAAAQEGomAAAAEB7oM1HjUDMBAAAAICDUTAAAACA8uGL2TqFcPxxFMAFEGHJIhIdozfcRra8bAKIVwQQAAADCgivGpaeQrV8Yzclp/DwEAAAAICDUTAAAACA8MJpTjUPNBAAAAICAUDMBAACAMBHiDNj0mXAcNRMAAAAAAkLNBAAAAKKjz4Sb0ZycRs0EAAAAgIBQMwFra9eu1Y9paWlSp06diDhyJNiqGWrieaqq/Qm3YxNu5wEAUFl+fr4sXbpUmjVrJnXr1pVgcdWHtVatWknr1q3lvffe46gBAADHuVyukE/R4Mcff5SRI0fKb7/9Vun58ePHS4MGDaRbt27SuHFj+e9//xv0tggmYC05OVk/9ujRg6MGAABqLHUv07FjRxk3bpxEopdeekmeffZZadq0aflz69atk0suuURyc3OlVq1aUlJSIvfee69Mnz49qG0RTMCa5w1ZWlrKUQMAAKHrgB3KSUTmzp0rf/31lwwfPjwiz+Ls2bOla9euUq9evfLn3nrrLSkqKpJ77rlHdu7cWR5EPPfcc0Fti2AC1gYMGKAfZ8yYwVEDAAAIU9u3b9d9Iir67rvvJCEhQTd/Uo455hjp2bOnLFiwIKhtEUzA2nXXXaebOj322GOyYcMGjhwAAHCW6tMQ6ikK5OTklDdPV9xut66N6d69ux5Ip2J/2I0bNwa1LYIJWGvXrp3uuJOXl6cjWfVvVV0GAACA8KFG3Vy9enX536r2ITs7W44++uhK5YqLi3VtRTAYGhbW+vXrpx/r168vq1atkgsuuEAuvfRSHWRkZmZKbGysz2XV6AnffvstRxsAAPhG0jrHOph/+eWX8tNPP8lRRx0lY8eO1fdinns5j2XLlulRnYJBMAFr06ZNqzSkmqoyKywslIULF/pcRpVX5aJlKDYAAIBwaJo+efJk6d27tx65ac+ePXLQQQeV93/19Kv4448/ZOjQoUFti2AC1o499tiICwpIsFUzcJ44NgCiBDUTjjj++OPlf//7nx76devWrdKnTx89alNMTEyl0Z3Kysr0vGC43OpnY0SsrKys8og0IyOjuncHAACEmXC4V/Dsw52HPCxJsUkh205BaYHct/AW7otkbyZs1fdVdcj211TdhA7YAAAACAt7B1wKZQZsiQo//PCDLF261G8ZNdqTqrWYOXNmUNsimAAAAAAiSN++feXhhx82lnvkkUfkuOOOC2pb9JkAAABAeKDPhGOqqicDwQT2s3bt2vJ/t2jRwuvzgai4LgAAAFSvXbt2SVJScH1UCCawn9atW+tH1bawpKRkv+cDse+6AAAAvNwwhDZLdQR3mli7z4++Kgu2rx+C1T3Zn3/+KVOmTJE2bdoEtV2CCVhXizHwFwAAQHhq1apVpSH8J02apCd/1L3d+eefH9R2CSawn9dee+2AnoczCkrLjGXIt4BQ4f0HICzQZyKo5uSeYELVSKSkpEi9evW8lk1ISJBmzZrJmWeeKVdddVXgGyWYgDcXXnjhAT0PAACA6rV69eryf6vkdIMHD9aJ60KNoWERcgsWLJAbbriBIw0AAPwKbY6JvVM0eO211+TSSy+tkm3RzAkhsWnTJnn77bd1qnbVwUd58sknOdoAAAAhVpWtSQgm4Gha9g8//FDefPNN+e6776SsrKy8c0+0/BIAAACCoO4XVL+JUCmLvvuR0tJS2bFjhxQUFIRk+H6CCQTt+++/1wGECiTUMGQVR35q3LixnH766bqDDwAAAKrG3Llz5a677pLp06dLYWFhyIbvJ5hAQBYvXqwDiHfeeUfWr19fKYDwjA5w1llnydFHH02tBAAACI/RnEK57jDy888/S79+/cprIzIzMyUjIyMk2yKYgDVVRfbuu+/qIGL+/PmVAojatWvL7t27deDw2GOPyZAhQziyAAAA1eDuu+/WgcQll1wiDzzwgDRs2DBk2yKYgF/FxcXy2Wef6QDiq6++0n97Agg1RvHJJ5+sk52ccsopkpyczNEEAACBIwO2I2bPni3t27eXl19+OeQtRAgm4LN6TAUQEyZMkF27dlXqSN2rVy8dQKjaB1VtBmeQkC6yRGsSOJvXbSMSj42NaH3fAHCW6gNx6KGHVklTc4IJeOXp6+CphVDRrQogzjvvPJ2uHQAAwHH0mXBEhw4dZPv27VIVCCbgV3p6ujz99NNkvwYAAKghrrjiChkxYoSsWLFC2rRpE9JtUVcKn1SthBrqVXXe6datmzzxxBM6GR0AAEAokAHbuWDinHPOkX//+98yefJknWsiVKiZgFfTpk2T119/XSZNmiTZ2dny66+/ym+//Sa33HKL9O3bVy644AI544wzJC0tjSMIAAAQRg466CD9uHr1ajn11FMlLi5O5/6KiYnxGsCpGoxAUTMBr4499lj53//+J1u2bNG5JE444QT9BlSRrcpuffHFF0ujRo101BvqiBcAAERZn4lQTlFg9erVevK0NFGjca5du7b8+X2nYFAzAb+SkpJ0wKCmzZs3y9tvv62n33//XfLy8vRoT2qqW7cuRxIAACAMrFq1qsq2RTABa6omYtSoUXpSTZ7eeOMNncRO1V6oEQM8w4+NHDlSZs6cqTNgH3PMMRxhAABghzwTjmjZsqVUFZo5ISBdu3bVHbLXr18vn3/+uc45kZiYqKvSNm7cKM8++6zuW6Ha51199dXy7bffcqQBAAAijMvtSSSAiJSVlSW1atWSPXv2SEZGRsi39f7778tbb72layY8by3PyAwqgQoAAIjeewXTPtzTZ5wkxSWHbDsFJflyz/Th1fpaq/q4qubps2bNkm3btkn//v3l5ptv1vOWLl2q+0uofrKqWXugaOYEx6gP5eWXX64n9eZUzaDUGziYEQIAAABw4KZMmSLnnnuu7Nq1S//Aq37Ybdq0afn8JUuWyKBBg3STddXCJFA0c0JIqCzZd999tyxbtkx+/PFHHWAAAAD45aqCKQosWrRITj/9dF0Dc9VVV+mWI/s2RlIjdaakpMgnn3wS1LaomUDI9erVS08AAAAIvTFjxkhBQYFMnDhR5wVTzj777EplEhIS5NBDD9WD6gSDmgkAAACE12hOoZyiwPfff68Hy/EEEr40a9ZMNm3aFNS2CCYAAACACLJt2zY5+OCDjeXU4Di5ublBbYtmTgAAAAgLrhiXnkK5/mhQq1Yt2bBhg7HcypUrpUGDBkFti5oJAAAAIIJ069ZN5s+fL2vXrvVZZuHChbq/xJFHHhnUtggmAAAAEB4YzckRl112me6Afc4558jmzZv3m799+3ZdRo3wpB6DQTMnABGhoLTMWCYplt9POH4AEPnOOussGTx4sB7NqU2bNuWjaqqkwgMHDpRp06ZJTk6OnHfeeXqI2GAQTAAAACBMhHrEpejoM6GMHz9e2rZtK0899ZRMnTpVP6fyf6lJDQt74403ykMPPSTBIpgAAAAAwsQHH3wg77zzju7zoJojtW7dWi655BIZMWKExMfHW68nNjZWHnjgARk1apQeKlZ1ti4rK5PmzZtL//79g+547UEwAQAAgPCgRlsK5YhLNWA0p8cee0xatWoljzzyiDRs2FBmzZold9xxh/z+++/yxhtvHPD6MjMzjfkmgkEwAQAAAISJzz77TOrXr1/+93HHHac7St95553lAYbJM888I+eff74OJEKN3ogAAAAID4zmJBUDCY/DDz9cP27cuNHqMF533XXSpEkTOfvss+Wrr77SwUioRHwwUVxcLN9++63cdNNN0qNHD6ldu7Zub9aoUSPdm/2LL77wu7zqsHLyySdLvXr1JDk5WTp06CC333677gHvz/Lly+Wiiy7SacoTExP1o/pbtVfzJzs7W0aPHi3t27fX21PbPeWUU+S7774L6PUDAAAgOEuWLNG/9qt7uc6dO0tcXJy4XC65//77rZZXoyr17dtX1xSkpqZK165ddS2Duk+18cMPP+hO02pkJhuqWZMKINR21X2k6ieh7l9V52unudyhDFXCgAoG/v3vf+t/qwBCRXbqJP711186WYdyxRVXyAsvvKDfFBU9+eSTMnLkSP38Mccco6uVfvzxRz1er7rZnzFjhr7Z35cadmvAgAGSl5cnnTp1kkMOOURv688//9TbVvvUs2fP/ZbbunWr3s7SpUulcePG0rt3b9myZYvepjJ27Fi59tprD+j1Z2Vl6SyIe/bskYyMjANaFqhJGBqW4wcgMOFwr+DZh3tPfEmS4pNDtp2C4ny5+6srDvi1Xn/99fo+bF/33Xef7s9gs6wKQPr16ydpaWn6R+Ldu3fre70pU6boH5B9Ufes3bt3l0svvVQHNLZ27twpb7/9trz22ms6OZ3nPlcNE3vxxRfLkCFD9H1psCK+ZiImJkbOPPNMHdFt2rRJPv/8c3n//ffljz/+kPfee0/3dH/ppZfkrbfeqrTcggUL9JBZar6qvZg+fbpMmDBBVqxYoXvAqwj1yiuv3G97KoBQJ0c93nbbbTqIUNtRj+rv3NxcPT8/P3+/ZVVQowIJtX5Vs6G2p7ar9lm9DvVmVJ1vavoNn2kKNzVxn6ORyiFhmmrauaxp++ukaH3d4SSa33/AvtQPw2pUJDXK0qJFi+SCCy6wOkgff/yxDiRUADF79mz5+uuvZdKkSbqGQNVwqB+mVV8IX9RoToMGDdJDvB7oMK516tTRI0Cpe1o1XXPNNVK3bl29TZWoTv3IrkaJUvfIwYj4YEJFgGqILfWL/75UOzJVXaW8+eableY9+OCDunpIRW4nnXRS+fMpKSny6quv6pt79WZYvHhxpeVef/113Z7t4IMP3q/qS/2tnl+3bt1+21NR5yeffKKDF7V+tR0P1cxK7acazkvtFwAAQESKqYIpAOrm+9FHH5Vzzz1XN3lX94E2xowZox9vvfVW6datW/nzqmXLc889p//97LPP6poSb03f1T1oUVGR7vcQTC2Calalghp1j6rui9W9ZWFhob5vVffKwYj4YMLksMMO04/qBt9DnTRPXwr1ptlXy5YtyzMJfvTRR5Xmef4eOnTofm809bcKYJQPP/zQ63JqvWr9+/Lsh+rhb9u+DgAAANVjw4YNMnfuXJ/3k6qJk+rLoG7qJ0+eXGmeeu60006T1atX69oM1ZnaCaqplepP8fzzz8v//d//6eeC7fEQ9cGEpyOK6qPgoZoaqWZKimqj5o3neVVtVJHn71Atp5pJhaLzDAAAQHiM5uQK4fRPH42Kk7p5d9qCv+/tVHMjlXjO9r6wtLRU/yitAhEVZKh+uk5Qr1E1vT/hhBP0/nhqRlT/3mBEdTChOlKr6h1F9avwWLVqlX5UIz+lp6d7XVZFkhXLeqqjduzYof/dokULv8tt27ZNBwb7btPXcqqTkKejUMVtAgAA4MCo+zHV4dszhaIZ+SrDvZ1nPyqWVYYPH677Wtxyyy06sPj555/LJxX4HCjVV+Oqq67SP5yfd9558s033+g+HKqvrlpnsP1xozZpXUlJiU7modqoqQ4wnqoeT1Cg+Gubpk6CUvGkepbzt6xnOc+ynnK22/RE0P6izorRdSBvOgAAgOqgRhzad3RNp9fvad5ecTQnNYy/07IDvJ9U/SMU1TF7387Z33//vR5i1kQNOqQGF1IZs1X/XtWUSb12lQBP9QdWP6InJSWJE6I2mFAjMan8E6pXu+qIosbujQQqsr733nu9jgYQiiq8aBi+sybuMyLjXFbl/obbsTHtTzidp0gVbu8JhE7FH0OjRcUWH+Fm9erVQa9D1YaogXtUEKH64l544YU6iPDWLzdYURlMqKyAasQklThEVfWoEZYq8jRtqtgMaV+epHUV34gVm0T5WrZisjtvyx7oNvelhp9VuTE8VKSrqtBsk5wAAABUewbsUK6/iqQ7dG8XTEdrNfSrSjkQSlEXTKjcEU8//bTuD6GShHhGc6qoVatW+lElE1HRurd+E57RnzxlFVVOdbJRSULWrl2rh+HytZwaEqxitZdazy+//KKX86Zi86aK29yXqqYLRVUdAAAA7LX6+36t4oihNveTTvULVn1BqkJU1U/efPPN8sQTT+iDqwIJXyMnqV7znjwP8+bN81rG83zFMYMr/h2q5VQAsm9NCgAAQESIcYV+qiKH/f2DtRqcx9fgOb7uC4NVVYFEVAUTKlmISjaiDq5q2tSjRw+fZVX/iVNOOUX/e/z48fvNX7NmjcyaNUv/+/TTT680z/O3GnpLtVWrSP2tsm8rquqpIpXdUJk5c6bX2gnPfpx66qkSHx9v+aoBAABQHZo1a1Z+v+ntflJlolY1E6pFiUoiF4z//ve/8umnn3qdp0ZrWr9+vdd5zzzzzH73pAcqKpo53XHHHfLwww+XN23yF0hUDD5Ux+zXXntN93g/8cQT9fMq/8Sll16qh+pSz6ssiBWpTNUPPPCAzlWheuCrf3uov9Xz6s01bNiwSsupMX5VchKVBVutX70hkpOT9bwvv/xSD2Grkt6pPhGBeOnDHyQ59Z+RpPZVXBpcwhJbu3buzd/hT4xFh7783QXGMsm1zaMU5G713Y7RIz7VHLyVGToqFucUGdeR3sTcXjJvm3l/iwsskhrmlYgjsqqoU39JqbmMRRHJszg2+/wI4L2MuYjbZj3FhjIWq7ASb/4lzp1vPoCuBIvfnyx+9XNbvP9iahmaayZbfH3ZlMm3+CzYZLpNtCiTajHQh02HZlMRi2uWFFp8YGLN5zI+zdys1hUfayzjLrP4DrLoEB6flhD090KJxbEpzjdfSxo3NV/Tt+/MN5ZJtHgfl1ocvyQ/5yE/L0dGnH2chAVPPohQrr8KjR49Wv/Q/NBDD+ls1p4aCFVbcfXVV+t/X3PNNUHXJNxzzz36HnTgwIFea0jUPNVfeF+qib269wxGxAcT6qbcc0Pftm1bGTdunNdyqg/DY489Vv63OtmPP/647sysosU+ffpIgwYN5Mcff9TDbammUC+88MJ+61HNoyZMmCADBgzQKdTV9g855BBZuHChnlQzpYkTJ5YHChW99NJL8tdff8nUqVN1h+ljjjlGtm7dKtOnT9e98VUa9C5dugR0HDJq15GUNO85M6oymCgpNV/IY+LMX6ZxZeYLcHLt/Y/xvlwF5i/3BMOXk1JW4v9LrshlvulOr22+kMQUmvelON7ihjnGoSzqpVUUTBTbBBMW72F3mAUTsaZgwqHPZbz5M+V2m2+qXQmxzgQTZebzEJNsuFak2AQTFjfVLpvPi8UNfpLFsUmromDCZjvxFkGUxbU4Pt0cTMQ4FEy4LYKJBMP+pFh8LxQXmo9NcYL5fVMr03xNLywz/8CWZPE+tgom/Hx+4yJkRMtQUjfdnpt/ZcWKFfrxxRdflM8//7z8+Y8++qhSImTV8mTEiBG6v27Pnj11Z2h1L6hGFFV9c3v16iX33XdfSPdd3UMGm+U6qoMJ1Rm6Yrs0X30S1FBZFYMJ5YYbbtA5KFRQMWfOHN0bXw21pWoH1OQroZ16Y/z222/6zaECg0mTJkn9+vV1bcRdd93lc2QlFayo/VPDu6plVKSo3nAqU+GoUaNC3hsfAAAgGkZzUq1UYmNjdYI4NZmoQXBU8rd9rV+/vlITIm/D8Ksfg9W9ofpBWzWTLy4u1veCqhWMutes6ekJIj6YUNU6agrU8ccfr6cDpWpBVKKQA6WGBlPBRCgyMQIAAEBk7ty5BzQcq0oUF8yv+0OGDNFTJIr4YAIAAAA1RKhHXKrC0ZyiRdSM5gQAAADAWdRMAAAAIDxEUAbsaEEwESXq106WtHTfo1jszjYPXZpjGOEix2KovBSLkT/yss0jBMUlWQyVV1TqyMhRRRbDupr2xzR0rLJ7+Q5jGdlpHhJXMiw6ctm0+8y1GOXG4nVJiWFbeUWODOXntjhPrkTzqDJlWUXBD+lquS3jvuwxfxZcFu9hq5GlbI6xxXXCasQniyFHy0zDP2eb1+GyuE64bEZ8svmmzLYYccxmdC4nhmy1GHo3vqV5pKHiXfmODKPq3mEx/GmjNPO2LIYvLrL4/jBJr5tiLmPxXbbNYghzG8mJ5jdgPYv9Wb4xy+e8fKeGC0e1+vXXX3W+iQOZp54PFsEEAAAAwkOE5ZmoSmokUTUdyDzVqdwV5DEhmAAAAABqsGOPPTbooCBQBBMAAAAIC+qG2BXCEZeq64Y71KZNmybVhdGcAAAAEFVU0rqOHTvqRHIIDjUTAAAAiKrRnA40aR18o2YCAAAAQEComQAAAEB4YDSnGodgIko0qZMi6RmpPuev3pJjXEdcrP+KrJISi7HsrcbEN4/FHmsxln3uVvNrik2IcySnhXGfiyyOTZF5nG+XxVjsNvkWxCJfgBjO996NWRTZmed3vqt2knklVZhDwipvg0UOk7LteeZtpRhyHNhsx2ZcfYsOh1Z5MRzKaeGKNW/Lnec/z0lMo1TzOnZbHJtS85vYVdd3jp5yNvkqbPanTlLw5yElzpH8EGJz7SuwuG6lJTiSzye9Sboj+YVMsrblGsskWLymYsN72NZui2txviEPlFLbTy6KhBiL7wTAB4IJAAAAhAc1klMIR3MK6bqjFH0mAAAAAASEmgkAAABE1WhOcA41EwAAAAACQs0EAAAAwgOjOdU41EwAAAAgqkRaBuzY2NiAp7i44OoWqJkAAABA+PzMHcqfumMiMwO22+2ulmUVaiYAAACAGqysrGy/aeTIkZKUlCTXXXed/PLLL7Jr1y49LViwQK6//npJTk7WZVTZYFAzESVWbc6W1JzAE9Ip8bH+h0Bo28Qc4a+2SCTnshgD2iYxUUo9c1KrwixzEqniPHMyH7ch8VVchu9kQR4l5kMjbpvEgDY/EdRPMZfZlONIUitXpiHhl80vIjEWydIskrfZvLfKduSb9yfOYjgQmyR6e/zvs9sikWFMHXNCNfeuAnOZEovXZJGEy2WRvK0s17yeGNNnxiYRpM148gkOvbfynUlQJjaf8VqJwScXtLiuiUVST5fFNSDNItlmzuYcRxLb2SSTc2I78Ynm153uJ0mcR45Die3aNTV//663SKQZFugz4YjXXntNnnrqKfnmm2/kuOOOqzSva9eu8sQTT8jAgQPl+OOPl3/9619y6aWXBrwtaiYAAACACPLcc89Jr1699gskKurbt6/07t1bnn/++aC2RTABAACAsOByuUI+RYPFixdL8+bNjeWaNm0qS5YsCWpbBBMAAABABImLi5M//vjDWG7hwoVBj+ZEMAEAAIDwGs0plFMU6Nmzpw4Unn76aZ9lnnnmGR1wHHXUUUFtiw7YAAAAQAS56667ZOrUqXLDDTfIhAkT5Nxzz5XWrVvreatXr5Z33nlHfvrpJ10rcccddwS1LYIJAAAAhAdGc3KEqm0YP368XHbZZTJr1iwdOOybWyItLU1efvllOfroo4PaFsEEAAAAEGEGDx4sxx57rLzyyisyffp0Wb9+fXmn6z59+ujhYBs3bhz0dggmAAAAEB6omXBUw4YN5fbbb9dTqBBMRInEhFhJ8pNEK3+7OTlWPUMSOJuEdDZsEtIVWyT6ibNIppRSL8WRbcWnxAedkCmhtjn5WFGOOXlWvClJnHpNG7KNZcQiGZoUms+VmBJAWSTYEpvsnBZJ4mwSnbkcSDan12Px/jOuw2IIw7JNFufSIsGWZJkT27lSEhxJFOeKMR9jt+m9lVDqyDlwWSRms0nOaJVsziZBo83nwfQ+Di6ZbbnYDIvPQon5NWVvzDJvzKF9tvn+cELuDnMCuGKLBHo2ie0G9mxpLDPhh5XGMq0a+E4emOuySGII+BAlfdoBAAAQ9qpoNKcePXpIx44dZdy4cRLJsrKydAK7888/X0444QR55JFHyuctXbpUpkyZIgUF5h+T/KFmAgAAAFFl7ty5kpGRIZFsypQpehSnXbt26Q7XqrZb9ZfwUMnqBg0aJO+++64MGTIk4O1QMwEAAIDw6jMRyikKLFq0SE4//XTZs2ePXHXVVfL+++/rgKIiVVORkpIin3zySVDbomYCAAAAiCBjxozRzZcmTpwoZ5xxhn7u7LPPrlQmISFBDj30UPntt9+C2hY1EwAAAAgToa6ViI6aie+//166du1aHkj40qxZM9m0aVNQ2yKYAAAAACLItm3b5OCDDzaWKykpkdzc3KC2RTMnAAAAhIcKIy6FbP1RoFatWrJhwwZjuZUrV0qDBg2C2laUHFIAAAAgOnTr1k3mz58va9eu9Vlm4cKFur/EkUceGdS2qJmIEmu35UhKnu92gvEWiZLWbfdfDZaUYE5wlGxRJi3ZfwI4W1vW7zGWSbLYVpEp6ZpFoiSbwSNiLM5BvMX+Fueak+xJgsXvCDbrcSIJV6nFOmwOoE2Ctx355tUYEhDuLWQu4s42J7ZzF/lPFlmWW+hIkjhxaD0uw/4q7l3m8xnXqFbw+2ORnMxdZvHesijj3m0egz2mgTkBptjkUyswH2MxJaa0SPIYZ0hCqpRYJOyMTTJf0+OSkhw5V8l1zcc4b1twzTWUlu3qGsvkW7z/GlkkIt1ucZ2Ys3irsYzN96+/xLUlRRZJP6sKGbAdcdlll+mhYc855xyZNGmSNGrUqNL87du36zJqhCf1GAxqJgAAAIAIctZZZ8ngwYPlp59+kjZt2siAAQP08zNnzpSBAwfKQQcdJHPmzNF5KNQQscGgZgIAAADhgZoJx4wfP17atm0rTz31lEydOlU/t2zZMj2pYWFvvPFGeeihh4LeDsEEAAAAEGFiY2PlgQcekFGjRumhYlVn67KyMmnevLn0798/6I7XHgQTAAAACA+M5uS4zMxMY76JYNBnAgAAAIgg/fr1k0ceecRY7rHHHtNlg0EwAQAAgPAQyuzXFfpj9OjRQzp27Cjjxo2TSDRt2jRZvHixsdySJUtk+vTpQW2LZk4AAACIKnPnzpWMjAyJdsXFxRITE1zdAsFElOjUIlPS0n1/aNZtzTGuY70hz0Shxbjb2RZjapeVlDmSkyGxlnls810bsoxlYi3G7zaVSTKNC2/J5nWnNTFfHLPW7TaWKS2yGK+92Gbg/OC5Ld4TriTz5SymbrIzuSgSzdsqy7HI7WAYW99dYB7n311Q5EwuCpucDLGxjhwbt8W1Qkr9n/OYOubPt8TGOPK6YxqkOpKLwmWzzzY5VUzXgRxzrooSm/enhdI882czNsH8noi3yO9SuKcg6HwVrdrXM64jyyK/RqnF++bPReb8EG3amHNaFFh8XuJs3us1hcvycxDM+lHujz/+kLp1ze9DfwgmAAAAgBrukksuqfT3jBkz9nvOo6SkRP766y/59ddfdd6JYBBMAAAAIDwwmlPAXn/99fJ/u1wuWb58uZ78adKkiR4+NhgEEwAAAEAN99prr+lHt9utayR69+4tl156qdeyKmlds2bNpGfPnhIfb25m6A/BBAAAAMIDGbADduGFF5b/+5577tGBQsXnQoVgAkH7a8FPMnPKh7Jy0a+yZ+d2KS4qlHtf/FSatGxbXmbJ73Nlw+qlkpScKkf1C65tHgAAAHxbvXq1VBWCCQSssCBfXn30Fvll5jd7n3D/PbqFl1EYYmJjZPy4+/S8g9p3kYZNW3HkAQCAl9GcQnhQGM3JcQQTCNgLD1wvf8z9QQcRrdt3kYM7d5evP/if17LtOh0uTVu1kw1rlsv8md/IyUMu58gDAACEUGFhoXz//fc6OV1WVpbuT7Ev1Vn7zjvvDHgbBBMIyLwfv5Y/5kzXNQ3Drr9Pjj1psH7eVzChdOs1QDasXiZL/5hLMAEAALznxbHJjROoUK47zHz00Ufyf//3f7Jjxw6fZVRwQTABK9v3FEh+qe/e+kkWidlqpyeW/3vu95/qxz4nDJKBQ87X/87J/yfRT2ysS+L2Sax0UIdD9OOW9Ssls7bv5GFbN5oTyaVU2Bdftq3w/eHxyGhe21imyCLRXoEhYVVJgTmJVHpTc7K5bItjU7DLnHStrNicaEoKzfssFsnkJNOQqMsiEZ8r2yIxW26xM8nvUs2jWpRtNid5dBuSrun17PC/Hnex+RwU7zHvS7HbvJ5Yl/kakJhmTt7mqmVODOjOLQx6Pe4c8/l21TZfJ1z1Uoxl3BafKVfjNGeS6DmRCNIiOZ7LIuNtYob5+BXnmT+bcRYJJfN35BnLxKcmBL2tlX+aE8lltjR/LxRbXB9tErBuyzIn4rNJCJtmkfRvmZ8krXm52cblUbPMmzdPzj77bP3voUOHyp9//qkT1N16662ybNky+eabb3RNhRrtSY3qFAxqJhCQFYt/15Hs0cefar1M7boN9GPW7p0cdQAAsD9Gc3LEY489JqWlpbp2QiWlu/jii3Uw4ckpsW3bNhk2bJh8+eWXsmDBgqC2FUH511GVsvfs1o916u0NEGy4XHvfbu4yi1+zAQAAEJCZM2dKx44dfWa3rl+/vrz33nuSm5sr9957rwSDYAIBSUlL1487t5urjD22bV6nH9Nr1+GoAwAA36M5hXKKAtu2bZMOHTqU/x0Xt7cxUkHBP03ratWqJX369JHJkycHtS2CCQSkSfPW+nHNsr+sl/llxlT92PrgThx1AACAEElPT5eSkpJKgYOycePGSuVU9uvNmzcHtS2CCQTk8KOP0yMATP7gDSkqNHcgU0nrZn//he5n0b13f446AADw3mciJoSTl1xYkahZs2aybt3eFiGKp5ZCDRPrUVxcLD///LM0bNgwqG0RTCAgJ541TNIyauuM14+Nvrq8D8W+SktLZNrn78uTt18hZe4yqdugsRx3ylkcdQAAgBDp3bu3HsFpz549+u9TTjlFN3UaOXKkjBs3Tj777DM544wzdE3FMcccE9S2GM0JAUlJTZeR9z0rD9x4sSz4eZr836CjpH2XI8rnv//SI1JSXCyrly7cO+Sc2y3xCYly4/3jJC7OPIQdAACIQlU0mlOPHj0kNjZWhg8frqdIM2jQIPnqq69k+vTpuhN248aNZfTo0bqz9YgRI3QZ1cIkMzNT7r///qC2RTCBgHXp0UvufWa8jL33etm2ecPebNh/f0h/n/PD3kJ/Z1qsU7+xDL97rLTrdChHHAAAVKu5c+dKRoY5v1NN1b9/f51PoqK7775bOnfuLBMnTpSdO3fKv/71L7n++uulRYsWQW2LYCJKZOUVSUmM7+RCWy0SBjVvuHcEp4q6H9FTXv9khkz7+hOZ9u1XsmrJQsnatUPKykp1M6hW7TpKt1795ZgTzpC4+ATJt0j0k2CRkM4miU/9NnWNZbItXneMRVK1eEPCoD1r91Yz+lNSIelfMImmyiySpcl28+u2SSYnNsnkTEngLJKPSeneoNQfd5FFkj0Lbov3lsSbE7y59wS/Pzt3mDvF7SzeZSxT6ja/JtWfyaRBaT1jmdoW2WVd9cxf4K6/f4jwXUCceQ/bfO4sEhmKzftGLMpYXP8k1/C5izMnrYtNMr+HbZJtllp8fvNLzJ/fhDRzQrpYi+SqpqR1ibWSHElIl5Rsfk/EJ5pvsZIdKlMxaawvmX6OcVxZGLUYCPWIS9HRZcIn1bRJTU4imEDQYuPipP8pZ0qXY07haAIAAFSzfv366U7Yb775Zsi3RTABAGEkvzRPymRv7VKeO18SJF7iXN4v1QXuQilw/zOaWpz6z0fZIndR+XoPtGysxEm8j7KF7kIprfCLe3JZoSTGWPy6DgDeeEZdCpVQrjuMzJo1S/ebqAoEEwAQRl7f/KpsKFxf/veAhOOlU9y/vJb9rPALWV+2ofzvI2N6SIfY9l7Lzij7STa6/xlf/LCYQ6WTy/t6fyqdLWvd/wwp2CXmEOka28Vr2e+LfpA/SxaV/90rprecWPtEv68RABBaqlaisLBQwiaYOOiggxzZmGqTu2LFCkfWheq1ecNaeeLeUfqc3nTfU1KvQWO/5Xdu2ywvPHiT/veVtz0qdeo3qqI9BQAANUYVjeYU6f7zn//I22+/Lbm5uZKamlr9wcTq1asd2ZhNBz/UDFM//0B+n/+TdOzawxhIKCp4KCstkSV/zJcZUz6WgeddWSX7CaB6FZYVypQ9Uyo9d1LmmZIYa+4ICwAIjBq5yZNL4qWXXpKWLVtKtTdzOuuss+TRRx8NeEOjRo2SDz/8MODlEV4WzJmpg8Pe/U6yXqb7MSfIkt/nycJ5MwgmgChR4i6RObmzKz13vHugJArBBAAvGM3JETfeeKN06tRJPv/8c2nfvr0cdthh0qpVK0lOTt6vrLqfe/XVV0MfTKSlpQUV1ajlETnWrdo7dnHbfx1ivUzLtnvbZ29YvTxk+wXUBCVlJbIo649Kw5J2SO2oO0Rf1OjS8s7PO7du0h2wfTk18RTZWbyzUqdqX3rHHLVfB2xfjoo9Uo6UHpU6YPtyXMKxcmxCr/K/62aYayoBAKH1+uuvl7cIKioqktmzZ+vJmyoJJk444QSd5CIYavkBAwYEtQ6Ej9ycbP2Yml7LepmUtL1jy+fmmHMuAJGssKxA3lvzeqXnbmt5p8TFpklybEr5cwWu/X9BqijJlShJLrtf+BNc5nH8Aymb6Ko8chMjOQEICqM5OeK1116TqmIVTHz55ZdBb2jkyJF6QnhyxZqTO+3O+ydRUnJqmuRk75FNW7ZK3WZt9XO5e/4ZotKb7Zu26seExGS/SecSLRIT2STx2Z1tHsXAXWZOplScZ04GlLc91+98m+5C2Sv/+YXZl7ja/m8ulTKLHHBlJRaJ7RpZ1CYakvVphYZEXQX55nWUmffXZZGgzF1ssZ5k83vLbZGsz28fMS+z8rbvFImp/BnaXrzDuJ2CUvP7vNhtflMkxpgDiA0F5iR6rl0x+w0ze2hc5ZGg4mMTjMMzmq5JbovkjDGxzvTTc1skb3MlWHydJsY6k2jP8Pm1+ixYfKZKswoduSaVWiT0Kys2lyk2JetTAXam//2pZZiv7NyS48j3gk2Z2Oa1HPm+K7G4puf7OQ/5FscfNcuFF15YZdtiaFgEpH6jpjqY+GvBbDnk8KOtllnyxxz9WMeiwzaAyKBqOY5P7FfpOTpfA/CJ0ZxqHIIJBKRz916yaumf8vWHb8m/B50nmfUa+C2/a8cWmTb5XX2R6HiYXfABRKoYiZEGSY2krOifXy4Z7Q4AEAp//fWXTmK3bds23Sl74MCB+vmysjIpKSmRhAT7pq0hCSbWr18vGzdulIIC301cjj322GA3gzDz79PPly8mvCa5OVly3/Xny3X3jJVamd476K9btVheeewmyc/Nlti4ODnu1HOrfH+BcJISlyrXdxgt2Sv+SQwHANC/tuydQiWU6w4z69atk4svvli+//77Ss2fPMHEyy+/LFdffbVMmTJF+vfvX/XBxMSJE+WOO+6Q5cv9j8yjfm1TUQ8ir5nT0MtvlHeef0g2rl0pt146UA7u1EPaduomtTLr6zJ7dm2TZX/Ol2UL54lb3LpW4rQLRkiDJi2qe/cBAAAi1s6dO6VPnz46V9whhxyif9h/7rnnKpUZMmSIXHPNNfLpp59WfTAxYcIEOeecc8TtdkudOnX0uLXp6ekB7wRqplPPvVyKigrkg9ee1p35liyco6f9uN3icsXIqedcLScPvaI6dhUAANQE9JlwxMMPP6wDCZXnTf1b/bi/bzCRmZmpR1udMWNGUNsKKJgYM2aMfhw7dqyuHomNtRihAhHpzIuulcN79ZdP33lRFvw8XTdlqig5NV06dz9W/j3oImneukO17ScAAEC0+OSTT/SP/Q899JDfPnkHHXSQzJw5s+qDiSVLlshRRx0l1157bVAbR2Ro1a6jjLhnrOzanivbt6yXnKzd+vm0jNpSr2EzOpYCUUwNDTuruHKipFNKm0libOX8FACgUTPhiDVr1sgpp5wiMTH+O4mozteqSVSVBxO1a9cOKhs2ql792smSlu57fO3iUnO+hfxC/31f0tQ2arfzW8ZffgmPUovcDxstcjLEWuSrsCljI8YwJn5SvWRHxiQv2G3OyZCYYU5iVljvn8RoPlXIzuxTrkUZUz4Ai/HR3bvN49270ixyXsRb9Lxzm99/riTzpbMsy3yuthf5zyNRVFbkSA6JUrf5c5dXat7flFiLMfqLd1X6O99dIPOK51d67vidJ+kEff7ENjA0nbVIlVK2x+J9k2p+37jSLEY6sXn/2eR3sXj/iSkHx4484ypKa5mvExlt6xrLFOz2n1/IVkK6ObiMscifYbqmb1pmzt2SmGHel6YW+SG2WpyH5vVSjWUKLL434y1yqiTG+T428WXBjeaD8JOUlCTZ2ZVbi3izdu1aqVXLPgGxY8HEcccdJwsWLAhqwwAQrUrcJbIif5lsLd1Q/lzTmCYS66LJKIAox2hOjujQoYP88ssvkpubK6mp3oPW7du3y2+//SZHHnlk1QcTd911l96waod16623BrUDCH8TXh2rH0ssMs6aeNYx8Pxrgl4XUFMVlhXIW5tfr/Tc+QnnSLKYf/kHAMDkrLPOkptuuklGjhwpzz//vNfmTmp+Xl6enH322VLlwYSKdtSYtEOHDtUdPE466SRp0aKFz3ZZw4YNC2onUb0mvPqU7vdgUflujWACiA6xEiNtY9pUfs5FvlQA1dtnokePHnoAoeHDh+sp0gwfPlzeeOMNeeWVV2T+/Plyxhln6OdXrFghTzzxhE7xMGfOHDn00EPloosuCmpbAV/RVSY91WFDtbVSO+MPwUTNp4YBdkwoLxIAwkqCK0GOjetd6bmkGHN7fQAIpblz50pGRkZE95n4+uuvZfDgwfqe3dM9QQ0DqyZ1X6cCqo8//lji4y36fDkdTPzvf/+TG2+8Uf+7S5cu0q5dO0lL89+ZDvZUtDhu3Djdjq2oqEjatm0r5513ntxwww1Bn/BA3Pvsu/qxsNjcCcyk2KYDIhDhXOKS2nGZUlJSXOk5AIh6jObkmMaNG+vAQQUVX3zxhaxcuVLKysqkefPmulXRaaed5siImwEFE08++aTExcXJhx9+KP/5z3+C3gn84/rrr9f5O9Tx7devnw7SvvvuO7nlllvks88+083LkpOrtl11p249rUZzsmEzmhMQ6VJiU2VUi1tlzYYl1b0rAIAId8IJJ+gpVCzGSdyfam+l0nITSDhLVTWpQEIFELNnz9aR5KRJk2TZsmXlGQrvvPNOh7cKAAAQJlwVRnQKxUQlcHgEEyr9dv369Z3fmyjnySyuRsjq1q1b+fP16tUrT4H+7LPPyp49e6ptHwEAAFBzlJaWytatW3U/Z19TlTdzUu2svv32W93uypRZD3Y2bNigOwMp55577n7ze/furdu4rVu3TiZPniznnHPOAR3abbvzJbcktCOoZKSY+3PsskhIV5BtTjSV0Tjd3D/DollWmUUfjkSL5E7Fuf6Ti+VszjGuw11k3t+YRPM5LLRIyiQWibok25wwTepaJL/bYnjtFgnBXBZJFW3YJChzW7xut8V7y23xXo9x+b9+llkMfODU4AgxFr8t2SS/S4yxSH5VatHcMd5/zo2YTItO3BZJzlwWZaTIoq9Xlvm6JRaJ2aTQ4tjUdqADu+lzqXJSJpnznqQ3MXdgzd6YZd7WVvP+pFgkeHPF+P/ZObmOuZnwMYc3M5b5Y7U5carLkFxQ2WyRiHTPLnOZlk3NScdy/Fy38iy+f6oMfSYco+4rVTqH6dOnS2Gh72uU6jdRUhL4eyCgu8v77rtP39COGDFCDy+lUnEjOJ5e9nXq1JHWrVt7LdO9e3cdTKiyBxpMAEB1UBm6fy35vdJzJ5U1kQSboAMAEJCff/5Z970tKCgob1UUqtGrAgomXn75ZV07oZJgqN7hKiO2rzwTKtqhnb/ZqlWr9KM6jr6omomKZQEg3JVIicwr/aXSc8e7T5QEIZgA4AU1E464++67dSBxySWXyAMPPCANGzaUUAkomLjnnnv2JjFzu2XNmjXy+uuVM7kqnvkEE3ays7P1o6+U54pn+N2sLN9Vxqoaq2JVlr+yAKpHibtE1hWskW2lG8ufaxjTUGJd5mYlAACYqIF82rdvrysAnBj+1fFgQrW/CvWOITAPPvig3HvvvRw+IIwVlhXI/7a8XOm5YYnnSbJU7bDPABB2PKMuhXL9UaCkpERnt66K+/WAaybgrPT0vR2Kc3NzfZbJydnbQc1fm7fbbrtNRo4cWalmwtM8CgCqWozEykExlfuBUQMDAKHVoUMH2b59u1SF0A7vA2utWrXSj6qDtS+eeZ6y3iQmJuoJAMJBoitBTkg4vtJzSTEOjEYEICKpX9JD+Wt6tLSsueKKK/RASSo3XJs2bUK6rSip7Al/hx12mH7csWOHzw7W8+bN048Vc1AAqIlckhKTKkkV/iOTEgDAyWBCjfz573//W4/AqnJNVGvNxPjx43VUc+SRRwbVEURFR95yKECkWbNm0qNHDz0msDret99+e6XDorJfq5oJVetw8sknc8iAGiw1NlVua3GnrN+8vLp3BQDCC6M5OeKggw7Sj6tXr5ZTTz1V4uLipHHjxj5HXlX36CENJs4//3y56KKLggomXnjhBXnzzTcJJvwYPXq0nH766fLQQw/poXc9NRCqtuLqq6/W/77mmmukVi1zcpp9FZe5pdhP4q96FsmUNpf6T9yUGGceiabEIkncKcd4z7NR0VezzdkaC3bvHVvZn2SLpGu5FsmdTMmJUuqZj2/uevPIW2X55qQyLouEfm6LYyMN944e5tc23318ypmSglm8J2ySj0lusbmMRfI7V7xForMk86UzJskiMWAYsenHEOcyv6Z4izKuePPxc+cZzmftxODXoZSZ98XVyuKzsMOcWEzyLfbHIvmnFPi/DsTUN1/XylLMr7u0wPxL5u7l5iSZtdvWNZaxSexZYJG8LdVw3SrKMSel/HH+emOZ2hbfHYkJ5s9UjsV7NDGVYZRx4FQQ4aFGVy0uLvaZ6TrYpl/0mQgjgwYN0u3bnn76aenZs6f0799fDxWrso3v3r1bevXqpRMGAgAARCIqJpxRlTnJrIOJr776SmfSC9TixYsDXjaajB07VgcN48aNk1mzZulIUjUxu/XWW+WGG24g2zgAAAD8atmypYRdMLF582Y9BSNaetAHa8iQIXoCgJqu2F0sv5csrPRc/7LGkhBD0w0AvmomQjmaE0e9WoKJ77//3vENAwAiX7GUyMySnyo9d6z7eEkQggkACDWVb+ztt9/WrV22bdumm9DffPPNet7SpUt134pjjz1WkpKSQhtM9OnTJ+ANAAAqK3WXyqaCDbK1bFv5c3VddSXWxWjdAKIcGbAdM2XKFD3w0a5du3QnbFXj07Rp0/L5S5Ys0f1133333aBaxPDNBQBVrKA0X55fM1Y+KvqkfCqSQs4DAMARixYt0iOE7tmzR6666ip5//33dUBR0QknnCApKSnyySefBLUtRnMCAIRMrMRIq5gWBzwMLYDoRAZsZ4wZM0YKCgpk4sSJcsYZZ+jnzj777EplEhIS5NBDD5XffvstqG0RTESJPdlFUlTm+5fP+Fhzj6Ts7MKg5isNLMbmnr3kn6YfwYixyE1QZLHPSbXN7Qhzt/ofI91tyNGhpDQx54fIW7LdWCaxQaqxTEGROV+F2OSisMjbYMz/sM8vJV4lW1yqLPJVuGqZcxOUrdlj3pbFe8vlL89Eyf6vp358PUmNqfz58PeZ9Si0yJNQUGpeT3yMeT1pceb3Vuo+ZVIlVc6Jr/wFlta2cnDhjct0jC3OQYzFZ1eKLbLC5ll8XizeW1JkkVPFkLPG5rXHJTuT46Roc7Z5V+qlOpJDIr1phrFM/o48Y5nCrMKgr+c2bPJDlBaWOJJDIjPNXCbHYluILt9//7107dq1PJDwlzT5r7/+CmpbBBMAUA3i1WhGZRaBFABEExJNOEJ1tu7du7exXElJieTmWiSg9YNgAgCqWFpcutzb5TEpWLmJYw8AcFytWrVkw4YNxnIrV66UBg0aBLUtOmADAAAgrComQjlFg27dusn8+fNl7dq1PsssXLhQ95c48sgjg9oWwQQAAAAQQS677DLdAfucc87xmnR6+/btuowa4Uk9BoNmTgAAAAgP9JlwxFlnnSWDBw/Wozm1adNGevXqpZ+fOXOmDBw4UKZNmyY5OTly3nnn6SFiq7xmol+/fjJgwABdfeLPww8/rMsCAKJTsbtY5hf9UmkqLi2q7t0CgIg3fvx4ue222/S/p06dqh+XLVsmn3/+uRQVFcmNN94or7/+etDbCahmQkUzahzgvn376iQYJ598stdyixcvlunTpwe7jwCAGhxMTCn8ttJzR5SeKvGx5uEuAUShGJe4YkLYsSGU6w4zsbGx8sADD8ioUaP0ULGqs3VZWZk0b95c+vfvH3TH66CbObVs2VLWr1+v03CPGzdOLr/8ckd2CAAiXam7VLYXbJXC0n9yqtSLqSsxLrqxAQCclZmZacw3US3BhKqVGDJkiG6PdeWVV8qaNWvk/vvvd3bv4JiEhBhJTPCddbZb23rGdWzI9D8OcUGhOfnT4hU7jGUaNzYnbystKnWkTFyS+SNQKzM56ERJJQXmBEd52y3GeY43Zw522+QusDhXkmJxebBIHGZMSmezv8VlziTQyzE3r3FZvCdsxLbM9DkvvzBLxn71YKXnRv/rfkmOS6v0XNM15te0u3i3sUxBrDlpXWqsOaFkncQ6xjLxBzWs9LerOFvk98plYtITJSYxMajkbS6Lz4LYnEuLhJ1WZWw0MB9j2ZlvLmNIvFZksw6buDXBfPzcZebPZqlFgjd/308eJSnmZHxlhuSVNslMbb47bPbXJpFrUqZ5PfkW+1NskbQzw8/xiw+3X+urYHd69Oihf7kfPny4nhC4oL41TzzxRN2M6ZRTTpEHH3xQ1q1bJ6+++qrExdGvGwCCkVuSI/ll/2T8TXIlSqzL+41HvrvyzWOCJPgsW+AukIohSoLE+y1bVqF0hrtE4lzer+/5ZflSJmUSp4IHdbMVmyTxMXvX3TqtbaWyvrYHAFVl7ty5kpFhzrweCWbNmiXLly/3Oq979+7SsWPHoNYf58Q4tj///LOcdNJJ8vbbb8vGjRvlo48+krS0yr+wAQDsPbr4v1Ls/qcm5ZLUC6VJbGOvZd8peF8KpKD870EJp0qz2KZey35c9JnkSE753wPijpcWsc29lp1Y8KHsdO8q/3tIzJnSKcH7l86bOe/IxtJN5bUQZ7Y8Xw6v11OS41Lk8vbXVyobl5Dq/UUDiHqqT66aQiWU665uhx9+uCxdulT3j1BBgsfLL78sb775ptdlunTpIgsWLAhqu45UIaj+EyrqOe200+Tbb7/V6bsnT57sxKoBAAAA+KHuv1VQcOmll1YKJDxUPgnV6boi1ff5999/l++++y6o0Vcda49Uu3Zt+eabb2TYsGEyYcIE6dmzp+4tDgCoLC0xQx4+7S0pWWnuQwQA0YQ0E4H5+OOPda3LDTfc4HW+mqfu0ytavXq1zkExadKk8AgmlISEBHnvvfd0EPH444/Lhg0bnFw9AAAAgH3MmTNHtxQ6kP4PrVq1ks6dO+tlgxFQMNGnTx/p0KGDz/mPPvqofkHXXXddMPsGAFHrpg53Sf66rZU6YPtyXtLZ+3XA9kX1p9i3A7Yvg5POqNQBu1F85ZGaKhqWdt7eDtgt65d3wAYAVI0VK1bI0Ucf7XWeauLkS7t27XQfiyoPJmw2es011+gJAHDgUuPSJCbmn47S/iS7zMMXeyS5kgIu62skJ70PMXv3IT7ePLQzAPhEO6eAZGVlSa1atbzOGzlypE7l4E1ycrJkZ+8dhS9QjOEKAAAA1GBpaWmyZ88enyM2qcmb3bt3S0qKRQ4cPwgmokSbxhmSlu77F8Npv28yriM50f/bZYdF0jWbhHTbdv8zxKUvLosEOw1a1jaW2bzc3AF2m0XCoIQ0381KbBPJlRaYtxOTaf5VuazYIiFdsjn5k+yxOA91zRcgd2GJoYB5VySm1JGEdFZJ9izeW65EizwJFq8rrqX/JHApFknDEneY3+dSZE4a5koxJJFT+SEamMdkj8m0+FKySPglhiRcboskXS6LMjaJ2Uz7ohVbnHCLa4nUsahlKjB8pjL8X49sxSWZrxMlOebEbIl1zO+JHav/GYLYlxiLRIWm636ORQK94jzzta803fx5Sbe4PsYZkjMqJaUWiQEtvmPaNvH+q7WSkx0+w6UyNGxgGjduLL/++usBL6eWUcsGwyYHJgAAAIAwdfTRR+uBj3744QfrZVRZNTxsr169gto2wQQAAADCQ0wVTBHo/PPP1x2tr776at1/wkT1k1BlVU3QueeeG9S2I/SQAgAAANGhT58+8u9//1v++usvnbTuiy++8FlWJZbu0aOHLFq0SCeyO+6444LaNn0mAAAAEBboMxG48ePH6yZLS5culYEDB0pmZqZ069ZN6tffO2T3tm3b5JdffpFdu3bpWoy2bdvqZYJFMAEAAADUcHXr1pXZs2fr1Azvvvuu7Ny5U6ZOnaoDtIr5JmJiYmTo0KEybtw4qV3bYhAPA4IJAAAAhAfyTARF5Zp466235N5775XPP/9c5s+fL9u3b9fz6tWrp2sq/vOf/0ibNm3EKQQTAAAAQAQ56KCDZMSIEVWyLYIJAAAAhAUqJmoegoko8dufWyQ5xXdSuRJTEiQRKayf6nd+/o484zo2WCRtik8xJ0rK3ZrjSJlSmwRGa7xnlKyoIN7/wGixDf0fO83i+JVZ7G+ZRdI1KbZIwmV4TYp7rfnYiCHRlNsiSaENd4752Lgtjp/N6y7blW8s47JI+GVkkawqJt2cyFDKEh1J6FeWa05QZmW3+fjFGBKdubeak2S6soscOd+uFIuvylJz0jBXoUXSOpukkykJQSectFFik1DSkLBTKdxlsT/1LZIdZpvff+sNyStjLRIm/t283K88i2uAjSyLZHOpFsnvYi2u++v8fCfm5pg/T4AvBBMAAAAIC4zmVPMQTESJnKxdUlLs+xebEotfzErj/f8qlJuVbVxHfJn5V6z4IvMvujnZ5m3ZsKmZEJtfYw2/6sammH8hLc0116RIvsX+2vysZvOTY5zFevItfnEsMdRMFDjza7e70KJmosji+JVZ/EJfbH7drpjgL69lJbmO/CIuFr9+OpV2yOXnOvNPIfN7K6bQUFv696gkfjcTY1E7VGpRM+GKdeQYu2ITnKmZkISgX5NjXAmO1LBJksV1oMS8HleC/89drKGmVK/D4tJn811mw23xvimNzXekZiK+1HctZp7N9w/gA8FElLhr+CnVvQsAAAD+hTpLNemaHcchBQAAABAQggkAAACEVZ+JUE6R6IcfftCZr6sDwQQAAABQg/Xt21ceeuih8r/79esnjzzySJVsmz4TUeK/476QpOTUoDpgpxiGp8vdbNEB22IYwfhkiw7YW6qwA/ZuBzpgNzAP7Ve6qQZ2wLYZ1tU0NOwehzpg51p0wLY5fjZDpFoMvelKdKAD9q4q7IBt8bptuEzDltp2wK6dHHwHbItric3rdiU71AE71aEO2MmG9SRW4e+EqQ51wK5rON/h1gHb4rvMqQ7YKXWSHemAXTfdfwfsiwf2krBAoomAuStcF6dNmyatWrWSqkAwESXSMjIlOSXN5/yUTPPFKmuT/xv4tt0aGtexc4v5hrnY4gY/ucScFyMmwzy2flmJxY1sc4sbCVMwtsViTPLU2uYy2bmOfOG6yyy+3G2GUbcYscid5f98um0G/zHcIOj1WKzILeb3jU1wU1Zovkl1FZm/3N1F/venLNemOt7lyM2cu9R8ExtbyyJfitU+m7kM91iuBItzUBzrTMBR6HLmRtdmf9Jsbqr974/LYkQyK6kWx8ZmxCyb681ui2Ncx/d3mO0+u2LMxybBIlCwCQJs2ORVSjEF1pY6H1zf57yc7CxHtoHqk56eLps2baqWbRNMAAAAICxQMRGYLl26yHfffSd33XWXtG3bVj+3fPlyefPNN62WHzZsWIBbJpgAAAAAarSbb75ZzjrrLHnggQfKn5s5c6aebBBMAAAAoOajaiIgp556qsyZM0c+/vhjWbNmjbz++uvSpk0b6dUr9H1haOYEAAAA1HBdu3bVk6KCid69e8v//ve/kG+XYAIAAABhwRXj0lMo1x8N7r77bjnssMOqZFsEEwAAAECEBRNVhWACAAAAYUHVG4QySXV01Ev8o6SkRD744AP5/vvvZcOGDfq5pk2bynHHHac7bMfFBR8KEEwAAAAAEebXX3/VAcOqVasqJbRTXnnlFbnzzjtl4sSJcuihhwa1HYKJKNG7ezNJS8/wOf+P1TuN6+jR5yC/89dtNSekK7BIjldgkZE20SIhXcEuc9a15NaZxjK5Fq8rPt3//hTbJH/ammcu0zTdXCbHnLzNlW2RrK/InGiqzGY9hvapNgnprH5KSox1pq2sxfsvVszvY/cei6x/sf63FWOTGMuwDmsOZcC2yeAck5ka/PvG5nVbZDu2yoCd5Mx71GWRoMwqW3SM4XXZZOy2US/FmYzdhuujktq2jrFMwW7zZ8qUlC7F4jXFWmSvr1/bdzZpjw3r9pi3lRDrSHbrdk19f7/bfM/n5fpPSlulGM3JERs3bpQBAwbI9u3bpWHDhjJ06FA9upOycuVKee+992TFihVywgkn6KCjcePGAW+LYAIAAACIIA8//LAOJC677DIZO3asJCdX/hFszJgxMmLECF1D8cgjj8iTTz4Z8LYc+ikKAAAACI7L5Qr5FA2+/PJLadGihTz//PP7BRJKUlKSPPfcc7rMF198EdS2CCYAAACACLJu3To5+uijJTbWd1M61fn6qKOO0mWDQTMnAAAAhNFwTiFefxRITEyUrKwsY7ns7GxdNhjUTAAAAAARpGPHjno4WH+1DmvXrtVlOnXqFNS2CCYAAAAQVhmwQzlFg2HDhkl+fr4cf/zxMnny5P3mf/755/Lvf/9bCgoKdNlg0MwJAAAAiCCXX365TJo0Sb799ls59dRTpU6dOtK6dWs9T+Wd2Llzp849oYINVTYY1EwAAAAgrLpMhHKKBqrjtRql6eabb5bU1FTZsWOHzJs3T0/q3+q5W265RddQxBjys5hQMxEl1m/LldR832+WRrXNSbhMie1s1mGjQ5u6xjKLV+wwlkltmObI/qQ3MScDKivxn2iqOLfYuI64FrWMZdxl5oRWpSvMSevEIumf5Jn3OSbBfAFy55X4ne+ySCJVZpH8yWWR/MmdX+LMeiyS9bnSzUmtjCMUpgbXKc7DbZMIbZ/sqIEmGHQXmN83TiScc8VbJJuzSCwmRRZJ1yxYJbYzXCf0etIsEtulJUjQLBLJ2Yhtbr4+xlic7/wd5qSdaY3NSTsbGa77uyySepZYnKd8i/dN0+bma3qtFPO53G5xvUlPNq8n2c+1zV3kUKJDOGL58uXy2GOPyZw5c+SPP/6Qpk2byurVqw94PQkJCfLQQw/Jvffeq4OIDRs26OfV+rp37x50x2sPggkAAACEUQLs0NUf1IQ0E3/++aeuMTjiiCN0U6Rdu3YFtT4VNPTq1UtChWZOAAAAQJg49dRTZf369fLhhx/KkUceKeGOmgkAAACEUc1EaNcf7mKC7MNQ1WrW3gIAAABVbMmSJfLMM8/IRRddJJ07d9bZo1VzrPvvv99q+YkTJ0rfvn0lMzNTd37u2rWrPPLII1JcbO5nFu6omQAAAEBYCNeaieeff17Gjh0b0LLXX3+9XlYFIP369ZO0tDT57rvv9GhKn332mUyZMkWSk50ZxKY6UDMBAAAA+HHIIYfIqFGj5J133pFFixbJBRdcYHW8Pv74Yx1IqABi9uzZ8vXXX+v8D8uWLdM1HDNmzJA777yzRh97aiYAAAAQFlx//xfK9QfisssuC6hfw5gxY/TjrbfeKt26dSt/vl69evLcc8/JMcccI88++6wOKGrVMg8nHI6omQAAAAActmHDBpk7d67+97nnnrvf/N69e0vz5s2lsLBQJk+e7Oi2165dK+vWrZOqQM1ElGhWP1XS0n0n81m3Nce4js6t6vidn51vTgaUZJEQrL5F8rvNdc2Jzgoskgrl7co3likpMCc6SzAkkcpsZ07EV5Jv7oSVs9l8nqSORbvLWItfZrbkmstkmrflMiWcs3jdLpskXcVlzpSxSYaWaJHYziJRoWlb7lKbRHIWyaYKLZL1JVokpLNYT0ym+bMpMeb3nyvZsD8Wxyamtjkhk80xdoqrYaq5UJnF/hiufzHp5s9LWbZFcssU83siMcOcGDDV4noda/GeyLZIbGdKJpeWbJEU0EI9h5L+7ckzn4c0i8/monW7jWWObF/f57zsLAcSITolxH0mqjIF9oIFC/RjnTp1pHXr1l7LqORx6qZflT3nnHMc23arVq3kqKOOkpkzZ0qoEUwAAAAgqmRlZe2X2M2pjNAeq1at0o8tWrQQX1TNRMWySl5eXnlNxcqVK/XfH3zwgf67R48e0rJlSzHJyMjwGcA4jWZOCMjsmT8EfOReeaxmdzQCAAChHc0plJPnJl71UfBMDz74oOOvJTs7Wz+qoWB9UR2z9w1utm7dKoMHD9bTN998I9u2bSv/+/vvv7fadseOHausmRPBBAJy7WXny5+//3rAy7308GiZ+um7HHUAAFBt1I32nj17yqfbbrstbM5Gq1atxO12e51Ungsbl19+uW7i5OmzEUoEEwhIbk62XDlssKxascx6mQdG3yDfff4+RxwAAHilEsGFevI0A6o4Od3ESUlPT9ePubm++yDm5OztC6n2wUkXX3yxXH311TJgwAA9opRKuqc6eocCwQQC0qLVQbJzx3a59JzTZdPG9cby/735Wvl80t4aiaP7/4ejDgAAIlqrVq30o7/mRp55nrJOiY2NlXHjxunmU2rYWdXsKSUlRT+/76SS6QWDYAIBeeXdj6RhoyayZdMGueyc02XH9m1ey6kqubtHXS2TP56g/917wCC55s4nOOoAAGA/riqYqsphhx2mH3fs2FGpg3VF8+bN048Vc1A4wVczKW9TWZnFSId+EEwgIE2btZCXx38otTPryJpVK+SK88+UnL87GnmoN+ddI6+Srz+dpP8++fSzZfgdj1knegEAAKipmjVrpkdfUsaPH7/ffJX9WtVMqCZWJ598sqPbVvdgBzIFg6Fho0R2frG443yPZ928ge8cFB4ZKZXH5z6s6yHy1oSPZOigU2TJXwvl6ouGyi2Pvi4JiYlSVloq4+6/QeZM+1KXPfaks2TotfdJfJx5THybfBW1U8xjYufEljiS98LGNkMuhbIS8wc11mJf4vc5B964LXIgFNvkQLAZR32bRS6KBqlBj6vv2mPRztPiGNv8JOW2yCsiMeZj7LJJX2CT78PEYjuu+ARHcnm4Cs25WyQp1pmcFqbzYJEuoGy3+X0TY5OXJcNiDP6cIofeoxbvCUO+D5sbg/qHN3UkD09xXrEj19m4WPOPTPVb+891pKzf7v+adEjrTOM6tli87u3Z5vfWv5rXNpZp08TcTj7L4hi3brS3bb4/cxZv9dsPMlxU7NcQqvVXpdGjR8vpp58uDz30kJx00knlNRCqtkL1aVCuueaaGpv9WuEnYgTl0G6Hy6tvvyfxCQmydOF8GXv3cCkqLJBn7h1RHkj0/c/ZcvnND1b5BxgAAMAJv/zyi/Ts2bN8+uKLL/TzL774YqXnN23aVGm5QYMGyYgRI3RHazVfBRRnnXWWtG3bVv744w/p1auX3HfffTX6JFEzgaD1OravjHv5dfm/i86X3+f8IDcM7StZe3bqef0GniMX3/BfjjIAADCqmAsiFDzrVs2PVOfj4cOH68lEdWSePXv2fs+vX79eTx7eRkwaO3asDhpUh+hZs2ZJcXGxtGnTRm699Va54YYbJCEhdBnIV6xYoQMetV2Vr+K0006TRx55RM9Tr+e3336Ts88+O6iaEYIJOOLEU06VS0c9IC8/eptk7d6hnzt+0Ply4XV3c4QBAEBYUfkXDmQ41r59++rOyoEaMmSInqrSG2+8IVdeeWV5gKNaiGzfvr18vsqsfdVVV+lgxjZ/hTcEE/Br44Z/hjPLTvbfSLljt6PkhDOGydeT3pAefU6UU4ZeLtu3bPTadrZ+I3N7XQAAEF1CPeJStDS4/vnnn+Wyyy7Tw8GqZlR9+vSRI488slIZ9Zyqkfjss88IJhA6A47qal22PF53uWTuD1/ryeuH2OWSiTNWOLaPAAAA+IdqyqRqUlTfjt69e4s3anTNQw89VP766y8JBjUT8CuYKj2v64uiXwUAAEB0j+ZUXWbOnClHHHGEz0DCo1GjRrpzeTAIJuDXA0+MK/93smF4v0WG4VGVhDgGEAMAAAil3bt3S4sWLYzl8vPzpajIYmhrPwgm4Negwef6zDOxr2m/Vx4OzZtki/HlAQBAdKqq0ZwiXd26dWXNmjXGcsuXL9e1E8Hgzi5KNKmTIukZqUElxambkeR3fn3DfGXzbnMyIBudWpkTD/2y/J8RC3zJLzQnd4q3qE1Jrpvid36iRdKm3ZvMSYPqNK/lyHpibYI6i2ReRdn+X7dStqvAf4FSi0ReNjVayebX5EqyeN0WCavEYpfdNgnKDO+LmHTzcIHuHPNn12VxbGySB7qLLJLWWXBZJLYzbcsVY74jcNkkpLMRb5HcsrE5aZhYJJS0udOJrW2RUNIgy+I6kWxx/FIynTnGuy2SwOXkm9/r9Wv7/x5qWjfVnK8z2fy522bxXWaTgNUm2Zzpu1dZtdl8PuvX9n2ukmMtEpmiRunZs6fuWP3nn39Kp06dfDaFUvPPP//8oLZFmxMAAACEVZ+JUE7RYPjw4VJaWipnnnmm/Prrr/vNX7RokVxyySX6eHgycQeKYAIBUW3s3nnrTT2pJCgmu3ftkG8+/0BmTPlISkr4BQQAAFQflbSuY8eOOpFcJOrfv7+MHDlSli5dKocffrgcfPDBOnD4+uuvpUuXLtK5c2dZtmyZ3HTTTboWIxgRHUxs3bpV3nzzTTn33HOlXbt2kpSUpMfb7dChg05tvnr1ar/Lqw4pDz/8sHTt2lVSU1MlMzNTJy354IMPjNueOHGiLquWUcuqdahhulTWQ3/mz58vgwcPloYNG+r9bd26tVx77bX6tYSTSRMnyOWXXCJ333mnfo0m6em15PVxD8srj9wq87wMGQsAAOCqgsmTtE4NiWqT/bqmeuyxx3T2a9UnQvWNUCN0btq0SRYuXCh16tSRZ555Rh566KGgtxPRwYSKyC688EJ5//33dRAxcOBAOe6442Tnzp36AB5yyCHyzTffeF1WZQVUZVWq87Vr18qJJ56oh9hS7cvUzf6oUaN8bvf666/XWQ49w3KpZdU6brnlFunXr5/+Vd8bFaSo6FA9tmzZUqc8V2MAP/vsszqKVG+EcPHF55/rx7MGD5G4OHN77Ni4OOk7YKAaa1Z+mTm1CvYQAAAgul1++eWyfv16mTdvnkyYMEHee+89fX+6ceNGxwKpiO6AraKue++9Vy699FJp2vSfjMs5OTn64KoDOnToUH2Tvu+v66NHj5ZZs2bpaqDvvvtO6tWrV15zoGocHn/8cf34n//8p9JyH3/8sYwdO1bS0tJk+vTp0q1bN/28Sl+uAokZM2bInXfeqaPFitRJVYFPSUmJjiKvuOIK/bxq76ZSnL/99tu6hmX27Nlh0d7v1wUL9H70PvYY62U6d+spk95+SVYvXRjSfQMAADUTozk5T92vqftRzz2p0yK6ZuLpp5+Wu+66q1Igoagb/VdffVXS09N1LYXKDljRrl275Pnnn9f/Vo+eQEJR7c5UDYPywAMP7LfNMWPG6EdVo1HxpKl1PPfcc/rfqqZhz57KORmeeuopXRty/PHHlwcSSmxsrN4Hle5cVclNmTJFwsHmTXuHgW3WrLn1MvUaNtaPu3aEV5MtAACASOZ2u/UP26qfa1mZxWiDByCigwl/VLOn9u3b63+vW7eu0rzJkyfr/hIq2UevXr32W1bVECg///yzrlHw2LBhg77hr1imIpWFsHnz5lJYWKi3UdFHH33kczkV/KgmWsqHH34o4UAFOYp6LbZKiv8eJs/hrNoAACAyuCTEozmV95qIDt98841ubq9+QFf9cVX/CfVv9ZzqjO2EqA0mVEdoTwfsxo33/mLusWDBAv3YvXt3r8sedNBBugmVUnG4Lc9yap7qOO2NZ52eskp2dnZ5fwhf2/S2XHVq0LChfvzrT/smS6uWL9aP6bX2HjsAAACEhhqpSQUNqlWLav2iaifUpPruqudOPvlkufHGG4PeTkT3mfBHNXNS1T3Jycly0kknVZq3atUq/egvDXmzZs10EylPWdvlVM1ExbJKxVGlfC3rbbkDUScjSTIsEt/48/uqHeX/bt+5m6xetUrGjXtRDu93un7u2C6Vg7J93XbFBP2rQJfDukurBmlBJRWyybbd17A/yoqNWcYyyy3KnNC9md/5X89bb1xHekPfx+RA1LZInpW9I89YJtYi0V7BTosEbwmG3yzyLKpbm1gcG5ta2/Xmc+mqZ07EJ7kWieLqmD9v7q2G82BRiRdT37y/7iyLGsR4829LLkNCMC3W4lc/i+SBMabrVWq8eTs2iQNtEsnZbKvUfLISbRLbWYgzHL8iiwRwDVrWNpYpsEhSGGuRPNAp/r43bNkkM/13N//Xc1sZKfEH9L3qS0Gh+Twc0aGBscyOLN8JRF0lFu/xKlJxxKVQrT8avP3227p/r7rPVXkkVL9czw/d6r7zjTfe0M3vVTP7ww47LKjEdVFZM/HHH3/oaE1RnaFVtU9FqqZAUUO6+qKaHilZWVmOLedvWW/LeaOaHakyFadQOOHUM/XjooW/yuP33a4jXV/UvBtvuF4WzJ+v/z7+lL3BBwAAAJynRi1VTdK/+uorefTRR/UIpuoeU00qI7ZKV6DmqR95VV/eiKyZuPnmm+XTTz894OVeeeUV3TfBFzU81qmnnqpHdFL9EFRH6Ujy4IMP6hGsQu3oPv2l+1G9Zd5PM+SDt1+Vhb/Ok1E3Xi9H9z6mvNmYGst45o8/yHPPjpMFv8zfWytxeE/p3e/EkO8fAACoeRjNyRkql4S6Hz7mGN+jbnrme/r7RlwwoTo2L1my5ICXU0GCL5s3b9YZAdesWSMnnHCCHm/X2zCrqmOKkpuba9xORkaGY8t5llUjN9ks581tt92m82t4qJoJTxMppz0w9hW5+vxBsmLpYlm88De57OKL/dZOHNK5s9z31Csh2RcAAADspRIfN2nSRExUmYSEBAlGTDi39fJ0FDmQSXU08UZlkFZ5HlRacTX8qsoHkZiY6LVsq1at9KNKNOevhqNi2Yr/3nd0qIo88youpxLUefjaprflvFGvSQUcFadQqVU7U1794CsZetEVkpiU5POcqJGzRlx/g0yfOUsyapmzZQMAgOgU0pGc/p6UHj16SMeOHWXcuHESiQ4//HD5/fffjeVUGV+D/9T4mgknqTF1VSCxaNEiXTOhmk+piM0XT34IlS3Qm5UrV+rO14rqtOLh+feOHTt0R2lvIzp51lkxB4W64W/btq0e0UnNV4nybJYLB0lJyXL96Pvksmtvkm0rf5XfFvwqO3bs7eBWt249ObTbYdKn73EValv+6R8CAABQHVTTnlD+4Frdbr/9dn3Pq/pGqK4D3qi+FOreWPWvCEbEBxOezNN//vmnPqifffaZ7tnujxoqS1X5qFoClXJ831wT48eP1489e/asVIWkRnhSka56g6oy6kRWpLJfqxoGVXugtlHR6aefrk+qWu7ifZoLqSZOar+VM844Q8JRWnqGHD3odDltEJ2rAQBAYOgzEZgffvih0t+qBuaaa67Rzd8nTpwoF1xwQfmP3OoHb9UCaP78+TJixAiJiQmuoVJEBxOq9kAFEKoTimrapGokTIGEkpmZKVdddZWMHTtWD6f13XffSd26dfW8X375RR5++GH9732DBWX06NE6MHjooYf0kLOemgRVW6HWpaiTu2+/iOuvv15XtU2dOlVefvllufzyy/XzpaWlerndu3frQGXAgAEOHBkAAABEir59+3rtB6yam6ugQd2/7vu88vTTT+uaiZKSkoC37XL7G9OzhlO/4qvM0urgDh482GcgMWjQID1VpJJ7qADkp59+0sGFqt1QnaO//fZbnfBOdXJW4/d6c9111+mTEx8fr4MZNQyXWk4FBKqWQ2Uj9LYvKnI855xzdABx5JFH6v4RqpZDNatSw9eqmg3VHOpAqA7YKnBZtHqTpIe4Om/b1i2yZNFfsnvXLv137cxMaf+vjlK/wT9D7zbNNI+JP2f5NmOZ3dl/Z9P2o1Mrc/+MrDxzvoDsfPO2tuzyn28hMc48ln3tdHMHqF//2ipVpdAmN4GFJENugrzt5pwX7jJzvoDS7RY5L+Isfn3JKXIkz4RVjoMkw/vCYpx/m/wGjmWd9/JFtd+mdpjPg6tRWvDHr/X+A1XsZ5PvATnKWeTpiM80/wgVn5oQdH4IW6WG94VNjphaFq+p2OI9XFpmfm+lJTuTw6CZTQ4YB3I21K+d7EgOCZvvF5v11A0yR5RHUmyM8V5hz5491db0x7MPE6f9JSlpzuRk8SYvJ1sG9+1Yra+1KoMJW99//33Ay0Z8zYSi4iU1cpMv6qZ932BCdRqeNm2aPPHEE/LOO+/I5MmTddOno446StcsqODEF1WjoYIGVdMwa9YsHXy0adNGD0N7ww03+Ow1r9apsmuPGTNGfvzxR53tWg2zOnz4cK/5MMKBOrbvvPE/ee3lF2TZkr0ZrvfVrn0Hufjyq+S8C32P9gQAAIDAqHvW6hLRNRMIbc3E7t275JJzh8i8OT/rv329lTyRcvcjesrXX34htWv7z7xKzYRv1Ez4Rs2EH9RM+EbNhE/UTPhGzUTo7lc+mB76momz+kRezUR1iuiaCYSOChwuPe9smTv7J/13Zp26cuqgM+Sww7uXN2tSzZ5UsrrPP54kO3fs0EHHaaedJtOnT+fUAAAARACCCQTkow/elzk/z9K1DoPOGiJjHn1K0iok3/M4a+h5Mvqu/8rtN98gk95/V/f7ePfdd3XfEAAAgEpcVt2zAhfKdYehgoICnV5AJYNW//Zl2LBhAW+DYAIB+fiDvX1QevbqLU+/8KrfsqlpafLUcy/LhvXr5eeZP+rhyAgmAAAAQkelHFD9cFUTMhOCCVS5hb//qmslLrrsSutlLr78Sh1MqI7lAAAA+4oRl55CJZTrDifPPvus3HLLLfrfKhlyu3btJN1LCxInUDOBgHiGf23RsqX1Mp6ynlG2AAAAEJpgIi4uTiZNmiSnnnqqhFJwKe8QtTwjQ23ZvNl6mS1b9pZl9AQAAOAvA3YoJ0UlAu7YsaMexj8SrV69Wo499tiQBxIKNROwVjFxziGHdJYff5guH014R4actTdHx++rdvhd/o3XXteP7Tr8Szbs8p2oLD3ZnPypS+u9Gcn92ZHlu6ORkwnplIaGBFA2SfZWbzEn2LJJRtW8obkac+Uqc+1Q07bmY7w725zYriTff+Km5DrmBFE2zKnv1PEzX/IsUtapTF3mMmUWv9WYEn7ZJPtKtriMWyRUk1yLV27xPnYdXMdif4JPYpbaxDykY65FksKUeqnGMoUW15IyiwRvdS22tWu3+XqTaDifTiWJsxkatkNzc/JAm+tfTmGJIwnnju3UyO/8KQs2iBM27Mh1ZH9tvoOcSlqHylRS4Ej+cbNBgwZSv379KtkWNRMIyOlnnqmHh/3044/l/nvv9ZljwuPVZx+X77/+XPez+M9pZ3DUAQBAtdVMRLqTTjpJfvrpJykrs/jxK0gEEwjIJZddJge3b6+DiAcfuF+O6HaYjP/f8/Lb/NmydvVKWbdmpf63eu68U/vKK888qpdr2669nDuMTNgAAAChcvfdd0tRUZGMGDFCP4YSzZwQkPj4ePnk8y/kpAH/ltWrVslff/6pJ19U0NG0eUt5a+JHukMQAADAvlQLBjWFSijXHU6aNGmic3sNHDhQ2rdvL8cdd5y0aNFCYmJivB6TO++8M+BtcVeHgLVs1UrmLvhVN3N647X/ye7du72WS8+oJQMHnyeXXnOjNG22Nzs2AAAAQkP9iDt27FhZvHixbur0+ut7+63uG0SocgQTqFapqany4COPyL333y8TP/9OVixdLFm79w4bm1E7U9oc3EE6dOoq8Qn/dBj8/dcF0uXQw6pxrwEAQDhS9QYkwHYmYd0zzzyjW4P85z//0Xkm0tLSJBSomYAjEhISpPNhPfTky++/zJFbXhorP077TtZsM2djBAAAwIF75ZVXJCUlRX788Uc57LDQ/oBLMIGQmzvrB/nfc0/Kr3N/4mgDAACf6DPhjHXr1knfvn1DHkgoBBOwptrVffLxR/L9t9/K+nXrJC4+Xlq2bKWHiT3q6KP3Kz9/9kx5/vEH5M/ffilfXjn2uP4cdQAAgBBp1KiRpKeb8045gWAiStTJSJIMP4lvTAne1q9bKycPGyoL//hjv3njnnlazjjrLHn9rbclNjZWduzYIVddcbl88dlner6nc89/Bg6UW24bLYd37x7061m1OVucYJMgzybx0BFt/SeGmTBzlXEdvTo2dCRRkk2SvQYWCb9spKVYJMcylLFJjLV7U7YjCelsEou50szviViLRHsxFgnTTPvjthgf3CoR37o9xjISbzFSeB2L5FkpFgnyLF5XTGJc0Mc30SLZl01COpvEdjYJJUsskh0mWSScKyzyf01KMxw7Zf1287XEhk1CuuYNnGmnvXyj+X3sLyGqkmRxnjIsrms2yebq1zZfJ1o3SnckAatNYjt/xyY7yybtZ9UIdS6IKBnMSU4//XR59913paCgQJKSQpv4kDwTMFLjE1849Ez54/ffdWDgbfrwgw/kztGjdbVa755H6kBCPa+GIBsydKge9WnCpA8dCSQAAADg2z333CN16tSRc845R7Zv3y6hRM0EjD6a+J4sXbxI1y60aNlSbh09Wjod0ll3ul68eJE89fjj8uuCBfLyiy/I7J9/ljWrV+vlBp1xhvz3/gekbbt2HGUAAGBEzYQzrr/+ep1f4uOPP5bvvvtODj/8cL95Jl599dWAt0UwAaMvP/9UPzZt1kzXMFQcWqxL165y1uAhcnzfvvLzT7Pkp1kzdVOnF15+Wc67YBhHFwAAoIqpvBKeBH3Z2dkybdo0n2UJJhByfy38Q7/RbrhxlNcxilWUe9c998jJJwzQ5c49/3wCCQAAcMBcf/8XKp519+jRQ//4OXz4cD1Fmtdee63KtkXNBIx27dqpHzt16uSzzCFdupT/+/QzzuSoAgCAsDV37lzJyHBmMJJwdOGFF1bZtggmYFSQn69rHOo3aOCzTL169cr/rZpDAQAAHCj6TNQ8jOYEx6nU7QAAAIh83PUBAAAgLJAB2xmXXHKJdVk6YKPKPPb401KnQnMmX8Y+/azUq+c9iVvG3wmZ7rrrrqD2pSoT/dgkMFq0wX8ypdoWibyy8oqNZZrWTXUkyV6BIemVUjvdvM/rt5sTHdVLT/Q7f51F8qz6zWsZy+yxSNaXYtgXm4RgSmlhibFMjkWivQTD/hRlF5r3pci8LwkWx6/Y4v1nk5itrNh8/MpyzfssicHvb4JFAsKMxuZriU2is2SLMtt2m69J9Wubr0mbLd4XTmynYWayI9ebbbvzHUnwZrM/pmt608yUoK/ntmy+O5JizQ1EbPbZlKzPdGzixZyEDzVvNCd/PCM9eRILMzQsqsR7b71q9cZ8638vG9cVbDABAAAiD30mQjuaU1lZmaxZs0YmT54s8+bN0/kounbtGtS2aOYEKypydYon6AAAAEDVj+akMmTffPPN8vLLL8svv/wS1LYIJmA04dMv9WNegf+mCSlJ5rdT/XRz1ToAAIhO9JmoOmPGjJH33ntPtxZ56623Al4PwQSMjup1jFWbfpv2oTZtPwEAABD60Te7desmU6dODW49ju0RAAAAEATVEDqUjaFpaF1Zfn6+7Nq1S4JBngkAAAAgyixatEhmzJghzZs3D2o91EwAAAAgLDCakzPefPNNn/Oys7N1IKH6SRQUFMi5554b1LYIJmCdb8GmjElBaZkj+RZsyvyrqXlsfRs221q3Ncfv/OYN0ozrWLRut1SVI9t7zwNyoGzyTGw2jDFfWmYeKazQ4hzUshiDvnOrOsYys/7YZCxTt54530eJYcACpTjX/9ju8akJjuR+KLXInZFSz9yfKcXiGNsoKTFfB9IMfbB27zC/9+L+zmvjdzsWZXZb5HWwyTORaFMmzlymUUP/15NOrTKN69iww5zfxUZSonl/bdj0ubPJVzFn8Va/84/o0MCRfbEp48R3pq1g+yMWWeS7QM1y0UUX+R090zNK52mnnSZ33HFHUNsimAAAAEBYYDQnZwwbNsxnMJGQkCBNmzaV448/Xo4++uigt0UwAQAAAERRBmwnEUwAAAAgbJDbtmahkRwAAACAgFAzAQAAgLDg+vu/UK5f6dGjh8TGxsrw4cP1FMmjN9n2sQgUwQQAAACiyty5cyUjI0OiZfQmE4IJAAAA1HjkmQhMv379DjiY+OmnnyQvLy+oIEShZgIAAACowaZOnWpd9scff5Sbb75Z8vP35m7p3LlzUNsmmIgSSbExegommZy/5ZVFG/aIE1o3Sg86MZGTSYVs1mNKErViY5ZxHfXSE41lbBIu/fD7JkcSVtkkpLPZ53Xb/W8rySKRV5xDicWcSgyYlmi+dObXNye2y0uKCzo5no0t682fTbdF8sBci0RxqXXNybMK9xQEneCttsV2aqeYk/7tzvOfOFCpX9t8nahlsS2bMgUWCQYbGpIH2ny+d2ebX/eAw5oayzh13be5Rtpc/3ZkFQQ138lkc05ty/TdG2nIMxE6CxculNtuu00mT56sk9a1aNFC/vvf/8oFF1wQ1HoJJgAAAIAItW7dOrnzzjvlnXfekdLSUqlbt66MHj1adzxXCeyCRTABAACAsECfCefs2rVLHnjgAXnuueekoKBAUlJS5LrrrpNbbrnF0c7nBBMAAABAhCgoKJAnn3xSHnnkEcnKytJD4F5xxRVyzz33SKNGjRzfHsEEAAAAwgI1E4ErKyuTV155RfeD2LRpk+4XccYZZ8iYMWPk4IMPllAhmAAAAABqsA8//FBuv/12Wbp0qQ4i+vTpIw8//LAcccQRId82wQQAAADCgsp4ENoM2JHprLPO0iNhefpFnHzyyVJSUiKzZs2yWv7oo48OeNsEEwAAAEAEyMvLkwcffFBPtlQQogKPQBFMAAAAICzQZyIwKmdEsJmsA0UwAWtzlm/zO79L67qOHM1Vm7ONZY7tZB6NwCYRn01SoaaZ5uRYTiQmskk29/uqHcYyzRukGcv8sXqnsUyj2v4TYylJieaEc80Nidds1mGTQM+U5Mw22dwuYwmR2unmcbkLS8zJx5IN+5OTXyxOiDMkx1NO7tXKWGbmX1uMZXLyzPtct7E5MWVcFSXqstlOYpz5vbXdImlifKz5i7641Jw80JTosU0T85CPyzZkBX3NV9KTzZ+F7HxzgjybfbZhul7bJNlz4prvZPK7cPouQ/havXp1tW2bYAIAAABhgQzYNU905WgHAAAA4BhqJgAAABAW6DNR81AzAQAAACAg1EwAAAAgLKgcE6HNMxGpmSaqDzUTAAAAAAJCzQQAAADCAn0mah6CiSihxqlO8DNWdZLFWOtHtK0vVSEjJd6RcberchzwDbv850HIshh7f8BhTR0Z933b7nxxglO5PEz5M+pb5LOol27O2ZBUzzyG+u5s83j3mRb789ti83lo1DAt6LwDsTHm6vg8i/wGtTLNr+nbXzcGnd9ASbP4/LayODYFhf7P+Z68Ikfygey2WI+Nk3s0dySHjs3nt6DI/7FZsdGcQ6K+Q9e+1o3SHcmB4BTTNclmf03Xc9ucDTbfqzbbsvmesinjb1vZWeb9AHyhmRMAAADCQozLFfJJ6dGjh3Ts2FHGjRtX3S+5xqNmAgAAAFFl7ty5kpHhTOb1aEcwAQAAgLBAn4mah2ZOAAAAAAJCzQQAAADCAjUTNQ81EwAAAAACQs0EAAAAwgIZsGseaiYAAAAABISaCWiLNuwxHglTsh+bxEQ2iX6cSiRnkyDKqQRGTuyzzXbSk81JuJrWNScNc4rNOS8s8Z9gKzvfnDQsKTHWkYR0nVplGsvMXuJMQrqGFonituzKDzqxWFK9VGMZm8SA67bmOJK0zuZc2bBJShds4juldkqCI8nvbK43Ngk5l280X4sT4/wf4zZNMhy5Ztl8vm3KOLUtGzaJ4pzYX5uEnTb74tT3nQ1/24oXZ5I3OoE+EzUPNRMAAAAAAkLNBAAAAMKDyyWuv7NUh2r9cBY1EwAAAAACQs0EAAAAwgJ9JmoeaiYAAAAABISaCQAAAIQFV4j7TIS0P0aUomYCAAAAQEComQAAAEBYUPUGoaw7oF7CeQQTUWLNlmxJy/P9EfpX01oSaWwS0jmVcMmJZH02SZCy8ood2V+b9djsz4YduUEnb7NJxGdzLm2Shtns77+a1zaXsfi8zFluTn5Xy5AwzSbZnE0iNJvXbUouaJu0zsbqLeYEeY0Mr90mOZ7NeyvcmN4TNknpbM63japMqGazzzb7Y0r+aXMtrqrkeE4Kdn+Kwuz1oGYhmAAAAEBYoM9EzUMoCgAAACAg1EwAAAAgLJBnouahZgIAAABAQKiZAAAAQFhgNKeah5oJAAAAAAGhZgIAAABhwrW340Qo1w9HUTMBAAAAICDUTESJ9k1qSUaG/0RHwaqJyYCcSiYXbCIl24RMTiVvs2GT0K9L67pBn89FG/Y4si/Z+UXGMk3rpooTfvhzs7HMER0amNfz+6agE9Kt2JhlLLM9u9BYpl56orGMU4niOreqYyxjeu02r7tLa/PnZc7irY6cy99X7XDkPXpsp0YSLJtric11oiqT1tl8Nm2+G0z7bHMttuHUsQm35HfhgD4TNU/UvYtzcnLkoIMOKk+Ksn79ep9li4qK5OGHH5auXbtKamqqZGZmSt++feWDDz4wbmfixIm6rFpGLavW8cgjj0hxsf/Mw/Pnz5fBgwdLw4YNJSkpSVq3bi3XXnutbN1q/sIDAAAAqlLUBRM33XSTrF692lguLy9PjjvuOLn11ltl7dq1cuKJJ8oRRxwhM2fO1Df7o0aN8rns9ddfL0OGDNFl1TJqWbWOW265Rfr16yf5+flel1NBSs+ePfVjy5Yt5bTTTpOYmBh59tlnpUuXLrJ8+fKgXjsAAEBNyDMRygnOiqpg4ptvvpEXXnhBhg8fbiw7evRomTVrlnTu3FmWLVsmkyZNkq+//lp+/vlnSUtLk8cff1w+//zz/Zb7+OOPZezYsbrM7Nmz9TJqWbUOta4ZM2bInXfeud9yGzdulAsvvFBKSkrkxRdflDlz5sj7778vS5culfPPP1+2bNki5557rrjdbseOBwAAABCMqAkmsrKy5NJLL9XNhh566CG/ZXft2iXPP/+8/rd6rFevXvm8ww8/XNcwKA888MB+y44ZM0Y/qhqNbt26lT+v1vHcc8/pf6uahj17KrcTf+qpp3RtyPHHHy9XXHFF+fOxsbF6H2rVqiVz586VKVOmBHgEAAAAakafiVBOcFbUBBOq6ZHqH/HKK6/oPgz+TJ48WfeXaNGihfTq1Wu/+aqGQFG1FKpGwWPDhg36hr9imYp69+4tzZs3l8LCQr2Nij766COfy6lajoEDB+p/f/jhh5avGAAAAAitqAgmvvjiC3nttdfk8ssv130WTBYsWKAfu3fv7nW+6sBdp87e0Uh+/fXX/ZZT81QNiDeedXrKKtnZ2eX9IXxt09tyAAAAEaWKOk306NFDOnbsKOPGjavuV1zjRfzQsKrJkgoiVI3Ao48+arXMqlWr9KOqmfClWbNmsnPnzvKytsup/ahYVqnYIdzXst6WAwAAwIFTLUlCPWR+tIj4YOKaa66RTZs2yZdffmn9plE1BYq/5lCq6ZGnL4ZTy/lb1tty3qgmVGry8JRXuRIS/ORLcGKsa6dyKdjsi03uB6fWY5PjwIkcG07tr00uiqpkyiNhM/a+Tb6FgsLSKhsbfsOOXEfG8e/UKjPofWnTxHxd2/zXFkfWY/O6bc6nTS6KP1fvCvrY2ZwDmxwSNteAqmS6Dti8bpvPlFPXPpvrllPrMe2zU/mQbPLj/KtpLUe25dT3nb/v6OwsZ/JvOIE8EzVP2AYTN998s3z66acHvJzqE6H6Jnj6F4wfP14uvvhiPTxrNHjwwQfl3nvvre7dAAAAQBQI22BCdWxesmRJQEnplO3bt8tVV10lTZo0kSeeeOKA1pGevveX3dzcXON2KtZ2BLucZ1k1cpPNct7cdtttMnLkyEo1E54mUgAAAOEs1LkgyDMRRcHE22+/radAqXwOKmu06tswaNAgn+VUArrExES56KKL9KS0atVKP6pEc754Mmd7ylb897p163wu55lXcTmVoM5DbVPlo7BZzhv1WtQEAAAARG0w4RR10++58fdGDe+q9O3bt/w5T36IefPmeV1m5cqVuvO1cthhh5U/7/n3jh07dEdpbyM6edZZMQeFqm1o27atHtFJzfcWTHhbDgAAILLQa6KmidihYVVthMoW7Wuq+Iu/+vuee+4pf+7kk0+WhIQEXUswc+bM/dat+mEoPXv21M2oPFQtiBpqrGKZfWtL1PZUzYHaRkWnn366z+VUE6fPPvtM//uMM84I6HgAAAAATovYYCIYmZmZur+FcvXVV+uaBo9ffvlFHn74Yf3v22+/fb9lR48erR9Vlm1V1kOtQ63LM8LUvv0iVFK9lJQUmTp1qrz88svlz5eWlurldu/erQOVAQMGOP56AQAAoijNBBwU8c2cAjVmzBiZM2eO/PTTT9KuXTud7E51jv7222+luLhYd3L+z3/+47VGZMSIEfL000/rmov+/fvr4V7VciogUBm177vvvv2WUzUcr7/+upxzzjlyxRVXyKuvvqr7R6hxkFWzqoYNG+paCxefAgAAAIQJaiZ8ULUE06ZN00OtNm3aVCZPnqwDi6OOOkomTJggjz/+uM+DOnbsWHn//fd12VmzZullVRMoVVvx3XffSXJyss/O4LNnz9ZNmVQA8dFHH+maieHDh8tvv/2m+1UAAABEeo+JUE5wlstdsQMBIo4aGlY1qdqzZ0+NyfToVIIepxLt2TAlQqqJSfaqcp+deE02Cels1mOTmO2ItvUdSWplSvDWtK7vBJgeWXnFjiQos2HzvrF53TZMyRd/X/VP81NfurSuK+EknJLfOZXA0alrcVVe92va/lbFtsLhXsGzD8vWbZH0EO5DdlaWtGvesEbdF4U7mjkBAAAgLJBnouYJnzAfAAAAQI1CMAEAAAAgIDRzAgAAQJggaV1NQ80EAAAAgIBQMwEAAICwQAfsmoeaCQAAAAABoWYCAAAAYYEeEzUPwQSsOZF8zCaxjlNJ12w4tZ5wSlZlk4zKJlmfU0mtVm3ODio5mZPvLZvXZFPGJjHbv5rWCvozZTp2tgnpnErEN2f5NmOZ9OSEKjk2Ngn9bD53Nkn/tu3ON5Y5okMDR643P/y52VimTZOMKklKWZUJ1ZxKgOlEojinjk0kJusDvCGYAAAAQHigaqLGIdwFAAAAEBBqJgAAABAWXH//F8r1w1nUTAAAAAAICDUTAAAACA+uvbkmQrl+OIuaCQAAAAABoWYCAAAAYYHBnGoeaiYAAAAABISaCTiWOMepRD9OJZJzan+cSBhk85psEslVVZI9Wzb7bEpKZ3N8bRKL1c0wn+/fV+1wJHmbTaI9m/efaX9s9qUqk485tT82idnq104OOlmfTQJCpz5TNgnybPbHlJDOZj1VlVTRyYRqNtcSG04k26zKJHFObSvY60BVJuozcoW400RIO2REJ2omAAAAAASEmgkAAACEBfpM1DzUTAAAAAAICDUTAAAACAt0mah5qJkAAAAAEBBqJgAAABAW6DNR81AzAQAAACAg1EzAsbGubdZRleOW26iqbTk1hrpTbMbWn7N8m3k9dVOrJD+JTV4Hm3PZpXVdYxmb/XEqp4Dp+NnkC7DJt2Bzvp3KTWBzHkw5JGzOuc05cOrzbXOM7XKhJDmyHtP5dCoPilNstmVzbKrqeh1u31NVsT9FVfh6jOg0UeOE0bsHAAAAQE1CzQQAAADCAn0mah5qJgAAAAAEhJoJAAAAhAW6TNQ81EwAAAAACAg1EwAAAAgT9JqoaaiZAAAAAMLI8uXL5eSTT5a0tDSpV6+eXH311ZKbmyvhiJoJAAAAhAX6TIjs2bNH+vXrJ02aNJGJEyfKzp07ZeTIkbJlyxaZNGmShBuCiSihkt4kBJmkqKoS29moyoRLTuxPOCVksnVE2/pVcmycSgBnk3TNqeR3NkngnEjUZbMdm4SINvtik5DOZls2+2yTBM70vnDqHDiWgNBif2zYnIeq4tSxicQEok69/8Ltuo/w8OKLL8q2bdtk3rx50qBBA/1ccnKynHnmmTJ//nw5/PDDJZzwLgYAAEBY9ZgI5RTuJk+erGsmPIGEMnDgQN3k6fPPP5dwQzABAAAA+LFkyRJ55pln5KKLLpLOnTtLXFycuFwuuf/++62Om2qu1LdvX8nMzJTU1FTp2rWrPPLII1JcXLxf2b/++kv+9a9/VXpObe/ggw+WRYsWhd15opkTAAAAwkK49pl4/vnnZezYsQEte/311+tlVUCgahxUDcN3330nt9xyi3z22WcyZcoU3YzJY9euXVK7du391qMCEdV/ItxQMwEAAAD4ccghh8ioUaPknXfe0bUDF1xwgdXx+vjjj3UgoQKI2bNny9dff607US9btkzXcMyYMUPuvPPOGn3sqZkAAABAmAjPPBOXXXZZpb9jYux+jx8zZox+vPXWW6Vbt27lz6vhXp977jk55phj5Nlnn9UBRa1atcprIHbv3r3fulSNRbt27STcUDMBAAAAOGzDhg0yd+5c/e9zzz13v/m9e/eW5s2bS2Fhoe507aH6S+zbN6K0tFSWLl26X1+KcEAwAQAAgLDqMxHKqaosWLBAP9apU0dat27ttUz37t0rlVVUsrrvv/9eDw/rofpW5OTkyCmnnCLhhmZOEc7tduvH7KysoNdVFEbjYTuVZ8Kp1+TE/oTT8XWS6dhkW4xlHy9FxjI52dnGMlkpez8PkfSeyM7Kc+T4ObWtrNgSR9bjxHZszoFT779IvD46dWxsVNXxc+K95+T7z+Z1O7Uef7L+vkfw3DNUJ8++hHr9+24nMTFRT05atWqVfmzRooXPMqpmomJZ5f/+7//0yFGnnXaabv6kmjeppHXqb0/wEU4IJiJc9t83WG1btazuXQEAAGF+z+Bpt1/VEhISpFGjRtKuCu5XVGdoz028x9133y333HNPSO7BUlNT/e7LvsGNGslJjfY0YsQIOeussyQpKUkGDx4sjz32mIQjgokIp1Kxr1u3TtLT0/V4yDWd+rCpC4B6TRkZGdW9O/CCcxT+OEfhjfMT/iLtHKkaCXXjq+4Zqou6YVa/zhcVOVPbZXq9+94TOV0rESyVU+Krr76SmoBgIsKp0QaaNWsmkUZdvCPhAh7JOEfhj3MU3jg/4S+SzlF11UjsG1CoKVKkp6frx9zcXJ9lVD8IpSa/j8KnkScAAAAQIVq1aqUfVQ2WL555nrI1EcEEAAAA4LDDDjtMP+7YsaNSB+uK5s2bpx8r5qCoaQgmUKOoNo2qk1S4tW3EPzhH4Y9zFN44P+GPcwQbzZo1kx49euh/jx8/fr/5Kvu1qplQ7yc1HGxN5XKHwzhgAAAAQA1x0UUXyRtvvCH33Xef3HHHHT7Lffzxx3L66afrUZumT59eXgOhaiuOO+44+eOPP+TGG28M25GabBBMAAAAAH788ssvcvXVV5f/vWLFCtm+fbuufWjatGn58x999JE0bty40rLXXXedPP300xIfHy/9+/fXQ8V+++23snv3bunVq5d88803kpycXGOPP8EEAAAA4Me0adN0TYLJqlWrvHamnjBhgowbN05+/fVXKS4uljZt2sj5558vN9xwg86xUZPRZwLVSg2JdtBBB+nxntW0fv16n2XV2NMPP/ywdO3aVUf1mZmZ0rdvX/nggw+M25k4caIuq5ZRy6p1PPLII/oD7c/8+fN1opiGDRvq4epat24t1157rWzdulUijXpNb775ppx77rnSrl07/XpTUlKkQ4cOOnHO6tWr/S7P+Ql/gX4O8A91rNQvijfddJNuC62SS6lfG1WyrYEDB8oXX3zh93BNnTpVt42uV6+e/iVSfb5uv/328uEhfVm+fLluVqF+BVXtq9Wj+nvlypV+l1O5A0aPHi3t27fX21PbPeWUU3RCrGhy8803l3/P3H///T7LcX7gi7p2qp4BpqmVj1GZhgwZops57dmzR/Ly8nTzpltuuaXGBxKa6jMBVJcrr7zS7XK5VL8dPa1bt85rudzcXPfRRx+ty9SuXdt9xhlnuAcMGOCOi4vTz914440+t3HdddfpMqqsWkYtq9ahnuvdu7c7Ly/P63ITJ04sX3+PHj3cQ4YMcR900EH674YNG7qXLVvmjiTnnXeefm0xMTHuLl26uAcPHuw++eST3fXr19fPp6amuqdMmeJ1Wc5P+Av0c4DKvvnmm/LrVaNGjdynnHKKvjYccsgh5c9fccUV7rKysv0O3RNPPKHnq2vescceqz9jah3qufbt27u3bdvm9XDPmDHDnZKSost16tTJffbZZ+tHz+fyp59+8rrcli1b3AcffLAu17hxY709tV21fTU9/fTTUXF6Z86cqa9rnu+a++67z2s5zg8QGIIJVBt1Y6ou7Ndcc40xmPDcCHXu3LnSF+68efPcaWlpet5nn32233IfffSRnqfKzJ8/v/x5tQ61Ll+ByIYNG8q/vF988cXy50tKStznn39+eYDh7Yahprr22mvd9957r3v9+vWVns/OznYPHTpUv+Y6deq4d+7cud+ynJ/wFujnAPv79ttv3Weeeab7hx9+2G/ee++9546NjdXH84033qg075dfftE3s2r+5MmTKwXi/fv318uo9e5LzW/SpImef9ttt1Wap/5Wzzdv3txrMHjaaafp+Wr9aj0eX3zxhd4PdYP922+/RfRpVq+7Xbt27qZNm7oHDRrkM5jg/ACBI5hAtdizZ4/+AmzdurU7JyfHbzChbl4TEhL0fPUL3b7UF4Oa17Nnz/3mqRt+Ne/+++/fb96PP/6o5yUmJrp3795dad5NN92k5x1//PH7LadurmvVqqXnf/XVV+5ooL6Q09PT9Wt+6623Ks3j/IS/QD8HOHCXXnpp+Q18RapWQD1/2WWX7bfM6tWr9Y29mr9o0aJK88aNG6efVzUMpaWlleapvz01Dy+88EKleX/++ad+XgUNav2+9lP9UBDJRowYoV+nCqAuvPBCn8EE5wcIHH0mUC2uv/563T/ilVde0W23/Zk8ebJuj9+iRQs96sG+VBt/5eeff5aNGzeWP79hwwaZO3dupTIV9e7dW5o3by6FhYV6GxWp0Rh8LaeGd1Nto5UPP/xQooHqO6HaXHvL5Mn5CW/BfA4QeJKqip8Tdf3y9KXwdg5atmxZfm3zXHs8PH8PHTpUYmIqf2Wrv88++2yv1yLPcmq9av378uzHZ599FrF9ZlSH2WeeeUaGDRvmdwx/zg8QHIIJVDn1pfraa6/J5ZdfLv369TOWX7BggX7s3r271/mqA3edOnX0v9UoCfsup+apjtPeeNbpKevpsKg6O/rbprflIpm62fB0wN53yDvOT3gL9HOAwCxbtmy/z8nSpUt1h8uKx9r2HJg+X8Eul5ubW77PkUR1aL/kkkv04BlPPfWU37KcHyA4BBOoUrt27dJBhPol9NFHH7VaxpOCXtVM+KJGNqlY1nY5tR/7Lldx1CJfy3pbLpK9+uqrejxtNRrMSSedVGke5ye8Bfo5wIHbvHmzvP766/rfZ5555n7nQI38lJ6ebn0O1A8bKrGVv/PnWW7btm06MNh3m76Wy8jI0NO+24wUo0aN0q/r+eef16OX+cP5AYJDMIEqdc0118imTZvkpZdeKv8iM1FfqIq/5lCq6ZGSlZXl2HL+lvW2XKRSw9epYTCVO++8U//SVxHnJ7wFen5wYEpKSvSY8WrYx86dO8v//d//Vem1yNey0Xjep0yZIi+++KJuGjZo0CBjec4PEJy4IJdHFI3R/emnnx7wcqpPhGqT7WnTO378eLn44ovlxBNPDMFeRi8nzo83ql/LqaeeqpsMqH4it956a5B7CkSmK6+8UuefqFu3rs59ExFjx9dAKpi79NJLpX79+rq/BIDQI5iAFdWxecmSJQd8tDyJmFQTmauuukqaNGkiTzzxxAGtw9MsoGIVvq/tVKztCHY5z7K1atWyWq4mnx9fTTb69+8va9askRNOOEFn71QJn/bF+QlvgZ4f2Lvuuut0U0DVnOabb76Rgw8+2JFzsO+1yN9yvpaNtvPuGdzj/fff1wn6bHB+gODQzAlW3n77bavMj/tOnhqIGTNm6AzLavQRVe2sMklWnDxUtmn1t6fdseLJJrl27Vqf++fJnF0x86Tn3/uOPlSRZ17F5SqOfOJrm96Wq8nnZ1/qXKnO8apj4vHHHy8ff/yxzrrrDecnvAX6OYCdG2+8UZ5++mndH0I1r/GM5uTtHOzevbtS0yXTOVA3uZ7BJUzXInXjXLFJk+lzqZo2eZo3RdJ5V6NYxcXFyXPPPbff98xXX32ly6jAT/2tmkEpnB8gOAQTqFLqpl+lk9938lDDu6q/K3aC7tatm36cN2+e13WuXLlSdu7cqf9d8Yvc82/VgdFXB0PPOj3b8PxK17ZtW7/b9LZcpFAdOVUgsWjRIl0zoZpPJSUl+SzP+QlvgX4OYNe8UNW0qtpLFUj4GjlJDaushleueKxtz4Hp8xXscioA2bcmJRL6r3j7ntmyZYuer75f1N/q+0bh/ABBCiJHBeCYmpa0rnbt2hGZtE5lRD7kkEPKk255y6q7L85P+CNpnfNuueUW/TlRCSznzJljLG9KiubJnO1U0rqFCxeWJ61bs2ZN1CatqyiYpHWcH8A3ggmEfTChXHfddXp+ly5d3Nu3by9/fv78+e60tDQ977PPPttvuY8++kjPU2VUWQ+1js6dO+t5N954437LbdiwwZ2SkqLnv/TSS+XPl5SUuC+44AL9vLpBKysrc0eKHTt26OPrCaJsAgkPzk94C/RzAO9uv/12fczUjwo2gYSijrvL5dI3pV9++WWl7PIqcFfrO/PMM/dbTs1v0qSJnj969OhK89Tf6vlmzZp5/byedtppXj/PkydP1vuhsm7/9ttvUXOa/QUTnB8gcAQTqBHBhPpCPeqoo3SZzMxM/aV74oknuuPj4/VzI0eO9LnuESNG6DKqrFpGLeupWejVq5fPm+YJEyaU/xp15JFHus8++2z3QQcdpP9u2LChe9myZe5Icvrpp+vXpm54hgwZor94vU3qxnRfnJ/wF+jnAJV98skn5der7t27+/yceAvOnnjiifLPWN++ffXnrHHjxvq59u3b65pBb1SNrOfHDVVzqGoTPDWIqamp7p9++snrclu2bHG3a9dOl1PbUdtT21XbV8+NHTs2qk6vv2BC4fwAgSGYQI0IJpTCwkL3gw8+qL9Ek5OTdfOCY489Vt/0m7z//vu6bEZGhl5WreOhhx7S6/Rn3rx57jPOOMNdv3593dSqZcuW7uHDh7s3b97sjjR9+vQpPw/+prvvvtvr8pyf8Bfo5wD/eO2116w+J+pa4c0333yjg7k6deroJpbqZv+2225zZ2Vl+T3M6seLYcOG6VoKFRCqR/X38uXL/S63Z88e96233qq3o7antqu2P3Xq1Kg7raZgQuH8AAfOpf4XbL8LAAAAANGH0ZwAAAAABIRgAgAAAEBACCYAAAAABIRgAgAAAEBACCYAAAAABIRgAgAAAEBACCYAAAAABIRgAgAAAEBACCYAAAAABIRgAgAiUKtWrcTlcpVPxx9/fJVs97333qu0XTVNmzatSrYNAKh6cdWwTQBAFTnzzDMlLS1NOnXqVCXba926tVx44YX631999ZVs2bKlSrYLAKgeBBMAEMEee+wxXUtRVY488kg9KX379iWYAIAIRzMnAAAAAAEhmACAanbttdfqvgXHHHOMlJSU7Df/9ttv1/O7desmBQUFjmxz9erVep2q1qKsrEyefvpp6dKli6SkpEjjxo3lyiuvlJ07d+qyhYWFct9990mHDh0kOTlZmjRpItddd53k5uY6si8AgJqLYAIAqtnjjz8u3bt3lxkzZsgdd9xRaZ7qd/Dggw9KRkaGTJgwQZKSkhzf/vnnny+33nqrNG3aVE444QQdXLz44ou607YKGNSjai7Vvn17/e+8vDwdfAwePNjxfQEA1Cz0mQCAapaQkKADBVXz8Mgjj0ifPn3kpJNOkvXr18sFF1wgbrdbXnnlFWnbtq3j216zZo3ExcXJokWLpGXLlvq5HTt2yFFHHSULFizQj6o2YuXKlVK3bl09f9WqVXL44YfLl19+KTNnzpRevXo5vl8AgJqBmgkACANqFKTXX39dBw4qgFA37EOHDpXt27fLNddcE9JaAFXL4AkkFBU0XHXVVfrfCxculFdffbU8kPDsq6rNUL799tuQ7RcAIPwRTABAmDjttNNk5MiRumbgsMMO07/6q+ZPqhlUqKhaiQEDBuz3fLt27fRjixYt5JBDDvE5f+PGjSHbNwBA+COYAIAw8vDDD0vHjh1lz549kpqaqps/qWZQoaI6W6uAYl8qN4UnmPAmPT1dPzrVIRwAUDMRTABAGJk9e7YsXbpU/1t1fv7jjz9Cur2YmJig5gMAohvfEgAQJlT/CNVPQg0Pe/HFF+uhWy+66CLdSRoAgHBEMAEAYcDT8VqN4DRs2DD53//+JzfeeKPs2rVLzj77bCkuLq7uXQQAYD8EEwAQBlQuCZVTQvWXeO6558qfU0OzqqZPN998c3XvIgAA+yGYAIBq9sMPP8hdd92ls09PnDhRd7xWVMfo9957T+rUqSNPPfWUfPLJJ9W9qwAAVEIwAQDVaNu2bXLOOedIaWmpjBs3TtdMVKRGU1L5J1T/CdWPYvXq1dW2rwAA7MvlVg11AQARpVWrVrrjtkp+p/5dHfr27SvTp0+X77//Xv8bABB59h9cHAAQMUaNGqVzRnTq1EluuummkG9P9e94/vnn9b8XL14c8u0BAKoXwQQARLBJkybpx/79+1dJMKFqQt54442QbwcAEB5o5gQAAAAgIHTABgAAABAQggkAAAAAASGYAAAAABAQggkAAAAAASGYAAAAABAQggkAAAAAASGYAAAAABAQggkAAAAAASGYAAAAABAQggkAAAAAEoj/BxEBYDImN5YnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAPxCAYAAAC4sUGCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiMElEQVR4nOzdB3hU1fbw4ZVOCAkd6UWsFAEpFy+gFJWiIiigYANFvRe4CIqXolxEUBArImAXC0UBQUGkSFGRIk1EQFSkRjqkECB1vmdtv5l/6pDMnMm03/s8x0nOnDmzczKSvc7ea68Qm81mEwAAAAAoQGhBTwAAAAAAQQMAAACAi2KkAQAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwgaAAAAADhF0AAAAADAKYIGAAAAAE4RNPiZefPmSffu3aVmzZpSsmRJqV+/vrz88suSnp7u7aYBAAAgQIXYbDabtxuBwmvZsqXUrl1bunXrJpdccomsW7dOxo8fL7169ZIPP/yQSwkAAADLETT4mRMnTkjFihVz7NOgYfTo0XL06FETSAAAAABWYnqSn8kdMKimTZuax7/++ssLLQIAAECgI2jIZc+ePTJlyhTp27evNGzYUMLDwyUkJMTczS+MuXPnStu2baVs2bISExMjjRo1kkmTJnk05+C7776TyMhIqVu3rsfeAwAAAMEr3NsN8DXTp0+XyZMnu/TaIUOGmNdqoNG+fXspVaqUrFq1SoYPHy6LFi2S5cuXS3R0tKXt3bVrl3nPRx55ROLi4iw9NwAAAKAYacilQYMGMmzYMJk5c6bs3r1b7rvvvkJ9UhYuXGg67xoobNy4UZYtWybz58+X33//3YxYrF271uQdZDdjxgwzinGxTVdMys/JkydNQvRll10mEydO5BMNAAAAj2CkIZf+/fvn+D40tHBx1fPPP28eR4wYIddee61jf4UKFWTatGnSpk0beeONN0zgULp0afOcLp2qqyFdTLVq1fLsS05Ols6dO0taWpqsWbPGTIUCAAAAPIGgwQLx8fGyadMm83WfPn3yPN+6dWupUaOGHDp0SJYsWSK9e/c2+zV4sAcQRZGamiq333677N+/34xgVK1a1YKfAgAAAMgfQYMFtm3bZh7LlSsnderUyfeYZs2amaBBj7UHDa7IzMyUu+++2wQpmi9x5ZVXFjrQ0M0uKytLTp8+LeXLlzdToAAAAOBbbDabmV2iN4gLO/vFUwgaLLBv3z7zqFWaC6IjDdmPddXAgQNN/sS4ceNMALFhwwbHc/Xq1SswGXrChAkyduxYt94bAAAAxU9vPFevXt2rl56gwQIaASpneQWaIK2SkpLceq+lS5eaR82NyJ1YvXr1arPca35Gjhwpjz/+uOP7xMREE+Toh5BVlwAAAHxPUlKSufEcGxvr7aYQNPgbzWNwRVRUlNly04CBoAEAAMB3hfjAVHKWXLWAPfpLSUkp8JizZ8+aR2930KdOnWqmMTVv3tyr7QAAAID/IGiwQO3atc2jTvUpiP05+7HeojkRWhDOvtoTAAAAcDEEDRZo0qSJeTx16lSBic6bN282j9lrOAAAAAD+gKDBAprNbp/uM2vWrDzPay0FHWnQnIIuXbpY8ZYAAABAsSFosMioUaPM48SJE2Xr1q2O/Tr6MGDAAPP1oEGDXCrmZiVyGgAAAFBUITatGgEH7fDbO/lq7969cvLkSTOaUK1aNcf+BQsWSJUqVXJcuccee0xef/11iYiIkA4dOpglWFeuXCkJCQnSqlUrWbFihURHR/vMEl4awOjSq95OzgYAAIBv99eo05DPL2fjxo15LtThw4fNZpe9urLd5MmTTXCgd/PXrVsn6enpUrduXRkxYoQMHTpUIiMjPfE7BAAAADyKkYYg5UuRKwAAAHy7v0ZOQ5AhpwEAAABFxUhDkPKlyBUAAAC+3V9jpAEAAACAUwQNAAAAAJwiaAgy5DQAAACgqMhpCFK+NEcOAAAAvt1fY6QBAAAAgFMEDQAAIODt379fQkJCpG/fvh59jSfOAfgCggYAAOCz7J3uTp06WX7uNWvWmHM/88wzlp8bCDTh3m4AAACAp1WrVk12795t5od78jVAoCJoCMLVk3TLzMz0dlMAACg2ERERctVVV3n8NUCgYnpSkBk4cKDs2rVLNm3a5O2mAABcZLNlScaFU36zaXs9Na1o8+bNctNNN0lsbKwZEejevbuZ0nSx3AJ9bbt27czXY8eONc/ZN/vr88tHSEtLkylTpkjHjh2lRo0aEhUVJZUqVZI77rhDtm3b5vbPtnXrVvOeer7szpw5Y37GDh06uP0egCsYaQAAwM9kpp6RfZ83E39R547NEl6ivOXn1RtgkyZNMp3/Rx991HTaFy5cKDt27JBffvlFSpQoUeBr27Zta4KCDz/8UG644QbzvV2ZMmUKfN3p06dlyJAh0qZNG+nSpYuULVtW/vzzT/nyyy/l66+/lu+++06aN2/u8s+kU6LU4cOHc+zX97nzzjvlo48+kpMnT0qFChVcfg/AFQQNAADALy1ZskTmzJkjd911l2Pf/fffLx9//LEJHu6+++4CX2sPEjRo0K8LmwytnfeDBw86Ovd2O3fulJYtW8qoUaNkxYoVLv9MOmqh06JyBw2qQYMGYrPZ5Oeff5b27du7/B6AK5ieBAAA/NL111+fI2BQDz74oHn01DRcnY6UO2BQ9evXNyMeOtKQnp7u8vl1alKVKlXk2LFjkpGRke8x586dc/n8gKsIGgAAgF9q2rRpnn3Vq1c3jwkJCR57359++kn69OkjNWvWlMjISEcuxKJFi0zOg04fcof+DFlZWfLXX3/l2L969Wrz2LBhQ7fOD7iC6UkAAPiZsKiyJk/An9rrCXFxcXn2hYf/3bXx1CqB69atc0wNuvnmm+Xyyy+XUqVKmaBBp0Rt375dUlNT3XqP7HkNGpjYR06WLl1qRjNq1aplwU8CFA1BQ5BhyVVAxJaRJRkJ5z1yKcLLREtIOIO48KyQkFCPJBbj4p577jkTFHz//ffSunXrHM9t2LDBBA3uyp0MffbsWbOCkwZEr7zyCr8meAVBQxAuuapbUlKS3xSrycjKkkQ35ocWpHREhISH0rkLNifm/iL7Ry6TzCT37gQ6U+vZG6VCj/qWnY9ABPCMsLCwIo9K7N27V8qVK5cnYNA8A10u1Qr2oOHQoUMm8VmTu7XI3IwZM6Rx48aWvAdQVAQN8GkLDh+QMTu2SXKG9UFDbHiEjG3YRLpXZ5g3WEYFbJk22TvwS/G0A//7xmxWCYuLktoTOkrFng0sOycAMZ1/e+e8sHRq0G+//WZWS9LkZ3vQMWzYMDlx4oQll9Wel6Ht6t+/vyxYsEBef/11EzwA3kLQAJ8eYfBUwKD0vHr+26rWYMQhiEcF/IH+/HodKnSv59NTnzw17YuRFniKVnuuWrWqWbZVV0XSzrrmJvznP/8pcDRen1u+fLkZaejVq5epBaHF5uLj483Srfq1VSMNb775ppkK9dprr5n3BbyJoAE+S6ckeSpgsNPz6/uUj4ry6PvAtQ4oAUPOwOHCn6clvFy0T36cTs7baenoSm5M+YKnpid9/vnnMnz4cJk9e7YkJyeb/ffee2+BQcOtt94q8+bNk+eff14++eQTKVmypEmM1tGAZ5991pJ22YMGHcF4//33pV+/fpacF3BHiE0nyyHo2HMaEhMT8119whecSk2VZss9P5Vk881dCRp8UPrJFNlSb7LH3+faHYMlJCzE5zvNsBZTvgD4gyQf6q8x0gC/sqJtRykb6fqowJm0VLlpzTJL2wT/7jRGXlLKkvNV+VcLqdy/mWXTczJOn5ftrd+25Fzw3ylfAOArCBrgVzRgsHoqkQYSVmFFJs9qtPYRy6bneGKevJ4vokKMZe3TwCbY8zk8Sa+tBnlW/c4AIJARNAQZ6jTkZeXIAysyeZYGDMHSwdMAREdC/DGvw6r8g+KY8qUjOlYiaRtAoCKnIUj50hy5ouQ0uJt/UBx5Eho4bO3YlRWZPJDT0HTXY0ETNBRHITpPsLrTbOXPXxxTvsiVABCo/TVGGhBUdPqQduo9uSoTKzLBV6c8+SN/+/nJlQAQqMj+QlDRCtBa0E0DBwDBxZ4nUly5EgAQSBhpQNDRCtBa0E3rM1iBFZk8M43G6rnmgD/niQCAtxE0IGhHHCjoZh0qN8NfVOzZwCyzanWAy/K4AAIdQQMsk5GVZdnde6uXQoXnULkZ/sbf8iQAwBcQNMASCw4fkDE7tnk0wRjisyvSFMdUD52LrnPSAQBA8SNogCUjDAQM/pMrUBxr33tqGUsq98IXR0Uz0tIsOxcA+CqCBrhN//gWxwiDrnikS6YGE3/NFbCycrOiYJZvd5r9qSq6J0ZFY5Mz5G0PJvLz+QfgCwga4BfslZZ9uTNiNX/NFdBRgRKXlvPpUQE6zZ6bSmh1VXQrf1eZtix5fNuPUhysTIymYBwAX0DQAI9Y0bajlI2MCpq7l56gU5L8MWDw9WlE/tZp9rephHpu7Zi3qlBJwkLc+xwsPHxAxu/aLsGOgnEAfAFBAzxCAwaWNPV9tZ69USr0qB800yiKq9Os76G1QKwIdK28064rkhXXYgX/WLFYgkVKyTBJiQ6VmPNZHi8Yx6pPALyFoCHITJ061WyZmZnebgq8nCvg6x18f86/0ffYn3LW7dE27rR73sabbnV7RESDsbH3zJW+M094NHBA4Nu/f7/UqVNHHnjgAZkxY4a3mwPkQNAQZAYOHGi2pKQkKV26tLebgyLSgIE7jf7hpjXLJFimEmqugL+NLNinkVUqYU0Qvva6OFnXIlZizv19Q2ZF205SLjLS5fNRMC5/q1evljfffFPWrVsnx48fl5iYGKlXr57ceeed8u9//1tKlCgh7lizZo20a9dOxowZI88884xb5wICDUEDgKBOLrai06x3mv0lSMjdca4dU8qSa/tKkxYenfr1dL1G0s3CPBFPfKaywkIkOfbvP6vh5UtKRJR1eV3BLiMjw9zwevvtt02g0LlzZ7nsssskMTFRli9fLo8//rgJJr766iuz319Vq1ZNdu/ezU09+CSCBiAIWd3B9/Q0Gk8mF1uRf6MdUG2jPxU3tHpFMv3daB6HJwJHf1wIwd2K9tR+yGnkyJEmYGjevLksWLDAdK7tdLrts88+a7ZOnTrJ1q1bJS4uTvxRRESEXHXVVd5uBpAvggYgyPhj9W6rVuRxtyNXEO3Qagc82O+06/lYAOFv7o485Vf7Ibssm03O+FFRubKRkRIaEuLSa3/77Td55ZVXpFy5crJo0SK55JJLcjwfFhYmY8eOlT/++ENmzZolL730kgkglOYF9OvXTz744APp27ev06lIuul5lD7av1b79u2T2rVrO0Y9XnzxRXn33XclPj5eqlevLg899JDcddddUrdu3XzzEfT9dSRk586d5vv69eub6VS521RQTkP2tt56660miNqwYYOEhoZK+/bt5dVXX3W0z86VdhZk3Lhx8r///U+WLl0qHTt2zPGc/k66du1qrvsTTzxRqPPBPxE0AB5gRefUE3ca/b16ty/Pm+dOOzwtI8sm9vKWGjA0W/6l31z0zTd3dTmg/PDDDyUrK0seeeSRPAFDdqNHjzZBw/vvv+8IGoqibdu2ptOu73fDDTeY7+3KlCnj+PrBBx+Ujz/+WC699FIzZSo1NdV02tevX5/veQcPHixTpkwxoyPaaVfz5883wcy2bdtk8uTJhW7jpk2bZNKkSSaAePTRR83rFy5cKDt27JBffvklR05HUdvpjL6Puvbaa/M8pyM7BT2HwELQAHiAFfPbL3an0ZdXDwpW3GkPTsU1PS0pI12sq7PuPzTpWXXo0MHpcTqtp2rVquau+qFDh6RGjRpFeh97kKBBg36dXyL0ypUrTUe8cePG8sMPP0jJkiXN/qeeekqaNGmS5/jvvvvOBAxXX3216azbFyDRc7ds2VJef/116dGjh7Rp06ZQbVyyZInMmTPHjBbY3X///aZNGjzcfffdLrWzMEGDjlRUrFixwKBB3wuBjaAB8CMnUy9IZGq4z03P8cQ0muJYkUc7etrhA9wNFkdUzpTnD12QlBD3Vu9BXkePHjWPhQkC9Ji//vpLjhw5UuSgoTA++eQT86hTdewdcVWlShV57LHHZNSoUTmO1wDEHiRkX7GwbNmyZqrRPffcY6YIFTZouP7663MEDNlHFHQUwh40FLWdzpw5c8aMwOgUpPxo0KBTo/RnQmAjaADcVJxJsB2/Xe5YncUXq3dbPU/ekyvyWJ0IjOBly8qQf/wxVualp0hyiDVjAUkp2gHrnHNnVoYl54brtm//e8GH1q1b53muVatWBU7ryT7VyU6nGKmffvqp0O/ftGnTPPt0BEAlJCS43E5n7O3Lb/rRiRMn5PDhw9K9e/cinRP+iaAB8IMk2GCt3k2eAPxBZlqiZKUnS5jOfbelWHJOm0RJ7jJxmelnRaSiI7FY8wT8hbbXVZUrV5Zff/3VTDm68sornR6rx9jvqHuC1jjS5OMKFSrkeS6/fAv78flN69HjQ0JCzDGFld+qUOHhf3flshdtLWo7nbEHPvlNa7JPTXJlyhP8D0ED4KOd27STZ+WAvCXBPj2HPAEgL12JyFeDfav985//NKsH6Tz9G2+8scDjNLDQqUmacGyfmqQdZ/tKQrlpjYei0k67JmWfPHkyTyBw7NixAo/XO/KVKlXK8ZwWp7PZbB5ZHrao7XQ1Cdqeb0LQEBwIGvzM559/bpae038ck5OTzT+O3bp1M6tGMJ8wsDq36VEZckA8h+k5gOfUumWFhEa5Pse75IFDckiWWNomf6WJvhMnTpR33nnHFHHL7669eu655xxz/O3sfxc1ObqgznDu5Vtz37XPrlGjRuZ1mlysf3vz60Bnp51pPV6Dnl69euV4Tvd5KoG4qO10Rs+jIyKaZJ6dBiW6CpQiaAgOBA1+5vTp02Zu5JNPPmmSqnSZNV1LWucv6l0YBLYVbTuZSrPBWjAL8BcaMISXKO/y60Mi805ZyTxzQdJjrZn+pMLLREtIuO//G6BTkjR5V5cLve2220xxt+zTj7TzqgGDJv9q/YFhw4blyAHQDq+uODR8+HDHkqS///57vkudai2I7NOccrMnLuuSrlqvIDo62pGsnd/5tBaCLgGrf6e18Jx9VEFHOex1IPQYqxW1nQU5f/68uUmpIyK6+pM9H0K/10RurTuhgVn2YnsIXAQNfqZ///45vtcAQv8R1PWrDx48KDVr1vRa2+B55SIjJSJIpiQAyCm+0wLJe7/cdWFxUVJ7Qkep2LOBz19qrU2gHW3tgF9++eVyyy23mABB5+4vX77cBAG6X5ckzT7dR++O9+7d29Rv0ABCO+46LUgDD/3afqc897KtGmRERUWZJGMNOv7zn/+YG3U6PapPnz7mfA0bNjR38bX+wWeffSb/+Mc/TKEz+5Qo+2pH+lpddrVBgwZy5513mg63vq8mEGsNBz3GakVtZ0H0xqSOuujUqs6dO5v2awCioxV67e05GVp/Ytq0aeaaIXARNAQA+52RdAvn0wMAAltmUqrsH7lMKnSv5/MjDprs+95775kA4O2335a1a9eajn9MTIypgfCvf/3LVFi231HPTisia0Lwp59+KlOnTjUjF3oODQ5yBw06PUmnAeuoxOzZs800YHXvvfc6lkzVZVT1PTWA0WBAA4shQ4aYOhLaGc+do6C1GHT6zvTp08372itC6yiAFnjzlKK2Mz/2KVwatOlIg14TddNNN5mRH71OX375pRmRIGAIfCE2DXnhsGfPHnPXYsuWLWbbvXu3ibK1hPrTTz990Ss1d+5c84+SThdKS0uTyy67zAwTDh06VCIsTDjVNmmQoBUgdf6mJn199dVXhX693hnQfwD1zo27SVinUlPzVCZ1p/on/pZ+MkW21Ms5jNx012MSUSGGSwT4kIwLp2Tf581y7Ktzx2a3picdPR0vO5t8LDHnc6+hZD3+XbGGBicPP/ywueOuAUwgtFODsbfeesv0hXQUBsXPyv6au3z71oIX6J0AHS7UCF075AUlQ+VHI3hNdNLEoxYtWpihT50ypJF4+/btTSRulfLly5s7Ks2bNzdzO3XIEQAQGPTO/4x7KkpKNH+mfY3mBeS+36qJ1uPHjzcjFbfeeqsESjt1pEGLw11xxRUebCn8BdOTctE5h5pEpUOJurzY888/byotXoyWb9fkolKlSsm3337rWJpMlzvTgEGHUnWFo5deesnxGk1SKszQpI5eaJn53KsunDt3zsw31H8ANDlsxYoVjpUfAAD+be11cbKuRazEnPv75tWcZk2lfKn8Vw4qrKzT5+VA+xkWtTA46UpOOrKvVZx1rr/eHFy8eLGZyqSVnz1Ridob7dSbptrHuOaaawqV/4DAR9BwkUTjwv6PosGFGjFiRI61jHUepQ4B6v+0b7zxhgkc7PMitYJiy5YtL3ru/FYlsC/RputX69d6Hp3fmTu4AAD4r6ywEEcV+Fv2/F3l1x2xyRny96x6uEpnEezatct0yM+cOWMWI9GO9YABA0zycaC0U1dN0hkSnlgSFv6JoMECOty3adMm83V+/yNqGXeN6HUJN13ZQRO5lAYP9gDCHRqk6AoGf/zxh9vnAgAEl4wsm/h2iUffop1x3QK9nZqsTdorsmO8yQL21QV0FaM6derke0yzZs0KLCbjLs2h0P+xL7300gKP0aXWNJkm+wYA8E2lw8MlxmZdHpwzSRmsvAfg4hhpsMC+ffvMo7MaCfa5g/ZjXaVFWnS5NL0DoMubaRDy4osvmiHH3FUfs5swYYKjkAwAwLdp4cWBFxbK1BLdJCUk7zKilsrK8Oz5AQQEggYL2Ndx1vWiC6IJ0srdO/y6KpNWvbQHH7Vr1zbzEx9//HGJjIws8HUjR440x9hpO3wlWQsAkFNYZGm5OeQPaXd2rCRbGDQkpZQVkc459mWmnxUR9xKsAQQ+ggY/o/UidCsqHZWg8AoA+IeQ0HCp2GysnNg8Rsqk/31jygo2iRLPV34AEIgIGiwQGxtrHlNSUgo85uxZvZMjXi/MoYXndCtK/QkAQPGLq9NdYmvdJplpiZads+SBQ3JIllh2PgDBg6DBAjpFSOnqSAWxP2c/1lsGDhxoNnuFQQCAb484uFNZOs/5IlkEA4BrWD3JAloITp06darAROfNmzebx+w1HAAAAAB/QNBggerVq0vz5s3N17NmzcrzvFaD1pEGzSno0qWLFW8JAAAAFBuCBouMGjXKUbZ969atjv06+qCrG6lBgwZ5fUqQ5jPUq1fPEeQAAAAAF0NOQy7a4bd38tXevXvN41tvvSWLFy927F+wYIFUqVLF8b3WSBg8eLC8/vrr0rJlS1NLQZdgXblypSQkJEirVq1cWvXIauQ0AACyyzxzQdJjC17IoyjCy0RLSDj3I4FARNCQiyYIb9y4Mc+FOnz4sNmyV1jObfLkySY40Lv569atk/T0dKlbt66MGDFChg4d6rSOAgAA3hDfaYHEW3SusLgoqT2ho1Ts2cCiMwLwFdwOyKVt27Zis9kuuhW0ClKvXr3k22+/lcTERDl37pzs2LFDhg8fTsAAAAh4mUmpsn/kMrFlUA3CFc8884yEhITImjVrLP/d+HvfTK8LvIugIciQ0wAAwSu0dKSkRId6PHDISDhv+XlXr14td911l9SoUcMsLFKuXDlp3bq1vPrqq3LhwgVL3qNv376mc7p//35Lzufv9Dro9ejUqVOBx2iAo8f861//Kta2ofgRNAQZzWnYtWuXbNq0ydtNAQAUM803mHFPRY8HDlbKyMiQRx99VNq3by9fffWVyRt8/PHH5e6775ajR4+arxs1aiR//PGH+DtdMGX37t3SokULbzcFyIOcBgAAgsja6+JkXYtYiTmXab5/NWWaxMo51094NkqyJtwqnjJy5Eh5++23zap/ughJtWrVHM9lZmbKs88+aza9G66LmcTFxYm/qlChgtkAX+Q/txoAAIBhy7JJ+smUIm+Zpy5IbHKGI2BQQ2MGSP+YYS5vQ2L+b8VBu7STZ3O8r7bXFb/99pu88sorZirSokWLcgQMKiwsTMaOHSt9+vQxqx2+9NJLOZ7XaTM6Hz4/mpuYPT9Rv/7www/N13Xq1DGvze/1n3/+uTRr1kyio6PlkksukYcffljOnDmT53x2J0+elCFDhphz6rSqSpUqmfzHX375pVA5DfYpQjp1SkdTunfvLmXLljUrNN54442yffv2fH8+za+8/vrrzXHly5c3U7u0ZlRx5Qds2bLFjJw0aNDALDev16thw4ZmaXpdKCY/WtfqhhtuyNPm/GS/VjNmzDDFc0uWLJnj93XgwAF56KGHzOdGF6PRulr6/cGDB/Ocz35dtG16bv1d6u/riiuukGnTpuU5XqfEvfzyy2aUS38+bbO+Rn+3Bf1O/B0jDUGY06Cb3p0BAPinjNPnZEu9yS699m3xvB3Xv5fj+6a7HpOICjFFPo924rOysuSRRx4xHfSCjB492hRXff/9982ogyu0Y6+dT+3wPfbYY1KmTBmzP3sgoOfXTqeOZtx///2ms7hkyRK56aabTGczIiIixzlPnDgh1113nQlotFOqU6r27dsn8+bNM1Otli1bZvIyCkODB52aVb9+fXnwwQfNOb/44gtp166dmdKU/fosX75cbrnlFhNUace7atWqJidE30sDjuLwzjvvmEBPAxctbKuLw2gHX0eOdIr0/PnzcxyvS9R37txZQkNDHW3WfboqpbM2v/jii+Znu/322+Xmm282P7M94NSfV38Ht912m7luGqjp71DbpQGKBgS59e7dW3788UfTFj3XZ599ZqZ2R0REmADR7oEHHjDPXXPNNdKvXz8TYGiAo23Rn0+DiUBD0BBkqNMAAPAXuny50tpHzlx11VWmkxkfH286bpos7UrQ8NNPP5mgQb/OPWqgNZc0mNA7yps3b5bLL7/c7H/++eelY8eO5s56rVq1crxGV0/Uzr12lPU4Ow00tFOvnc09e/aYjvLF6MiB3qXXc2YPlsaPHy8ffPCBWd5d6U1BDbL00R4oZO/ofvTRR0W+NjrCoXff81NQ0rgWvdWblPZOvNLVJ/v372867j/88IMJCJQ9MNT8le+++87RZj3+3nvvNQGhs+uiS+XrKEZ2mpitAYPW2dJz2+mogfaF/v3vf5ugJDddXl+DC/s0N/2d62jJyy+/7AgadIXMuXPnStOmTc17Z/8Z9bonJydLIGJ6EgAA8Ema6KwKEwTYjzly5IhH2qJ39c+ePWtGGuwBgwoPDzcd99zS0tJk9uzZZprN008/neM5vfOuoxPaGdfOc2Ho9KYnn3wyxz5ti8q+uIneQddpOXp3PfcohrYzewe3sDTw0Wlg+W32KV251axZM8976fQf7bCrb775Jkeb//zzT7n11ltztFmP12DLWZs1IMgdMOj0Iw2Y6tWrl2N0wB5MaJC5atWqfKc+TZgwIUdezJVXXmmCmz179jiCAW2XBjQlSpTIE/BpW+2jVIGGoAEAAOAi7PPU85tO9I9//MMED9n9+uuvZt67roSkc+1z02lFSkc3CqNx48Z5Oqg6R98+ClKYdmpgpZ35otKRlILqVmnnPD8aNGk+iv782gnXtmtnW+/Oq7/++itPm9u0aZPnPDp64yxozG+lKfs11fyI3Pkb2g6dMpX9uOzs7XN2nePi4kzgpwGf5lJoYGMv6hvImJ4EAICfCS9X0uQJ+IKjBw+aqtLZVVvaXSpn65xqe11RuXJl0/nWO8J6x9cZ+13jKlWqiCckJSWZR01kzk07orlXPbIfX1Auhr2d9uMuJr9VoeyBSvY8RWfttLdH8yo8rUePHiZ3QPMGNEdB26N5Adrxnjx5sqSmpjqO1ek+F2tzQdOg8ru+7lz7wl7nuXPnmmBBp0499dRTjtfqlDPdn1+g6O8IGgAA8DMhoSEuJRZ7Qlhyibz7ypawpH3//Oc/TfKszj3XlYIKooGF3rnWVXKy35XWu8w6Tz4/2lHVRObCsncmjx8/nuc5nZOvqyRlX93JfvyxY8ecTr2yeolYZ+101h4r6XQpDRh0hEITvrNPL9qwYYMJGrKz/x5caXN+K0EVx7UvWbKkme6lmwZhOuLy5ptvmp/t/PnzJpci0DA9KchQERoA4C90hSK9i68r8WhSa0Gee+4586irCmWnq+5ocnRuetc6+5QeO3vnNr8VBu2r4eSXg6Cr7eQOTnTevM551w60rhyUm31ZVZ12ZCVn7dQk3/yWG7Wa5kAo+wpO2X3//fcFtjm/5zQ/o6BlVwtiv6aaVK1TqLLT73V/9uPcVadOHfPZ06TsUqVKyZdffimBiKAhyFARGgDgL3RKkq5ec+rUKZPYmzvJWe/wjxs3Tj755BOpW7euDBs2LMfzWhBOAwTtzGWfa69VpPOj9SBUfp1UXdJTO4Tvvfeeo1OsNFjQVYxy07oAunynjkBocm12S5cuNcutXnbZZY4VhKyiuQyat6B3+tevX5/jOW1ncSy5bl9FShOcs9u5c2eea2Fvs3a8Fy9enOM12sHXVZiK2mb9+TVnRN9PV2rKTgsF6hK1WmHclVW2lAaw+dXZ0HodOu1Kg8VAxPQkAADgsyZNmmSmEmnnT1ct0rvXGiDofHStR/D777+b/bqMae7pJhoc6DGatKodeJ1SsmLFCrO6TX65D9qR1AJxuiLPnXfeaZZX1Q7wfffdZ16jib36nCbLas0Fe50GXaNfl3zNnaj8wgsvmIBFp7BooqwmTGsQo/PhtS26VGphllstCr2zr9Nkunbtan4ezSfQn1XboaMuelf/559/Fk/S5GTdtI6BBnpaX0JHOPQOvP7+tE5FdnoNtDOvvyedhmav06ArHOnrtRZCUds8ffp0E4zo6kkaQOlKShpEaBsqVqxonndVfHy8NGnSxFxLbZtOS9PAVlfY0mTo3MFroGCkAQAA+CxNQtW7+9rZ106l3onWjv3MmTNN8rGun6+r7+hd+9y02Jd2XDXI+Pjjj01nXZc61XPpSEBuWtBLgxSl59U78/redtoB1XNceumlphCcbtoh1sBEg5jcQYt2TnUd/8GDBzsqVut7d+vWzewvbGG3otKfQ9uklav159cOua4ApNdO79pbnUeRX+Ciowb2InRTpkyRXbt2mZ/ffn1z02BBc1c0sNJrrG3WgE3b7EpBOh2l0noaWklbp49pETidKqaJyvqYX2G3wqpdu7apW6FBoy4dq8Gk5m7oSkpff/21Y1nZQBNiyz3ZC0FB/3HTD7vevXH3H49TqanSbHnO+Xubb+4q5aOi3GxlcEs/mZKn4qurVVUBeE7GhVOy7/NmOfbVuWOzhJcoHxSX/a99++TgP2bn2FdzY2+pWqeOBAutt6CjHb169ZJPP/1UfJXWGdAVhbSugQYtCK7+mruYngQAACyVeeaCpMemWHKu8DLREhLuGxMjdM66TivS6Uh2ulLO0KFDzdc6guALUlJSTL5HbGysY5+OMGhxOG2vr7QT/oWgAQAAWErrNuRds8g1YXFRUntCR6nYs4F4m+YFaBVmnfakybaa5Kzz7jVPwZ4/4As0z0OnPumSpzqVSkcYdGUinSJUv359M10KKCqChiBcclW34lg9AQAAd2Umpcq+4YulQvd6Xh9x0A635kTocqYLFy40+zSXQldw0uRXq5OaXaWJuT179jRBjq7UpCs8aZCjbdRCZJrgDRQVQUOQ0eQc3exz5AAAcEdo6UhJiQ6VmPNZHruQWWezJP30WYms5N053Zq3MGfOHPF1moCtKzMBVvKNkBgAAPil8OgyMuOeiiZw8KTM9CSPnh+Ac4w0AAAAl4WEhsva6+JkXYtYiTlnzdTX2OQseXn0AX4rgA8haAAAAG7LCguR5FiruhUZefZkZnlu+hOAi2N6EgAAcFnpiAiJDY/w+BVMymABD8CbCBoAAIDLwkNDZWzDJsUSOADwHqYnAQAAt3SvXktuq1pDEtPTLbmSxw4ckCTZx28F8CEEDUGGOg0AAE+NOJTPVinZHakREcJaSYBvIWgIMtRpABDsbFkZkpmWaNn5slLPWHYuAPBVBA0AgKCRtG+BnNg8RrLSk73dFADwKyRCAwCCZoSBgAEAXEPQAAAICjolqThGGEIjYiUssrTH3wcAihNBAwAAVv1RjYiVis3GmirJABBI+FcNABC0at2yQkKjylp2Ph1hIGAAEIgIGgAAQUsDhvAS5b3dDADweUxPAgAAAOAUIw0AAMDn2dISJePCKcvOx1QyoGgIGgAAgM+L/+4hORdz2vKk9bg63S07JxDImJ4EAACCji6/q3U7tH4HgIsjaAAAAD4lLKJUsQUOWr8DwMURNASZqVOnSr169aR58+bebgoAAPmjzgXgc8hpCDIDBw40W1JSkpQuTcVSAIB/iLlmhsRUKuV2MrXmRqjYEokSHpZpUeuAwEfQAAAAfF7ybYsk2ZIz3Wn+eyQ6RI733Ct17rDkpEDAY3oSAAAIOiXP26TS3LqSnkYiNFAYBA0AAMCnlKsQK+dKhhZL4HDm1DmPvw8QCAgaAACAT4mIDJe0kS2LJXAAUDjkNAAAAJ/T6dG2kt6vtZw+aU0mgzp56LDJjQBQdAQNAADAZ0ccLqla1rLzZaYmWJRMDQQfxv0AAAAAOEXQAAAAAMApggYAAAAAThE0+LGMjAy55pprJCQkRObMmePt5gAAACBAETT4scmTJ8uJEye83QwAAAAEOJ9aPal9+/aWnEfvvK9cuVIC2eHDh2Xs2LHyxhtvyAMPPODt5gAAACCA+VTQsGbNGsuChkA3ZMgQ6dq1q1x//fXebgoAAAACnE8FDapTp04yfPhwl18/ceJEWb58ucuv37Nnj3n9li1bzLZ7927JzMyUcePGydNPP33R18+dO1emTp0q27dvl7S0NLnsssvknnvukaFDh0pERIRYYenSpaaN2tbU1FRLzgkAQDCypSVKxoVTlpwrLLK0hIT6XNcKsITPfbIrV64sN9xwg8uvnzFjhlvvP336dJMr4Ordf31teHi4mWpVqlQpWbVqlQmCFi1aZDr60dHRbrXvwoULMmjQIBkzZoxUqVJF9u/f79b5AAAIZvHfPSTnYk5bcq7QiFip2GysxNXpbsn5AF/iU4nQV1xxhekIuxt06Hlc1aBBAxk2bJjMnDnTjDLcd999hXrdwoULTcCggcLGjRtl2bJlMn/+fPn999+lYcOGsnbtWhk9enSeAEenUl1smzdvnuM1zz//vERGRsrgwYNd/hkBAID1stKT5cTmMWLLyuDyIuD41EjDr7/+6vY5JkyYYDZX9e/fP8f3oaGFi6u0M69GjBgh1157rWN/hQoVZNq0adKmTRuTtKyBQ+nSpc1z3bt3l5YtW1703NWqVTOPBw4ckEmTJpmAJiUlxexLSkoyj+fOnZPExETHuQEAQE5hEaWKJXDITEuU8BLlufwIKD4VNPir+Ph42bRpk/m6T58+eZ5v3bq11KhRQw4dOiRLliyR3r17m/3awS9KJ3/fvn0mh6FHjx55nnvooYfM6MPZs2fd+lkAAAhY5BsALiNosMC2bdvMY7ly5aROnTr5HtOsWTMTNOix9qChqBo3biyrV6/Ose/o0aPmfDqCcdNNNxX4Wg02sidN20coAAAIZqVumC1xlWNdfr0tNUEOfdPTfB1rOy9hkmVh6wDfQdBgAR0BUDVr1izwGB1pyH6sK8qUKSNt27bNsc+eCF2vXj0zBaogOmVL6zoAAID/c/fmLZIc62Z3qNQY8xBjOy8DLyyUh7nACEA+lQhdkIMHD8pHH30kvio5Odk8xsTEFHiMJkh78w7/yJEjTc6DfdNRDwAAYJ2UkGiZWqKbZGQx2oDA4xcjDZov0K9fP7n//vu93RSfU7t2bbHZbBc9LioqymwAAASruPC89ZJik7WDb81qRyklwyQlLFoSMzKkhCVnBHyHXwQNvi429u+5kPYVjfJjT1COi4sTb9LCc7ppwToAAIJJeGhInn0vjz5g2flTokNlxj0VRVwvNwX4LK8GDZdeemmhjtPlRH39br9yNuXH/pz9WG8ZOHCg2XSaFMuzAgBgnZjzWdJ35gmxDWN6EgKPV4OGw4cPm8JnLVq0cHrcn3/+Kd988434qiZNmpjHU6dOmUTn/FZQ2rx5s3nMXsMBAAAUn/Ay0RIWFyWZSf+3mqAnAoesxDSRch57CyD4ggYNGLSDPX36dKfHaWVlXw4aqlevLs2bNze5F7NmzZKnnnoqx/NaDVpHGjSnoEuXLl5rJwAAwSwkPFRqT+go+0cu82jgAAQirwYN2tHWYmeFUZhkX28aNWqUqfA8ceJE6dy5s2NEQUcfBgwYYL4eNGiQ16cEkdMAAAhmFXs2kArd60lGwnlLznf04EGJ77TAknMBvsyrQcOTTz5ZqDvveow79Q2KYuvWrY5Ovtq7d695fOutt2Tx4sWO/QsWLJAqVao4vu/WrZupyPz6669Ly5YtpUOHDmYJ1pUrV0pCQoK0atVKxo0bJ95GTgMAINjpiENEhYKXSS+KsGTWSUJw8GrQULduXbNdTHR0tNSqVatY2qQJwhs3bsw3/0I3u+zVle0mT55sggO9m79u3TpJT083P9+IESNk6NChEhkZ6fH2AwAAAFZjydVctOKyO1OhevXqZTYAAAAgUPhkRejPP//cac0DuE5HQerVq2fySQAAAAC/DRp69uwp8fHx3m5GQNKchl27dpmVngAAAAC/DRp8faUkAAAAIJiQ0wAAAGAhW1qiZFw4Zdn5wiJLS0goXTZ4F5/AIEOdBgAAPCv+u4fkXMxpy84XGhErFZuNlbg63S07JxAQ05PgOeQ0AADgX7LSk+XE5jFiy8rwdlMQxAgaAAAAXBQWUarYAofMtMRieS8gPwQNAAAAriLXAEGCnAYAAAALVb9xnlSqEufWObJSz8iBr26yrE2AuwgaAAAALHQ2pKREhbg3bSkjJE0SQmLM17G28xImWRa1DgigoOGDDz6QKlWqeLsZAYnVkwAA8Kwe61ZJcqwFXaxSY8xDjO28DLywUB52/4xAYOU0PPDAAxIbG+vtZgQkVk8CAMC/pIREy9QS3SQji9EGeI9PBQ0NGjSQ1157TU6ePOntpgAAAFxUXHhEsQUOiRksuQrv8amgYdeuXfLEE09I9erVpWfPnrJ06VKx2WzebhYAAEC+wkNDuDIICj6V0/Dyyy/LjBkzZMeOHTJ//nz5/PPPpWrVqtKvXz/p27evXHrppd5uIgAAgFMr2naS8PIl3bpKJ5KPSef1G7nS8Bk+NdIwdOhQ2b59u/z444/yr3/9S0qXLi3x8fHy3HPPyeWXXy4dOnSQWbNmSWpqqrebCgAAkK9ykZFSPirKra1sZPFMewL8Mmiwa9asmUybNk2OHDkin3zyibRv315CQkJk9erVct9995mVlTShd8uWLd5uKgAAABDwfDJosIuKipI+ffrIihUrZN++fTJmzBipVauWJCQkyJtvviktWrSQxo0byxtvvCFnzpzxdnP9ZsnVevXqSfPmzb3dFAAAAlLG6fOSfjLFrS3z1AWJTc4wW2gm+Z3wvhCbH2Yar1q1St5//31ZsGCBnD9/3oxCaIBx7tw5bzfNbyQlJZnpX4mJiRIX517VylOpqdJs+Zc59m2+uasZXoXr9I/GlnqTc+xruusxiajwd7EfAEWTceGU7Pu8WY59de7YLOElynMpYem/1VZLiQ6VGfdUlJdGdJFL4qhjFUySLOyvBfRIQ0F0upJOW/rss8+kYsWKZoUl8hwAAEAgijmfJX1nnhBbBnUa4D0+tXpSYWiew0cffWSqRv/++++OJVkbNmzo7aYBAIAgE14mWsLioiQzKdXjgUNWYppIOY++DeDfIw0ZGRlm+dVbb73V5DSMGjVKfvvtN1M1+tFHHzWrLf3000/ebiYAAAgyIeGhUntCRxM4AIHMp0cafvnlF3nvvfdk5syZcurUKceoQps2beShhx4yBeCio6O93UwAABDEKvZsIBW615OMhPOWnfPowYMS32mBZecDAi5o0EQPDRJ0+tHWrVvNPg0WKleuLA888IA8+OCDpmYDAACAL404WLlQRVhyCcvOBQRc0KDLqy5cuNAkNWugEBYWJl26dDGjCrfccov5HgAAAEAQBw1z5swxj5dddpkZUejbt68ZYYC1dRp0y8zM5LICAADA/4IGrfasowrXX3+9t5sSsLSStm72dX8BAIB/sKUlmnojVgiLLC0hoT7VDYSP86lPy4cffujtJgAAAPik+O8eknMxpy05V2hErFRsNlbi6nS35HwIfD4VNDiza9cuWbdunZw4cULq168vXbt2NfuzsrLMkqyRkZHebiIAAIBfyEpPlhObx0hsrdsYcUBg1Gk4dOiQ3HjjjaZ4m9ZkePrpp02ytN0777xjll1duXKlV9sJAABglbCIUsUSOGSmJXr8fRAYfDpoOH36tNxwww2yatUqM7rw73//21Grwa5Xr14SGhoqX375pdfaCQAAYCnyDeBjfHp60gsvvCD79++XYcOGma9DQkJk2rRpOY4pW7asGYVYu3at19oJAADgaaVumC1xlWNdfr0tNUEOfdPTfB1rOy9hkmVh6xDofDpo+OKLL6R27doyceJEEzAU5NJLL5UffvihWNsGAABQnO7evEWSY93supUaYx5ibOdl4IWF8rA1TUMQ8OnpSQcOHJBrr73WTD9yRpOgdSoTAAAALi4lJFqmlugmGVmMNiAAgoYSJUpIcnLyRY87ePAgNQcAAEDAiAuPKJbAITEjw+Pvg8Dg00HDVVddJVu3bpWUlJQCjzl58qRs375drrnmmmJtGwAAgKeEhxY8LRvwBp/OaejRo4c8+eST8vjjj8v06dPznaakz587d07uuusur7QRAACgOKxo20nCy5d0+fUnko9J5/UbLW0TgodPBw0DBw40VaLfffdd2bJli9xxxx1m/969e+WVV16RuXPnyo8//iiNGzeWvn37eru5AAAAHlMuMlIioqJcfn1GquenPCFwhft6TsOyZcukZ8+ephr0tm3bzH5dXlU3rdnQvHlzU+wtIoL/EQpj6tSpZsvMzPTwbw8AAACBwqeDBlWlShUTIGjw8NVXX8mff/4pWVlZUqNGDencubPcfvvtTpdjRd7RG92SkpJIHgcAAEBgBA12HTt2NBsAAACA4uU3QQMAAEAwyzh93q3XZyZfkNjkv5dYTSkZJllhzNRAAAYNmtPwxx9/5Ptcs2bNpF69esXeJgAAgOKyvfXbbp/DfoaU6FCZcU9FkRvcPiWChM8FDU2bNpXffvtNVq9ebYIBu3feeUc++uijfF+jNRrsSdIAAABwLuZ8lvSdeUJsw6gIDT8MGlauXGk6/w899FCOgMFOV0vq0KFDjn2HDx+Wn3/+WVatWiXt27cvxtYCAAB4RniZaAmLi5LMpFSPBg5ZiWki5Tz2FgggPhU06NKpuhLS0KFD831en1uxYkWOffv375e6devK/PnzCRoAAEBACAkPldoTOsr+kcs8GjgAfhk0aKG2WrVqFSk/oXbt2tKwYUPzWgAAgEBRsWcDqdC9nmQkuJcAbXf04EGJ77TAknMh+PhU0KCVnv/5z3/m+5xOTSrI5ZdfbnIgAAAAAm3EIaJCjCXnCksukWefLS1RMi6csub8kaUlJNSnupawkE/9Zp0VHHv88cdNZej8REdHS3JysodbBwAAEFjiv3tIzsWctuRcoRGxUrHZWImr092S88G3hIoPKVWqlCQmJha4QtItt9yS73MJCQlSsmRJCQZr1qwxuR25twYNGni7aQAAIIhlpSfLic1jxJb1dy0IBBafGmmoUqWK/PTTT0V+nb5GXxtM3n33Xalfv77j+2AJmgAAgGvCIkoVS+CQmZYo4SXKe/y9EMQjDZrPEB8fL999912hX6PH6rKrrVq1kmCiAUPLli0dm47EAAAAFIh8AwTKSMO9994r7733ngwYMMBUgI6Li3N6vOYx6LE6PadPnz7F1k4AAIBAUP3GeVKpivP+ljNZqWfkwFc3Wdom+CafGmm44YYb5KabbpJdu3aZ4m5fffVVgccuWbJEmjdvLrt37zYF39q1a2dJG/bs2SNTpkyRvn37mqVcw8PDTVAyfvz4Qr1+7ty50rZtWylbtqzExMRIo0aNZNKkSZKeni5Wuv322yUsLEwuueQSeeSRR+T0aWuSmAAAQPAIiypjphK5uoVGlfX2j4BgHGlQs2bNMlONfvvtN+natavpfF977bVSsWJF8/yJEydk69atcubMGbMM62WXXWZeY5Xp06fL5MmTXXrtkCFDzGs10NDq1JrYrZWqhw8fLosWLZLly5eblZ7coatLPfHEEyYw0fNv3LhRJkyYIOvXr5fNmzdLVFSUW+cHAAAAfHqkQZUvX950hO+55x5zh1/voH/zzTcyZ84cs+nXuk+f6927tynqVqFCBcveX1chGjZsmMycOdOMYtx3332FrmatAYO9I79s2TJTpfr33383IxZr166V0aNH53jNjBkz8l0JKfc2b948x2uaNGkiL730ktx6660mcNCAREc3fvnlF5k9e7Zl1wEAAADw2ZEG+930jz/+WMaOHSuLFy+WLVu2yMmTJ81zGiDoyIN2muvWrWv5e/fv3z/H96GhhYurnn/+efM4YsQI0z47be+0adOkTZs28sYbb5jAwV6Lonv37iaJ+WKqVavm9Hmd0lWuXDnZtGmTmVYFAABQGIlpaRKemuryxcpIS5OEkL+Lz8XazkuYZHHhA5RPBg12l156qQwePFh8na74pB12lV9CduvWraVGjRpy6NAhk4uhIyRKg4eCitm5QkclAAAACqvHulWSHOtmd7DUGPMQYzsvAy8slIe5/AHJ56Yn+aNt27aZR73bX6dOnXyP0cTu7MdaSadC6ZStFi1aFHhMamqqqbidfQMAALBKSki0TC3RTTKyGG0IRD490uAv9u3bZx5r1qxZ4DE60pD9WHeWpdXApGnTphIbG2vyJ1544QVp3Lix3H333QW+TpOldboXAAAITnHhEcUSOCRmZEgJj78TgnqkQfMCnC2zWhj6ent+QXHRehFKl1gtiCZIK3fv8GtRN026vv/++6VTp07yzjvvyEMPPSRr1qyRyMjIAl83cuRISUxMdGw6VQoAAASP8FCmMSNARhqefvppk8h7yy23uHwOXWnoo48+klGjRkkg0s6/bkWlS7GyHCsAAMhuRdtOEl6+pMsX5UTyMem8fiMXNQj4VNDgr3SakEpJSSnwmLNnz5rHi1W59rSpU6eaLTMz06vtAAAA3lcuMlIi3KjxlJHq+SlP8A0+FzToSIFOtXGVfWnW4lS7dm3z6GzKj/05+7HeMnDgQLPpNCkrV24CAABA4PK5oEHvyNvvyvvL0qNacE2dOnXKJDrnt4KSVmtW2Ws4AAAAAP7Ap4IGd1cW8pbq1atL8+bNTa2GWbNmyVNPPZXjea0GrSMNmlPQpUsXr7UTAAAA8PugoVatWuKvNPFaKzxPnDhROnfu7BhR0NGHAQMGmK8HDRrk9SlB5DQAAAC7jNPn3boYmckXJDY5w3ydUjJMssJYoSlQ+VTQ4Au2bt3q6OSrvXv3mse33npLFi9e7Ni/YMECqVKliuP7bt26merVr7/+urRs2VI6dOhglmBduXKlJCQkSKtWrWTcuHHibeQ0AAAAu+2t33b7YtjPkBIdKjPuqShyA9c3EBE05KIJwlowLbfDhw+bLXuF5dwmT55sggO9m79u3TpJT0+XunXryogRI2To0KFO6ygAAAD4s5jzWdJ35gmxDaMidCAiaMilbdu2YrPZXL6gvXr1MhsAAIAvCS8TLWFxUZKZlPfGp5WBQ1Zimkg5j70FvMSnKkLD83QUpF69eiZxGwAABI+Q8FCpPaGjCRyAomKkIciQ0wAAQPCq2LOBVOheTzIS3EuAtjt68KDEd1pgybng2wgaAAAAgmzEIaJCjCXnCksukWefLS1RMi6csuT85j0iS0tIKF1Wb+M3AAAAAMvEf/eQnIs5bdn5QiNipWKzsRJXp7tl54Sf5zRUq1ZNXnvtNW83I6CR0wAAAPxJVnqynNg8RmxZf9eDgHf4VNBw5MgR+fnnn/N9bsWKFZKcnFzsbQrEnIZdu3aZ6tUAAADuCIsoVWyBQ2ZaYrG8F/wgaHCmY8eOMmTIkHyf+/HHH01HGAAAAMWIXIOg4Vc5DQXVT5g+fbp89NFHkpmZWextAgAAwP+pfuM8qVQlzq1LkpV6Rg58dROX1Yf4VdAAAAAA33Y2pKREhbg3bSkjJE0SQv5e4SnWdl7ChCrT3kbQAAAAAMv0WLdKkmMt6GKWGmMeYmznZeCFhfKw+2dEMOQ0wBqsngQAAPxJSki0TC3RTTKyGG3wJoKGIMPqSQAAwCpx4RHFFjgkZrDkqjf5XNCwefNmczf822+/lVOnrKsmCAAAAGuFh4ZwSYOEz+U0/PLLLzJ48GDH95UqVZIGDRqYr48ePSqHDx+W6tWre7GFAAAAKMiKtp0kvHxJty7QieRj0nn9Ri6yD/GpoOGzzz6TLVu2mG3r1q1y+vRpOXbsmNnUsmXLpFatWlK+fHlp2rSp2a699lpzHAAAALyvXGSkRERFuXWOjNTimfYEPw0aevToYTa7AwcOOIIIeyBx8uRJs2kAsXz5cq+2FwAAAAgGPhU05KajCrrdcccdjn2HDh3KEUTo4/HjxyUkhDl1AAAAQMAHDfHx8VKtWjWnx9SoUcNs3bp1y/E6DR5wcZpkrhvVswEAAOCXQUPNmjWlcuXKJlehWbNm0rx5c/NYsWJFp6/TQONiwQb+b8lV3ZKSkqR06dJcFgAAAPhX0FC1alUzarB48WL56quvHPt1ZCF7EKEbHV4AAAAgCIMGzVc4cuSIbNy40WwbNmww044OHjxonluwYIHj2Lp16zqCCH3UVZRKlnRveS8AAAAAPh40qCpVqph8BXvOwvjx42XMmDGmNsMVV1xhptX8/PPP8scff8jevXtlzpw55riwsDBJS0vzcusBAACAwONzQUN27777rgkYXnrpJRk6dKhj//nz502w8Mwzz5gRCM2F0GVYAQAAEJhsqQmScSHSknOFRZaWkFCf7gb7HJ++Wq+99pqZdpQ9YFDR0dHSr18/U9OhS5cuZvqSjjwAAAAgMB36pqck21IsOVdoRKxUbDZW4up0t+R8wSBUfJhOP7rssssKfD42Nlbmzp0rJ06ckFdffbVY2wYAAAD/lJWeLCc2jxFbVoa3m+I3fDpo0KVWd+/e7fQYXaK1bdu2OVZbQsG0RkO9evVM8jgAAIAvCouIK5bAITMt0ePvEyh8Omjo1KmT7NixQ5YtW+b0OJ2utH///mJrlz/TGg27du2STZs2ebspAAAA+SLfwPf4dE7DyJEjZdasWdKrVy/56KOP5Pbbb89zjK6mtG7dOq+0DwAAAMUj9qYlEhcZ4VYiteZFmHPZzkuYZFnYusDn00FDnTp1ZObMmXL33XfLHXfcITfccIPcf//98o9//MPUZNCpS88++6wcP35c2rVr5+3mAgAAwEM6r9/o/klKjTEPMbbzMvDCQnnY/TMGDZ8OGpSOLqxevVr69u0ra9askW+//TbH8zabTaKiouS5557zWhsBAADgP1JComVqiW7SLyvL9zvDPsKncxrsWrZsaebhf/LJJ9K9e3dTl6FEiRImUVpHINavX29GHwAAAOD/SkdESGy461ORChs4JGawelJh+U1wFRoaKn369DEbAAAAAld4aKiMbdhExuzYJskZ6d5uDnwtaJg3b54p1qb5CgAAAAhe3avXktuq1pDEdGuChhPJx6zJiwhSPhU06CpJunyqLrWq045uu+02iYvz/Dq9AAAA8M0Rh/JRUZacKyPVs9OdAp1P5TSMHj1aLr30UlmwYIFZJalSpUpyyy23yPvvvy8nT570dvMAAACAoORTQcPYsWNNMbdff/1Vxo0bJw0aNJCvv/5aHn74YalSpYp06NBBpk2bJkeOHPF2UwEAAICg4VNBg90VV1who0aNks2bN8u+ffvkxRdflBYtWpglVwcNGiQ1atSQVq1aySuvvEIlaAAAACAYg4bsatWqJY8//rj88MMPEh8fL2+88YYp8vbjjz/KsGHDpG7dutKsWTN5/vnnzQgFAAAAgABOhL6YypUry4ABA8x2+vRpWbhwocyfP19WrlwpW7duNTkRL7zwggkmkL+pU6eaLTMzk0sEAAAsl3H6vKXnCy8TLSHhPn+fO+D5VdCQXbly5eTBBx80W1JSkixatMgkUIeEhHi7aT5t4MCBZtNrVrp0aW83BwAABJjtrd+29HxhcVFSe0JHqdizgaXnhR8HDWXLlpVrr73WsTVt2tTkN1yMLst6zz33mA0AAACBIzMpVfaPXCYVutdjxMGLfCpoSExMlNWrV5uEZ7tSpUpJ48aNHUGEPl599dWMKAAAAHiZTh3SkQDt2HuSnj8j4bxEVIjx6PvAT4IGzUvYsmWLY9PlV5OTk+X77783m33qkRaAa9SokSOI0Mf69etLaCjz3QAAAIqL5hro1CEdCfB04ADv8qmgQUcUdHvooYfM95qsu3PnTkcQoUHF9u3b5dy5c7J+/Xqz2QOJEiVKSEpKipd/AgAAgOCiuQY6dUhHAqxMprY6NwIBFDTkFhYWJtdcc43Z+vXrZ/ZlZWXJrl27HEHE4sWLTS2HCxcueLu5AAAAQTviwNShwOZ383l0ClJMTIycOHFCNm7cSHE3AAAAIJhHGrL77bffZN68eaYuw08//WT22Ww2Ux36jjvukDvvvNPbTQQAAIAfsaUmSMaFSEvOFRZZWkJC/aZrXWQ+/ZP98ssvjkBBpyTZAwWtAq1Bgm7Nmzf3djMBAADghw5901OSbdbkxIZGxErFZmMlrk53CUQ+FzRonoI9UPjjjz9MkKDq1avnCBQ0xwEAAADwFVnpyXJi8xiJrXVbQI44+NRPdOmll8qBAwfM1xosNGnSxBEoXHnlld5unk/59NNP5eWXXzajMbpylF6rTz75RKpUqeLtpgEAAPicsIi4YgkcMtMSJbxEeQk0PhU07N+/3yyhqqMKzz77rNx2220SHu5TTfQJGiyMHDlShg0bJi+88IJZava7775jBSkAAIACBOLd/+Lkc1dPRxg0f6FHjx4SGRkpDRo0yFENWqcm6f5gpVO2NGCYPHmy/Pvf/3bsv/XWW73aLgAAAH9T85YVUt6NfmVW6hk58NVNEgx8Kmj47LPPchRyO336tOP7d9991xyjIw86EpG9GrRWh9YpOsHg/fffN0GTvQAeAAAAXBMeVU7Co6JcvnwZQXThfapOg44uTJgwQZYvXy4nT540Rds0KVrvrN90001Svnx5SU9PN1WhtfP8n//8R/75z39KXFycZcnRe/bskSlTpkjfvn2lYcOGJkjRKVPjx48v1Ovnzp0rbdu2lbJly5p6EhrQTJo0ybTbCuvWrZOrrrpKPvzwQ6lVq5Zpn77H119/bcn5AQAAAJ8eachNO8W6aR0Gu0OHDuUYjdDH48ePy86dOy15z+nTp5upP64YMmSIea125Nu3by+lSpWSVatWyfDhw2XRokUmGIqOjnarfUePHpX4+HgZM2aMyWe45JJLTJDTtWtXU7+ifv36bp0fAAAA8OmRBu0MX4wWc+vWrZuMGzdOvvrqK9OJ1kBiwYIFlrRBcyg0wXjmzJmye/duue+++wr1uoULF5qAQQMFrVS9bNkys2zs77//bkYs1q5dK6NHj87xmhkzZphRjIttOtpil5WVJWfPnjXTtbRtN998s3mfypUrmyACAAAACOiRhpo1a5rOr+YpNGvWzBRu08eKFSs6fV21atXMZoX+/fvn+D40tHBx1fPPP28eR4wYYXIt7CpUqCDTpk2TNm3ayBtvvGECh9KlS5vnunfvLi1btrzoubP/bDrtSbVr186xT3McWrVqZdloCwAAAOCzQUPVqlXNaMPixYvNKEL20YXsQYRu9o63L9A2b9q0yXzdp0+fPM+3bt3a/Aw6IrJkyRLp3bu32a8/Q1F/Dp1+9OOPP+a76tSFCxdc/hkAAAAAvwgatFN95MgRM71Htw0bNpichYMHD+aZglS3bl1HEKGPene/ZMmSXmn3tm3bzGO5cuWkTp06+R6j7dSfQY+1Bw2u0NyFDz74QFauXOlYZjU1NdVMf7rxxhsLfJ0eo5tdUlKSy20AAABAcPGpoEFpRWPNWdBN6apFmvRbvXp1ueKKK0xn9+effzb1Cvbu3Stz5swxx4WFhUlaWppX2qyrPNmnVxVERxqyH+tO0HDdddeZaVS60pRO59JE6DNnzsh///vfAl+nx44dO9at9wYAAEBw8qlE6Nw02VcDhpdeekkOHDggK1asMCMQWr/hvffeM4GETsvRDrk3C74lJyebR11itSCaIG3FHX7NsdDpW126dJEnnnjCrCylidG6SpOzlZN02drExETHpqMeAAAAgF+ONGT32muvmWlHQ4cOzbFfly3t16+fqeugnWedvqQjD8FCp0FpnQrdCisqKspsAAAAQECNNOj0o8suu6zA52NjY00xtRMnTsirr75arG3L3Q6VkpJS4DE6GqC0EJ03TZ061VTU1jwQAAAAwO+DBl1qVWslOKNz+rUCc/bVlopb7dq1zaOzKT/25+zHesvAgQNl165djtWeAAAAAL8OGjp16iQ7duwwhdKc0elK+/fvF29p0qSJeTx16lSBic6bN282j9lrOAAAAAD+wKeDBk3e1YCgV69e8sUXX+R7jCYWr1u3TrxJE7Lt031mzZqV53ldDlVHGjSnQHMwAAAAAH/i00GD1jyYOXOmWUpVVwlq3769zJgxw0xZ0tWUli5dakYjjh8/XqjKyp40atQo8zhx4kTZunWrY7+OPgwYMMB8PWjQIK8XpSOnAQAA+KOM0+cl/WSKy1vGqXMSm5xhttBMm7d/HL/j06snqdtvv11Wr14tffv2lTVr1si3336b43ldclXv4D/33HOWvJ92+O2dfHsytnrrrbfMUqd2WmhOa0rYaV2JwYMHy+uvv24CmA4dOpglWLUIW0JCgrRq1UrGjRsn3qY5DbrpCI23AxgAAIDC2t76bbcvlv0MKdGhMuOeiiI3c/0DJmhQ2gnX5F0t5Pb555+bKtE6uqCrFrVu3Vqefvppady4sSXvpZ1prQWR2+HDh81ml726st3kyZNNcKB383XKVHp6uqlcPWLECLNsrDdrSQAAAOBvMeezpO/ME3L6yfNuXZKMtDRJCPm7Tles7byESVbAXmK/CBrsRc369OljNk/SlZh09MJVmn+hGwAAAFwTXiZawuKiJDMp701aKwOHO7/+WpJj3ewOlxrz9/ls52XghYXysAQmn85pgPXIaQAAAL4uJDxUak/oaAIHf5ESEi1TS3STjKzAHG3wm5EGWIOcBgAA4A8q9mwgFbrXk4wE96YQ2V04mSI7r39XPB04JGZkSAkJPAQNAAAA8NkRh4gKf+cMwLsIGgAAABCUVrTtJOHlS7r8+hPJx6Tz+rwL6AQigoYgzGnQLTMz09tNAQAA8KpykZESEeV63kRGaoQECxKhgzCnQZev3bRpk7ebAgAAAD9B0AAAAADAKYIGAAAAAE4RNAAAAABwiqABAAAAgFMEDUGGitAAAAAoKoKGIMPqSQAAACgqggYAAAAAThE0AAAAACBoAAAAAOA6RhoAAAAAOEXQAAAAAMApgoYgw5KrAAAAKCqChiDDkqsAAAAoKoIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBqCDHUaAAAAUFQEDUGGOg0AAAAoKoIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAICgAQAAAIDrGGkAAAAA4BRBAwAAAACnCBqCzNSpU6VevXrSvHlzbzcFAAAAfoKgIcgMHDhQdu3aJZs2bfJ2UwAAAOAnCBoAAAAAOEXQAAAAAMApggYAAAAAThE0AAAAAHCKoAEAAACAUwQNAAAAAJwiaAAAAADgFEEDAAAAAKcIGgAAAAA4RdDgZ9q2bSshISH5bhMnTvR28wAAABCAwr3dABTNtGnTJCkpKce+jz/+2Ozv0qULlxMAAACWI2jwM/Xq1cuzb/DgwdKwYUO55pprvNImAAAABDamJ/m533//XTZt2iT33nuvt5sCAACAAEXQkMuePXtkypQp0rdvX3P3Pjw83OQLjB8/vlAXdO7cuSbvoGzZshITEyONGjWSSZMmSXp6uid+f/LJJ59IaGio9OnTxyPnBwAACFQZp89L+skUl7fMUxckNjnDbKGZNglkTE/KZfr06TJ58mSXLuaQIUPMazXQaN++vZQqVUpWrVolw4cPl0WLFsny5cslOjparDRz5ky54YYbpHr16paeFwAAINBtb/222+d4+/8/pkSHyox7KorcIAGJkYZcGjRoIMOGDTOd8d27d8t9991XqAu5cOFCEzBooLBx40ZZtmyZzJ8/30wf0hGLtWvXyujRo3O8ZsaMGQWuhJR9mzdvXr7vuWHDBtm7dy9TkwAAALws5nyW9J15QmwZWRKIGGnIpX///jm+16k/hfH888+bxxEjRsi1117r2F+hQgWzslGbNm3kjTfeMIFD6dKlzXPdu3eXli1bXvTc1apVK3BqUokSJaRHjx6FaiMAAECwCi8TLWFxUZKZlOrRwCErMU2knAQcggYLxMfHm2RklV9uQevWraVGjRpy6NAhWbJkifTu3dvs1+DBHkAUVUZGhnz66ady2223SVxcnJs/AQAAQGALCQ+V2hM6yv6RyzwaOAQqggYLbNu2zTyWK1dO6tSpk+8xzZo1M0GDHmsPGtyh059OnjxZ6KlJqampZrPLXesBAAAg0FXs2UAqdK8nGQnnLTnf0YMHJb7TAgkGBA0W2Ldvn3msWbNmgcfoSEP2Y92lU5PKly8vnTt3LtTxEyZMkLFjx1ry3gAAAP484hBRIcaSc4Ull5BgQSK0BZKTk82jLrFaEE2QtuoO/9mzZ+XLL7+UXr16SURERKFeM3LkSElMTHRsOuoBAAAAFAYjDX5IA5CUlJQivSYqKspsAAAAQFEx0mCB2NhY8+isI6+jA8rbSctTp06VevXqSfPmzb3aDgAAAPgPggYL1K5d2zw6m/Jjf85+rLcMHDhQdu3a5VjtCQAAALgYggYLNGnSxDyeOnWqwETnzZs3m8fsNRwAAAAAf0DQYIHq1as7pvvMmjUrz/NaDVpHGjSnoEuXLla8JQAAAFBsCBosMmrUKPM4ceJE2bp1q2O/jj4MGDDAfD1o0CCXi7lZhZwGAAAAFBWrJ+WiHX57J1/t3bvXPL711luyePFix/4FCxZIlSpVHN9369ZNBg8eLK+//rq0bNlSOnToYJZgXblypSQkJEirVq1k3Lhx4m2a06CbLv3q7QAGAAAA/oGgIRftTG/cuDHPhTp8+LDZ7LJXV7abPHmyCQ70bv66deskPT1d6tatKyNGjJChQ4dKZGSkJ36HAAAAgEcRNOTStm1bsdlsLl9QLbimGwAAABAoyGkIMuQ0AAAAoKgIGoIMdRoAAABQVAQNAAAAAJwiaAAAAADgFEFDkCGnAQAAAEVF0BBkyGkAAABAURE0AAAAAHCKoAEAAACAUwQNAAAAAJwiaAAAAADgFEFDkGH1JAAAABQVQUOQYfUkAAAAFBVBAwAAAACnCBoAAAAAOEXQAAAAAMApggYAAAAAThE0AAAAAHCKoCHIsOQqAAAAioqgIciw5CoAAACKiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAMApgoYgQ50GAAAAFBVBQ5ChTgMAAACKiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAMApggYAAAAAThE0AAAAAHCKoAEAAACAUwQNAAAAAJwiaAAAAADgFEFDkJk6darUq1dPmjdv7u2mAAAAwE8QNASZgQMHyq5du2TTpk3ebgoAAAD8BEEDAAAAAKcIGgAAAAA4RdAAAAAAwCmCBgAAAABOETQAAAAAcIqgAQAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwga/NAXX3whLVu2lLi4OKlUqZLccsst8tNPP3m7WQAAAAhQBA1+ZsWKFdK9e3e5/PLLZd68efLWW2/J8ePHpUOHDnLkyBFvNw8AAAABKNzbDUDRzJo1S2rVqiUfffSRhISEmH2NGjWSunXryrJly6Rv375cUgAAAFiKkQY/k56eLqVKlXIEDKp06dLmMSsry4stAwAAQKAiaMhlz549MmXKFHPHvmHDhhIeHm466OPHjy/UBZ07d660bdtWypYtKzExMWYUYNKkSaazb4UHH3xQfv31V3n11VflzJkzcujQIfnPf/4jNWrUkDvuuMOS9wAAAACyY3pSLtOnT5fJkyeLK4YMGWJeq4FG+/btzYjAqlWrZPjw4bJo0SJZvny5REdHizv0vJ9//rncc8898vjjj5t9derUkW+++UbKlCnj1rkBAACA/DDSkEuDBg1k2LBhMnPmTNm9e7fcd999UhgLFy40AYMGChs3bjT5BfPnz5fff//djFisXbtWRo8eneM1M2bMMKMYF9s04dluw4YNcv/990ufPn1MoKDvW6VKFencubMcO3asUG0FAAAAioKRhlz69++f4/vQ0MLFVc8//7x5HDFihFx77bWO/RUqVJBp06ZJmzZt5I033jCBgz0HQVdB0qVTL6ZatWqOr3Uq0j//+U958803HfvatWtnkqN1ytLEiRML1V4AAACgsAgaLBAfHy+bNm0yX+sIQG6tW7c2OQeaf7BkyRLp3bu32a/Bgz2AKKydO3eaUYXstF7DZZddZkY1AAAAAKsRNFhg27Zt5rFcuXImvyA/zZo1M0GDHmsPGlxRu3Zt2bx5c459SUlJ8scff8gNN9xQ4OtSU1PNZpeYmOh4rbuSU1Ml69y5nPuSkiQiKsrtcwez9OQUScm6kGNfUnKSRERmeq1NgD/LuJAsZ8/lXGUuKSlZwtMivNYmAP4tOTk5z99q3WdF/0rZz2Oz2cTbCBossG/fPvNYs2bNAo/RkYbsx7pq0KBBMnDgQHn00UflzjvvlLNnz8rLL79sAoKHH364wNdNmDBBxo4dW2C7rJZ/6AS3XTqOiwhY6WH+tQJgsUbW/63WQKSos1OsRtBg0S9S6RKrBdEEaeVu5Pnvf/9bSpQoYfIjtNCbrsakORSrV6+WK6+8ssDXjRw50rHakkpISDB5EAcPHvToh7B58+aOqVuefO3FjnX2fEHP5d6f33HZ9+nv1j4NTaeMeYq/XlNX9nFNuaa+/jktrs9oQe3wxGu5pr5zTYuy39nfrED7nBbmuEC5pjabTZo2bSpVq1YVbyNo8DO6mpLWatCtKKKiosyWmwYMnvywh4WFuXz+orz2Ysc6e76g53Lvz++4/Pbp91zTwl0rrql7n1OuqfX/77u6z9P/3xfUDk+8lmvqO9e0KPsL8zcrUD6nhTkukK5pZGRkoRfm8STvtyAAxMbGmseUlJQCj9FpRMrTHyxfo1OpiuO1FzvW2fMFPZd7f37HufPzBds1dWefp3FNuabOPgt8Tgv//wv/77v2b0xh/w4V5Tp7499Sd9+3sK8tzHFcU+uF2Hwhs8KHaWXoDz/8UMaNGydPP/10vsdo4bauXbtK+fLl5eTJk/keo9WaFyxYYGpAvPjii+JtOqymowyaEB1sgYyncE25pv6AzynX09fxGeWa+oOkIOxHMdJggSZNmpjHU6dOFZjobF/xKHsNB2/SqUpjxozJd8oSuKa+gs8p19TX8RnlmvoDPqdcUysw0mDBSINq0aKFSY4ZP368PPXUUzme02rQWtxN/6fVqs3ezn4HAAAAioKRBouMGjXKPGpF5q1btzr26+jDgAEDHMulEjAAAADA3zDSkIt2+O2dfLV3716Tp1C9enWpVq2aY7/mJ1SpUiXHax977DF5/fXXJSIiQjp06GCWYF25cqVZ3rRVq1ayYsUKs0QqAAAA4E8IGnJZs2aNtGvX7qIXTnMXtDpzbp999plMnTpVfvrpJ0lPT5e6devKvffeK0OHDjVLZgEAAAD+hulJubRt29YU0rjYll/AoHr16iXffvutyaY/d+6c7NixQ4YPHx6wAcMff/wh//rXv0yCt46wFHRdkP+169Kliyn8V6FCBTPC5WzZXvBZLG7z5s2T7t27m2r3JUuWlPr165sK9HpDBK75/PPPpXXr1ub/ec1zu/TSS03hzTNnznBJLZCRkSHXXHONqWk0Z84crqkbN1D1GubeGjRowDV106effmryYPXf1HLlypmZKUeOHBF/QHE3uGXnzp2yePFi8z+ABlP84SscDSrbt29vKjzOnTtXTp8+bToOmig/f/58PpV8Fn3CSy+9ZG4ETJo0SS655BJZt26dWRDi559/NgtEoOj0/3W9OfXkk0+aHDe9sTR27FjZvn27mc4K90yePFlOnDjBZbTIu+++a24W2GlHF67Tmy4jR440y++/8MIL5kbhd999JxcuXBC/oHUaAFdlZmY6vn700UdttWrV4mIWwgsvvGArUaKE7dixY4598+fP15opts2bN3MN+Sz6hOPHj+fZN27cOPM5PXr0qFfaFIjefvttc00PHDjg7ab4tUOHDtliY2NtH374obmes2fP9naT/Nbq1avNNVy/fr23mxIwfv/9d1tERIRt2rRpNn/F9CS4xRfKmvujJUuWmJGGSpUqOfZpgUCdqqQjNyg6PovWq1ixYp59TZs2NY9//fWXB94xOOkUBcW0L/cMGTLE/Dt6/fXXW/J7Aaz0/vvvm6nqDz30kN9eWHp8Pm7Pnj0yZcoUUy+iYcOGEh4ebuYVaj2IwtCpLzoUXrZsWbOaU6NGjcxUA/44efda79q1S66++uoc+/T9rrjiCtm9e7cECj6/gXdNdShd//DpIg+BwhvXNDMz00xJ0MKfOj1J85u4pq5f06VLl8ry5cvlxRdflEDljc/p7bffLmFhYWZ64iOPPGKm1wWS4rym69atk6uuuspM7axVq5Z5Lz3+66+/Fr/h7aEOOPfYY4+ZIcLcm04RKOxrw8PDbTfffLPtjjvusJUpU8bsa926te3cuXOWXn5/n55UnNdaj8vvvB06dLDddNNNtkDhrc+vv38WffXfhJ07d9qio6NtgwYNsgUSb1zT0qVLO95HX3f27FlbICnOa3r+/Hlb3bp1bS+99JL5ft++fQE5Pak4r+nWrVttTzzxhG3RokVmqtLEiRPNZ7ZBgwa2Cxcu2AJFcV7TK6+80laqVClblSpVbB999JFt2bJltltvvdW8/pdffrH5A4IGH/fOO+/Yhg0bZps5c6Zt9+7dtvvuu69QH+gFCxaY4/QDumXLFsf+EydO2Bo2bGie038Qsvvggw/y/Z8n9zZ37tyA7KgV57UOlqChOK9pIH0WffGa6nGXX365OTbQOrjeuKbbtm2z/fDDD7Y333zTVr16dVu7du1sGRkZtkBRnNd09OjRtquvvtqWlpYW0EGDt/7ft1u+fLk5VvsKgaI4r+nll19u9n/11VeOfampqeb/f31ff0DQ4GceeOCBQn2gmzdvbo4bP358nue+//5781xUVJQtISHBsV+/1v9pLrYlJSUFRUfNk9e6YsWK+f4jfe2119ruuusuW6Dy5DUN5M+it6+p/j/frFkzc03j4+Ntga64Pqd2GzZscHpDJhB46pru37/ffD9v3jzbmTNnzLZ9+3Zz3HvvvXfRa+/PivtzqsqVK2cbMGCALVB58pq2aNHC7M89AqF/8/Vvvz8gpyEAxcfHy6ZNm8zXffr0yfO8rhFeo0YNSU1NNQm5drr8n863u9gWGxtbrD9PIF5rzWfInbugc5x/++23PLkOwcbVawrPXFPdp/Oa9+/fL8uWLTPLBMPaz6nWudF51Fq7JZi5ck210Kp+36NHDzOvXDedJ6404bRatWoSzDzx76l+VoNZvIvXNPvStdnpDXx/WXKVoCEAbdu2zbEiR506dfI9plmzZjmORfFea016XL16dY71xBctWiRnz56VW265Jah/HXx+feeaaiB79913mz+Q+sfvyiuv9EDr/JOVn9MffvjBdBy00Fswc+WaNm7c2Pxbmn2bPXu2eW706NH+lWTq459TvWmgidBalymYbXPxmurKXip7PRYNLNauXes43tdR3C0A6Z0XpVVcC6JRcPZjXaVVr+2R9J9//mm+1yqyqnnz5maFgEDm6rV+9NFHzYoNegdX/7BpUTwt7qbf+8s/Hr52TYP9s+iJazpw4EBZuHChjBs3zgQQGzZscDxXr149iYuLk2Dl6jXt2LGjqQCrdx21IrR2KnTFH61i3K1bNwlmrlzTMmXKmNVrstNRMftntE2bNhLMXP2c3nvvvaZDrEss6+yCjRs3mmJkGqTpjYRgts/Fa6pBw3XXXSf9+/eXCRMmSOXKlU0/QP/+//e//xV/QNAQgJKTk82jLv9VEK0HoJKSktx6r+PHj0vPnj1z7LN//8EHH5hlzAKZq9da/9CtWrVKBg8ebIbVS5QoYa6bVuANdq5e02D/LHrimuoylkoDW92y0zu6uTtrwcTVa6p3aT/55BNHZ0Irbg8YMMDcNNClbINZcf7tChauXlMNamfNmmUqbJ8/f16qV69upnuNGTOGz2mya9dUawlpHSatBv3EE0+Y66o3tLQvUNDUJV9D0AC36B88HVZH0WlNBnunDO7js2g9+x1bWEdHbXSD5/BvgftGjhxpNlirXLlypsibbv6InIYAZE9UTklJKfAYnTuvgnl6gRW41lxTf8DnlGvqD/icck39QWwQ97EIGgL0Los6dOhQgcfYn7MfC661r+DzyzX1B3xOuab+gM8p19RKBA0BqEmTJubx1KlTBSY6b9682bHUH7jWvoTPL9fUH/A55Zr6Az6nXFMrETQEIE1Y0uQapYlMuenyXjrSoCt36NKf4Fr7Ej6/XFN/wOeUa+oP+JxyTa1E0BCgRo0aZR4nTpwoW7dudezX0QddqUMNGjTIFHQD19rX8PnlmvoDPqdcU3/A55RrapUQLQtt2dlgOe3w2zv5au/evXLy5Elz9yB7pcsFCxZIlSpVcrz2sccek9dff10iIiLMuuC6PJgWFUlISJBWrVrJihUrJDo6mt8a19pj+PxyTf0Bn1OuqT/gc8o19ToNGuC7Vq9erUHdRbd9+/bl+/pPP/3Udv3119vi4uJs0dHRtgYNGtgmTpxoS01NLfafxddxrbmm/oDPKdfUH/A55Zr6Az6nRcNIAwAAAACnyGkAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAMApggYAAAAAThE0AAAAAHCKoAEAAACAUwQNAAAAAJwiaAAAAADgFEEDAAAAAKcIGgDAj9SuXVtCQkIuus2YMcPbTfUL+/fvz3Ptxo8fX+Dx58+fl+nTp8ttt90mNWrUkJIlS0p0dLRUr15dOnbsKBMnTpQ///zT7Xbt3btXQkNDTXt+/fXXix6fnp4uFStWNMd/9tlnZt/Ro0fz/GzPPPOM220DEJzCvd0AAEDRtWrVSi677LICn3f2HPKKiYmRHj16mK8bNWqU7yVasWKF3HfffXLs2DHToW/cuLG0aNFCIiMjTQf9hx9+kOXLl8vTTz8tkyZNkscff9zlS123bl254YYbZM2aNfL++++b8znz5ZdfysmTJ6V8+fLSrVs3s0+DmQceeMB8/dNPP8n27dv51QNwGUEDAPih/v37S9++fb3djIBRoUIFp6MzixcvNp3xzMxM6devnxmNqFq1ap67/dp5f/755+W3335zu00PPfSQCRo+/vhjc87w8IL/ZGtgoe69914TxKjSpUs7fiYdYSBoAOAOpicBAODEqVOnTGdcA4ahQ4eaDnrugEFFRETInXfeKT/++KM8/PDDbl9TPVeZMmXMKMbXX39d4HFHjhyRZcuWma8ffPBBfpcAPIKgAQCCgH1Ou5o/f760bt1a4uLizLQcneq0ZMmSAl+bkZEh7777rrRt21bKlSsnUVFRUqdOHfn3v/8thw4dynO83h3X99Ljz507J//73//k6quvNvP/NSfDzmazmQ54s2bNzHM6taZz586ybt26HOew++CDD8w+zR0oyF9//WU67zo1Rzv7VpgyZYokJiZK5cqVTc7CxYSFhUnTpk3zfe7MmTMyZswYM7UpNjbW/NwNGzY0Ixd6rbLTn6FPnz45RhLy8+GHH5qARq/jNddcU+SfDwAKg6ABAIKIdlh79uxpvu7SpYtcfvnlppN+6623yoIFC/Icn5ycLDfddJO5c75lyxbTKe3atasJHN58801p0qSJbNu2Ld/3unDhgun0v/LKKybI0Nfp+9kNHDjQTMHR12tuwM0332yCkOuvv95MB8pNO9Ca7Ku5BQVN/3nrrbdMkNO7d28ThFjhiy++MI+9evVyTP1xxa5du0y+xLPPPivHjx83gduNN94oJ06ckNGjR5vgTYOT7PT6qK+++sq8Jj8aTGU/FgA8wgYA8Bu1atWy6T/dH3zwQZFep6/RrUyZMrYNGzbkeG7MmDHmuSuuuCLP6/r06WOeu/XWW23Hjh3L8dyrr75qnrv88sttGRkZjv2rV692vN8111xjO3LkSJ7zfvHFF+b5UqVK2X744Yccz7388suO199www05nnvqqafM/sGDB+c5Z1pamq1y5crm+S1bthTquuzbt88cr9c1P+np6bbQ0FBzzMcff2xz1blz52x169Y153n66adtqampjudSUlJsvXv3Ns/169cvz2sbN25sntPrktvatWvNc9HR0baEhIQC39/+O9ZHAHAFQQMA+GHQcLHtzJkzOV5n3//666/nOeeFCxdspUuXNs8fPHjQsX/Xrl22kJAQW9WqVW1JSUn5tqdLly7mdYsWLco3aPjuu+/yfV379u3N8yNHjsz3+ebNm+cbNMTHx9siIiJMe8+ePZvjudmzZ5vXXHfddbbCuljQoIGS/WdZunRpvse88cYbtgceeCDPlt306dMdwVd+kpOTbZUqVbKFh4fbTp8+neO5KVOmmNc2aNAgz+sefPBB89y9997r9OckaADgLlZPAoAAXHK1oGk0Wl8gN51qdOmll5ppQvHx8ab+gNI8B403NM9A59/nR6cf6XH2KU7ZVapUSdq0aZPnNTp9SI9X99xzT77n1alImzZtyrNfE5B1adTZs2ebVYX+9a9/OZ6bOnWqeRw0aJAUp9WrV5s8kdyyr8ak04vUXXfdle85SpUqZXIS9Frqz61Ttew0CfvJJ5+UX375xSRZ61QulZKS4qjJwNQkAJ5G0AAAQbTkas2aNfPdr0nR9jwEO3uRsvfee89szui8/NyyJz1np/UE7O9T0DEF7VeDBw82QYMGCfag4eeff5a1a9fKJZdc4qi3YAVN/Nbkaw2e8vsZ1bx58xxfHz582BF0ZWe/llrnQTdncr+PrqB0xx13yKxZs0xCtD1o0IDh7NmzjpoOAOBJBA0AEES0KFlhZWVlmUdd6aeggmd2//jHP/Ls09V/XGVf6Sk/LVu2NB1nvev+7bffmg6zfZThkUcecStZOTetjaDJ31rjYPPmzeauvyvs17JTp04msHGmVq1aefbpSIIGDXPmzJFXX33VXFt7ArQus+rsegGAFQgaAAD5st8x16lQb7zxhmVXSVc10ilRqampcuDAAalXr16eY/bv3+/0HDraoB14bZcGNDNnzjQd/OzTlayiqz5p0KB39l988UWzpKsr1/LXX381nX9XRkLatWtnppDpiMXnn39ugrTvv//eLO9qr/oMAJ7EkqsAgHxpLoPSKsfZpy25Szvd1113nfla757nR6cfOaPLn1apUkUWLlwozz33nJnf371793yLrrlLAxSdvqVF1J566im3rqU9B6GodCTBXrhNpyjZ6zZozYpq1aq5dE4AKAqCBgBAvrQGg1Yl1toJOqc+v7v/2lnXu/zHjh0rckdcvf7667Jhw4Ycz02ePFk2btx40cBDi8tpUvVLL73k0QToChUqyEcffWSmdulIg9as0AAiN817+OGHH/I9h06b0mlHc+fOleHDh5v6F7lp5ed33nmnwHZoDouOLGji9dtvv232kQANoLgwPQkA/JBWaNaqyQXR1Xfs1YTdofPmExIS5Ouvv5Yrr7zSTAXSQm3aQdYgQqftpKWlye7duy86Vz87HRXQjrR2frXIma6ypCMHO3bsMOcaOnSombvvLD/h0UcfNaMMOs1J8w60KJyn3H777WYFpPvvv99ce70umuuhCdv26tO6+pR2/DW4yJ37oJW39fW6wtSkSZPMz61trl69uqkErcXq9OfWFac0KMmPjijoyIKusKTvp4Xu8lsNCwA8gaABAPyQ3tEu6K62fcUdK4IGXWp1+fLl8umnn8onn3xiqkL/9NNPZrqOdvJ1yVSd868r+BSVVpRu3ry5TJ8+3Yw2lChRwiQ4T5s2zTGqoXf5C6IdbO2466iEVpf2NE1i3rdvn1lKVTvuGjDt3LnTBFCap9GgQQPTDr3umn+QW/369c0qT/pza/Vt/Xr9+vXmZ9TgYdiwYSaYckZHFvS9la7C5Ep+BQC4IkSLNbj0SgAAPETn7+vd/Jdfflkef/zxfI/Ru/NXXXWVlC5d2tSXKFmyZJHfR4MTHTnRqUMXS772Z88884yMHTtWxowZY74GgKJipAEA4BV6l16n9+jUnexLk2pNCL2bryMPvXv3LvD1//vf/8xdfs1tcCVgyF07wl73QvM4AmHaT2Jiojz22GPmax0dAgB3EDQAALxCk4p1NSFNuNb5+ppUvWvXLnPHXxN+dZqSToHKTldy+uKLL0zAodOSKleuLP/973/dbou+94cffmi+1krbgRA0nD9/3vEzAYC7CBoAAF5x1113SVJSkiNPQldC0jwF3T9kyBBTxC23rVu3muVGNdfixhtvlFdeecXkb7hKRzoCdZauBlSB+rMBKH7kNAAAAABwijoNAAAAAJwiaAAAAADgFEEDAAAAAKcIGgAAAAA4RdAAAAAAwCmCBgAAAABOETQAAAAAcIqgAQAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwgaAAAAADhF0AAAAADAKYIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAMCpcOdPI1BlZWXJX3/9JbGxsRISEuLt5gAAACAXm80mycnJUrVqVQkN9e69foKGIKUBQ40aNbzdDAAAAFzEoUOHpHr16uJNBA1BSkcY7B/CuLg4bzcHAAAAuSQlJZmbvPZ+mzcRNAQp+5QkDRgIGgAAAHxXiA9MJScRGgAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwgaAAAAADhF0AAAAADAKYIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOBXu/GkAAAAAztgysiQj4bxYLT05RXwFQQMAAADgohNzf5H9I5dJZlKq5dcwJeuC+AqCBgAAAAQNW1aGZKYlWnOujCz57b+LJCzFJoGOoAEAAABBIWnfAjm6+RlJzMi05HyZZ6MlLKW7BAOCBgAAAATFCMPsrfNkStQTklIi2pJzxtoy5G3ZJ8GAoAEAAAABL/XCGZkS0VHOZ5WQ2HMZlpwzNjkrz74nxtWS5FhrFijNPHdO5GHxCQQNAAAACHiJGRnSZEO69J35l8Scz9vZt8qcm66TyArWjGQkJyXL5eIbCBoAAAAQ8DRpue/MEx4NGFTluEskIi5GrBAt1pzHChR3AwAAQMDLSkzzeMAQFhcl4WWsGWXwNQQNAAAAgAUBQ+0JHSUkPDC710xPAgAAQFCqtrS7VK5Z05JzhZeJDtiAQRE0AAAAICiFlS0hERV8J2/AlwVuOAQAAADAEow0AACCSnpGmpw+d8oj5y5XsrxEhEd65NwA4E0EDQCAoDFr23yZuD9F5HyEZ94gOl1G1I6RPk3uFF+WkZUlienplp+3dESEhIcyiQEIRAQNAICgGWFY9dkJeXVWgseWXUyJDpXZfcpIz4ZpPjvisODwARmzY5skZ1gfNMSGR8jYhk2ke/Valp8bgHdxOwAAEBROJZ2Q3h4MGJSeW99D38tXRxg8FTAoPa+eX98HQGAhaAAABIXiKOyk9D30vXyRTknyVMBgp+f3xNQnAN7F9CQAAIKELSvDPIZm2iTmXKbl508pGSZZYSH//32iLD9/MLJlZElGwnnLzxvoNQVgPYIGAEDQsqKw09GDByW+0wLxB5npSdJ6fZL0nXnCI6MumtMx456KknlDkkg0a9+768TcX2T/yGWSmZQqnqpeXLFnA8vPjcBE0AAACFpWFHYKSy4h/nTX2lMBg9Lz6vltw8hpsOJ35amAQel59fwVutdjxAGFQtAAAECQLI16+mSKx/M6HDkd5Tz6NgFPpyR5KmCw0/Pr+1ARGYVB0AAAgI8ujTr2p62SlXTBsnPGJmfJy5adDYHgdFqahKda0x2kTkdgI2gAAMBimWcuSHpsisuvz8iyyfcvfiNvzj4mvp7X4U85Hf7ElpU3Uf2JcbUkOTbUvaBx9IEc+25as1SSY63pDlKnI7ARNAAAYDHtRMe7eY5eUjzKVoxxa3qKP+V0+JO01IQ8+zRgcK+D//fqWZ5i6nRs/1Fuq1qDyuABiKABAIAglRGdIVFloyXYWJ0r4onpOUkZ1i+JWxySs0QSUs9LBVbPCjgEDQAAuCG0dKRZarQ4CsdZqkSqlLlznYSED5RgqlGw5MhheWHXDjkWlWVqSljJH6fn6JQlq0Yg7HU6dGlfltwNPAQNAAC4QQtkaW0CTy5l+tFdFaTvNW9Jads5y84ZEp0qYSVKSVhkaQmmGgWXiMgr2a7r2utiLTt3SkmbR6fnzGnWVC6p5XpAknHqnOyT6Tn25c5xsKJOh9zgm6NCCVQqdwtBAwAAblp7XZysaxHrqLL8ddOrpVypCi6f7/TZk9J5y+4cd2/7nU2VUJt1KymFRsRKxWZjJSQ0POhqFNjd/+lJs1ndaU5o75npOWUiIqR8lOuVttMjM2SfeI7VdTp0BbExO7aZXAkrxCZnyNuWnCk4+d6/FAAA+CHt2NuTVP/aeq+cs7m+elJCSIwkx47Jsa/GjXOlQmwlsYqOMPhiwFBcNQo82WnOGJbgk9NzwstEm0rQnry2VtXp0BEGHbUxs6fgE3zzXwsAAJBDSFQZCS9RPmiXG/UXvlzcTqfS1Z7QsVhGcdylydTFETDEhYd5/k0CBEEDAABuCIuIC6j38dXlRt2tUWDXen2ypVOS/E3Fng2kQvd6liWYe6pOh0mm1ml0mTbHtD9rkr5ziowqY8m5gwFBAwAAbshvik9SiHtTU/J7va9OJfKE/JYbdb9Gwd++vrmsLOtQxnRES4WIrOxwm4SHhgRVcTsdcXCnNkdx1elovT7JowsMqJBQRhoKK3j+BQIA+B1bVoZkpiVacy6LzlMY/WOGFdt7oejMUqtlo+XJhk0kulIpty4hxe08lwzv6YABRUPQAADwSUn7FsjRzc9IokVFrpLOlpUY6WzJuVD83F1u1JOF2GA9zQvxdMCgSeGaHI7CIWgAAPjkCMPsrfNkavjjuk6kJeeMzcqSl8W6Nemzdz61qJdVy0LmR8+v7+Mvzpw7LWFJJdx6vdXLjQK5AwZNCtepWigcggYAgM9JvXBGNm1uLa/OOuLRu41hEe5NTVF6t1qrAFu5nnx+VYb96a547+2/SfKff7r8etbT92+ZZy5IemyK2+fIrdrS7lK5Zk2xgo4wEDAUDUEDAMDnJFxIk96zEj0+PSEu0pqpCd2r1zJVgK2qXOvv02j+XqUmw83Xw19pYni8B84bVraEZQncKDqCBgBAUM5nzioVISXKlbTsfNqxD8bpM2VKlpWDufa9PPqAR94HgPf4160LAAAsms98+QudmZ5ggYiwiIB6HxRNaOlISYn2fHdS30PfC97DSAMAwC8wn9k36dxwDcI8WWGYVW58l+YFzLinokeXR9WAQd/jJZKWvYqgAQDgF5jP7LudRl2FZv/IZR4JHFjlxvetvS5O1rWIdVRuXnpdS6kYW8mtc55IPi6d1m8wX6eUDPu7tga8iqABAAC4pWLPBlKhez3JSDhv+ZVklRv/oJ16e8Xu0FIXJKRU3tWPiiLUdsGSCuCwDr8NAABgyYgDK9tA7VzZV+Js7i25mhQSI0JldZ9C0AAAAADL9KezH5BYPQkAAAAuCYuIC8j3Ql6MNPiZP/74Q1566SX58ccfZceOHVKtWjXZv3+/t5sFAAD+vzPnTktYUgm3z+EPykRFS2yoiKfr8el76HvBewga/MzOnTtl8eLF0qJFC7HZbHLmzBlvNwkAAGTTe/tvkvznn25dk9jkDHnbD66qFjUc26iFjNmxTZIzrK+IrmLDI2RswyZ+Vxk90BA0+JnbbrtNbr/9dvP1v/71L1m6dKm3mwQARtqFC3LyyBFLrsbpv45yVQE/0b16Lbmtag1JTPdM0FA6IoKAwQcQNPiZUKJsAD7oy5fel1JTjknJ8zZvNwUoVmVKlpWDxfhevkpHAcpHRXm7GfAgxnkssGfPHpkyZYr07dtXGjZsKOHh4RISEiLjx48v1Ovnzp0rbdu2lbJly0pMTIw0atRIJk2aJOkeitgBwOoRBgIGBKuIsIg8+2KTs8z0Ive2rEK9F1BcGGmwwPTp02Xy5MkuvXbIkCHmtRpotG/fXkqVKiWrVq2S4cOHy6JFi2T58uUSHU3iDwDfpVOSPD3CcC46RCpUqeLR9wCs8vLoA1xMBBxGGizQoEEDGTZsmMycOVN2794t9913X6Fet3DhQhMwaKCwceNGWbZsmcyfP19+//13M2Kxdu1aGT16tBVNBAC/pQHD2f9cIpEl3FuNBgDgOkYaLNC/f3+X8g6ef/558zhixAi59tprHfsrVKgg06ZNkzZt2sgbb7xhAofSpUtb0VQAKBalFrSTclUrW3IuHWEgYICvCi8TLWFxUZKZlOrR99H30PcCvIWgwUvi4+Nl06ZN5us+ffrkeb5169ZSo0YNOXTokCxZskR69+7thVYCgGs0YKhapw6XDwEvJDxUak/oKPtHLvNY4KABg76HvhfgLQQNXrJt2zbzWK5cOalTwB/WZs2amaBBj3U3aEhNTTWbXVJSklvnAwAAf6vYs4FU6F5PMhLOe+SS6AgDAQO8jaDBS/bt22cea9asWeAxOtKQ/Vh17tw5M/Kg/vzzT/P9vHnzzPfNmzeXWrVq5XuuCRMmyNixYy39GQAAwN+0Ux9RIYbLgYBF0OAlycnJ5lGXWC2IJkjnHhU4fvy49OzZM8dx9u8/+OADs+xrfkaOHCmPP/6443s9pz0oAQAAAJwhaPAztWvXFput6EsbRkVFmQ0AAAAoKjJqvCQ2NtY8pqSkFHjM2bNnzWNcXFyxtQsAAADIjaDBiyMGShOdC2J/zn4sAAAA4A0EDV7SpEkT83jq1Kkcic7Zbd682Txmr+EAAAAAFDeCBi+pXr26We1IzZo1K8/zWg1aRxo0D6FLly5eaCEAAADwN4IGLxo1apR5nDhxomzdutWxX0cfBgwYYL4eNGgQ1aABAADgVayeZAHt8Ns7+Wrv3r3m8a233pLFixc79i9YsECqVKni+L5bt24yePBgef3116Vly5bSoUMHswTrypUrJSEhQVq1aiXjxo2zookAAACAywgaLKA1DzZu3Jhn/+HDh81ml70is93kyZNNcDB16lRZt26dpKenS926dWXEiBEydOhQiYyMtKKJAAAAgMsIGizQtm1bl2on2PXq1ctsAAAAgC8ipwEAAACAUwQNAAAAAJwiaAAAAADgFEEDAAAAAKcIGgAAAAA4RdAAAAAAwCmCBgAAAABOETQAAAAAcIqgAQAAAIBTBA0AAAAAnCJoAAAAAOAUQUOQmTp1qtSrV0+aN2/u7aYAAADATxA0BJmBAwfKrl27ZNOmTd5uCgAAAPwEQQMAAAAApwgaAAAAADhF0AAAAADAKYIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcCnf+NAAg0NgysiQj4bxl58s8c8GycwEAfBNBAwAEkRNzf5H9I5dJZlKqt5sCAPAjBA0AEEQjDPuGL5ass1nebgoAwM+Q0wAAQSL99NliCRhSokMltHSkx98HAFB8CBoAIEikpSYUS8Aw456KEh5dxuPvBQAoPkxPAoAgkZSRmWffE+NqSXKsdfePUkqGSUxEiJSJirbsnAAA7yNoAIAgpgFDcqx1fwpiwyNkbMMmEh7KQDYABBKCBgAIYnOaNZVLatWy7HylIyIIGAAgABE0AEAQKxMRIeWjorzdDACAj2P8GAAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwgaAAAAADhF0AAAAADAKYKGIDN16lSpV6+eNG/e3NtNAQAAgJ8gaAgyAwcOlF27dsmmTZu83RQAAAD4CYIGAAAAAE4RNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4BRBAwAAAACnCBoAAAAAOEXQAAAAAMApggYAAAAAThE0AAAAAHCKoAEAAACAUwQNAAAAAJwiaAAAAADgFEEDAAAAAKcIGgAAAAA4RdAAAAAAwCmCBgAAAABOETQAAAAAcIqgAQAAAIBTBA0AAAAAnCJoAAAAAOAUQQMAAAAApwgaAAAAADhF0AAAAADAKYIGAAAAAE4RNASZqVOnSr169aR58+bebgoAAAD8BEFDkBk4cKDs2rVLNm3a5O2mAAAAwE8QNAAAAABwiqABAAAAgFMEDQAAAACcImgAAAAA4FS4uOnYsWOycuVK2bp1q/n6zJkzUrZsWbnkkkukadOm0r59e/M1AAAAgCAKGtLT0+XTTz81y3f++OOPZp/NZstzXEhIiHn8xz/+YVbt6dWrl0RERLjbZgAAAAC+HDR8/PHHMnLkSDly5IgJFCpWrCjXXXed1K9fX8qXLy9xcXGSmJgop06dkl9++UXWr18vGzZskI0bN8qIESNkwoQJcu+993rmpwEAAADg3aBBgwMdWahQoYIMHjxY+vbtK40aNbro63766Sf54IMPZPbs2fLAAw/ItGnTZN26de60GwCCQnpGmpw+d8qSc505d9qS8wAAgk+ILb95RQXQYEFHGQYNGiRRUVFFfrPU1FR5/fXX5YUXXpCTJ08W+fWwTlJSkpQuXdqMCunoEADfM2vbfHn+0DlJCSlhyflikzPk7SH7cuyrubG3VK1Tx5LzAwACt79WpJGGP//8060Ga6Dx5JNPyqOPPuryOQAgWEYYrAwYAAAotiVXrYpwvB0pAYCv0ylJxREwlClZ1uPvAQAI0tWTVq1aJYsXL5Z9+/aZZGhNgL7yyiulRYsW0qpVK1ZIAgA/ERHGinYAAIuDBs1JuPPOO+Xrr7/OscSqfWlVFR0dbY7RJVY1iAAAuC400yYx5zLN17MbXSFlS5Zz+VyZZy5IvOTMaQAAwPKgYcyYMbJkyRKpXr26WTlJi7adP39ePvnkE/n5559NzsK5c+fMsqy6r2fPnjJ9+nRT7A0AUDSt1ydJ35knJOZ8lvk+WfZJMhcRAODrQYMWdNOpSFr9WVdSstu5c6fs2LHDVIP+9ttvZe7cuTJnzhz57LPPzBKta9askZo1a3qi/QAQkGwZWTkCBgAA/CYR+ujRo9K+ffscAUN2JUqUkI4dO8q7774rBw8elIceekj2798vnTp1krS0NKvaDAABLysxzeMBQ1hclISXifboewAAgjBo0OrPZ8+eLdSx5cqVk3feeUfGjRsnv/76q6nPAADwDRow1J7QUULCi/RnAAAQpIo0PenGG280U46OHTtm8hkK46mnnjI5DloNetiwYa62EwCCXrWl3aWyRVM9dYSBgAEA4JGgYfjw4TJz5kzp1auXWXI1Nja2UK9r0qSJOR4A4LqwsiUkokIMlxAAUOyKNC6ttRjeeOMN+f7776Vx48YmMTr70qv50ee3b98ukZGR7rYVAAAAgBcUeTLrww8/bEYbTpw4IX369DGrIn333Xfmud9++01SUlLM1+np6bJlyxbp3r277NmzR1q3bm1964PcH3/8IV26dJFSpUqZ5PQBAwY4rj8AAADg1YrQvXv3lhtuuEGeeeYZE0BorQZ19dVX5zvSoJ3a559/3v3WwiExMdGsZFW1alWzxO3p06fl8ccfN/km8+fP50oBAADAu0GD0s7q22+/LS+99JIsXLhQvvnmG9m0aZPs3btXMjIyzDFlypSRW265xQQXdevWta7VkLfeesuM9mzevFkqVaqUoxq3jvA0bdqUqwQAAADvBg12cXFxcv/995tNZWZmSnJysoSEhEjp0qWtaCPyoZW5daTBHjCorl27mlEdTTonaAAAAIBVLF+gOywszIwweCpg0CJxWvNBcyS0FoQWlKtevbp07tzZJGZ7k+ZuTJkyRfr27SsNGzaU8PBwEzyNHz++UK/XaUZt27aVsmXLSkxMjDRq1EgmTZpk8kNy27VrV57pYPp+V1xxhezevduynwkAAABwe6ShOB0+fNhUnNYOsyb+tmrVynSuDx06ZJKx9eu77rrLa+2bPn26TJ482aXXDhkyxLxWO/46gqAjBqtWrTLL3C5atEiWL19uph/ZnTlzxgRnuWnAofkNAAAAQNAFDZpsfdNNN5nq0pojMWrUKImIiHA8f+7cObN6kzc1aNDAFLDTuhTXXnutSf7WwnYXozkhGjBooPDtt9+a16qTJ0+aAGLt2rUyevRokz8CAAAA+P30JE+ZMGGCCRgeeeQRGTNmTI6AQZUsWdLUjiiMI0eOyLPPPnvRGhM6sqFTiy52nF3//v3lxRdfNEvRXnXVVRIaWrjLa19ZasSIEY6AQeloyrRp08zXWh9DV0zKPqKQkJCQ51w6AqHTtgAAAICgChp0Tr9O/VFPPvmk2+d79NFHTeChuQeauJ2fffv2SZs2bcwd/jlz5oinxMfHm1WnlAYbuWnuRo0aNSQ1NdUkP9tpPkPu3AX9WXS0Jb+lbwEAAACfCxp0mo1OudGpN1lZWW6da+vWrWaqji7zetlll8mOHTtk7NixpvOvd+e/+uqrIr3HO++8I/Xr15ePPvrI1JzInWisHe/rr79e9u/fL4MHD5a7775bPGXbtm3mUUcH6tSpk+8xzZo1y3Gs0qJuq1evNsuu2mnuw9mzZ80ytwAAAIBP5DTMmDHDrGRkX83I7j//+Y9jWo3q0KGDfP3112ZlJVf8/PPP5lFXSdIgQVcUyj5l6IUXXjB5BBqgaIXqi7nkkktkzZo1cvPNN5sViy5cuGAeo6Ki5JdffpEbb7zRFEn773//a87tSTqioZy1W0cash+rNGDSlZpuv/12Mxqi05K0uJt+bw8y8jN16lSzFTTCAsB1GVlZkpjPameuSLDoPAAAeD1omDdvninm1rx5c8c+LTamnVJd6UdXOtLvV65caab43HPPPS69z6lTpxx32n/88UcZOHCgGQGoXLmy43t9Tu+w66hE7nyH/Gi+gK5O1KlTJ3OH/rbbbpP//e9/0q1bN/N+On1JE649TWtaKF35qSCaIK2SkpIc+3TlJG2/XocePXqYpWd79ux50WRpvVa66bmoowFYZ8HhAzL2p62SlXTBkvPFJmfJy5acCQAALwcNelde6xHoHXo7DQ60NoGuGnTHHXfI0aNHTTXo999/3+WgwT6qoNOIdDqRJgXb6ajAihUr5MorrzTt0fe/7777CnVe7XjrazXY0Efd1MSJE81Sp75OazIsXbrU280Agp6OMCyZ/o28/MkJiTnv3nRMAAACLqdB78jrlKHstF6CVonWO/ZKRwM0ofiPP/5w+X1iY2NzTMvJTaf22Ofxf/PNN0U+98iRIx3f16pVK9/38BT7z5aSklLgMZqnoPS6AvA9Z1JS5O5iCBjiwl2b4gkAgFeDBr3zn31uvK7ws337dvnnP/+ZY7nRihUryvHjx11+n0svvTTfr/M7RpdTLQotmnbnnXea9jZt2lQOHDgg7dq1M4nXxaF27drmUQvUFcT+nP1YAL4l/eRJjwcMmdGZUvKSyh59DwAAPBI06GpGO3fuzLFikgYSGjRk5+78ea1doFOeVEGdeft++/z/wvjyyy+la9eups2ffPKJrF+/3uQF/PTTT9K2bVsztcrTNIHbPmqTPdE5O80LUdlrOAAIHiHRaVJjeA0JjYz0dlMAAEHKrZwG7Vh/+OGHJgegc+fOJnlYO/eaXJyd5hrknsZUFDrFSVdn+v777830I3tH2047/RqwqBYtWhTqnLpakuZYaHs/++wz6d69u9k/e/Zsk8Sty7HqsquaxG1fvcgT9LpoIrnWapg1a5Y89dRTOZ7XatA60qB5I7rMKgD/UPXLDlKxRjVLzhVVsRIBAwDAf0caRo0aZe7sa0dX74Jv3LjRJCbrNJ/sNQ/0DnrLli3daqgGJPbK0Bs2bHDsz8jIkCeeeEL+/PNPkx/Qr1+/i57LXp8hPDxcvvjiC0fAoHRZWF1KVitP//777yZw0HN7kl5HpcGXrv5kp6MPAwYMMF8PGjSI1Y4APxJ+SSWJrlbdko0RBgCAX480aKG1devWycsvv2xyFvQuf+6KzXqnvlGjRm4XHNNaD+PGjTM1CTSxWt9LRyC0k61F2HR0QEcJtAbDxezZs8ccr9OTNH8hNx19eOutt8wxuuqT1mwoKJciO22LvZOvdDlapedavHixY/+CBQukSpUqju81aVyXTtV6Fxpc6c+qS7DqtUtISJBWrVqZnx0AAADwhhBb9ippfkATl1977TUzqqE1DjRw0E62LpF61VVXFfo8mvCsKyVZdZzSgnH5BSG56chLfknNOk1Ka1xoToVOudKlau+9914ZOnSoRFo8l9meZ5KYmMiqTICb/tq3Tw7+Y3aOfTU39paqBVR5BwDA3/prlgUNaWlpsmXLFomPjzffV6tWzUxTsrqzi8D7EAL+jqABABDo/TW3pifZcwrGjh0rU6ZMcVQ3ttMcA512o5WWNX8AAAAAgP9xqyeflZVllixdtmyZqdpctmxZqfP/h+N1Cs6ZM2fkueeeMyMQixYtylG7AQAAAIB/cKsX/+6778rSpUvNnP958+aZ1X60poBu+vX8+fPNc3rMe++9Z12rAQAAAPhH0KBLl+oKQ6tWrZI77rgjz/O6lKmuAKQ1BrSeAwAAAIAgCxq0aJsWeMtvJSA7na7Uvn17cywAAACAIAsaUlNTC1VwTBOi9VgAAAAAQRY01KhRQ9avXy+ZmZkFHqPPaQXn6tWru/NWAAAAAPwxaOjYsaMcPHhQHnvsMVOMLL/aDbrkqh7TuXNnd94KAAAAgD8Wd9NCbtdcc40kJCRI1apV5e6773Ysufrnn3/Kp59+Kn/99ZeUK1fOVDnWgm/wDb5ULATwdxR3AwAEen/NrToNGgTocqo9e/Y0owmvvPJKjuc1HqlZs6ZZjpWAAQAAAPBPbpdpbt68ufz2228yd+5cWbNmjRl9UBok6MpKGlBERkZa0VYAAAAA/hg0KA0K7rnnHrMBAAAACCxuJUIDAAAACHxuBQ2zZ8+WSy+91OQ1FESf02M0rwEAAABAEAYNunKSVnwuSLt27eTMmTMyc+ZMd94KAAAAgD8GDT///LNZctVZonNUVJQ0atRItm/f7s5bAQAAAPDHoOHo0aOFWkpVj9FjAQAAAARZ0FCyZEk5derURY/TY1h2FQAAAAjCoKF+/fryww8/yOnTpws8Rp9bu3atXHXVVe68FQAAAAB/DBruvPNOSUlJkXvvvVfOnTuX5/nz58/LfffdZx579OjhzlsBAAAA8Mfibo8++qi88847smzZMrniiiukT58+jhGFX3/91ayu9Ndff8mVV14pAwYMsKrNAAAAAPwlaIiOjjYBQ/fu3WXLli3y8ssv53jeZrNJkyZNZMGCBSb/AQAAAECQBQ2qevXq8uOPP8qiRYtMIbcDBw6Y/TVr1pROnTpJ165dJSQkxIq2AgAAAPDHoEFpUKDBgW4AAAAAAotbidAAAAAAAh9BAwAAAADrgobHHnusUMXcnDlx4oQMHjzYrXPAdVOnTpV69epJ8+bNuYwAAACwPmjQDmedOnVk5MiR8vvvvxflpbJnzx558sknpW7dujJ9+vQivRbWGThwoOzatUs2bdrEZQUAAID1idDa0fzPf/4jL7zwgkyaNEmuu+466dChg3m8+uqrpXz58lKqVCk5e/asGZHQzun69etlxYoVZoUlXYK1VatWMmXKlKK8LQAAAAB/CRq05sLatWtl3rx58uqrr8q6detMUOCMBgrqn//8pwwdOtRUkQYAAAAQ4Euu9ujRw2w//fSTLFy4UFatWiXbtm2TlJQUxzExMTFy7bXXSrt27aRbt27SuHFjK9sNAAAAwB/qNGggoNszzzxjvj937pwkJiZKmTJlTLVoAAAAAEGWCB0fH+/0+ZIlS0qVKlUIGAAAAIBgHWmoWbOmVK5cWZo2bSrNmjUzy3bqY8WKFT3XQgAAAAD+EzRUrVrVjDYsXrxYvvrqK8f+GjVq5AgidCtdurQn2gsAAADAl4OGQ4cOyZEjR2Tjxo1m27Bhg2zZskUOHjxonluwYIHjWK3HYA8i9FGTonX6EgAAAAD/EmKzr4nqovHjx8uYMWOkevXqcsUVV0hSUpL8/PPPkpqaKiEhIY7jwsLCJC0tzYo2wwL6e9LRIE1cj4uL45oCbvhr3z45+I/ZOfbV3Nhbqtapw3UFAAREf61IidC5vfvuuyZgeOmll+TAgQOmiJuOQJw+fVree+89E0hoTKLTlyIjI61rNQAAAAD/CBpee+01M+1Ii7Zlp8ut9uvXT3755RdTAVoDhz/++MPdtgIAAADwt6Bh7969ctlllxX4fGxsrMydO1dOnDhhKkgDAAAACLKgQZda3b17t9NjdInWtm3b5lhtCQAAAECQBA2dOnWSHTt2yLJly5wep9OV9u/f785bAQAAAPDHoGHkyJEmIOjVq5d88cUXBWZ9r1u3zp23AQAAAOCvQUOdOnVk5syZZinVO+64Q9q3by8zZswwU5Z0NaWlS5ea0Yjjx49Ly5YtrWs1AAAAAN8s7paf22+/XVavXi19+/aVNWvWyLfffpvjeV05KSoqSp577jl33woALGHLyJKMhPOWXc3MMxcsOxcAAAEZNCgdRdi1a5fMmTNHPv/8c1MlWkcXdPWk1q1by9NPPy2NGze24q0AwC0n5v4i+0cuk8ykVK4kAADFGTSo0NBQ6dOnj9kAwFdHGPYNXyxZZ7O83RQAAAI3p2HevHly7tw5z7UGADwo/fTZYgkYUqJDJbR0pMffBwAAnwwadJUkrc1w5513mgRoXRkJAPxFZnpSsQQMM+6pKOHRZTz+XgAA+OT0pNGjR5uchQULFsjChQslIiJCOnToYIKIrl27SoUKFTzXUgBwU2ZW3lGGJ8bVkuRYtxaSyyGlZJhkhYVISKhlsz8BAPC6EJsub1REv/32m5mqpAHE1q1bJSQkxOQ0XH/99SaA6N69u1SpUsUzLYYldJSodOnSkpiYKHFxcVxVBIW/9u2Tg/+YnWPfI6/VkeRYazv4seERsrVjVwkPtS4YAQAEnyQf6q+59BftiiuukFGjRsnmzZtl37598uKLL0qLFi3MkquDBg2SGjVqSKtWreSVV16hEjSAoKIBw9iGTQgYAAABxaWRhoIcPXrUjD7Mnz9fvvvuO8nMzDSjEE2aNDHF33S76qqrrHo7BEjkCnhzpCFubQ+5pFYty96jdEQEAQMAIOD6a5YGDdmdPn3a5D1oALFy5UpTNVoDiBdeeEGGDRvmibeEn34IgeKSX9BQc2NvqVqnDr8EAIDPSfKh/prHMvXKlSsnDz74oNn0B160aJFJoNbAAQAAAID/KFLQULZsWbn22msdW9OmTU1+w8VoZHTPPfeYDQAAAEAABw06NLJ69WqT8GxXqlQpady4sSOI0Merr76aEQUAAAAgGIMGXV51y5Ytjm3Hjh2SnJws33//vdnsU4+io6OlUaNGjiBCH+vXr2+WZQUAAADgX9xKhNbVkXbu3OkIIjSo2L59u5w/f/7/3uD/BxIlSpSQlJQUa1qNgEqsAYoLidAAAH+SFCiJ0GFhYXLNNdeYrV+/fmZfVlaW7Nq1yxFELF682NRyuHDhglVtBgAAAFCMLJ8vpFOQYmJi5MSJE7Jx40aKuwEAAAB+zrIlV3/77TeZN2+eqcvw008/mX0680mrQ2tRtzvvvNOqtwIAAADgL0HDL7/84ggUdEqSPVCoW7euCRJ0a968uVVtRS5//PGHDB482FTf1pyRXr16yYsvvmhGegAAAACvBQ2ap2APFLTTas+jrlevniNQ0BwHeJYmxLRv316qVq0qc+fONRW4H3/8cTl27Jj53QAAAABeCRouvfRSOXDggPlag4UmTZo4AoUrr7zSskbh4t566y2TN7J582apVKmSY6lb/V1oEroucwsAAAAUe9Cwf/9+s4Sqjio8++yzctttt0l4uGVpESiCJUuWmJEGe8Cgunbtaort6YpVBA0AAADw2upJOsKg+Qs9evSQ2NhYk7Pw6KOPyttvv23ueqelpUlx+e9//2uCGN3Gjx8v3rZnzx6ZMmWK9O3bVxo2bGgCqqK0TacZtW3bVsqWLWvyErRA3qRJkyQ9PT3Psfo70Mrb2en7XXHFFbJ7927LfiYAAACgSMMEn332WY5CbjqP3v79u+++6+i46khE9mrQ2vnVRF0rrVu3Tl5++WXTKXejPp2lpk+fLpMnT3bptUOGDDGv1eunIwg6YrBq1SoZPny4LFq0SJYvX26mH9mdOXNGypQpk+c8GnDo7wUAAADwStCgowu62Wl+gz1osAcSJ0+eNFWhdfvggw8cReCuuuoq+fnnny1p9Llz58zd/CpVqpiRjoULF4ovaNCggQwbNszkemjA9Pzzz8vHH3980ddp+zVg0EDh22+/Na9Vei01gFi7dq2MHj1aXnrppWL4KQAAAICc3EpIqFWrltm0DoPdoUOHcgQR+nj8+HHZuXOnWGXkyJHy+++/y1dffWVGP4rqyJEj8s4775iOuI5UFOTw4cMyY8YMeeqpp5weZ9e/f/88he4KQ4MLNWLECEfAoCpUqCDTpk2TNm3ayBtvvGHaq6XE7SMKCQkJec6lIxCXX355od4XAAAAsDxoiI+Pl2rVqjk9Rou56datW7ccr9PgwQpr1qwxeQP333+/dOnSxaWgQXMwdMrP3r175f333zcjIbnt27fP3OXX5G+tO9G7d2/xBL02mzZtMl/36dMnz/OtW7c211ODMU1+trdD8xly5y5kZmaaInuaEA0AAAB4JRG6Zs2aJmjQTqmunvT111+bZT8vxv4ad509e1YefPBBueSSS+S1115z+Tw6ylC/fn356KOPTCc8d6Kxdryvv/56EzBo8bS7775bPGXbtm3msVy5clKnTp18j2nWrFmOY5UGTKtXr85x/TUQ0mt0yy23eKy9AAAACD5FGmnQQmJ6Z1yX9NSpQXZ6J1w7tppfoI+62afRWEnzBXQEYMGCBWZ6jqs06NARi5tvvtmsWHThwgXzGBUVZapc33jjjaZImq7O9MILL4gn6c9jD8gKotc3+7H20RIdcbn99tvNtCWdlqTF3fR7e5CRn6lTp5pNRyUAAAAAy4MGnSKj+QAbN24024YNG8y0o4MHD5rntDNvp1N67EGEPupc/ZIlS4qrdPUgLWimd/2zT31yleYL6OpEnTp1MnfotebE//73P3PuU6dOyZgxY+SZZ54RT0tOTjaPusRqQTRBWiUlJTn26cpJ2n4dCdHkdF2dqmfPnhdNlh44cKDZ9FyeCOwAq2WlpUnqieOWnCvjmDXnAQAg2BQ5EVpXLNKOtb3jrjUItINdvXp1UyNAO6O6StIff/xhcgbmzJljjtO8AVdrOCQmJspDDz0kFStWNHfXraId7xUrVpjpPPqom5o4caJZ6tTX6fVeunSpt5sBeMzBaTPkyAv7xXY+kqsMAIA/FXfLTmszaMCgd7d1+VXtdOsIhNYJeO+990wgoTUUdHpNZKTrf/S1hoGuZKQrCOkIgZW0QJ2uxmSnq0Hp1J/iou+vUlJSCjxG8xRUXFxcsbUL8IURhkMvHCJgAADA34MGTUbWaUdDhw7NsV+LkPXr18/kB7Rq1coEDjry4Cqd9qRFz3T5Ua2YnH2z32nXIEW/L2rSsk57uvPOO83yqFqIToOfdu3amRoJxaF27drmUad3FcT+nP1YIBicO3ZUws7nXdnMSinRoRJh8Y0IAAACkVtBg04/uuyyy5zeRdcEY13h59VXX3XnrSQjI8MUPsu9acKy0pWO9HvNsyisL7/80qzq9P/auxM4G8v3f+DXbBjM2Pd9VyiSKIqQJSVLsiRbpUIRylZf2aUo+ZKlpIhQiAiVpWQpa8mWkJ2x78uY8399ru/vOf8zZ3nmzJlz5myf9+t1zDjPcu7zzHOec1/PfV/3jdGTZs2aJRs2bNC8gO3bt2sAcvLkSfE1TAQHyKOwTXS2tXnzZv1pO4cDUai7lHjH5wHDV+3zSA6TfCIiIiLywuRuyDGwnyvAXv78+bUCjtGWPB2JyNkkZgbMDP3555/LsGHD5K233nJ7nwhmnn32WZ20DXM9NG/eXJ+fM2eOtpRgOFYMu/rTTz9ZRy/yBXThQqI45mqYPXu2TiRnC7NBo6UBIzthmFWicNZnWDG5HJemex1WkfGZZHDl+yTazUkYiYiIwlmaggaMPIRuQStWrJCGDRu6XA+VcLQEBAoEBJjvAXkWCxYs0PdhQMI2ZoHGaERTp061Bg4lS5b0WXkGDhyoQQsSsBs3bmxtUUDrQ7du3fT3Hj16cLQjCnvTHq0m+YoV88pxyBYTw4CBiIgoPYIGJBDj7vgzzzyjFXHMEWAPoymtX79eAsnevXs1kEH3JOQv2EPrA4Z3xTqYMRpdoNwJGrZu3Wqt5BvdtwD7wtwWtjkaGIXKgJGoMHTqRx99JDVq1JB69erpEKwIVtDKgrwQtKQQhbvsMTGSK2NGfxeDiIgo7KQpaMAMxl9++aUmH7do0UJq164tHTp0kOrVq+ucDOi6hJmjT58+7bRy7i8jRoyQrl276khJKSV6I8k7pfVsAySMHmUPIz/hYbh586bDOuPHj9fgABOvIchCngXmuujfv7+WIS2jTxERERERpUWEBUMbpRGSj5FbsG/fPr1Lbwu7R398zMCMYIICgzG5G+bA4FCuFIiOHzwoh6vPSfZc0U1tpWCJEn4rExERUbjW17ySAYguNbt27dIRiNA3v2jRopoTgERptEBgVCIGDEREREREYdg9yRbmOWjXrp0+iIiIiIgodHCsQSIiIiIiMsWggYiIiIiITDFoICIiIiIiUwwaiIiIiIjIFIMGIiIiIiIyxaCBiIiIiIjSZ8hVIgpviUlJcvH2ba/t74IX90VERERpw6CBiNJs4dF/ZfCf2+Ryovcq+nGXE2Wq1/ZGREREacHuSUSU5hYGbwcMREREFFjY0kBEaYIuSQgYIu9YJMu1O147mnGXkxyei4+O8tr+iYiIyH0MGogoTSxJiVJrwyXp9GWCZLnuWNH3pqhINo4SERH5A7+BiShNEq9fSJeAAaJi4n3+GkREROSIQQMRpUnSxVvpEjBEZo2UmJxZff46RERE5Ijdk4go4EXFZ5TioxpKRDTvcxAREfkDgwYi8rpCy5tL/qJFvba/6OyxDBiIiIj8iEEDEXldVI5MEpM7C48sERFRiGBbPxERERERmWLQQEREREREphg0EBERERGRKQYNRERERERkikEDERERERGZYtBARERERESmGDQQEREREZEpBg1ERERERGSKQQMREREREZli0EBERERERKYYNBARERERkSkGDUREREREZIpBAxERERERmWLQQEREREREphg0EBERERGRKQYNRERERERkikEDERERERGZYtBARERERESmGDQQEREREZEpBg1ERERERGSKQUMQ279/vzz++OOSNWtWyZ07t3Tr1k2uXr3q72IRERERUYiJ9ncByDMXL16UunXrSsGCBWX+/Ply7tw56d27t5w6dUq++eYbHlYiIiIi8hoGDUFqypQpkpCQIJs3b5a8efPqc7GxsdKyZUvZsmWLVK1a1d9FJCIiIqIQwe5JQWrZsmXa0mAEDNC0aVPtqvTdd9/5tWxEREREFFqCJmj48ssvpUOHDnLvvfdqRTkmJkayZcsmDzzwgIwaNUquXLni7yLK3r17ZcKECdKpUyepVKmSREdHS0REhAwfPtyt7dHNqE6dOpIjRw7JkiWLvtcxY8bI7du3HdbdtWuX3HXXXcmew+uVLVtWdu/e7bX3REREREQUNN2TPv74Y1m/fr1WlO+77z7JmTOn9t/fsGGD/P777zJ9+nRZu3at9vH3ZxnHjx/v0ba9evXSbVHxRwsCWgxWrVol/fr1kyVLlsjKlSu1+5Hh/Pnzkj17dof9IOBAfgMRERERUdgFDWPHjpUyZcposGDr7Nmz0qxZM1m3bp306dNH5syZ47cyVqxYUfr27StVqlTRwGbkyJEyc+bMFLdbtGiRBgwIFBD4YFs4c+aMBhB4b2+//ba8//776fAuiIiIiIiCtHtS9erVHQIGyJUrl1bOAXfj3XHixAkZOnSoWCwW0/WOHj2qXYtSWs/wwgsvyHvvvSft2rWT8uXLS2Ske4fXKH///v2tAQNgGNVJkybp7//97391xCTbFoULFy447AstEM6OExERERFRyAcNZtClBzJmzOjW+i+99JIMHjxYcw/u3LnjdJ2DBw/Kww8/rHf4v/rqK/GVY8eOafcqQLBhr1atWlKkSBG5efOmJj8b0E3LPncB72Xfvn0OuQ5ERERERGEdNFy+fFneeecd6+hB7pg2bZpUqFBBvvjiC2nbtq1DojEq3o888ogcOnRIXnvtNWnTpo34yrZt2/QnWgdKlCjhdJ37778/2bqASd1Wr16tw64akPuAhPAmTZr4rLwUGiyJSXL7zFWvPO6cv+Hvt0NEREQ+FjQ5DQZ0QZo9e7YkJSVZE6ERODRq1Ejeffddt/aRL18+WbNmjTRo0EBHLLpx44b+REvFzp07pX79+rrvN9980+19egotGlC0aFGX66ClwXZdo7UEIzU99dRT2hqCbkmY3A3/N4IMZyZOnKgPVy0sFPoS5u+UQwNWyJ1LN/1dFCIiIgoSQdfSgKFGP//8c00wRgCBgAHdembMmKFDsLoL+QIYnQi5ErhD/+STT2rCMYY8RcCA7ku+DhgA5QcMseoKEqTh0qVL1ucwchLKHx8fL08//bS8+uqrmhA+a9Ys09fr3r27HkOjSxSFXwsDAwYiIiIK+aABQ5MiMfnWrVuyf/9+HVXp+++/l7vvvlt+/vnnVO0LFe8ffvhBcxeMnxiNafTo0dYuT4EMczIsX75crl69quWePHmyNcAgcibxwnWftzBcjY2UyGwZ+AcgIiIKIUEXNBgwuVupUqW0Sw6CBnTPad++vVy/fj1V+4mLi5MBAwZY/1+sWDHt+pNe8PqAir8rxsR1aFUgSgtL0h2fBwwzns0jEdFBe2khIiKiUMhpcAZdjNDS8Ndff8nmzZu1xcBd6OLUsmVLHR4V8yts2bJFHn30UW15QBcmXytevLj+PHLkiMt1jGXGukSeunXTcZjePsOKyeU471Tyr2aOkqSoCImKYYBLRIEFg5tgwJGOHTtql2ZfbeOLfRAFgpC5HWjkBJw+fdrtbRYvXqwjLmH0JOQCIKm6VatWsn37ds1tOHnypPgaAhVA9yLbRGdbCITAdg4HIk9cSnRsaUDAcDku2isPBAyIP7Jn/P+zlxMRpQUq3RERETrgibdhUBTsOxi6JBP5W0i0NGDm5B07dlj7+bsDoyU9++yzerGYN2+eNG/eXJ/HjNKxsbE6HCuGXf3pp5+soxf5QuHChaVatWqamIxRoQYNGpRsOZKz0dKAkZ0wzCpRIIuLjpEhlapItJsTGxIRpZdChQrp/EapGTTFk22IQlVQBA0Y7QdzFKAbUaZMmRzmVEAOAiY/q1GjhlSqVCnF/SEg6NKli2TIkEEWLFiQ7O5FVFSUNh/idaZOnWoNHEqWLCm+MnDgQA1akIDduHFja4sCWh+6deumv/fo0YMXLfKJr+6vKvmKFfPKvrLFxDBgIKKAzYUsX768z7chClVBcTsQXY6Q5IwcA+QrYEI2BBC4Q4/Zj9G8iJ9z5851a3979+7V1oSlS5c6be5E68OUKVOkZ8+eWnHHEKzu2Lp1qwYuxgP7B+zL9vkTJ04k2w5DpWISOSQ8YzkCBwyjWrp0afnzzz+lZs2aMmzYMLfKQJRa2WNiJFfGjF55sIWBKH1YLEmSeONs0DxQXl91K0IX3scee0wHFkGLAG7CoUuTq25OnTp10v9jW+QwwpAhQ3SZ8TC2t98GMHoj5klq2LCh9kRAT4C8efNKixYtkk3C6inUJfCa2J8tDPiC91ivXr00vwZRyLY0YPbmESNGyC+//CJ79uzRDyXyEDCLMj48+GB17txZP7juwL66du2qIyWZ+fDDD+X1119PcT0D5lHYtGmTw/NHjx7VhwGtIvbGjx+vwQEmXlu/fr2+P4wO1b9/fy0DWkWIiIjgzs3zcnCB64k8A02JFpslOlMur+8XXXvHjBmjlX/0OkD9YNGiRXrDDZO12vdOsIXcRQQFmPupdu3a+n/bIdldOXfunA7/jpuY6DacI0cOOXDggOZJYjRHDP+Om5qeQpcosK03AF4HN0zRWwLdstNjsBaioAsa8uTJo114vMndQMDd9QAXHMwh4alnnnlGH0RERJSyZcuWyVdffSWtW7e2PtehQwedABbBQ5s2bUy/swFBA353NxkalffDhw9bK/cGjOCI3gKor2AERk+h1QLdouyDBqhYsaLWM/744w+pW7eux69BFLJBA1E4u514S85dO+uVfZ2/ds4r+yEiCgTIO7QNGAA5iwga0AphFjR4Cr0a7AMGo1cEWjxWrFihvQVQ8fcEuiYVKFBAg4bExESJjnasql27ds2jfROlBYMGogA2e9s3MvrQVZHrnn352Iu7nCRjvbInIiL/q1q1qtNRCeHCBcd5abwFQ7OjWxRGOMTw7AgSbKH7ECr+nsJ7QGvG8ePHpWjRotbnV69erT/dGfSFyNsYNBAFcAvDqnkJ8sHsC5LluneTCIkouEVlzKF5AsFUXl+Ij3ecSNK4M3/njuO8NN6AvEOja1CDBg2kTJkykjVrVm0hQJcoDAHvLHfR07wGI2hAy8ny5cu1NSM1XaeJvIVBA1GAOnspQdqmQ8CQPbNvvsyJyHciIiJ9klhM7g2mgqAAg7PUqlUr2bKNGzda541KC/tkaIyuiBGcEBCNGzeOfybyCwYNRAEq6eItnwcMd7JESmwuxzt1REThAHMzpbZV4p9//tHRG+0DBuQZYLhUbzCCBkzuisRnJHdjkjnMI1W5cmWvvAZRSM7TQETeFxWfUcqOeUIionkZIKLwhMq/UTl3F7oGYc4EjJZkQNDRt29fSUhI8Eq5jLwMlOuFF16QhQsX6tDsCB6I/IUtDURBpNDy5pLfJikuLaKzxzJgIKKwhtmeCxYsqMO2YlQkVNaRm/Dqq6/qRHHOYNnKlSu1pQHDpGMuCEw2d+zYMR26Fb97q6Vh8uTJ2hUK80bhdYn8iUEDURCJypFJYnJn8XcxiIhCpnvSggULpF+/fjJnzhy5fPmyPt++fXuXQcMTTzwhX3/9tYwcOVJmzZolmTNn1sRotAYMHTrUK+Uygga0YEyfPl0nsCXytwhLWmYjo6CF2atxQbx48aLT0SfI/44fPCiHq89J9lzRTW2lYIkSfisTERERhWd9jZ2ZiYiIiIjIFIMGIiIiIiIyxaCBiIiIiIhMMWggIiIiIiJTDBqIiIiIiMgUgwYiIiIiIjLFoIGIiIiIiEwxaCAiIiIiIlMMGoiIiIiIyBSDBiIiIiIiMsWggYiIiIiITDFoICIiIiIiUwwaiIiIiIjIFIMGIiIiIiIyFW2+mIjclXTrltxMOO21A5Z4ynv7IiKiwHfo0CEpUaKEdOzYUWbMmOHv4hAlw6CByAsOT5ohJ949JJbrGXg8iYh8ZPXq1TJ58mRZv369nD59WrJkySJ33323tGzZUl555RXJlClTmva/Zs0aefTRR2Xw4MHyzjvveK3cRKGAQQOFpVs3bsiZEye8si9L4m05/s5xEWHAQETkC4mJidK9e3eZOnWqBgqNGzeW0qVLy8WLF2XlypXSu3dvDSaWLl2qzwerQoUKye7duyVbtmz+LgqRAwYNFHYWvz9dsk44JZmvWySYXI2NlJjcuf1dDCKidDdgwAANGKpVqyYLFy7UyrXhzp07MnToUH00atRItm7dKvHx8UH5V4qJiZHy5cv7uxhETjERmsKuhSFYA4av2ueRHFmy+LsoRETpat++fTJu3DjJmTOnLFmyJFnAAFFRUTJkyBBp166d/PPPP/L+++9blyEvICIiwml+ALoiYZnRDQk/0TUJsD8sMx7INbBt9Rg1apSUKlVKu0OhZQP/P3DggK7bqVMnh9f67LPPpHr16pI1a1Z94HdnZcLrONuHbVk3b94sjz32mMTFxWmLRPPmzZOVLy3ldGXYsGG6zYoVKxyW4W+CZWPHjnV7fxSc2NJAYQVdktIjYHhlbAm5E+W9/UXGZ5LBle+T6EjG+UQkkmSxyPlbt4LmUOTIkEEiIyI82vbzzz+XpKQk6dq1q+TLl8/lem+//bbMnj1bpk+frq0OqVWnTh2tfOP1ateurf83ZM+e3fp7ly5dZObMmVKyZEntMnXz5k354IMPZMOGDU73+9prr8mECRM02Hn++ef1uW+++UY6d+4s27Ztk/Hjx7tdxt9//13GjBmjwc1LL72k2y9atEj+/PNP2blzZ7KcjtSW0wxeB+677z6HZWjZcbWMQguDBiIvtwic7pZXfnymhVePa7aYGAYMRGSFgOH+lYuD5ohsbtBUcmXM6NG2SHqGevXqma6Hbj0FCxaUY8eOyZEjR6RIkSKpeh0jSEDQgN+dJUL/9NNPWhGvXLmy/Prrr5I5c2Z9ftCgQVKlShWH9X/++WcNGO666y6trBu5Cth3jRo15KOPPpKnn35aHn74YbfKuGzZMvnqq6+kdevW1uc6dOigZULw0KZNG4/K6U7QULhwYcmTJ4/LoAGvRaGNQQOFvawLH5WcBfN75TjkLlBAMqRx9A4iIvr/Tp48qT/dCQKwzvHjx+XEiROpDhrcMWvWLP35n//8x1oRhwIFCkjPnj1l4MCBydZHAGIECbbJzTly5NARmp599lntpuRu0PDII48kCxhsWxTQCmEEDaktp5nz589rC0zTpk2dLkfQULx4cX1PFNoYNFDYQ8BQsESJsD8ORERkbseOHfqzVq1aDstq1qzpsluPbVcng5E/sX37drcPe9WqVR2eQwsAXLhwweNymjHK56z7UUJCghw9elTzKij0sYM0ERERBaz8+f/XEowuRykx1sEddV+4dOmSREZGSm4nI9k5y7cw1nfWrQfrI4EY67jL2ahQ0dHR1lGkPC2nGSPwcdatyeia5EmXJwo+bGkgIiIKMkgsRp5AMJXXUw899JCOHoR++vXr13e53p49e7RrEhKOja5JqDgbIwnZwxwPqYVKO5Kyz5w54xAInDp1yuX6uCOfN2/eZMswOZ3FYvHJ8LCpLaenSdBGvgmDhvDAlgYiIqIgg5GIkFgcLA9PR04yEn1R+Z82bZpWvl0ZMWKEtY+/wehnj+RoV5Vh++Fb7e/a27r33nv1J5KLXVWgbRmVaQQ99oznfJFAnNpymsFxQosIksxtISjBKFDAoCE8MGggIiKigFWuXDlN3j179qw8+eSTmuRsX3nFPAJI/sWcBH379k2WA4AKL0YcunHjhvX5v//+2+lQp5gLwqwrFBKXAUO6Xr9+PVmytrP9dezY0Trvg203JLRy4DnbdbwpteV0BduiBQctIrZDteL/SOT+66+/NDCznzuDQhO7JxEREVFAw9wEqGhjDoYyZcpIkyZNNEBARXzlypUaBOB5DElq290Hd8fbtm2r8zcggMCM0egWhFml8btxp9x+2FYEGRkzZtQkYwQdr776qo5+hO5RmEQO+6tUqZI0a9ZM5z+YN2+eTtiGic6MLlHGaEfYFsOuVqxYUVq2bKkVbrwuEogxhwPW8bbUltMVzP+AVhd0rWrcuLGWPzY2VlsrcOyNnAzMPzFp0iQ9ZhS6GDQQERFRQEOy76effqoBwNSpU2XdunVa8c+SJYvOgfDyyy/LK6+8ohVae5988okmBM+dO1cmTpyoLRfYB4ID+6AB3ZMWLFgg/fr1kzlz5sjly5f1+fbt21uHTMUwqnhNBDAIBhBY9OrVS+eRQGXcPkcBczGg+87HH3+srwsVKlTQVgBM8OYrqS2nM0YXLgRtaGnAMQHMSI2J4nCcFi9erC0SDBhCX4QFIS+FHdwZwAUQd258kYQVqI4fPCiHq//vomcouqkth1wlIqI0QXDy4osv6h13BDChUE4EY1OmTJHdu3drKwyFd32NLQ0U8G4n3pJz1856ZV/nr53zyn6IiCg8IS/AGC7VgETr4cOHa0vFE088IaFSTrQ0YHK4smXL+ri0FAwYNFBAm73tGxl96KrI9Riv7C/ucpKM9cqeiIgoHI0ePVqWLl2qszijr//hw4flu+++065MmPnZFzNR+6OcyGVATsM999zjVv4DhT4GDRTQLQyr5iXIB7MvSJbrSf4uDhERkSZQ79q1Syvk58+fl0yZMmnFulu3bpp8HCrlxKhJyFXwxZCwFJyY0xCmAqmPnCsnzx2Tv6rM9HnAcM+f3SRzvuw+fQ0iIiKiYK6vsb2JAlbSxVs+DxjuZImU2FyBGTQRERERBQp2T6KwFRWfUUqNaigR0YydiYiIiMwwaKCgUmh5c8lftKhX9hWdPZYBAxEREZEbGDRQUInKkUlicmfxdzGIiIiIwgr7ZRARERERkSkGDUREREREZIpBAxERERERmWLQQEREREREphg0EBERERGRKQYNRERERERkikEDERERERGZYtBAREREFADeeecdiYiIkDVr1vi7KAGlTp06elzIvxg0EBERUcBbvXq1tG7dWooUKSIZM2aUnDlzSq1ateSDDz6QGzdueOU1OnXqpJXTQ4cOeWV/wQ7HAcejUaNGLtdBgIN1Xn755XQtG6U/Bg1EREQUsBITE+Wll16SunXrytKlS6VGjRrSu3dvadOmjZw8eVJ/v/fee2X//v0S7Hr06CG7d++WBx54wN9FIXIQ7fgUERERUWAYMGCATJ06VapVqyYLFy6UQoUKWZfduXNHhg4dqg/cDd+6davEx8dLsMqdO7c+iAIRWxqIiIiCjCXJIrfPXA2aB8rriX379sm4ceO0K9KSJUuSBQwQFRUlQ4YMkXbt2sk///wj77//frLl6DaD/vDOFC9eXB+2///888/19xIlSui2zrZfsGCB3H///RIbGyv58uWTF198Uc6fP++wP8OZM2ekV69euk90q8qbN68888wzsnPnTrdyGowuQug6hdaU5s2bS44cOSRLlixSv3592bFjh9P3t3btWnnkkUd0vVy5cmnXriNHjqRbfsCWLVu05aRixYqSLVs2PV6VKlWS0aNHy+3bt51us27dOqldu7ZDmZ2xPVYzZsyQ++67TzJnzpzs7/Xvv//K888/r+dNhgwZpHDhwvr/w4cPO+zPOC4oG/aNvyX+XmXLlpVJkyY5rI8ucWPHjtVWLrw/lBnb4G/r6m8S7NjSQEREFGQSz12TLXePl2BRdVdPicmdJdXboRKflJQkXbt21Qq6K2+//bbMnj1bpk+frq0OnkDFHpVPVPh69uwp2bNn1+dtAwHsH5VOtGZ06NBBK4vLli2Txx57TCubMTExyfaZkJAgDz74oAY0qJSiS9XBgwfl66+/1q5WK1as0LwMdyB4QNesChUqSJcuXXSf3377rTz66KPapcn2+KxcuVKaNGmiQRUq3gULFtScELwWAo70MG3aNA30ELg8/vjjcu3aNa3go+Xo999/l2+++SbZ+j/99JM0btxYIiMjrWXGczVr1jQt83vvvafv7amnnpIGDRroezYCTrxf/A2efPJJPW4I1PA3RLkQoCAgsNe2bVv57bfftCzY17x586R79+76t0WAaOjYsaMuu+eee6Rz584aYCDAQVnw/hBMhBoGDWHu9tmrcvvW/z5g3hCdPVYiotmARUREabd+/Xr9Wa9ePdP1ypcvr5XMY8eOacUNydKeBA3bt2/XoAG/27caXLhwQYMJ3FHevHmzlClTRp8fOXKkNGzYUO+sFytWLNk2/fr108o9KspYz4BAA5V6VDb37t2rFeWUoOUAd+mxT9tgafjw4fLZZ59J//79rV22EGThpxEo2FZ0v/jii1QfG7Rw4O67M66SxgcOHCgTJ060VuLBYrHICy+8oBX3X3/9VQMCMAJD5K/8/PPP1jJj/fbt22tAaHZcNm3apK0YtpCYjYBhypQpum8DWg0QBLzyyisalNg7evSoBhdGNzf8zdFaMnbsWGvQcPHiRZk/f75UrVpVX9v2PeK4X758WUIRg4Ywt73ax5IlMpPX9hcVn1GKj2ooeVpV9No+iYgoPCHRGdwJArDO8ePH5cSJEx4FDSnBXf0rV67Ia6+9Zg0YIDo6WivuDz30ULL1b926JXPmzNFuNm+99VayZbjzjtaJH374QSvPDz/8cIqvj+5Nb7zxRrLn0OqB18adbQPuoKNbTtOmTR1aMbDul19+qRXb1EDgg25gqVG0aFGH59D9BxV2BA0//vijNWhAmQ8cOKAtArZlxvoItubOneuyzAgI7AMGdD9CwHT33Xcnax0wgokJEybIqlWrnAaYo0aNSpYXU65cOS3n2rVrNRiIi4vTciGgyZQpk0PAhwDCaKUKNbwlHMQQ+ePCkzVrVk2c6tatm1y9etWvZbpz6aYcGrBCLIlJfi0HERGRNxn91J11J6pevboGD7b27Nmj/d4xEhL62ttDtyJA64Y7Kleu7FBBRR99oxXEnXKiguysMp8StKSgkuzsgcq5MwiakI+C949KOMqOyjbuzgMCPPsyOwue0HpjFgQ6G2nKOKbIj7DP30A50GXKdj1bRvnMjnN8fLzWvxDwIZcCgQ1axVzlaoQKtjQEKTSNYfg5NMeiiezcuXM67NypU6cc+gn6I3BIvHDdo/6rRESUsuicmTVPIJjK64n8+fNr5Rt3hHHH14yRMFugQAHxhUuXLulPJDLbQ0XUftQjY31XuRhGOY31UuJsVCgjULG9C29WTqM8yKvwtaefflpzB5A3gBwFlAd5Aah4jx8/Xm7evJmsTpNSmV11g3J2fNNy7N09zvPnz9dgAV2nBg0aZN0WXc7wvLNAMdgxaAhS6KOHvnroV2l8yDAyQcuWLbVfpbNImYiIQkNEZERY3JhBlx8kz6LvOUYKcgWBBe5cY5Qc27vSuMuMfvLOoKKKRGZ3GZXJ06dPOyxDn3yMkmQ7upOxPm7mmXW98vYQsWblNCuPN6G7FAIGtFAg4du2z//GjRs1aLBl/B08KbOzkaDS49hnzpxZu3vhgSAMLS6TJ0/W93b9+nWtp4UaBg1BCklUaGmwjcrRfxFdlb777ju3g4bXRheTqDRGw3GXk2Ts2/8me+7kpeOSIUPWNO33/LVzadqeiIiCG0YoQvIvRuJBa3qePHmcrjdixAj9iVGFbGHUHSRH28Nda9zxtg8ajMqts/7zxmg46JLSqlWrZMsw2o59cILkbPR5RwUaIwfZ33k2hlVFtyNvsi2nfQ4EknydDTfqbciBAGMEJ1u//PKLyzJjmX2ZkZ/hathVV4xjiqRqdKGyDSzwfzxvu15alShRQh8YeQn1ssWLF4dk0BAUOQ3oI4a7DDiRMLkLEkzQxIVmS1SUEcUGAoyAgOQajKWMpBw0Z+FERRTqDjR1YUg2Y/xlfIjGjBnjtI/crl275K677kr2HF4PzYAYes1dV+Ki5XKaH46nUZONm6XG2nVperTdsc/t90FERKEHXZIwes3Zs2c1SRZJzvZ3+IcNGyazZs2SUqVKSd++fZMtR50BAQKSWG372iMAcQbzQYCzSiqG9MSNuU8//dRaKQYECxjFyB7mBUAlEi0QSK61tXz5ch1utXTp0tZkYG9BLgPyFnCnf8OGDcmWoZypTYL2hDGKFBKcbf31118Ox8IoMyrduOlpuw0q+BiFKbVlxvtHzgheD0nXtjBRIOpJuPHqacJ8QkKC03k2MF8Hul0hWAxFQdHSgA87RhkABAo4uVCpRsUZHwo8kD2PZqH0mLDElY8//tihyc1dGN4N26LijxMZFyZk9mNoNbw/jLmM7ke2J6az7HwEHMhvICIiCgW4eYauRKj8YdQi3L1GgID+6Phu/Pvvv/V5tMDbdzdBcIB1kLSKCjzu9mPEInx/Ost9wPcvJohDnQLdfVHXQAX4ueee022Q2ItlaM3HnAvGPA0Yox85hvaJyu+++67WYXDzEImySJhGEIObhCgLhkp1Z7jV1MCdfdSHcFMV7wf5BHivKAdaXXBD8o8//hBfQnIyHpjHAIEe5pdACwfuwOPvh3kqbOEYoDKPvxO6oRnzNKAehO0xF0Jqy4w6GeqLGD0J9SiMpIQgAmVAixWWe+rYsWNSpUoVPZYoG7qlIbDFCFu40WsfvIaKoAgacDLhw4u7DfaZ9RiG69lnn9WTDdE6mjL9BeP44kTBiWRk08+cOTPF7RYtWqQBAwIFfKixLeDuBD7wiLpxd8B+pktv+KnmgxIXH5emfdw6c0WOyUGHLksizvuRuut/+0gue+b0mZSGiIgCA26m4e4+Kv34rsd34sKFC7VCjxZ3DKGJMfdtb6wZMNkXKq6Y8A3fx2hJQNcifD/jO9seJvRCkILuUBiXHxVAjMCDoAFQAcXNOWyPieAQNKByjuAAwQWCGVuonGIcf7SGoEKJ7jfYplmzZjJ48GCnZfAGvA8ES//5z3/0/ePYYK4L1JlQMfd2HoWzwAWtBpg7Aq0q6KKFwA71GJTNPmgABAvoVYLhaRFUGWXG757U7dBKhbxPDBWLMqBXCv4eSFTGsbefUyM1ihcvrvNWIKjB0LEIGJAIj/ob6qqNGjWSUBRhQdtPkMNEIbig4OTCHy8liFpxQUBF3KxlAn3/cFFAVrwnLRjopoTZLHGxsB+j2RaicXygcCfCyMA34OKIQAl3MZDQY/S/RJ85fIjsAwnc/cAH86uvvjItG+7QYF+4e5PWi8ftM1fTbWZST2cVJSIi8uUQ6PjufeaZZ7RiHqgwzwBGFEIXagQzFPguebG+FhY5DSnBnX1wN1HmpZde0igTlXpX/eSQCY/KOgKLlCrgaYEmLmNSlnbt2jksR9Ma+tyhjxyaQA24u2Kfu4D3gmnT7XMdiIiIKO2MPuu2MFLO66+/rr+jBSEQYM4m+1mJUUdAbijKGyjlpOASFN2TUoL+jKkZmxmtDGiVwFTq+PBgdkQkVhtQ8cZytDRg5kf0W/SVbdu26U80mSIJyJn7779fAyKsi+ZZQPMimtyQjGOMJoE+e5itEv0F01N09lidCRrzM/gSXgOvRURE5A/oQoxZmNHtCcm26EaMLirIUzDyBwKlXoSbjhjytGTJkhpAoGsUckErVKigdRuisGtpwFi76EIEyHtwB5rmMNQZWijQVw7bGXcOkA2PmQIRMLz55puaa+DL5GpjghWzGRqN7H7byVjQWoJAA6M5fP/99zq5CPp14v8IMlyZOHGiJgNhRAlviYiOlOKjGmql3lewb7wGXouIiMgfUOHGwCwYzvSjjz7S717kI6IbMvrMezup2VNIzEXuBm42Tpo0SROuMWoU8i7R7Rn5IERh1dKAYc7at2+v/bzQPw8VaXchYQV3B5Csgjv0GMoNCUNoskNCC7ovIcnF14zmQ7MPMC5I9jMXYhQHlB93CzDrIob3wgUipWTp7t2768PoI+cteVpVlNzN79aZoH0BLQwMGIiIyJ/cyRkMBOiBgECByJuCOmjAnXVk2ufKlUsz8TEmcmqg4o2h19CdBz/xAEwkg6FOAx3mZMCIAIEClXomKRMRERGFnsBoR/MAhrTCiEkY+gyVfVSgPREXFycDBgyw/h9DcKWmxSKt8PpG0pIryFMAf2fNExEREVF4CsqgoU+fPtqXEC0FGIfYGD3JE9geOQ3oh4jhSjFdOWYRRHJTesBYvymN/GQsM9YlIiIiIkpPQRc0IDkZMzKiPz4q/GZJvynBrICYlAWTt2AKeky3jryA7du3S506dTTJ2teMgAd5FLaJzrYwOQkYk74REREREaWnoAoaMLPge++9pwEDuiSlZQQgjJqEBGLMbYfZEjGUKYZdnTNnjk6ahqnGMYqSu3M/eKpw4cLW94FRGOxhlAOUAZO7YZhVIiIiIqL0FjRBA2ZUxjTtRvJyWgIGzM+AIAFT02Na9+bNmyeb+hxDuHbt2lXHOUbgcODAAfGlgQMHWhOwt27dan0erQ/dunXT33v06OHV0Y6IiIiIiNwVYcGt9gCHbkSYfwDQHQnjJLsaRjWlIUdh0KBBmhOB/SJ/wZVevXrJ9OnTZcWKFfLggw+muF9U+I1KPvzzzz+aG4HWBIyZbFi4cKHDRHRI7EaZ0NqBieUwBCtGhrpw4YLUrFlTA6XY2NiQnJaciIiIiAK7vhYUQQPu/Hfu3DnF9TDyEWZldAcSnrG+t9YDTBhnFoQYkLvgLKkZ3aQw+RpyKpBnUapUKZ2HAtPTp3Y42WA6CYmIiIgosOtrQRE0UGifhEREREQU2PW1oMlpICIiIiIi/2DQQEREREREphg0EBERERGRKQYNRERERERkikEDERERERGZYtBARERERESmos0XU6gyRtrFUF5EREREFHgu/V89LRBmSGDQEKbOnj2rP4sUKeLvohARERFRCvU2zNfgTwwawlTOnDn15+HDh/1+EgZTtI8g68iRI36fYCWY8LjxmPFcC1z8fPK48VwLbBcvXpSiRYta623+xKAhTEVG/i+dBQEDK8Cpg+PFY5Z6PG48ZumF5xqPGc+1wMXPZ9rqbf7k/xIQEREREVFAY9BARERERESmGDSEqYwZM8rgwYP1J/GY8VwLLPx88rjxXAts/IzymIXjuRZhCYQxnIiIiIiIKGCxpYGIiIiIiEwxaCAiIiIiIlMMGoiIiIiIyBSDhhCwbNkyeeedd+TJJ5+UggULSkREhD6OHj2apv3eunVL3n33Xbn33nslS5YskiNHDqlTp458/fXXKW47f/58XRfbYFvsY8yYMXL79m0JJJcvX5aBAwdKuXLlJDY2VnLnzi1NmjSRVatWpXpfa9assR77lB6YVM9Wp06dUtzmxo0bEmrHDHCemL3v/Pnzm27/448/yuOPP67lQHnKly8vgwYNkitXrkgg8eZxu3btmnz33XfSo0cP/WzFxcVJhgwZdPLBNm3ayK+//upy20A617x9ndiyZYu0atVK8uXLJ5kyZZISJUrIq6++KqdPnzbd7tSpU3ossT6SDbE99rN161YJRN46btu2bZNRo0ZJvXr19D3HxMToPh9++GGZOHGiy/25c62bPHmyhOIxmzFjRorvffny5S63D9dzrXjx4m59Nw4dOjRoz7W9e/fKhAkT9BpbqVIliY6O1vINHz48Tfv19Dtu//79WpbChQvruYaf+P+BAwc8LgsToUNA9uzZdcZAe5i5GCeJJ1Apeeyxx2T9+vW6/7p16+oJigpOYmKi9OnTR95//32n2/bq1UvGjx+vHxhslzVrVt3uwoULUqtWLVm5cqWe+P6GigS+HPft2ycFChTQsuGC/ssvv+hyvAdUONy1Z88eGT16tMvlv/32m+zevVtKlSolf//9t15MDPggf/7551KzZk0pXbq00+2nTZumX+qhdMwAX0hr166Vhg0bOg0QMAEh9uvMBx98IL1799ZjiXLhCxhlOXnypFbO161bpxdaf/P2cfvkk0/kxRdf1N+LFSsmlStX1s/bjh079IsCx2PYsGH6xWIvUM41b18ncDOjbdu2en2qVq2aVso2b96sX5A4L3AuOHu/+Jvgb4O/UcmSJeX++++XgwcPyu+//65lmzdvnjRv3lwChbeOG46T8TfGPnDMcJxws2nDhg1y584deeCBB2TFihX6HWBfkXv00Ud1/UaNGjndf8eOHXWdQODNcw1BQ+fOnfU6jm2dwfcjKo32wvVcg759+8qZM2ecLjt37pwsWbJEf//555/1GAXjudbr/46XPVyL33rrLY/26el3HG4cNWjQQOtyFSpUkIoVK8rOnTvlr7/+0uAPgUiNGjVSXyCMnkTBrXPnzpaRI0dali9fbjl9+jRGw9LHkSNHPN5nz549dR+VKlWyJCQkWJ/fvHmzJWvWrLpsyZIlDtstXLhQl2GdLVu2WJ/HPrAvLOvTp48lEDz11FNannr16lmuXr1qfX7p0qWWqKgoS2RkpGXHjh1ee7277rpLX2/EiBEOyzp27KjLPvvsM0sg88Uxq127tu5z9erVqdpu69atloiICH3dZcuWWZ9HuVA+7LNly5aWUDxuM2bMsHTp0kWPga2kpCTL2LFjrdeANWvWBOS55u3rxLFjxyyZM2fW7aZMmWJ9PjEx0dK+fXt9vlq1anp8bOH/VapU0eXPPfecrm/AfowynjhxwhIIvHncbt++balatapl3rx5lhs3biRb9scff1gKFCig+8P3iz18VrEMn91A5+1zDZ8bbIPPUWqE87mWknfffVf3V7Zs2aA+16ZNm2bp27ev5csvv7Ts3r1b/84o+7Bhwzzan6ffcVhesGBBXT5gwIBky/B/PF+kSBHLtWvXUl0mBg0hKK1Bw7lz5ywZMmTQfaxbt85hOT4AWFajRg2HZfhixrLhw4c7LPvll190WcaMGS0XLlyw+NNff/2lZcGH8dChQw7Ln3/+eV3epk0br7ze+vXrra+HCk4gVuT8dcw8DRpatWql273wwgsOy1A+VMSxHBfvcDrXwPhCwb4D8Vzz9nXijTfe0G3q16/vsOzy5cuWbNmy6XLcWLGFoA3PZ8+eXddzdRz79+9vCQTpeX2dOXOm7i82NtZy69atoK3IefuYeRo08FxzrVy5cnpMR48e7bAsmM41V9daT4MGT7/jJk6caA3C7ty5k2wZ/o/nsXzy5MmpLhNzGshpjgTyGYoWLapdGOy1a9dOf27cuFGOHz9uff7YsWPazGq7ji00Z6LP9c2bN/U1/GnhwoX6E+8P3TvsGeVHk6k38jCmT5+uP9G8iryTYJTex8wMzs+lS5cme11bKJ9x7hrlDqfjVqVKFWsXxUDji+uEcYyd7Q9dKpo2baq/L1iwwOl2WI717Bn7s9/OH9L7+mqcQ9evX3fZrSTQBdJ3Es8159CNBrkA6AKFbkaU9u844//Ib4uMTF7Nx/9bt27t8XUtOtVbUMhDchygv6Uz6IuZM2dO7Ye4fft2ayXY2A7L0J/YGewTFRmsi/7HgfoejeevXr2q+Qd33323x6+FPoVz587V359//nnTdVevXi1//vmnJs3mypVL+xQjASoQZoL09THDhW7RokVaSUG/zYceekj7ZNpf9Iy+wTiuKZUHfT+NcofDuWbAfgD5E4F2rnn7OoHyI4/D2M7V/mbOnOlwLrj7t8HxxN8HfYH9Jb2vr8Y5hAR7vKYzyMtB4ioq50g8R4ImkvtxwykQ+PKY4ZxDP3XkJyDgRJ9xBJ+ucqh4rpnfUMO1x2zQi0A/17wtLd9x7p5rnnw3MmggB0jMArMPIxKsETQY67q7He7q2K7rLymVNT4+Xh+XLl3SddNSkcPoE6jY5M2bV5544gnTdb/44guH51Dxw4XVVRJYqByzjz76yOG5smXLyqxZszRJ01lZkKCJkYOcCcdzDRAIGHeoWrZsGXDnmrevE4cOHbL+7mqfrvaXUlmM7dDrE6+DhEJ/Sc/rK94vRsgBXLNcBZIY/GHw4MHJnsMdYyT1Y3v87k++PGa4Q24/ShkqsxjJsF+/fqkuSzieawjEkfztzg21QD/XvM3T7zjUNc6ePevWuZaQkJDqmyHsnkQOcNKB2YlkNOWjopPW7fwhPctq3Enp0KGDyxFpMIwdRl3A6AZ4PdxVwcgUuNt+4sQJvYOFUSRC8ZhhRAiM1oMmalzAMHoLWh3wpYm7LfXr19dRp9KjLL6QnmXFCGdoysbIOBiNCsMwB9q55u3jYezPbJ+u9pdSWWy7LIXTeTRkyBAdQQn7czYiHEY0w0gxGPUM5ww+t3/88Ye8/vrrOsoLRnzp1q2b+JsvjhnuhmNUsk2bNmmlC9uhCxSu7+jm1L9/fxk5cmSqyxKO5xoCBlyzcEzR0uBMsJxrgVYP89W5FlqhWZB58803ZfHixaneDsMtuhrqLRwE03FDEzaGkIMuXbq4XA8XQFu4s4Ahb1FhxhB83377rV440R0s1I4ZhqOzlTlzZilUqJA0btxYAwp8IQ8YMEC7LqW3QD5u9pAPgfHeEQygCyG64/jjXKPghhYodANBt0Dc8ChTpozTfAcj58GAIUbHjRun5z1auHAjAJU5DAccStAKZ98Sh+4eGMYYATmGW8Xxw51zdLMk1z799FP9iYDLVUtBOJ9rgYhBgx8hiRh3V1PL15NWGU1hiOhTKgO6VaR1O38ct/Qqq9HK8OCDD8pdd92V6u1xJwV3/VCRwxj86HtrNC2G6jEzoEsE7ug1a9ZMJ0tCpdhoqeG5lhxaFpD0huOEBDmMpZ4nTx6/nGsp8fbfzrbpHvvEnUl394dt0c3SVVlsz39vnNNpkR7nPLpSGjc3UBFDEJpaLVq00Mobgk4k9/uzIpfe16yePXvqZHlIHEfr3XPPPZesLDzX/j+0Ihvdu8xuqAXLuRZo9TCzbdNyXWP3JD9CX+3/G/Y2VQ9f923HzI1gP2uxLWO2aWNd29/NRmwxltlu54/jltJ7RJOd0WznaVkxOZLRbzyl/ppmbIMNT2f5DpZj5uq9o9nfdgQXY/+YZMi2OTYczzWcZ88++6yOhIFKPhKcnY3SlF7nWkq8fZ2wfa+ujrGr/aX0tzG2Q0Dl6TH1Fl9fX3H+oGtbUlKSTJkyxeOKnO155KtzyF3p9Z1kiIqKsrbM2L93nmvOb6ihtQCTlAX7ueZtnn7HIWgwBi5I6bqGpP3UDu7AoIEc3HffffoTs6k6gxlWcccEbJsNjd+RhOMqOcrYp/EagfoejefxgUIyricwkypGekD/QWOIM08YSU3gKiEqVI6Zu+8dXzLoxuROeUL5XEPA0L59e+0bbAQMrkaJCZRzzdvXCdwpM2Z6Tu254O7fBhVBZ0OypidfXl/R9Q8tVTifPv74Y+ts42k9j/x5vfLXd5Kr985zzfs31MyOd7Arl4bvOHfPNY/OeQ/mm6AAx8ndUrZz507rhFv//vuvTybcatGihe4DM/emxbhx43Q/8fHxDpMshdoxs/faa6/pPjGbdmonvkE5A2FyN18dN0zS065dO+vsnvv3709zWdPrXEvvyd0weVtKk7tduXIlLCd3W7x4sSUmJkZnnvVksid7R48e1QnhUJa5c+dawmlCPMycbHz/btq0KdkynmvJzzkco7i4OKefu2A919J7cjdX33G+nNyNQUMYBw1169bVmRgXLFjgsKxnz566j3vuucdy5syZZBdFTCuPZUuWLHF76nnsw9tTz6fVU089Za1o2E6njuna8WHEbIs7duxw2A5Tw+O4TZgwweW+ExIS9IsY+//1119Ny7Ft2zbLt99+a7l9+7bDh/uTTz6xZMqUSffz1ltvWULtmK1atUpn/ExKSkr2/M2bNy2jRo3SigxeD8fBHs4vLMfrfv/999bnr169aq3stWzZ0hIIvH3ccG506NAh1QFDoJxrnlwncJ3CscB1yx5mWc+cObNuN3XqVOvziYmJegzxPCqP9ucZ/l+lShVdjuOJ9Q1TpkyxlvHEiROWQODt44aKbIYMGfRzhPfrrg8//FCvcfZwDhvHs1SpUpYbN25YQumY4dry3//+13Lp0iWH11m7dq2lePHiur9atWo5LA/3c81Ws2bNdPsXX3wxpM41T4IGXNtxzHCd8tZ3HJYXLFhQlw8cODDZMvwfzxcuXDjZd5G7GDSEgKFDh1qqV69ufRhBAz5QxnOvvPKKw3bFihXT9T777DOnJ92DDz6oy3PkyKEnZqNGjawV4d69e6d4dxjrYhtsa9zpq1mzpkcnqi+cOnXKUqZMGS1XgQIFLM8884ylTp061orq+PHjnW6H6eyxfPDgwSnesS1fvrzbF2ccZ1wIcPf48ccftxQtWtT6t2zbtq1DRS8UjtkHH3ygz+fLl8/SsGFDfe+PPfaY/t9473379k3xOOP1UQ6UB+XCc7gQO/uyCYXjhvWN44P94MvJ2QOBV6Cea6m9TuA6hWW4bjkzb9486503XPNat25tKVmypPX8+vvvv51ut2fPHkuePHl0PayP7R544AH9f3R0tNObKv7kreOGcxJ32I0KhKtzCA/7z1G2bNn0WFetWtXy9NNP6/mM3xH8Yn84n3bt2mUJtWN2/vx5a8tEjRo19H2jRblixYrWzw8q1MePH3dajnA91+zPO6MesXHjxhTLEEzn2pYtW5LVxXLnzm39fNk+b3t+4NqOdXCt9+Z33Lp166w3UnB+oiXbOE+zZMli2bBhg0fvkUFDCDCiWbOHsxPSLGiwvduLEw1NgPjwPvLII/rlnBI0FWJddHPAttjH6NGjdZ+B5OLFi9r1ABU6fBHkzJlTL44//vijy23cCRqMOzFjxoxJsQwHDhyw9OrVS+9OFSpUSO/2oiy4GOIiibuBoXrMtm7dqgEtvjhxIcT+cL7gzhHuxqXUSgM//PCDvj7Kge1RrgEDBji9Gxgqx834oknt5z7QzrXUXCfcqZBs3rxZK3GomOEOOtbt3r275eTJk6blwN1drIf1sR22x35s77AGEm8ct4MHD7p1DuGBdW3huobWs9KlS+v3Aiq8OJ9xXr333nsB99nz1jHDum+//balcePGlhIlSmj3Grx3nC9oRUSLQUrfceF4rtl6//33dZ0KFSq49frBdK6tXr061Z+nlIKGtHzH4UYJvkfR6oBADT/x/7R0ZY3AP6nPhCAiIiIionDB0ZOIiIiIiMgUgwYiIiIiIjLFoIGIiIiIiEwxaCAiIiIiIlMMGoiIiIiIyBSDBiIiIiIiMsWggYiIiIiITDFoICIiIiIiUwwaiIiIiIjIFIMGIiIiJ/bs2SNdunSRIkWKSKZMmaR48eLSr18/uXHjBo8XEYWdCIvFYvF3IYiIiALJtGnTpHv37hIdHS21a9eWrFmzyqpVq+TcuXPSuHFjWbZsmb+LSESUrhg0EBER2ZgzZ460a9dOatasKfPmzZOCBQvq86dPn5aqVavK0aNH5YcffpD69evzuBFR2GD3JCIiov9z7Ngx6dq1qxQrVkyWLl1qDRggb9680qlTJ/39u+++4zEjorDCoIGIiNLNtWvX5MMPP5RatWpJjhw5JGPGjFpBf/LJJ2X27NkO6+Ou/quvviplypTRvIJs2bJpC8CUKVPkzp07Duv//fffmodQokQJ3Te6FWH/TZo0kc8++yzF8g0ZMkSuXLkiI0eO1Neyly9fPv158OBBj48BEVEwYvckIiJKF0eOHJFGjRrJrl27JHPmzFr5z5Url97d/+OPPyR79uxy6NAh6/q///67ro88gqJFi8qDDz4oFy9elDVr1mgycsOGDWXx4sWSIUMGXX/nzp26z0uXLkm5cuWkQoUKEhUVpYHHn3/+KaVKlZLt27e7LB/2XaBAAQ1mDh8+rNvae++99+TNN9/UIAevTUQULqL9XQAiIgp9SUlJ0qJFCw0YGjRoILNmzZI8efJYlyMIQKKx4ebNm9KqVSsNGF5++WX56KOPJCYmRpcdOHBA6tWrJytWrNCWgREjRujz48aN04Bh+PDhMmjQoGSvf/36dQ1CzCxatEjXQ2vC888/73Sdbdu26U8EO0RE4YQtDURE5HPffvutNGvWTO/k79u3T7sNmUFQ8dxzz2lOAYIEdDWy9c0338jTTz8tcXFxmqCMrkvogoRRjbZu3SpVqlRJdRnxenhdd4waNUr69++f6tcgIgpWzGkgIiKfW758uf7EqEQpBQyALkjQpk0bh4AB0GqBbkSXL1+WLVu26HMPPPCA/nzllVe0FSK18ykYLRFoDcFo5PYP5GMYZTFei4goXDBoICIin/v333/1Z/ny5d1aH3kOgIRmZyIiIqzLjHXfeOMNHQZ106ZNmgsRHx8v1apVkz59+qTYNSkxMVH++ecf/b1w4cJO1/n555+121RsbKzmThARhRMGDUREFBKQXI35E3777TcZOnSo5j2gKxRyHdAygMnaXEGLBQIHcNUSMn/+fGsrh7PWDyKiUMaggYiIfA6jH8GePXvcWr9QoUL6E/kMrhjDnhrrGtC68Pbbb8v3338vZ8+e1co+WgcmTZokq1evdtlyYbh165bDcuwHk75Bjx493HoPREShhEEDERH5HLoLASreV69eTXH9OnXq6M+5c+c6zU1YuHChnD9/XhOhMUuzK9HR0ZowjeFZwdWQqxjuFQ/A8K/2kPSMnAbsq0aNGimWn4go1DBoICIin2vatKmOaHT8+HEdShV37m0hMEDLgAHroHUC6/fu3dvadchoYUCeAmDiN4ycBGhJ2Lt3r8Nrnzx5UjZv3qy/Y6I3VzD6EgwbNkyHiAUkQGNI108++UTLM3ny5DQeCSKi4MQhV4mIKN2SoXHHHxV75B9gVmhjcrcdO3aYTu6Gyj7u8CP3APM5OJvcrXLlyrofJEhXrFhRE6ETEhLkl19+0fkX6tatq6MqofXBmf3792tggxmhkbB977336rwMyIsoW7asjgDlKjGbiCjUMWggIqJ0gwo5WgS+/vprzW9A/kD+/Pm1go7hWFu3bu0wi/S7776rrRCY2RkJyAgIOnToIC+88EKyAGDp0qX62Lhxo66LGZ7z5s0rpUuXls6dO0vbtm2tE8S5gpmjBw4cKOvWrdOyIVjAsK89e/a0tmgQEYUjBg1ERERERGSKOQ1ERERERGSKQQMREREREZli0EBERERERKYYNBARERERkSkGDUREREREZIpBAxERERERmWLQQEREREREphg0EBERERGRKQYNRERERERkikEDERERERGZYtBARERERESmGDQQEREREZGY+X9LjVBu4FrFaQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJOCAYAAADIyIrwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrVElEQVR4nO3dB3xUVfbA8ZPeC713FBZBBI2ioFSxoqCCdbG7KiwqKqKI5a8iYEXF7tpZFXtBF0VBBYSg6FqQHjpCIKT3zP9zrk42IXUydzLt9/XznMm89+6beVOYM+eee0McDodDAAAAAKCeQuu7IQAAAAAQRAAAAABwGZkIAAAAAC4hiAAAAADgEoIIAAAAAC4hiAAAAADgEoIIAAAAAC4hiAAAAADgknDXNoe3lJWVyc6dOyUhIUFCQkJ4IgAAgFt0vuHs7Gxp27athIZ673flgoICKSoq8vhxIiMjJTo62uPHCRYEEX5CA4gOHTp4+24AAIAAs23bNmnfvr3XAojkmGQplEKPH6t169ayefNmAglLCCL8hGYg1JPvLpWYuHi32moWH2XlPpWUOsTX7Niba62t+PgIK+3s25EttpSWlFppJzI+UnxNtKXXpcqx9DoIj7H3ERkeFWHtl0MbinPt/eoXaem5y9+fJ7ZEN4mx0k5pUYnY0q5tos999u7emWWlndaWHpsqKSuz0k5RiZ12VH6enddBuxZx4kvycnPkolNSyr9jeINmIDSAGCHDJNyDX0tLpES+2P2lOR7ZCDsIIvyEswuTBhCxce692eMCOIiIybPX1Ss2zs4X7bxYe+eptNhSEBHrg0FEnL0Uc2luiO8FEdGWgogyO6+ncIfFICLOUgBYYK87RXSspSAi3F4QERuf4HOfvTGxZT712FRJqZ37FG4xiJCQYivNxMW79yOgp/hCN+lIiZQIsfM5WZ1QyoCto7AaAAAAgEvIRAAAAMCrQvQ/D2ZEQhzez7YEGjIRAAAAAFxCJgIAAABepTULnqxboCbCPjIRAAAAAFxCJgIAAABeFRoSYhaPtS8hIr43qKRfIxMBAAAAwCVkIgAAAOBVISZX4Lnftj3ZdrDijAIAAABwCZkIAAAAeBU1Ef6HTAQAAACCQkpKivTq1Uvmzp3r7bvi98hEAAAAIChqIlJTUyUxMdFjxwkmZCIAAAAAuIRMBAAAAAK/JgJWkYkAAAAA4BIyEUFoy95cK+1EhNmLQVsmRVtpp6SgWGz5w9J5atutqdiSvifHSjvRCXbOtypz2JkCNP9AvtjSokOSlXYyM+zdp+wdmVbaKS0otdJOXOt4sSV3d7aVdhLa23neVObmDCvtxLez13c6I7vISjulZfam3Y1vGmulncJiO69LlZ1j5zzFxkaILcmJUVbaiYkKs9LOpt12/i3Iz7X3GWejZkH/82T7sIszCgAAAMAlZCIAAADgVSEhIWbxWPvURFhHJgIAAACAS8hEAAAAwKv+nCXCc79tMzqTfWQiAAAAALiETAQAAAC8inki/A+ZCAAAAAAuIRMBAAAAr9KKCE/O5cA8EfaRiQAAAADgEjIRAAAA8KrQkFCzeKx9fje3jkwEAAAAAJeQiQAAAIBX6YzSnpxVmhmr7SMTAQAAAMAlZCIAAADgVdRE+B8yEQAAAABcQiYCAAAAXvXnLBGeq4nwZNvBiiDCz7ROjpG4+Bi32iguKbNyX7al54ktezILrLQTHh0htsQluXeenfILS8WWyPgoK+0UF5aILYmJdu5TQYZDbEnfnmWlnfzd2WJLRHK0nYYsNVOwP99ewWK4naT2/h93iS3JvVtZaSfU0mNT+TmFVtopLbL3mZLUIs5KO8mxkWJLRnqulXYSm8eKLZ1bJVhpZ8deO4+tpNjOa6Ck2M73AQQngggAAAB4FTNW+x9qIgAAAAC4hEwEAAAAvCo0JMQsHmufmgjryEQAAAAAcAmZCAAAAHi9JkL/82T7sIszCgAAAMAlBBEAAADwqpCQEI8vKiUlRXr16iVz587lGXdTUAYRU6ZMKX9B3XvvvTVu98UXX8ipp54qzZs3l5iYGOnZs6dMmzZNcnJyam1/w4YNcskll0j79u0lKirKXOrfmzZt8sCjAQAAQH2kpqbKb7/9JhMmTOCEuSnogohly5bJQw89VB6R1uSRRx6RE088UT777DM57LDDZNSoUZKZmSkzZsyQo446StLT06vdb+nSpdK3b195+eWXJTk5WcaMGWMu9e/DDz9cvvvuOw89MgAAAP8U2gj/wa6gOqN5eXkmI9CmTRs588wza9xu9erVcuONN0pYWJh88sknsmTJEnnrrbdk48aNMnz4cFm7dq1cffXV1bY/btw4c3nrrbfKL7/8Im+88Ya51L9zc3PN+vx8ezPFAgAAAI0tqIII/SK/fv16efbZZyUpKanG7e6//35xOBxy6aWXyimnnFJ+e2xsrLzwwgsSGhoq77zzjvz++++V9nvppZdk586dcuihh1bpJqV/6+3btm2TV155xQOPDgAAwD+FhvxvrgjPLN5+hIEnaIKIxYsXy+OPPy7jx483dQ41KSoqMtkHdcEFF1RZ36lTJxk4cKC5/t5771Va5/z7vPPOM4FGRfr3ueeea66/++67Fh4RAAAA4B1BEURoIfRll10mrVq1kkcffbTWbdetW2e6IymtfaiO83bt9lSR829X9wMAAAhmOo+DpxfYFRSTzd10002yefNmkylo0qRJrdvqdkqLoRMSEqrdpkOHDpW2VdnZ2bJv3z5zvWPHjrXut3fvXlMfERcX18BHBAAAAHhPwAcRCxculGeeecZ0MRo9enSd22swoGr7gh8fH28us7KyquxX277O/Zz71naMwsJCs1TcHgAAIBA5axc81r5QFGFbQOd2dEjWyy+/XFq0aGHqIfyJFndr8bdzcWYxAAAAAG8L6CDi+uuvl+3bt8sTTzxhJoyrD2cXJu1uVBPnZHOJiYlV9qtt34qT1FXct6aRpDQIci46qhMAAEAgoibC/wR0dyatgQgPD5cnn3zSLBU5h2fVIVt1ZurWrVubOR06d+5sbj9w4IDpolRdXYTzC71zW6XbNW3aVPbv3y9bt241E87VtJ8GNHXVQ+hM17ocLDu/WErDisUdiTERYkObJjHia7bsyLTWVts21dfEuGrj1gNiS0iYnbi/MLNAbNmf797r0ak4t0hsKSkosdJOTGs7rwFVVlpmpZ3iA5aeu3B7vyFFRkdbaSe6Xe0/rrgie1umz/3UFhlX9TO9IUoK7LznVFGync/xTZv3iy3xTWOttGPr3zr13a9/WGnn5GOqr5l0VfNkO++5nGw7r0kEp4AOIlRJSYmZLK4maWlpZtGhW1WPHj3MfBA6QtOqVatk6NChVfbR21X//v0r3a5/a0Ci63WG6/ruBwAAEMxCQ0LN4rH2A7vzjVcE9BnVbIJOGlfdcvHFF5tt7rnnHvO3BhIqMjJSTjvtNHN93rx5VdrcsmWLLFu2zFwfM2ZMpXXOvzWjUVZW+VdH/fvNN98018866yyPPF4AAACgMQR0ENFQU6dOlZCQEHnxxRfls88+K79dsxNaqF1aWipnn3229OzZs9J+l1xyibRt29bMNTF9+vRK6/Rvvb19+/ZmwjsAAAD8yfOzRDA6k20B352pIbS70UMPPSSTJ082s1sPHjxYWrZsKd98843s2rXLdHl6+umnq+yn3aDeeustGTlypMyYMUM+/PBD6d27t/zyyy9m0TqI+fPnS0yM79USAAAAAPVFJqIGN9xwg3z++edy0kknyX//+1/54IMPzDwPOmpSampqjaM9DRw4UH766SeTbdAi63feecdc6t96+4ABA+r95AAAAASDkJBQjy+wK2gzES+99JJZajNixAizuKp79+7y8ssvu3HvAAAAAN8VtEEEAAAAfIOn6xaoibCP3A4AAAAAl5CJAAAAgFeFeHieCM1zwC7OKAAAAACXkIkAAACAV4X89Z8n24ddZCIAAAAAuIRMBAAAALwrNEQLIzzXvoNMhG1kIgAAAAC4hEwEAAAAvCvEw5kIaiKsIxMBAAAAwCVkIgAAAOBVISEhEqJ1EZ5qv4yaCNsIIvzMjp1ZEhNb5lYbXTo2sXJf9uUUii0FRaVW2unULkls2bQjy0o7+fvyxJayUveee6f4NoliS+4fOVbacZTYeWymrWI7r6eCA/liS0RcpJV2QmIirLQTHhUmtjgsvS4LdmaLLVHt7bzGHWUOsSUkzM6XmBZdm4otmXtzfe48RUbY6SSxblum2NK8SYyVdrbtsfMa/+NAgZV28nLsPP8ITgQRAAAA8C6NsT1ZE0EiwjpqIgAAAAC4hEwEAAAAvEvrITxYE0Eqwj4yEQAAAABcQiYCAAAA3kUmwu+QiQAAAADgEjIRAAAA8P48ER4cncmTbQcrMhEAAAAAXEImAgAAAN5FTYTfIRMBAAAAwCVkIgAAAOBdWrPg0RmrqYmwjUwEAAAAAJcQRAAAAMA3aiI8uYhISkqK9OrVS+bOncsz7ia6MwEAACAopKamSmJiorfvRkAgiAAAAIB3hYT+uXiyfVjFGQUAAADgEjIRAAAA8KqQ0BCzeKx9YXQm2wgi/Eyn9skSF5/gVhv7cgqt3Jcwi2/26MgwK+1s3Z0ttkTHRNhpqGW8+JqS/GJrbcU2j7XSTlZahlhT6rDTTqS913hxbpH4kuLtWdbaCm/ne/2LC/fnWWkntrV7n7cVlRaVWmln37ZMsSW6SYyVduLiI8WWqAg7/x7Y+9dAJMbSfbKlpLTMTjtldtpBcCKIAAAAgHcxY7XfoSYCAAAAgEvIRAAAAMDLPDxjNTUR1pGJAAAAAOASMhEAAAAI7JoIB6Mz2UYmAgAAAIBLCCIAAACAAJefny8//fST7Nu3z0p7BBEAAADwqpCQEI8vweCbb76RyZMnm2Chonnz5knLli2lf//+0qZNG/m///s/t49FEAEAAAAEgGeffVaeeOIJadeuXflt27Ztk8suu0xyc3MlKSlJSkpK5O6775YlS5a4dSyCCAAAAPhGYbUnlyCwYsUK6du3rzRv3rz8tldffVWKiorkrrvukv3795cHD08++aRbxyKIAAAAAAJAenq6tG/fvtJtX375pURGRppuTur444+XAQMGyOrVq906FkEEAAAAvEtrFjy9BIGcnByJiYkp/9vhcEhqaqocddRREh8fX357586dZefOnW4diyACAAAACABNmzaVtLS08r8125CdnS3HHXdcpe2Ki4tNdsIdBBEAAADwLmoirEhJSZGVK1fK8uXLzd9z5swxI1MNGzas0nbr1683ozS5gyACAAAACADXXXed6cI0aNAgk5V47bXXpGvXrjJy5MhKdRM///yz9OvXz61jEUQAAADAu8hEWDFixAj517/+JZ06dTIjMg0ePFg++ugjCQ0NrTRaU1lZmVnnjnAL9xeNqFlStMQnRLvVRn5xqZX7kp1XLLbERIVZaSentExsKS1zWGknf1+e2BIWYec85e/OFltiWifYaSizUKyxdJ4cBSViTamd15PERdhpJ9m9z5GKSv7IsdOQxfMd1vR/hYXuyLP12PSpa2PpvWJRRJSdrwGR4fZ+k0zPyLfSTkK8e/29PfHvZnG2nX+joiPtfMaVFdlpB77l4osvNktNrr76ajNvRMVC64YgEwEAAACv+nMAJU/OWB0cT/DXX38t69atq3UbHb1pz549snTpUreORRABAAAABIAhQ4bIrFmz6txu9uzZMnToULeORXcmAAAAeJenZ5V2BEkqQv6cG6IxkIkAAAAAgkhGRoZER7tXG0cmAgAAAN7l6VmlA7goYuvWrVVmrT74NqeSkhL59ddfZeHChdKtWze3jksQAQAAAPipzp07m+Jxp3feeccsdXV5uuiii9w6LkEEAAAAvIuaiAbr2LFjeRChGYjY2Fhp3rx5tdtGRkZK+/bt5eyzz5Zrrrmm4QcliAAAAAD8V1paWvl1nVRu7NixZsI5TyMTAQAAAK9yzufgyfaDwYsvvijdu3dvlGMRRAAAAAAB4OJaZqq2jSACAAAA3hXi4XkiyoIjE1FRaWmp7Nu3TwoKCqS2eoqGIogAAAAAAkRqaqrccccdsmTJEiksLKy1i5cO+dpQBBEAAAAI7NGZPNm2D/nuu+9k2LBh5dmHJk2aSGJiokeORRABAAAABIA777zTBBCXXXaZ3HfffdKqVSuPHYsgAgAAAN7FjNVWrFixQnr06CHPPfecx0ekCvVo6wAAAAAahdY4HHHEEY0ypC2ZCAAAAHgXNRFW9OzZU9LT06UxEEQEoQM5RVbaiYywl8javy/PSjsx8VFiS35OzSMauCKmWazYUphZ8zBtrohuFS+25Kfn2mkoJkKsKWj4aBOVZNt5DRhlltrJtHSfYi1+/DeLsdNOqcNOO9pUlp3zlPS3FmJL5qb9VtpJ7JQstmTvzrbSTlhbe4WbsbF2PgtybX0OiEhURJiVdgqKSq20087SvyvRIXa+D8B3XHXVVTJp0iTZuHGjdOvWzaPHojsTAAAAfGLGak8uwRJEnH/++XLiiSfKggULzFwRnkImAgAAAAgAXbt2NZdpaWkyatQoCQ8PlzZt2khoaNW8gQZWmrFoKIIIAAAAeBc1EVZo8ODkcDikuLhYtm7dWu227mZnCCIAAACAALB58+ZGOxZBBAAAALyLeSKs6NSpkzQWCqsBAAAAuIRMBAAAALyLmgirsrKy5LXXXpNly5bJ3r17Zfjw4TJlyhSzbt26daZ24oQTTpDo6OgGH4MgAgAAAAgQCxculAsuuEAyMjJMcbUWULdr1658/dq1a2X06NHy73//W8aNG9fg49CdCQAAAN4V0ghLEFizZo2MGTNGMjMz5ZprrpE333zTBBIVnXTSSRIbGysffPCBW8ciEwEAAAAEgBkzZkhBQYHMnz9fzjrrLHPbueeeW2mbyMhIOeKII+Snn35y61hkIgAAAOAbozN5cgkCX331lfTt27c8gKhJ+/btZdeuXW4diyACAAAACAB79+6VQw89tM7tSkpKJDc3161j0Z0JAAAAXhUSGmIWT7YfDJKSkmTHjh11brdp0yZp2bKlW8ciEwEAAAAEgP79+8v3338vW7durXGbX375xdRDHHPMMW4diyACAAAA3sXoTFZcccUVprD6/PPPl927d1dZn56ebrbREZv00h0EEQAAAEAAOOecc2Ts2LGyfPly6datm4wcOdLcvnTpUjnjjDOka9eusnLlSjOPhA716g5qIgAAAOBlnh5BKThqItS8efOke/fu8uijj8oXX3xhblu/fr1ZdHjXG2+8UWbOnCnuIojwM5k5hVIikW61kRzv3v5Ofbo0FVsWrai5754r8nMKxZay0jI7Ddlqx4yAZ+dDMCTM3odpSLidhKbD5j8ef7g34oRHlFl6HZRYaievSKw5UGCnnc7JdtrRf9ySoq20k7UtU2wJj7Pz2Zu9I0tsCY+28zWgsLBEbCkrLrXSTryl14BKsHSe/si08175w9J7Li/H0nsXPiUsLEzuu+8+uemmm8yQr1pEXVZWJh06dJDhw4e7XVDtRBABAAAA79LRkzw5glKQjM5UUZMmTeqcL8Id1EQAAAAAXvb222/LmDFjpGPHjhIbGyuHHXaYPPTQQ1JcXFzvNh5//HHJyMiQxkAQAQAAAO9idCZ58MEHJSoqSmbPni2ffPKJKX6+/fbbXRpF6brrrpO2bdvKueeeK5999pkZhclTAj6I0Oht0aJFcvPNN0tKSookJydLRESEtG7d2lSp65NUGy1IOfXUU6V58+YSExMjPXv2lGnTpklOTk6t+23YsEEuueQSM624viD0Uv/WfmkAAABARR999JG88cYbct5558nQoUPN901dXnnlFfnjjz+kPrT7kgYO8+fPl9NOO83UQWgbWlRtW8AHEUuWLJERI0aY6G779u0yaNAgc4JbtGhhnqzTTz9d/vGPf1QbqT3yyCNy4oknmkhOU0qjRo2SzMxMmTFjhhx11FFmrN3q6DBaffv2lZdfftkELZqa0kv9+/DDD5fvvvuuER45AACAn9DBNTy9+LgWLVpUue3II480lzt37qx3lyjdVkdm0u+cel1HYtIfwU844QR58cUXJTfXzuAjAR9EhIaGytlnny1ff/217Nq1Sz7++GN588035eeffzbRnlawP/vss/Lqq69W2m/16tVmCCxdr9kKDUbeeust2bhxo6lsX7t2rVx99dVVjpeXlyfjxo0zl7feequZFVCPo5f6tz5xuj4/P78RzwIAAABcpd/3tM5Ae5P06dNHwsPDzUiJ9957b73214zAkCFDTJFzXFyc+ZFZuyvVt85Bv7/qsKw650N9NW3aVCZNmmS+y+oyceJEadasmXz77bema5T2xrnssstM2+4I+CBi2LBhJio7/vjjq6zT/mL6olCaKqro/vvvN9mJSy+9VE455ZTy27XQ5YUXXjDByTvvvCO///57pf1eeuklE/UdeuihVV5g+rfevm3btirHAwAACFqhjbA0wFNPPWW+kGtvEv1BuLS0/kMQX3/99eaHY+2hcvTRR8vJJ58sW7dulVtuucV8P63rB+XffvtN5syZI1dddZUkJiY26P5r0KJt6HdT/T6sXfQLCwvN91W9D+4I+CCiLv369TOX+sXeqaioqLxWQotaDtapUycZOHCguf7ee+9VWuf8W/uzaaBRkf6tgYt69913rT8WAAAA2NO7d28z38Lrr78ua9askb///e/12u/99983X97j4+NlxYoV8p///Mf8+Ky1CZrR0KzA9OnTa9xfu8yPHj3aTBpnZWK48HDTnV+DIu3Gr9wtug76eSKchSZt2rQpPynr1q0z3ZGU1j5UR2//5ptvTJqoIuffte1XcTsAAICgZ0Zn8mDdQgObPnhkpIN/IK6J1s+qqVOnSv/+/ctv14F6nnzySdND5oknnjCBRFJSUqV9s7OzTS8Y/VF78eLFphuUOzTzoD9yaz3El19+aSaeU1rv646gzkTs3r3bpHOU1k04bd682VxqMXRCQkK1+2q1e8VtnU/6vn37zHUd47e2/fbu3WutsAUAAAC+YceOHZKamlpjjxYd5Ee/D+qX+wULFlRap7edeeaZkpaWZrIXOlxrQ2kG5JprrjE/lF944YXy+eefm8yIdo/SQX7++9//ijuCNhNRUlIiF110kRltSdNKztSOMxhQtUV++iSorKysKvvVtq9zP+e+NW2nLyJdKm4LAAAQiLRYWRdPtt9YVv/V20QLnLt06VJjzxTtSq/bnn/++eY2rbfQ7vAagGjGoEePHi4fWwcR0sGCtIZD63a1y5I+dh0yVut89Ufz6OhosSFogwgdWUnnj9BqdS000cp3X6KF3Xfffbe37wYAAEDAOPhHWZ3LSxebNv/VS6WmXik19WiZMGGCqaW45557TEBRcUqAXr161au4Wo+p3ZU0eNAa3osvvtgED3rdtqDszqSz+ekISzrclqZ2dMSkipxdmGrrbuScbK7iE1qx61NN+1acpK62F4MOB6tZEudSsfAbAAAgoDTSjNX65V1rEJyL/mhrW3YDe7TovGRK6ySOPfbYSssPP/xQ7wJqzWbo91sNUO666y6PBBDmWBJkdO6Hxx57zNQ7LFy4sHx0poo6d+5sLg8cOGBeCNXVRTi/1Du3Vbqdpq72799vhvDSYbVq2k8La2p7cXkiMgYAAAhm+j2s4o+4vvRdKy0tzUq978GF2p4SVJmIKVOmyMMPP2xOrgYQNY2gpH3QdD4ItWrVqmq3cd5eseK+4t+u7gcAABC0QkM8v/zVC6Ti4okgIqGBPVpsaKwAIqiCCB1i64EHHjAnV1M8KSkpNW6r9RGnnXaauT5v3rwq67ds2SLLli0z18eMGVNpnfNvnaXaOYSWk/6ts2UrHasXAAAAgaXzX71UauuKXl2Plob4v//7P/nwww+rXaejL23fvr3adToLt7vfRYMiiLj99ttl1qxZpgtTXQFExaBDq9l1TF1nHzWl80dcfvnlpuBFK9x79uxZaT+dAVuH49K5Jg6eRET/1tvbt28v48ePt/gIAQAA/JiOnuTppZH0+6urvA77X7Fw2hM9U7TmQYuxa7ofd955Z7XrtMbigw8+cOvYAV8TodHZfffdZ67rrH9z586tdjutUXjwwQfL/9Yn9aGHHpLJkyebKcIHDx4sLVu2NBPM6fBZ2uXp6aefrtKOdoN66623ZOTIkWaiET2+znaoU6XronUQ8+fPl5iYmAY9noLiUgktrv+U69Xp3tZO6ixtl71hZ5s2+7P7mLsOZP1vWFx3xSfZGQKtoMi956uirIxM8TWOHf8b2tgtrdybTKeSlnZeT3KgwE47pq0iK804suy0I5H2fkMKqefkS3X6w97cOSW2Pgui7P0zWWKpnbjuTS21JFJo8TPTlshYO6Mllpa6NxtvRRHhdl7jkZbaaRpv5xxFiW+NTBko2rdvb36w1qFatUfLtGnTKq3X2ao1E6FdqfQ7pqfoCE3uzkod1EGEFjlXjPpqqlXQyvWKQYS64YYbzBwSGkysXLnS9G3TobN05CRdapqIbuDAgfLTTz+ZIbq++OILM815ixYtTPbhjjvukG7dull+lAAAAH6swghKHmu/Ed12222mi/vMmTPN7NPOjINmJ6699lpzfeLEiY1aw2BbwAcR2r1Il4YaMWKEWVylWQ+d6AMAAAD+Sbv9OL/0q40bN5rLZ555Rj7++OPy29977z0zM7TT6NGjZdKkSWZE0AEDBsjw4cNNbxSdo0xH/9QfnPXHZn8W8EEEAAAAfFyFEZQ81n4D6DwOK1asqHL79u3bKxUtFxZW7Ro4Z84cEyxoV3odkKe4uNj0RtG6W+3t4msTHbuKIAIAAACoxpAhQ9yqKxg3bpxZAhFBBAAAALwrwGoiggFBBAAAAIKCjpoUFhYmEyZMMEsg+PHHH818Ea6s09vdRRABAAAA7/L0XA5/ta3DrtqeJdrbdERQXVxZp120dD40dxBEAAAAAH7ohBNOcDsYaCiCCAAAAHiVfhEO8eDoTN76ou1pixcvFm+xN2UpAAAAgKBAJgIAAADexehMfodMBAAAAACXkIkAAABAUIzOBHvIRAAAAABwCZkIAAAAeJeOzOTB0Zk82naQIhMBAAAAwCVkIvxMSanDLO7Iziuycl8iwu3FoE3iIq20k74nR2zJKS610k5ImL3zFGrpnBdlFogtkYc2s9JO0ZYDYs2ePCvNlKXbaccoKbPSjCOr0Eo7IQlRYk2CnfdvSFyEWJNp5zyJxfevRNv5J7ekoERsiW0ea6Wdgox8K+2opNYJVtpJiLX3eoqLsdNW0T47nyl7LH2G5+Xa+7fAbYzO5HfIRAAAACAopKSkSK9evWTu3Lnevit+j0wEAAAAgmJ0ptTUVElMTPTccYIIQQQAAADgh8LCwhq8b0hIiJSUNLx7JEEEAAAAvN/B3pOd7AO0A7/D4fDKvgF8SgEAAIDAVlZWVmWZPHmyREdHy3XXXSc//PCDZGRkmGX16tVy/fXXS0xMjNlGt3UHmQgAAAB4FzNWW/Hiiy/Ko48+Kp9//rkMHTq00rq+ffvKww8/LGeccYaMGDFC/va3v8nll1/e4GORiQAAAAACwJNPPikDBw6sEkBUNGTIEBk0aJA89dRTbh2LIAIAAABepUW+nl6Cwe+//y4dOnSoc7t27drJ2rVr3ToWQQQAAAAQAMLDw+Xnn3+uc7tffvnFbOsOgggAAAD4xuhMnlyCwIABA0yA8Nhjj9W4zeOPP24CjWOPPdatY1FYDQAAAASAO+64Q7744gu54YYb5K233pILLrhAunTpYtalpaXJ66+/LsuXLzdZiNtvv92tYxFEAAAAwLsYnckKzS7MmzdPrrjiClm2bJkJGA6eGyI+Pl6ee+45Oe6449w6FkEEAAAAECDGjh0rJ5xwgjz//POyZMkS2b59e3kx9eDBg82wrm3atHH7OAQRAAAA8C4yEVa1atVKpk2bZhZPCZIyEwAAAAS7lJQU6dWrl8ydO9fbd8XvkYkAAACAd3l6BKW/2k5NTZXExEQJdFlZWfLaa6+Zuoi9e/fK8OHDZcqUKWbdunXrTJG1dnmKjo5u8DEIIgAAAIAAsXDhQjMqU0ZGhimk1on2tB7CSSeZGz16tPz73/+WcePGNfg4BBF+pkl8pMTFR7rVxr7sQiv3JSuvWGxp3yxWApWjtMxaWyGhdmbcjGkeJ7bkp+faacjmbKJlls55ib3nThy+1U5Zep69H/gsnaeQ3TliTet4K81Ed20ithTss3POw6Pt/dMdGhFmpZ0WHZLElihL9ynb4r9RP2/OsNJOspv/fju1Sm74r8cV5UaVis+gJsKKNWvWyJgxY6SoqEiuueYaU0h97rnnVtrmpJNOktjYWPnggw8IIgAAAIBgN2PGDCkoKJD58+fLWWedZW47OIiIjIyUI444Qn766Se3jkVhNQAAALws5H/ZCE8s2n4Q+Oqrr6Rv377lAURN2rdvL7t27XLrWAQRAAAAQADYu3evHHrooXVuV1JSIrm57nVHpiYCAAAAQTE6U6BLSkqSHTt21Lndpk2bpGXLlm4dK0hOKQAAABDY+vfvL99//71s3bq1xm1++eUXUw9xzDHHuHUsgggAAAB4lyfrITw98pMPueKKK0xh9fnnny+7d++usj49Pd1so0O/6qU7CCIAAACAAHDOOefI2LFjZfny5dKtWzcZOXKkuX3p0qVyxhlnSNeuXWXlypVmHgkd6tUd1EQAAADAu5gnwpp58+ZJ9+7d5dFHH5UvvvjC3LZ+/Xqz6PCuN954o8ycOdPt4xBEAAAAAAEiLCxM7rvvPrnpppvMkK9aRF1WViYdOnSQ4cOHu11Q7UQQAQAAAO9idCbrmjRpUud8Ee6gJgIAAAAIAMOGDZPZs2fXud2DDz5otnUHQQQAAACCYnSmlJQU6dWrl8ydOzcgn/HFixfL77//Xud2a9eulSVLlrh1LLozAQAAICikpqZKYmKiBLvi4mIJDXUvl0AQAQAAAO/SRIEn53IIjmki6u3nn3+WZs2aiTsIIgAAAAA/ddlll1X6+9tvv61ym1NJSYn89ttv8uOPP5p5I9xBEAEAAADvYnSmBnvppZfKr4eEhMiGDRvMUpu2bduaYWDdQRABAAAA+KkXX3zRXDocDpOBGDRokFx++eXVbquTzbVv314GDBggERERbh2XIMLPNEmIkviEaLfaiItx70XjtOfAfrFl7ZYDVtpp3cZesdSePTniaxxlDivtRCTaeQ2o/O0ldhoKtzhYXJmdZhxFpXYaEpHSrRlW2ilO22ulnfDWyWJLSGKknYZKLD1xFl9PBWvTxZpmMVaaKcwqFFuiktz798Qpv9Dee8VWWyXF9u5TcmKUlXYSou187Sq29F6x1Y4VzFjdYBdffHH59bvuussECBVv8xSCCAAAACAApKWlNdqxCCIAAADgA6Mzebh9WEUQAQAAAASQwsJC+eqrr8ykcllZWaZe4mBahD19+vQGH4MgAgAAAN4VGvLn4sn2g8R7770n//jHP2Tfvn01bqNBBUEEAAAAAFm1apWce+655kycd9558uuvv5qJ5aZOnSrr16+Xzz//3GQmdPQmHaXJHWQiAAAA4F2MzmTFgw8+KKWlpSYboZPJXXrppSaIcM4JsXfvXhk/frx8+umnsnr1areOZXFMRQAAAADesnTpUunVq1eNs1G3aNFC3njjDcnNzZW7777brWMRRAAAAMA3Rmfy5BIE9u7dKz179iz/Ozz8z05HBQUF5bclJSXJ4MGDZcGCBW4diyACAAAACAAJCQlSUlJSKWBQO3furLSdzla9e/dut45FEAEAAADv10SEenDR9oNA+/btZdu2beV/O7MSOtyrU3FxsXz33XfSqlUrt45FYTUAAAAQAAYNGiTPP/+8ZGZmmizEaaedZro0TZ482XRp6tixozz77LMmM3HhhRe6dSwyEQAAAPCN0Zk8uQSB0aNHm2zEkiVLzN9t2rSR2267TbKzs2XSpElm/SeffCLJycly7733unUsMhEAAAAICikpKRIWFiYTJkwwS6AZPny4mQ+iojvvvFP69Okj8+fPl/3798vf/vY3uf76601Wwh0EEQAAAPAuT4+g9FfbqampkpiYKMHmrLPOMotNdGcCAAAAAsCwYcPMZHKNgSACAAAA3uXJkZmcSxBYtmyZFBUVNcqxCCIAAACAANC+fXspLCxslGPVqyaia9euVg4WEhIiGzdutNJWsPplS4bExv1vEpGG6NIq3sp9ObpHC7Fl1bp08TVNm8VaaWf/vjyxJSI2wko7hVkWP2AK3Hs9litziDWRdn4fKdubK7Zs++2/VtrZXlB5wqCGapXbUmzp3vZ4Ow3F2Hl9G+F2XgNRhzQTW8Kj7ZQhhkWGiS1lJWVW2gmNsHefura282+UTVn5xVbayS8utdJOq6Z2/n2KDGmcX6zrxdMjKAXJ6Eynn366vPbaa5KbmytxcXEePVa9PtHS0tKsBREAAAAA7NORmD766CNTRK3zQXTq1Ek8pd4/i5xzzjnywAMPNPhAN910k7z77rsN3h8AAAABqpFGZwp0N954oxx22GHy8ccfS48ePaRfv37SuXNniYmJqfbH/RdeeMHzQUR8fLxb0YzuDwAAAMAzXnrppfKeP1pgvWLFCrNUp1GCiJNOOslMUuEO3X/kyJFutQEAAIAA5OkRlIJkdKYXX3yx0Y5VryDi008/dftAkydPNgsAAAAA+y6++GJpLMxYDQAAAO9idCa/QxABAAAABJjffvvNTD63d+9eU2x9xhlnmNvLysqkpKREIiMjvRtEbN++XXbu3CkFBQU1bnPCCSe4exgAAAAEqlAPT4EcRNMrb9u2TS699FL56quvKnVzcgYRzz33nFx77bWycOFCGT58eOMHEfPnz5fbb79dNmzYUOt2Wvmt0Q4AAAAAz9m/f78MHjzYzPHWu3dv80P+k08+WWmbcePGycSJE+XDDz9s/CDirbfekvPPP18cDoc0bdrUjD+bkJDQ4DsBAACAIEZNhBWzZs0yAYTOz6bX9cf8g4OIJk2amFFTv/32W7eO1aAgYsaMGeZyzpw5Jh0SFmZvunsAAAAArvvggw/Mj/szZ84sny+iOl27dpWlS5dKo/cQW7t2rRx77LHyz3/+kwACAAAAdjIRnlyCwJYtW6R///4SGlr7V3wtqtauT40eRCQnJ7s1ezUAAAAAu6KjoyU7O7vO7bZu3SpJSUmNH0QMHTpUVq9e7daBAQAAgEqjM3lyCQI9e/aUH374QXJzc2vcJj09XX766Sc5/PDD3TpWg07pHXfcITt27DD9rQAAAAB43znnnCP79u2TyZMnm/kgqnPzzTdLXl6enHvuuY1fWK1Rjo4te95555kCjlNOOUU6duxYY/+r8ePHu3UnAQAAEMAYncmKCRMmyMsvvyzPP/+8fP/993LWWWeZ2zdu3CgPP/ywmaJh5cqVcsQRR8gll1zi1rEaPE+EzoCnBRnap0rvTG0IIuxp1zRW4uJj3Wpj8x85Vu5Lj/bu9aWrKCzUTsHT/uxCsaVpQpSVdiJj3ZsRsqKMPe4VQTmF1FFw5YqwNvFW2indXXPq1WXhdh5fWU7Nk2i6KrvEzvsuKtTO6ymzOEusKSq10068vfeKrSLKkrxisSXE0udcVFK02JKfnmelndi29oZ535WRL76mqLj6X3RdlRAbYaWdHXvtfF7m5th5/uFbNRH/+c9/ZOzYsea7urP8QIdz1UWnZ0hJSZH3339fIiIiGj+I+Ne//iU33nijua79qQ455BCJj7fzRSKQaLQ3d+5c0++sqKhIunfvLhdeeKHccMMNbj9xAAAAAaORMhH6BVqnJtBf7HUJRG3atDEBgwYTn3zyiWzatMl0berQoYPpPXTmmWfWOvyrR4OIRx55RMLDw+Xdd9+V008/3e07EYiuv/56M4+Gnqdhw4aZIOvLL7+UW265RT766CPTHSwmJsbbdxMAACBopKamSmJiogSDk046ySye0qCcv/ar0mm0CSCqpykiDSA0cFixYoWJBN955x1Zv359+QyB06dPd++ZAwAACBQhHh6ZKTimiWhUDQoidLrsFi1a2L83AcI5o/fUqVPNhB9OzZs3L596/IknnpDMzEyv3UcAAAAErtLSUtmzZ4+pX65pafTuTNqfatGiRaZ/VV0z4gUbHfpWU2XqggsuqLJ+0KBBpk/atm3bZMGCBXL++ed74V4CAAD4EEZnska/h+p0DEuWLJHCwpoHnNG6iJKSkgYfp0ERwD333GPu1KRJk0zBMP7HWQXftGlT6dKlS7Wn5qijjqq0LQAAAOCu7777TgYPHmy60hcUFEhycrKZhqG6RX/UbvRMxHPPPWeyEU899ZSp+tYZrGuaJ0KjnGDq/79582ZzqeejJs4nzbktAABAUCMTYcWdd95pgofLLrtM7rvvPmnVqpV4SoOCiLvuussEBzrW7JYtW+Sll16qso1zfbAFEdnZ2eYyLi6uxm2cw+FmZdU8TrtmeiqmoGrbFgAAAFixYoX06NHD/OBvYxhX60GE9rPy9B0Ldvfff7/cfffd3r4bAAAAnuccRcmT7QeBkpISMxt1Y3xPb3AmAtVLSPhz1s7c3Jpnk8zJ+XPm2trGKb711ltl8uTJlTIR7vZdAwAAQODq2bOnpKenN8qxgiQuazydO3c2lzr6Uk2c65zbVicqKsoEGRUXAACAQKS/nHt6CQZXXXWVfPPNN2ZON08jiLCsX79+5nLfvn01Fk6vWrXKXFacQwIAAABwN4jQ6QNOPPFEM5WAzhXh1e5M8+bNk27duskxxxzjVqGHRkXVzZ0QSNq3by8pKSlmjF49b9OmTau0Xmer1kyEZhpOPfVUr91PAAAAn8HoTFZ07drVXKalpcmoUaMkPDxc2rRpU+MIqu5kLOqVibjooovkmWeeEXc8/fTT8ve//12CwW233WYuZ86cKT/88EP57ZqduPbaa831iRMnSlJSktfuIwAAAAJLWlqaWZSOklpcXGxmpnbefvDS6IXVqN3o0aPNRHyPPfaYDBgwQIYPH26GfNVZvg8cOCADBw40E/YBAACARIQtjTkHWb2DiM8++0yGDRvW4AP9/vvvEkzmzJljgoW5c+fKsmXLTCSoXcKmTp0qN9xwg0RGRnr7LgIAACCAdOrUyfeCiN27d5vFHcFSGe80btw4swAAAKCukgjPfU8Msq+gvhNEfPXVV56/J6iX/MJSCY1wr9I+MtzOoFzb9tY8F4arSsscVtpp1zRWfE16sb2REWKa2Xl8BRkFYkvprj/nPXFXWJs/Z3K3oTQ9z0o74W3s1S3Fra15FntXlFh6PSWE2zvfIU1j7DQUFyHWHLDzGi+NtDeIYWRClJV2ykrKxJaY5nY+U2Kj7PWO3rPHzmdKt47JYkt6dqGVdhKi7ZynCEv/jpcVh1lpB75H5xd77bXXTG+YvXv3mq71U6ZMMevWrVtn6iFOOOEEiY6ObvAx6vVqHjx4cIMPAAAAANSKGautWbhwoRkNNSMjwxRXa4anXbt25evXrl1r6nf//e9/u9VjhnkiAAAAgACwZs0aGTNmjGRmZso111wjb775pgkkKjrppJMkNjZWPvjgA7eOxehMAAAA8CpPzyodLHW5M2bMkIKCApk/f76cddZZ5rZzzz230jY6uM8RRxwhP/30k1vHIhMBAAAABICvvvpK+vbtWx5A1DY58q5du9w6FkEEAAAAfGPGak8uQWDv3r1y6KGH1rldSUmJ5Oa6N0AOQQQAAAAQAJKSkmTHjh11brdp0yZp2bKlW8ciiAAAAIBXkYiwo3///vL999/L1q1ba9zml19+MfUQxxxzjFvHIogAAAAAAsAVV1xhCqvPP//8aieJTk9PN9voiE166Q5GZwIAAIB3ebpuIUhqIs455xwZO3asGZ2pW7duMnDgQHP70qVL5YwzzpDFixdLTk6OXHjhhWao10bPRAwbNkxGjhxp0iW1mTVrltkWAAAAgOfNmzdPbr31VnP9iy++MJfr16+Xjz/+WIqKiuTGG2+Ul156ye3jNCgToVGMjrc7ZMgQM4nFqaeeWu12v//+uyxZssTd+wgAAIBAFhoiIaEezBZ4sm0fExYWJvfdd5/cdNNNZshXLaIuKyuTDh06yPDhw90uqHa7O1OnTp1k+/btZtrsuXPnypVXXmnlDgEAAABwT5MmTeqcL8IrhdWahfjwww8lKipKrr76arn99tvt3jMAAAAEjxAPLn9JSUmRXr16mR/AId4rrD755JNNd6XTTjtN7r//ftm2bZu88MILEh5OvTYAAAB8S2pqqiQmJkowWLZsmWzYsKHadUcddZQJptwRbmM82u+++05OOeUUee2112Tnzp3y3nvvSXx8vLtNAwAAIAhora0unmw/UB155JGybt06U/+gwYHTc889J6+88kq1+xx++OGyevVqt45rJWWg9REa7Zx55pmyaNEiGTRokCxYsMBG0wAAAACqod+7NRi4/PLLKwUQTjofhBZTV6Q1zf/973/lyy+/dGsUVWv9jpKTk+Xzzz+X8ePHy1tvvSUDBgwwVeAAAABAbZgmomHef/99k2W54YYbql2v6/T7eUVpaWlmDol33nnHN4IIFRkZKW+88YYJHh566CHZsWOHzeYhIiVlZVJcVubWuUiIjrByLvOLS609Jx2ax4qvWbdhn5V2HGUOK+2YtkrttNWscxOxZU9hiZV2SrOLxJawXi3sNFRg57GpriHHW2mnZHuGlXbCOzYVW8I6JtlpyOJ7RVrFWWkmIj5SbCkrde+z2yk8IkxsKcqz877bW2Tv34PIWDvnPCPX3mdKxxZ2Xk9ZucVW2ikptXO+8wvtPW/wjpUrV5oeQa7UN3Tu3Fn69Olj9m300ZkGDx4sPXv2rHH9Aw88II899pg79wsAAABALTZu3Ci9e/eudp12ZarJIYccIps3bxZ3NCgToYUbdZk4caJZAAAAgFrRn6lBsrKyJCmp+mzw5MmTZezYsdWui4mJkezsbHEHY7ECAAAAfig+Pl4yMzNrHIFJl+ocOHBAYmPd60pOEAEAAACvYojXhmnTpo38+OOPLu+n++i+XpmxGgAAAID3HHfccWYgo6+//rre++i2OszrwIED3To2QQQAAAC8K7QRlgB00UUXmQLqa6+91tRH1EXrIHRbzfxccMEFbh07QE8pAAAAENgGDx4sJ554ovz2229msrlPPvmkxm11IuiUlBRZs2aNmYBu6NChbh2bmggAAAB4FTURDTdv3jzTNWndunVyxhlnSJMmTaR///7SosWfcybt3btXfvjhB8nIyDBZi+7du5t93EUQAQAAAPipZs2ayYoVK8zUCv/+979l//798sUXX5jArOJ8EaGhoXLeeefJ3LlzJTk52e3jEkQAAADAu5gnwi06V8Srr74qd999t3z88cfy/fffS3p6ulnXvHlzk5k4/fTTpVu3bmILQQQAAAAQALp27SqTJk1qlGMRRAAAAMCrSET4H0ZnAgAAAOASMhEAAADwKkZn8j9kIgAAAAC4hEwEAAAAvMvTs0rzs7l1nFIAAAAALiET4WcKiksltKjUrTaaNYuycl8O7C0SW/IKS+y0k1cstiS1iLPSTmyUvbdZeka+lXYO7MwSW8Kj7Tw+h8XzVLIn105Dh/0526cNYZbOU1inRCvtSIKdzwEjKsxSO/ZeA+FxkVbaad29mdiy7afdVtqJaxUvtoTHRFhpp5Olz0uVnl1opZ2eHdyfTMtp+c92nrve3ZpaaWfrXjufcXn59v4ddxc1EQ3z9ddfS+vWreXQQw+VxkYmAgAAAPBDQ4YMkZkzZ5b/PWzYMJk9e3ajHJtMBAAAALyLiSIazOFwlF9fvHixdO7cWRoDmQgAAADADyUkJMiuXbu8cmwyEQAAAPAqEhENc/jhh8uXX34pd9xxh3Tv3t3ctmHDBnnllVfqtf/48eMbeGSCCAAAAMAvTZkyRc455xy57777ym9bunSpWeqDIAIAAAD+i1REg4waNUpWrlwp77//vmzZskVeeukl6datmwwcOFA8je5MAAAAgJ/q27evWZQGEYMGDZJ//etfHj8uQQQAAAC8KiQ0xCyebD8Y3HnnndKvX79GORZBBAAAABAgQURjIYgAAACAV4X8VRbhyfaDSUlJibz99tvy1VdfyY4dO8xt7dq1k6FDh5pC7PBw90MAgggAAAAgQPz4448mUNi8eXOliejU888/L9OnT5f58+fLEUcc4dZxCCIAAADgXYzOZMXOnTtl5MiRkp6eLq1atZLzzjvPjNakNm3aJG+88YZs3LhRTjrpJBNstGnTpsHHIogAAAAAAsCsWbNMAHHFFVfInDlzJCYmptL6GTNmyKRJk0xGYvbs2fLII480+FihFu4vAAAA0GAhISEeX4LBp59+Kh07dpSnnnqqSgChoqOj5cknnzTbfPLJJ24diyACAAAACADbtm2T4447TsLCwmrcRouqjz32WLOtO+jOBAAAAB8YnsnD7QeBqKgoycrKqnO77Oxss607CCL8TIvEaImLj3arjazcYiv3pWOLOLFl8x85VtopKy4VW4qKa47iXREZXia2hIbbSR627JQstuxav89KO/FtEsSWXEv/WBRvzRRrWseLTykssdZUSEs7nwWOP3LFloh2iVba2bl2r9iS2DHJSjtlJfY+U4pzi6y0kxEbIb7m920HrLXVxtJrPK/A3vsOqE6vXr3MsK6aZejQoUO122zdutVs4+7oTHRnAgAAgE/MWO3JRaWkpJgv2nPnzg3IZ3z8+PGSn58vI0aMkAULFlRZ//HHH8uJJ54oBQUFZlt3kIkAAABAUEhNTZXERDuZSl905ZVXyjvvvCOLFi2SUaNGSdOmTaVLly5mnc4bsX//fjN3hAYZuq07yEQAAADAJ0oiPLkEg7CwMDPq0pQpUyQuLk727dsnq1atMote19tuueUWk5EIDXUvDCATAQAAAASIyMhImTlzptx9990meNixY4e5vV27dnLUUUe5XVDtRBABAAAAH5iw2nP5giCZJqISDRYGDhwonkJ3JgAAAAAuIRMBAAAAH8hEeLZ92EUmAgAAAIBLyEQAAADAq8hE+B8yEQAAAABcQiYCAAAAXhXy13+ebB92kYkAAAAAAsDWrVtl27ZtjXIsgggAAAB411+jM3lqCZZEROfOneW8885rlGMRRAAAAAABIDExUbp06dIox6ImAgAAAF7F6Ex29OrVi+5MAAAAAOrvyiuvlKVLl0pqaqp4GpkIAAAAeFVISIhZPNl+MLj00ktl9erVMnLkSLn55pvl7LPPNnUSUVFR1o9FEOFnYqMjJC4mQnzBHwcKrLVVUFRqpZ2WLePFlrzCEivtZFg8Ty2axVppZ8+eHLElPNrOx0houL0SrbLSMjsNJdr70A2LixRfEh5r73PEUeaw0k5Id3vnO39fnpV2EjsmiS2hEWFW2km2+LrMsXSfsvKKxdd0ahFnra38Yjv/RmXkFllpJ87S525ICV8DA01Y2P/e09OnTzdLbYFVSUnDv+vw6gEAAIBXeXoApeDIQ4g4HA6PbFsdgggAAAAgAJSVWcrE1wNBBAAAALyKmgj/wzwRAAAAAFxCEAEAAACv8uRs1Z6eg8IXbdy4UaZMmSKDBg2SHj16mOtOK1askGeffVYyMzPdOgbdmQAAAIAA8fLLL8vVV18thYWF5V3F0tPTy9fn5eXJNddcI5GRkXLJJZc0+DhkIgAAAOATozN5cgkG3333nVxxxRUmQJg9e7bJOhw8CtPgwYMlKSlJPvroI7eORSYCAAAACACzZ882QcMnn3xiujJVJzQ0VI444gj57bff3DoWmQgAAAD4xOhMnlyCwdKlS+Xoo4+uMYBwat26tezatcutYxFEAAAAAAHgwIED0rFjxzq3y8/Pl6Ii92ZQpzsTAAAAvMrTIygFSSJCmjVrJlu2bKlzuw0bNphshDvIRAAAAAABYMCAAbJq1Sr59ddfa+3ypOvr6vJUF4IIAAAAeBU1EXZMmDBBSktL5eyzz5Yff/yxyvo1a9bIZZddZs73tdde69axCCIAAACAADB8+HCZPHmyrFu3To488kg59NBDTcDwn//8Rw4//HDp06ePrF+/Xm6++WaTtXBHQAcRe/bskVdeeUUuuOACOeSQQyQ6OlpiY2OlZ8+eMmnSJElLS6t1fy04mTVrlvTt21fi4uKkSZMmMmTIEHn77bfrPPb8+fPNtrqP7qtt6LBbxcXFFh8hAACA/2OeCHsefPBBeeaZZ0zNg9Y+6JCvOhLTL7/8Ik2bNpXHH39cZs6c6fZxArqwWiOx119/3YyH27t3bznjjDMkNzdXUlNTzQn817/+Je+9956ceOKJVfbV2fz09mXLlklycrKcfPLJkpOTI19++aUsWbJEbrzxRvMkVef666+XOXPmSHh4uAwbNkzi4+PNfrfccouZ2GPhwoUSExPTCGcAAAAAwebKK680k86tXr1aNm3aJGVlZdKhQwdJSUkx309tCOggQqOtu+++Wy6//HJp165d+e0aDOjJfeONN+S8884zUZpmDCq67bbbTAChaR8NAJo3b25u//77702G4aGHHjKXp59+eqX93n//fRNAaOCgwUb//v3N7TrduAYU3377rUyfPr3GAAQAACDYMDqTfdqNSb+HOr+LWm/fcfBc2EFCMw2a5snOzpZXX31VLrroovJ1GRkZZp12Z9Iv/QMHDqy077333msCAe1Ltnz58krrdIIPzXToNtOmTau0Tts6/vjjJSoqSv744w8z5Xh9ZWVlme2X/LRZ4hMSxB25+Xa6VGVZakfFRIRZaSe7oERsOZDj3vjJTjFRdh6byrZ0nxxl9t72TZKjrbSTk2/vucvenW2lnZICe6/xiNhIK+2EhtvphVpi8b0SmWDnsRXn+l53z2Yd6v85XZfMvblW2jm0ezOx5Y/MAivttG8WK7bkF5ZaaScxLkJ8Tcsmds5T2q4sK+3k5mTLGQN7SmZmpiQmJoo3OL/fvL7oZ4mNc+/7TW3ycrPlwuF9vPpYvUG/5u/bt89c6vCv2jvHloCuiaiN1kb06NHDXN+2bVuldQsWLDABhE7WcXAAobTGQn333Xeyc+fO8tt37NhhAoiK21SkQ2lpKqmwsNAcAwAAAFoT4eEZq03VRfD4/PPPTVf8hIQEadWqlflxXK/rbVpkbUPQBhFa4OwsrG7Tpk2lddp/TB111FHV7tu1a1fTVUpVHD7LuZ+u69KlS7X7Ott0bgsAAADYoiMvabCgNbja80azELroLNV626mnnmpqe90VtEHECy+8YOoUtMD5lFNOqbRu8+bN5rK2acPbt29fadv67qeZiIP3AwAACGaMzmTHa6+9Zup2dURSDRT++9//mq77uvz8889y0003me++jz76qNnWHUEZROhJ1ChNaW2Dpnkq0hOtdGjWmmjhtLMvn7v7VUe7POk2FRcAAACgJjr6aFhYmHz22WfywAMPmNFJ9XupLocddpiZbkDXaRevJ554QgJydKYpU6bIhx9+6PJ+zz//fK3TeG/fvl1GjRplRmjSIV+nTp0qvuj+++83I0sBAAAEOkZnskPngtDvwTqQT02c6511vAEXRGjB8tq1a13eT4ODmuzevdvM5LdlyxY56aST5K233jKR2MG08ETpnBJ1HadihX9D96vOrbfeaua5cNJMhLMrFAAAAHAw7cbUtm1bqYtuExkZGZhBhPbTcrev1sGzV+s8DToN+IgRI8x8DjrUanU6d+5sLrdu3VprRqPithWvHzzaU0XOdRX3q47et5ruHwAAQCBxjqLkyfaDwZFHHmnqIOqi29Q0gFB9BUVNxN69e00AsWbNGpOJ0G5SGqnVxDkpx6pVq6pdrzP/7d+/31zv169f+e3O6zoeb02F0842PTXxBwAAAILTtGnTzPddrX2oidZK6DY6sXJAZiJscc4U/euvv5oA4qOPPjJV6bXRoa80xaOZiKVLl1aZK2LevHnmUiebq5gy0hGbdDpx7WOm21Q32ZxmIjTDoMcAAAAANREN9fXXX1fJuEycONF0i58/f778/e9/L592QH/g1l4+33//vUyaNMntiecCOojQbIEGDlpkol2YNANRVwChmjRpItdcc43MmTNHrr32Wvnyyy/NLH/qhx9+kFmzZpnrBwcJSqO6MWPGyMyZM83Qsc6Mg2YntC2lT64rs1UDAAAABxsyZEi1XbV0XggNFvR768G3q8cee8yM5FRSUiINFdBBxBVXXGH6fOnJ1QngNDCozujRo81S0YwZM2TlypWyfPlyOeSQQ0w2QwumFy1aZCaq06Ln008/vdq2NLrTJ0czFRrE6LBaut+BAwdMVuOee+7x2GMGAADwN3/OKe3BmogAnbH6hBNO8Fq9R0AHEc66BY26dCSmmmiR88FBRGxsrCxevFgefvhhef3112XBggWmi9Oxxx5rMgljx46tsT3NYGiwMHfuXFm2bJkJOrp162aGk73hhhvcroYHAAAAFi9e7LWTENBBhLsnVr/s6xf/hswlMW7cOLMAAACgdswT4X+CYnQmAAAAAPYEdCYCAAAAfiDkz2yEJ9sPJgUFBWZaAZ28Wa/XZPz48Q0+BkEEAAAAECAeeOABM0BQVlZWndsSRAAAAMBvhUqIWTzZfjB44okn5JZbbjHX+/TpY0YYTUhI8MixyET4mbyCYgkJL3arjax89/YvbyfPTjsqJinMSjt5hQ0f7/hgzZOifO48hYbbKWMqKykTW2w9vuztmWJLp7+1tNLO3n15YkvuHzlW2olrFW+lncgEO69vVZRdaKWdNl2aiC2lZX+Ohe6uPVsOiC1dejS30k5GbpHYUlRs77PAlvziUivttIuNE1uy8+yc8w2WPueKy+w8bwWWzjV8K4gIDw+Xd955R0aNGuXRYxFEAAAAwKsYncmOtLQ0M3eEpwMIxehMAAAAQABo2bKltGjRolGORRABAAAAn8hEeHIJBqeccoosX75cyix1easNQQQAAAAQAO68804pKiqSSZMmmUtPoiYCAAAAXhUSEmIWT7YfDNq2bSvffvutnHHGGdKjRw8ZOnSodOzYUUJDQ6s9J9OnT2/wsQgiAAAAgADgcDhkzpw58vvvv5suTS+99FK1wYNuRxABAAAAv6Z5AiastjPR3OOPP26GeT399NPNPBHx8XaGBj8YmQgAAADAyzZs2CAPPvigrFy5Un7++Wdp166dGbLVFc8//7zExsbKN998I/369RNPIogAAACAV1ETIfLrr7/Kxx9/LEcffbTpbpSRkeHyedy2bZsMGTLE4wGEYnQmAAAAwMtGjRol27dvl3fffVeOOeaYBrXRunVrSUhIkMZAEAEAAACvYp4IqXYEJVeNGTPGdGUqKCgQTyOIAAAAAKqxdu1aU6h8ySWXSJ8+fUzBsna9uvfee+t1vubPn2+6FzVp0kTi4uKkb9++Mnv2bCkuLvbI+b7rrrukadOmcv7550t6erp4EjURAAAA8CpPzyrd0LafeuopM2RqQ1x//fVmXw08hg0bZkZJ+vLLL+WWW26Rjz76SBYuXCgxMTENu2O1HFPnh3j//ffNsY488sha54l44YUXGnwsgggAAACgGr1795abbrrJFCr3799fZsyYIa+++mqd50q/xGsAoYHDkiVLzL5KswMaUOiEcDrRm47GZJPOC+GcWC87O1sWL15c47YEEQAAAPBrIX/958n2G+KKK65oUN3CjBkzzOXUqVPLAwjVvHlzefLJJ+X444+XJ554wgQSSUlJYsuLL74ojYVMBAAAAGDJjh07JDU11Vy/4IILqqwfNGiQdOjQwQzHumDBAlO/YMvFF18sjYUgws+0aR4nCQnuzTwYl1No5b7ERNhpR7VqGmulnfRse/cpwsIoCSo2yt7brFl8lJV2duzPE1tCLXViTeqQLLbst/Q6CIsME1vi29gZci803M7rMjE2QmzJKHNYaScrz16hYX66ndd4XCt7M73mFpRYaScqwt7rctSAjlba+XGDvQLO8DA7nykbdmaJLYXFpVbaOerQFlba2bA900o74Zb+nfOnmoisrMqvi6ioKLPYtHr1anOpBc5dunSpdpujjjrKBBG6rc0gojERRAAAACAoaAagojvvvNOMaGTT5s2bzaUWNNd1P5zbqry8PJOZUJs2bTJ/v/322+bvlJQU6dSpk/gSgggAAAAExYzV+ut/YmJi+e22sxDOgmalQ7rWRAuuD86M7NmzR8aOHVtpO+ffWuugw8zW5bLLLpP6orAaAAAAqAcNICoGEb6kc+fO4nA43B6dqT7BlB6HIAIAAAB+zVfniWiIhIQ/a+Byc3Nr3CYnJ8dc2g5oahqdqaysTLZs2WK6S61atcrMJ6ET37mD7kwAAACAxYyCs+tUTZzrnNs21uhMWv8xZcoUee655+SHH35w61i+U5YPAACAoK6J8OTSWPr162cu9+3bV6lwuiLNBqiKc0g0Fp3DQrMld9xxh1vtEEQAAAAAlrRv396MpqTmzZtXZb3OVq2ZCC3qPvXUUxv9vIeHh5vg5YsvvnCrHYIIAAAAeFVIIyyN6bbbbjOXM2fOrNRtSLMT1157rbk+ceJEq7NVuyI/P18yMjLcaoOaCAAAAKAaGgA4v/SrjRs3mstnnnlGPv744/Lb33vvPWnTpk3536NHj5ZJkybJY489JgMGDJDhw4ebIV8XLVokBw4ckIEDB8o999zjlXO+Zs0akw05eM4MVxFEAAAAwKt8dXQmncdhxYoVVW7fvn27WZwKCwurbDNnzhwTLMydO1eWLVsmxcXF0q1bN5k6darccMMNEhkZKba98sortc5foQHEq6++KgUFBXLBBRe4dSyCCAAAAKAaQ4YMcWvuhnHjxpmlseiEdLUVkTsfy5lnnim33367W8ciiAAAAEBQzFitBc9hYWEyYcIEswSa8ePH13geNfPRrl07GTFihBx33HFuH4sgAgAAAEEhNTXVZ2estqGuGattIogAAACA1zXmrNJwH0O8AgAAAHAJmQgAAAB4Vchf/3my/UD0Si2jMdW3hqKhCCIAAAAAP3RJHaMx1YUgIohk5hRJaUjVsYhdUVRcauW+xEbbi0F/33bASjtxFu+TLU3j7Y0DvWl3jpV2SovsvAZUp3Z2CtT+yCwQWwosPj5bCg/YeXxRydFW2snJLxFb2rSMs9JOs4QosWV1Rr6VdkItdtIuLWv4MJEVFVr6DFdpf2Rbaaek1M5jU4kxERKoVm9It9JOv+7NrbSTne07v8776jwRvm7YsGEuBxHLly+XvLw8t0fD8r1vXAAAAADq9MUXX0h9ffPNNzJlyhTJz//zR5Y+ffqIOyisBgAAgE/ME+HJJVj98ssvMmrUKDNxns6+3aFDBzMU7OrVq91ql0wEAAAAEGC2bdsm06dPl9dff11KS0ulWbNmctttt5lJ9nTiOXcRRAAAAMCrqImwJyMjQ+677z558sknpaCgQGJjY+W6666TW265xepEewQRAAAAgJ8rKCiQRx55RGbPni1ZWVkSFhYmV111ldx1113SunVr68ejJgIAAAA+kYnw5KJSUlKkV69eMnfu3IB5xsvKyuTZZ5+V7t27y+233y6ZmZkyZswYUwvx9NNPeySAUGQiAAAAEBRSU1OtdunxtnfffVemTZsm69atE4fDIYMHD5ZZs2bJ0Ucf7fFjE0QAAADAqzRR4NkZqwPTOeecY0aectY9nHrqqVJSUiLLli2r1/7HHXdcg49NEAEAAAD4sby8PLn//vvNUl8afGjA0VAEEQAAAPAqRmdqmI4dO3ptDgyCCAAAAMAPpaWlee3YBBEAAADwKk/PKh3MM1Z7CkO8AgAAAHAJmQgAAAB4FTUR/odMBAAAAACXkIkAAACAV+kcEZ6dJ4KaCNvIRAAAAABwCZkIP5OZUyglEulWG7HRdp72Pw4UiC3RkWFW2sktaPikKQfLzMi30k54TITYkhhrp638UN/7RSY2yt7HUVFxmZV2YqLsvC6N5rFWmunUIs5KOxm5RWJLemah+JrIhCgr7cTH2HtddmmdYKWdnzdniC3plj7Hi8vsvOdUjNh53+3JtPdvVMukaCvttGtm53Ngw/ZMK+3k5mSLr6Amwv+QiQAAAADgEoIIAAAAeFVoSIjHF5WSkiK9evWSuXPn8oy7ie5MAAAACAqpqamSmJjo7bsREAgiAAAA4FXURPgfujMBAAAAcAmZCAAAAHgVmQj/QyYCAAAAgEvIRAAAAMCrmLHa/5CJAAAAAOASMhEAAADwKmoi/A+ZCAAAAAAuIRMBAAAA7woJkZC/ZpX2VPuwi0wEAAAAAJeQiQAAAIBXURPhf8hEAAAAAHAJmQgAAAB4VYiHayI8Wm8RpMhEAAAAAHAJmQg/ExsdbhZ35BWUWLkvHVrEiS25+cVW2omJCBNbmidEWWmnc5tEsWXVur1W2iktc4gt29LzrLSTHB8ptkRG2Pl9JMri66mjpffL2u1ZVtpp0yRGbMnKs/P+LSgqFVtaN4+10k6upc9LVVRs5/E1T7Lz2aSKy8qstDP8iHZiy48b0620Ex1p7/0bEW7nMyXS2meKnfecL9E8gSdzBc62U1JSJCwsTCZMmGAWNBxBBAAAAIJCamqqJCba+3EvmBFEAAAAwKuoifA/1EQAAAAAcAmZCAAAAHgV80T4HzIRAAAAAFxCJgIAAABBMToT7CETAQAAAMAlZCIAAADgZSF/FkZ4sn1YRSYCAAAAgEvIRAAAAMCrqInwP0GXicjJyZGuXbuWT2qyffv2GrctKiqSWbNmSd++fSUuLk6aNGkiQ4YMkbfffrvO48yfP99sq/vovtrG7Nmzpbg48KaqBwAAQHAJuiDi5ptvlrS0tDq3y8vLk6FDh8rUqVNl69atcvLJJ8vRRx8tS5culbFjx8pNN91U477XX3+9jBs3zmyr++i+2sYtt9wiw4YNk/z8fMuPCgAAwP/nifDkAruCKoj4/PPP5emnn5YJEybUue1tt90my5Ytkz59+sj69evlnXfekf/85z/y3XffSXx8vDz00EPy8ccfV9nv/ffflzlz5phtVqxYYfbRfbUNbevbb7+V6dOne+gRAgAAAJ4XNEFEVlaWXH755dKlSxeZOXNmrdtmZGTIU089Za7rZfPmzcvXHXnkkSajoO67774q+86YMcNcagajf//+5bdrG08++aS5/sQTT0hmZqalRwYAABAYNRGeXGBX0AQR2sVI6x+ef/55U6NQmwULFph6iI4dO8rAgQOrrL/gggvMpWYldu7cWX77jh07JDU1tdI2FQ0aNEg6dOgghYWF5hgAAACAPwqKIOKTTz6RF198Ua688kpTk1CX1atXm8ujjjqq2vVamN20aVNz/ccff6yyn67TjEd1nG06twUAAAh6FEX4nYAf4lW7JmnwoBmABx54oF77bN682VxqJqIm7du3l/3795dvW9/99H5U3NZVzZNjJCEhVtzRtql7+zt9/d9dEsiKy8qstJO2K0tsSY6NtNJO8wR7id2SUoeVdmKiwqy0Y9qKsNPWjv15YktCtJ2P266t4620s2VPrtjSMjnaSjt/69hEbNmxN8dKOxGh9n5ryysosdJOQVGp2FJaZuf9++PGdLGlZZNYn2pH/bx5v5V2Wll6r7RrUXuPivrKibb3WkLwCfggYuLEibJr1y759NNPJTExsV77ZGdnm8vauj1p4bSz1sLd/aqjXZ50caprewAAAH/VWPNEpKSkSFhYmBlkpz4D7cAPg4gpU6bIhx9+6PJ+WvOgtQfq3XfflXnz5smll15qhln1J/fff7/cfffd3r4bAAAAAUNrV+v7ozL8NIjQguW1a9c2aDI5lZ6eLtdcc420bdtWHn74YZfaSEhIMJe5ubl1HqfiC7Gh+1Xn1ltvlcmTJ1fKRDi7QgEAAAQST8/lwDwRQRREvPbaa2ZpKJ2PYc+ePaZ2YfTo0TVupxPHRUVFySWXXGIW1blzZ3OpE8TVxDnTtXPbite3bdtW437OdRX3q47eJ10AAAAAX+OzQYQt+mXf+YW/OjpMqxoyZEj5bc75HVatWlXtPps2bTJF1apfv37ltzuv79u3zxROVzdCk7PNinNIAAAABLfGqoqALQE7xKtmHxwOR41LxcyA/n3XXXeV33bqqadKZGSkyUQsXbq0SttaZ6EGDBhguks5adZDC3YqbnNwdkSPpxkGPQYAAADgjwI2iHBHkyZNTD2Fuvbaa01mwemHH36QWbNmmevTpk2rsu9tt91mLnVWbN3WSdvQtpwjRiUlJXn8cQAAAPgDponwPwHfnamhZsyYIStXrpTly5fLIYccYiap04LpRYsWSXFxsSl6Pv3006vNgEyaNEkee+wxk6kYPny4GfJV9ztw4ICZAfuee+7xymMCAAAAbCCIqEFsbKwsXrzYjOz0+uuvy4IFC0wXp2OPPdZkErQguyZz5swxwcLcuXNl2bJlJujo1q2bTJ06VW644QbTDgAAAP5ERYT/CdogomJdRE30y75+8dfFVePGjTMLAAAAEGiCNogAAACAb2CeCP9DYTUAAAAAlxBEAAAAAHAJ3ZkAAADgZZRW+xsyEQAAAABcQiYCAAAAXkVhtf8hEwEAAADAJWQi/MymHVkSF1/3HBe12bA908p9OaxLU7GlWUKU+JrUtXvE1yQnRFhpZ/PubLGltMy916NTTFSM2BIepn1r3ZcYa+d825RfWGqlnZioMPG192/ariyxJSO3yEo7LZOixZZ2LeKttNMjwt5zt2rdXivtJMTam0R1zdYMK+0c+7dWYktCtJ2vSx1aJlhp59fN+620k5uTJ76Cigj/QyYCAAAAgEvIRAAAAMC7SEX4HTIRAAAAAFxCJgIAAABeFfLXf55sH3aRiQAAAADgEoIIAAAAeFfI/+aK8MTiTESkpKRIr169ZO7cuTzjbqI7EwAAAIJCamqqJCYmevtuBASCCAAAAHgVgzP5H7ozAQAAAHAJmQgAAAB4V3nxggfbh1VkIgAAAAC4hEwEAAAAvIqaCP9DJgIAAACAS8hEAAAAwKsoifA/ZCIAAAAAuIRMBAAAALyKmgj/QyYCAAAAgEvIRPiZnMJiKQsvdquNlknRVu7Lpp2ZVtoxbVlqJyvfvXNTUWJMhASqhGjfe2z7c4qstRUTEeZz5yk9u9BKO4d1amKlnT/254ktkZbOd15BidhSWubwudelSI6VViLC7f3+lxBt52tA2h/ZYktEqO/9vnlE9+ZW2vk1bb+VdmKi7LznyorttGMFRRF+x/feqQAAAAB8GpkIAAAAeBU1Ef6HTAQAAAAAl5CJAAAAgFdREuF/yEQAAAAAcAmZCAAAAHgZVRH+hkwEAAAAAJeQiQAAAIBXURPhf8hEAAAAAHAJmQgAAAB4FRUR/odMBAAAAACXkIkAAACAV1ET4X/IRAAAAABwCZkIAAAAeBlVEf6GTAQAAAAAl5CJAAAAgFdRE+F/CCL8hMPhMJf5uTlut5UbViyBKi/f3mMLK40QX+MosXOfcnMKxNcUFJdaa6ssIkx8TV5+kZV2crLtPLbcnHyxJVzsPLbcnEKxJS/XTlul4fZeS1ESaaWdiHB7nQjyCkp87v0bHmrn8WVlRYmvyc3JFl+Sm5NT6TuGN2VlZfl1+8EoxOELrxzUafv27dKhQwfOFAAAsGrbtm3Svn17r5zVgoIC6dKli+zevdvjx0pMTJQ2bdpIaGioTJgwwSxoOIIIP1FWViY7d+6UhIQECdGcXwDQXwU0MNIPL31jw3fxXPkPniv/wXPlPwL1udLfkbOzs6Vt27bmi7W3aCBRVGQno1mbyMhIiY6O9vhxggXdmfyEvrm99SuBp+kHciB9KAcyniv/wXPlP3iu/EcgPldJSUnevgvmiz1f7v0PozMBAAAAcAlBBAAAAACXEETAa6KiouTOO+80l/BtPFf+g+fKf/Bc+Q+eK6AqCqsBAAAAuIRMBAAAAACXEEQAAAAAcAlBBBpFTk6OdO3a1cxxoYtOnlcTHSt61qxZ0rdvX4mLi5MmTZrIkCFD5O23367zOPPnzzfb6j66r7Yxe/ZsKS4O3Fm63bFnzx555ZVX5IILLpBDDjnEDLEXGxsrPXv2lEmTJklaWlqt+/Nc+RZe/41DP08WLVokN998s6SkpEhycrJERERI69at5YwzzpBPPvmk1v2/+OILOfXUU6V58+YSExNj3m/Tpk0zn5O12bBhg1xyySVmuG/to6+X+vemTZssP8LANmXKlPJ/i+69994at+N5AuqgM1YDnnb11Vc7QkJCdHZ0s2zbtq3a7XJzcx3HHXec2SY5Odlx1llnOUaOHOkIDw83t9144401HuO6664z2+i2uo/uq23obYMGDXLk5eV58BH6pwsvvNCcn9DQUMfhhx/uGDt2rOPUU091tGjRwtweFxfnWLhwYbX78lz5Fl7/jefzzz8v/yxr3bq147TTTnOMGzfO0bt37/Lbr7rqKkdZWVmVfR9++GGzXj8PTzjhBPOe0zb0th49ejj27t1b7TG//fZbR2xsrNnusMMOc5x77rnm0vk+Xb58eSM8cv+3dOlS83nn/PfonnvuqXY7niegbgQR8Dj9Eqof1hMnTqwziHB+EerTp0+lf0xXrVrliI+PN+s++uijKvu99957Zp1u8/3335ffrm1oW3UFIMHqn//8p+Puu+92bN++vdLt2dnZjvPOO8+ct6ZNmzr2799fZV+eK9/B679xLVq0yHH22Wc7vv766yrr3njjDUdYWJh577z88suV1v3www/my6uuX7BgQaWAfPjw4WYfbfdgur5t27Zm/a233lppnf6tt3fo0IEfSuqg5/GQQw5xtGvXzjF69OgagwieJ6B+CCLgUZmZmeYfty5dujhycnJqDSL0i2pkZKRZr7+6HUw/7HXdgAEDqqxLSUkx6+69994q67755huzLioqynHgwAGLjy7w/8FNSEgw5+7VV1+ttI7nyrfw+vctl19+uXnfaGBQkWYd9PYrrriiyj5paWnmF3Jdv2bNmkrr5s6da24/9NBDHaWlpZXW6d96u65/+umnPfSIAsOkSZPMefrkk08cF198cY1BBM8TUD/URMCjrr/+elP/8Pzzz5sahdosWLDA9LHv2LGjDBw4sMp67bevvvvuO9m5c2f57Tt27JDU1NRK21Q0aNAg6dChgxQWFppjoH60NqJHjx7m+rZt23iufBSvf9/Tr1+/Ku8b/Wxz1kpU9znVqVOn8s+99957r9I659/nnXeehIZW/mdb/z733HPN9Xfffdf6YwkUixcvlscff1zGjx9v6lFqwvME1B9BBDxG/8F88cUX5corr5Rhw4bVuf3q1avN5VFHHVXtei3Mbtq0qbn+448/VtlP13Xp0qXafZ1tOrdF/YpHnYXVbdq04bnyUbz+fc/69eurvG/WrVsneXl5tX7G1fQ5VddnI59vtdOC9csuu0xatWoljz76aK3b8jwB9UcQAY/IyMgwwYNmAB544IF67bN582ZzqZmImuhoJBW3re9+ej8O3g+1e+GFFyQ9Pd2MHnPKKafwXPkoXv++Zffu3fLSSy+Z62effXaV50lHckpISKj351R2drbs27ev1s8453579+6V3Nxca48lUNx0003mnD711FNm5L7a8DwB9RfuwrZAvU2cOFF27doln376qSQmJtZrH/3HUtXW7Sk+Pt5cZmVlub0favbzzz+b4SvV9OnTzS94PFe+ide/7ygpKZGLLrpIMjMzpU+fPvKPf/zD2udbbfs693PuW1fX0WCycOFCeeaZZ0xXsNGjR9e5Pc8TUH8EEagyfvaHH37o8lnRmgetPXD2y503b55ceumlcvLJJ3OGffi5qo7WsIwaNcp0AdAx76dOnermPQWCw9VXX23mj2jWrJmZ1yYyMtLbdymoaTB3+eWXS4sWLUw9BAC7CCJQiRYsr1271uWz4pwkSbu/XHPNNdK2bVt5+OGHXWrDmeKvLR3vPE7F7EZD9wv256qmrhjDhw+XLVu2yEknnSRvvfWWmZDpYDxXviNYX/++5rrrrjNdALW7zOeffy6HHnqo1fdMbftWfE/zHFcd2OPNN980E/vVB88TUH8EEajktddeM0tDffvtt2YWZK1dqC11PHbsWDPjqs62qovq3Lmzudy6dWuN+zlnunZuW/H6wSMIVeRcV3G/YH+uDqbPmxbAa2HhiBEj5P333zfPUXV4rnxHsL7+fcmNN94ojz32mKl30O4zztGZKnKe+wMHDpguM9XVRVT3POl2OmjE/v37zWdj3759a9xPvyjTlanyqFbh4eHy5JNPmqWi33//3Vxq4KczU+ts42+88QbPE+ACggh4hH7Zd37hr44O06qGDBlSflv//v3N5apVq6rdZ9OmTeYfUlXxH2nndS0+1KK46kZocrbpPAYq04JMDSDWrFljMhHaTSo6OrrG08Rz5Tt4/Xu/W6FmXZOSkkwAUdMISjpcsg6brCM06efR0KFD6/05pX/rF11dr10N67sf/qxTWbJkSY2nQkeg00WH2OV5AlxUz/kkACuYbM736KzevXv3Lp8cKy8vr859mGzOtzDZnHfccsst5n2TlJTkWLlyZZ3b1zWJmXOmayab8zx3JpvjeQL+RBABnwki1HXXXWfWH3744Y709PTy27///ntHfHy8WffRRx9V2e+9994z63Qb3dZJ2+jTp49Zd+ONN3roUfmvffv2mXOt52fEiBH1CiCceK58B6//xjdt2jTzvklOTq5XAKH0sykkJMR8Cf30008rzQ6vAby2d/bZZ1fZT9e3bdvWrL/tttsqrdO/9fb27du79P4NdrUFETxPQP2E6P9czV4ADeUs0tU+vM45HyrSVL/2x1++fLkpUNQuNlpMqCOe6ORnkydPloceeqjGwkbtlxwREWG65GjfYN1P+yDrTLBa7KhzHuB/zjrrLNNvWJ8XrVOp6fxofcvBNS48V76F13/j0e5+Z555prmu3ZcOO+ywarfTGoUHH3yw0m2PPPKI+RzT99zgwYOlZcuW8s0335ghsbXLk9aVVVcEvHTpUhk5cqR53/Xu3dssv/zyi1n0s067Ow0YMMBDjzjwaC3eyy+/LPfcc4/cfvvtVdbzPAH1UM9gA2iUTIQqLCx03H///aaLTUxMjOkqcMIJJzjeeuutOtt/8803zbaJiYlmX21j5syZpk1UNXjw4PLnpLblzjvv5LnyA7z+G8eLL75Yr/dNp06dqt3/888/d5x88smOpk2bOqKiohyHHHKI49Zbb3VkZWXVetz169c7xo8fb7ISERER5lL/3rBhg4ceaXBmIpx4noDakYkAAAAA4JJQ1zYHAAAAEOwIIgAAAAC4hCACAAAAgEsIIgAAAAC4hCACAAAAgEsIIgAAAAC4hCACAAAAgEsIIgAAAAC4hCACAAAAgEsIIgDAD3Xu3FlCQkLKlxEjRjTKcd94441Kx9Vl8eLFjXJsAIDvCPf2HQAANNzZZ58t8fHxcthhhzXKaezSpYtcfPHF5vpnn30mf/zxR6McFwDgWwgiAMCPPfjggyYr0ViOOeYYs6ghQ4YQRABAkKI7EwAAAACXEEQAgAdt3LhRwsLCpEmTJpKXl1fjdtodSesLFixYYOW4aWlppj3NUpSVlcljjz0mhx9+uMTGxkqbNm3k6quvlv3795ttCwsL5Z577pGePXtKTEyMtG3bVq677jrJzc21cl8AAIGHIAIAPKhbt25y2mmnyYEDB+T111+vdpuvvvpKfvvtN7PtKaecYv0+XHTRRTJ16lRp166dnHTSSSaoeOaZZ0wxtgYKeqndonr06GGua7CjQcfYsWOt3xcAQGCgJgIAPGzSpEny0Ucfydy5c+XKK6+ssl5vV9dee63JHti0ZcsWCQ8PlzVr1kinTp3Mbfv27ZNjjz1WVq9ebS41+7Bp0yZp1qyZWb9582Y58sgj5dNPP5WlS5fKwIEDrd4nAID/IxMBAB6mv+5rd6WffvpJvv3220rrtm/fLh988IHpZnTZZZd55PiaVXAGEEqDhWuuucZc/+WXX+SFF14oDyCcIzBp9kItWrTII/cJAODfCCIAoJGyEeqJJ56odLt2KyopKZELL7xQkpOTrR9XsxAjR46scvshhxxiLjt27Ci9e/eucf3OnTut3ycAgP8jiACARqC/7Gtx9bvvviu7du0ytxUVFclzzz1nrk+cONEjx9Uiag0kDqZzSziDiOokJCSYy4KCAo/cLwCAfyOIAIBGoN2VtB6iuLhYnn32WXPbO++8Y+ZZOP74483ISZ4QGhrq1noAAKrDvx4A0EgmTJhghnvVIEKDCWfXJk9lIQAA8BSCCABoJNp1aPTo0abO4I477pBly5aZORnOOussngMAgF8hiACARqSTuKmZM2eay3/84x/V1iwAAODLCCIAoBFp/UO/fv3M9YiICLnqqqs4/wAAv0MQAQCNzDnk6jnnnCOtW7fm/AMA/A45dABoRKWlpfLGG2+Y6//85z89dpzOnTuLw+Gocf2QIUNqXX/JJZeYBQCA6hBEAEAj0pGZtmzZIscee6xZ3HXTTTeZOR90Ruybb75ZPG3FihXy1FNPmeu///67x48HAPBNBBEA4GFr166VBx54QHbv3i2fffaZmZvhwQcftNK2zjWhhg8f3ihBxObNm+Xll1/2+HEAAL4txFFbPhsA4LbFixfL0KFDJTIyUnr27Cl33XWXjBkzhjMLAPBbBBEAAAAAXMLoTAAAAABcQhABAAAAwCUEEQAAAABcQhABAAAAwCUEEQAAAABcQhABAAAAwCUEEQAAAABcQhABAAAAwCUEEQAAAADEFf8PnnaaGOo/poMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJOCAYAAADIyIrwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsIElEQVR4nO3dB3hUVdrA8Te9JxA6hF4XRQSJi4KAgCisKBbAtnZ3RfhQEBFFLIsiYEUF17Z2LIgddCkKSjUguqIICARCkySE9DIzme85x51sQupkzmTa/+dznXLvPXcyd2aYd855zxtkt9vtAgAAAAB1FFzXDQEAAACAIAIAAACA0+iJAAAAAOAUgggAAAAATiGIAAAAAOAUgggAAAAATiGIAAAAAOAUgggAAAAATgl1bnN4SmlpqRw+fFji4uIkKCiIEwEAAFyi6g3n5uZK69atJTjYc78rFxUVSUlJiduPEx4eLpGRkW4/TqAgiPARKoBo27atpx8GAADwM2lpaZKUlOSxAKJRVCMplmK3H6tly5ayb98+AglDCCJ8hOqBUD78+nuJif3jen1FR5g57d2SGokpWblmPjz2H8sVUzJyioy0U2ItFVMax4QbaScr39wvPiHBZnrGbKV2MSUqLMRIO5HhZtpRQkPM/MpntZV63WvAFJOvgUbRZt4rxVabmBJj6LM37WiemNIsMcqrXt9KQYnVSDvhBh9T47gII+3kFliMtHNOr1ZG2snNyZEuHdqXfcfwBNUDoQKI4TJUQt34tdQqVll19Ct9PHojzCCI8BGOIUwqgHA1iIiJDDPymOLj48UUa5CZICKmQIwpsJl5nkINBhExsYa+GImfBxGGvvybascbgwiTrwFTTL4Gog0F3CEWg0FEpJl/cqNixJjo2GivCyKk2FAQEWruMcXEmgkibMEWr/v3V/GGYdLhEi5hYubf3aoEkwZsHInVAAAAAJxCTwQAAAA8Kkj958YekSC753tb/A09EQAAAACcQk8EAAAAPErlLLgzb4GcCPPoiQAAAEBASE5Olp49e8rChQs9/VB8Hj0RAAAA8KjgoCC9uK19CRKxi6SkpBif3SpQ0RMBAAAAwCn0RAAAAMCjgnRfgft+23Zn24GKZxQAAACAU+iJAAAAQEDkRMAceiIAAAAAOIWeCAAAAHgUORG+h54IAAAAAE6hJwIAAAD+nxMBo+iJAAAAAOAUeiJ8TMvEaImLi3GpjYSYcCOPZdOO38XbWG2lxtqKjTTz9ggNMRerZ+YWG2knLipMTDmRX2KkHYvV3Lmzldq9qh2T0jMKjLTTMclcxVaLzczzVFBsFVPio828xnceMPN8KxFhIUbaCYsw9093VLiZx1RYYhNTcgosRtoZclorMeXXtBNG2gkLMfNr+H/2ZRppJy83V7wpJ0L95872YRbPKAAAAACn0BMBAAAAjwoKCtKL29onJ8I4eiIAAAAAOIWeCAAAAHiUmj3JnTkRzM5kHj0RAAAAAJxCTwQAAAA8ijoRvoeeCAAAAABOoScCAAAAHqUyItxZy4E6EebREwEAAADAKfREAAAAwKOCg4L14rb2+d3cOHoiAAAAEBCSk5OlZ8+esnDhQk8/FJ9HTwQAAAA8SlWUdmdVaUfbKSkpEh8f77bjBBJ6IgAAAAA4hZ4IAAAAeBQ5Eb6HnggAAAAATqEnAgAAAB71R5UI9+VEuLPtQEUQ4WO2px6X6BiLeIOQYHNvyKjwECPtDDy1lZjy9Y+HjbRjsdnElOgIM29Zq61UvO3cWaylXvfazCu0iimxUWbOXanVzOvpwO/5YkpomPd1ah9IN/P3RRk6b0p6dpGRdlonRokpoSFmzl2J1dy/S03jI4y0czjT3Gu82GLmfRcVHm6knd+zCo20U5Bnph0EJoIIAAAAeBQVq32P9/18BAAAAMCr0RMBAAAAjwoOCtKL29onJ8I4eiIAAAAAOIWeCAAAAHg8J0L95872YRbPKAAAAACn0BMBAAAAjwoKCtKL29onJ8K4gOyJmD59etmL9eGHH652u1WrVsmoUaOkadOmEhUVJT169JCZM2dKXl5eje3/9ttvcv3110tSUpJEREToS3V77969bvhrAAAAgIYVcEHEhg0b5Iknnqg12n3qqafkvPPOky+//FJOOeUUGT16tGRnZ8ucOXOkX79+kpGRUeV+69evl969e8vrr78ujRo1kksuuURfqtunnXaabNq0yU1/GQAAgG8KboD/YFZAPaMFBQW6R6BVq1Zy8cUXV7vdtm3b5M4775SQkBBZtmyZrF27Vt5//33Zs2ePDBs2THbu3Cm33nprle2PGzdOX95zzz2yfft2effdd/Wlup2fn6/XFxZSIRIAAAC+K6CCCPVFfvfu3fLiiy9KQkJCtds9+uijYrfb5YYbbpCRI0eW3R8dHS2vvPKKBAcHy9KlS+XXX3+tsN9rr70mhw8flm7dulUaJqVuq/vT0tLkjTfecMNfBwAA4JuCg/5XK8I9i6f/Qv8TMEHEmjVr5Nlnn5Vrr71W5zlUp6SkRPc+KFdddVWl9e3bt5cBAwbo6x999FGFdY7bV1xxhQ40ylO3x48fr69/+OGHBv4iAAAAwDMCIohQidA33nijtGjRQp5++ukat921a5cejqSo3IeqOO5Xw57Kc9x2dj8AAIBApuo4uHuBWQExxeu0adNk3759uqegcePGNW6rtlNUMnRcXFyV27Rt27bCtkpubq5kZmbq6+3atatxv/T0dJ0fERMTU8+/CAAAAPAcvw8iVqxYIS+88IIeYjRmzJhat1fBgFLTF/zY2Fh9mZOTU2m/mvZ17OfYt6ZjFBcX66X89gAAAP7IkbvgtvapE2GcX/ftqClZb7rpJmnWrJnOh/AlKrlbJX87FkcvBgAAAOBpfh1E3HHHHXLw4EF57rnndMG4unAMYVLDjarjKDYXHx9fab+a9i1fpK78vtXNJKWCIMeiZnUCAADwR+RE+B6/Hs6kciBCQ0Nl0aJFeinPMT2rmrJVVaZu2bKlrunQoUMHff+JEyf0EKWq8iIcX+gd2ypqu8TERDl+/LgcOHBAF5yrbj8V0NSWD6EqXavlZO2axUpsNbkadZX6+/+GXrkir8gqpoSGmIlnf007IaYUW2zir0IMznWXlVdipB27zS6mRMWGG2nn6J7jYkrCn5oZaadzh5rzuurq8HFz9WqKCyxG2omNr/yZV1+FhWY+n4JCzL1Xwgx9zmUber4VW6mZ911cVJiYEhUeYqSdwmJz/0aVWEuNtHMw44+JW1zVLanmHyLrKi/U3HOEwOPXQYRitVp1sbjqpKam6kVN3ap0795d14NQMzRt2bJFzj333Er7qPuVvn37Vrhf3VYBiVqvKlzXdT8AAIBAFhwUrBe3te/fg288wq+fUdWboIrGVbVcd911epvZs2fr2yqQUMLDw+Uvf/mLvr548eJKbe7fv182bNigr19yySUV1jluqx6N0tKKv1qo2++9956+fumll7rl7wUAAAAagl8HEfU1Y8YMCQoKkldffVW+/PLLsvtV74RK1LbZbHLZZZdJjx49Kux3/fXXS+vWrXWtiVmzZlVYp26r+5OSknTBOwAAAPzB/VUiKFltGkFEFdRwoyeeeEIHC6q6tRrSpKpNd+nSRVavXq2HPP3zn/+stJ8aBvX+++/ryzlz5kivXr3kyiuv1JfqtsqDWLJkiURFRRk/kQAAAKhZcnKy9OzZUxYuXMhT5SKCiGpMmTJFVq5cKeeff7785z//kU8++UTXeVCzJqWkpFQ729OAAQPkxx9/1L0NKsl66dKl+lLdVvf379/f1XMGAADgV4KCgt2+KOo73C+//CITJ0709J/s8/w+sbo6r732ml5qMnz4cL04S/VYvP766y48OgAAAMB7BWwQAQAAAO/g7rwFciLMYzgTAAAAAKfQEwEAAACPCnJznQjVzwGzeEYBAAAAOIWeCAAAAHhU0H//c2f7MIueCAAAAABOoScCAAAAnhUcpBIj3Ne+nZ4I0+iJAAAAAOAUeiIAAADgWUFu7okgJ8I4eiIAAAAAOIWeCAAAAHhUUFCQBKm8CHe1X0pOhGkEET7mtyM5Ep1jd6mNxNhwI4+lUYyZdnRbsRFG2kn9PVe8jcnn6dddGUbaiU2MFlMiw0OMtJOXUyympO3NMtJOy86JYsrB/SeMtBPZOMpIO6UWm5hiK7YaaaeoxNw/SbExYUbayTiYI6bEJMUbaSfE4Bet6Ajv+xpwLLvISDtxUWZeA0p4aLBXnbsurROMtJOTwxdr1J/3fXoAAAAgsKh4xp05EcRLxpETAQAAAMAp9EQAAADAs9RQLzfmRNAVYR49EQAAAACcQk8EAAAAPIueCJ9DTwQAAAAAp9ATAQAAAM/XiXDj7EzubDtQ0RMBAAAAwCn0RAAAAMCzyInwOfREAAAAAHAKPREAAADwLJWz4NaK1eREmEZPBAAAAACn0BMBAAAAzyInwufQEwEAAADAKfREAAAAwLOCgv9Y3Nk+jOIZBQAAAOAUeiIAAADgUUHBQXpxW/vC7EymEUT4mC6t4iU2Lt6lNvYcyTHyWEIMvtl37z9hpJ3ExCgx5UR2kZF2CktsYkp4bISRdiy2UjGluMjc32dKVNNoI+1kHskVU8Jjw8WbxMWZeS0pWcVWI+1Yi8y0o+TZ7F71WlJOHC800k4Tg4/paJaZx9SysbnP3g4tYo20U2Dw9RQWYubfuzxDj+nAsTwj7eTlmmkHgYkgAgAAAJ7F7Ew+h5wIAAAAAE6hJwIAAAAe5uaK1eREGEdPBAAAAACn0BMBAAAA/86JsDM7k2n0RAAAAABwCkEEAAAA4OcKCwvlxx9/lMzMTCPtEUQAAADAo4KCgty+BIJvv/1Wpk6dqoOF8hYvXizNmzeXvn37SqtWreQf//iHy8ciiAAAAEBASE5Olp49e8rChQvFH7344ovy3HPPSZs2bcruS0tLkxtvvFHy8/MlISFBrFarPPTQQ7J27VqXjkUQAQAAAO9IrHbnIiIpKSnyyy+/yMSJE/3yjG/evFl69+4tTZs2LbvvzTfflJKSEnnwwQfl+PHjZcHDokWLXDoWQQQAAADgBzIyMiQpKanCfV999ZWEh4frYU7KOeecI/3795dt27a5dCyCCAAAAHiWyllw9xIA8vLyJCoqquy23W7XvS/9+vWT2NjYsvs7dOgghw8fdulYBBEAAACAH0hMTJTU1NSy26q3ITc3V84+++wK21ksFt074QqCCAAAAARETkQgJI5/9913snHjRn17wYIFemaqoUOHVthu9+7depYmVxBEAAAAAH7g9ttv10OYBg4cqHsl3nrrLenUqZOMGDGiQt7ETz/9JH369HHpWAQRAAAA8Cx6IowYPny4/Otf/5L27dvrGZkGDx4sn332mQQHB1eYram0tFSvc0WogceLBpTULFbi4/+XGFMfael5Rh5LaIi5GDQqxrVxeQ7hoeYe04DTXOvmc/jPvuNiSlFWoZF2QqPDxBRLfomRdtp0bCymHNqXJd6mILPASDvBht53x0+YeS0pYdFm3r9BIeaGG5SW2Iy0E5EQKaaUWkqNtJNTYBFvY7WZ+duUw4beKyVWc48pxNBQmARDn70Z2Wbev/l5RUbagXe57rrr9FKdW2+9VdeNKJ9oXR/0RAAAAMCj/phAyZ0VqwPjBH/zzTeya9euGrdRszcdO3ZM1q9f79KxCCIAAAAAPzBkyBCZN29erdvNnz9fzj33XJeOxXAmAAAAeJa7Z1CyB0hXhPxRG6Ih0BMBAAAABJCsrCyJjHQt54ueCAAAAHiWu6tK+3FSxIEDBypVrT75Pger1So///yzrFixQjp37uzScQkiAAAAAB/VoUMHnTzusHTpUr3UNuTpmmuucem4BBEAAADwLHIi6q1du3ZlQYTqgYiOjpamTZtWuW14eLgkJSXJZZddJhMmTKj/QQkiAAAAAN+Vmppadl0VlRs7dqwuOOdu9EQAAADAoxz1HNzZfiB49dVXpUuXLg1yLIIIAAAAwA9cV0OlatMIIgAAAOBZQW6uE1EaGD0R5dlsNsnMzJSioiKpKZ+ivggiAAAAAD+RkpIi999/v6xdu1aKi4trHOKlpnytL4IIAAAA+PfsTO5s24ts2rRJhg4dWtb70LhxY4mPj3fLsQgiAAAAAD/wwAMP6ADixhtvlEceeURatGjhtmMRRAAAAMCzqFhtxObNm6V79+7y0ksvuX1GqmC3tg4AAACgQagch9NPP71BprSlJwIAAACeRU6EET169JCMjAxpCAQRPubn1OMSE2txqY0zujYz8liWrf9fhURXdW3fyEg7B9LzxZQtu8y8CQvzS8SUpklmkqMyj+SKKbbi+s/sUN7vR809prgWsUbayfwtU0wJiTDzcVuUW2ikHbHZzbQjImHRYUbaKcmtfhYRZ0UmRhlpp9RSKqaExYYbaSfEYIKordTuVe0omVlmXuNhht5zuq1QMwM3kpqZ+Ww6erzASDuhIQxI8Td/+9vfZPLkybJnzx7p3LmzW4/FqwcAAABeUbHanUugBBFXXnmlnHfeebJ8+XJdK8Jd6IkAAAAA/ECnTp30ZWpqqowePVpCQ0OlVatWEhxcud9ABVaqx6K+CCIAAADgWeREGKGCBwe73S4Wi0UOHDhQ5bau9s4QRAAAAAB+YN++fQ12LIIIAAAAeBZ1Ioxo3769NBQSqwEAAAA4hZ4IAAAAeBY5EUbl5OTIW2+9JRs2bJD09HQZNmyYTJ8+Xa/btWuXzp0YNGiQREZG1vsYBBEAAACAn1ixYoVcddVVkpWVpZOrVQJ1mzZtytbv3LlTxowZI++8846MGzeu3sdhOBMAAAA8K6gBlgCwY8cOueSSSyQ7O1smTJgg7733ng4kyjv//PMlOjpaPvnkE5eORU8EAAAA4AfmzJkjRUVFsmTJErn00kv1fePHj6+wTXh4uJx++uny448/unQseiIAAADgHbMzuXMJAF9//bX07t27LICoTlJSkhw5csSlYxFEAAAAAH4gPT1dunXrVut2VqtV8vPzXToWw5kAAADgUUHBQXpxZ/uBICEhQQ4dOlTrdnv37pXmzZu7dCx6IgAAAAA/0LdvX9m6dascOHCg2m22b9+u8yH+/Oc/u3QsgggAAAB4FrMzGXHzzTfrxOorr7xSjh49Wml9RkaG3kbN2KQuXUEQAQAAAPiByy+/XMaOHSsbN26Uzp07y4gRI/T969evl4suukg6deok3333na4joaZ6dQU5EQAAAPAwd8+gFBg5EcrixYulS5cu8vTTT8uqVav0fbt379aLmt71zjvvlLlz54qrCCJ8jNVWqhdX/Lg308hj6dq+kZhyIN21GQIcwkLNda41igk30s6REpuYkpdvMdKOpcBMO0qpi69Hh+ITRWJKwTEzr6eQ8BAxxWLq77MYej2dVHzIFQUHso20E9EyVkzJSzPzmBp1aSKmWIutRtrJSs0Tb1MUF2GsrfBYM5+9tlJzr/F4Q58Fv6adMNJObKSZr2+ufp+AdwoJCZFHHnlEpk2bpqd8VUnUpaWl0rZtWxk2bJjLCdUOBBEAAADwLDV7kjtnUAqQ2ZnKa9y4ca31IlxBTgQAAADgB5599lnJyspqkGMRRAAAAMCzmJ3JiNtvv11at24t48ePly+//FLPwuQufh9EWCwWWb16tdx1112SnJwsjRo1krCwMGnZsqXOUl+2bFmN+6uElFGjRknTpk0lKipKevToITNnzpS8vJrHpP72229y/fXX67LiERER+lLdVuPSAAAAANPU8CUVOCxZskT+8pe/6DwI9b1VJVWb5vdBxNq1a2X48OHy+OOPy8GDB2XgwIH6CW7WrJl89tlncuGFF8rf//73KiO1p556Ss477zwdyZ1yyikyevRoyc7Oljlz5ki/fv30XLtVUdNo9e7dW15//XUdtFxyySX6Ut0+7bTTZNOmTQ3wlwMAAPgINTOTu5cA8MEHH8jhw4f1zEzqO6e6rmZiUj+CDxo0SF599VXJzzcz+YjfBxHBwcFy2WWXyTfffCNHjhyRzz//XN577z356aef5N1339UZ7C+++KK8+eabFfbbtm2bngJLrVe9FSoYef/992XPnj06s33nzp1y6623VjpeQUGBjBs3Tl/ec889uiqgOo66VLfViVPrCwsLG/BZAAAAQCBITEyUyZMn6++yapk0aZI0adJE1q1bpwvMqdE4N954o/5u7Aq/DyKGDh2qo7Jzzjmn0jo1XkwNMVLeeOONCuseffRR3Ttxww03yMiRI8vuj46OlldeeUUHJ0uXLpVff/21wn6vvfaajvq6desmDz/8cIV16ra6Py0trdLxAAAAAlZwAywBqHfv3rJgwQL93VR9H1ZD9IuLi/X3VfUd2RUB+pT+T58+ffSl+mLvUFJSUpYroSr6nax9+/YyYMAAff2jjz6qsM5x+4orrtCBRnnqtgpclA8//ND43wIAAACcLDQ0VA/nf/755/UwfsXVpOuArxPhSDRp1apV2ZOya9cuPRxJUbkPVVH3f/vtt7qbqDzH7Zr2K78dAABAwNOzM7kxbyEwUiKqpHoe1I/cKh/iq6++0oXnFJXv64qADiKOHj2qu3MUlTfhsG/fPn2pkqHj4uKq3Fdlu5ffVsnNzZXMzD+qQbdr167G/dLT03V+RExMjLG/BwAAAFA2b96sv+eqXGA1MZDqeUhISNCjZdRw/TPPPFNcEbBBhNVqlWuuuUY/qb169Srr2nEEA0pNX/BjY2P1ZU5OTqX9atrXsZ9j3+q2U1GjWspvCwAA4I+CgoL04s72A8GRI0f0ZEFqRlCVt6sCB/W3n3vuuTpwUD+aR0ZGGjlWwAYRamYlVT9CZaurRJPw8HDxJiqx+6GHHvL0wwAAAICPaNeunR6upIIHlcN73XXX6eBBXTctIIMIVc1PzbDUuHFjWblypZ4xqTzHEKaa5tF1FJuLj4+vtF9N+5YvUld+35Op6WCnTp1aoSfCMRQKAADALytWu7P9AEqgvvHGG3VJAncKuNmZVO2HZ555Ruc7rFixomx2pvI6dOigL0+cOFFhiFJ5jtmcHNs6ggg1N69y4MCBGvdTFbBrGi6lqlyrIKP8AgAAAP/0wQcf6ALFqjdBlRRQic9PPPGEWCwWp/J93377bbcHEAEXREyfPl2efPJJnVSiAojqZlDq3r27PnnKli1bqtzGcX/fvn0r3O+47ex+AAAAASs4yP2Ll3v88cf1j8jz58/XpQZUmYH77rtPF4irK/Udt6EETBAxY8YMeeyxx/STq4YwJScnV7utyo/4y1/+oq8vXry40vr9+/fLhg0b9HUVMZbnuK2qVDum0HJQt1WGvKK6mgAAAADls88+098f1exJKhF65syZelEFin///Xepyj/+8Q/59NNPq1z3n//8Rw4ePFjlumeffdbl76IBEUSoKG7evHl6CFNtAUT5oENls6s5db/88suy+1X9iJtuuklsNpvOcO/Ro0eF/VQF7NatW+taE7NmzaqwTt1W9yclJcm1115r8C8EAADwYWr2JHcvXq5Zs2aV7jvjjDP0pao4XZUHH3xQPv744yrXqSH7DzzwQJXrvv/+e/nkk09cerx+n1itorNHHnlEX+/SpYssXLiwyu1UjoLqRnJQw43UODSV3KxKhA8ePFiaN2+uC8yp6bPUkKd//vOfldpRw6Def/99GTFihMyZM0cf/9RTT5Xt27frReVBLFmyRKKiour191htdrHYXKswaLVV7CGpr2PZdR+jV5vI8BAj7dhKXXtuyjuQdsJIO9ZCq5hSaujcBYea+/3AcqLISDshTer3nqhKaUaBmXYMPk9iNXPupMRmph2D7xUJNdOWtcjcZ4oUmXnf5R2pOi+uPoJCzLyewqLNzSYYEmnmszcq3syUkUqOoee8T9/WYsrRrEIj7XRuZSa/MS39f5O0uKLI1OeJH9u5c6ceAr9161a97NixQ/+QPHv2bP0jdW3Udz713fPHH3+UkpIS/V306quvlilTpkhYWFit+3/zzTd6hEznzp2dfuxqhiZXq1IHdBBx/PjxCvkI1eUqqKmvygcRijrBqoaECia+++47PeOSSnZRMyeppbpCdAMGDNAvFvUCW7VqlSxdulRHl6r34f7776/XCwEAAMBveensTM8//7wsWLCgXvvecccdel81Y9LQoUN1rTBVMfruu+/WQ5dUcFLTj8q//PKL3v9vf/ubV06w4/dBhBpepJb6Gj58uF6cpSJNVegDAAAAvkmNJpk2bZoeGqRGqahRJqqYW23UECMVAKjAYe3atWUT6mRkZOiAYt26dXqY+8k/YDuo7caMGaO/T86dO1e8kd8HEQAAAPBy7p5BqZ5tnzwzUnBw3YYlzpkzpyzHtvyMnGr4/KJFi+Scc86R5557TgcSJ8+opMoLjBw5Ug9/WrNmTY0lATwpIBKrAQAAgIZw6NAhSUlJ0dfVNK0nGzhwoC4gXFxcLMuXL6+wTt138cUXS2pqqvz73//Wk/V4K4IIAAAAeEdOhDuXBrJt2zZ9qQoQd+zYscptHLXKHNsqKmFbTe+qAhAVXKhJfLwZw5kAAAAQEHJycircVsXd1GLSvn379KWajKc6qiei/LbKxIkTdS6FmphHBRSbNm0qW9ezZ89qk6t/+OEHXS/CmXXqflcRRAAAAMCz3F3L4b9tO768O6g6CqrWgkm5uX9MU1xTLoNKuD45qHHUJVN5EifXGvv6669lyJAhVbalZgRVizPr1NSvqh6aKwgiAAAAEBDS0tIq/KJvuhfCFSoPwlmDBg1yORioL4IIAAAAeJT6IhzkxtmZHF+0VQDh7poLcf+tI6bqi1UnL++PgoGuPhY1e5OnkFgNAAAAGNKhQ4eyXo/qONY5tvVFBBEAAADwLD+analPnz76MjMzs0LidHlbtmzRl+VrSPgagggAAADAkKSkJElOTtbXFy9eXGm9qlateiJUPsaoUaN89nkniAAAAIB3zM7kzqUB3Xvvvfpy7ty58v3335fdr3onbrvtNn190qRJlapV+xISqwEAAIAqqADA8aVf2bNnj7584YUX5PPPPy+7/6OPPpJWrVqV3R4zZoxMnjxZnnnmGenfv78MGzZMT/m6evVqOXHihAwYMEDXg/BlBBEAAADwLDUzkxtnZ6pv26qOw+bNmyvdf/DgQb04FBcXV9pmwYIFOlhYuHChbNiwQSwWi3Tu3FlmzJghU6ZMkfDwcPFlBBEAAABAFVSBN1WYrb7GjRunF39EEOFjcossYguxiDcIMfiLQYm11Eg7J37/Y95lE0IizLw9wuPMFbLJ//2PKpiuspXYxJgiq5Fm7IZeA5rJv8+UvBIz7RSYeb6l0ODnSLNoI83YsorEmGIzrwFrrqHzpj4LmkQZacdSYO4x2e1hRtrJyTfz2WTSrkP/qwTsqsaxZn4x/s++40ba6dzqjzoErooIMvdacpm7Z1D6b9sq4TkkJEQmTpyoF9QfQQQAAAACQkpKituLzQUKgggAAAB4lrtnUGrg2ZkCAUEEAAAA4INCQkLqvW9QUJBYrfUfIksQAQAAAM9XLnNn9TI/rYxmdyHp25V9/fgpBQAAAPxbaWlppWXq1KkSGRkpt99+u65zkZWVpZdt27bJHXfcIVFRUXobta0r6IkAAACAZ5ETYcSrr74qTz/9tKxcuVLOPffcCut69+4tTz75pFx00UUyfPhw+dOf/iQ33XRTvY9FTwQAAADgBxYtWqQL3J0cQJxc+2LgwIHy/PPPu3QsgggAAAB4lErydfcSCH799Vdp27Ztrdu1adNGdu7c6dKxCCIAAAAAPxAaGio//fRTrdtt375db+sKgggAAAB4x+xM7lwCQP/+/XWA8Mwzz1S7zbPPPqsDjbPOOsulY5FYDQAAAPiB+++/X1atWiVTpkyR999/X6666irp2LGjXpeamipvv/22bNy4UfdC3HfffS4diyACAAAAATE7U3Jysi7QNnHiRL34m7POOksWL14sN998s2zYsEEHDCfXhoiNjZWXXnpJzj77bJeORRABAACAgJCSkiLx8fHiz8aOHSuDBg2Sl19+WdauXSsHDx4sS6YePHiwnta1VatWLh+HIAIAAACeRZ0Io1q0aCEzZ87Ui7sESJoJAAAAAFPoiQAAAIBnuXsGpQD72TwnJ0feeustnReRnp4uw4YNk+nTp+t1u3bt0knWashTZGRkvY9BEAEAAAD4iRUrVuhZmbKysnQitSq0p/IhHFSRuTFjxsg777wj48aNq/dxCCJ8THGJTYLDbC61ERbqfeG4zWY30k5EfP0j6pMV5xSJt4lsFGWknaIThWKKzW7m3FkyzT0mKTXzmGTvCTPtqBkxcouNtBMUF2GkHTH4OWA/kG2knSCD71/p2thMO8Wufd6WZ8m3GGnHbjH3mCISIr2qHSUyPMRIO4WFVjElp8DMuWudGOVVj6fAUDtGkBNhxI4dO+SSSy6RkpISmTBhgk6kHj9+fIVtzj//fImOjpZPPvmEIAIAAAAIdHPmzJGioiJZsmSJXHrppfq+k4OI8PBwOf300+XHH3906Vje95M0AAAAAsx/60S4a1HtB4Cvv/5aevfuXRZAVCcpKUmOHDni0rEIIgAAAAA/kJ6eLt26dat1O6vVKvn5+S4di5wIAAAAeBazMxmRkJAghw4dqnW7vXv3SvPmzV06Fj0RAAAAgB/o27evbN26VQ4cOFDtNtu3b9f5EH/+859dOhZBBAAAADzLnfkQ7p75yYvcfPPNOrH6yiuvlKNHj1Zan5GRobdRU7+qS1cQRAAAACAgJCcnS8+ePWXhwoXijy6//HIZO3asbNy4UTp37iwjRozQ969fv14uuugi6dSpk3z33Xe6joSa6tUV5EQAAAAgIOpEpKSkSHx8vPizxYsXS5cuXeTpp5+WVatW6ft2796tFzW965133ilz5851+TgEEQAAAICfCAkJkUceeUSmTZump3xVSdSlpaXStm1bGTZsmMsJ1Q4EEQAAAPAsZmcyrnHjxrXWi3AFOREAAACAHxg6dKjMnz+/1u0ef/xxva0r6IkAAABAQORE+Ls1a9ZIhw4dat1u586dsnbtWpeORU8EAAAAEEAsFosEB7sWBtATAQAAAM9SHQVu7YlwX9O+6KeffpImTZq41AZBBAAAAOCjbrzxxgq3161bV+k+B6vVKr/88ov88MMPum6EKwgiAAAA4FnMzlRvr732Wtn1oKAg+e233/RSk9atW+tpYF1BEAEAAAD4qFdffVVf2u123QMxcOBAuemmm6rcVhWbS0pKkv79+0tYWJhLxyWI8DER4SESGR7iUhvNEyKNPJYD6fliSrAXzppQkGHm74tv20hMsRVbzbSTZxFjEiLMtJNVJMYcyjXSTKnBx2Tdk2mkHXtBiZF2Qlqbe12GtDVU/TXStc+2CvZkmWmnVZyZdtS5yzHzeopMShBTgsPMPOfZ+w093yJSFG/m36jgMHNzx1gKzbSTHmrmMXU29LqMCDLzeWIEszPV23XXXVd2/cEHH9QBQvn73IUgAgAAAPADqampDXYsgggAAAB4wexMbm4fRhFEAAAAAH6kuLhYvv76a11ULicnR+dLnEwlYc+aNavexyCIAAAAgGcFB/2xuLN9EUlOTpaQkBCZOHGiXvzRRx99JH//+98lM7P6XDwVVBBEAAAAAHWQkpIi8fGGJoPwQlu2bJHx48fr61dccYX8/PPPurDcjBkzZPfu3bJy5UrdM6Fmb1KzNLmCnggAAAB4FrMzGfH444+LzWbTvRGqmNwNN9yggwhHTYj09HS59tpr5YsvvpBt27a5dCxz858BAAAA8Jj169dLz549q61G3axZM3n33XclPz9fHnroIZeORRABAAAA75idyZ1LAEhPT5cePXqU3Q4N/WPQUVHR/+rUJCQkyODBg2X58uUuHYsgAgAAAPADcXFxYrVaKwQMyuHDhytsp6pVHz161KVjEUQAAADA8zkRwW5cVPsBICkpSdLS0spuO3ol1HSvDhaLRTZt2iQtWrRw6VgkVgMAAAB+YODAgfLyyy9Ldna27oX4y1/+ooc0TZ06VQ9pateunbz44ou6Z+Lqq6926Vj0RAAAAMA7Zmdy5xIAxowZo3sj1q5dq2+3atVK7r33XsnNzZXJkyfr9cuWLZNGjRrJww8/7NKx6IkAAAAA/MCwYcN0PYjyHnjgAenVq5csWbJEjh8/Ln/605/kjjvu0L0SriCIAAAAgGe5ewalwOiIqNall16qF5MYzgQAAAD4gaFDh+picg2BIAIAAACe5c6ZmRxLANiwYYOUlJQ0yLHqNJzpm2++MXbAQYMGGWsLAAAAwB9UUnVxcbF4TRAxZMgQCTKQ1a7aKF8AA86LCguRqPAQl566Y9n/q1roClupXUwpLrIYacdWbO71Fd00xkg71kIzf5tScCjHSDshceFiii29wExDxwvNtCMi9mKbkXZsqVliStpPPxhpJ9eaZ6SdmD1mXt9Kx4FnG2knNNxg53i0odd4aakYExUm/spuM/fvgaXAzGdmTHNzr/GgYDOvzRBDv4anpecbaacg30w7Rrh7BqUAmZ3pwgsvlLfeekvy8/MlJsbce8ClxOrmzZtXKKPtrF9//VWOHTtW7/0BAAAAVE/NxPTZZ5/pJGpVD6J9+/bi8SBi5MiR8q9//aveB7rhhhvkjTfeqPf+AAAA8FPMzmTEnXfeKaeccop8/vnn0r17d+nTp4906NBBoqKiqhwh9Morr9T7WEzxCgAAAPiB1157rSwFQSVYb968WS9VaZAg4p133pGOHTuKKyZMmCAXXHCBS20AAADAD7l7BqX/tp2cnCwhISEyceJEvfibV199tcGOVacgYvz48S4f6Mwzz9QLAAAA4AkpKSkSHx/vt0/+dddd12DHYjgTAAAAPIvZmXwOQQQAAADgZ3755RddfC49PV0nW1900UX6/tLSUl1yITw83HNBxMaNG2X16tVy+PBhKSoqckvSBgAAAPycKsUR7Ob2A0RaWpqeFfXrr7+uMMzJEUS89NJLctttt8mKFStk2LBhDRtEFBQUyLhx4+SLL77Qt+326ovMEEQAAAAA7nf8+HEZPHiwpKamyqmnniqDBg2SRYsWVdhGfYefNGmSfPrppw0fRNx7772yfPlyady4sVxzzTXStWtXiYuLq/eDAAAAQAAjJ8KIefPm6QBi2rRp+rr6Mf/kIEJ9f+/Vq5esW7fOpWPVK4hYsmSJNGrUSL7//nu3VsIDAAAAUDeffPKJLi43d+7csnoRVenUqZOsX79eGnyEWFZWlpxzzjkEEAAAADDXE+HOJQDs379f+vbtK8HBNX/FV0nVauhTgwcRqvehtgcHAAAAoOFERkZKbm5urdsdOHBAEhISXDpWvSKBq666StasWSMnTpxw6eAAAABA2exM7lwCQI8ePXS6QX5+frXbZGRkyI8//iinnXaaS8eq11N6991364zvkSNHyo4dO1x6AAAAAABcd/nll0tmZqZMnTpV14Ooyl133aVnWh0/fnzDJ1arcVT//ve/5ayzztLZ3e3atdNLVUOcVFKHqiUBAAAAVInZmYyYOHGivP766/Lyyy/L1q1b5dJLL9X379mzR5588kk9OdJ3330np59+ulx//fUNH0SoxOrzzjtPtm/frmtEqKmk1FKVmjLD4by8YquUhlpdeupCgs2cE7ut+vogzrIVW820U2ITU8JiXKvk6FBqMfiYGkeJt7GFhYjXMdRtbTuWY6YhVV/HVmiknWyrmcdktZt7XVr3ZxppJ7hZtJF2dFsdG5tpKNKlmqwV1VBTyRklucViiql/o+Pbuja2ury4uAgj7ZRYqv4Vtj7ys828f/OMtCLSrkWMkXZCS8OMtAPvyolQP/SPHTtWV6vetm2bvl9N56oW9b09OTlZPv74YwkLc+3817tOhBpvpepDTJgwQV/Gxsa69ED8kYr2Fi5cqMedlZSUSJcuXeTqq6+WKVOmuHziAAAA/AY9Eca0atVKBwwqmFi2bJns3btXD21q27atTkW4+OKLjfyAEFrfOWhbtGghmzZt0gUrUNkdd9whCxYskNDQUBk6dKgOsr766iudT/LZZ5/pUuNRUd73qzIAAAB83/nnn68Xr+r0z87OlrPPPpsAohqqi0gFECpw2Lx5s44Ely5dKrt37y6rEDhr1iyXThwAAIDfCHLzzEyMrveOIEINyykqKjL/aPzEnDlz9OWMGTN0wQ+Hpk2blpUef+6553QwBgAAAJhms9nk2LFjuiZEdUuDBxE33XSTrF27Vg4ePOjSwf3RoUOHJCUlpayexskGDhyox6QVFxfL8uXLPfAIAQAAvAwVq41R30NV7kNcXJzOj+jYsWOVS6dOnRo+J+L//u//9DAdNdb/2Wef1TM1UcH6D44s+MTERH2CqtKvXz9JS0vT21555ZX1P3sAAADAf6l8ZfX93DFiSOUux8fHizvUK4jo3LmzvlTTuo4aNUonD6tIp7o6EWpu2kCxb98+fanqZlRH9USU3xYAACCgMTuTEQ888IAOIG688UZ55JFH9ERI7lKvIKJ8TQg136zFYql2XFWg1YnIzc3VlzEx1c/h7JgONyen+vne1XAntTjUtC0AAACwefNm6d69u7z00ktu/w5eryCCX9Dd79FHH5WHHnqoAY4EAADgYY5ZlNzZfgCwWq26GnVD/IhfryCiffv25h+Jn1BJLEp+fn612+Tl/VGzsqYxavfcc49MnTq1Qk+EYxgUAAAAnKeqNYeEhMjEiRP14m969OghGRkZDXKsegURqF6HDh30pUqcro5jnWPbqkREROgFAADA36lfzt3567mjbTVzkbsSjb3B3/72N5k8ebLOR3bkMLtLgHTuNJw+ffroy8zMzGqHfW3ZskVflq8hAQAAALgaRKiZP9XMqaqUgKoV4dEgYsSIEfLEE0+4dKDHH39ct+PvkpKSdFeZsnjx4krrVbVq1ROhehnUzFYAAAABjzoRRqjaD6qWm5oEafTo0RIdHa1Hvqj7T15c7amo03CmVatW6S/Hrvj5559l9erVEgjuvfdeueSSS2Tu3Lm62Iejx0H1Ttx22236+qRJkyQhIcHDjxQAAAD+IrUBZ1Ctc06ESgZ2pTy2I5k4EIwZM0aPR3vmmWekf//+MmzYMD3lqwqiTpw4IQMGDJDZs2d7+mECAAB4BcpEmNGQM6jWOYhYunSpXlA3CxYs0MHCwoULZcOGDToSVN1GM2bMkClTpkh4eDhPJQAAAIxpyBlU6xREqOrLgVY0zoRx48bpBQAAALX1RLhzdiaefY8EEeXHV8GzYiNCJTrStZl5T+2QaOSxrNxU/+FtJ0ts8UcVb1eVWErFlOIii5F2CtLNDeULjQwz0o4lv0SMsdvNtBNt5m9T7AfMVHgPbmLmdakkHm1spB2b3cxMG03CzXwOKKGtGhlpJyjG3GtAbIY+C/LNfA4ooc1jjLQTFm2uJ9tmdd/MLfV1bP8JI+206mjmPadYYs1Mud441sy5O5pVZKSdwnwz7cD7qPpib731lh4Nk56erofWT58+Xa/btWuX/m4/aNAgiYyMrPcxqBMBAAAAz6JitTErVqyQq666SrKysnRyterhadOmTdn6nTt36vzdd955x6URM9SJAAAAAPzAjh079Ayh2dnZMmHCBHnvvfd0IFHe+eefr6d+/eSTT1w6Fj0RAAAACIiK1f5uzpw5UlRUJEuWLJFLL71U3zd+/PgK26jJfU4//XT58ccfXToWPREAAACAH/j666+ld+/eZQFEdVT9tyNHjrh0LIIIAAAAeBYVq41QSdTdunWrdTur1Sr5+fkuHYsgAgAAAPADCQkJcujQoVq327t3rzRv3tylYxFEAAAAwKPoiDCjb9++snXrVjlwoPpp+Ldv367zIf785z+7dCyCCAAAAMAP3HzzzTqx+sorr5SjR49WWp+RkaG3UTM2qcsGDyK+/PJLlw4KAAAAlKErwojLL79cxo4dKxs3bpTOnTvLiBEj9P3r16+Xiy66SDp16iTfffedriOhpnpt8CBi1KhR0r17d1mwYIGuiAcAAADA8xYvXiz33HOPvr5q1Sp9uXv3bvn888+lpKRE7rzzTnnttddcPk696kT86U9/0sUspk6dKvfdd59cc801MnHiRDn11FNdfkAAAAAIMMFBEhTsxloO7mzby4SEhMgjjzwi06ZN01O+qiTq0tJSadu2rQwbNszlhGqXgoiff/5Z1qxZI88995x8+umn8sILL8iLL74ogwYNkkmTJulKecHBpFsAAAAAntC4ceNa60W4ot7f9IcMGSIffPCB7Nu3T2bOnKmjmrVr18q4ceOkffv2OgI6duyY2UcLAAAA/xTkxgXG1asnorw2bdrI7Nmz5f7779dBheqdUMkc6ra6XyV3qN4JV6eRAgAAAFA3GzZskN9++63Kdf369ZOePXuKR4MIh7CwMD2dlAoaVAAxd+5cnbzx9ttv6wSPs88+Wx5//HGCCQAAAFQQFBSkF3dxZ9uedsYZZ8iuXbt0/oMKDhxeeukleeONN6rc57TTTpNt27Z5RxDx+++/67wItRw+fFjf16dPHz211DvvvKOnlho4cKAsXbpUTzEFAAAAoP5Wr16tg4GbbrqpQgDhoOpBqGTq8g4ePCj/+c9/5KuvvpKhQ4d6LohQXSVqCNOHH34oFotFJ1SrJI7bb79dBw2Kyo9QydeTJ0+WBx98kCACAAAAlcpEuIu/dkR8/PHHupdlypQpVa5X61auXFnhvtTUVF1DQv2w3+BBhKqEp4YpLVy4UJfNVlGOygC/5ZZb9FSvagqp8lRgMWHCBFm+fHnZfLWon5wCi1iCLC49fV9v+6OnyFWNEqPElNzcYiPt5P+eJ6ZEJkYbaSemRZyYUpxdZKSd0iwz7RiV59rrurzgxEgj7YTFtBBTmkeGGWkn8UCGkXZCmicYaUe31d5MW0FhIWJModVMO43MvJYUW4nNSDvB4WbaMTnEw2YpFVPCYsy8V2yldjGlJM/Mv1GxTaO96m+zWw2+5+ARqnCcmtDImfyGDh06SK9evfS+rgitbzL1iRMndPBwyimn6B4GVSsiKqrmL5UtWrTQeRIAAAAAXLNnzx6dd1wV9T29Ol27dtU5FA0+xasKIC688ELdPfLTTz/pHojaAghl+vTpevwVAAAAUGk8kzsXEUlOTta/2qvRNP4gJydHEhKq7g1WRaFVPbeqqO/tubm5Dd8ToUpnd+rUyen9unXrphcAAACgoaWkpEh8fLzfPPGxsbGSnZ1d7QxMaqmuQyA6Orrhg4j6BBAAAABAVZjitX5atWolP/zwg9P7qX3Uvh6pWA0AAADAc1Q+xKFDh+Sbb76p8z5qWzXN64ABA1w6NkEEAAAAPCu4ARY/dM011+gE6ttuu03nR9RG5UGobVXPz1VXXeXSsf30KQUAAAD82+DBg+W8886TX375RRebW7ZsWbXbqlILKrF8x44dugDdueee6x0VqwEAAID6ICei/hYvXqyHJu3atUsXdFa12/r27SvNmjXT69PT0+X777+XrKws3WvRpUsXvY+rCCIAAAAAH9WkSRPZvHmzTJo0Sd555x05fvy4Lu7sKCbpqBehij9fccUVenrbRo0auXxcgggAAAB4VrlaDm5r348lJCTIm2++KQ899JB8/vnnsnXrVsnIyNDrmjZtqnsmVI23zp07GzsmQQQAAADgBzp16iSTJ09ukGMRRAAAAMCj6IjwPczOBAAAAMAp9EQAAADAo5idyffQEwEAAADAKfREAAAAwLPcXVWan82N4ykFAAAA4BR6InzMn9o1kti4eJfaOHK8wMhjOZJhph3FZik10k5wWIiYUmToeYpt5dr5Ks9RMMZlkebe+sFRZtoqjTb4cbQ7y0gzQdHhYkpIkpnXQUgbM+0EhZt7rwQlRJhpKCZMjGkUaaSZ0MZm2lGsxVbxNkHBZubOtxZYxJS2nRobaSdtr5nPAaWpofevKbZSu1e1YwI5EfXzzTffSMuWLaVbt27S0OiJAAAAAHzQkCFDZO7cuWW3hw4dKvPnz2+QY9MTAQAAAM+iUISRUQpr1qyRDh06SEOgJwIAAADwQXFxcXLkyBGPHJueCAAAAHgUHRH1c9ppp8lXX30l999/v3Tp0kXf99tvv8kbb7xRp/2vvfbaeh6ZIAIAAADwSdOnT5fLL79cHnnkkbL71q9fr5e6IIgAAACA76Irol5Gjx4t3333nXz88ceyf/9+ee2116Rz584yYMAAcTeGMwEAAAA+qnfv3npRVBAxcOBA+de//uX24xJEAAAAwOM1S0zVLamu/UDwwAMPSJ8+fRrkWAQRAAAAgJ8EEQ2FIAIAAAAeFfTftAh3th9IrFarfPDBB/L111/LoUOH9H1t2rSRc889Vydih4a6HgIQRAAAAAB+4ocfftCBwr59+yoUolNefvllmTVrlixZskROP/10l45DEAEAAADPYnYmIw4fPiwjRoyQjIwMadGihVxxxRV6tiZl79698u6778qePXvk/PPP18FGq1at6n0sgggAAADAD8ybN08HEDfffLMsWLBAoqKiKqyfM2eOTJ48WfdIzJ8/X5566ql6HyvYwOMFAAAA6i0oKMjtSyD44osvpF27dvL8889XCiCUyMhIWbRokd5m2bJlLh2LIAIAAADwA2lpaXL22WdLSEhItduopOqzzjpLb+sKhjMBAADAC6ZncnP7ASAiIkJycnJq3S43N1dv6wqCCB+z81C2RMeUutSGzVYxU7++2rWIEVPSMgqMtFOUVSimxLSINdKOzWITUxJaxxtp54Sh14BSajXz9wVHmPs4Km2fYKgh195r5QVHG/r7rIYek8nCS6ZeTmEGO8fDzbRlLbCIKWFxrv2D7WArtoop4U2ijbQTFhUupmTkFBtpJzQ6TEzJyzfzOrCVmnmzxEaa+Tyxl1T/azV8U8+ePfW0rqqXoW3btlVuc+DAAb2Nq7MzMZwJAAAAXlGx2p1LILj22mulsLBQhg8fLsuXL6+0/vPPP5fzzjtPioqK9LauoCcCAAAA8AO33HKLLF26VFavXi2jR4+WxMRE6dixo16n6kYcP35c145QQYba1hX0RAAAAMArUiLcuQSCkJAQPevS9OnTJSYmRjIzM2XLli16UdfVfXfffbfukQgOdi0MoCcCAAAA8BPh4eEyd+5ceeihh3TwcOjQIX1/mzZtpF+/fi4nVDsQRAAAAMALCla7r78gQMpEVKCChQEDBoi7MJwJAAAAgFMIIgAAAOAFPRHuXZTk5GQ9DerChQs54y5iOBMAAAACQkpKisTHm6m5FOgIIgAAAOBR5XsL3NU+zGI4EwAAAACn0BMBAAAAjwr673/ubB9m0RMBAAAA+IEDBw5IWlpagxyLIAIAAACe5e6ZmQKkI6JDhw5yxRVXNMixCCIAAAAAPxAfHy8dO3ZskGOREwEAAACPYnYmM1QNDIYzAQAAAKizW265RdavX6/rYbgbPREAAADwqKCgIL24s/1AcMMNN8i2bdtkxIgRctddd8lll12m8yQiIiKMH4sgwsdEhYfoxRWtm0QbeSypv+eJKdYiq5F2IhLMvUlsllIj7VgLLGJK7sFsI+3EtjZXrdOSX2KkneLsIjEm3FC6l5k/7Q+No8y0U2jo9WQ18/pWglvHGWmn9GCOmBKRaOZzzqTiHDOv8Wbdm4kpuYY+x5s2jxVT8g39exASGy6mhIWa+UyJjTTztctWajfTjt1MO/AeISH/+444a9YsvdQUWFmt9X+/EUQAAADAo9w9gVJg9EOI2J0IDJ3ZtioEEQAAAIAfKC0118tcG4IIAAAAeBQ5Eb6HOhEAAAAAnEIQAQAAAI9yZ7Vqd9eg8EZ79uyR6dOny8CBA6V79+76usPmzZvlxRdflOxs1yZrYTgTAAAA4Cdef/11ufXWW6W4uLhsqFhGRkbZ+oKCApkwYYKEh4fL9ddfX+/j0BMBAAAAr5idyZ1LINi0aZPcfPPNOkCYP3++7nU4eRamwYMHS0JCgnz22WcuHYueCAAAAMAPzJ8/XwcNy5Yt00OZqhIcHCynn366/PLLLy4di54IAAAAeMXsTO5cAsH69evlzDPPrDaAcGjZsqUcOXLEpWMRRAAAAAB+4MSJE9KuXbtatyssLJSSkhKXjsVwJgAAAHiUu2dQCpCOCGnSpIns37+/1u1+++033RvhCnoiAAAAAD/Qv39/2bJli/z88881DnlS62sb8lQbgggAAAB4FDkRZkycOFFsNptcdtll8sMPP1Rav2PHDrnxxhv1833bbbe5dCyCCAAAAMAPDBs2TKZOnSq7du2SM844Q7p166YDhn//+99y2mmnSa9evWT37t1y11136V4LV/h1EHHs2DF544035KqrrpKuXbtKZGSkREdHS48ePWTy5MmSmppa4/4q4WTevHnSu3dviYmJkcaNG8uQIUPkgw8+qPXYS5Ys0duqfdS+qg017ZbFYjH4FwIAAPg+6kSY8/jjj8sLL7ygcx5U7oOa8lXNxLR9+3ZJTEyUZ599VubOnevycfw6sVpFYm+//baeD/fUU0+Viy66SPLz8yUlJUU/gf/617/ko48+kvPOO6/Svqqan7p/w4YN0qhRI7ngggskLy9PvvrqK1m7dq3ceeed+iRV5Y477pAFCxZIaGioDB06VGJjY/V+d999ty7ssWLFComKimqAZwAAAACB5pZbbtFF57Zt2yZ79+6V0tJSadu2rSQnJ+vvpyb4dRChoq2HHnpIbrrpJmnTpk3Z/SoYUE/uu+++K1dccYWO0lSPQXn33nuvDiBUt48KAJo2barv37p1q+5heOKJJ/TlhRdeWGG/jz/+WAcQKnBQwUbfvn31/arcuAoo1q1bJ7Nmzao2AAEAAAg0zM5knhrGpL6HOr6LGm/ffnIt7AChehpUN09ubq68+eabcs0115Sty8rK0uvUcCb1pX/AgAEV9n344Yd1IKDGkm3cuLHCOlXgQ/V0qG1mzpxZYZ1q65xzzpGIiAj5/fffdcnxusrJydHbv736J4mOiRNX5BVaxYSOLWPFlMJiM4/p8PFCMaUgy0xb0Y3N9ToV5bk2p7NDaIS53w9yD2UbaSeuTd3fD7XJ2v67kXZCG0eKKdb0AiPtRCTFG2mn1FoqpliOm/nbwgy+V4JCzYzWtRn6bFKCQ0OMtBNp8Hlq0jTaSDuFxTYxpaTETFtBIebm9IyJNPOZGRJs5jHlFJgZGl2YnycTL+4r2dnZEh9v5rPFWSa/39SkID9Xrh7Wy6N/qyeor/mZmZn6Uk3/qkbnmOLXORE1UbkR3bt319fT0tIqrFu+fLkOIFSxjpMDCEXlWCibNm2Sw4cPl91/6NAhHUCU36Y8NZWW6koqLi7WxwAAAIDKiXBzxWqddRE4Vq5cqYfix8XFSYsWLfSP4+q6uk8lWZsQsEGESnB2JFa3atWqwjo1fkzp169flft26tRJD5VSyk+f5dhPrevYsWOV+zradGwLAAAAmKJmXlLBgsrBVSNvVC+EWlSVanXfqFGjdG6vqwI2iHjllVd0noJKcB45cmSFdfv27dOXNZUNT0pKqrBtXfdTPREn7wcAABDImJ3JjLfeekvn7aoZSVWg8J///EcP3VfLTz/9JNOmTdPffZ9++mm9rSsCMohQT6KK0hSV26C6ecpTT7Sipmatjkqcdozlc3W/qqghT2qb8gsAAABQHTX7aEhIiHz55Zfy2GOP6dlJ1fdStZxyyim63IBap4Z4Pffcc+KXszNNnz5dPv30U6f3e/nll2ss433w4EEZPXq0nqFJTfk6Y8YM8UaPPvqonlkKAADA3zE7kxmqFoT6Hqwm8qmOY70jj9fvggiVsLxz506n91PBQXWOHj2qK/nt379fzj//fHn//fd1JHYylXiiqJoStR2nfIZ/fferyj333KPrXDiongjHUCgAAADgZGoYU+vWraU2apvw8HDxyyBCjdNydazWydWrVZ0GVQZ8+PDhup6Dmmq1Kh06dNCXBw4cqLFHo/y25a+fPNtTeY515ferinps1T0+AAAAf+KYRcmd7QeCM844Q+dB1EZtU90EQnUVEDkR6enpOoDYsWOH7olQw6RUpFYdR1GOLVu2VLleVf47fvy4vt6nT5+y+x3X1Xy81SVOO9p0V+EPAAAABKaZM2fq77sq96E6KldCbaMKK/tlT4QpjkrRP//8sw4gPvvsM52VXhM19ZXq4lE9EevXr69UK2Lx4sX6UhWbK99lpGZsUuXE1RgztU1VxeZUT4TqYVDHAAAAADkR9fXNN99U6nGZNGmSHha/ZMkS+etf/1pWdkD9wK1G+WzdulUmT57scuE5vw4iVG+BChxUkokawqR6IGoLIJTGjRvLhAkTZMGCBXLbbbfJV199pav8Kd9//73MmzdPXz85SFBUVHfJJZfI3Llz9dSxjh4H1Tuh2lLUyXWmWjUAAABwsiFDhlQ5VEvVhVDBgvreevL9yjPPPKNncrJarVJffh1E3HzzzXrMl3pyVQE4FRhUZcyYMXopb86cOfLdd9/Jxo0bpWvXrro3QyVMr169WheqU0nPF154YZVtqehOnRzVU6GCGDWtltrvxIkTuldj9uzZbvubAQAAfM0fNaXdmBPhpxWrBw0a5LF8D78OIhx5CyrqUjMxVUclOZ8cRERHR8uaNWvkySeflLfffluWL1+uhzidddZZuidh7Nix1banejBUsLBw4ULZsGGDDjo6d+6sp5OdMmWKy9nwAAAAwJo1azz2JPh1EOHqE6u+7Ksv/vWpJTFu3Di9AAAAoGbUifA9ATE7EwAAAABz/LonAgAAAD4g6I/eCHe2H0iKiop0WQFVvFldr861115b72MQRAAAAAB+4rHHHtMTBOXk5NS6LUEEAAAAfFawBOnFne0Hgueee07uvvtufb1Xr156htG4uDi3HIueCB9jK7XrxRWxUWZOu8VaKqbkFdV/nuLy4qPDxJSYSDPP0/HjhWKKtcAi3iaqaYyRdrJ2Z4gx4WbSvWwlNjEltFm0kXZsxWbeKyaFJkR63fMd7OLnpENYtLnZ9ExNwxjXyMzzrRzZl2WknUat48WU2Bgzn+NZGfliSuNYM6+DiLAQI+00iYsw0k5+npn3CbwriAgNDZWlS5fK6NGj3XosgggAAAB4FLMzmZGamqprR7g7gFCYnQkAAADwA82bN5dmzZo1yLEIIgAAAOAVPRHuXALByJEjZePGjVJaam7IeXUIIgAAAAA/8MADD0hJSYlMnjxZX7oTOREAAADwKDXxgKnJB6prPxC0bt1a1q1bJxdddJF0795dzj33XGnXrp0EBwdX+ZzMmjWr3sciiAAAAAD8gN1ulwULFsivv/6qhzS99tprVQYPajuCCAAAAPg01U9AwWozheaeffZZPc3rhRdeqOtExMbGijvQEwEAAAD4gZdfflmio6Pl22+/lT59+rj1WAQRAAAA8ChyIsxIS0uTIUOGuD2AUJidCQAAAPADLVu2lLi4uAY5FkEEAAAAPIo6EWZccskleihTUVGRuBtBBAAAAOBhv/32m9x6663St29fCQsLkw4dOjjdxoMPPiiJiYly5ZVXSkZGhrgTOREAAADwKHdXlfaFMhE///yzfP7553LmmWfqKVizsrKcbuOOO+7Q9SE+/vhj+eqrr+SMM86osU7EK6+8Uu/HSxABAAAAeNjo0aPl4osv1tdVj8SXX37pdBuqLoSjsF5ubq6sWbOm2m0JIgAAAODTgv77nzvb93bBVfQWOOvVV1+VhkJPBAAAAFCFnTt3yooVK2Tr1q162bFjh9hsNpk9e7bcd999tT5nS5YskYULF8qPP/4oJSUl0qVLF7n66qtlypQpOu/BtOuuu67BziNBhI9p0yRGYuNiXGrjcGaBkcdyIr9ETMkrtBppJz+7UExp2txMhcdmTaPFlJxo8x843sLWwlxFzcjGUUbayTlwQkwJiw430k5RtpkZN+LaxIsptmIz79/gsBAxxV5aKt7Gkm8x0k5UuLnnqVFrM6+DkBBzv/Ka+vuK4iPFlNZNzHyO/5qWbaSdeEP/FhQUmPt33F9zIp5//nlZsGBBvfa944479L6qevTQoUN15WiVp3D33XfLZ599poOTqCgz/155ArMzAQAAAFU49dRTZdq0afL222/rXoi//vWvdXqePv74Yx1AqMBh8+bN8u9//1uWLl0qu3fvll69esm6detk1qxZPv2c0xMBAAAAj/LWitU333xzvfIW5syZoy9nzJihp2x1aNq0qSxatEjOOeccee6553QgkZCQIKbceOONdd6WxGoAAADASxw6dEhSUlL09auuuqrS+oEDB0rbtm0lLS1Nli9frms6mKJmZ6pLMKWmkCWIAAAAgE9rqJyInJycCvdHREToxaRt27bpS1X0rWPHjlVu069fPx1EqG1NBhHVzc5UWloq+/fv10HLli1bdL5G7969XToWw5kAAAAQEFQPQHkPPPCArvJs0r59+/SlKvJW2+NwbKsUFBToL/nK3r179e0PPvhA305OTpb27du7PDuT+lunT58uL730knz//ffiCoIIAAAABEROhPr1Pz7+f7OSme6FcBR5U2Jiqp9NUyVcn9wzcuzYMRk7dmyF7Ry3VQ/D9ddfLyaofI13331X7r//fnnzzTfr3Q5BBAAAAAKCCiDKBxHepEOHDjpXwd3UlLMq2XvVqlWutWPsEQEAAAD1oPoJ3FlTuiHrVcfFxenL/Pz8arfJy8vTl54KaAoLCyUrK8ulNqgTAQAAABjsUXAMnaqOY51j24ak6l2oOhUn54c4i54IAAAAeJS3Vqyujz59+ujLzMxMnThd1QxNaoYkpXwNCRPeeOONGnM1VACh8iCKioqqnH7WGQQRAAAAgCFJSUl6NiVVK2Lx4sUyc+bMCutVL4DqiVBJ3aNGjTL6vKvk65oS1B05FxdffLHcd999Lh2LIAIAAAAe5a0Vq+vr3nvvlUsuuUTmzp0rI0eOLOtxUL0Tt912m74+adIko9WqlWuvvbbavzU8PFzatGkjw4cPl7PPPtvlYxFEAAAAAFVQtRQcX/qVPXv26MsXXnhBPv/887L7P/roI2nVqlXZ7TFjxsjkyZPlmWeekf79+8uwYcP0lK+rV6+WEydOyIABA2T27NnGn/PaKlabRBABAAAAj2vgzoI6UXUcNm/eXOn+gwcP6sWhuLi40jYLFizQwcLChQtlw4YNYrFYpHPnzjJjxgyZMmWK7hnwZQQRAAAAQBWGDBniUu2GcePG6cUfEUQAAADAo4L++58721dUwnNISIhMnDhRL77ujRpmY6prDkV9EUQAAAAgIKgZk7y1YrU7ZmOqDUFEAEk/USj5Vtdiv5BgM5F+Vl6JmBIfHWakHYstQkwpLLYZaSc8zFxNR6ul1Eg7BRnVV9F0VkyLWCPthESEet3rKaRDY/G2cxcUYub9ayu2iimJhl4DRSVm3nNKcYHFSDuJiVFiiq20/kMi3PXZ27ZptJF28orMvZ5MtdUsIVJM+TUt20g7rQ29nkJDzPy7Emb3njH5/lQnoiENHTrU6SBi48aNUlBQ4PKMVfREAAAAAD5o1apVdd7222+/lenTp0thYaG+3atXL5eObe4nUgAAAMCFOhHuXALV9u3bZfTo0TpJXM001bZtWz0V7LZt21xql54IAAAAwM+kpaXJrFmz5O233xabzSZNmjTRRfBUQrmJ6WUJIgAAAOBR5ESYk5WVJY888ogsWrRIioqKJDo6Wm6//Xa5++67jSaVE0QAAAAAPq6oqEieeuopmT9/vi6Sp6ay/dvf/iYPPvigtGzZ0vjxCCIAAADgUfRE1F9paam8/PLL8o9//EOOHDmii+NdeumlMmfOHOnWrZu4C0EEAAAA4IM+/PBDmTlzpuzatUsHD4MHD5Z58+bJmWee6fZjE0QAAADAo9TcSe6tWO2fLr/8cj3zlCPvYdSoUWK1WmXDhg112v/ss8+u97EJIgAAABAQkpOTda6AmqFILf6ioKBAHn30Ub3UlQo+VMBRXwQRAAAACIiciJSUFKMzFHlau3btPFYDgyACAAAA8EGpqakeOzZBBAAAADzK3VWlA7litbsEu61lAAAAAH6JnggAAAB4FHUifA89EQAAAACcQk8EAAAAPErViHBvnQhyIkyjJwIAAACAU+iJ8DEltlIJtZa61EZCdJiRx5Juce1xuENMpLmXdEiwmV8tWjaOElO2Z6QbaadRa3NzZBcXWYy0Yy0w046SX1T/4jnl2UrtYkrekRwj7cS2MnPubBabmJKelm2knajEaDGlMCPfSDsnQrzv18u4uAhjbR0+XmiknWCDM9/ERpn5HLfazP0bdVrHRCPtHDleYKQdi83M+7eoxNzngKvIifA99EQAAAAAcAo9EQAAAPAo1ZtlskerqvZhFj0RAAAAAJxCTwQAAAA8ipwI30NPBAAAAAJCcnKy9OzZUxYuXOjph+Lz6IkAAABAQPREpKSkSHy8uRkKAxk9EQAAAACcQk8EAAAAPIqK1b6HnggAAAAATqEnAgAAAB7F7Ey+h54IAAAAAE6hJwIAAACeFRQkQQ0xPROMoScCAAAAgFPoiQAAAIBHkRPhe+iJAAAAAOAUeiIAAADgUUFuzolwa75FgKInAgAAAIBT6InwMfFRYRITHSbeoFnjSGNt2UrtRtpJjA0XU7ILLEba+TU1S0xp2jzWq55vJSEm2kg7hXERYkp+kdVIO8XZRWJKm25NjbSTY+h1GVxq7le5UlupkXZCw8z9rhXbKt5IO4kJ5l6Xpt53TQy+VzJzi420Ex5q7tyVWM28nkKCzb3GS6w2I+3kFpp5/zZPMPPvb2l4iHgLdbbc2VdAP4R59EQAAAAAcApBBAAAALwiJ8Kdi5KcnCw9e/aUhQsXcsZdxHAmAAAABISUlBSJjzcz3DHQEUQAAADAo6gT4XsYzgQAAADAKfREAAAAwKOYncn30BMBAAAAwCn0RAAAAMDDgv5IjHBn+zCKnggAAAAATqEnAgAAAB5FToTvCbieiLy8POnUqVNZ4ZGDBw9Wu21JSYnMmzdPevfuLTExMdK4cWMZMmSIfPDBB7UeZ8mSJXpbtY/aV7Uxf/58sVjMlLwHAAAAPCXggoi77rpLUlNTa92uoKBAzj33XJkxY4YcOHBALrjgAjnzzDNl/fr1MnbsWJk2bVq1+95xxx0ybtw4va3aR+2r2rj77rtl6NChUlhYaPivAgAA8P06Ee5cYFZABRErV66Uf/7znzJx4sRat7333ntlw4YN0qtXL9m9e7csXbpU/v3vf8umTZskNjZWnnjiCfn8888r7ffxxx/LggUL9DabN2/W+6h9VRuqrXXr1smsWbPc9BcCAAAA7hcwQUROTo7cdNNN0rFjR5k7d26N22ZlZcnzzz+vr6vLpk2blq0744wzdI+C8sgjj1Tad86cOfpS9WD07du37H7VxqJFi/T15557TrKzsw39ZQAAAP6RE+HOBWYFTBChhhip/IeXX35Z5yjUZPny5Tofol27djJgwIBK66+66ip9qXolDh8+XHb/oUOHJCUlpcI25Q0cOFDatm0rxcXF+hgAAACALwqIIGLZsmXy6quvyi233KJzEmqzbds2fdmvX78q16vE7MTERH39hx9+qLSfWqd6PKriaNOxLQAAQMAjKcLn+P0Ur2pokgoeVA/AY489Vqd99u3bpy9VT0R1kpKS5Pjx42Xb1nU/9TjKb+ssq80uFptdXBEfHebS/mXtxISLKRZrqZF2WjepuZfJGcUWm5F2MnOKxJRfU7OMtBMWYe6tHxUeYqSdxFhzr6fmCZFG2jkQ7H0d4Kbev8ePW8WUpu0aGWkn94S594olv8RIOyUxZp5vJTzUzO92uYXeN8tfYYmZz0vFVurav3EOTeIixJTMnGKveg20TIw20k5emLnPAQQevw8iJk2aJEeOHJEvvvhC4uPj67RPbm6uvqxp2JNKnHbkWri6X1XUkCe1ONS2PQAAgK+iToTv8dogYvr06fLpp586vZ/KeVC5B8qHH34oixcvlhtuuEFPs+pLHn30UXnooYc8/TAAAAAA3wkiVMLyzp0761VMTsnIyJAJEyZI69at5cknn3Sqjbi4OH2Zn59f63HK927Ud7+q3HPPPTJ16tQKPRGOoVAAAAD+xN21HBxtJycnS0hIiJ7uvy5T/sMHg4i33npLL/Wl6jEcO3ZM5y6MGTOm2u1U4biIiAi5/vrr9aJ06NBBX6oCcdVxVLp2bFv+elpaWrX7OdaV368q6jGpBQAAAGaoWTTrOrwdPhpEmKK+7Du+8FdFTdOqDBkypOw+R32HLVu2VLnP3r17dVK10qdPn7L7HdczMzN14nRVMzQ52ixfQwIAACCwkRXha/x2ilfV+2C326tdyvcMqNsPPvhg2X2jRo2S8PBw3ROxfv36Sm2rPAulf//+eriUg+r1UN1k5bc5uXdEHU/1MKhjAAAAAL7Ib4MIVzRu3FjnUyi33Xab7llw+P7772XevHn6+syZMyvte++99+pLVRVbbeug2lBtOWaMSkhIcPvfAQAA4AsoE+F7/H44U33NmTNHvvvuO9m4caN07dpVF6lTCdOrV68Wi8Wik54vvPDCKntAJk+eLM8884zuqRg2bJie8lXtd+LECV0Be/bs2R75mwAAAAATCCKqER0dLWvWrNEzO7399tuyfPlyPcTprLPO0j0JKiG7OgsWLNDBwsKFC2XDhg066OjcubPMmDFDpkyZotsBAADAH8iI8D0BG0SUz4uojvqyr774q8VZ48aN0wsAAADgbwI2iAAAAEBg1YmAOSRWAwAAAHAKQQQAAAAApzCcCQAAAB5GarWvoScCAAAAgFPoiQAAAIBHkVjte+iJAAAAAOAUeiJQbwVFVmPPXsvEaCPtpOxKF1OiwkOMtNOicZSYEh1jplBhK4OP6UR+iZF2CktsYkpclJnfR8JCzf3OUmItFW9iL629Vk5Dv1catYkXU4ot5l5PpjQy9P419Z5TEqLDjLQTFWHu60ROgcVIO9GR5h6Tqc+nC/q1NdJO6u+54m/IiPA99EQAAAAAcAo9EQAAAPAsuiJ8Dj0RAAAAAJxCTwQAAAA8Kui//7mzfZhFTwQAAAAAp9ATAQAAAM8K+qNWhDvbh1n0RAAAACAgJCcnS8+ePWXhwoWefig+j54IAAAABMTkTCkpKRIfb64mTSCjJwIAAACAU+iJAAAAgGcFuTkpwq0JF4GJnggAAAAATqEnAgAAAB5FwWrfQ08EAAAAAKfQEwEAAACPIiXC99ATAQAAAMAp9EQAAADAo8iJ8D30RAAAAABwCj0RPqZF4yiJjYt2qY0TecVGHku3pEZiSrHFZqSdNk1ce27KKyy2GmknM8fM8620axZjpB2LtVRMaRQTbqSdfb/niSl5RWbOXXioud9ZmsRFGGnHajN37kyJCAsx0k5uoUVMiYsKM9JOVLiZv005klVopJ1m8WZeS0phiZnPXpNaJZr5HD9yvEBMaWLoOTf1mI4aaic/z8xr0giSInwOPREAAAAAnEJPBAAAADyKnAjfQ08EAAAAAKfQEwEAAACPIiXC99ATAQAAAMAp9EQAAADAw8iK8DX0RAAAAABwCj0RAAAA8ChyInwPPREAAAAAnEJPBAAAADyKjAjfQ08EAAAAAKfQEwEAAACPIifC99ATAQAAAMAp9EQAAADAw8iK8DX0RAAAAABwCj0RAAAA8ChyInwPQYSPsNvt+jI/L9fltvLzSww8IpHcHHMdWcVWm5F28vMKxJTCYquRdqy2P86dCSGlYUbasVhLxdsU5ucba6vUYua1aQ019xqPDDLzvrPazJy7gvxiMSXcHm6knYIii5gSYjPzXikNDxFTCvILjbSTH2zmtaQUldi87nmKDDbzOijIM/N8KxGG3r+m/rb8vDwj7RTk51X4juFJOTk5Pt1+IAqye8MrB7U6ePCgtG3blmcKAAAYlZaWJklJSR55VouKiqRjx45y9OhRtx8rPj5eWrVqJcHBwTJx4kS9oP4IInxEaWmpHD58WOLi4iRI9fn5AfWrgAqM1IeXemPDe3GufAfnyndwrnyHv54r9Ttybm6utG7dWn+x9hQVSJSUmOthq054eLhERka6/TiBguFMPkK9uT31K4G7qQ9kf/pQ9mecK9/BufIdnCvf4Y/nKiEhwdMPQX+x58u972F2JgAAAABOIYgAAAAA4BSCCHhMRESEPPDAA/oS3o1z5Ts4V76Dc+U7OFdAZSRWAwAAAHAKPREAAAAAnEIQAQAAAMApBBFoEHl5edKpUydd40ItqnheddRc0fPmzZPevXtLTEyMNG7cWIYMGSIffPBBrcdZsmSJ3lbto/ZVbcyfP18sFnOVcP3JsWPH5I033pCrrrpKunbtqqfYi46Olh49esjkyZMlNTW1xv05V96F13/DUJ8nq1evlrvuukuSk5OlUaNGEhYWJi1btpSLLrpIli1bVuP+q1atklGjRknTpk0lKipKv99mzpypPydr8ttvv8n111+vp/tWY/TVpbq9d+9ew3+hf5s+fXrZv0UPP/xwtdtxnoBaqIrVgLvdeuut9qCgIFUdXS9paWlVbpefn28/++yz9TaNGjWyX3rppfYRI0bYQ0ND9X133nlntce4/fbb9TZqW7WP2le1oe4bOHCgvaCgwI1/oW+6+uqr9fMTHBxsP+200+xjx461jxo1yt6sWTN9f0xMjH3FihVV7su58i68/hvOypUryz7LWrZsaf/LX/5iHzdunP3UU08tu/9vf/ubvbS0tNK+Tz75pF6vPg8HDRqk33OqDXVf9+7d7enp6VUec926dfbo6Gi93SmnnGIfP368vnS8Tzdu3NgAf7nvW79+vf68c/x7NHv27Cq34zwBtSOIgNupL6Hqw3rSpEm1BhGOL0K9evWq8I/pli1b7LGxsXrdZ599Vmm/jz76SK9T22zdurXsftWGaqu2ACRQ/d///Z/9oYcesh88eLDC/bm5ufYrrrhCP2+JiYn248ePV9qXc+U9eP03rNWrV9svu+wy+zfffFNp3bvvvmsPCQnR753XX3+9wrrvv/9ef3lV65cvX14hIB82bJjeR7V7MrW+devWev0999xTYZ26re5v27YtP5TUQj2PXbt2tbdp08Y+ZsyYaoMIzhNQNwQRcKvs7Gz9j1vHjh3teXl5NQYR6otqeHi4Xq9+dTuZ+rBX6/r3719pXXJysl738MMPV1r37bff6nURERH2EydOGPzr/P8f3Li4OP3cvfnmmxXWca68C69/73LTTTfp940KDMpTvQ7q/ptvvrnSPqmpqfoXcrV+x44dFdYtXLhQ39+tWze7zWarsE7dVver9f/85z/d9Bf5h8mTJ+vnadmyZfbrrruu2iCC8wTUDTkRcKs77rhD5z+8/PLLOkehJsuXL9dj7Nu1aycDBgyotF6N21c2bdokhw8fLrv/0KFDkpKSUmGb8gYOHCht27aV4uJifQzUjcqN6N69u76elpbGufJSvP69T58+fSq9b9RnmyNXoqrPqfbt25d97n300UcV1jluX3HFFRIcXPGfbXV7/Pjx+vqHH35o/G/xF2vWrJFnn31Wrr32Wp2PUh3OE1B3BBFwG/UP5quvviq33HKLDB06tNbtt23bpi/79etX5XqVmJ2YmKiv//DDD5X2U+s6duxY5b6ONh3bom7Jo47E6latWnGuvBSvf++ze/fuSu+bXbt2SUFBQY2fcdV9TtX22cjnW81UwvqNN94oLVq0kKeffrrGbTlPQN0RRMAtsrKydPCgegAee+yxOu2zb98+fal6IqqjZiMpv21d91OP4+T9ULNXXnlFMjIy9OwxI0eO5Fx5KV7/3uXo0aPy2muv6euXXXZZpfOkZnKKi4ur8+dUbm6uZGZm1vgZ59gvPT1d8vPzjf0t/mLatGn6OX3++ef1zH014TwBdRfqxLZAnU2aNEmOHDkiX3zxhcTHx9dpH/WPpVLTsKfY2Fh9mZOT4/J+qN5PP/2kp69UZs2apX/B41x5J17/3sNqtco111wj2dnZ0qtXL/n73/9u7POtpn0d+zn2rW3oaCBZsWKFvPDCC3oo2JgxY2rdnvME1B1BBCrNn/3pp586/ayonAeVe+AYl7t48WK54YYb5IILLuAZ9uJzVRWVwzJ69Gg9BEDNeT9jxgwXHykQGG699VZdP6JJkya6rk14eLinH1JAU8HcTTfdJM2aNdP5EADMIohABSpheefOnU4/K44iSWr4y4QJE6R169by5JNPOtWGo4u/pu54x3HK927Ud79AP1fVDcUYNmyY7N+/X84//3x5//33dUGmk3GuvEegvv69ze23366HAKrhMitXrpRu3boZfc/UtG/59zTnuPLEHu+9954u7FcXnCeg7ggiUMFbb72ll/pat26droKschdq6joeO3asrriqqq2qRenQoYO+PHDgQLX7OSpdO7Ytf/3kGYTKc6wrv1+gn6uTqfOmEuBVYuHw4cPl448/1ueoKpwr7xGor39vcuedd8ozzzyj8x3U8BnH7EzlOZ77EydO6CEzVeVFVHWe1HZq0ojjx4/rz8bevXtXu5/6osxQpoqzWoWGhsqiRYv0Ut6vv/6qL1XgpypTq2rj7777LucJcAJBBNxCfdl3fOGvipqmVRkyZEjZfX379tWXW7ZsqXKfvXv36n9IlfL/SDuuq+RDlRRX1QxNjjYdx0BFKiFTBRA7duzQPRFqmFRkZGS1TxPnynvw+vf8sELV65qQkKADiOpmUFLTJatpk9UMTerz6Nxzz63z55S6rb7oqvVqqGFd98MfeSpr166t9qlQM9CpRU2xy3kCnFTHehKAERSb8z6qqvepp55aVhyroKCg1n0oNuddKDbnGXfffbd+3yQkJNi/++67WrevrYiZo9I1xebcz5Vic5wn4A8EEfCaIEK5/fbb9frTTjvNnpGRUXb/1q1b7bGxsXrdZ599Vmm/jz76SK9T26htHVQbvXr10uvuvPNON/1VviszM1M/1+r5GT58eJ0CCAfOlffg9d/wZs6cqd83jRo1qlMAoajPpqCgIP0l9IsvvqhQHV4F8Kq9yy67rNJ+an3r1q31+nvvvbfCOnVb3Z+UlOTU+zfQ1RREcJ6AuglS/3O29wKoL0eSrhrD66j5UJ7q6lfj8Tdu3KgTFNUQG5VMqGY8UcXPpk6dKk888US1iY1qXHJYWJgekqPGBqv91BhkVQlWJTuqmgf4n0svvVSPG1bnReWpVPf8qPyWk3NcOFfehdd/w1HD/S6++GJ9XQ1fOuWUU6rcTuUoPP744xXue+qpp/TnmHrPDR48WJo3by7ffvutnhJbDXlSeWVVJQGvX79eRowYod93p556ql62b9+uF/VZp4Y79e/f301/sf9RuXivv/66zJ49W+67775K6zlPQB3UMdgAGqQnQikuLrY/+uijeohNVFSUHiowaNAg+/vvv19r+++9957eNj4+Xu+r2pg7d65uE5UNHjy47JzUtDzwwAOcKx/A679hvPrqq3V637Rv377K/VeuXGm/4IIL7ImJifaIiAh7165d7ffcc489JyenxuPu3r3bfu211+peibCwMH2pbv/2229u+ksDsyfCgfME1IyeCAAAAABOCXZucwAAAACBjiACAAAAgFMIIgAAAAA4hSACAAAAgFMIIgAAAAA4hSACAAAAgFMIIgAAAAA4hSACAAAAgFMIIgAAAAA4hSACAHxQhw4dJCgoqGwZPnx4gxz33XffrXBctaxZs6ZBjg0A8B6hnn4AAID6u+yyyyQ2NlZOOeWUBnkaO3bsKNddd52+/uWXX8rvv//eIMcFAHgXgggA8GGPP/647pVoKH/+85/1ogwZMoQgAgACFMOZAAAAADiFIAIA3Oz//u//dO7AOeecI1artdL6mTNn6vV9+/aVoqIiI8dMTU3VbapeitLSUnnmmWfktNNOk+joaGnVqpXceuutcvz4cb1tcXGxzJ49W3r06CFRUVHSunVruf322yU/P9/IYwEA+B+CCABwsyeeeEL69esn69atk/vuu6/COpVX8Oijj0p8fLy8//77EhkZafz411xzjcyYMUPatGkj559/vg4qXnjhBZ2MrQIFdamGRXXv3l1fLygo0EHH2LFjjT8WAIB/ICcCANwsPDxcBwiqp2H+/PkyePBgGTlypBw8eFD++te/it1ul5dfflm6dOli/Nj79++X0NBQ2bFjh7Rv317fl5mZKWeddZZs27ZNX6reh71790qTJk30+n379skZZ5whX3zxhaxfv14GDBhg/HEBAHwbPREA0ECzGr322ms6YFCBg/qifsUVV0hGRoZMmjTJrb/6q14FRwChqGBhwoQJ+vr27dvllVdeKQsgHI9V9V4oq1evdtvjAgD4LoIIAGggF198sUydOlX3BPTp00f/yq+GOanhTu6ieiFGjBhR6f6uXbvqy3bt2smpp55a7frDhw+77bEBAHwXQQQANKB58+ZJz549JTs7W2JiYvQwJzXcyV1UErUKJE6maks4goiqxMXF6UtTid4AAP9CEAEADWjz5s2ya9cufV0lNf/0009uPV5wcLBL6wEAqAr/egBAA1H5DyoPQk3zesMNN+gpWK+//nqd/AwAgC8hiACABuBIqFYzMl177bXyr3/9S+68807JysqS8ePHi8Vi4TwAAHwGQQQANABVC0LVhFD5EIsWLSq7T02xqoY4TZ8+nfMAAPAZBBEA4GbffPON3H///bpa9JIlS3RCtaISnt99911JTEyUp59+Wj755BPOBQDAJxBEAIAbpaeny5VXXik2m00WLlyoeyLKU7MjqfoRKj9C5UmkpqZyPgAAXi/IrgbqAgB8SocOHXRCtipap657wpAhQ2Tt2rXy9ddf6+sAgMBRefJwAIDPmDZtmq75cMopp8hdd93l9uOp/I3nn39eX//111/dfjwAgHciiAAAH7Z06VJ9OWzYsAYJIlTPx+uvv+724wAAvBvDmQAAAAA4hcRqAAAAAE4hiAAAAADgFIIIAAAAAE4hiAAAAADgFIIIAAAAAE4hiAAAAADgFIIIAAAAAE4hiAAAAADgFIIIAAAAAE4hiAAAAAAgzvh/wYIw7xmhVw0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJOCAYAAADIyIrwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpbUlEQVR4nO3dB5xTVfbA8ZPpHYbeq5RFEUHnvygoVVh7pVgWu2tbCyhiwbIqCvYCrqsuWJZVEDvoKiqogDAoFlalCANDE4YyvWUm/8+5mtkZmJbJzaT9vn6eyeS9d1+Sl4ScnHvudbhcLpcAAAAAQD1F1HdDAAAAACCIAAAAAOAxMhEAAAAAPEIQAQAAAMAjBBEAAAAAPEIQAQAAAMAjBBEAAAAAPEIQAQAAAMAjUZ5tDn8pLy+XHTt2SHJysjgcDk4EAADwis43nJubK+3atZOICP/9rlxUVCQlJSU+P05MTIzExcX5/DjhgiAiSGgA0bFjR3/fDQAAEGIyMzOlQ4cOfgsgmsY3lWIp9vmx2rRpI5s3byaQsIQgIkhoBkK9tWSNJCb9dr2h8gpKrdynrduzxZbkpnZ+GcjackBsSWzt3fMcyGKi7f3itGfDXgk0MckxEmjKneVW2nGV2WlHLGY041LjrbTjLHSKLWXOMivtxDW189hU0b4CK+3ENUsQW8pL7DxP5bZel9pWqZ37FBUXLbakNLfzOoiKtPPZW2zpvBUW5MkNY4+v+I7hD5qB0ABipAyXKB9+LXWKUxbv+tQcj2yEHQQRQcLdhUkDCG+DCFeEnSAiPsHOh5hKSLTzAR0Xb+9LSHxikoSqmOhIa23FxRdJoIlNiJVAU1YaukFEfIKlIMIRgEGEpcdmFNr5AhmfYDGIiCKIqI+ExISACiIiou39+6sCoZt0jMRItNgL/A4WQRmwdRRWAwAAAPAImQgAAAD4lUP/82FGxOHyf7Yl1JCJAAAAAOARMhEAAADwK61Z8GXdAjUR9pGJAAAAAOARMhEAAADwqwiHwyw+a18cIi6fNR+WyEQAAAAA8AiZCAAAAPiVw+QKfPfbti/bDlc8owAAAAA8QiYCAAAAfkVNRPAhEwEAAADAI2QiAAAA4FfURAQfMhEAAAAAPEIQAQAAgICoifDlotLS0qRPnz4yc+ZMzriX6M4EAACAsJCeni4pKSn+vhshgSAiyPyyI0fiE72bcrFJYrSV+5KSGi+2OMvsTCMZnWDnsSlnYamVdgr3FogtSW2TrbSzd3uO2BIRaSehWV5WLrYU7cyz05DL3vSmSd2aWWknf7edxxabEiu2OAudVtpxldt7DURGRVppp7ykTGyJjA685H/+nnwr7cQ1iRNbklrb+Zxzlth5Xdr8N8pZZuf1VFbuCqh2bNVE6H++bB928YwCAAAA8AiZCAAAAPiVw+Ewi8/aF9+1Ha7IRAAAAADwCJkIAAAA+FXE71URvmwfdpGJAAAAAOARMhEAAADwq8pzOfikfTIR1pGJAAAAAOARMhEAAADwK62I8OVcDswTYR+ZCAAAAAAeIRMBAAAAv4pwRJjFZ+3zu7l1ZCIAAAAAeIRMBAAAAPxKZ5T25azSzFhtH5kIAAAAAB4hEwEAAAC/oiYi+JCJAAAAAOARMhEAAADwq99miWDG6mBCEBGGnGUuK+0Ul5aLLXm/5lppxxFhL7nWrEWilXb2Wnq+VdH+QivtlBU7xZbImEg7DZXb+8cjrm2ShCpXfqmVdoqKLL4GEmOstBOTHCu2lDnLrLRTlF0kgfZece7JF1vim8VbaScmyc5rwKayEjuvARVl6TVuS1Sknc/Lsmg6pKDhCCIAAADgV8xYHXwIQQEAAAB4hEwEAAAA/CrC4TCLz9r3Yb1FuCITAQAAAMAjZCIAAADg95oI/c+X7cMunlEAAAAAHiETAQAAAL9yOBxm8Vn71ERYF5aZiMmTJ1e8WO+///4at1u8eLGcfPLJ0qJFC4mPj5fevXvLHXfcIXl5ebW2v3HjRrn44oulQ4cOEhsbay71702bNvng0QAAAKA+0tLSpE+fPjJz5kyeMC+FXSZi+fLl8uijj5oAwuWqeRKwxx9/XCZOnGi2O/7446V169byxRdfyLRp02TBggXy5ZdfmuDiYMuWLZNRo0ZJQUGBHH744TJ48GBZu3atvPTSS/LGG2+YwGTgwIE+fpQAAADB47eKCN/9tu1uOz09XVJSUnx2nHASVpkI/WKvGYG2bdvKGWecUeN2a9askUmTJklkZKQsXLhQli5dKvPmzZNffvlFRowYIevWrZOrrrqq2vbHjh1rLm+77TYTPLz22mvmUv/Oz8836wsL7cw6DAAAAPhDWAUR+kV+w4YN8o9//EOaNGlS43YPPvigyVJccsklctJJJ1XcnpCQIC+++KJERESYbMTPP/9cZb85c+bIjh07pGfPnod0k9K/9fbMzEx5+eWXffDoAAAAglOE439zRfhm8fcjDD1hE0QsWbJEnn76aZkwYYKpc6hJSUmJyT6o888//5D1nTt3lkGDBpnrb731VpV17r/Hjx9vAo3K9O9x48aZ62+++aaFRwQAAAD4R1gEEVoIfemll5q6hieeeKLWbdevX2+6I6ljjjmm2m3ct2u3p8rcf3u6HwAAQDjTeRx8vcCusCisvvnmm2Xz5s0mU5Camlrrtrqdatq0qSQnJ1e7TceOHatsq3Jzc2Xv3r3meqdOnWrdb8+ePaY+IjExsYGPCAAAAPCfkA8iPvroI3nuuedMF6Mzzzyzzu01GFC1fcFPSkoylzk5OYfsV9u+7v3c+9Z2jOLiYrNU3h4AACAUuWsXfNY+80RYF9K5nezsbLnsssukZcuWph4imGhxtxZ/uxd3FgMAAADwt5AOIm688UbZtm2bPPPMM9XO6VAddxcm7W5UE/dkc5XHGa7c9ammfStPUlfXGMU6kpQGQe5FR3UCAAAIRdREBJ+Q7s6kNRBRUVEya9Yss1TmHp5Vh2zVCeDatGlj5nTo0qWLuf3AgQOmi1J1dRHuL/TubZVu16xZM9m3b59s3bpV+vXrV+N+GtDUVQ+hM13rcrCyMpeUlZWLN5xe7v+/+2KnHZXUuvr6E0+VFJaKLdvXZ1lpx+W09zzFNo2z0k5UfLTYEpt86Ou0IYqyiyTQFO2zOKfLjt1Wmok6rJmVduKaxosteVsPWGmnNNJeVwbnfjuvp4RONQ8H7qmC3TX/OOWJuFQ7nwPKWey00k5pQWnAfabYVFxq53M80tI4o3ExkVbaiYoM6d+S4WMhHUQop9NpJourSUZGhll06FbVq1cvMx+EjtC0evVqGTZs2CH76O1qwIABVW7XvzUg0fWnnXZavfcDAAAIZxGOCLP4rP3Q7nzjFyH9jGo2QSeNq2656KKLzDb33Xef+VsDCRUTEyOnnHKKuT537txD2tyyZYssX77cXD/rrLOqrHP/rRmN8vKqv1ro36+//rq5fvbZZ/vk8QIAAACNIaSDiIaaMmWKOBwOmT17tnz44YcVt2t2Qgu1y8rK5JxzzpHevXtX2e/iiy+Wdu3ambkmpk6dWmWd/q23d+jQwUx4BwAAgN/4fpYIpqy2LeS7MzWEdjd69NFHZeLEiWZ26yFDhkirVq3kiy++kJ07d5ouT3//+98P2U+7Qc2bN09GjRol06ZNk3fffVeOOOIIWbt2rVm0DmL+/PkSH2+vLzIAAADQ2MhE1OCmm26Sjz/+WEaPHi3ff/+9vPPOO2aeBx01KT09vcbRngYNGiTfffedyTZokfWCBQvMpf6ttw8cONCX5xMAACDoOBwRPl9gV9hmIubMmWOW2owcOdIsnjrssMPkpZde8uLeAQAAAIErbIMIAAAABAZf1y1QE2EfuR0AAAAAHiETAQAAAL9y+HieCM1zwC6eUQAAAAAeIRMBAAAAv3L8/p8v24ddZCIAAAAAeIRMBAAAAPwrwqGFEb5r30UmwjYyEQAAAAA8QiYCAAAA/uXwcSaCmgjryEQAAAAA8AiZCAAAAPiVw+EQh9ZF+Kr9cmoibCOICDLFOUUS4fTutJWVRFu5L53bpYgtOYWlVtopyi4SW5LaJFlpp2h/odhSklssgaa8rNxKOzFJMWJLwfYcCTixdj5unbvyrLRTWOYSWxzxdj5TbIpqFm+lnYItB8Sa6EgrzTiLnGJLdIKd911kgp3Hppq3tvPZu33dHrElMdXO6yk3K99KO/mRdjqSFBbYuT8ITwQRAAAA8C9NFPiyJoJEhHXURAAAAADwCJkIAAAA+JfWQ/iwJoJUhH1kIgAAAAB4hEwEAAAA/ItMRNAhEwEAAADAI2QiAAAA4P95Inw4OpMv2w5XZCIAAAAAeIRMBAAAAPyLmoigQyYCAAAAYSEtLU369OkjM2fO9PddCXpkIgAAAOBfWrPg0xmrf2s7PT1dUlJSfHecMEImAgAAAIBHyEQAAADAv6iJCDpkIgAAAAB4hEwEAAAA/MsR8dviy/ZhFc8oAAAAAI+QiQAAAIBfOSIcZvFZ+8KM1bYRRASZpq0SJSExyas2srMKrNyXpIRosWVzxn4r7UQnxYgtuduyrbQT1zRebImIjrTSTsH6vWKLI9JOQrM0r0SsKS6z1I5TrLH071fy4a2stJO3M1dscVn6THHa/AJRWm6nnTib/0zaeV2W2Xps+vBi7HymlJfZu0/bftxtpZ3kDvaG8SwptXPuUlt79++3bdH5lj4rEZYIIgAAAOBfjM4UdKiJAAAAAOARMhEAAADwMx/PWE1NhHVkIgAAAAB4hEwEAAAAQrsmwsXoTLaRiQAAAADgEYIIAAAAIMQVFhbKd999J3v32hnmnSACAAAAfuVwOHy+hIMvvvhCJk6caIKFyubOnSutWrWSAQMGSNu2beVvf/ub18ciiAAAAABCwD/+8Q955plnpH379hW3ZWZmyqWXXir5+fnSpEkTcTqdcu+998rSpUu9OhZBBAAAAAKjsNqXSxhYuXKl9OvXT1q0aFFx2yuvvCIlJSVyzz33yL59+yqCh1mzZnl1LIIIAAAAIARkZWVJhw4dqtz26aefSkxMjOnmpI4//ngZOHCgrFmzxqtjEUQAAADAv7RmwddLGMjLy5P4+PiKv10ul6Snp8sxxxwjSUlJFbd36dJFduzY4dWxCCIAAACAENCsWTPJyMio+FuzDbm5uXLcccdV2a60tNRkJ7xBEAEAAAD/oibCirS0NFm1apWsWLHC/P3kk0+akamGDx9eZbsNGzaYUZq8QRABAAAAhIAbbrjBdGEaPHiwyUq8+uqr0q1bNxk1alSVuokffvhB+vfv79WxCCIAAADgX2QirBg5cqT885//lM6dO5sRmYYMGSLvvfeeREREVBmtqby83KzzRpSF+4tGFBUZYRav2oi3c9o3bM8RWxyRdgqe8nfniS1JbZOttFOSVyK2uMpcdhqKsff7QemBIjsN2WpHxVn6aCsoFWvio600k7tmp5V2pMgpgfbYxFlupx19iR/WzEo7JXsLxZaolFgr7URE23v/OossvsYtadPrf0NTeqPA4mu8ONvO51NC3P8KWwPhsRUWlVlpB4HloosuMktNrrrqKjNvROVC64YgEwEAAAC/+m0AJV/OWB0eJ/jzzz+X9evX17qNjt60e/duWbZsmVfHIogAAAAAQsDQoUNl+vTpdW43Y8YMGTZsmFfHojsTAAAA/MvXs0q7wiQVIb/NDdEYyEQAAAAAYWT//v0SFxfnVRtkIgAAAOBfvp5VOoSLIrZu3XrIrNUH3+bmdDrlv//9r3z00UfSvXt3r45LEAEAAAAEqS5dupjicbcFCxaYpa4uTxdeeKFXxyWIAAAAgH9RE9FgnTp1qggiNAORkJAgLVpUP1RyTEyMdOjQQc455xy5+uqrG35QgggAAAAgeGVkZFRc10nlxowZYyac8zUyEQAAAPAr93wOvmw/HMyePVsOO+ywRjkWQQQAAAAQAi6qZaZq2wgiAAAA4F8OH88TUR4emYjKysrKZO/evVJUVCS11VM0FEEEAAAAECLS09PlrrvukqVLl0pxcXGtXbx0yNeGIogAAABAaI/O5Mu2A8hXX30lw4cPr8g+pKamSkpKik+ORRABAAAAhIC7777bBBCXXnqpPPDAA9K6dWufHYsgAgAAAP7FjNVWrFy5Unr16iXPP/+8z0ekivBp6wAAAAAahdY4HHXUUY0ypC2ZCAAAAPgXNRFW9O7dW7KysqQxEEQEGWdZuVm8ERVj57THRltMZCXFWmkmISVObMnemWOlndL8UrGlrLjhoyhU5ki283wr1648Ow2Vu8SaQkvPeXGZBFxRX6Gd14Akx4g1ll6XEhNppx0RKfk1P7BeS/q+axoXcJ8pkbY+xy3+6rk9fbuVdmJaJ1ppx7SVYOf9UlBk573Su1NTK+3k59l7zyEwXHnllXL99dfLL7/8It27d/fpsejOBAAAgICYsdqXS7gEEeedd56ceOKJsmjRIjNXhK+QiQAAAABCQLdu3cxlRkaGnHbaaRIVFSVt27aViIhD8wYaWGnGoqEIIgAAAOBf1ERYocGDm8vlktLSUtm6dWu123qbnSGIAAAAAELA5s2bG+1YBBEAAADwL+aJsKJz587SWCisBgAAAOARMhEAAADwL2oirMrJyZFXX31Vli9fLnv27JERI0bI5MmTzbr169eb2okTTjhB4uIaPvQ0QQQAAAAQIj766CM5//zzZf/+/aa4Wguo27dvX7F+3bp1cuaZZ8q///1vGTt2bIOPQ3cmAAAA+JejEZYw8NNPP8lZZ50l2dnZcvXVV8vrr79uAonKRo8eLQkJCfLOO+94dSwyEQAAAEAImDZtmhQVFcn8+fPl7LPPNreNGzeuyjYxMTFy1FFHyXfffefVschEAAAAIDBGZ/LlEgY+++wz6devX0UAUZMOHTrIzp07vToWQQQAAADgZ2+88YbpitSpUyfT3ejwww+XRx991EwYV19aRN2zZ886t3M6nZKfn+/V/aU7EwAAAPzKEeEwiy/bD3SPPPKIdOnSRWbMmCGtW7c2Iyvdeeed8v3338tLL71UrzaaNGki27dvr3O7TZs2SatWrby6vwQRAAAAgJ+999570rJly4q/hw0bZoqip06dWhFY1GXAgAHy+eefy9atW01Gozpr16419RCa9fAG3ZkAAADgX4zOJJUDCLejjz7aXO7YsaNeT+Pll19uCqvPO+882bVr1yHrs7KyzDYanOilNwgiAAAAgGronApPP/20XHzxxdK3b1+Jiooy8y7cf//99Xq+dJSkoUOHSmpqqiQmJpqiZ80q1LfOQbMKOppS9+7d67X9ueeeK2PGjJEVK1aYfUaNGmVuX7ZsmZx++unSrVs3WbVqlZlHQod69QbdmQAAAOBnvh5BqWFtP/vss/Lkk082aN8bb7zR7KuBx/DhwyUpKUk+/fRTufXWW03XJZ0ULj4+vsb9f/zxR7P/lVdeKSkpKfU+7ty5c+Wwww6TJ554QhYvXmxu27Bhg1k0IJk0aZI89NBD4i2CiCCTmhgriUmxXrWxLcu7any37OwisaV56yQr7fy6Zb/Y4ixySqBxREdaacdVWP+RHuoUZSeh6WiZKLa4ftpjp6GScrEmvzSgnm8ptPM5YPU+JcWINS0SJNCU5pVYaScqIVpscTntvMY79Dm0G0ZD7di410o7HQ9rLrbs3V9opR1XmZ3ne+vuPCvtFOTbaSeUHXHEEXLzzTdL//79Tb2BzsPwyiuv1Lnf22+/bQIADRyWLl1q9nV3J9KA4ssvvzS1DlpMXR3dTmeV1mDA0y/8kZGR8sADD5j7rUO+ahF1eXm5dOzYUUaMGOF1QbUbQQQAAAD8S0dP8uUISg1s++C6gYiI+v1oMm3aNHM5ZcqUigBCtWjRQmbNmiXHH3+8PPPMMyaQ0BGVKsvNzZWTTjpJSkpKZMmSJaYbVENoF6q65ovwBjURAAAAgCXbt2+X9PR0c11rDw42ePBgkxUoLi6WRYsWVVmnt51xxhmSkZEh//nPf6Rdu3YeHVvrN/bvt9crozYEEQAAAAiL0ZlycnKqLPql3bY1a9aYy2bNmknXrl2r3eaYY46psq0qKyuT8ePHmwBEg4tevXp5fOwbbrjBBB7jxo2TDz/80IzC5CshH0Ro9fsnn3wit9xyi6SlpUnTpk0lOjpa2rRpY6rUFy5cWOv+WpBy8sknm/STFr/07t1b7rjjDsnLq70f4caNG00lv04rHhsbay71b+2XBgAAgManGQDtPuReHnzwQevH2Lx5s7msaZ4G9/2ovK269tprTS2FFl5rQPHVV19VLBrw1Id2X9LAQUeFOuWUU8xx9HurFlXbFvJBhBazjBw50hSubNu2zaSQ9AnWsXi1Mv7UU0+Vv/zlL9VGao8//riceOKJJpLTqcdPO+00yc7ONv3cNILUopfq6DBaOoSXzi6oQYtO5qGX+veRRx5pXgwAAAD4nY7M5OtFRDIzM813Ofdy2223WT8Fubm55rK2WgYtuFaVgwP9vqm0TuLYY4+tsnzzzTf1OvYbb7xh5pTQkZn0O6de18Js/RH8hBNOkNmzZ0t+vp2BNUI+iNACmHPOOceMs7tz5055//335fXXX5cffvhBXnvtNVPB/o9//OOQSntNL+kQWLpesxUajMybN09++eUXU9mu4wZfddVVhxyvoKBAxo4day71hamzAupx9FL/1hOn6wsL7Yz0AAAAgPrRoVIrL9pbJFBkZGSYH7WrW3SuifrSblTXX3+9+S6ry3XXXSfNmzc3I0Jpobj2xrn00kvNd2NvhHwQocNoaVSmVfAH0/5i2sVIvfzyy1XWaXpLT9oll1xiKuTdEhIS5MUXXzTByYIFC+Tnn3+ust+cOXNM1NezZ89DJiLRv/V2jYIPPh4AAEDYimiEpZEkJyeby9p+8Xd3i/dk/oeG0J4xOtSsfjfV78PaRV/rQPT7qn5H9kbIBxF10XF/lX6xd9Mhtdy1EtVV1Xfu3FkGDRpkrr/11ltV1rn/1sKYg4cB0781cFFvvvmm9ccCAAAA/+rSpcsh3y0P5l7n3tbXdMI77c6vk+dpN37lbdF12AcR7kKTtm3bVjwp69evN92RKlfP16eqvvLfnu4HAAAQtswISr6siWj8H6j37t1bpXC6stWrV5vLynNI+IpmHrRr/ejRo81oUTpPhdJ6X2+EdRCxa9cuk85RWjfh5j7hWgztTknVp6peC2n0BVNbRb57vz179lgrbAEAAEBg6NChgxkRVM2dO/eQ9VqboJkIrcfQ7kW+snLlSrn66qvND+UXXHCBfPzxx6ag+8orrzSD/Hz//fdetR+2M1Y7nU658MILTWV+3759K1I73lTVu/erbV/3fu59a9pOo8bKYxfXd2gvAACAYONwOMziy/Yb0+23325G59SRkbS21p1x0B+br7nmGnNdC54Pnq3aWzqIkA4WpCOCat2udlnSxz5s2DBT56s/msfFxVk5VtgGETqyks4fodXqWmgSExMjgUQLu++9915/3w0AAICwpUOrur/0Kx2lUz333HNmxM/KNbGVu8afeeaZZoSkp556SgYOHGhG9tQfjvW754EDB0xt7X333Wf9/mpPmPLychM8aA3vRRddZIIHvW5bWAYROpufjrCUmppqUjs6YpKNqvrKXZ9q2rfyJHW1VeTrcLATJ06skolwd4UCAAAIKZVmlfZZ+w2g37+0W9DBtm3bZha36ma+1lGRNFiYOXOmLF++3EyA3L17d5kyZYrcdNNNPvkB211ArUO4auDiS2EXROjcDxoVar3DRx99VFH8Upm7Ul4jRe2iVF1dRHVV9bqdjs27b98+2bp1qxlWq6b9dAbs2rpLaT+5QBq7GAAAINhprYLOAaazQ+tSF52fwZtRjMaOHWuWxqz3td1FqiZhVVg9efJkeeyxx8yTqwFETSMo9erVy8wHUbl6vr5V9e6/Pd0PAAAgbEU4fL+ISHp6uvz444/1CiCCUZNGCiDCKojQ1NHDDz9snlztwuSumq+OppdOOeWUGqvqt2zZYtJSSotmKnP/rUNpaZ+0yvRvnS1baaoJAAAAaKi//e1v8u6771a7TkdfqtzlqrKnn37a6++iYRFE3HnnnTJ9+nTThamuAKJy0KHV7LNnz5YPP/yw4nadP+Kyyy6TsrIyU+Heu3fvKvvpDNjt2rUzc01MnTq1yjr9W2/Xob8mTJhg8RECAAAEMZ/OEfH7EoLuueceefvtt6tdp13277777hoLxt955x2vjh3yNREanT3wwAPm+mGHHWaKW6qjNQqPPPJIxd/a3ejRRx81xc06hu+QIUOkVatW8sUXX5jhs7TL09///vdD2tFuUPPmzZNRo0bJtGnTzPGPOOIIWbt2rVm0DmL+/PkSHx8vwS4q3t7Lp6ikzEo7EdGRVtoxbZV7N5OjW0yCvcKp/N3/K8z3SpTF3w/K7DxPrl8tPTab96nUzuvScFbNTDaUa3+RlXYk0t4/qBFtaq7v8kiJnefIyPptwlCvJVksfPRydlg3515Lj01EWh/d3ko729ftEVui4uz825KdXyq2JCbaeR3Exdj7N8qG8tLAuj+wS2s5vJ2VOqyDCC1yrlyPUFOtgg59VTmIUFo5r3NIaDCxatUqM+KSDp2lIyfpUtNEdFqJ/91335mhuxYvXiwLFiyQli1bmuzDXXfdZSrzAQAAENijMyGMgwjtXqRLQ40cOdIsntKsh070AQAAAISakA8iAAAAEOAqjaDks/ZhVVgUVgMAAACwh0wEAAAA/IuaiKBDEAEAAAAEqW+//dbMF+HJOr3dWwQRAAAA8C9fz+Xwe9s6V1hkZKSZsTpUZq3+7rvvzOLJOh36VedD8wZBBAAAAMJCenq6pKSkSKg44YQTvA4GGoogAgAAAH6lX4QdPhxByV9ftH1tyZIl4i+MzgQAAADAI2QiAAAA4F+MzhR0yEQAAAAA8AiZCAAAAITF6Eywh0wEAAAAAI+QiQAAAIB/6chMPhydyadthykyEQAAAAA8QiYiyGTuypX4BJdXbfTo3NTKfdmWVSC25O8vtNJOVHy02BIRaSfGLtxr73lyOcvtNFTm3WuoCpeltkotPTZVXGalGddeO6/L3xqz00y5pddTRKtEsaV8R56VdhwxkVbaMW01ibXTUJy9fyajEmPsNJQQHXCfvc27NrPSjsrNyrfSTlF2kdiS2DrJSjuDDm9jpZ2VP++20k5URAD9lszoTEEngF49AAAAAIIBmQgAAAD4F6MzBR0yEQAAAAgLaWlp0qdPH5k5c6aEgsjIyAYvUVHe5RLIRAAAAMD/P2v78qft39tOT0+XlJQUCRUuL+oSvdlXkYkAAAAAglB5efkhy8SJEyUuLk5uuOEG+eabb2T//v1mWbNmjdx4440SHx9vttFtvUEmAgAAAP5FTYQVs2fPlieeeEI+/vhjGTZsWJV1/fr1k8cee0xOP/10GTlypPzhD3+Qyy67rMHHIhMBAAAAhIBZs2bJoEGDDgkgKhs6dKgMHjxYnn32Wa+ORRABAAAAv3I4HD5fwsHPP/8sHTt2rHO79u3by7p167w6FkEEAAAAEAKioqLkhx9+qHO7tWvXej06E0EEAAAAAmN0Jl8uYWDgwIEmQHjqqadq3Obpp582gcaxxx7r1bEorAYAAABCwF133SWLFy+Wm266SebNmyfnn3++dO3a1azLyMiQf/3rX7JixQqThbjzzju9OhZBBAAAAPyL0Zms0OzC3Llz5fLLL5fly5ebgOHguSGSkpLk+eefl+OOO86rYxFEAAAAACFizJgxcsIJJ8gLL7wgS5culW3btlUUUw8ZMsQM69q2bVuvj0MQAQAAAP8iE2FV69at5Y477jCLr4RJmQkAAAAAW8hEAAAAwL98PYJSmP1snpOTI6+++qqpi9izZ4+MGDFCJk+ebNatX7/eFFlrl6e4uLgGH4MgAgAAAGEhLS1NIiMj5dprrzVLKProo4/MqEz79+83hdQ60Z7WQ7jpJHNnnnmm/Pvf/5axY8c2+DgEEUGmRfN4SUhM8KqNktJyK/elrNwltkQnxVhpx1Vm57GpiHg7b4/EtsliS/7OXCvtlGUXiTUtvHs9VthXKNZERQRWO/razC6201CEnVlXy37NE1siWyTaaSjO4j9JpWV22skqEGsS7XzOOXNLxJY8S+87Zzt7n3PRlp6nlNR4CTRLv99ppZ24mEgJOY1UE5Geni4pKSkSqn766Sc566yzpKSkRK6++mpTSD1u3Lgq24wePVoSEhLknXfeIYgAAAAAwt20adOkqKhI5s+fL2effba57eAgIiYmRo466ij57rvvvDpWmPUQAwAAQOD5PRPhq0XbDwOfffaZ9OvXryKAqEmHDh1k507vMmMEEQAAAEAI2LNnj/Ts2bPO7ZxOp+Tn53t1LGoiAAAA4F+MzmRFkyZNZPv27XVut2nTJmnVqpVXxyITAQAAAISAAQMGyNdffy1bt26tcZu1a9eaeog//vGPXh2LIAIAAAD+5ct6CF+P/BRALr/8clNYfd5558muXbsOWZ+VlWW20aFf9dIbBBEAAABACDj33HNlzJgxsmLFCunevbuMGjXK3L5s2TI5/fTTpVu3brJq1Sozj4QO9eoNaiIAAAAQFvNEhIO5c+fKYYcdJk888YQsXrzY3LZhwwaz6PCukyZNkoceesjr4xBEAAAAACEiMjJSHnjgAbn55pvNkK9aRF1eXi4dO3aUESNGeF1Q7UYQAQAAAP9idCbrUlNT65wvwhvURAAAAAAhYPjw4TJjxow6t3vkkUfMtt4gEwEAAAD/oibCiiVLlkiXLl3q3G7dunWydOlSr45FJgIAAAAII6WlpRIR4V0YQCYCAAAA/qWDJ/l0dCbfNR2MfvjhB2nevLlXbRBEAAAAAEHq0ksvrfL3l19+echtbk6nU3788Uf59ttvzbwR3iCIAAAAgH8xOlODzZkzp+K6w+GQjRs3mqU27dq1M8PAeoMgAgAAAGEhLS3NzKNw7bXXmiUUzJ4921y6XC6TgRg8eLBcdtll1W6rk8116NBBBg4cKNHR0V4dlyAiyBSVlElEdJlXbTjLXFbuS2y0vbr8/BKnlXYK9hZIoCkv8e58VVaWXWSnIZv9TovsnDs5UCzWlJdbacaVWyK2lG7aY6Wdst3ZVtqJapsqtkS2SbbSjiMpRqzJsXTumsbaaUc/ewtKrbST+oeWYkvu9hwr7UTFefdlxBeKS+18DqioSDv/3rVIsfN6Sk6w817J8/L7RDCOzpSeni4pKSkSSi666KKK6/fcc48JECrf5isEEQAAAEAIyMjIaLRjEUQAAAAgAEZn8nH7sIogAgAAAAghxcXF8tlnn5lJ5XJycky9xMG0CHvq1KkNPgZBBAAAAPwrwvHb4sv2w8Rbb70lf/nLX2Tv3r01bqNBBUEEAAAAAFm9erWMGzfOPBPjx4+X//73v2ZiuSlTpsiGDRvk448/NpkJHb1JR2nyBpkIAAAAhMXoTKHukUcekbKyMpON0MnkLrnkEhNEuOeE2LNnj0yYMEE++OADWbNmjVfHsjdGJwAAAAC/WbZsmfTp06fG2ahbtmwpr732muTn58u9997r1bEIIgAAABAYozP5cgkDe/bskd69e1f8HRX1W6ejoqL/zTPVpEkTGTJkiCxatMirYxFEAAAAACEgOTlZnE5nlYBB7dixo8p2Olv1rl27vDoWQQQAAAD8S2sWIny4hElNRIcOHSQzM7Pib3dWQod7dSstLZWvvvpKWrdu7dWxKKwGAAAAQsDgwYPlhRdekOzsbJOFOOWUU0yXpokTJ5ouTZ06dZJ//OMfJjNxwQUXeHUsMhEAAAAIjNGZfLmEgTPPPNNkI5YuXWr+btu2rdx+++2Sm5sr119/vVm/cOFCadq0qdx///1eHYtMBAAAABACRowYYeaDqOzuu++Wvn37yvz582Xfvn3yhz/8QW688UaTlfAGQQQAAAD8y9cjKIVHIqJGZ599tllsojsTAAAAEAKGDx9uJpNrDAQRAAAA8C9fjszkXsLA8uXLpaSkpFGORRABAAAAhIAOHTpIcXFxoxyrXjUR3bp1s3Iwh8Mhv/zyi5W2wlVUZIRZvGvDTjSenWMv0o2Ni7bSTsc+3o15XNnG9VlW2omw+OtHTOemVtopybN37pw7c+001DrRTjsi4tpo5wO0bLelxyYimZnrrLST78y30k70JnslcT2b2Tl3jrhIK+2YtprH22koOcbefbL02VtWUia2RMfb+eyNaxIngcZZ8r8Jt7wWZ+f9MvAPdv6NeuOLzVbaKcy39xnnNV+PoBQmozOdeuqp8uqrr0p+fr4kJtr7d7U69XpXZGRkWAsiAAAAANinIzG99957poha54Po3Lmz+Eq9Q+tzzz1XHn744QYf6Oabb5Y333yzwfsDAAAgRDXS6ExpaWkSGRkp1157rVlCzaRJk+Twww+X999/X3r16iX9+/eXLl26SHx8fLU/7r/44ou+DyKSkpK8imZ0fwAAAMBf0tPTJSUlJWRPwJw5cyp6/miB9cqVK81SnUYJIkaPHm0mqfCG7j9q1Civ2gAAAEAI8vUISmEyOtPs2bMb7Vj1CiI++OADrw80ceJEswAAAACw76KLLpLGwozVAAAA8C9GZwo6BBEAAABAiPnxxx/N5HN79uwxxdann366ub28vFycTqfExMT4N4jYtm2b7NixQ4qKimrc5oQTTvD2MAAAAAhVET6eAjmMplfOzMyUSy65RD777LMq3ZzcQcTzzz8v11xzjXz00UcyYsSIxg8i5s+fL3feeads3Lix1u208lujHQAAAAC+s2/fPhkyZIiZ4+2II44wP+TPmjWryjZjx46V6667Tt59993GDyLmzZsn5513nrhcLmnWrJkZfzY5ObnBdwIAAABhjJoIK6ZPn24CCJ2fTa/rj/kHBxGpqalm1NQvv/zSq2M1KIiYNm2auXzyySdNOkQn7QAAAADgP++88475cf+hhx6qmC+iOt26dZNly5Y1fg+xdevWybHHHit//etfCSAAAABgJxPhyyUMbNmyRQYMGCAREbV/xdeiau361OhBRNOmTb2avRoAAACAXXFxcZKbm1vndlu3bpUmTZo0fhAxbNgwWbNmjVcHBgAAAKqMzuTLJQz07t1bvvnmG8nPz69xm6ysLPnuu+/kyCOP9OpYDXpK77rrLtm+fbvpbwUAAADA/84991zZu3evTJw40cwHUZ1bbrlFCgoKZNy4cY1fWK1Rjo4tO378eFPAcdJJJ0mnTp1q7H81YcIEr+4kAAAAQhijM1lx7bXXyksvvSQvvPCCfP3113L22Web23/55Rd57LHHzBQNq1atkqOOOkouvvhir47V4HkidAY8LcjQPlV6Z2pDEGFPcUmZRESXSaiJi7EzwtfmjP1iS0rrJCvtFOaXiC0Fe2pOT3oioWWi2JKz2859splqdiTHWmnH5bT3XispL7bSTrYzx0o7TaO96wtbmavAzmvcER8t1rRKDKjXkoqy9PgKdueJLU07p1ppp2BfgdgSk+TdLLpuHVvbG3p+d3bNE+p64u3lGVbaKS4qtdQO83iFYk3Ef/7zHxkzZoz5ru4uP9DhXHXR6RnS0tLk7bfflujo6MYPIv75z3/KpEmTzHXtT9WjRw9JSrLzhSuUaLQ3c+ZM0++spKREDjvsMLngggvkpptu8vrEAQAAhAwyEda0bdvWBAwaTCxcuFA2bdpkujZ17NjR9B4644wzah3+1adBxOOPPy5RUVHy5ptvyqmnnur1nQhFN954o5lHQ5+n4cOHmyDr008/lVtvvVXee+890x0sPj7e33cTAAAAIWj06NFm8ZUGdSDQflU6jTYBRPU0RaQBhAYOK1euNJHgggULZMOGDRUzBE6dOtW7MwcAABAqHD4emSk8poloVA0KInS67JYtW9q/NyHCPaP3lClTzIQfbi1atKiYevyZZ56R7Oxsv91HAAAAhK6ysjLZvXu3qV+uaWn07kzan+qTTz4x/avqmhEv3OjQt+np6eb6+eeff8j6wYMHmz5pmZmZsmjRIjnvvPP8cC8BAAACCDUR1uj3UJ2OYenSpVJcXPOgHloX4XQ2vLi+QRHAfffdZ+7U9ddfbwqG8T/uKvhmzZpJ165dq31qjjnmmCrbAgAAAN766quvZMiQIaYrfVFRkTRt2tRMw1Ddoj9qN3om4vnnnzfZiGeffdZUfesM1jXNE6FRTjj1/9+8ebO51OejJu6T5t4WAAAgrJGJsOLuu+82wcOll14qDzzwgLRu3Vp8pUFBxD333GOCAx1rdsuWLTJnzpxDtnGvD7cgIjc311wmJtY8Rrl7ONycnJrHe9dMT+UUVG3bAgAAACtXrpRevXqZH/xtDONqPYjQfla+vmPh7sEHH5R7773X33cDAADA99yjKPmy/TDgdDrNbNSN8T29wZkIVC85+bcZMvPza57FNy/vt9lGU1JSatzmtttuk4kTJ1bJRHjbdw0AAAChq3fv3pKVldUoxwqTuKzxdOnSxVzq6Es1ca9zb1ud2NhYE2RUXgAAAEKR/nLu6yUcXHnllfLFF1+YOd18jSDCsv79+5vLvXv31lg4vXr1anNZeQ4JAAAA+FZaWpr06dNHZs6cGbJBxHnnnScnnniimUpA54rwa3emuXPnSvfu3eWPf/yjV4UeGhVVN3dCKOnQoYN5geoYvfq83XHHHVXW62zVmonQTMPJJ5/st/sJAAAQbqMz6fezUO7d0a1bN3OZkZEhp512mkRFRUnbtm1rHEHVm4xFvTIRF154oTz33HPijb///e/y5z//WcLB7bffbi4feugh+eabbypu1+zENddcY65fd9110qRJE7/dRwAAAISWjIwMsygdJbW0tNTMTO2+/eCl0QurUbszzzzTTMT31FNPycCBA2XEiBFmyFed5fvAgQMyaNAgM2EfAAAAmCbClsacg6zeQcSHH34ow4cPb/CBfv75ZwknTz75pAkWtM/d8uXLTSSoXcKmTJkiN910k8TExPj7LgIAACCEdO7cOfCCiF27dpnFG+FSGe82duxYswAAAKCukgjffU8Ms6+ggRNEfPbZZ76/J6iXxPgoSYj3rhdaXqHTyrPdPDVebImKtDNQWJSXz01lTZPsZItKSi2OjOByWWmmcG+BWGPr8UXY+4R37S+00k5kK3vFd/HrEqy0kxj5v5nsvZEUmSi2RDRPstNQlMUBA+28VcSVV2JvEihL32KiE6PFlpydOVbaiWtq8d+DGDuf4zstfQ6oouwiK+00b23nvdIkJc5KO9GRpVbaQeDR+cVeffVV0xtmz549pmv95MmTzbr169ebeogTTjhB4uIa/lqq1zt1yJAhDT4AAAAAUCtmrLbmo48+MqOh7t+/3xRXa4anffv2FevXrVtn6nf//e9/e9VjhnkiAAAAgBDw008/yVlnnSXZ2dly9dVXy+uvv24CicpGjx4tCQkJ8s4773h1LEZnAgAAgF/5elbpcKnLnTZtmhQVFcn8+fPl7LPPNreNGzeuyjY6uM9RRx0l3333nVfHIhMBAAAAhIDPPvtM+vXrVxFA1DY58s6dO706FkEEAAAAAmPGal8uYWDPnj3Ss2fPOrdzOp2Sn5/v1bEIIgAAAIAQ0KRJE9m+fXud223atElatWrl1bEIIgAAAOBXJCLsGDBggHz99deydevWGrdZu3atqYf44x//6NWxCCIAAACAEHD55Zebwurzzjuv2kmis7KyzDY6YpNeeoPRmQAAAOBfvq5bCJOaiHPPPVfGjBljRmfq3r27DBo0yNy+bNkyOf3002XJkiWSl5cnF1xwgRnqtdEzEcOHD5dRo0aZdEltpk+fbrYFAAAA4Htz586V2267zVxfvHixudywYYO8//77UlJSIpMmTZI5c+Z4fZwGZSI0itHxdocOHWomsTj55JOr3e7nn3+WpUuXensfAQAAEMoiHOKI8GG2wJdtB5jIyEh54IEH5OabbzZDvmoRdXl5uXTs2FFGjBjhdUG1192ZOnfuLNu2bTPTZs+cOVOuuOIKK3cIAAAAgHdSU1PrnC/CL4XVmoV49913JTY2Vq666iq588477d4zAAAAhA+HDxdY51Vh9Z/+9CfTXemUU06RBx98UDIzM+XFF1+UqCjqtQEAAAB/Wb58uWzcuLHadcccc4z06dPHq/ajbIxH+9VXX8lJJ50kr776quzYsUPeeustSUpK8rZpAAAAhAGttdXFl+2HqqOPPlrWr19v6h80OHB7/vnn5eWXX652nyOPPFLWrFnj1XGtpAy0PkKjnTPOOEM++eQTGTx4sCxatMhG0wAAAACqod+7NRi47LLLqgQQbjofhBZTV6Y1zd9//718+umnXo2iaq3fUdOmTeXjjz+WCRMmyLx582TgwIGmChwAAACoDdNENMzbb79tsiw33XRTtet1nX4/rywjI8PMIbFgwYLACCJUTEyMvPbaayZ4ePTRR2X79u02m4eIxEdHSUKMd6ctr9Bp5bnc/WuetXPiiLQzeXpySqzYkpmx30o7rjKX2JLQyk43wdK8ErHF2TLRSjuunCKxxdHEzusg0uK56zzkWCvttM/cZ6WdyPapYktUXzvDBUrzeLGmyM7nnMPifYpOjA64929UvJ37FBFpr6tISWGplXZSU+2du9joBAkkcTGRVtopL7HTDvxn1apVpkeQJ/UNXbp0kb59+5p9vdGgb25DhgyR3r1717j+4Ycflqeeesqb+wUAAACgFr/88oscccQR1a7Trkw16dGjh2zevFm80aCftLVwoy7XXXedWQAAAIBa0Z+pQXJycqRJkybVrps4caKMGTOm2nXx8fGSm5sr3mAsVgAAACAIJSUlSXZ2do0jMOlSnQMHDkhCgnfd9AgiAAAA4FcM8dowbdu2lW+//dbj/XQf3dcbdqpZAQAAADSq4447zgxk9Pnnn9d7H91Wh3kdNGiQV8cmiAAAAIB/RTTCEoIuvPBCU0B9zTXXmPqIumgdhG6rmZ/zzz/fq2OH6FMKAAAAhLYhQ4bIiSeeKD/++KOZbG7hwoU1bqsTQaelpclPP/1kJqAbNmyYV8emJgIAAAB+RU1Ew82dO9d0TVq/fr2cfvrpkpqaKgMGDJCWLVua9Xv27JFvvvlG9u/fb7IWhx12mNnHWwQRAAAAQJBq3ry5rFy50kyt8O9//1v27dsnixcvNoFZ5fkiIiIiZPz48TJz5kxp2rSp18cliAAAAIB/MU+EV3SuiFdeeUXuvfdeef/99+Xrr7+WrKwss65FixYmM3HqqadK9+7dxRaCCAAAACAEdOvWTa6//vpGORZBBAAAAPyKRETwYXQmAAAAAB4hiAAAAEBAjM7ky0XpEKd9+vQxxcXwDt2ZAAAAEBbS09MlJSXF33cjJBBEAAAAwL98Pas0fW+s4ykFAAAA4BEyEUHm1wOFEl/q3WlrnhJr5b4UF5WKLVExdl6KzrLfJlSxIblFYsA9T7Fx0VbaKdxbILa4ipx2Goqw+JtGnJ3Xk6NDstgS2SzOTjt/aG6lHYmOFGtKy+y0E2PxNZCUYKUZV7Glx6Ztxdv5fIpvbuexqYjIiID6DFeREb/1XfdWdk6R2JKYGGOlnZz8EivtxMXES6hhxuqG+fzzz6VNmzbSs2dPaWxkIgAAAIAgNHToUHnooYcq/h4+fLjMmDGjUY5NJgIAAAD+xUQRDeZy/S/LuWTJEunSpYs0BjIRAAAAQBBKTk6WnTt3+uXYZCIAAADgVyQiGubII4+UTz/9VO666y457LDDzG0bN26Ul19+uV77T5gwoYFHJogAAAAAgtLkyZPl3HPPlQceeKDitmXLlpmlPggiAAAAELxIRTTIaaedJqtWrZK3335btmzZInPmzJHu3bvLoEGDxNfozgQAAAAEqX79+plFaRAxePBg+ec//+nz4xJEAAAAwK8cEQ6z+LL9cHD33XdL//79G+VYBBEAAABAiAQRjYUgAgAAAH7l+L0swpfthxOn0ylvvPGGfPbZZ7J9+3ZzW/v27WXYsGGmEDsqyvsQgCACAAAACBHffvutCRQ2b95cZSI69cILL8jUqVNl/vz5ctRRR3l1HIIIAAAA+BejM1mxY8cOGTVqlGRlZUnr1q1l/PjxZrQmtWnTJnnttdfkl19+kdGjR5tgo23btg0+FkEEAAAAEAKmT59uAojLL79cnnzySYmPj6+yftq0aXL99debjMSMGTPk8ccfb/CxIizcXwAAAKDBHA6Hz5dw8MEHH0inTp3k2WefPSSAUHFxcTJr1iyzzcKFC706FkEEAAAAEAIyMzPluOOOk8jIyBq30aLqY4891mzrDbozAQAAIACGZ/Jx+2EgNjZWcnJy6twuNzfXbOsNgogg07FloiQmJXrVxoH8Eiv3JTYuWmyJirTz7naWVR2FwBtxMTVH8Z4oKS2z0o7NtmKTvfvgqKy8xM59clh6DSinrbZspr8zswPrPkVZTEQ3sfR6Krb3XpEYS/+8HTSyiTcSW3n32e1WtL9QAk1stL3XU76lf6MSE2PEljaph3YL8adtWQVW2im09FwjcPTp08cM66pZho4dO1a7zdatW8023o7ORHcmAAAABMSM1b5cwsGECROksLBQRo4cKYsWLTpk/fvvvy8nnniiFBUVmW29QSYCAAAACAFXXHGFLFiwQD755BM57bTTpFmzZtK1a1ezTueN2Ldvn5k7QoMM3dYbZCIAAAAQECURvlzCQWRkpBl1afLkyZKYmCh79+6V1atXm0Wv62233nqryUhERHgXBpCJAAAAAEJETEyMPPTQQ3Lvvfea4GH79u3m9vbt28sxxxzjdUG1G0EEAAAAAmDCat/lC8JkmogqNFgYNGiQ+ArdmQAAAAB4hEwEAAAAAiAT4dv2YReZCAAAAAAeIRMBAAAAvyITEXzIRAAAAADwCJkIAAAA+JXj9/982T7sIhMBAAAAhICtW7dKZmZmoxyLIAIAAAD+9fvoTL5awiUR0aVLFxk/fnyjHIsgAgAAAAgBKSkp0rVr10Y5FjURAAAA8CtGZ7KjT58+dGcCAAAAUH9XXHGFLFu2TNLT08XXyEQAAADArxwOh1l82X44uOSSS2TNmjUyatQoueWWW+Scc84xdRKxsbHWj0UQEWTyi5ziinJ61YazzGXlvpSV22nHpvz9hdbaimudJIGmMCvfSjtlpeViS0yynQ8mZ7F3r+vKolIs3adCe/cpslcLCSRl23MsNmbnsyCuRzOxpSjTzuNLObyV2FJWUmalnbjUeLGlyNJnZlJ8tNiSm1NspZ24mEix5UB+iZV29ll6bM0sfcZFlPM1MNRERv7vdT916lSz1BZYOZ0N/3eOVw8AAAD8ytcDKIVHHkLE5XL5ZNvqEEQAAAAAIaC83F5Pg7oQRAAAAMCvqIkIPswTAQAAAMAjBBEAAADwK1/OVu3rOSgC0S+//CKTJ0+WwYMHS69evcx1t5UrV8o//vEPyc7O9uoYdGcCAAAAQsRLL70kV111lRQXF1d0FcvKyqpYX1BQIFdffbXExMTIxRdf3ODjkIkAAABAQIzO5MslHHz11Vdy+eWXmwBhxowZJutw8ChMQ4YMkSZNmsh7773n1bHIRAAAAAAhYMaMGSZoWLhwoenKVJ2IiAg56qij5Mcff/TqWGQiAAAAEBCjM/lyCQfLli2T//u//6sxgHBr06aN7Ny506tjEUQAAAAAIeDAgQPSqVOnOrcrLCyUkhLvZmKnOxMAAAD8ytcjKIVJIkKaN28uW7ZsqXO7jRs3mmyEN8hEAAAAACFg4MCBsnr1avnvf/9ba5cnXV9Xl6e6EEQAAADAr6iJsOPaa6+VsrIyOeecc+Tbb789ZP1PP/0kl156qXm+r7nmGq+ORRABAAAAhIARI0bIxIkTZf369XL00UdLz549TcDwn//8R4488kjp27evbNiwQW655RaTtfBGSAcRu3fvlpdfflnOP/986dGjh8TFxUlCQoL07t1brr/+esnIyKh1fy04mT59uvTr108SExMlNTVVhg4dKm+88Uadx54/f77ZVvfRfbUNHXartLTU4iMEAAAIfswTYc8jjzwizz33nKl50NoHHfJVR2Jau3atNGvWTJ5++ml56KGHvD5OSBdWayT2r3/9y4yHe8QRR8jpp58u+fn5kp6ebp7Af/7zn/LWW2/JiSeeeMi+Opuf3r58+XJp2rSp/OlPf5K8vDz59NNPZenSpTJp0iRzkqpz4403ypNPPilRUVEyfPhwSUpKMvvdeuutZmKPjz76SOLj4xvhGQAAAEAw2Lhxo/luuWrVKvnhhx+kffv2df7gXZMrrrjCTDq3Zs0a2bRpk5SXl0vHjh0lLS3NfD+1IaSDCI227r33XrnsssvMiXDTYECf3Ndee03Gjx9vTppmDCq7/fbbTQChaR8NAFq0aGFu//rrr02G4dFHHzWXp556apX93n77bRNAaOCgwcaAAQPM7TrduAYUX375pUydOrXGAAQAACDcMDqTmGLn999/38zzoNmD/fv3e/mcOsz3UPd3UdscroPnwg4TmmnQNE9ubq688sorcuGFF1as05Om67Q7k37pHzRoUJV977//fhMIaF+yFStWVFmnJ14zHbrNHXfcUWWdtnX88cdLbGys/Prrr2bK8frKyckx2//rkx8kITFZvNE0MUZsyMopFlviYiKttLM9M1tsSUy1ky2KirQ3rlyupec81dJjUzn53o0z7VaYlS+2RETbeT0V7isUW6ITo620U1botNJOhKX3nCo9UGSlncgEO8+RaSvezm9kkVH2nqdWHev/mV+bfRbfKymWPgv2/5ontrS19DwlxNj7nTTJ0mtz9wE7nylRkXZ6oxfk5cq4YYdLdna2pKSkiD/Y/H5Tm4L8XLlgRF+/Pta6aLZAe8+oq666Sj788MMGZyLc9Gv+3r17zaUO/+pu34aQromojdZG9OrVy1zPzMyssm7RokUmgNDJOg4OIJTWWKivvvpKduzYUXH79u3bTQBReZvKdCgtTSUVFxebYwAAAEBrInw8Y7WpughsERa/4H/88cemK35ycrK0bt3a/Diu1/U2LbK2IWyDCC1wdkd3bdu2rbJO+4+pY445ptp9u3XrZrpKqcrDZ7n303Vdu3atdl93m+5tAQAAEJjWrVtn6mgvvvhi08Vd6wk0KLn//vvrtb8/BtrRkZc0WNAaXO15o1kIXXSWar3t5JNPNrW93grbIOLFF180dQpa4HzSSSdVWbd582ZzWdu04R06dKiybX3300zEwfsBAACEs0AdnenZZ581I3q+9NJLZnQjnYOhvm688UYZO3asmdxNu7vrF/utW7eagXa0Tla/1Nv26quvmrpdHZFUA4Xvv//edN3XRYu1b775ZvPd94knnjDbeiMsgwh9EjVKU1rboGmeyvSJVhox1kQLp919+bzdrzra5Um3qbwAAACg8ejonvrFW0f71Ina/vznP9drv7crDbSzcuVK04VowYIFZo4GzWi4B9qxTbMmkZGRpp7i4YcfNvdfv5fqcvjhh5ssiK7TbMozzzwTmqMzTZ48Wd59912P93vhhRdqncZ727Ztctppp5kRmnTI1ylTpkggevDBB83IUgAAAKEuUEdn0mFSG1K3MG3aNHOp3zMrj46ko33OmjXLDLSjX+I1kPBkoJ26aLZEvwdr+zVxr3fX8YZcEKEFy9oPzVMaHNRk165dZia/LVu2yOjRo2XevHkmEjuYFp4onVOiruNUrvBv6H7Vue2228w8F26aiXB3hQIAAEBg2l7PgXZ0YB8daOe8886zdmztxtSuXbs6t9NtYmJiQrM7k/bTcheCeLJof7OaZq/W/mc6DfjIkSNNmkmHWq1Oly5dzKX2W6sto1F528rXDx7tqTL3usr7VUfvmwYalRcAAIBQ5NORmX5f1MFdxbX7uG1r/DjQztFHH23qIOqi29Q0gFDQBxE27dmzxwQQ2pdNMxHaTUojtZq4006rV6+udr3O/Ldv3z5zvX///hW3u6/reLw1FU672/TVxB8AAAConmYAtPuQe9Hu47ZtbuBAOzqS0htvvGEW/a5Z+W/tRVMfOkeZft/V2oeaaK2EbqMTK4dkdyZb3DNF6yyAGkC89957piq9Njr0laZ4NBOhFfUHzxUxd+5cc6mTzVVOGemITTqduKawdJvqJpvTTIRmGfQYAAAAaLyaCP0eVrl3R029UryR28CBdrTXzJgxY6ps5/579uzZZpjZg33++edV/taMy3XXXWe6xevwsloI7s6GaMCiPX2+/vprM+KUt/NShHQQodkCDRy0yES7MGkGoq4AQulYvldffbWpqr/mmmvk008/NbP8qW+++UamT59urh8cJCiN6s466yx56KGHzNCx7oyDZie0LaUn12YRDQAAAOoWyF3Eu3TpYrrme0LnoKiuvlfb0WBBv7cefLt66qmnzEhOTqezwfc3pIMIrajXPl/65Gq/NA0MqnPmmWea5eCq+lWrVsmKFSukR48eJpuhBdOffPKJmSBEi55PPfXUatvS6E5PjmYqNIjRSFT3O3DggMlq3HfffT57zAAAAMHmtzmlfZeKaMwZq5MtDrRTlxNOOKHaIKIxhHQQ4a5b0KhLR2KqLfI7OIhISEiQJUuWyGOPPWbGBtbqee3idOyxx5pMwsHppso0g6HBwsyZM2X58uUm6OjevbsZ5uumm27yuhoeAAAAgamLxYF26qLfVf0lpIMIb59Y/bKvX/wbMpeEzlCoCwAAAIJznoiG6H/QQDvVjdAUCgPthMXoTAAAAEBj6PD7QDuVB+MJxYF2QjoTAQAAgCDg40xEI5ZEBMRAO0VFRSbboZM36/WaTJgwocHHIIgAAAAAqqGjG7m/9KtffvnFXD733HPy/vvvV9z+1ltvSdu2bQNioB2dB0IHCKo8fGxNCCIAAAAQtCLEYRZftt8Q+kV85cqVh9y+bds2s7hVN/O1PwbaeeaZZ+TWW2811/v27WtGGHWPFmUbmYggExURIVGR3pWy7NpfKIHmQF6ZlXaik0J75Kv4RDuPb3dmttgSGRNppZ2YlJpnkfdU0QE7r/G4JhbvU3bN6WRPJLX5bYIib+Vuq/sXqvpK6d7MSjsFu38b8tCGxFZ2nqeiffY+L7Nz7LwGSvNLxJZcL/89cUttbef5VkUldv49SIix9xXnvxv3WmmnraXn6Y+9W1lpJzfH3mdcsNBahcjISLn22mvNUp95GDydu8GfA+1oEBEVFSULFiyQ0047zafHIogAAABAWIzOlJ6eHrCTzdmQkZFh5o7wdQChGJ0JAAAACAGtWrWSli1bNsqxCCIAAAAQEJkIXy7h4KSTTpIVK1ZIeXm5z49FEAEAAACEgLvvvltKSkrMyFB66UvURAAAAMCvHA6HWXzZfjho166dmczu9NNPl169esmwYcOkU6dOEhERUe1zMnXq1AYfiyACAAAACAEul8sMLfvzzz+bLk1z5sypNnjQ7QgiAAAAENQ0TxBCE1b7jU409/TTT5thXk899VQzT0RSkr0hmCsjEwEAAACEgBdeeEESEhLkiy++kP79+/v0WAQRAAAA8CtqIuzIzMw0E+T5OoBQjM4EAAAAhIA2bdpIcnJyoxyLIAIAAABhMU9EWlqa9OnTR2bOnBmSZ/yss84yXZmKiop8fiyCCAAAAISF9PR0+fHHH+Xaa6+VUHTPPfdIs2bN5LzzzpOsrCyfHouaCAAAAPiVr2eVDpNpIuTGG28080O8/fbb8umnn8rRRx9d6zwRL774YoOPRRABAAAAhIA5c+ZUTKyXm5srS5YsqXFbgggAAAAENcfv//my/XAwe/bsRjsWmQgAAAAgBFx00UWNdiyCiCCTmhwriUmxXrVRVFJm5b7ExUSKLXtziq2006FFothSUOK00k5UpL3xC/IKS620E9csXmwps/R6cpWViy2xyd69R9xSUu09T78WlATU8x2VEC2BJjohRgJNpMXPOWehnc+U1p1TxZb8Ijv3yVnmElvy9xdaaSc7q0Bsad7azoy/Tkufcxu2Z1tpJz8vVwIFNRHBh9GZAAAAAHiETAQAAAD8ihmr7bj00kvrvS2F1QAAAABER2eqK3BQLpeLIAIAAADBjZoI347OVF5eLlu2bJFFixbJ6tWrzXwS/fr18+pYdGcCAAAAwmB0pnvuuUcmT54szz//vHzzzTdeHYvCagAAAARETYQvF/xm2rRpkpycLHfddZd4gyACAAAAYSEtLU369OkjM2fOlHAVFRUlAwYMkMWLF3vXjrV7BAAAADSA5gl8mStwt52eni4pKSkS7goLC2X//v1etUEmAgAAAAgTP/30k3z55ZfSsWNHr9ohEwEAAAC/YnQmO15++eUa1+Xm5poA4pVXXpGioiI5//zzvToWQQQAAAAQAi6++OJai8h1fgh1xhlnyJ133unVsQgiAAAA4FfMWG3HhAkTagwiYmJipH379jJy5Eg57rjjvD4WQQQAAAAQBjNW20QQAQAAAL9jKofgwuhMAAAAADxCJgIAAAB+5fj9P1+2H26jMdW3hqKhCCIAAACAEByNqS4EEfBIi5RYK89YXpEz4J75nMJSa20VlZRZaScp3l6snrO/0Eo7zVokii05UmKlnZTEeLHFWVZupZ38fDuPTUXERFppJ7V1kpV29hQfEFtKcoqstBOXau81UJiVb6Wdzj1aiC2/WrpPuzOzxZZm7ZKttOMs+23YSBtaW7pPHVvaea+ozbtyJZDsPmDn34KCfDvt2MA8EQ0zfPhwj4OIFStWSEFBgVfBhyITAQAAAAShxYsX13vbL774QiZPniyFhb8Fj3379vXq2BRWAwAAICDmifDlEq7Wrl0rp512mgwdOlRWrlwpHTt2NEPBrlmzxqt2CSIAAAAQFtLS0qRPnz4yc+ZMCXWZmZmmZqJ///6ycOFCadasmTz66KOyfv36Wielqy+6MwEAACAsaiLS09MlJSVFQtn+/fvlgQcekFmzZklRUZEkJCTIDTfcILfeeqvVx04QAQAAAAS5oqIiefzxx2XGjBmSk5MjkZGRcuWVV8o999wjbdq0sX48gggAAAD4FaMzNVx5ebm88MIL8re//U127twpLpdLzj77bJk2bZr07NlTfIUgAgAAAAhCb775ptxxxx2mzkGDhyFDhsj06dPl//7v/3x+bIIIAAAA+JWWLPh2xurQdO6555oCaXfdw8knnyxOp1OWL19er/2PO+64Bh+bIAIAAAAIYgUFBfLggw+apb40+NCAo6EIIgAAAOBX1EQ0TKdOnfw2BwZBBAAAABCEMjIy/HZsgggAAAD4la9nlQ7nGat9hRmrAQAAAHiETAQAAAD8ipqI4EMmAgAAAIBHyEQAAADAr3SOCN/OE0FNhG1kIgAAAAB4hExEGMoravjEIr5SUlhqpZ2ysnKxJTLSToxdVFImgSYuJtJaW3t/LbHSjjPO3sdRzv5CK+00a5EooXruWnZqKrbs/zXPSjvOQnufTfGWzl2epc8m1drW68ni6zIzY7+VdpIt3qemiTFW2tm5r0ACja3HlpVTbKUdZ5lLAgU1EcGHTAQAAAAAjxBEAAAAwK8iHA6fLyotLU369OkjM2fO5Ix7ie5MAAAACAvp6emSkpLi77sREggiAAAA4FfURAQfujMBAAAA8AiZCAAAAPgVmYjgQyYCAAAAgEfIRAAAAMCvmLE6+JCJAAAAAOARMhEAAADwK2oigg+ZCAAAAAAeIRMBAAAA/3I4xPH7rNK+ah92kYkAAAAA4BEyEQAAAPAraiKCD5kIAAAAAB4hEwEAAAC/cvi4JsKn9RZhikwEAAAAAI+QiQgyO/cVSEJxpFdttEiJtXJf8oqcYkvLFglW2ikqKRNbju3T2ko767YeEFsKLD3n2zOzxZbopJiAemwqNsnOa3zPjhyxJSo+2ko7e7IKrLSTmhovtsRYeg2Ul7nEloS4qIB7XRaXlltpp7mlz3DVtmMTK+10bJkktmzYbufzqV+35mLLr/sLAu7fzVCjeQJf5grIQ9hHJgIAAACAR8hEAAAAwK+oiQg+ZCIAAAAAeIRMBAAAAPyKeSKCD5kIAAAAhIW0tDTp06ePzJw50993JeiRiQAAAEBYjM6Unp4uKSkpPjxS+CATAQAAAMAjZCIAAADgZ47fCiN82T6sIhMBAAAAwCNkIgAAAOBXzFgdfMIuE5GXlyfdunWrmNRk27ZtNW5bUlIi06dPl379+kliYqKkpqbK0KFD5Y033qjzOPPnzzfb6j66r7YxY8YMKS0ttfyIAAAAgMYVdkHELbfcIhkZGXVuV1BQIMOGDZMpU6bI1q1b5U9/+pP83//9nyxbtkzGjBkjN998c4373njjjTJ27Fizre6j+2obt956qwwfPlwKCwstPyoAAIDgnyfClwvsCqsg4uOPP5a///3vcu2119a57e233y7Lly+Xvn37yoYNG2TBggXyn//8R7766itJSkqSRx99VN5///1D9nv77bflySefNNusXLnS7KP7ahva1pdffilTp0710SMEAAAAfC9sgoicnBy57LLLpGvXrvLQQw/Vuu3+/fvl2WefNdf1skWLFhXrjj76aJNRUA888MAh+06bNs1cagZjwIABFbdrG7NmzTLXn3nmGcnOzrb0yAAAAEKjJsKXC+wKmyBCuxhp/cMLL7xgahRqs2jRIlMP0alTJxk0aNAh688//3xzqVmJHTt2VNy+fft2M4lJ5W0qGzx4sHTs2FGKi4vNMQAAAIBgFBZBxMKFC2X27NlyxRVXmJqEuqxZs8ZcHnPMMdWu18LsZs2amevffvvtIfvpOs14VMfdpntbAACAsEdRRNAJ+SFetWuSBg+aAXj44Yfrtc/mzZvNpWYiatKhQwfZt29fxbb13U/vR+VtPRUV6TCLN2KiI8WKIqeddrSpkjIr7cTFWHpsGuhtzLLSTkKMvbfZsX1aW2ln1bo9YkvzlFgr7RzIKxFbvH2PuMW2TpJA0yY13ko71j4HRMRZVm6lnZz99gadcJa5rLSTkhgjgfY5l1cYeKP87c0uCrjXeEGxvX+jbL1fbH2iNEu287mbH2vnNYnwFPJBxHXXXSc7d+6UDz74QFJSUuq1T25urrmsrduTFk67ay283a862uVJF7e6tgcAAAhWzBMRfAI2iJg8ebK8++67Hu+nNQ9ae6DefPNNmTt3rlxyySVmmNVg8uCDD8q9997r77sBAAAABE8QoQXL69ata9BkciorK0uuvvpqadeunTz22GMetZGcnGwu8/Pz6zxO5exGQ/erzm233SYTJ06skolwd4UCAAAIJb6ey4F5IsIoiHj11VfN0lA6H8Pu3btN7cKZZ55Z43Y6cVxsbKxcfPHFZlFdunQxlzpBXE3cM127t618PTMzs8b93Osq71cdvU+6AAAAAIEmYIMIW/TLvvsLf3V0mFY1dOjQitvc8zusXr262n02bdpkiqpV//79K253X9+7d68pnK5uhCZ3m5XnkAAAAAhvVEUEm5Ad4lWzDy6Xq8alcmZA/77nnnsqbjv55JMlJibGZCKWLVt2SNtaZ6EGDhxouku5adYjLS2tyjYHZ0f0eJph0GMAAAAAwShkgwhvpKammnoKdc0115jMgts333wj06dPN9fvuOOOQ/a9/fbbzaXOiq3bumkb2pZ7xKgmTZr4/HEAAAAEA6aJCD4h352poaZNmyarVq2SFStWSI8ePcwkdVow/cknn0hpaakpej711FOrzYBcf/318tRTT5lMxYgRI8yQr7rfgQMHzAzY9913n18eEwAAAGADQUQNEhISZMmSJWZkp3/961+yaNEi08Xp2GOPNZkELciuyZNPPmmChZkzZ8ry5ctN0NG9e3eZMmWK3HTTTaYdAAAA/IaKiOATtkFE5bqImuiXff3ir4unxo4daxYAAAAg1IRtEAEAAIDAwDwRwYfCagAAAAAeIYgAAAAA4BG6MwEAAMDPKK0ONmQiAAAAAHiEIAIAAABhMdlcWlqa9OnTxwzDD+/QnQkAAABhIT09XVJSUvx9N0ICQUSQ6dGuiSQle/fi/3pDlpX7UlZe91wb9dU2Nd5KO0kJ0WJLbHSklXYSYu29zb7btNdKOz3a2/sA3bQz10o7hfklYktkjJ1z1697c7Elc0+elXYOWHqeikrKxBZnmZ3PghRLnwOqoMhppZ2keHvv3zhLr0tnWbkE2vPULClWbMnKKQ6odtSQI9taaWfrbjufA7kFdj4HSkrtfQ54i4qI4EN3JgAAAAAeIRMBAAAA/yIVEXTIRAAAAADwCJkIAAAA+JXj9/982T7sIhMBAAAAwCNkIgAAAOBfleZy8FX7sItMBAAAAACPkIkAAACAXzE4U/AhEwEAAADAI2QiAAAA4F8OHxdF+LTgIjyRiQAAAADgETIRAAAA8CtqIoIPmQgAAAAAHiETAQAAAL+iJCL4kIkAAAAA4BEyEQAAAPAraiKCD5kIAAAAAB4hExGGoiLtjJXcoUWC2JJX5LTSzu4DhWKLs8xlpZ2U+Gixpbi03Eo7eQWlYkvTpJiAakfFRNr5fSS3oERs2f1rnpV2unRsKoGmaaKdc7drv8X3b6Gd13hedKTY0qpJnJV2dlp8nlIsnbuSMjufTapFSqyVdg7k23v/ZmUXWWln867cgHqOAgpFEUGHTAQAAAAAj5CJAAAAgF9RExF8yEQAAAAA8AiZCAAAAPgVJRHBh0wEAAAAAI+QiQAAAICfURURbMhEAAAAAPAImQgAAAD4FTURwYdMBAAAAACPkIkAAACAX1EREXzIRAAAAADwCJkIAAAA+BU1EcGHTAQAAAAAj5CJAAAAgJ9RFRFsyEQAAAAA8AiZCAAAAPgVNRHBhyAiSLhcLnOZl5frdVsF+d63ofKjnWJLQZGdtpzl5VbaMW2V/faceyuyLFpsKcwvDLhzV1pm7zm3pTTSTpK1NNpesrawIM9KO/l5kVbaKSy19xqIdsVYaafA0utbFRYUWWnHEVkqtuRbasvW54BylNn5GlBeYud1qRxOO/epoKBEbMnLtfNZYO3f3wg7j60gP6/Kdwx/ysnJCer2w5HDFQivHNRp27Zt0rFjR54pAABgVWZmpnTo0MEvz2pRUZF07dpVdu3a5fNjpaSkSNu2bSUiIkKuvfZas6DhCCKCRHl5uezYsUOSk5PFoTm/EKC/CmhgpB9e+sZG4OJcBQ/OVfDgXAWPUD1X+jtybm6utGvXznyx9hcNJEpK7GWOahITEyNxcXE+P064oDtTkNA3t79+JfA1/UAOpQ/lUMa5Ch6cq+DBuQoeoXiumjRp4u+7YL7Y8+U++DA6EwAAAACPEEQAAAAA8AhBBPwmNjZW7r77bnOJwMa5Ch6cq+DBuQoenCvgUBRWAwAAAPAImQgAAAAAHiGIAAAAAOARggg0iry8POnWrZuZ40IXnTyvJjpW9PTp06Vfv36SmJgoqampMnToUHnjjTfqPM78+fPNtrqP7qttzJgxQ0pL7c06G0p2794tL7/8spx//vnSo0cPM8ReQkKC9O7dW66//nrJyMiodX/OVWDh9d849PPkk08+kVtuuUXS0tKkadOmEh0dLW3atJHTTz9dFi5cWOv+ixcvlpNPPllatGgh8fHx5v12xx13mM/J2mzcuFEuvvhiM9y39tHXS/1706ZNlh9haJs8eXLFv0X3339/jdtxnoA66IzVgK9dddVVLofDobOjmyUzM7Pa7fLz813HHXec2aZp06aus88+2zVq1ChXVFSUuW3SpEk1HuOGG24w2+i2uo/uq23obYMHD3YVFBT48BEGpwsuuMA8PxEREa4jjzzSNWbMGNfJJ5/satmypbk9MTHR9dFHH1W7L+cqsPD6bzwff/xxxWdZmzZtXKeccopr7NixriOOOKLi9iuvvNJVXl5+yL6PPfaYWa+fhyeccIJ5z2kbeluvXr1ce/bsqfaYX375pSshIcFsd/jhh7vGjRtnLt3v0xUrVjTCIw9+y5YtM5937n+P7rvvvmq34zwBdSOIgM/pl1D9sL7uuuvqDCLcX4T69u1b5R/T1atXu5KSksy6995775D93nrrLbNOt/n6668rbtc2tK26ApBw9de//tV17733urZt21bl9tzcXNf48ePN89asWTPXvn37DtmXcxU4eP03rk8++cR1zjnnuD7//PND1r322muuyMhI89556aWXqqz75ptvzJdXXb9o0aIqAfmIESPMPtruwXR9u3btzPrbbrutyjr9W2/v2LEjP5TUQZ/HHj16uNq3b+8688wzawwiOE9A/RBEwKeys7PNP25du3Z15eXl1RpE6BfVmJgYs15/dTuYftjruoEDBx6yLi0tzay7//77D1n3xRdfmHWxsbGuAwcOWHx0of8PbnJysnnuXnnllSrrOFeBhdd/YLnsssvM+0YDg8o066C3X3755Yfsk5GRYX4h1/U//fRTlXUzZ840t/fs2dNVVlZWZZ3+rbfr+r///e8+ekSh4frrrzfP08KFC10XXXRRjUEE5wmoH2oi4FM33nijqX944YUXTI1CbRYtWmT62Hfq1EkGDRp0yHrtt6+++uor2bFjR8Xt27dvl/T09CrbVDZ48GDp2LGjFBcXm2OgfrQ2olevXuZ6ZmYm5ypA8foPPP379z/kfaOfbe5aieo+pzp37lzxuffWW29VWef+e/z48RIRUfWfbf173Lhx5vqbb75p/bGEiiVLlsjTTz8tEyZMMPUoNeE8AfVHEAGf0X8wZ8+eLVdccYUMHz68zu3XrFljLo855phq12thdrNmzcz1b7/99pD9dF3Xrl2r3dfdpntb1K941F1Y3bZtW85VgOL1H3g2bNhwyPtm/fr1UlBQUOtnXE2fU3V9NvL5VjstWL/00kuldevW8sQTT9S6LecJqD+CCPjE/v37TfCgGYCHH364Xvts3rzZXGomoiY6Gknlbeu7n96Pg/dD7V588UXJysoyo8ecdNJJnKsAxes/sOzatUvmzJljrp9zzjmHnCcdySk5Obnen1O5ubmyd+/eWj/j3Pvt2bNH8vPzrT2WUHHzzTeb5/TZZ581I/fVhvME1F+UB9sC9XbdddfJzp075YMPPpCUlJR67aP/WKrauj0lJSWZy5ycHK/3Q81++OEHM3ylmjp1qvkFj3MVmHj9Bw6n0ykXXnihZGdnS9++feUvf/mLtc+32vZ17+fet66uo+Hko48+kueee850BTvzzDPr3J7zBNQfQQQOGT/73Xff9fhZ0ZoHrT1w98udO3euXHLJJfKnP/2JZziAz1V1tIbltNNOM10AdMz7KVOmeHlPgfBw1VVXmfkjmjdvbua1iYmJ8fddCmsazF122WXSsmVLUw8BwC6CCFShBcvr1q3z+FlxT5Kk3V+uvvpqadeunTz22GMeteFO8deWjncfp3J2o6H7hfu5qqkrxogRI2TLli0yevRomTdvnpmQ6WCcq8ARrq//QHPDDTeYLoDaXebjjz+Wnj17Wn3P1LZv5fc05/jQgT1ef/11M7FffXCegPojiEAVr776qlka6ssvvzSzIGvtQm2p4zFjxpgZV3W2VV1Uly5dzOXWrVtr3M8907V728rXDx5BqDL3usr7hfu5OpieNy2A18LCkSNHyttvv23OUXU4V4EjXF//gWTSpEny1FNPmXoH7T7jHp2pMvdzf+DAAdNlprq6iOrOk26ng0bs27fPfDb269evxv30izJdmaqOahUVFSWzZs0yS2U///yzudTAT2em1tnGX3vtNc4T4AGCCPiEftl3f+Gvjg7TqoYOHVpx24ABA8zl6tWrq91n06ZN5h9SVfkfafd1LT7UorjqRmhyt+k+BqrSgkwNIH766SeTidBuUnFxcTU+TZyrwMHr3//dCjXr2qRJExNA1DSCkg6XrMMm6whN+nk0bNiwen9O6d/6RVfXa1fD+u6H3+pUli5dWuNToSPQ6aJD7HKeAA/Vcz4JwAommws8Oqv3EUccUTE5VkFBQZ37MNlcYGGyOf+49dZbzfumSZMmrlWrVtW5fV2TmLlnumayOd/zZrI5zhPwG4IIBEwQoW644Qaz/sgjj3RlZWVV3P7111+7kpKSzLr33nvvkP3eeusts0630W3dtI2+ffuadZMmTfLRowpee/fuNc+1Pj8jR46sVwDhxrkKHLz+G98dd9xh3jdNmzatVwCh9LPJ4XCYL6EffPBBldnhNYDX9s4555xD9tP17dq1M+tvv/32Kuv0b729Q4cOHr1/w11tQQTnCagfh/7P0+wF0FDuIl3tw+ue86EyTfVrf/wVK1aYAkXtYqPFhDriiU5+NnHiRHn00UdrLGzUfsnR0dGmS472Ddb9tA+yzgSrxY465wH+5+yzzzb9hvW8aJ1KTc+P1rccXOPCuQosvP4bj3b3O+OMM8x17b50+OGHV7ud1ig88sgjVW57/PHHzeeYvueGDBkirVq1ki+++MIMia1dnrSurLoi4GXLlsmoUaPM++6II44wy9q1a82in3Xa3WngwIE+esShR2vxXnrpJbnvvvvkzjvvPGQ95wmoh3oGG0CjZCJUcXGx68EHHzRdbOLj401XgRNOOME1b968Ott//fXXzbYpKSlmX23joYceMm3iUEOGDKk4J7Utd999N+cqCPD6bxyzZ8+u1/umc+fO1e7/8ccfu/70pz+5mjVr5oqNjXX16NHDddttt7lycnJqPe6GDRtcEyZMMFmJ6Ohoc6l/b9y40UePNDwzEW6cJ6B2ZCIAAAAAeCTCs80BAAAAhDuCCAAAAAAeIYgAAAAA4BGCCAAAAAAeIYgAAAAA4BGCCAAAAAAeIYgAAAAA4BGCCAAAAAAeIYgAAAAA4BGCCAAIQl26dBGHw1GxjBw5slGO+9prr1U5ri5LlixplGMDAAJHlL/vAACg4c455xxJSkqSww8/vFGexq5du8pFF11krn/44Yfy66+/NspxAQCBhSACAILYI488YrISjeWPf/yjWdTQoUMJIgAgTNGdCQAAAIBHCCIAwMf++te/mtqB448/XpxO5yHr77jjDrN+wIABUlRUZOWYGRkZpk3NUpSXl8tTTz0lRx55pCQkJEjbtm3lqquukn379plti4uL5b777pPevXtLfHy8tGvXTm644QbJz8+3cl8AAKGHIAIAfOzRRx+VY445Rr788ku58847q6zTuoIHH3xQUlJSZN68eRIXF2f9+BdeeKFMmTJF2rdvL6NHjzZBxXPPPWeKsTVQ0EvtFtWrVy9zvaCgwAQdY8aMsX5fAAChgZoIAPCxmJgYEyBopmHGjBkyZMgQOemkk2Tbtm3y5z//WVwul7zwwgty2GGHWT/2li1bJCoqSn766Sfp3LmzuW3v3r1y7LHHypo1a8ylZh82bdokzZs3N+s3b94sRx99tHzwwQeybNkyGTRokPX7BQAIbmQiAKCRRjWaM2eOCRg0cNAv6uPHj5esrCy57rrrfPqrv2YV3AGE0mDh6quvNtfXrl0rL774YkUA4b6vmr1Qn3zyic/uFwAgeBFEAEAjOeOMM2TixIkmE9C/f3/zK792c9LuTr6iWYhRo0YdcnuPHj3MZadOneSII46ocf2OHTt8dt8AAMGLIAIAGtH06dOlT58+kp2dLYmJiaabk3Z38hUtotZA4mA6t4Q7iKhOcnKyubRV6A0ACC0EEQDQiFauXCnr168317Wo+YcffvDp8SIiIrxaDwBAdfjXAwAaidY/aB2EDvN6ySWXmCFYL774YlP8DABAMCGIAIBG4C6o1hGZJkyYIP/85z9l0qRJsn//fhk3bpyUlpZyHgAAQYMgAgAagc4FoXNCaD3ErFmzKm7TIVa1i9PkyZM5DwCAoEEQAQA+9vnnn8tdd91lZoueP3++KahWWvD82muvSbNmzeSJJ56Qd955h3MBAAgKBBEA4EN79uyR8847T8rKymTmzJkmE1GZjo6k80dofYTWSWRkZHA+AAABz+HSjroAgKDSpUsXU5Ctk9bpdX8YOnSoLF26VD777DNzHQAQPg4dPBwAEDRuvvlmM+fD4YcfLrfccovPj6f1G88++6y5/vPPP/v8eACAwEQQAQBBbMGCBeZyxIgRjRJEaObjpZde8vlxAACBje5MAAAAADxCYTUAAAAAjxBEAAAAAPAIQQQAAAAAjxBEAAAAAPAIQQQAAAAAjxBEAAAAAPAIQQQAAAAAjxBEAAAAAPAIQQQAAAAAjxBEAAAAABBP/D96zvWUh5mO4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAPxCAYAAAB9w9sTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUwUlEQVR4nOzdCZzNdf///9fsBjO2UcYuUllCTClkq0glshSpKNV1ISFdqFxyUeSiQrjatdCCKEvhstQlkb0sIdmTnRmDWc//9np/f2f+s5s553PmnPM5j/vt9umMz/mcz3nPZyY+z/N+v97vIIfD4RAAAAAAsFCwlScDAAAAAIIGAAAAAI+gRwMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gEgLlz50rnzp2latWqUrx4calbt65MmjRJUlJSvN00AAAA2FSQw+FweLsR8KymTZtK9erVpVOnTnL11VfL2rVrZezYsdK9e3f56KOPuPwAAACwHEEjAJw8eVLKly+fZZ8GjZEjR8pff/1lwgcAAABgJYZOBYDsIUM1btzYPP75559eaBEAAADsjqBhgd27d8vUqVOld+/eUr9+fQkNDZWgoCDTa1AQc+bMkVatWkmZMmWkRIkS0qBBA5kwYYJHayh++OEHCQ8Pl5o1a3rsPQAAABC4Qr3dADuYMWOGTJ482aXXDho0yLxWw0mbNm2kZMmSsnLlShk2bJgsXLhQli1bJpGRkZa2d+fOneY9n3rqKYmOjrb03AAAAICiR8MC9erVk6FDh8qsWbNk165d8sgjjxTodQsWLDA3/Bou1q9fL0uXLpV58+bJ3r17Tc/ImjVrTB1FZjNnzjS9JVfadKap3Jw6dcoUhdeqVUvGjx9vxbcPAAAA5ECPhgX69u2b5c/BwQXLb6+++qp5HD58uNx0000Z+2NiYmT69OnSokULeeutt0zYKFWqlHlOp6nVWaSupFKlSjn2JSQkyN133y3JycmyevVqM0wLAAAA8ASChpccPXpUNmzYYL7u2bNnjuebN28uVapUkcOHD8uSJUukR48eZr8GDmfoKIykpCS5//775cCBA6anpGLFihZ8FwAAAEDuCBpesmXLFvNYtmxZqVGjRq7HNGnSxAQNPdYZNFyRlpYmDz30kAk2Wv9x3XXXFSiY6OaUnp4uZ86ckXLlypmhWQAAAPAtDofDjGDRD5QLOsLGkwgaXrJ//37zqKt150V7NDIf66r+/fubepAxY8aY0LFu3bqM5+rUqZNrQfi4ceNk9OjRbr0vAAAAip5+UF25cmXxNoKGl2jaVPnVSWiRuIqPj3frvb777jvzqLUe2YvLV61aZabWzW7EiBEyZMiQjD+fP3/ehCL9xWWmKgAAAN8THx9vPqiOiooSX0DQCABal1FYERERZstOQwZBAwAAwHcF+cgwd+8P3gpQzqSZmJiY5zEXLlwwj968sZ82bZoZXhUXF+e1NgAAAMD/EDS8pHr16uZRhyLlxfmc81hv0PoOXeDPOUMWAAAAUBAEDS9p1KiReTx9+nSexd4bN240j5nX2AAAAAD8AUHDS3QmAOdwpNmzZ+d4Xte60B4NrZPo0KGDF1oIAAAAuI6g4UUvvPCCeRw/frxs3rw5Y7/2cvTr1898PWDAAJcW6LMKNRoAAABwRZBDV/aAWzQkOIOB2rdvn5w6dcr0WlSqVClj//z58yU2NjbLa5999lmZMmWKhIWFSdu2bc10tytWrJBz585Js2bNZPny5RIZGekT06Vp4NFpbpl1CgAAwPfE+9j9GtPbWvRDXb9+fY79R44cMZtT5pW2nSZPnmwChfYcrF27VlJSUqRmzZoyfPhwGTx4sISHh1vRRAAAAKBI0aMBv0zIAAAA8O37NWo0kC9qNAAAAOAKejTglwkZAAAAvn2/Ro8GAAAAAMsRNAAAAABYjqCBfFGjAQAAAFdQowG/HPMHAAAA375fo0cDAAAAgOUIGgAAALk4cOCABAUFSe/evT36Gk+cA/AFBA0AAGArzhv19u3bW37u1atXm3O//PLLlp8bsJtQbzcAAADAF1WqVEl27dplxrx78jWAXRE0cMVZp3RLS0vjSgEAAkpYWJhcf/31Hn8NYFcMnUK++vfvLzt37pQNGzZwpQDAjzkc6ZJ6+bTfbNpeTw152rhxo9x5550SFRVleh46d+5shltdqVZCX9u6dWvz9ejRo81zzs35+tzqK5KTk2Xq1KnSrl07qVKlikRERMhVV10lDzzwgGzZssXt723z5s3mPfV8mZ09e9Z8j23btnX7PQBX0KMBAEAASEs6K/u/aiL+osYDGyW0WDnLz6sfnE2YMMEEhqefftrc6C9YsEB+/fVX2b59uxQrVizP17Zq1coEiY8++khatmxp/uxUunTpPF935swZGTRokLRo0UI6dOggZcqUkT/++EO++eYb+fbbb+WHH36QuLg4l78nHa6ljhw5kmW/vk+XLl3k448/llOnTklMTIzL7wG4gqABAAACxpIlS+Tzzz+XBx98MGPfo48+Kp988okJHA899FCer3UGCw0a+nVBC8L1hv/QoUMZgcBpx44d0rRpU3nhhRdk+fLlLn9P2juiQ7ayBw1Vr149cTgc8ssvv0ibNm1cfg/AFQydAgAAAeP222/PEjLU448/bh49NUxYh0plDxmqbt26pmdFezRSUlJcPr8Om4qNjZXjx49LampqrsdcvHjR5fMDriJoAACAgNG4ceMc+ypXrmwez50757H33bp1q/Ts2VOqVq0q4eHhGbUdCxcuNDUcOrTJHfo9pKeny59//pll/6pVq8xj/fr13To/4AqGTgEAEABCIsqYugd/aq8nREdH59gXGvp/t0OemmFx7dq1GcOW7rrrLrn22mulZMmSJmjocK1t27ZJUlKSW++RuU5Dw4yzh+a7774zvSbVqlWz4DsBCoeggXwxvS0A2ENQULBHiqtxZa+88ooJEv/73/+kefPmWZ5bt26dCRruyl4QfuHCBTPzlYao119/nR8TvIKhU8gX09sCAPD/CwkJKXTvx759+6Rs2bI5QobWTejUtFZwBo3Dhw+b4m8tcNeFA999911p2LAhP0J4BUEDAACggDQwOG/oC0qHLemaFjrLlJMGlaFDh8rJkyctufbOOhNtV9++fWX+/PkyefJkEzgAb2HoFAAAQAHpqt8VK1Y0U+TqbFJ6g6+1Fs8884xZ/C83+tyyZctMj0b37t3NWh26gODRo0fNNLn6tVU9Gv/5z3/MMK0333zTvC/gTfRoAAAAFGLo1FdffWXWv/jss8/kn//8p4wcOdL0WOTl3nvvlblz58o111wjn376qcyePdsElp9//tmyIm1n0NCekg8++ECeffZZfqbwuiCHDuQDriA+Pt58UnP+/PlcZ+wAAACAd8X72P0aPRoAAAAALEfQAAAAAGA5ggauuI5GnTp1JC4ujisFAACAAqNGA3455g8AAAC+fb9GjwYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA3ka9q0aVKnTh2Ji4vjSgEA4GMOHDggQUFB0rt3b283BciBoIF89e/fX3bu3CkbNmzgSgEA/M6qVavkwQcflCpVqkhERISULVtWmjdvLm+88YZcvnzZ7fOvXr3a3Oi//PLLlrQXsJNQbzcAAADAaqmpqebDsnfeeUdKlCghd999t9SqVUvOnz8vy5YtkyFDhsh//vMfWbx4sdnvrypVqiS7du2SUqVKebspQA4EDQAAYDsjRowwIUOH/s6fP9/ckDulpaXJv/71L7O1b99eNm/eLNHR0eKPwsLC5Prrr/d2M4BcMXQKAIAAkO5wyOmkJL/ZtL2u2rNnj7z++utmmNTChQuzhAwVEhIio0ePlp49e8q+fftk4sSJGc/NnDnTDIXSxysNk9LH1q1bm6/1fPqcc9Paicy9K+PGjZOaNWtKsWLFTA+K/vmPP/7Is77iww8/lFtuuUVKlixpNv06tzblVaORua0bN26UO++8U6KiokzPR+fOnbO0z5125mXMmDHmNUuXLs3xnP5M9LlJkyYV+HzwT/RoAAAQAM4mJ0uTZd+Iv9h4V0cpFxHh0ms/+ugjSU9Pl6eeekquvvrqPI8bOXKkzJ49Wz744APTu1FYrVq1Mjfs+n4tW7Y0f3YqXbp0xtePP/64fPLJJ3LNNdeY4VxJSUmmRuSnn37K9bwDBw6UqVOnmoD0xBNPmH3z5s2TPn36yJYtW2Ty5MkFbqPWWE6YMMEEoqefftq8fsGCBfLrr7/K9u3bTaBwtZ350fdRN910U47ntAcpr+dgLwQNAABgK2vXrjWPbdu2zfc4HXJUsWJFOXr0qBw+fNgUjBeGM1ho0NCvcysIX7Fihbl5b9iwofz4449SvHhxs//FF1+URo0a5Tj+hx9+MCHjhhtuMDf4ztoLPXfTpk1lypQp0rVrV2nRokWB2rhkyRL5/PPPTUG806OPPmrapIHjoYcecqmdBQkalStXlvLly+cZNPS9YG8MnQIAALby119/mceCBAfnMceOHfNIWz799FPz+M9//jPj5l3FxsbKs88+m+N4DS3OYJG5wLtMmTIyatQo83VuQ6jycvvtt2cJGc6eC5V5RsnCtjM/Z8+eNT09efVYaNCoXr26+Z5gbwQNAAAAD9m2bZt51Cl1s2vWrFmeQ44yD8NyctaDbN26tcDv37hx4xz7tKdBnTt3zuV25sfZvtyCxsmTJ+XIkSMu9ZLA/zB0CgCAAFAmPNzUPfhTe11VoUIF+e2338xwqOuuuy7fY/UY5yf3nhAfHy/BwcESExOT47nc6kecx+c25EiP1yJqPaagcptNKzQ0NGP2LVfbmR9nWMotTDiHTRE0AgNBAwCAABAcFORycbW/ue2228ysS1p3cMcdd+R5nIaRP//80xRdO4dQ6c22cwam7HQNjsLSG30tTD916lSO8HD8+PE8j9dP/q+66qosz504cUIcDodHpuItbDtdLQR31s8QNAIDQ6cCwFdffWW6QvVTCl0VVWeT0IWKdAwlAAB2o8XOGhjeffddc8Oel1deeSVLzYJy1g1ogXheN9DZp8rN3juQWYMGDcyjFljnddOdmfMGXINSds59niiiLmw786PXSXtetNA+Mw0yOnuWImgEBoJGADhz5owZ6/n++++b+awHDx4sH3/8sZm1AgAAu9HhUlrAfPr0abnvvvtyFHrrDa+u86AF0LpmxNChQ7PUNOhNss7UdPny5Yz9e/fuzXVaWV2rI/MQrOwefvhh86jT5166dClLwXpu53vssccy1uXIPERKe1N0X+ZjrFTYduZFX6s9RdrzknlaXP2zFrPv2LHDhLnsa5vAnhg6FQD69u2b5c8aOnTebJ1f/NChQ1K1alWvtQ0AAE/QtSP05lzXyLj22mvlnnvuMaFCb96XLVtmgoPu1+lfMw9F0k/he/ToYdbX0NChK4frkCVdXVy/dn4in32KXA0mOmpAC601qDzzzDNm1igduqULA+r56tevL506dTLrU3z55ZdmET5dvM45XMs5S5S+Vqe4rVevnnTp0sXcpOv7ahG1rrGhx1itsO3Mi67Pob07Ouzr7rvvNu2PjIw0vSJ67Z01Jro+yPTp0801g30RNAKU8xOYlJQUbzcFAADLacGz9uRraHjnnXdkzZo1JiyUKFHCrFHxt7/9Tf7+97+bm+Ds3nvvPTPc+IsvvpBp06aZHhI9hwaK7EFDh07pEOVhw4bJZ599JgkJCWZ/r169Mqan1Slr9T019GiA0DAyaNAgs86H3sBnr7nQtTJ0aNGMGTPM+6q6deua3gZdtM9TCtvO3DiHl2nQ0x4NvSZKVybXxf/0On3zzTem54OQYX9BDo3JcMvu3bvNpyObNm0y265du0ya127Zl1566YqvnzNnjvmLTKeWS05Ollq1apkuTB3iFBYWZtlPR9ukwUJXAtXxqFr4tnjx4gK9Vj990L8w9dMhTxShAQAQaDTQPPnkk+aTfQ09dminBri3337b3Atpbw+Klq/dr9GjYQH9xKEw4xcz008K9LX6yUubNm2kZMmSsnLlSpP49dMDDTC5fdriinLlymXMmHHXXXeZ7lAAAOBZWufgnJrWSYvNx44da3pE7r33Xtu0U3s0dMG/2rVre7i18AcUg1tAx1BqIdmsWbNMgn/kkUcK9LoFCxaYkKHhYv369aZQW7tkddyojo/Ubt6RI0dmeY2uBqp/AVxpmzt3bq6zVehsEv/5z39k586dpkAur1kyAACANcaPH29uvHU0wfDhw00thA5ROnjwoPl3viArmPtDO/WeQms09B6mIPUcsD96NDxQbF3Q/7leffVV86j/M2eea1rHhWr3ZIsWLeStt94y/3M7x3l27txZmjZtesVz5zabg3M6PJ1fXL/W8+h4VWafAgDAc7SIXD/g0+HKOrW8Tshy4403Sr9+/czNvF3aqbNNae2FJ6bfhX8iaHiJdkVu2LDBfJ3b/7y67oV+cqDT5emMGFrMpjRwOEOHOzTYaM/H77//7va5AABA/jfwutm9nVqwTukvMqNfy0ucszLo7E81atTI9ZgmTZpkOdZKOoRK/zLQxftyo1PaaUFR5g0AAAAoKHo0vGT//v3mMb81LJxjIZ3Huqpdu3Zmajr9pEGnktPg8u9//9t0h+o82bkZN25cxsJAAAAAQGERNLzEOc+2zuedFy0SV+72Jtx8881m9VNnYKlevboZbzlkyBAJDw/P9TUjRowwzztpG3ylWA0AAAC+j6ARAHQ9D90KQ3s+WEgHAAAArqJGw0uioqLMY2JiYp7HXLhwwTx6c8EVXUiwTp06EhcX57U2AAAAwP8QNLxEhy8pnVUqL87nnMd6Q//+/c1Ud84ZsgAAAICCIGh4SaNGjczj6dOn8yz23rhxo3nMvMYGAAAA4A8IGl5SuXLljOFIs2fPzvG8rgquPRpaJ9GhQwcvtBAAAABwHUHDi1544QXzOH78eNm8eXPGfu3l0Fmh1IABAyxZoM9V1GgAAADAFUEOlnB0m4YEZzBQ+/btk1OnTplei0qVKmXsnz9/vsTGxmZ57bPPPitTpkyRsLAws9aFTne7YsUKOXfunDRr1kyWL18ukZGR4m06va0GnvPnz3u1OB0AAAD+cb/G9LYW/VDXr1+fY/+RI0fMlnm17ewmT55sAoX2HKxdu1ZSUlKkZs2aMnz4cBk8eHCe61wAAAAAvoweDfhlQgYAACIvv/yyjB49WlatWiWtWrXikvw/ei2+//57CbSBO/E+dr9GjQbyRY0GAMBf6c33gw8+KFWqVDGTq5QtW1aaN28ub7zxhly+fNmS9+jdu7cEBQXJgQMHLDmfv9ProNejffv2eR6zevVqc8zf/va3Im0bih5BA/liHQ0AgL9JTU2Vp59+Wtq0aSOLFy+Wpk2bypAhQ+Shhx6Sv/76y3zdoEED+f3338Xf6aQxu3btkptvvtnbTQFyoEYDAADYyogRI+Sdd94x08jrRCyZJ2ZJS0uTf/3rX2bTT911QhdfGGLiqpiYGLMBvogeDQAAAoAj3SEppxL9ZtP2umLPnj3y+uuvm2FSCxcuzBIyVEhIiKlp6Nmzp5klcuLEiVme1yE9edU6VK9e3WyZ//zRRx+Zr2vUqGFem9vrv/rqK2nSpImZRfLqq6+WJ598Us6ePZvjfE46c+WgQYPMOXXI11VXXSXdu3eX7du351qjoe+pw5GyD1/SYV3aa9O5c2cpU6aMmdnyjjvukG3btuX6/WlNw+23326OK1eunBl2pmt66fej5/O0TZs2mR6aevXqmToDvV7169c3ywDoZDm50XXHWrZsmaPNucl8rWbOnGkWRC5evHiWn9fBgwfliSeeML83OiGPziCqfz506FCO8zmvi7ZNz60/S/151a5dW6ZPn57jeB2uN2nSJNObpt+ftllfoz/bvH4m/o4eDVyxRkM3/QQIAOC/Us9clE11Jou/aLzzWQmLKVHo1+mNf3p6ujz11FPmpj4vI0eONAvmfvDBB6Z3wxUaBvSGVW8Sdbr60qVLm/2Zw4OeX29Utdfk0UcfNTeYS5YskTvvvNPcoOr09pmdPHlSbr31VhOC9EZWh3vt379f5s6da4aBLV261NSZFIQGDh02VrduXXn88cfNOb/++mtp3bq1GW6V+fosW7ZM7rnnHhPE9Ga9YsWKpsZF30tDSlF49913TTjUsKOLFV+8eNGEAu2h2rBhg8ybNy/L8bocwN133y3BwcEZbdZ9Optnfm3+97//bb63+++/X+666y7zPTtDqn6/+jO47777zHXTcKc/Q22XhhoNEdn16NFDfv75Z9MWPdeXX35php6HhYWZUOn02GOPmeduvPFG6dOnjwklGoq0Lfr9aQCxG4IG8qX/o+jmnMUAAABfplPFK12bKj/XX3+9uTE9evSoudnTgnFXgsbWrVtN0NCvs/dO6JpYGkD0k+uNGzfKtddea/a/+uqr0q5dO/MJfrVq1bK8ZtiwYSYQ6M21Huek4USDgN6g7t6929xcX4n2UGhvgJ4zc8AaO3asfPjhh2YqfaUfJmow00dnuMh8c/zxxx8X+tpoT4p+yp+bvArndSFj/XDTeeOvdNaovn37mpv9H3/80YQI5QyTWo/zww8/ZLRZj+/Vq5cJkfldF12WQHtLMtPidA0Zb7/9tjm3k/ZO6L3Q3//+dxNkstOlDDSQOIfg6c9ce2UmTZqUETR0Fqg5c+ZI48aNzXtn/h71uickJIgdMXQKAADYhhZ7q4IEB+cxx44d80hbtPfgwoULpkfDGTJUaGioudnPLjk5WT777DMzBOill17K8px+wq+9IHoDrzfcBaFDr55//vks+7QtSj9Bd9JP6nXIkH6Kn723RNuZ+aa4oDQs6RC13DbncLPsqlatmuO9dGiS3uSr//73v1na/Mcff8i9996bpc16vAa0/NqsISJ7yNChURqy6tSpk6UXwhlANJiuXLky12FZ48aNy1Lnc91115lAtHv37owAoe3SEFSsWLEcIVHb6uwNsxuCBgAAgAc4x93nNtTplltuMYEjs99++82M49cZpLR2IDsd8qS0F6UgGjZsmOOmVmsOnL0tBWmnhjENAIWlPTZ6Y53bpjf0udGgpfU1+v3rjbu2XW/QtRdA/fnnnzna3KJFixzn0V6i/IJmbjN0Oa+p1ntkr0fRduhwrszHZeZsX37XOTo62oRFDYlaG6JhyLlQs50xdAoAgAAQWra4qXvwp/a6okKFCuaGXT951k+W8+P8dDo2NlY8QYcdKy3mzk5vXrPPFuU8Pq/aEmc7ncddSW6zaTnDTebay/za6WyP1ol4WteuXU0thNZBaM2FtkfrHPRmffLkyZKUlJRxrA5FulKb8xqildv1defaF/Q6z5kzxwQMHdb14osvZrxWh8Pp/tzCpb8jaAAAEACCgoNcKq72N7fddpspINax9DrDUl40jOgn5Dq7UOZPv/XTbB33nxu9uS1MvaLzBvTEiRM5ntMaA51dKvOsWM7jjx8/nu+wMKun482vnfm1x0o6lEtDhvaEaNF75qFP69atM0EjM+fPwZU25zaDVlFc++LFi5uhaLppcNOenf/85z/me7t06ZKpDbEbhk4hX6wMDgDwJzqzk/YW6AxGWtibl1deecU86mxMmelsRVognp1+Op55uJGT84Y4t9kZnbMI5VZTobMUZQ80WgegY/j1pltnXMrOOYWtDomyUn7t1ELn3KZ2tZrWdCjnzFeZ/e9//8uzzbk9p/UmeU1xmxfnNdXCch3elZn+WfdnPs5dNWrUML97WphesmRJ+eabb8SOCBrIFyuDAwD8iQ6X0ll/Tp8+bYqbsxd6a0/CmDFj5NNPP5WaNWvK0KFDszyvi/xpqNAbwMy1A7qaeG50vQ6V242tTp+qN5Hvv/9+xo200oChsz9lp+s26FSp2tOhBcaZfffdd2Zq21q1amXMvGQVrc3QOgztUfjpp5+yPKftLIop7p2zb2mRd2Y7duzIcS2cbdab9UWLFmV5jYYCnb2qsG3W719rYPT9dIarzHTxR50OWFead2V2MqWhN7d1UHQ9FR0SpgHTjhg6BQAAbGXChAlmmJPeMOpsT/opuYYKHV+v60Xs3bvX7NcpY7MPhdFAocdo4a7e9Otwl+XLl5tZgXKr5dCbT130T2cy6tKli5nKVm+aH3nkEfMaLW7W57RgWNfEcK6joWso6PS62Yu1X3vtNRNydHiNFgtr0bgGHx3fr23RaWkLMrVtYWgPgg7h6dixo/l+tD5Cv1dth/buaO/BL7/8Ip6kBdq66ToTGg51/Q/tSdFP+vXnp+uIZKbXQAOA/px0iJxzHQ2dGUpfr2tVFLbNM2bMMAFGZ53S0KUzUGnw0DaUL1/ePO+qo0ePSqNGjcy11LbpkDkNwzozmRaEZw+8tuEACuD8+fPaj2geAQDwB8uXL3d069bNUbFiRUdYWJijdOnSjltvvdUxadIkx8WLF/N83Zw5cxz169d3hIeHOypUqOB45plnHAkJCY5q1aqZLbsJEyY4rr32WvMe+m9ly5Ytc5yvUaNGjoiICMdVV13l6Nu3r+P06dOOkiVLOho0aJDjfCdPnnQMHDjQvJeeMyYmxtG1a1fHr7/+muPYUaNGmfdctWpVxr79+/ebfY899liu319ubVQrV650NG/e3BEZGekoW7asuXaHDh1y1KtXz1GqVClHQTjfu127dnkeo23VY55++uks+0+cOOF4/PHHzc+rWLFi5mcwbdo0xx9//JHn9/PDDz84br/99ixtPnjwoPn+st/m5natsjtw4ICjT58+jtjYWEdoaKh51D/r/uxyew8nbauImOuhzp4963j55ZdNW/Wc+rul32f79u0d3377rcOu92tB+h9vhx34PueCffoJkdVFaAAABBpdD0N7Vbp37y5ffPGF+CpdB0JnYtJ1J3ShOfi2eB+7X6NGAwAAwEOcY/Az0xmGBg8ebL7u1KmTT1z7xMTEHKtTa52DLvin7fWVdsK/UKMBAADgIVrnoKtx33XXXabgWAu9tY5A6y6c9RC+QOtWtD5Bp5e95pprTOjQGZ127twpdevWlYEDB3q7ifBDBA1ccXpb3YpixgkAAOxGb9LvvPNOM3XsggULzD6dOUpnvtICYKsLu12lxcndunUzwUhnuNKZsTQYaRt1cTktcgcKixoN+OWYPwAAAPj2/ZpvxGgAAAAAtkLQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaCBfuoZGnTp1JC4ujisFAACAAmMdDfjlvMwAAADw7fs1ejQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2ggX9OmTZM6depIXFwcVwoAAAAFFuRwOBwFPxyBKj4+XkqVKiXnz5+X6OhobzcHAAAAPn6/Ro8GAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AkhqaqrceOONEhQUJJ9//rm3mwMAAAAbI2gEkMmTJ8vJkye93QwAAAAEgFDxc23atLHkPPop/4oVK8Sujhw5IqNHj5a33npLHnvsMW83BwAAADbn90Fj9erVlgUNOxs0aJB07NhRbr/9dm83BQAAAAHA74OGat++vQwbNszl148fP16WLVvm0mt3795tXrtp0yaz7dq1S9LS0mTMmDHy0ksvXfH1c+bMkWnTpsm2bdskOTlZatWqJQ8//LAMHjxYwsLCxArfffedaaO2NSkpyZJzAgAAALYPGhUqVJCWLVu6/PqZM2e6/NoZM2aY2gdXexn0taGhoWYIWMmSJWXlypUmNC1cuNCEg8jISHHH5cuXZcCAATJq1CiJjY2VAwcOuHU+AAAAICCKwWvXrm1uoN0NKnoeV9SrV0+GDh0qs2bNMr0ZjzzySIFet2DBAhMyNFysX79eli5dKvPmzZO9e/dK/fr1Zc2aNTJy5MgcgUiHeF1pmzt3bsZrXn31VQkPD5eBAwe69P0BnuRITZeUU4ke2fTcAADAe/y+R+O3335z+xzjxo0zmyv69u2b5c/BwQXLbhoA1PDhw+Wmm27K2B8TEyPTp0+XFi1amMJtDRulSpUyz3Xu3FmaNm16xXNXqlTJPB48eFAmTJhgQlBiYqLZFx8fbx4vXrwo58+fzzg3UNROztkuB0YslbR4zwznC4mOkOrj2kn5bvU8cn4AAGDzoOGPjh49Khs2bDBf9+zZM8fzzZs3lypVqsjhw4dlyZIl0qNHD7NfQ0FhgsH+/ftNTUbXrl1zPPfEE0+YXo4LFy649b0ArtDeBk+GDKXn1veI6VxHgkL9vvMWAAC/Q9Dwgi1btpjHsmXLSo0aNXI9pkmTJiZo6LHOoFFYDRs2lFWrVmXZ99dff5nzaU/JnXfemedrNaBkLhx39oQAVkg9d8mjIcNJ3+PyH2cktKx7tU5OoaUjLQ0tGrj0WniC1W0FAKCwCBpeoD0NqmrVqnkeoz0amY91RenSpaVVq1ZZ9jmLwevUqWOGZ+VFh5LpuhuAv9vW/B2fHI7F0DEAgN3ZNmgcOnTIrLHx6KOPiq9JSEgwjyVKlMjzGC0S92ZPwogRI2TIkCEZf9Z2OMMP4AkN1jzlds9D6plLlgYLTw3HYugYACAQ2DZoaA1Enz59fDJoeFP16tXF4XBc8biIiAizAUVFQ0ZYTAn3zlE60vQ6eLr2Q4c7udPWohw65m5bAQBwFQN4vSAqKso8OmeCyo2zSDs6Olq8SRcT1GFWcXFxXm0HUBDay6BDmzRsAAAA7/K7Ho1rrrmmQMfp9K2+3KugtNg7L87nnMd6S//+/c2mQ6eYChf+QOsndGiTVUXWnh6O5U9DxwAAsHXQOHLkiFnQ7uabb873uD/++EP++9//ii9q1KiReTx9+rQp9s5t5qmNGzeax8xrbAAoeM+Gvw0XsmLoGAAAvsTvgoaGDL0xnzFjRr7H6Srbvho0KleubIYiaR3J7Nmz5cUXX8zyvK4Krj0aWiPRoUMHr7UTAAAACJigoTfouohdQRSk6NlbXnjhBbPS9/jx4+Xuu+/O6LnQXo5+/fqZrwcMGOD14Upao6FbWlqaV9sBwH5YRwQA7M3vgsbzzz9foE/59Rh31qAoqM2bN2cEA7Vv3z7z+Pbbb8uiRYsy9s+fP19iY2Mz/typUyezMveUKVOkadOm0rZtWzPd7YoVK+TcuXPSrFkzGTNmjHgbNRqAf9O6DV90au4OOfhPz/Y6V/vXHRLTta5l52MRRACwedCoWbOm2a4kMjJSqlWr5vH2aJH0+vXrc60l0c0p8yrbTpMnTzaBQnsM1q5dKykpKeZ7Gz58uAwePFjCw8M93n4A9hbIxeEaZKwMM1Yu2AgAgcDvgoav0ZW33Rmi1b17d7MBAHybVQs2AkCgsE3Q+Oqrr6Rdu3b5rraNwqNGA/AfRbFgYaDTa3v5jzNuT0WcGUOyANiVbYJGt27dZNeuXVK7dm1vN8VWqNEA/G/BQv3U3Z/ChpW1FEVR++GJ4WjUkwCwI9sEDV+eYQoA/HXBQk+z+tP82L/dLBX6NvG7BRupJwFgR7YJGgAA/12w0Fe/f38djkY9CQBfQNBAvqjRAKyfMtZXp5yFfYajKW2v9uwEcugE4F0EDeSLGg0gp0CeMjYQeWo4WlHUkwCANxE0AADwwnC0oqgnsbL3jNmxABQWQQMAvDxGX8+v74PA4+l6Git731iwEEBhseIQABRgjL7eZHmC8+aNBeDgLwXmjtR0bzcFgJ+gRwOwGb0J8NTUpoE6dMKTU8YG6jWFf/a+UWAOICCDxocffiixsbHebobtMOuUfzk5Z7tHZ8cJ5KETgT5lLHxfUc2QZfWsaYRtwL6CHKx0hwKIj4+XUqVKyfnz5yU6Oppr5qM9GRuvf8PjU3Bq2Gjy22C3PoVPOZUom+pMzrKv8c5nuZEHfKxXsygWLAzkDzAAu9+v+X2PRr169aRv377Sq1cviYmJ8XZzAK/RG4uimOdf3+PyH2cktKzrxcusIwF4jr/1vrG4IGBffh80du7cKc8995wMHz5c7rvvPnniiSekXbt2EhQU5O2mAbbFOhJAYCiqldGp/QDsye+DxqRJk2TmzJny66+/yrx58+Srr76SihUrSp8+faR3795yzTXXeLuJgNc0WPOUWz0PRTV0AoBv8ueV0QF4n21qNDZu3CgffPCBfP7553Lu3LmMHo1WrVqZXo4uXbpIRIRnpqcMBL425g9FV/dQFLUfVtR9APCf2exy+wCDOi3AfvdrtvlXvUmTJjJ9+nQ5duyYfPrpp9KmTRsTNlatWiWPPPKImZGqf//+smnTJm83FfArrCMBwFn3YdXmbk8rAP9gmx6N3Bw+fNj0cnz00Udy4MCBjF6O+vXrmwLyhx9+WMqUKePtZvrN9LZ79uzxmYSMop/JyVPrczC1JRB4mHkOCIweDVsHjcxWrlxpQsf8+fPl0qVLJnToUKqLFy96u2l+wdd+cZET/3AD8Bf8fQUExv2a3xeDF5QOpdJt8eLF8vjjj8vJkyclKYnCNgAAfIGV017TUwr4hoAIGlq38fHHH5vVw/fu3SvOThwdQgUAALzPytntWAQQ8A22DRqpqanyzTffmOFSy5YtMzUGGjC0G6lHjx5mJiotIAcAAPbCIoCAb7Bd0Ni+fbu8//77MmvWLDl9+nRG70WLFi1MuOjWrZtERjLbBQAAdl4IkEUAAe+zRdDQghcNFjo0avPmzWafBowKFSrIY489Zmoyrr32Wm83EwAAsBAgEDD8Pmj07NlTFixYYAq7NVyEhIRIhw4dTO/FPffcY/4MAAB8S/lu9SSmcx3Lps3ObRFAAN7l90FDVwJXtWrVMj0XvXv3Nj0ZsH4dDQAAPLEQIAB78vugoat+a+/F7bff7u2m2JKupq6bc15mAAAAICCChq76DQAAAMC3+H3QyM/OnTtl7dq1ZnG+unXrSseOHc3+9PR0M/1teHi4t5sIAAA8hEUAAe+yZdA4fPiw9OnTR1atWpWxT2efcgaNd999V/r162fW12jbtq0XWwoAADyFRQAB7woWmzlz5oy0bNlSVq5caXox/v73v2espeHUvXt3CQ4ONgv6AQAAFHQRQEdqOhcLCNSg8dprr8mBAwdk6NChsm3bNnnrrbdyHFOmTBmpX7++rFmzxittBAAAnlkE0JOciwACCNChU19//bVUr15dxo8fL0FBQXked80118iPP/5YpG0DUDRS09PlfEqK5ectFRYmocG2+3wGsM1UudXHtTO9Dp5ccRxAAAeNgwcPmoX6dGhUfrQQXIdZAbCX+UcOyqhft0hCqvVBIyo0TEbXbySdK1ez/NwA3McigIBvsV3QKFasmCQkJFzxuEOHDrEuBGDDngxPhQyl59Xz31exCj0bgI9iEUDAd9huDMD1118vmzdvlsTExDyPOXXqlKnfuPHGG4u0bQA8S4dLeSpkOOn5PTEsCwAAu7Fd0OjataucPn1ahgwZYtbLyM3zzz8vFy9elAcffLDI2wcAAAAEAtsNnerfv79ZLfy9996TTZs2yQMPPGD279u3T15//XWZM2eO/Pzzz9KwYUPp3bu3t5sLBDSri7bPJucsAF3eqp2UCY9w65x3rl7qZssAAAg8tqzRWLp0qXTr1s2sCr5lyxazX6ey1U3X1IiLi5MFCxZIWFiYt5vr86ZNm2a2tLQ0bzcFNuPJou3MNGSUi/DslJcAACAAgoaKjY01oUIDx+LFi+WPP/4ww6iqVKkid999t9x///35Tn2LrD1EusXHx1M8D78p2gYAT0k9c8ny9T+0gB2wI1sGDad27dqZDUDgFW07p6PVtS8AwCrbmr9j6cXURQZ1/Q+dmhewG1sHDQCBy7nmhS8vsOephQUViwsC/kEXF9RFBmM616FnA7Zj66ChNRq///57rs81adJE6tSpU+RtApA7d4u2/e1G29M1KiwuCFgzrEl7HDy90rieP/XcJQmLKeHR9wGKmi2CRuPGjWXPnj2yatUqEyCc3n33Xfn4449zfY2uoeEsFAfgfYFUtF0UNSqBvLigJ3uKPMHXQ3Eg09oJHdakPQ6eDhuAHfl90FixYoUJDE888USWkOGks0y1bds2y74jR47IL7/8IitXrpQ2bdoUYWsBoOhqVJyLCwZKgCvK2cysRO+Tb9PaCR3WpD0OVhaUW13rAfgivw8aOk2tziA1ePDgXJ/X55YvX55l34EDB6RmzZoyb948ggYA2IS/zmam7R2y5WdpFnOVhARZ07NBL4n1PRsMawICMGjo4nvVqlUrVL1F9erVpX79+ua1AGCXGhVPLi7oqeFIVt4QF1VPkafcsnyRped7qU4D6VS5mmXnI7wACLigoSt+33bbbbk+p8Om8nLttdeamg4AsHONSm6rpRfWgiMHZezObeIJDBvyHP2ZWflz42cFIOCCRn4LyQ0ZMsSsEJ6byMhISUhI8HDrAMC7PNXD4YvDhnILVVbPZmaVNEe65T0Y/jjES9FTAtiX3weNkiVLyvnz5/OcWUq33Jw7d06KFy8ugWD16tXSunXrHPvr1q0r27dv90qbAH/mbi+BFb0MduOpm25fns3s9UY3+2VNidU/K3pKAPvy+6ARGxsrW7duLfTr9DX62kDy3nvvmXDhFChBCwiUXgL9ZFhv2vztxjVQda5czUw/bGXtiyeHuXlKIE/FDNid3wcNrc/44IMP5IcffpDbb7+9QK/RY3WKW50SN5BoyGjatKm3mwHAQ/QmTVdD9+Sn5FYUGBfVsCENXRq+fP1nZmWPyxM1a8tjNWpZFl6K6mcViFMxA4HA74NGr1695P3335d+/fqZlcCjo6PzPV7rMvRYnfa2Z8+eRdZOAP6pKHoJrLwh9sSn5J4YS+/pYUPO4TiB+Am51eHFX4d4+RtdW8PKFc11Sl7A2/w+aLRs2VLuvPNOs1aGLtj3xhtvyD333JPrsUuWLDEF4nv37jWL+OVWt+CK3bt3y7Jly2TTpk1m27Vrl6SlpcmYMWPkpZdeuuLr58yZI9OmTZNt27ZJcnKy1KpVSx5++GGzNkiYhZ/G3X///XLq1CmJiYkxX48fP17Kli1r2fkBO/J0L4EnboitvtH0BE8GIkWBsW//rHKbitnK2iV//PlbuYBfSHSEWdFcFxsEvMnvg4aaPXu2NGvWTPbs2SMdO3aUMmXKyE033STly5c3z588eVI2b94sZ8+eNVPe6o28vsYqM2bMkMmTJ7v02kGDBpnXhoaGmsUDtbhdVywfNmyYLFy40AQYnSHLHTor13PPPSetWrUy51+/fr2MGzdOfvrpJ9m4caNE+PgNCeBt/tJL4G/8IRCh6H5WVtY+BXqBeVp8khwYsdSsaE7PBrzJFkGjXLly5uZ5wIAB8tlnn8mZM2fkv//9rxkelXk9jeDgYHnooYdM70Hp0qUte/969erJ0KFDpVGjRibgvPrqq/LJJ58UaFVzDRl68//999+b1yrtddDQsWbNGhk5cqRMnDgx4zUzZ86UPn36FKiXpGvXruZrbZduTho49L3uuusuc7169+7t4ncOBA5uigH/4esF5jq0SXsdNBB4ip479dwlVjSHV9kiaDg/tdeb+9GjR8uiRYvMECa9YVc6VEhvrO+9916pWbOm5e/dt2/fLH/WQFMQGkjU8OHDM0KGs73Tp0+XFi1ayFtvvWXChnOtkM6dOxeooLtSpUr5Pq/DzXTY1IYNGwgaAADb1T75coG59jLo0CbtdfBk2AC8zTZBw+maa66RgQMHiq87evSouclXuRWlN2/eXKpUqSKHDx82tSU9evQw+zVw5LVAoSucvT4AANhphjRfr/vQ+gkd2qS9DlYVk1tZ5wFYwXZBw19s2bLFPGqvQo0aNXI9RovbNWjosc6gYZWlS5eaIWY333xzrs8nJSWZLfMK7AAA+GrtU24F5r5e96E9G2ExJSw7H+BrCBpesn//fvNYtWrVPI/RHo3Mx7ozBbCGmcaNG0tUVJSpZ3nttdekYcOGpmYlN1osrsPQ4N/OJCdLaJJ1/5sHcuEygMCuffL1ug/AF/l90NA6hwYNGuQ5pW1BLF682Ewt+8ILL0hR0fU8VIkSeX+SoUXiVvQm6EJ9OsuWFp5funRJKleubBYrHDVqlISHh+f6mhEjRpipgJ20Dc7gA/9x5+rvJCHKuv/NA30mFwC+K9DrPgBf5PeRXNepmDdvnlvnmDt3rim4tisNDb/++qsJCykpKaaH5PXXX8+31kOnvNXFDzNv8G2p6f83u1pRfKKXmp7u8fcCAFfqPjRsAPANft+j4a90CJNKTEzM85gLFy6YR2/e5OtUwLrpAoTwbfFFtGovn+gBCOS6DwABFjS0R2L16tUuv945DW5Rql69unnUYu+8OJ9zHusN/fv3N5v2hlg52xUAAP5Y92HlTFaK2jfYmS2Chn7y7/z031+meXUuoHf69GkzlCm3mad01W6VeY0NoDDm3tZGysW6tzgln+gBwP/P6h4Oat9gZ34fNNydkclbtCA7Li7OrKWhhdovvvhilud1VXDt0dBaiQ4dOnitnfBvpcLDKVoEAB/GbFawM78PGtWq+e/sNzrLla70PX78eLn77rszei60l6Nfv37m6wEDBnh1yBI1GvDE0AGrhx4AgL/OZKWofYNd+X3Q8AWbN2/OCAZq37595vHtt9+WRYsWZeyfP3++xMbGZvy5U6dOZhXzKVOmSNOmTaVt27ZmutsVK1bIuXPnpFmzZjJmzBjxJmo0kBuKIwEEgqJawRywK4KGBbRQWhfBy+7IkSNmc8q80raTrm2hgUJ7DtauXWumn61Zs6YMHz5cBg8enOc6FwAAwP9msirK2rfUM5csPV9o6UizmjlQUAQNC7Rq1UocDtfXMOjevbvZgEAdOqDn1/cBgEBdwdzdIaWpyck59m1r/o5YKSQ6QqqPayflu9Wz9LywL4IG8kWNBjw9dMA544q+DwAEKnd7OKISUsXaWJFTWnySHBixVGI616FnAwVC0EC+qNGAp4YOODGHPAC4L7F4iCRGBkuJS+keDxup5y5JWEwJj74P7IGgARRQanp6QN9oF8XQAQAIBJ4YkpoeEiQzHy4vvWed9HjYAAqKoAEUwPwjBz0+dEh7DQAA9uepIalrbo2WtTdHSYmLaebPy1u1l7JuTiqjBeVW13ogcPh90KhUqZI8//zzMmjQIG83xZY8XaPhD70E2kZPTm3IYk0AEHisHpLqnMlKezYSov7v9i60XHEJoycaXuT3QePYsWPyyy+/5Prc8uXLzfoUUVFRRd4uu/BkjYa/9BLoPwIs1gQAsBpDUmF3vj8w3A3t2rXLs6fj559/lp07dxZ5m1C0vQT6PgAAACh6ft+jcSV5rW8xY8YM+fjjjz02JAj27iVY3qqdlAmP8PnFmgAAgcvdtTnyWp8DKCjbBw3AEzRkMAMTALjHkZ4qacnn/eIyhoSXkqBg/7ptsuIDraJYnwP25V//x8DWAr2XwN1Pns7zqRMAPxK/f76c3DhK0lMSxF/E3PSSRFXvJIEeYFLTHRLm7UbAL/jXbzZsvTJ4oPcS+MOqsAACk+U9D440Of7TEPE3pzaPNZuVgsOipHyT0RJdo7PPrc2Rl/jUFIn0+LvADggayBcrgwNAYPPHngd/otdVQ1fxCs1EgkLcOteo66+V0b/tkYTUVMvaB0igB42NGzeaT93r1atntnLlynm7SYBPfPIUHUrnNgD3ejIIGUVj//xb3D7HjSLypQRLYlh5KdfwHxJV9R63z3n62Dk5I++7fR4EJlsEje3bt8vAgQMz/nzVVVeZwKH++usvOXLkiFSuXNmLLQSKZlXY7EKDg7j0AFymw6WKqiejRuf1bn+i7wkJBxZYPlzKk0IkXaJTjkva1pelbM2Obtd/pIaHyxnLWodA4/dB48svv5RNmzaZbfPmzXLmzBk5fvy42dTSpUulWrVqppejcePGZrvpppvMcYCdVoVNPX1R9ssMS84FAEXFWaMQGnmVT170Mtc/IaVrP2Z5jYoVPRj50YCobQ4tZv0oD518JDTJ/alznT38+uEb7Mnvg0bXrl3N5nTw4MGM4OEMH6dOnTKbho5ly5Z5tb2Ap1aFTQlPlf1cXiDgWVm4nZ50Nse+avcsl+CIMgE165K2z+ob9qtvfd1vh6V1XbtSEqKs+ZnpMGLt4dcP32A/vv1/tgu090K3Bx54IGPf4cOHswQPfTxx4oQEBTGsBABgH0VRuK0hwxOfkgcanWUqqtp9lobCg4vvzLHP3bLwtKR48SQdPqzDiLWHn54N+/H7oHH06FGpVKlSvsdUqVLFbJ06dcryOg0c8J3pbQEArqNw2/9Y2VOSW6DIHjxckXKhuIg8nGVfVEJ6Hu9YeInFQyRBUsww4kCe4t6u/D5oVK1aVSpUqGBqL5o0aSJxcXHmsXz58vm+TsPJlQIKmN4WAPxFURRuaz2FDnVC4NDi8uwmjTxo2fkTI4Nl5sPlRe6y7JTwIX4fNCpWrGh6JxYtWiSLFy/O2K89GJmDh26lSvGXIwAA7hRt+3o9RaDSAKg/I3+r+ShxKV16zzopjhfTRejQsB2//9tC6y+OHTsm69evN9u6devMkKhDhw6Z5+bPn59xbM2aNTOChz7q7FPFi2uXIAAA9mNl4bY/FG0HMv3ZaBC0ukYnKDJJgoolieNyhEfDRtr5yyIlWG/cbmzxN0ZsbKypv3DWYIwdO1ZGjRpl1s6oXbu2xMfHyy+//CK///677Nu3Tz7//HNzXEhIiCQnJ3u59QAAeAaF24HF6gJzZ0F58pa/S+Lc2zwaNmBPtggamb333nsmZEycOFEGDx6csf/SpUsmYLz88sump0NrO3TKWwAA7DoVLQKP1VPxasl3RJPfJbzRPnFcsiZonE8sI+nj7s26M92a4nL4FtsFjTfffNMMicocMlRkZKT06dPHrLnRoUMHM7RKezgAALDrVLSAZbUfkiBBJS9bc0GDci72l5ZyQUTyn8gH/sd2SzHq0KhatWrl+XxUVJTMmTNHTp48KW+88UaRtg0AAMVUtPC32g8NG550LiVFTiclWbKlpuecKQveYbseDZ3WdteuXfkeo9PhtmrVysxS9dprrxVZ2/wR62gAgPWYihaBXPtR/OBhOSxLsux7aOMmSdi9zZLzs9q477Bd0Gjfvr28//77snTpUmnXrl2ex+lQqgMHDhRp2/xR//79zaYF9f44PfDZ5CSfOAcAFCWmooUv134EhbPaeKCwXdAYMWKEzJ49W7p37y4ff/yx3H///TmO0ZvmtWvXeqV9KFp3rl7KJQfgF5iKFoEiOjTE4++RkMpq477AdkGjRo0aMmvWLHnooYfkgQcekJYtW8qjjz4qt9xyi1kzQ4dV/etf/5ITJ05I69atvd1cAAAMpqJFoAgJDi6yWihWAfQu2wUNpb0Yq1atkt69e8vq1avl+++/z/K8w+GQiIgIeeWVV7zWRlivVFiYGZepn2J4kr6HvhcAACi8kLDoHPveS5woQbnMRlVQ8UElpG+JoVn2paXEi0SW4EfkRbYMGqpp06ayc+dOs3bGV199ZVYL114MnXWqefPm8tJLL0nDhg293UxYKDQ4WEbXbySjft3isbDhLDDT9wIAAIUXFJxz6FQpx0UJdlg0fS58hm2DhgoODpaePXuaDYGhc+Vqcl/FKnI+xTNBQ3syCBkAAFir6j3LJaxcpMuvP5VwQmTddkvbBPf5fdCYO3euWYBP6y8ApUGgXIQ1q5cCAADPC40oI6HFXB/mFJScbGl7YA2/Dxo6u5ROVavT2mrx93333SfR0TnH/gEAACBwOJLOSerlcEtXSddpflFwfn+1Ro4caWow5s+fLwsWLJCwsDBp27atdOnSRTp27CgxMTHebiIAAACK2OH/dpMER6Ll69PoAoYoGL+vaB09erT8+uuv8ttvv8mYMWOkXr168u2338qTTz4psbGxJnRMnz5djh075u2mAgAAwE+lpyTIyY2j/t+0uQiIoOFUu3ZteeGFF2Tjxo2yf/9++fe//y0333yzmd52wIABUqVKFWnWrJm8/vrrrAgOAABg8ylzPRU20pLPF8l72YHfD53KTbVq1WTIkCFm++uvv8zQqnnz5skPP/wgP/30kzz//PPSqFEjU9Oh2/XXX+/tJgMAAMBFudVO6NoaVopyXJIQSbf0nHZny6CRWYUKFaRfv35mO3PmjKnj0NCxYsUK2bx5s6nxeO2112To0KyLvOD/TJs2zWxpaWlcEgAA4DeyL+DnrhKOS9L/8gJ50tKz2ptthk4VRNmyZeXxxx+XxYsXm8X7PvnkE+ncubMEBQV5u2k+q3///mbhww0bNni7KQAAAF6TGBQp04p1ktR0ejUCpkejTJkyctNNN2VsjRs3NvUaV6JT4D788MNmAwAAgPeknrnk1uuLpzsk9mKQXEhLkcTiIZIeEuSxsHE+NVWKeeTs9uP3QeP8+fOyatUqU/TtVLJkSWnYsGFG8NDHG264gZ4LAAAAH7St+Ttun+P1//eYGBksMx8uL2tuZV01b/P7oKF1Fps2bcrYdKrbhIQE+d///mc257AoXdSvQYMGGcFDH+vWrSvBwQE1egwAAMDWSlxKl2e+PCdvvNhTgkLdu887mXBc7v5pvWVtCzR+HzS050K3J554wvxZi5Z37NiRETw0iGzbtk0uXrxoZpzSzRk+ihUrJomJ1i3kAgAAgPyFlo6UkOgISYtP8tilSo9PklKX0iUsJtKt86QmhVnWpkDk90Eju5CQELnxxhvN1qdPH7MvPT3dFDQ7g8eiRYvMWhuXL1/2dnMBAAACivYyVB/XTg6MWOrRsAHvs13QyI0OjypRooScPHlS1q9fz4J9AAAAXlS+Wz2J6VxHUs+5VwSeuZjcijoPWMvWQWPPnj0yd+5cs27G1q1bzT6Hw2FWCdeF+rp06eLtJgIAAARsz0ZYjLWL6sG32C5obN++PSNc6HApZ7ioWbOmCRa6xcXFebuZAAAA8EOOpHOSejncknOFhJfKdVVzu7DFd6Z1F85w8fvvv5tgoerUqZMRLrRmAwAAAHDH4f92kwSHNZMJBYdFSfkmoyW6Rmdb/lD8Pmhcc801cvDgQfO1BoxGjRplhIvrrrvO283zGV988YVMmjTJ9PjobFt6nT799FOJjY31dtMAAAACUnpKgpzcOEqiqt1ny54Nv/+ODhw4YKar1d6Lf/3rX3LfffdJaKjff1uW0oAxYsQIGTp0qLz22mtmSt8ffviBWbcAAADyERIWXSRhIy35vIQWK2e7n4Ut7si1J0PrMbp27Srh4eFSr169LKuC67Ap3R+IdCiZhozJkyfL3//+94z99957r1fbBQAA4Ovs2MtQlPz+6n355ZdZFuc7c+ZMxp/fe+89c4z2cGiPR+ZVwXWVcB1CZHcffPCBCVnOBQ0BAADguqr3LJdybnyAnZ50Vg4uvjMgfgTurcvuA7QXY9y4cbJs2TI5deqUWYhPC8P1U/w777xTypUrJykpKWZ1cL3pfuaZZ+S2226T6OhoSwrEd+/eLVOnTpXevXtL/fr1TajRoVxjx44t0OvnzJkjrVq1kjJlypi1PjQATZgwwbTZCmvXrpXrr79ePvroI6lWrZppn77Ht99+a8n5AQAAAkloRFkzzMnVLTiijAQKv+/RyE5vpnXTdTKcDh8+nKXXQx9PnDghO3bscPv9ZsyYYYYluWLQoEHmtXrz36ZNGylZsqSsXLlShg0bJgsXLjThKTIy0q32/fXXX3L06FEZNWqUqc+4+uqrTTDq2LGjWVukbt26bp0fAAAAsGWPht5EX4ku0NepUycZM2aMLF682Nx8a/iYP3++2++v9SBaZD1r1izZtWuXPPLIIwV63YIFC0zI0HChq5UvXbrUTM+7d+9e0zOyZs0aGTlyZJbXzJw50/SWXGnTHh2n9PR0uXDhghlGpm276667zPtUqFDBBA8AAADAE/y+R6Nq1armplnrLpo0aWIW49PH8uXL5/u6SpUqmc1dffv2zfLn4OCCZbdXX33VPA4fPtzUjTjFxMTI9OnTpUWLFvLWW2+ZsFGqVCnzXOfOnaVp06ZXPHfm70uHZKnWrVtn7NOajWbNmlnSowMAAADYMmhUrFjR9GosWrTI9FZk7sXIHDx0c96we5u2d8OGDebrnj175ni+efPmpv3a67JkyRLp0aOH2a/tL+z3oEOjfv7551xn6rp8+bLL3wMAAABg66ChN+PHjh0zw490W7dunanBOHToUI7hUTVr1swIHvqoPQnFixcv8jZv2bLFPJYtW1Zq1KiR6zHaRm2/HusMGq7QWowPP/xQVqxYkTGlbVJSkhmadccdd+T5Oj1GN6f4+HiX2wAAAIDA4/dBQ+nq1lqDoZvSGZ+0+Lly5cpSu3Ztc5P8yy+/mDUl9u3bJ59//rk5LiQkRJKTk4u8vTozlnPYV160RyPzse4EjVtvvdUM8dLZuXSYmRaDnz17Vv7xj3/k+To9dvTo0W69NwAAAAKX3xeDZ6dFzxoyJk6cKAcPHpTly5ebng5dX+P999834UOHDemNvLcW8UtISDCPOp1tXrRI3IqeBK0Z0WFlHTp0kOeee87MxqXF4Tq7VX4zTun0wOfPn8/YtHcFAAAACKgejczefPNNMyRq8ODBWfbrNLF9+vQx627oTbcOrdIejkCgQ7R0DRHdCioiIsJsAAAAgCts16OhQ6Nq1aqV5/NRUVFmkbyTJ0/KG2+8UaRty9wGlZiYmOcx2uugdGFBb5o2bZpZVV1rWgAAAICADRo6ra2uZ5EfrVPQ1bgzz1JVlKpXr24e8xuO5HzOeay39O/fX3bu3JkxSxYAAAAQkEGjffv28uuvv5oF8PKjQ6kOHDgg3tCoUSPzePr06TyLvTdu3GgeM6+xAQAAAPgL2wUNLWLWENG9e3f5+uuvcz1GC6zXrl0r3qIF6c6hSLNnz87xvE49qz0aWiOh9SQAAACAv7Fd0NB1KWbNmmWmrdUZltq0aSMzZ840w6l0FqrvvvvO9HqcOHGiQKtse8oLL7xgHsePHy+bN2/O2K+9HP369TNfDxgwwOuLDFKjAQAAAFfYbtYpdf/998uqVaukd+/esnr1avn++++zPK/T22pvwSuvvOL2e2lIcAYDZzG6evvtt820sk66cKCu9+Gka34MHDhQpkyZYgJP27ZtzXS3urDeuXPnpFmzZjJmzBjxNq3R0E17gbwdegAAAOA/bBk0lN68axGzLs731VdfmdXCtRdDZ3xq3ry5vPTSS9KwYUO330dvwHWdjuyOHDliNqfMq2w7TZ482QQK7TXQoVwpKSlm9fLhw4eb6Xm9tc4HAAAA4C7bBg3nYnU9e/Y0m6fo7FXaQ+IqrSXRDQAAAL7vbHLOD48LIzU5Wc4F/d+izVGOSxIi6WJXtg4acJ/2tuiWlpbG5QQAAH4j9cwl98+RnCxRCanm68TiIZIeEiR3rs5/ZtMCKTnKPJRwXJL+lxfIk2JPBA3kixoNAADgj7Y1f8eS8zjPkhgZLDMfLi9rbrVuMeXEoEiZVqyT9ElPt+VNue1mnQIAAACsVuJSuvSedVKC01wfMp9X2Dif+n+9JnZD0AAAAIBfCy0dKSHREUUSNkpcZDh5QdmxlwYWokYDAAD4uqDQYKk+rp0cGLFU0uLdK9a+kuWt2ktoueIuv/5kwnG5+6ecM5baEUED+aJGAwAA+IPy3epJTOc6knrO/SLwzAXl2Ws9yoaHS1iE670nqUlhEigIGgAAALBNz0ZYzP9NHQvvo0YDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBq4461SdOnUkLi6OKwUAAIACI2jgirNO7dy5UzZs2MCVAgAAQIERNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBwrgwMAcAWO9FRJSz5v2XVKTzrLNQdgewQNXHF6W93S0tK4UgACUvz++XJy4yhJT0nwdlMAwK8wdAr5YnpbAIHek0HIAADXEDQAAMiDDpcqip6M4LAoCQkvxc8BgK0QNAAA8CINGeWbjJagYEYzA7AX/lYDAKAQqt2zXIIjylh2zbQng5ABwI4IGgAAFIKGjNBi5bhmAHAFDJ0CAAAAYDmCBgAAAADLETSQL11Do06dOhIXF8eVAgAAQIERNJAv1tEAAACAKwgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0kK9p06ZJnTp1JC4ujisFAACAAiNoIF/9+/eXnTt3yoYNG7hSAAAAKDCCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAJAq1atJCgoKNdt/Pjx3m4eAAAAbCjU2w2A502fPl3i4+Oz7Pvkk0/M/g4dOvAjAAAAgOUIGgGgTp06OfYNHDhQ6tevLzfeeKNX2gQAAAB7Y+hUANq7d69s2LBBevXq5e2mAAAAwKYIGhbYvXu3TJ06VXr37m16CUJDQ039w9ixYwv0+jlz5pg6ijJlykiJEiWkQYMGMmHCBElJSRFP+PTTTyU4OFh69uzpkfMDAAAADJ2ywIwZM2Ty5MkuvXbQoEHmtRpO2rRpIyVLlpSVK1fKsGHDZOHChbJs2TKJjIy09Dd11qxZ0rJlS6lcubKl5wUAAACc6NGwQL169WTo0KHmBn7Xrl3yyCOPFOh1CxYsMCFDw8X69etl6dKlMm/ePDO0SXtG1qxZIyNHjszympkzZ+Y5g1Tmbe7cubm+57p162Tfvn0MmwIAAIBH0aNhgb59+2b5sw5LKohXX33VPA4fPlxuuummjP0xMTFmRqgWLVrIW2+9ZcJGqVKlzHOdO3eWpk2bXvHclSpVynPYVLFixaRr164FaiMAAADgCoKGlxw9etQUZKvcaiWaN28uVapUkcOHD8uSJUukR48eZr8GDmfoKKzU1FT54osv5L777pPo6Gg3vwMAAIDAk3rmkluvT0u4LFEJqebrxOIhkh4SJHZF0PCSLVu2mMeyZctKjRo1cj2mSZMmJmjosc6g4Q4dmnXq1KkCDZtKSkoym1P2dTgAAAAC0bbm77h9jnf+32NiZLDMfLi8SEuxJWo0vGT//v3msWrVqnkeoz0amY91lw6bKleunNx9991XPHbcuHEZvSe6OdsCAAAAa5S4lC69Z50UR2q6LS8pQcNLEhISzKNOZ5sXLRK3qjfhwoUL8s0330j37t0lLCzsisePGDFCzp8/n7FpzwoAAEAgCS0dKSHRER4PG+nnk8WOGDoVIDS0JCYmFvj4iIgIswEAAASqoNBgqT6unRwYsVTS4v//IeUoGIKGl0RFRZnH/G7+tRdCebNwe9q0aWZLS0vzWhsAAAC8pXy3ehLTuY6knnOvCNzpr0OH5Gj7+RIICBpeUr16dfOY35Ak53POY72hf//+ZtPhW67OdgUAAODvPRthMXkPdy+MkIRiEiio0fCSRo0amcfTp0/nWey9ceNG85h5jQ0AAADAHxA0vKRy5coSFxdnvp49e3aO53VVcO3R0DqJDh06eKGFAAAAgOsIGl70wgsvmMfx48fL5s2bM/ZrL0e/fv3M1wMGDPDqkCWtz6hTp05GKAIAAAAKghoNC2hIcAYDtW/fPvP49ttvy6JFizL2z58/X2JjYzP+3KlTJxk4cKBMmTJFmjZtKm3btjXT3a5YsULOnTsnzZo1kzFjxog3UaMBAAAAVxA0LKCF0uvXr8+x/8iRI2ZzyrzSttPkyZNNoNCeg7Vr10pKSorUrFlThg8fLoMHD5bw8HArmggAAAAUKYKGBVq1aiUOh8Pl1+sieroBAAAAdkGNBvJFjQYAAABcQdDAFWs0du7cKRs2bOBKAQAAoMAIGgAAAAAsR9AAAAAAYDmCBvJFjQYAAABcQdBAvqjRAAAAgCsIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6ggXwx6xQAAABcQdBAvph1CgAAAK4gaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETSQL6a3BQAAgCsIGsgX09sCAADAFQQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETSQL9bRAAAAgCsIGsgX62gAAADAFQQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgayNe0adOkTp06EhcXx5UCAABAgRE0kK/+/fvLzp07ZcOGDVwpAAAAFBhBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgHg66+/lqZNm0p0dLRcddVVcs8998jWrVu93SwAAADYGEHD5pYvXy6dO3eWa6+9VubOnStvv/22nDhxQtq2bSvHjh3zdvMAAABgU6HebgA8a/bs2VKtWjX5+OOPJSgoyOxr0KCB1KxZU5YuXSq9e/fmRwAAAADL0aNhcykpKVKyZMmMkKFKlSplHtPT073YMgAAANgZQcNNu3fvlqlTp5qegfr160toaKi5qR87dmyBXj9nzhxp1aqVlClTRkqUKGF6GyZMmGACghUef/xx+e233+SNN96Qs2fPyuHDh+WZZ56RKlWqyAMPPGDJewAAAADZMXTKTTNmzJDJkye79NpBgwaZ12o4adOmjel5WLlypQwbNkwWLlwoy5Ytk8jISLfap+f96quv5OGHH5YhQ4aYfTVq1JD//ve/Urp0abfODQAAAOSFHg031atXT4YOHSqzZs2SXbt2ySOPPFKg1y1YsMCEDA0X69evN/US8+bNk71795qekTVr1sjIkSOzvGbmzJmmt+RKmxZ9O61bt04effRR6dmzpwkX+r6xsbFy9913y/Hjx9399gEAAIBc0aPhpr59+2b5c3BwwbLbq6++ah6HDx8uN910U8b+mJgYmT59urRo0ULeeustEzacNRU6e5ROU3sllSpVyvhah0nddttt8p///CdjX+vWrU2BuA6nGj9+fIHaCwAAABQGQcMLjh49Khs2bDBfa09Dds2bNzc1FFpPsWTJEunRo4fZr4HDGToKaseOHab3IjNdT6NWrVqm9wQAAADwBIKGF2zZssU8li1b1tRL5KZJkyYmaOixzqDhiurVq8vGjRuz7IuPj5fff/9dWrZsmefrkpKSzOZ0/vz5jNdaISEpSdIvXsy6Lz5ewiIiLDl/IEpJSJTE9MtZ9sUnxEtYeJrX2gT4u9TLCXLhYtYZ+uLjEyQ0OcxrbQLg3xISEnL8e637rLjHcp7D4XCILyBoeMH+/fvNY9WqVfM8Rns0Mh/rqgEDBkj//v3l6aefli5dusiFCxdk0qRJJkQ8+eSTeb5u3LhxMnr06Dzb5Qm5Ry645ZoxXEDAak/ytxUAizWw9t9rDS6FHQXjCQQNL9AfvtLpbPOiReLK3XT797//XYoVK2bqPXTxPp3FSmtCVq1aJdddd12erxsxYkTGLFXq3Llzpq7j0KFDHv/FjYuLyxha5snXXunY/J7P7bnC7tOfrXOInA5nC+RrWpj92fdl/rPdrmlBjuOack2t+F1z57X8nhb9NS3sv0957efvU/tdU4fDIY0bN5aKFSuKLyBo2JzOQqVraehWGBEREWbLTkOGp2/gQkJCXH6Pwrz2Ssfm93xuz7m6T78O9GtamP3Z9+V2jF2uaUGO45pyTa34XXPntfyeFv01Ley/T3nt5+9Te17T8PDwAk9O5Gm+0YoAExUVZR4TExPzPEaHOClP3yz5Ih3qVRSvvdKx+T2f23Pu7Av0a1qY/dn3eeN6uvu+BX1tQY7jmnJNrfhdc+e1/J4W/TUt7L9Pee3n71N7XtP+Xvp3MTdBDl+pFrEJXSH8o48+kjFjxshLL72U6zG6GF/Hjh2lXLlycurUqVyP0VW758+fb9bo+Pe//y3ept192puhReGBGH48gWvKNfUH/J5yTf0Bv6dcU38QH4D3UvRoeEGjRo3M4+nTp/Ms9nbOFJV5jQ1v0mFUo0aNynU4FbimvoLfU66pP+D3lGvqD/g95ZpagR4NL/RoqJtvvtkUB40dO1ZefPHFLM/pquC6YJ/+T66rd/vCrAEAAABAYdCj4SUvvPCCedSVuTdv3pyxX3s5+vXrlzE1LSEDAAAA/ogeDTdpSHAGA7Vv3z5Td1G5cmWpVKlSxn6tt4iNjc3y2meffVamTJkiYWFh0rZtWzPd7YoVK8xUss2aNZPly5eb6WgBAAAAf0PQcNPq1auldevWVzxOazF0le7svvzyS5k2bZps3bpVUlJSpGbNmtKrVy8ZPHiwmZ4MAAAA8EcMnXJTq1atzOIoV9pyCxmqe/fu8v3335sZCC5evCi//vqrDBs2zLYh4/fff5e//e1vpshde3Lyui7I+/p16NDBLOgYExNjetPymyYZ/D4Wtblz50rnzp2latWqUrx4calbt65MmjTJfJAC13z11VfSvHlz8/+81u5dc801ZkHVs2fPckndlJqaKjfeeKNZc+rzzz/nerrxoatew+xbvXr1uKZu+uKLL0xdr/59WrZsWTMC5tixY+IvWLAPRWrHjh2yaNEi8z+NBjD+oSw4DaNt2rQxq33OmTNHzpw5Y242dMKAefPmefCnZl/8Plpv4sSJ5gOECRMmyNVXXy1r1641E2P88ssvZqIMFJ7+v64faj3//POmbk8/kBo9erRs27bNDLeF6yZPniwnT57kElrkvffeMx8uOOnNMVynH9KMGDHCLHXw2muvmQ8Wf/jhB7l8+bL4DV1HAygqaWlpGV8//fTTjmrVqnHxC+i1115zFCtWzHH8+PGMffPmzdN1cBwbN27kOvL76BNOnDiRY9+YMWPM7+lff/3llTbZ0TvvvGOu6cGDB73dFL91+PBhR1RUlOOjjz4y1/Kzzz7zdpP81qpVq8w1/Omnn7zdFNvYu3evIywszDF9+nSHP2PoFIpUcDC/cq5asmSJ6dG46qqrMvbpwo86jEp7icDvoy8oX758jn2NGzc2j3/++acXWmRPOoRCMSTNdYMGDTJ/h95+++2W/VwAq3zwwQdmGP0TTzzh1xeVuz6b2b17t0ydOtWs51G/fn0JDQ014yR1vY6C0CE52kVfpkwZMwtWgwYNzBAI/jHz/vXeuXOn3HDDDVn26fvVrl1bdu3aJXbB77D9rql29es/mDrZhV1445qmpaWZIRO6oKsOndJ6Lbtc06K+nt99950sW7ZM/v3vf4tdeeN39P7775eQkBAzbPKpp54yw/7spCiv6dq1a+X66683Q06rVatm3kuP//bbb8WveLtLBdZ69tlnTfdl9k2HLhT0taGhoY677rrL8cADDzhKly5t9jVv3txx8eJFS9tqh6FTRXm99bjcztu2bVvHnXfe6bALb/0O2+H30Rf/XtixY4cjMjLSMWDAAIedeOOalipVKuN99HUXLlxw2EVRXs9Lly45atas6Zg4caL58/79+205dKoor+nmzZsdzz33nGPhwoVmGNX48ePN72u9evUcly9fdthFUV7T6667zlGyZElHbGys4+OPP3YsXbrUce+995rXb9++3eEvCBo28+677zqGDh3qmDVrlmPXrl2ORx55pED/E8yfP98cp7/UmzZtyth/8uRJR/369c1z+pdIZh9++GGu/8Nl3+bMmWPbG7uivN6BEjSK8pra7ffR166pHnfttdeaY+10U+yta7plyxbHjz/+6PjPf/7jqFy5sqN169aO1NRUhx0U5fUcOXKk44YbbnAkJyfbOmh46/97p2XLlplj9V7BLoryml577bVm/+LFizP2JSUlmf/39X39BUHD5h577LEC/U8QFxdnjhs7dmyO5/73v/+Z5yIiIhznzp3L2K9f6/9oV9ri4+MD5sbOk9e7fPnyuf7lftNNNzkefPBBh1158pra/ffRm9dU/79v0qSJuaZHjx512F1R/Z46rVu3Lt8Pcvydp67ngQMHzJ/nzp3rOHv2rNm2bdtmjnv//feveN39WVH/jqqyZcs6+vXr57ArT17Tm2++2ezP3tOh/97rv/v+ghoNyNGjR2XDhg3mSvTs2TPHFdH526tUqSJJSUmmINlJp1nU8YNX2qKiorjKFlxvrc/IXouhY7b37NmTo3Yj0Lh6TeGZa6r7dKz2gQMHZOnSpWZKZlj7e6prEenYcF1bJ1C5cj118Vz9c9euXc04ed103LvSottKlSpJIPPE36X6exrIjrp4TTNPE5yZdhL40/S2BA3Ili1bMmYxqVGjRq5XpEmTJlmORdFfby38XLVqVZY53xcuXCgXLlyQe+65J6B/JPwO+8411fD70EMPmX9Y9R/N6667zgOt809W/p7++OOP5oZDF+8LVK5cz4YNG5q/RzNvn332mXlu5MiR/ldo68O/o/ohgxaD67pZgWyLi9dUZ0RTmdfK0TCyZs2ajOP9AQv2wXzCo3Ql37xo2s58rKt09XNnYv/jjz/Mn3UlYRUXF2dmVrA7V6/3008/bWa70E+K9R9EXexQF+zTP/vTXzq+dE35fbT+mvbv318WLFggY8aMMaFj3bp1Gc/VqVNHoqOjJVC5ek3btWtnVgPWTzh1ZXC9GdHZknRF606dOkmgcuV6li5d2sz6k5n2vDl/P1u0aCGBzNXf0V69epmbaJ3KWkcxrF+/3iwwp8FOP3gIZPtdvKYaNG699Vbp27evjBs3TipUqGDuAfTf/n/84x/iLwgakISEBHMVdKq1vOhaDSo+Pt6tK3bixAnp1q1bln3OP3/44Ydmyji7c/V66z+QK1eulIEDB5pu/2LFiplrpysxBzpXrym/j9ZfU502VGkY1i0z/fQ4+01eIHH1muonwp9++mnGTYiuvN6vXz/zQYNOGxyoivLfrkDh6jXVEDx79myz0vqlS5ekcuXKZijaqFGjAvp31J1rquuO6RpZuir4c889Z66rfiCr9wF5DavyRQQNFCn9B1K7++EaXTPDeSMHfh99kfPTYVhHe4d0g2fw75L7RowYYTZYq2zZsmbhPt38FTUayCjWTkxMzPNqaB2ACuRhD1bhenNN/QG/p1xTX8fvKNfUH0QF+D0WQQPm0xx1+PDhPK+G8znnsXAd19t6XFOuqT/g95Tr6ev4HeWaWo2gAWnUqJG5CqdPn86z2Hvjxo0ZUyrCPVxv63FNuab+gN9Trqev43eUa2o1ggZM0ZYWGCkt5spOp1LTHg2d7USnWIV7uN7W45pyTf0Bv6dcT1/H7yjX1GoEDRgvvPCCeRw/frxs3rw546poL4fObqIGDBhgFumD+7je1uOack39Ab+nXE9fx+8o19RKQbo8uKVnhFdpSHAGA7Vv3z45deqU+ZQi84qn8+fPl9jY2CyvffbZZ2XKlCkSFhZm5mzXqdh0oZhz585Js2bNZPny5RIZGVmk34+v43pzTf0Bv6dcU1/H7yjX1B/we+oCDRqwj1WrVmlwvOK2f//+XF//xRdfOG6//XZHdHS0IzIy0lGvXj3H+PHjHUlJSUX+vfgDrjfX1B/we8o19XX8jnJN/QG/p4VHjwYAAAAAy1GjAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAgI1Vr15dgoKCrrjNnDnT2031CwcOHMhx7caOHZvn8ZcuXZIZM2bIfffdJ1WqVJHixYtLZGSkVK5cWdq1ayfjx4+XP/74w+127du3T4KDg017fvvttysen5KSIuXLlzfHf/nll2bfX3/9leN7e/nll91uG4DAFertBgAAPK9Zs2ZSq1atPJ/P7znkVKJECenatav5ukGDBrleouXLl8sjjzwix48fNyGgYcOGcvPNN0t4eLi5qf/xxx9l2bJl8tJLL8mECRNkyJAhLl/qmjVrSsuWLWX16tXywQcfmPPl55tvvpFTp05JuXLlpFOnTmafBqDHHnvMfL1161bZtm0bP3oAbiFoAEAA6Nu3r/Tu3dvbzbCNmJiYfHuBFi1aZG7g09LSpE+fPqbXo2LFijl6FfSG/9VXX5U9e/a43aYnnnjCBI1PPvnEnDM0NO9/4jWMqF69epngo0qVKpXxPWlPBkEDgLsYOgUAgIVOnz5tbuA1ZAwePNjc1GcPGSosLEy6dOkiP//8szz55JNuv6+eq3Tp0qa35Ntvv83zuGPHjsnSpUvN148//rjb7wsAeSFoAABycI7RV/PmzZPmzZtLdHS0GTKkw7CWLFmS51VLTU2V9957T1q1aiVly5aViIgIqVGjhvz973+Xw4cP5zheP4XX99LjL168KP/85z/lhhtuMPUMWmPi5HA4zE17kyZNzHM67Ofuu++WtWvXZjmH04cffmj2aS1EXv78809zw6/DhjQgWGHq1Kly/vx5qVChgqnBuJKQkBBp3Lhxrs+dPXtWRo0aZYZdRUVFme+7fv36podEr1Vm+j307NkzS49Fbj766CMTgvQ63njjjYX+/gCgoAgaAIA86U1ut27dzNcdOnSQa6+91tzY33vvvTJ//vwcxyckJMidd95pPqHftGmTuZHt2LGjCRv/+c9/pFGjRrJly5Zc3+vy5csmKLz++usmmOjr9P2c+vfvb4YH6eu11uGuu+4yweX22283Q5Wy05tuLXjWWom8hia9/fbbJhj16NHDBBcrfP311+axe/fuGcOSXLFz505T//Gvf/1LTpw4YcLeHXfcISdPnpSRI0eawKeBJjO9Pmrx4sXmNbnRAJb5WADwGAcAwLaqVavm0L/qP/zww0K9Tl+jW+nSpR3r1q3L8tyoUaPMc7Vr187xup49e5rn7r33Xsfx48ezPPfGG2+Y56699lpHampqxv5Vq1ZlvN+NN97oOHbsWI7zfv311+b5kiVLOn788ccsz02aNCnj9S1btszy3Isvvmj2Dxw4MMc5k5OTHRUqVDDPb9q0qUDXZf/+/eZ4va65SUlJcQQHB5tjPvnkE4erLl686KhZs6Y5z0svveRISkrKeC4xMdHRo0cP81yfPn1yvLZhw4bmOb0u2a1Zs8Y8FxkZ6Th37lye7+/8GesjALiKoAEAARA0rrSdPXs2y+uc+6dMmZLjnJcvX3aUKlXKPH/o0KGM/Tt37nQEBQU5Klas6IiPj8+1PR06dDCvW7hwYa5B44cffsj1dW3atDHPjxgxItfn4+Licg0aR48edYSFhZn2XrhwIctzn332mXnNrbfe6iioKwUNDVfO7+W7777L9Zi33nrL8dhjj+XYMpsxY0ZGYMtNQkKC46qrrnKEhoY6zpw5k+W5qVOnmtfWq1cvx+sef/xx81yvXr3y/T4JGgCswKxTABAArjS9bV5DfHT9h+x0GNQ111xjhjAdPXrUrA+htG5DM4rWTWg9QW50aJQe5xx+ldlVV10lLVq0yPEaHdqkx6uHH3441/PqMKkNGzbk2K9F2DoN7WeffWZmY/rb3/6W8dy0adPM44ABA6QorVq1ytS9ZJd5Fisd+qQefPDBXM9RsmRJU2Oh11K/bx1G5qSF6M8//7xs377dFJrrMDOVmJiYsWYGw6YAFAWCBgAEAFent61atWqu+7Uw3FlX4eRceO799983W360ziC7zIXfmel6D873yeuYvPargQMHmqChwcIZNH755RdZs2aNXH311RnrYVhBi9+1AF0DV27fo5o7d27G10eOHMkIapk5r6Wuw6FbfrK/j8489cADD8js2bNNUbgzaGjIuHDhQsaaGwDgaQQNAECedKG5gkpPTzePOkNSXovYOd1yyy059umsSa5yzpCVm6ZNm5qbbf10//vvvzc32c7ejKeeesqtgu3sdO0KLYDXNSg2btxoehdc4byW7du3N2EoP9WqVcuxT3ssNGh8/vnn8sYbb5hr6ywC1ylt87teAGAVggYAwBLOT+Z1mNZbb71l2VXV2aB0uFZSUpIcPHhQ6tSpk+OYAwcO5HsO7dXQm35tl4agWbNmmVCQeSiVVXS2LA0a2oPw73//20yf68q1/O2330xgcKXHpXXr1mZ4m/aMfPXVVybY/e9//zNT6TpX/wYAT2N6WwCAJbQ2Q+lq15mHVLlLb9RvvfVW87V+Sp8bHRqVH51qNjY2VhYsWCCvvPKKqVfo3LlzrgvpuUtDjQ4t04XxXnzxRbeupbOmorC0x8K5GJ8On3Kuq6FrilSqVMmlcwJAYRE0AACW0DUydHVqXdtCawRy62XQG3ztTTh+/Hihb97VlClTZN26dVmemzx5sqxfv/6KYUUXDNTC8okTJ3q0CDwmJkY+/vhjM+xMezR0TRENHdlpHcePP/6Y6zl0SJcOiZozZ44MGzbMrE+Sna4A/u677+bZDq3J0R4MLT5/5513zD6KwAEUJYZOAUAA0JW6dfXsvOisRc5Vpd2hdQDnzp2Tb7/9Vq677jozTEkX39Obag0eOqQoOTlZdu3adcXag8y090FvvvWGWReu09mptIfi119/NecaPHiwqUXIr97i6aefNr0ZOgRL6yh0oT9Puf/++83MUY8++qi59npdtHZFi9adq5DrrF0aFjSQZK/l0BXY9fU6M9eECRPM961trly5slkRXBcg1O9bZ+rSIJMb7bnQHgydmUrfTxcvzG0WMQDwFIIGAAQA/eQ8r0/PnTMVWRE0dFrbZcuWyRdffCGffvqpWR1869atZiiRBgOdnlZrGHTmo8LSlcXj4uJkxowZplejWLFipsh7+vTpGb0n2puQF70p15t97f3QVcY9TQu59+/fb6at1Zt9DVk7duwwoUvrTurVq2faoddd6ymyq1u3rpkdS79vXYVdv/7pp5/M96iBY+jQoSaA5Ud7MPS9lc5e5Uq9CAC4KkgX03D51QAA+ACtR9Beg0mTJsmQIUNyPUZ7Aa6//nopVaqUWf+jePHihX4fDTTaQ6PDmq5UgO7PXn75ZRk9erSMGjXKfA0ArqBHAwDgF7Q3QIce6bCizNPA6pod2mugPRw9evTI8/X//Oc/TW+C1mq4EjKyr+3hXJdE61LsMCTp/Pnz8uyzz5qvtRcKANxF0AAA+AUtrNZZmLToXOsPtLB8586dpmdBi551CJUOz8pMZ8D6+uuvTUjRIVMVKlSQf/zjH263Rd/7o48+Ml/riut2CBqXLl3K+J4AwAoEDQCAX3jwwQclPj4+o+5DZ5DSugvdP2jQILMwX3abN282U7tq7cgdd9whr7/+uqlHcZX2qNh1xLGGMLt+bwC8gxoNAAAAAJZjHQ0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYLlQ608JO0pPT5c///xToqKiJCgoyNvNAQAAQDYOh0MSEhKkYsWKEhzs/f4EggYKRENGlSpVuFoAAAA+7vDhw1K5cmVvN4OggYLRngznL250dDSXDQAAwMfEx8ebD4ad923eRo8GCsQ5XEpDBkEDAADAdwX5yDB37w/eAgAAAGA7BA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALBdq/SkBAADsw5GeKmnJ5z1y7pDwUhIUbN3tWPLly3Lq2DHxhJjYWAkvVswj54Y9ETQAAADyEL9/vvy18WU5n5rmkWtUKjREKjR5WaJrdHb7XN9M/EBKTj0uxS85xBN+iwySC89cLR2HPu6R88N+CBoAAAB59GR8tnmuTI14ThKLRXrkGpVwXJJnNs+Vp6rd51bPhvZkeDJkKHPuqcclecBlejZQIAQNAACugOEogfmzSkk6L9OS7pXgJJEoSRVPSCxeTKaGtZPHLp+VYsXLu3we/Z49GTKc9D30vSrWqOHx94L/I2gAAJAPhqME9s/qHfGsxMhgmflweTnfKlWofoDdEDQAAMgDw1H8R1H8rDyhxKV06f/ecUl9/KKkJCe6fJ60s5dz7Cs5v7WUrVjBrfad+fMvudB5lVvnQOAiaAAA4APDUfbu2yExVSpacr6yxctJWGi4BJKi+ll5yuHbvpDDFp9TQ4YVQ5wuWNIaZJeSmixnLp4WKyXEJ4gvIWgAAOADnlrzmyRE7bHmZJEpMrx6CenZqIs15wP8hCM1XVLPXfLIuUNLR0pQqDVL0M3eMk/GH0gUuRQmVkq7eFF8CUEDAOAV/nJDUFTDUSaNPChWjvv/rGdp6VY/2ad7Nqz8HfDU0CGn0sXLSFiINTeFJ879ZXowPEl/B4JL+e7P3hNOztkuB0YslbT4JI+cPyQ6QqqPayflu9Vzuydj5Zcn5Y3Z58zQOSslpl+WO8R3EDQAALa7IQiOjpDyY9pI9AN13DrPuZQUjwxH0ZvWX8Rz49715qXH7HNy+vmTUqFsJQnE3wErhw5Z7arSVWTUE2XNz8jqG83MQXNGtOuzWF3p/4uIJGt+bqXCwiQ0ONiS0LrnH4skJNH66+mkv6v6HjGd67j1Qcbp+JMe+9n7GoIGAKBI6Q2Bp28w0+OT5Piz38oDqb9JWojr54lKSJdJYr3IctGSViLYozdFehOTfj5ZpKz4nKK4KfRl2svUpnt5GXxzccuHzmQeOuep3qwnV22QhKhNlpwrOLqYjGp4k3SuXM2t81w6HV8kv0/6Hoe27pSwciXc6tEsEQAhQxE0AABFSofKeDJkZDbjuf3ii/TT0NoT7vV44NLhRClRrs9k5KnhaEVxU+jrQ4e0fkaHtlldDFwUkwFYPczv815n5L4xfdzq2Th38awUlWMdvimy9/J3BA0AQJFKScs5HMmfRIe60UWSiY7z1iEYVtUo/HXokBxtPz/LPv3zUR8bn14UN4WeHjpkFQ0DV0fHSiD8vudFP9l/4t3jsqfXb1LajdXXtZcgu+fGVJOEKPfCsenVtDBY5aXSd52lQtWq4q74hHiRa8aIryBoAACKVG43mVbcEISkeb4HIy0yTYpfbU1xsdIegrAY14dgZBaS4Nnl3qwan54XK34HimroUCDR33f9vQ+55NnAEd9ygcRbfM53ml/v9pTRqcnJ8turhz061OliZJBcXaeGhBVz///hsPA08SUEDQCA1+kNZkKU+/8kTet7tfSeddIjNwVBkclSZVh1CQ73zZtXHSakn+R78oZIhzvpsKfiV5e2/NxW3BQG8joinqK/71WGVZFjrx0QxyX/uqZlipe1pMdo0zNXSZCHFoO8GBkkF565WsItCBm+iKABAPC6zxrUtuYms6WIY2i6lExMkxALZrLJLKL8VT4bMlS56PJmuJCnZ7P54/ddUvai+9P7euqmENar2q+3VO6bLEknT1hyvtTkFNlxy2fiSXoDHxNrze9Tx6GPS/KAy2ZRSKvFxMbaNmQoggYA4IpS09PlfC5TvVo1ZazlN5k+ONOSP85klNv4dF3/g5WiA4+G7MhKlS0734l/VJCSftRLoOfyxamSfR1BAwCQr/lHDsqoX7dIQqo1QSMqIVXe4Zr7xUxGpw7/KQni+UJYBB56CQIDQQMAkG9PxqhtP0tiikOiLqZZ9ik5/GMmozI1y8iayGUe+dTZU8Nc4D/oJbA/ggYAIE/nki5Jgx/jPVZgXVRTaML1G0EdgiIeGuISCMWwQCAjaAAA8pR66ZzHQ4YKj7B+FiP4/hCXQCiGBQIZQQMAkKf088keDxnBJYMlrGxJfgo+jCEuAFxB0AAAeI1ztWlPLAAHAPAuggYAoFAqfddZKlStas0/QqUjCRkAYFMEDQBAoYSUKSZhMSW4agCAfNFXDQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAlgu1/pQAAG9ypKZL6rlLlpwr7exlS84DAAg8BA0AsJGTc7bLgRFLJS0+ydtNAQAEOIZOAYCNejIIGQAAX0HQAACb0OFSnu7JSIwMluBS4R59DwCAPRA0AMAmUtJSPB4yZj5cXoJC+acDAHBl1GgAgE2cu3g2x77nxlSThChrgkFi8RCJDE6SssXLWXI+AIC9ETQAwMY0ZCREWfNXfQnHZXmhSnEJC2XoFADgyggaAGBjnzWoLTFVKlpyLu3JIGQAAAqKoAEANlameFm5OjrW280AAAQgKvoAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHIEDQAAAACWI2gAAAAAsBxBAwAAAIDlCBoAAAAALEfQAAAAAGA5ggYAAAAAyxE0AAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AIAL///rt06NBBSpYsKTExMdKvXz9JTEz0drMAAABgY6HebgA86/z589KmTRupWLGizJkzR86cOSNDhgyR48ePy7x587j8AAAA8AiChs29/fbbcvLkSdm4caNcddVVZl9kZKR06dJFNm3aJI0bN/Z2EwEAAGBDDJ2yuSVLlpgeDWfIUB07djTDqBYtWuTVtgEAAMC+CBpesHv3bpk6dar07t1b6tevL6GhoRIUFCRjx44t0Ot1CFSrVq2kTJkyUqJECWnQoIFMmDBBUlJSchy7c+dOueGGG7Ls0/erXbu27Nq1y7LvCQAAAMiMoVNeMGPGDJk8ebJLrx00aJB5rYYF7anQnomVK1fKsGHDZOHChbJs2TIzNMrp7NmzUrp06Rzn0ZCi9RoAAACAJ9Cj4QX16tWToUOHyqxZs0yvwiOPPFKg1y1YsMCEDA0X69evl6VLl5qC7r1795qekTVr1sjIkSM93n4AAADgSujR8IK+fftm+XNwcMHy3quvvmoehw8fLjfddFPGfp2ydvr06dKiRQt56623TNgoVapURs/FuXPncpxLezquvfZaN78TAAAAIHf0aPiJo0ePyoYNG8zXPXv2zPF88+bNpUqVKpKUlGQKwJ20PiN7LUZaWprs2bMnR+1GZnqe+Pj4LBsAAABQUAQNP7FlyxbzWLZsWalRo0auxzRp0iTLsUoX6lu1apWZ4tZJazkuXLgg99xzT57vN27cONMr4tw0xAAAAAAFRdDwE/v37zePVatWzfMYZxhwHquefvppE07uv/9++fbbb2X27Nnyt7/9zfzZGUxyM2LECLPYn3M7fPiwpd8PAAAA7I0aDT+RkJBgHnU627xokbjKPMxJZ5zSWakGDhwoXbt2lWLFikm3bt1k4sSJ+b5fRESE2QAAAABXEDQCgK6Z8d1333m7GQAAAAggDJ3yE1FRUeYxMTExz2O07kJFR0cXWbsAAACA3BA0/ET16tXNY361Es7nnMcCAAAA3kLQ8BONGjUyj6dPn85S7J3Zxo0bzWPmNTYAAAAAbyBo+InKlStLXFyc+VpnjspOVwXXHg0t4NYpbQEAAABvImj4kRdeeME8jh8/XjZv3pyxX3s5+vXrZ74eMGBAxqrgAAAAgLcw65QXaEhwBgO1b98+8/j222/LokWLMvbPnz9fYmNjM/7cqVMnM03tlClTpGnTptK2bVsz3e2KFSvk3Llz0qxZMxkzZkwRfzcAAABATgQNL9B1LtavX59j/5EjR8zmlJSUlOOYyZMnm0Axbdo0Wbt2raSkpEjNmjVl+PDhMnjwYAkPD/d4+wEAAIArIWh4QatWrcThcLj8+u7du5sNAAAA8FXUaAAAAACwHEEDAAAAgOUYOgUAXpJ8+bKcOnbMsvOd+fMvy84FAIC7CBoA4AXfTPxASk49LsUvuV6vBQCAL2PoFAB4oSeDkAEAsDuCBgAUMR0uVRQ9GRcjgyQm01o8AAAUJYIGANiQhowLz1wt4cWKebspAIAARY0GAPiAkvNbS9mKFSw7n/ZkEDIAAH4dNI4fPy4rVqyQzZs3m6/Pnj0rZcqUkauvvloaN24sbdq0MV8DAPKmIaNijRpcIgBAYAeNlJQU+eKLL2TatGny888/m325rXQdFBRkHm+55Rbp37+/Wc06LCzM3TYDAAAAsFvQ+OSTT2TEiBFy7NgxEy7Kly8vt956q9StW1fKlSsn0dHRcv78eTl9+rRs375dfvrpJ1m3bp2sX79ehg8fLuPGjZNevXp55ruB5TRM6paWlsbVBQAAQIEFOXLrisiDBgrtwYiJiZGePXtK7969pUGDBld83datW+XDDz+Uzz77zAQQ7eFYu3ZtwVsJr4uPj5dSpUqZEKlhEoDr/ty/Xw7d8lmWfVXX92DoFADAVvdrhZp1au/evTJhwgQ5dOiQvPHGGwUKGaphw4YyefJkOXz4sIwfP1727NnjansBAAAA2G3o1B9//OFWOoqIiJDnn39enn76aZfPAQAAAMD3FapHw6ouGF/oygEAAADgY7NOrVy5UhYtWiT79+83BeFaBH7dddfJzTffLM2aNWNmKQAAACDAFSpoJCUlSZcuXeTbb7/NMp2tcxpbFRkZaY7R6Ww1eAAAAAAIPIUaOjVq1ChZsmSJVKpUSV566SWZOnWqKQ6vX7++CR7h4eFy8eJFMwWuzlD10EMPmQX8AAAAAASWQvVo6CJ9OkxKVwHXKW6dduzYIb/++qsJFd9//73MmTNHPv/8c/nyyy/NdLirV6+WqlWreqL9AAAAAPy9R+Ovv/6SNm3aZAkZmRUrVkzatWsn7733npkC94knnpADBw5I+/btJTk52ao2AwAAALBT0NBVwC9cuFCgY8uWLSvvvvuujBkzRn777TeZMmWKq20EAAAAYOegcccdd5ihUcePHy/wa1588UWpXbu2WRUcAAAAQGAoVNAYNmyYpKSkSPfu3SUhIaHAr2vUqBGrgQMAAAABpFBBQ9fKeOutt+R///ufNGzY0BSHZ57mNjf6/LZt28yMVAAAAAACQ6GChnryySdl1qxZcvLkSenZs6eZTeqHH34wz+3Zs0cSExPN19rzsWnTJuncubPs3r1bmjdvbn3rAQAAANhnZfAePXpIy5Yt5eWXXzah49KlS2b/DTfckGuPRsmSJeXVV191v7UAAAAA7Nmj4VSxYkV555135NixYzJz5kzp1auXKfoOCQkx4UK3UqVKycMPPyxbtmyRunXrWttyAAAAAPbq0cgsOjpaHn30UbOptLQ0UygeFBRkggYAAACAwON20MhOezRKly5t9WkBAAAABMLQKQAAAADIC0EDAAAAgOUIGgAAAAAsR9AAAAAA4PvF4E7ff/+9bN26VapVqyYdO3aU4GAyDQAAABAo3Lr71/UzbrrpJlmzZk2W/c8884y0adNGhgwZIl26dJH27dubaW8BAAAABAa3gsbcuXNl3759EhcXl7Fv48aNMm3aNClWrJjcf//9UqlSJVmxYoV8/vnnVrQXRUx/lnXq1MnyMwYAAAA8GjS2b98u9evXl4iIiIx9Gih0sb5PPvlEvvrqK/n5559N6Pjggw/ceSt4Sf/+/WXnzp2yYcMGfgYAAAAomqBx+vRpqVy5cpZ9P/zwg1ktvFOnTubPFSpUkBYtWsjvv//uzlsBAAAACJSgkZKSkqX2IikpSbZt2ya33XZbluLv8uXLy4kTJ9xrKQAAAIDACBoVK1aUHTt2ZJlpSsOHBo3M4uPjpVSpUu68FQAAAIBACRqtWrWS3bt3y/jx401PxqhRo0x9hs4ylb2WI/sQKwAAAAD25VbQeOGFF6RkyZLy4osvmmlu169fL3fccYc0btw445g9e/bI/v37pWnTpla0FwAAAIDdF+yrVauWrF27ViZNmmRqMG6++WZ5/vnnsxyjU9s2aNBA7rnnHnfbCgAAAMBPBDkcDoe3GwHf56yzOX/+vJlVDIDr/ty/Xw7d8lmWfVXX95CKNWpwWQEAtrlfc6tHI7Pk5GTZtGmTHD161PxZF+rTIVTh4eFWvQUAAAAAP+F20EhNTZXRo0fL1KlTJSEhIctzUVFRMnDgQPnnP/8poaGWZRoAAAAAPs6tu//09HTp2LGjLF26VHQEVpkyZaTG/+v61wLws2fPyiuvvGJ6OhYuXJhlbQ0AAAAA9uXWnf97770n3333nVSrVk3mzp1rVgrfuHGj2fTrefPmmef0mPfff9+6VgMAAACwb9D4+OOPJTIyUlauXCkPPPBAjuc7d+5sZp2KiIiQjz76yJ23AgAAABAoQUMX4tNF+6pXr57nMTqUqk2bNuZYAAAAAIHBraCRlJRkptC6Ei0K12MBAAAABAa3gkaVKlXkp59+krS0tDyP0efWrVsnlStXduetAAAAAARK0GjXrp0cOnRInn32WUlJScl1bQ2d3laPufvuu915KwAAAACBsjK4Ls534403yrlz56RixYry0EMPZUxv+8cff8gXX3whf/75p5QtW1a2bt1qFvGDf/K1lSYBf8bK4ACAQLhfc2sdDQ0OOnVtt27dTK/F66+/nuV5zTBVq1Y1U98SMgD4s/TkZEk6ecKSc6Uet+Y8AAD4MreX646Li5M9e/bInDlzZPXq1aaXQ2mw0BmpNISEh4db0VYA8IpD02fKsdcOiOMSf5cBAFBkQUNpkHj44YfNBgB268k4/NphCSFkAABQdMXgAGB3F4//JSGXQjz6HomRwRIWE+PR9wAAwK+CxmeffSbXXHONqdPIiz6nx2idBgD4m/jUvKfvtipkfN6rvJQpUcKj7wMAgF8NndKgoTNO6crfeWndurWcPXtWZs2aJV27dnXn7QDAJzw3ppokRFnTIRwcXUxGNbxJQoPpYAYA2ItbQeOXX34x09vmV+wdEREhDRo0kG3btrnzVgDgM95tHSdXV6tmyblKhYURMgAAtuRW0Pjrr7+kWbNmVzxOZ6D6+eef3XkrAPAZpcPCpFxEhLebAQCAT3Orr7548eJy+vTpKx6nxzDFLQAAABA43AoadevWlR9//FHOnDmT5zH63Jo1a+T66693563gJdOmTZM6deqY9VIAAACAIgkaXbp0kcTEROnVq5dcvHgxx/OXLl2SRx55xDxSCO6f+vfvLzt37pQNGzZ4uykAAAAIlBqNp59+Wt59911ZunSp1K5dW3r27JnRc/Hbb7+ZWan+/PNPue6666Rfv35WtRkAAACAnYNGZGSkCRmdO3eWTZs2yaRJk7I873A4pFGjRjJ//nxTzwEAAAAgMLgVNFTlypXNjFILFy40i/MdPHjQ7K9ataq0b99eOnbsKEFBQVa0FQAAAECgBA2lQUIDhW4AAAAAwFK0AAAAACxH0AAAAADg3aDx7LPPFmiBvvycPHlSBg4c6NY5AAAAANgoaOjibTVq1JARI0bI3r17C/VGu3fvlueff15q1qwpM2bMKGw7AQAAANi1GFwXbXvmmWfktddekwkTJsitt94qbdu2NY833HCDlCtXTkqWLCkXLlwwPR+60NtPP/0ky5cvNzNT6XS3zZo1k6lTp3ruOwIAAADgX0FD18RYs2aNzJ07V9544w1Zu3atCRL50XChbrvtNhk8eLBZTRwAAACAvbk0vW3Xrl3NtnXrVlmwYIGsXLlStmzZIomJiRnHlChRQm666SZp3bq1dOrUSRo2bGhluwEAAADYdR0NDQ+6vfzyy+bPFy9elPPnz0vp0qXNquEAAAAAAlOhisGPHj2a7/PFixeX2NhYQgYAAAAQ4ArVo1G1alWpUKGCNG7cWJo0aSJxcXHmsXz58p5rIQAAAAB7B42KFSuaXo1FixbJ4sWLM/ZXqVIlS/DQrVSpUp5oLwAAAAC7BY3Dhw/LsWPHZP369WZbt26dbNq0SQ4dOmSemz9/fsaxul6GM3jooxaG69AqAAAAAPYX5HDOP+uisWPHyqhRo6Ry5cpSu3ZtiY+Pl19++UWSkpIkKCgo47iQkBBJTk62os3wAv25ai+VFvtHR0fzM0DA+HP/fjl0y2dZ9lVd30Mq1qjhtTYBAOAP92uFKgbP7r333jMhY+LEiXLw4EGzMJ/2dJw5c0bef/99Ez40x+jQqvDwcOtaDQAAAMCnuRU03nzzTTMkShfiy0yntu3Tp49s377drASuYeP33393t60AAAAAAiFo7Nu3T2rVqpXn81FRUTJnzhw5efKkWUkcAAAAQGBwK2jotLa7du3K9xidDrdVq1ZZZqkCAAAAYG9uBY327dvLr7/+KkuXLs33OB1KdeDAAXfeChbRIWx/+9vfzJC3sLAwqV69OtcWAAAAvhU0RowYYUJE9+7d5euvv86z+n3t2rXuvA0stGPHDrMOigaMevXqcW0BAADge0GjRo0aMmvWLDNt7QMPPCBt2rSRmTNnmuFUOgvVd999Z3o9Tpw4IU2bNrWu1XDZfffdJ0eOHJGvvvpKbrnlFq4kAAAAvL9gX27uv/9+WbVqlfTu3VtWr14t33//fZbndcapiIgIeeWVV9x9K1ggONitbAkAAAAUiCV3ndpbsXPnTvn000+lc+fOUrVqVSlWrJgpFteejp9++smyT8+192TKlCnSvHlzKVu2rHkfXa/j7rvvli+++EK8affu3TJ16lQTuurXry+hoaFm0UJd1LAgdIYuLZwvU6aMlChRQho0aCATJkyQlJQUj7cdAAAA8KkejcyflPfs2dNsnqJDftq1a2dCTUxMjFmjQ2/IDx8+LD/88IP5+sEHHxRvmTFjhkyePNml1w4aNMi8VsOJDkErWbKkrFy5UoYNGyYLFy6UZcuWmXoYAAAAwHY9GnPnzpWLFy+KN1y6dEnuvPNOEzJefvll+fPPP80N+Oeffy4//vijWavjpZdeEm/S4uqhQ4eauhWtU3nkkUcK9LoFCxaYkKHhQldW11m85s2bJ3v37jU9I2vWrJGRI0dmeY3WwmhvyZU2/ZkBAAAAPt2jobNL6afqWuCtQ6K0sDg6OlqKwrhx4+S3336Tp556SkaNGpXj+eLFi0vDhg0LdK5jx47Ju+++a27e9WY8vx4UvaF/8cUX8z3OqW/fvi7VQ7z66qvmcfjw4WbaWSfttZk+fbq0aNFC3nrrLdPeUqVKmed0iFpBCuwrVapUoDYAAAAAXgsaeqOrsxXNnz/ffAqv6zC0bdtWunTpIh07djQ3xp6gNQo6LEk9//zzbp/v6aefNr0hurL5Bx98ICEhITmO2b9/vxnCpOt/1KxZU3r06CGecPToUdmwYYP5OrdhZ1qLUqVKFTM8bMmSJRnt0MDhDB0AskpNT5fzFtU2naNGCgAAzweN0aNHm23Pnj1mSI6Gjm+//dZMY6s377fffrsJHfppe2xsrFhl8+bNcurUKalYsaLUqlXLLBKo763Dp7RwWj/x12LwgvYgaG+GBqSPP/7YDMnSoU4ampz0+9PntUdj4MCB8tBDD4mnbNmyxTxqYbtOF5ybJk2amKChx3oq8ORl2rRpZktLSyvS9wVcNf/IQRm9dbOkx1+25CJGJaTLJH4cAAAUTTF47dq15YUXXjCbrpeh9QS66fS2OtWt3pzrLFMaOnSIlburT//yyy/mUWeX0uFFOhOTTpvr9Nprr0mjRo1ML4vOeHUlV199tWnrXXfdZWZ6unz5snnUaXi3b98ud9xxhxw/flz+8Y9/mHN7kvacqPzarT0amY91h9bYaM+I+uOPP8yfnXUccXFxUq1atSzH9+/f32y68CI9KPCHnowlM/4rkz49KSUupXu7OQAABDS3p7fVG9MhQ4aYgmwdBqS1BC1btpSff/7ZFEbrsCP9RF7rELTGwhWnT582j/qJvt749+vXz0wle/78eVm+fLkJPvrcPffcU+CpYHWYl87qpIFIh1FpvYkWXev0shoytA7E0yFDJSQkmEedMSsvWiSu9GbfXbp4Yrdu3cym106L6J1/1pAI+LOziYnyUBGEjOjQnMMtAQBAVpau3lahQgUTAlasWGFu1t977z1TOK69BDojVN26dWXixImFPq+z90JDhA4d0jCj4UIL0bX3QW+YdT0NfR+dhaqgSpcubV6rQ6+cjxpqxo8fb2a2siPtXdLrmdum638A/izl1CmPh4y0yDQpfnUFj74HAAB24LFlorXm4PHHH5fFixebT9E/+eQTU7tRkNmbsouKisr4WmtBstNhR9qbof773/8W+twjRozI0kOT23t4ivN7S0xMzPOYCxcumMeimuELQO6CIpOlyrAqEhweziUCAMDKGg0tvNbpV51b48aNTc/ClegN8sMPP2w2V1xzzTW5fp3bMTp1bWHoQnhaS6KF5FrnsWnTJmndurXp4fDULFqZOetXtNg7L87n3K11AQJRxW/aSvkq1kzzHFH+KkIGAACeCBpaE6Hj+LWQOnP9gK5f4Qwe+njDDTe41HORFz2nnk+H9+jsU87i6Mx0v7M9BfXNN9+YtUF0RqVPP/1UunbtasKQFoZrrYb2juhwME/ScKN0yJYWe+c289TGjRvNY+Y1NgAUTOjVV0lkpcpcLgAAfDlo6DSz+om/c9NpZrWY+X//+5/ZnOFCF/Vr0KBBRvDQR63PKOj0s9npzb6uJ6HvoTf/zptzJ63d+P77783XN998c4HOqWFCQ4W2+csvvzTDutRnn31m2q9T3+p0vVpvkluwsYrOpKWzPelaGrNnzzaLA2amBerao6EzYnXo0MFj7QAAAAC8FjS050K3J554wvxZewJ27NiRETw0iGzbts1MmfrTTz+ZzRk+tFg7vzqEK9FZoLTwW1cI16Jt56rYqamp8txzz5mpWrXeoU+fPlc8l4YIrR8JDw8363FowbqTLt6nq4Fre995552MsJHXkC0r6DTBGnS0CF3XA3H2XGgvhxbXqwEDBjC9LAAAAPxGkCPzghQWSE9Pl507d2YEj0WLFpkhQRo43F30bezYsWZ18tDQUNNzoT0d+h66erf2QmgvhbMoPD/aazBlyhQzdErrMfIyaNAgs3L40qVL5dZbb73iebUtzmCgdOVxHdKlvRaVKv3/Y8R1ZfXsCxo+++yzpk3O1dZ1ulsNOOfOnZNmzZqZmhH9Hr3FuY6GDp+jKB2+6s/9++XQLZ9l2Vd1fQ+pmMdimAAA2Em8j92vWR40lAYLXcBPF4LTIUH6FlYEDWfx9ptvvinr1683w7Y0bOiN+bBhw+T6668v8Hl0ocHsi9O5c5zS2pX8gkvm65NbYbcO4dJVuLdu3WqGg+kaJL169ZLBgweb3hdv8rVfXCA3BA0AQCCLt2vQ2LNnjwkWGjD0RlnpqbW+QVcH15mdtM4C/snXfnGB3BA0AACBLN7H7tcKVaORnS6Q5wwXOlzKGS70k3gNFrppoTMAAACAwFLooKF1CM5w8fvvv2es2l2nTp2McHHjjTd6oq0AAAAA7Bg0dOYlrVlQGjB0mllnuLjuuus81UYAAAAAdg4aOruTFnVr78W//vUvue+++8wMUAAAAACQWaFTgvZkaD2GrqKtMyHVq1cvy6rgOmzK2zMkAQAAAPCjoKHTr2ZenO/MmTMZf37vvff+74ShoabHI/Oq4LpKuC6ABwAAACAwuDW9rdZrOIOGM3zoAnUZJ/9/q4Lratu6xsUvv/xiTashgT5dGpAbprcFAASyeB+7X3OrwEIXstNN18lwOnz4cJbgoY8nTpyQHTt2WNFeAAAAAH6gUEHj6NGjUqlSpXyP0QX6dOvUqVOW12ngAAAAABAYChU0qlatKhUqVDB1F02aNDGL8elj+fLl832dhpMrBRQAAAAAARo0KlasaHonFi1aJIsXL87Yrz0YmYOHbjo+DADyk5KaLGcunrbsIp29eIYLDgCAPwYNrb84duyYrF+/3mzr1q0zQ6IOHTpknps/f37GsTVr1swIHvqoM1AVL17cE98DAD80e8s8GX8gUeRSmGXnjEpIl0mWnQ0AAHht1ik1duxYGTVqlFSuXFlq165tqt11dqmkpKSMWaecM08lJye71Vh4j6/NYgD/78n4+8gPpMfsc1LiUrpH36vq+h5SsUYNj74HAAC+IN7H7teC3Xmxrp2hIWPixIlmqtvly5ebng5dX+P999834UNzjA6tYhE/AE6n408WSchQpYuX4cIDAOBvQePNN980Q6IGDx6cZX9kZKT06dNHtm/fLs2aNTNh4/fff3e3rQBsIv18cpGEjLQSwRJZzvuf6AAAEIjcChr79u2TWrVq5fl8VFSUzJkzR06ePClvvPGGO28FAIUSEh0htSfcK0Ghbv01BwAAvLFgn05ru2vXrnyP0elwW7VqZWapeu2119x5OwA2Vum7zlKhalXLzhdaOpKQAQCAvwaN9u3bm1qMpUuXSrt27fI8TodSHThwwJ23AmBzIWWKSVhMCW83AwAAWMStMQUjRowwIaJ79+7y9ddf51n9vnbtWnfeBgAAAEAgBY0aNWrIrFmzzLS1DzzwgLRp00ZmzpxphlPpLFTfffed6fU4ceKENG3a1LpWAwAAALDv0Cl1//33y6pVq6R3796yevVq+f7777M8rzNORUREyCuvvOLuWwEAAADwE5ZMx6K9FTt37pRPP/1UOnfuLFWrVpVixYqZYnHt6fjpp5/klltuseKtAAAAAARCj4ZTcHCw9OzZ02wAAAAAAhsTzAMAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBvI1bdo0qVOnjsTFxXGlAAAAUGAEDeSrf//+ZuriDRs2cKUAAABQYAQNAAAAAJYjaAAAAACwHEEDAAAAgOUIGgAAAAAsR9AAAAAAYDmCBgAAAADLETQAAAAAWI6gAQAAAMByBA0AAAAAliNoAAAAALAcQQMAAACA5QgaAAAAACxH0AAAAABgOYIGAAAAAMsRNAAAAABYjqABAAAAwHKh1p8SgB0lX74sp44ds+RcZ/78y5LzAAAA30XQAHBF30z8QEpOPS7FLzm4WgAAoEAYOgXgij0ZhAwAAFBYBA0A+dLhUp7uybgYGSQxsbH8JAAAsBGCBgCv0pBx4ZmrJbxYMX4SAADYCDUaAAqt5PzWUrZiBUuunPZkEDIAALAfggaAQtOQUbFGDa4cAADIE0OnAAAAAFiOoAEAAADAcgQNAAAAAJYjaAAAAACwHEEDAAAAgOWYdQqwmfTkZEk6ecKy86Uet+5cAAAgcBA0ABs5NH2mHHvtgDguhXu7KQAAIMAxdAqwUU/G4dcOEzIAAIBPIGgANnHx+F8ScinE4++TGBksYTExHn8fAADg3wgagE3Ep6YVScj4vFd5KVOihMffCwAA+DdqNAAbe25MNUmIsu7zhODoYjKq4U0SGsxnFAAAIH8EDcDG3m0dJ1dXq2bZ+UqFhREyAABAgRA0Aszvv/8uEydOlJ9//ll+/fVXqVSpkhw4cMDbzYKHlA4Lk3IREVxfAABQ5AgaAWbHjh2yaNEiufnmm8XhcMjZs2e93SQAAADYEAOtA8x9990nR44cka+++kpuueUWbzcHAAAANkXQCDDBFPECAACgCPh10PjHP/4hQUFBZhs7dqy3myO7d++WqVOnSu/evaV+/foSGhpaqLbNmTNHWrVqJWXKlJESJUpIgwYNZMKECZKSkuLxtgMAAABW8tsajbVr18qkSZPMjbzWGviCGTNmyOTJk1167aBBg8xrNZy0adNGSpYsKStXrpRhw4bJwoULZdmyZRIZGWl5mwEAAABP8MsejYsXL5peg9jYWLn//vvFV9SrV0+GDh0qs2bNkl27dskjjzxSoNctWLDAhAwNF+vXr5elS5fKvHnzZO/evaZnZM2aNTJy5Mgsr5k5c2ZGb05+29y5cz303QIAAAA269EYMWKEuQlfvHixfPnll4V+/bFjx+Tdd981N+96M54XLZrWG/oXX3wx3+Oc+vbt61I9xKuvvmoehw8fLjfddFPG/piYGJk+fbq0aNFC3nrrLdPeUqVKmec6d+4sTZs2veK5dfpaAAAAoKj5XdBYvXq1qYN49NFHpUOHDi4FjaefftoMR9q3b5988MEHEhISkuOY/fv3myFMusZEzZo1pUePHuIJR48elQ0bNpive/bsmeP55s2bS5UqVeTw4cOyZMmSjHZo4HCGDgAAAMDX+NXQqQsXLsjjjz8uV199tbz55psun0d7M+rWrSsff/yxuXHPXmy9Z88euf32203IGDhwoDz00EPiKVu2bDGPZcuWlRo1auR6TJMmTbIcCwAAPE/vA3REgw7X9uRrPHEOwBf4VdDQ+gftadCia52ZyVUaVLRnpFGjRmampy5dukhSUpJ5bvv27SZk6LApndVKaycKMmzKVfr9qKpVq+Z5jPZoZD7W3foWrdvQ7Y8//sjy54MHD+Y4ftq0aVKnTh2Ji4tz+70BACgKzhv19u3bW35uvX/Qc7/88suWnxuwG78ZOqWzLr399tumd6FTp05un0/rH3RWJ/1LSIdR6UJ2//znP825T58+LaNGjSqSv0QSEhLMo05nmxctElfx8fFuv9+JEyekW7duWfY5//zhhx/m+PSkf//+ZtP3ZqgWACCQaJ2jTu5SmH//XHkNYFd+ETTOnz8vTzzxhJQvX97UZ1ildOnSsnz5crnnnnvMo25q/PjxZlpZO6pevbrPTAcMAIAvCwsLk+uvv97jrwHsyi+GTukaEzqUSWde0p4IK0VFRZlZrJyqVatmisWLir6/SkxMzLc2RUVHRxdZuwAA9uJwpEvq5dN+s2l7PTXkaePGjXLnnXeaf4O150FnctThVleqldDXtm7d2nw9evToLNPJO1+fW31FcnKy+aC0Xbt2Zjh0RESEXHXVVfLAAw9YUn+5efNm8556vszOnj1rvse2bdu6/R6AbXs05s+fbxay06ledcvst99+M4/vv/++/Pe//5UKFSrI559/XqghWVqjoVPRas3Gpk2bzF8i2rthdajJq4dB6axSeXE+5zwWAIDCSks6K/u/+r/JRfxBjQc2SmixcpafV2d6nDBhgvm3Xj9Y1Bt9Xc/q119/NXWaxYoVy/O1rVq1MkHio48+kpYtW5o/Zx4lkZczZ86YD011unqdMVPrTLVO8ptvvpFvv/1WfvjhB7dqIZ1T2euHspnp++g9jk5+c+rUqSK5rwH8Lmio1NRU+f77/6+9+wCPolr7AP4GQkmA0FvoHQQERBAFBOmIIgpIUUBAuRcbCChFEQWRoqDoVSkqekG5FOlwAQsoSFG6dBSQDgHpPWS/5//6zd7N7myyu5nNtv/veZaEnbJnJ7Oz551z3nN+dLscH3w80CLhKXzAH3/8cbl9+7ZMnz5d2rVrJ0888YQmiOPiYQQu/oTgBpAXgmRvs5GncOcFHOfYICIiIu9hqHjckOzQoYP9OQyZP23aNA04Uhpp0ggsEGjgd09zOVHhP3z4sMvcVjt37tQ5sYYMGWLvvu0LtI6gy5ZzoGFMJowu09u3b9dh+4nSU0h0nTp//rx+SMwe3bp103VGjBih/zdr+jSDYAKBBbbBXBwY5hYf0hkzZugFBx9+jD6VUkuDFYoWLWq/i/H111+7LMes4CgDmllxF4SIiIh8h+92xyADMHQ+GPNaWQ3f4WYT6GKofbSsoEXDeah9b6DbVOHCheXUqVN6Y9YMRpkkSm8hEWhYzZg/A92xFixYoH0zDZi8D7OB9+rVS2cfxwUJzZv+hDsZRhI6+lka0Mrx7LPP6u/PP/88R7AgIiJKo5o1a5re9DNubPrL1q1bdWJeDGefOXNme24HRr5EDge6NqUF3kNSUpIcP3482fMrV67Un1WrVk3T/ol8ETJdp6y0d+9eiYmJ0a5TRlKXI3zwMZQu1sHM4bhDULp06VT3iyDBCAwAM48D9rV48eJkOSe482DAkLqYGPCDDz7QJlQkbWG42++//14venXr1tUWGyIiIl9lzJJb8x5Cqbz+YDawCm48ArpS+8PatWvt3ZaaNWsm5cqV06HrUd9Ad61t27bZ5/OyIk/DmJsLLTTLli3Tuo43XcuJrBKRgcbIkSO1xSK1Dx1mH3/ppZc8/nBirokNGza4PI8PvWO/SbOLCSYGRECBCfJwQUITapkyZWTQoEFaBtz9ICIi8lVUVAa/JFeTZ/UOfPevXr1a6tWrl2zZ+vXrNdBIK+eEcIxYiZGvEESNHz+efyYKiJAPNNDNCQ9veRo8eHMHAIlhaZmjAonpeBAREVFwQhdrb1s/0MMhT548LkEG8iYcu0xbEWggrxN1EeSbYuJA1JGqV69uyWsQeSsiczSIiIiIfIGAAbwZLAY3LTGnBQaaMSBQGTBggCQkJFjyhzDyTFCup59+Wrtpo7cEAg6iQAn5Fg0iIiKi9IJZv+Pj43WIXIwmhQo+ci1eeOEFt4O2YBnm7UKLBnouYK4OTCB47Ngx7Q2B361q0Zg4caJ200L3b7wuUSCxRYOIiIjIi65Tc+fO1cFbMCT+66+/LkOHDtUWC3ceeughmTNnjg4sg3m7MJw9ApZffvnFsiRtI9BASwkGsunTpw//phRwUba0JBVQxECiO+7UXLhwwXTEDgq84wcPyuF7ZiR7rviGThJvMgkkERERhZ+LQVZfY4sGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZjoEGERERERFZLtr6XRKRp2yJSZJ4/polB+z2ues88ERERBQ0GGgQBUjC7B1yaPByuX3xBv8GREREFHYYaBAFqCVj3yuLJeOVJB5/IiIiCkvM0SAKgGtnL/o9yLgSk0Ey5Mzs19cgIiIicoeBBlEAnL96zu9BxozOuSRvXH6/vg4REQXWoUOHJCoqSp566in+KSjosOsUUZDoP6KEXMphUewfc0sGlcwmmaLZokFEkW3lypUyceJEWbt2rZw+fVqyZcsmd9xxh7Rt21Z69+4tWbNmTdP+V61aJQ888IAMGzZM3njjDcvKTRQOGGgQBYnJ9SpKvmLxluwrT2xeBhlEFNESExPlueeek8mTJ2tw0bJlSylbtqxcuHBBVqxYIf369dMAZMmSJfp8qCpSpIjs3r1bcubMGeiiELlgoEEUJHLH5pGCcYUDXQwiorAwePBgDTJq1aol8+bN0wq54fbt2zJ8+HB9tGjRQjZv3ixxcXESijJlyiQVK1YMdDGITDFHg4iIiMLKvn37ZPz48ZInTx5ZtGhRsiADMmbMKG+++aZ07txZ/vjjD3n33Xfty7744gvNecBPs25SWGZ0kcJPdJsC7A/LjAdyJxxbV0aNGiVlypTRrlpoQcH/Dxw44Da/YurUqXLPPfdI9uzZ9YHfzcrkLkfDsawbN26Upk2bSo4cObTl49FHH01WvrSU050RI0boNsuXL3dZhr8Jlo0bN87j/VFoYosGERFRBEiy2eTczZsSKnJnziwZoqJ82vbLL7+UpKQk6dWrlxQsWNDtekOHDpWvv/5aPv/8c23d8FbDhg21wo7Xa9Cggf7fkCtXLvvvPXr0kGnTpknp0qW1O9eNGzfkvffek3Xr1pnu98UXX5QPP/xQA6SePXvqc9988410795dtmzZIhMmTPC4jL/++quMHTtWA6J//OMfuv38+fPlt99+kx07diTLUfG2nCnB68Bdd93lsgwtSO6WUXhhoEFERBQBEGTcvWKhhIqNzVpL3ixZfNoWid/QuHHjFNdDl6P4+Hg5duyYHDlyRIoVK+bV6xiBBQIN/G6WDP79999r5b169ery888/S2xsrD7/6quvSo0aNVzW/+mnnzTIqFSpklbwjdwL7LtOnTrywQcfSLt27aR+/foelXHp0qXyn//8Rzp06GB/rmvXrlomBBwdO3b0qZyeBBpFixaV/Pnzuw008FoU3th1ioiIiMLKyZMn9acngYOxzokTJ/xSlunTp+vP119/3V55h8KFC0ufPn1c1kfQYgQWjgneuXPn1pGtwKwLlTv3339/siDDaLkwWjt8LWdKzp07py097losEGiULFlS3xOFNwYaRERERH6ybds2/VmvXj2XZXXr1nXb5cixG5bByAfZunWrx69fs2ZNl+fQ0gDnz5/3uZwpMcpnFmgkJCTI0aNHfWolodDDrlMUdmyJSZJ4/ppf9h2dK0aiohmfExEFs0KFCsmePXu0O1SFChVSXBfrGHfu/eHixYuSIUMGyZcvn8sys/wRY32zLkdYH0nUWMdTZqNpRUdH20ff8rWcKTGCJbNgwug2xUAjMjDQoLCSMHuHHBq8XG5fvOGX/WeMyyIlRzWX/O2r+GX/RET+TK5G3kMolddX9913n466hLyDJk2auF0Pwcjx48c16droQoXKtjECkzPMweEtVPSRmH7mzBmX4OHUqVNu18ed/wIFCiRbhgkHbTabX4bi9bacviaCG/kzDDQiA2/NUli1ZBwcuNhvQQZg33gNvBYRUSjBCE5Irg6Vh68jThnJzggYpkyZohV2d0aOHJksZwGMvAEkiLurQDsPlevcOuCoWrVq+hMJ1u4q3Y6MCjgCJWfGc/5Iova2nCnBcULLCxLtHSGQwehZwEAjMjDQoLBx66/LknTZ/wEAXgOvRUREwQndpZDAfPbsWXn44YddEr1R4cU8D0iAxpwRAwYMSJbTgEoyRmq6fv26/fn9+/ebDiuLuTocu2A5e+KJJ/Qnhs+9du1asoR1s/1169bNPi+HYxcptKbgOcd1rORtOd3BtmgpQsuL47C4+D+S2Xfu3KnBnPPcJhSe2HWKwsbNG+fT9bUyS2jOIktEFAkwdwQq55gjo1y5ctKqVSsNKlB5X7FihQYOeB7Dvzp2RcJd+E6dOun8Ggg6MHM4uixhdnH8btyRdx4iF4FJlixZNNEagcoLL7ygo0ah6xYmBsT+qlatKm3atNH5KWbNmqWT8GHyOqO7ljFKFLbFELdVqlSRtm3baiUdr4skasyxgXWs5m053cH8HGjdQbevli1bavljYmK0VQTH3sgxwfwgH3/8sR4zCl8MNChsXEx0bbbuP6KEXMqRtoa7HJeSZNzQP11eK3ua9kpERP6EhOfPPvtMg4bJkyfLmjVrNFjIli2bzlHxz3/+U3r37q2VYGeffvqpJkXPnDlTPvroI20hwT4QUDgHGug6NXfuXBk4cKDMmDFDLl26pM8/+eST9uFpMWQtXhNBDwIIBCN9+/bVeT5QgXfOucBcGeha9Mknn+jrQuXKlbW1AZP2+Yu35TRjdC9DoIcWDRwTwMzkmPwPx2nhwoXa8sEgI/xF2RAmE6UCdx9wwcTdIX8koVnh+MGDcvievy9ohl7vl5JLOdIWT+e4lCiT+x5M9lzcmnZSsEQJn/d56s8/5WK9OcmeK76hk8SXKuXzPomIKLQgoHnmmWf0zj6CnnAoJwK4SZMmye7du7W1hyK7vsYWDQpr/7m7ZpoCAntQIMkDjY4bN8mlvX+POe5z8JKmUhERUahAnoMxNK0ByeZvvfWWtog89NBDEi7lRIsGJvwrX768n0tLoYCBBoW1XJky6eglaXEjUybxfMRyIiKi5EaPHi1LliyR+vXra+7C4cOHZfHixdrNCjOAezKDeSiUE7kZyNG48847PcrnoPDHQIMoFXHRfw9d6Jy3IeI6xrqn/t4+9dchIqLQhyTyXbt2aSX+3LlzkjVrVq2MP/vss5qAHS7lxGhTyL3wx/C7FJoYaBClInOWXC7POSeH++t1iIgo9KECj0e4lxMJ60z9JUds1yJKRVSGjGH1OkRERETpgYFGhPn99991RIi77rpLMmXKJCVLlgx0kYJedK4YyRjn33G+sX+8DhEREVG4YKARYTAjJxK7EGBgIiBKXVR0Bik5qrnfgg3sF/vH6xARERGFC+ZoRJiHH35YHnnkEf0dLRvLli0LdJFCQv72VSTfo3dI4vlrlu8bLRkMMoiIiCjcMNCIMBxuzncIBjLly2bhX4OIiIgofIVMX42vvvpKunbtKtWqVdOxnZFfgJkPa9euLaNGjZLLly8Huoiyd+9e+fDDD+Wpp56SqlWrSnR0tE56g4luPDF79mxp2LCh5M6dW7Jly6bvdezYsXLr1i2/l52IiIiIKCJbND755BNZu3atVKpUSROZ8+TJI6dOnZJ169bJr7/+Kp9//rn8+OOPEh8fH9AyTpgwwadt+/btq9siOGnUqJFkz55dfvjhBxk4cKAsWrRIVqxYITExTBYmIiIiotAQMi0a48aNkzNnzmgyM/IKvv76a/n+++/lyJEjUq9ePR1NqX///gEtI5KrBwwYoK0vu3fvli5duni03fz58zXIQHCxYcMGWb58uXzzzTeyf/9+bRlZs2aNDB06NNk2X3zxhbaWpPaYM2eOn94tEREREVEYtGjcc889ps/nzZtX3n77bbn//vv1rr8nTpw4IVOmTNHKOyrj7hw9elQr9K+++mqK6xmefvppn/IhUH4YNGiQttYY8uXLJx9//LHUr19f/vWvf2l50V0MHn30UalTp06q+y5SpIgEM1tikmUJ1rfPXbdkP0REREQUQYFGStDdCLJk8Wz40X/84x/aHemPP/7QLlcZM7pOlHbw4EHtwnTo0CEpU6aMdOrUSfzh2LFj2vULOnfu7LIcrTXFihXTlpulS5fay4GAwwg6QlXC7B1yaPByuX3xRqCLQkRERESR2nXKnUuXLskbb7yhv7du3dqjbdCaUblyZfn3v/+tFXfnZOt9+/ZpCwmCjBdffFE6duwo/rJlyxb9iZyTUqVKma5z9913J1s3HKAlY98rixlkEBEREYWpkAs00D0KozphBKrmzZtr1yA816JFCxkzZoxH+yhYsKCsWrVKatSooSM9tW3bVm7c+Puu+o4dOzTIQLepV155RXMnPOk25Su0nEDx4sXdroMWDcd10+Lq1auat4HHgQMHkv3/zz//dFn/o48+kjvuuENq1aolVrp29qJkvJIk/nQlJoNkyJnZr69BREQUSLjZinoK6jX0PxjF05/1NwrTQGPXrl3y5ZdfyrRp0zTAQIsGuhwhl8KbrkTIf8CoTsj9QDcqTGSHpGucmBjNatiwYR4HLmmB8gOGs3UHSeJw8eLFNL/e6dOnpX379vr49ttvJSEhwf7/lStXuqz/3HPP6TE3undZ5fzVc+LvIGNG51ySNy6/X1+HiIiCF77XOnTooDfs0L0avQfQJfm9996T69etyevDzU9UaNELgkSPA44HbgC7g6AI62DiYApvIZejgWFg8UB3p8OHD8uCBQt0ngqMRDVv3jxtjfBUrly5tLLdqlUr/YkHjB49WoeVDUclS5YUm80mwaj/iBJyKYdFsW/MLRlUMptkimaLBhFRpElMTNQbZZMnT9YbeS1btpSyZcvKhQsX9CZlv379ZOLEibJkyRJ9PpQ9//zz2sU7pZ4RRIEScoGGARP2IUkbF4u6devKvffeK08++aROmufNfBM5cuSQwYMHy+rVq/X/JUqU0GTx9ILXhytXrrhdx5iMMC4uTsLZ5HoVJV8xa+ZByRObl0EGEVGEwvc6ggx0+8VNSMcRGG/fvi3Dhw/XB+66b968OaS/X9FDAw+iYBRyXafMoPsT8ggwMtPGjRu92hZ3NpCjgaFoa9asqXkKDzzwgM7ZkV4tDICyu2MsM9YNV7lj80jBuMKWPNiSQUSUnC3JJrfOXAmZB8rrCwzoMn78eO0mha7RzsO8Y6TJN998U7tdY/TJd999N9lydOlBN2oz+B52/C7G7+jODRjQxZjDynn7uXPn6sAuuBGKPNFnnnlGzp0757I/A+og6L2BfaLLV4ECBeTxxx/XPFJPcjSM7kvo1oV5xjAkfu7cubV1p0mTJrJt2zbT94eJj9EzBOth+gB0O0MdJL3yHTZt2qQtNJiXDN3hcbwwnxh6mjgP3GNAt/cGDRq4lNmM47FCl3tMKRAbG5vs74V6YM+ePfW8yZw5sxQtWlT/j140zozjgrJh3/hb4u9Vvnx5nZ7AGbrrYV64atWq6ftDmbEN/rbu/iahLmRbNJwZOQ7IQfDUwoUL9Y+LuxvTp0+Xdu3ayRNPPKEJ4jh5vvvuOylUqJAfSy2akA5nz57VZG+zkaeM4Mlxjg0iIiJvJP51VTbdMSFkDlrNXX0kUz73+YvuoOKflJQkvXr10kq9O5ibCpP/Yph7tG74AsEAKqyoJPbp00e7ZINj8ID9o6KKVhMMZIMKJoarb9q0qVZQ0UPDEXIn0UsDQRDqIugWhfoBBm1BVy9M6os8E08g4MCcWxhps0ePHrpPdDnHDVVMLOx4fHDjFV3JEYihsh4fH685LngtBCnpAaOCIjhEsPPggw/qgDUICtBChVxRTGbsCBM3o1scbhYbZcZz6OmSUpnfeecdfW+PPPKINGvWzD7NAYJUvF/8DZC7i+OG4A5/Q5QLQQ2CCGcYwfSXX37RsmBfs2bN0q57mTJl0qDS0K1bN1125513Svfu3TUoQVCEsuD9IQAJN2ERaCDyNyJBsxPADIIJBBWIRPFHR7QPM2bM0AgaQ9/iRMcJa4z65A+IlNG0ixMMFzxMDugIJzVOQpyM+NARERGRe2vXrtWfjRs3TvEwVaxYUSummM8K37O+fNcj0Ni6davWQfC7c+vE+fPnNQDBzVDcNCxXrpx9ol6MnIk7+Oiy7Qg5oggIULk2JvQFBCcIBFBBRTdxTyYFRguFc94pAizktk6dOlUnCgbccEVghp9GcOFYOUadyFtoSTGmH3DmLnF+yJAhOtql4/xmyCvFhMio7P/8888aRIARTCIf56effrKXGeujKz3qVCkdlw0bNmhriSMkpyPImDRpku7bgNYJBA69e/fWeqEzjFSKgMTogoe/OVplxo0bZw80kB+Euid6z+C1Hd8jjrsxOFC4CYmuUxj16KuvvjIdIQLRJ0ZMwvC0iNqdTxozxvwZmOgPkb0RZAD+8Lg7gRNs//79GmxgGFh/wgcLcDFAX1EDWjmeffZZ/R1NiaE+QR8REZG/nTx5Un96EjgY65w4ccIvZUEdA3mWaNEwggxA/QOVfWc3b97UG57oAvTaa68lW4abjWgFQQUeFW5PoJfEyy+/nOw5lAUcR5PETU10GcJdfOfWEpTTbGLj1CBYQhc1s4fR3cwZEtqdXws3hFHJB/Q0cSwz6mcPPfRQsjJjfQRoKZUZdTzn+iK6RiHIQld8x1YIIwBBYIrRSs26ZY0aNSpZnk+FChU0INq7d689gEC5EARlzZrVJUhEWY3WsHATEoEGukMhOkWyU/369TVIQF4FWgIqVaqkzWr4OXPmTI/2ZySMownSbPg1nAyIZhGRorKP4W49gSABwY7xwP4B+3J83vmC1qZNG50YEBcjLEfTG7pxYSSM3377TU/WESNGeFQGIiIiCg5Gbwuzrk7IL0XA4WjPnj16U7V27dqaO+AMXZ4ArSieqF69ukulFj0pjNYWT8qJYMyXEa3QYoOKtdnDbDh9I9BCfg3ePyruKDvqZGgFgOPHj7uUGfVCZ2glSinQxP6dGccU+R7O+SgohzGqqdmxN8qX0nGOi4vTYBFBIrrCIxhC65u73JNwERJdp9BHbuTIkToyFD6EmCEbfxgkeqFp9LHHHrP3dfME9oVo1rm50tn7778vL730UqrrGTDPBZrDzJrU8DAYkwM6wsSACCjQZGiceBhVC82aKAMSkoiIiHwVnSdW8x5Cqby+QG4l6gq484w7yykx7k4XLlxY/MGY/wrJ3M5QeXUeLcpY311uiVFOT+fVMhtNywhu0F3Hk3Ia5bFi0uDU4CYrciHQDR45FygP8hxQWUc9ybH+hK5IqZXZXRcts+OblmPv6XGePXu2BhiOXeWxLeqweN4suAx1IRFo5M+f3969yCqeBg+ergdI2krLHBVITMeDiIjIalEZonxKrg419913n/Z0QF96jLDkDoIR3CHH6EKOd79xNxv9/s2gcutNN2ajAmo2UA1yDJBj6jgqlrG+u54URrcwq4fjTamcKZXHSujKhSADLSHoEeLY9Wn9+vUaaDgy/g6+lNlsBK30OPaxsbHaFQ0PBG5o2cF8Lnhv165d0x4w4SYkuk4REREReQIjO6G1ACMYIbE3pd4NgNGYHGG0IiSIO8PdccfuRgajQux459pgjCJkllOBUYqcAxrkAaAPPyrdGHHJmTGELbpEWSmlcqJHhtnQrlZDTgcYI185MuY6Myuz2TLkm6Q0bYAZ45gisdz5pjH+j+cd10urUqVK6bmHxPTs2bPrSKjhiIEGERERhQ10lzJyLJHc7JwXiZYE5D1iWHt0UR4wYECy5cj/RFCBCqBj7gAmCDaDbtxgVrHF8KmoRH722Wf2ijQgwMDoT87QTRp5qGjpQIKxo2XLlunQtsjfNEZesgpyM5CHgRaFdevWJVuGcpoFUVYzepAgydvRzp07XY6FUWZU1hcvXpxsGwQF6AXjbZnx/pEDg9fDCFeOMPkjhgNu1KiRzyORJiQkmM6DgvlU0CUMAWY4ComuUxQ8/rpxQ26Z5Jh463yYJz8REVHgjB07Vrs5ocKI0Z5wlxxBBfrXY74IjCqJ5zFkrHNXGAQUWAeJu6j0o7vLt99+q6MCmeVyoPKJSf+Q+4mBajCULSrNXbp00W2Q3IxlSBjGnBjGPBrIK8Xwus7J2mPGjNEgB91rkLOJpHEEPujfj7JgWFpPhrb1BloQ0IWndevW+n6QH4H3inKgdQetB9u3bxd/QoI2HphyAMEhBsdBSwru9OPvh3lEHOEYIADA3wld5Ix5NDAyFLbHXBXelvmTTz7RAAajTiHowghUCDxQBnTjx3JfHTt2TOdOw7FE2dBlDsEwRiZDXq5zwBsuGGiQV1otWCgZLUhWynEpScbx2BMRkR8gERetCAgUUBnFHe958+ZpEIBRKjFcKeZEwAiUzjCBGyq7mMRv2rRp2mKBYfSRrIu5EZxhpEgENuiqhXkTUGnEyEUINACVVnTHwvYYPh+BBir0CCgQkCAAcoQKLQaWQasLKqHoGoRtMELlsGHDTMtgBbwPBFivv/66vn8cGwy4gxE9UZm3Oi/ELNhB6wQGwUHrDbqPIRhEEIeyOQcagAADuTgYChiBmFFm/I4udL60hmG+EwzBizIgVwR/DyRr49h7k7frrGTJkjqvCAIhDNOLIAODAWAEKrTAmY2CGg6ibGnJXqaIgbtAuNB9l3eoZMvgn+a94hs6SbzJzOhEREThBvNhoCKNQWA8HZ4/EDAPBEZiwrwTZiNrUnDW1y5cuOD34NATzNGgoBEX7f2EQERERMHM6IPvCCMMYeh6QEtFMLhy5YrL7NTIc8CEfyhvsJSTQgu7TlFQuB1zW2ILFgp0MYiIiCyFPAfMxo0uWUg4RqI3us8g78LIhwgGyFtBfgKGly1durQGHei2tWvXLp3PDBMLE3mLgQYFXFTMTSk2sKRk4KSEREQUZlBJb9q0qQ4dO3/+fH0OI0chBwMJwFYndvsKycnIRUFghPwEjIyFwAhlxORyyG8h8hZzNMirPn8nd++SuBw5LD1qWfIXYJBBREREFGY5GmzRIK/ExBeRmCA4cYmIiIgouAVHex0REREREYUVBhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGQ5BhpERERERGS5aOt3SeHIZrPpz4sXLwa6KERERERkwqinGfW2QGOgQR45e/as/ixWrBiPGBEREVGQ19ty5swZ6GIw0CDP5MmTR38ePnw4KE7cULqzgODsyJEjEhcXF+jihAQeMx43nmvBjZ9RHjOea8HrwoULUrx4cXu9LdDYokEeyZDh73QeBBmsMHsPx4zHjccsPfBc4zFLLzzXeMx4rgV/vS3QgqMUREREREQUVhhoEBERERGR5RhokEeyZMkiw4YN05/kOR437/GY+YbHjccsvfBc4zHjuRa8sgRZfS3KFizjXxERERERUdhgiwYREREREVmOgQYREREREVmOgQYREREREVmOgUaEWrp0qbzxxhvy8MMPS3x8vERFRenj6NGjadrvzZs3ZcyYMVKtWjXJli2b5M6dWxo2bChz5sxJddvZs2frutgG22IfY8eOlVu3bkmwuHTpkgwZMkQqVKggMTExki9fPmnVqpX88MMPXu9r1apV9uOe2gMTJTp66qmnUt3m+vXrEo7HDXCepPTeCxUqlOL23333nTz44INaDpSnYsWK8uqrr8rly5clHI/Z1atXZfHixfL888/r5ypHjhySOXNmnUyyY8eO8vPPP7vdNtjONauvE5s2bZL27dtLwYIFJWvWrFKqVCl54YUX5PTp0ylud+rUKT2eWB9Jl9ge+9m8ebMEI6uO25YtW2TUqFHSuHFjfc+ZMmXSfdavX18++ugjt/vz5Ho3ceJECcdj9sUXX6T63pctW+Z2+0g910qWLOnR9+Pw4cND9lzbu3evfPjhh3qdrVq1qkRHR2v53nrrrTTt19fvuN9//13LUrRoUT3X8BP/P3DggM9lYTJ4hMqVK5fOHukMM1jjxPIFKjNNmzaVtWvX6v4bNWqkJzUqRomJidK/f3959913Tbft27evTJgwQT9k2C579uy63fnz56VevXqyYsUK/bAEEioe+DLdt2+fFC5cWMuFL4DVq1frcpQfFRRP7dmzR0aPHu12+S+//CK7d++WMmXKyP79+/XiY8AH/8svv5S6detK2bJlTbefMmWKVgICzerjBvgS+/HHH6V58+amQQUmlsR+zbz33nvSr18/PZ4oF760UZaTJ09qpX7NmjV6cQ6nY/bpp5/KM888o7+XKFFCqlevrp+1bdu26RcLjsWIESP0i8hZMJ1rVl8ncAOkU6dOen2qVauWVuQ2btyoX6o4L3AumL1n/F3w98HfqXTp0nL33XfLwYMH5ddff9WyzZo1Sx599FEJFlYdNxwn4++MfeCY4TjhBtW6devk9u3bUrt2bVm+fLl+BzhX/h544AFdv0WLFqb779atm64TDKw81xBodO/eXa/l2NYMvh9R0XQWqecaDBgwQM6cOWO67K+//pJFixbp7z/99JMeo1A81/r+//Fyhuvxa6+95tM+ff2Oww2nZs2aaV2ucuXKUqVKFdmxY4fs3LlTA0YEL3Xq1PG+QBh1iiJP9+7dbW+//bZt2bJlttOnT2PkMX0cOXLE53326dNH91G1alVbQkKC/fmNGzfasmfPrssWLVrkst28efN0GdbZtGmT/XnsA/vCsv79+9sC7ZFHHtGyNG7c2HblyhX780uWLLFlzJjRliFDBtu2bdsse71KlSrp640cOdJlWbdu3XTZ1KlTbcHOH8etQYMGus+VK1d6td3mzZttUVFR+rpLly61P49yoXzYZ9u2bW3hdsy++OILW48ePfT9O0pKSrKNGzfO/vlftWpV0J5rVl8njh07ZouNjdXtJk2aZH8+MTHR9uSTT+rztWrV0mPkCP+vUaOGLu/SpYuub8B+jDKeOHHCFgysPG63bt2y1axZ0zZr1izb9evXky3bvn27rXDhwro/fL84w2cVy/DZDXZWn2v47GAbfJa8EcnnWmrGjBmj+ytfvnxIn2tTpkyxDRgwwPbVV1/Zdu/erX9nlH3EiBE+7c/X7zgsj4+P1+WDBw9Otgz/x/PFihWzXb161esyMdCgv0+ENAYaf/31ly1z5sy6jzVr1rgsx4cGy+rUqeOyDF/mWPbWW2+5LFu9erUuy5Ili+38+fMB+2vt3LlTy4EP76FDh1yW9+zZU5d37NjRktdbu3at/fVQIQrWyl+gjpuvgUb79u11u6efftplGcqHCjyW44IfKecaGF9A2HewnmtWXydefvll3aZJkyYuyy5dumTLmTOnLsfNGEcI9vB8rly5dD13x3LQoEG2YJCe19dp06bp/mJiYmw3b94M2cqf1cfM10CD55p7FSpU0GM6evRol2WhdK65u976Gmj4+h330Ucf2QO327dvJ1uG/+N5LJ84caLXZWKOBlmW84H8jOLFi2sXC2edO3fWn+vXr5fjx4/bnz927Jg2ATuu4whNrehHfuPGDX2NQJk3b57+xHtD1xNnRtnRlGtFTsnnn3+uP9HsixyaUJXexy0lOD+XLFmS7HUdoXzGuWuUO1KOWY0aNexdJ4ORP64TxnE22x+6e7Ru3Vp/nzt3rul2WI71nBn7c94uENL7+mqcR9euXXPb5SXYBdN3Es81c+jig9wGdM9CFyhK+3ec8X/k7GXIkDw0wP87dOjg83Ut2ustiNwkCAL6j5pB39I8efJov8qtW7faK8/GdliG/tFmsE9UgLAu+lMH4/sznr9y5YrmU9xxxx0+vxb6R86cOVN/79mzZ4rrrly5Un777TdNHM6bN6/2j0YCWLDMCOrv44aL4/z587Vig36o9913n/Yxdb5QGn2dcWxTKw/6shrlDvdzzYD9APJBgvFcs/o6gfeA3BRjO3f7mzZtmsu54OnfB8cUfyP0bQ6U9L6+GucRBhrAa5pBrhGSd1GhR/I9klQxyAFuUgUDfx4znHPod498CwSp6AOPgNVdThjPtZRvxOH6k9LAH8F+rlktLd9xnp5rvnw3MtAgSyA5DVL6ACPJHIGGsa6n2+HukeO6gZBaOePi4vRx8eJFXTctlT+M2IGKUIECBeShhx5Kcd1///vfLs+hsogLsbskuHA6bh988IHLc+XLl5fp06droqpZWZCkilGXzETauQYIHoy7YG3btg3Kc83q68ShQ4fsv7vbp7v9pVYWYzv0SMXrIKkyUNLz+or3i5GFANctdwEoBsEYNmxYsudwZxqDG2B7/B5I/jxmuBPvPMIbKsAYAXLgwIFelyUSzzUE70iA9+RGXLCfa1bz9TsO9Y2zZ896dK4lJCR4fQOFXafIEjhRIaWTz+hmgApSWrdLb+lZTuNuTdeuXd2O5IPhAjFSBUaEwOvhzg1G88Ad/RMnTuhdMoy8EWj+Om4YSQMjHaH5HBc9jHqD1g180eKuTpMmTXTErvQoi9XSs5wYFQ5N7BhNCCN4YbjrYDzXrD4mxv5S2qe7/aVWFsfuVIE8j9L7XHrzzTd15Cnsz2w0PYwEhxF2MFoczht8brdv3y4vvfSSjo6DkXKeffZZCTR/HDPcdceIbhs2bNCKGrZD9yxc49EFa9CgQfL22297XZZIPNcQZOC6hWOKFg0zoXKuBVs9zF/nWniFcxHglVdekYULF3q9HYa3dDesXrgLpWOGpnUM1Qc9evRwux4umI5w9wJDC6OCjaEOFyxYoBdadFMLx+OGof8cxcbGSpEiRaRly5YahOBLfPDgwdqtKj0F8zFzhvwOjMWPAAJdG9FNKFDnGoU2tHahiwq6LOJGSbly5UzzN4wcDgOGcx0/frye+2hNw80DVAAx/HI4QYufc6sfuqJg2GgE8hjaFscPd+jRBZTc++yzz/QngjR3LRKRfK4FIwYaIQaJ1LiL6y1/T0RmNNPhzkFqZUC3j7Rul97HLD3K6diace+990qlSpW83h53a3BnEZU/zJGAfsRGk2c4HzcDumvgzmGbNm10AixUpo1WIZ5r/4MWDCT94RghQRDj3OfPnz9g51pqrP7bOXYrwD5xB9TT/WFbdAF1VxbH89+Kczot0uOcR1dP46YIKm8IXr312GOPaYUPwSoGOQhk5S+9r1l9+vTRCRCRPI+Wwi5duiQrC8+1/0FrtdH1LKUbcaFyrgVbPSylbdNyXWPXqRCDvuf/PyyxVw9/96HGDJ7gPIO1I2PWcWNdx99TGu3GWOa4XXofs9TeH5oSjeZEX8uJya6MfvCp9T1NiWOAkpaZ3kPluLl7/+iS4DjyjbF/TBzl2FQcaecazrMnnnhCRw9BYIAkb7PRrdLzXEuN1dcJx/fr7ji7219qfx9jOwRivh5Xq/j7+opzCF3vkpKSZNKkST5X/hzPJX+eR55Ij+8kRxkzZrS3ADm/d55r5jfi0CqBiedC/Vyzmq/fcQg0jMEbUruuYeACbwe4YKBBlrjrrrv0J2bVNYOZdnFnBhybNI3fkYjkLkHM2KfxGsH4/ozn8QFEMrIvMJsuRsdAX0hjKDlfGEld4C4hLJyOm6fvH19M6GLlSXnC9VxDkPHkk09qP2cjyHA3sk4wnWtWXydwR86Y8dvbc8HTvw8qj2bD36Ynf15f0S0RrWI4pz755BP7zPNpPZcCfc0KxHeSu/fOc836G3EpHe9QVyEN33Genms+nfM+zAdCYYgT9qVsx44d9knU/vzzT79MovbYY4/pPjCDc1qMHz9e9xMXF+cyaVY4HjdnL774ou4TM6t7O5kRyhnoCfv8dcww6VLnzp3tM7z+/vvvaS5rep5r6T1hHybkS23CvsuXL0fkhH0LFy60ZcqUSWcg9mUCL2dHjx7VSf5QlpkzZ9oiaZJDzKBtfP9u2LAh2TKea8nPORyjHDlymH7uQvVcS+8J+9x9x/lzwj4GGuTVzOCNGjXSGTnnzp3rsqxPnz66jzvvvNN25syZZBfS7Nmz67JFixa5bDdv3jxdhnWwrgH7qFq1qi7r379/wP9SjzzyiL1icvXqVfvzS5cu1Q8vZtzctm2by3ZdunTRY/bhhx+63XdCQoJ+cWP/P//8c4rl2LJli23BggW2W7duuVwMPv30U1vWrFl1P6+99potGFh93H744Qed+TUpKSnZ8zdu3LCNGjVKKz94PRwLZzi/sByv+9///tf+/JUrV+wVxLZt29rC7Zjh3OjatavXQUYwnWu+XCdwncLxwHXL2bFjx2yxsbG63eTJk+3PJyYm6nHE86hwOp9n+H+NGjV0OY4p1jdMmjTJXsYTJ07YgoHVxw2V38yZM+vnCO/XU++//75e55zhPDaOZ5kyZWzXr1+3hdMxw7XlX//6l+3ixYsur/Pjjz/aSpYsqfurV6+ey/JIP9cctWnTRrd/5plnwupc8yXQwPUdxwzXKau+47A8Pj5elw8ZMiTZMvwfzxctWjTZ95GnGGhEqOHDh9vuuece+8MINPAhNJ7r3bu3y3YlSpTQ9aZOnWp6ot577726PHfu3Hoyt2jRwl6B7tevX6p3obEutsG2xh3FunXr+nRyW+3UqVO2cuXKaZkKFy5se/zxx20NGza0V2wnTJhgul2DBg10+bBhw1K9M1yxYkWPL+Y4xrhw4C71gw8+aCtevLj979ipUyeXymG4HLf33ntPny9YsKCtefPm+v6bNm2q/zfe/4ABA1I91nh9lAPlQbnwHC7eZl9QoX7MsL5xbLAffJmZPRCoBfO55u11AtcpLMN1y8ysWbPsd/hwzevQoYOtdOnS9vNr//79ptvt2bPHlj9/fl0P62O72rVr6/+jo6NNb8QEklXHDecl7uQblQ535xEezp+jnDlz6rGuWbOmrV27dnpO43cEzdgfzqldu3bZwu2YnTt3zt4CUqdOHX3faL2uUqWK/TOESvjx48dNyxGp55rzeWfUI9avX59qGULpXNu0aVOyuli+fPnsny/H5x3PD1zfsQ6u91Z+x61Zs8Z+8wXnJ1rNjfM0W7ZstnXr1vn0HhloRCgjak7pYXYSpxRoON5VxsmJ5kl84O+//379Qk8NmjGxLrphYFvsY/To0brPYHHhwgXtEoFKIL448uTJoxfT7777zu02ngQaxt2esWPHplqGAwcO2Pr27at3wIoUKaJ3lVEWXDxxUcUdx2Bj5XHbvHmzBsH4ssXFE/vD+YI7VLjrl1qLEHz77bf6+igHtke5Bg8ebHrXMVCsPGbGF5O3n/lgPNe8uU54UonZuHGjVvxQmcOdeqz73HPP2U6ePJliOXAXGethfWyH7bEfxzu5wcSK43bw4EGPziM8sK4jXNvQUle2bFn9XkAlGec0zq133nknqD57Vh4zrDt06FBby5YtbaVKldKuP3jvOF/QYomWidS+4yLxXHP07rvv6jqVK1f26PVD6VxbuXKl15+n1AKNtHzH4eYKvkfRuoHgDj/x/7R0tY3CP95ndhAREREREbnHUaeIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIiIiMhyDDSIiIgssGfPHunRo4cUK1ZMsmbNKiVLlpSBAwfK9evXeXyJKCJF2Ww2W6ALQUREFMqmTJkizz33nERHR0uDBg0ke/bs8sMPP8hff/0lLVu2lKVLlwa6iERE6Y6BBhERURrMmDFDOnfuLHXr1pVZs2ZJfHy8Pn/69GmpWbOmHD16VL799ltp0qQJjzMRRRR2nSIiIvLRsWPHpFevXlKiRAlZsmSJPciAAgUKyFNPPaW/L168mMeYiCIOAw0iIgpaV69elffff1/q1asnuXPnlixZsmil/uGHH5avv/7aZX20HrzwwgtSrlw5zZPImTOntjRMmjRJbt++7bL+/v37Na+iVKlSum90ecL+W7VqJVOnTk21fG+++aZcvnxZ3n77bX0tZwULFtSfBw8e9PkYEBGFKnadIiKioHTkyBFp0aKF7Nq1S2JjYzVgyJs3r7YibN++XXLlyiWHDh2yr//rr7/q+siLKF68uNx7771y4cIFWbVqlSZkN2/eXBYuXCiZM2fW9Xfs2KH7vHjxolSoUEEqV64sGTNm1GDlt99+kzJlysjWrVvdlg/7Lly4sAZAhw8f1m2dvfPOO/LKK69oYITXJiKKJNGBLgAREZGzpKQkeeyxxzTIaNasmUyfPl3y589vX47AAcnWhhs3bkj79u01yPjnP/8pH3zwgWTKlEmXHThwQBo3bizLly/XFoiRI0fq8+PHj9cg46233pJXX3012etfu3ZNA5eUzJ8/X9dDq0XPnj1N19myZYv+RIBERBRp2KJBRERBZ8GCBdKmTRttMdi3b592aUoJApEuXbpojgQCC3SDcvTNN99Iu3btJEeOHJqkjW5V6B6F0aA2b94sNWrU8LqMeD28ridGjRolgwYN8vo1iIhCGXM0iIgo6Cxbtkx/YjSn1IIMQPco6Nixo0uQAWgdQRenS5cuyaZNm/S52rVr68/evXtra4e3810YLR5odcFI8c4P5JcYZTFei4gokjDQICKioPPnn3/qz4oVK3q0PvI2AEndZqKiouzLjHVffvllHXJ2w4YNmtsRFxcntWrVkv79+6fabSoxMVH++OMP/b1o0aKm6/z000/apSsmJkZzQYiIIg0DDSIiikhIMMf8Fr/88osMHz5c8zjQTQu5G2iBwAR87qBlBMEGuGtxmT17tr01xayVhYgo3DHQICKioINRo2DPnj0erV+kSBH9ifwMd4whZo11DWjFGDp0qPz3v/+Vs2fPaoCAVoiPP/5YVq5c6baFxHDz5k2X5dgPJvKD559/3qP3QEQUbhhoEBFR0EFXJkBl/cqVK6mu37BhQ/05c+ZM01yLefPmyblz5zQZHLN1uxMdHa1J4xgKF9wNb4uhdfEADLXrDInfyNHAvurUqZNq+YmIwhEDDSIiCjqtW7fWkaCOHz+uw9aihcARggm0QBiwDlpBsH6/fv3s3ZqMlgzkXQAm88OIU4AWi71797q89smTJ2Xjxo36OybvcwejVsGIESN0OF5AEjiGz/3000+1PBMnTkzjkSAiCl0c3paIiII2IRwtCwgGkE+B2cGNCfu2bduW4oR9CBDQkoBcCsy3YTZhX/Xq1XU/SBKvUqWKJoMnJCTI6tWrdX6MRo0a6WhUaOUw8/vvv2swhJnBkbRerVo1nTcDeR7ly5fXkbPcJacTEUUCBhpERBS0UIlHy8OcOXM0XwP5EIUKFdJKPYa+7dChg8ts4mPGjNHWDszwjSRsBBFdu3aVp59+OlnQsGTJEn2sX79e18VM3wUKFJCyZctK9+7dpVOnTvZJ/9zBDOJDhgyRNWvWaNkQYGCI3T59+thbToiIIhUDDSIiIiIishxzNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiIyHIMNIiIiIiISKz2f5itXx1Hs/Y4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8JElEQVR4nO3dB3hUVd7H8f9MekghofeqIIooimtBRbCsunZdy7r23iuWteDr2n13LWD3VVfXuvayFlR0RUVUVkV6L6EmIaRn2vucw4YFzf8E7mQmmZnvh+c+E3Jm7r1z587NnDnn/I4vEolEBAAAAAAUfq0AAAAAAKg0AAAAAGgWLQ0AAAAAnKg0AAAAAHCi0gAAAADAiUoDAAAAACcqDQAAAACcqDQAAAAAcEp3F6Mp4XBYSkpKJD8/X3w+HwcJAAC0WWYe38rKSunevbv4/a3/fXFdXZ00NDTEdBuZmZmSnZ0d022kGioNHpgKQ69evVr+1QAAAIiRpUuXSs+ePVu9wtA+p73US31Mt9O1a1dZuHAhFYcWRKXBA9PC0PjmKygoaMnXAwAAoEWtX7/eftnZ+PmlNZkWBlNh2F9GS3qMPoYGJSgTV35it0VrQ8uh0uBBY5ckU2Gg0gAAABJBW+pSnSmZkiEZMVm3nyG7MdH6HdsAAAAAtGm0NAAAACCufOZfjFo+fJG206KSTGhpAAAAAOBESwMAAADiyow7iNXYA8Y0xAYtDQAAAACcaGkAAABAXPl9PrvEZN3iE4nEZNUpjZYGAAAAAE60NAAAACCufLY9IDbfXcdqvamOowoAAADAiZYGAAAAxBVjGhIPLQ0AAABIOiNGjJAhQ4bIhAkTWntXkgItDQAAAEi6MQ1Tp06VgoKCmGwjFdHSAAAAAMCJlgYAAAAk15gGtDhaGgAAAAA40dIAAACAuDLjDsy/WK0bLY+jCgAAAMCJlgYAAADElc/ns0tM1s2YhpigpQEAAACAEy0NAAAAiKsNszTE5rtr0pNig5YGAAAAAE60NAAAACCumKch8dDSAAAAAMCJlgYAAADElRnREKv5FJinITZoaQAAAADgREsDAAAA4srv89slJuvmO/GYoKUBAAAAgBMtDQAAAIgrM2tzrGZuZkbo2KClAQAAAElnxIgRMmTIEJkwYUJr70pSoKUBAAAASTemYerUqVJQUBCTbaQiWhoAAAAAONHSAAAAgLjaMEtDbMY0xGq9qY6WBgAAAABOtDQAAAAgrpgROvHQ0gAAAADAiZYGAAAAxJXf57NLTNbNmIaYoKUBAAAAgBMtDQAAAIj7mIbG+RRisW60PI4qAAAAACdaGgAAABBXPp/PLjFZN2MaYoKWBgAAAABOtDQAAAAgrjaMaIjNd9exWm+q46gCAAAAcKKlAQAAAHHl922YqyEm647JWpFSx7WhoUEeeOABGTlypBQXF0t2drb07NlTDj74YHnppZdae/cAAACANillWhqWLVsmBx10kMyYMUM6duwoe+21l7Rr106WLl0qn3/+uf35+OOPb+3dBAAASHpmLoVYzafAPA2xkRKVhtraWjnggANk1qxZMm7cOLn++uslIyNjY3lNTY3MmTOnVfcRAAAAaKtSotJwxx132ArDOeecIzfffPOvynNzc2WnnXZqlX0DAABINWY8Q+zGNMRmvaku6cc0BAIBefjhh+3PV199dWvvDgAAAJBwkr6l4fvvv5e1a9dK9+7dZeDAgfLTTz/Ja6+9JiUlJVJUVCR77723HQjt9yd9/QkAAKBNYExD4kn6SsOPP/5ob01K0rXXXit33323RCKRjeV33XWX7LzzzvLGG29I7969W3FPAQAA0FJGjBghaWlpcuGFF9oF0Un6SkNpaam9nTZtmnzzzTf2pLnkkkuka9euG/9vyg499FDbKrHpAOlG9fX1dmm0fv36uD4HAACAZOL3+e0Sk3X/p/f91KlTpaCgICbbSEVJ3yensVXBjG048cQTZfz48bLtttvak2j//feXjz76yM7XMH36dHnxxRfVgdSFhYUbl169esX5WQAAAACtJ+krDfn5+Rt/Pvfcc39VbrokmVYGY+LEiU2u47rrrpOKioqNi5nbAQAAAN5smKUhdgtaXtJ3T+rfv3+TPzd1nxUrVjRZnpWVZRcAAAAgFSV9S8Pw4cPF958cYJOi1JTG3+fl5cV13wAAAFKRz+eP6YKWl/RH1Qx4HjlypNr9yIx1+Oyzz+zPu+22W9z3DwAAAGjrkr7SYDTOAm0GNH/99dcbfx8MBuXKK6+UBQsW2LEPp59+eivuJQAAQGpgTEPiSfoxDcaYMWPk1ltvlRtvvNFO5mZaFEwLhIlYXbRokeTk5MgLL7wgXbp0ae1dBQAAANqclGhpMG644Qb54IMP5IADDpBZs2bJ22+/LaFQSE477TRbeWhMUAIAAEBsmXEH/hgtjGmIjZRoaWh04IEH2gUAAADAlkupSgMAAABan+8//2K1brS8lOmeBAAAAMAbWhoAAAAQX36fGdgQm3VHaGmIBVoaAAAAADjR0gAAAID48sWwpYExDTFBSwMAAAAAJ1oaAAAAEFc+n098ZlxDLNYdZkxDLNDSAAAAAMCJlgYAAADEl2kMiNWYBhoaYoKWBgAAAABOtDQAAAAgvsx4hhiNaaCpITZoaQAAAADgREsDAAAA4ouWhoRDSwMAAAAAJ1oaAAAAEP95GmKUnhSr9aY6WhoAAACQdEaMGCFDhgyRCRMmtPauJAVaGgAAAJB0YxqmTp0qBQUFMdpG6qGlAQAAAIATLQ0AAACILzPuIGYzQjOmIRZoaQAAAADgREsDAAAA4ot5GhIOLQ0AAAAAnGhpAAAAQHz5/BuWWK0bLY6jCgAAAMCJlgYAAADElc/vs0tM1v2feRrQsmhpAAAAAOBESwMAAADii/SkhENLAwAAAAAnWhoAAAAQZzGcEZoxDTFBSwMAAAAAJ1oaAAAAkDxjGiKkJ8UCLQ0AAAAAnKg0AAAAAEmmtrZWfvjhByktLW2R9VFpAAAAQFz5fL6YLqniX//6l1xxxRW2crCp559/Xjp37izDhw+Xbt26yf/8z/9EvS0qDQAAAEACeuyxx2T8+PHSo0ePjb9bunSpnHHGGVJdXS2FhYUSDAbllltukc8++yyqbVFpAAAAQOsMhI7VkiKmTJkiw4YNk44dO2783bPPPisNDQ0ybtw4KSsr21hZeOihh6LaFpUGAAAAIAGtXbtWevbsudnvPvnkE8nMzLTdloy9995bdt99d5k2bVpU26LSAAAAgPgy4w5iuaSIqqoqycnJ2fj/SCQiU6dOlV133VXy8vI2/r5v375SUlIS1baoNAAAAAAJqLi4WBYtWrTx/6Y1obKyUvbcc8/N7hcIBGzrQzSoNAAAACC+GNPQIkaMGCHffPONfPXVV/b/999/v02PGj169Gb3mzt3rk1RigaVBgAAACABXXrppbZL0siRI22rw3PPPSf9+/eXAw88cLNxDz/99JPsvPPOUW2LSgMAAADii5aGFrH//vvL//3f/0mfPn1sYtK+++4rb7/9tvj9/s3SlMLhsC2LRnoL7C8AAACAVnDqqafaRXPeeefZeRs2HRjtBS0NAAAAiKsNIUexmhE6dV7Mzz//XObMmeO8j0lXWr16tUyePDmqbVFpAAAAABLQqFGj5K677mr2fnfffbfst99+UW2L7kkAAACIr1jO3BxJoaYG2TA3QzzQ0gAAAAAksfLycsnOzo5qHbQ0AAAAIL5iOXNzkg9qWLJkya9mhf7l7xoFg0H5+eef5cMPP5QBAwZEtV0qDQAAAECC6Nu3rx3w3ejVV1+1S3NdmE4++eSotkulAQAAAEk3psHMlpyWliYXXnihXZJF7969N1YaTAtDbm6udOzYscn7ZmZmSs+ePeWYY46R888/P6rtUmkAAABA0pk6daoUFBRIslm0aNHGn80kbscdd5yd4C3WUnIg9NixYzdm+f75z39u7d0BAABIKbGbo2HDkiqeeuopOfPMM+OyrZRrafjyyy/lf//3f+0JFa+IKgAAAKCluWaCbmkpVWmoqamR0047Tbp162b7ub3xxhutvUsAAACpxxfDMQ3h1Glp2FQoFJLS0lKpq6sT13gIr1Kq0nDdddfJ3Llz5d1335WXX365tXcHAAAAiHrsxk033SSfffaZ1NfXq/czvWxMBKtXKVNpmDRpkjz44INyyimnyCGHHEKlAQAAIBnTk2K13jbo66+/ltGjR29sXSgqKorZ4O+UqDSYSS/OOOMM6dKli9x3332tvTsAAABA1G6++WZbYTCfc2+77Tb7WTdWUqLScNVVV8nChQvl9ddftzUwAAAAtCJmhG4RU6ZMkUGDBsnjjz8e89SopK80mGmzH330UTnhhBPkyCOP9LQO0z9s0z5i69evb8E9BAAAALaeGaOw0047xSVmNqnnaaioqLDZtZ06dbLjGby64447pLCwcOPSq1evFt1PAACAlBzTEKslRQwePFjWrl0bl20ldaXhsssuk2XLlsn48ePV6bW3NHXJVEAal6VLl7bofgIAAABb65xzzpF//etfMn/+fIm1pO6eZMYwpKeny0MPPWSXTc2aNcvePvnkkzJx4kTp2rWrvPjii02uJysryy7JqC4UVsv+9u5Mtaxybql7xRV65Ff+rt2lpbn2J7t7vlqW0S7Tud6OnfPUshULyzytt/LbEn2DXdqpRf126aE/zqy3JqCW1Vfpr4fX51+cpz/HxaurPe9LVp7+Xls7c7Valt+r0NP50XFn/XxcO2mhuPQ7ZFv9saurPD1H1/GpnK4//+x+7dWybv2K1bLmzp0+nfVz8uefVnrapuvY1KzVz52ivu7nkZ+boZYtmbFKLes9pIunfa1cWuH5/bp9H/31cpk4aYG+zqFd1bJRO3RTyx5762e1LFDd4Nwf17XOdf1wnXNVqyqd2/SyL81dB3Y5aBtPxw7exXLm5lSaEfqcc86Rr776Sg444AD7JflBBx0kaWlpMdlWUlcaGvt6mdxazaJFi+zSp0+fuO4XAAAAEI3+/fvbW/NZ9rDDDrNflptJjP1+f5OVqWhaJJK60rBu3Tq1zMwM/cwzz8itt94qN9xwQ1z3CwAAIKUxT0OLMJWFRpFIRAKBgCxZsiQmLTBJXWkAAAAAktXChe5utC2JSgMAAADii3kaWkQ8u9cndXoSAAAAgOilbEvD008/bRcAAADEGWMaWpSZePi5556TL7/8UtasWSNjxoyRsWPH2rI5c+bYsQ/77LOPZGdne95GylYasMGE+75QD0XdI1PUsoxBerSf0fCzHisaWazHFIYr6vSytTXiRahjrl4YjDgfqw+lFwmvq9XLqvTn4c/RYwH97XPUslkPf+PYG5G0bnrkqITcz1OzzhFhGVxWrpal9yxy7Ise89vccc3YQ59YsWKyPn9KcPYatWzVREd/0Cx3bN38eXrsrlN9SC0KrdIjPtN6669xleN5zC9y/5Fo+HmFWrayu7fXcuYq/X2etVc/tSy8So9cLVntjuJ0vbfSh+hz9cx7a45aFqnWo0F9Wfqf0Pmf/HdwYlNmzdDjajOG6NfXiCOqdPK8iWrZ1B31CNj67xarZZnbuSOyffl6fHDpIm/vD1+at04Q4Ur9umtkDOqsln23SL/aj3rwcE/7A8TLhx9+KCeddJKUl5fbwdBmwHOPHv99z8+ePVuOPPJIeeGFF+T3v/+95+3QPQkAAADx5YvxkiJmzpwpRx11lJ18+Pzzz5eXXnrJVhw2ZeZuyM3NlTfffDOqbdHSAAAAACSg22+/Xerq6uSVV16Ro48+2v7u+OOP3+w+mZmZstNOO8kPP/wQ1bZoaQAAAEDrpCfFakkRn376qQwbNmxjhUHTs2dPWbFC74q6Jag0AAAAAAlozZo1su222zZ7v2AwKNXV+pixLUH3JAAAAMSVz++zS6zWnSoKCwtl+fLlzd5vwYIF0rmzHgawJWhpAAAAABLQ8OHD5bvvvpMlS5ao95k+fbodz/Cb3/wmqm3R0pDiwt/p/dt87fQovYYf9JOzOQ3f6I/15eqRiZH6oKNMjyEMrdVjGkOr9VhII3OQHjcYWLhaLfO3b6eXOaJRG37UY0MjzUSVSrr+HUDVgmVqWf7gvvo6HdGx6+frr2OB47Xyt3dE4DZzXH2OSM3AXP1c9nfIV8saZunRl/5sPXLWSOtcoJYFHZGjzcXOqutcrsfcphXr51zDDP31N3zNPE8vzzGtSN+fin9MVcsys/R4WH+h+9wJLtKjdUumTlPLOmR3UMvSu7RXy36ZULKpjIHub/Rc17q6yfMc63XEXTuiSuu/0SN503vqzz8SdJ+rDV/N13enmx7XG1qhn8uSrn80yRquxy4Hv3OsU0RqP52lluUetqPzsYiBWKYcpU5Dg5x11lk2cvXEE0+UV199Vbp23fwasXbtWnsfc70yt9GgpQEAAABIQMcee6wcd9xx8tVXX8mAAQPkwAMPtL+fPHmyHH744dK/f3/55ptv7DwOJno1GrQ0AAAAIM5imXKUQk0NIvL888/LwIED5b777pOJEzdM8jh37ly7mLjVK6+8Uu68886ot0OlAQAAAEhQaWlpctttt8lVV11lI1jNoOdwOCy9evWSMWPGRD0AuhGVBgAAAMSXSTiKVcpRCqUnbaqoqKjZ+RqiwZgGAAAAIAE9+OCDUl7uDgFoKbQ0pLjwSn2ij9DKdWpZpE5PKzJKG8rUsg6VxWrZyvpValnXrC76/oieYpKWn6OW1QX1dCAjvVIvX1GhJ9L06r2TWtYw3Z1ko6moKnWWF+ohQOJ39O90Jkj5vH2vEHQlo6zSzysrrL+WgQX6+eHL1tNoyufpyTHtu+kJWVXLHQdVRNoFQ2pZpK7BUzpMfZl+fDJ83h6XVZCn74t5bPl6vXB2yNO3eeH0NPHCl5HmOcnH9dhOXXp7Onb+qlq1bMVaPe2sa1mVWtZcElQkoB/z0n/PVMvyM/WUsFW1eipZlxr9XC2tXSsunXv3V8sC81d5e50d+1P/9QK1rKKimWtkUUe1LFSip+whRkhPahGXXnqpjB071g56Pv300+1gZ1+MxorQ0gAAAAAkoKOPPtrGqb7yyity6KGH2nEMf/rTn+wg6JZGpQEAAADxZb4Nj+WSIv7xj39ISUmJTU7acccd7c8mKWnw4MGyzz77yFNPPSXV1Xqvkq1BpQEAAABIUMXFxXLJJZfItGnT7HLRRRdJhw4d5IsvvrATupkJ38444wz5/PPPo9oOlQYAAADElz/GS4oaNmyY3H///bbFwbRCHHLIIVJfXy9PP/20jB49Oqp1p/BhBQAAAJJPenq6He/w8MMPy7nnnmt/Z8Y+RLXOFto3AAAAYCvSk2I09iB1hjQ0ybQsvP7663Y8wyeffGInejO23357iQaVhhTny9Jj79ZXxSb315epn3YdIh08Pa6kUo8x7dlejwTM8usxnUZgmR432C6tnVpWMVOPBWyXo8cillavUcvSfe4Iy7Aj4jO7sEB/YEiPsayr0KMoc9Ky9ceF6/V98euPay52t0f2ILWstmS1pyjKutV6PHBNqEZc2g/UZ9lsmFniLVY13X1Oakpr9LjJbgE9dri5SNa1ZSvUsuIsPT457IjNrAvpUcarSvXXsWduD3FZWatH5IYdscwuaWv162C3Ln3UsjWr3dHK+XX6Mc/wZ4gXkf98MGhKcWaRWra4arFaltbMdWf54tmeHts5o5taVlann8uRWv117NS5p7hUlerrLRI9ehlIFFOmTLHdkF566SWpqKiwLQuFhYVywgkn2DjW3XbbLar1U2kAAABAXJm5BGI1n0Cs1tsWrVixQp599ll55plnZNasWbaiYJ7/fvvtZysKxxxzjGRnu7+s21JUGgAAAIAE1Lt3b9v9yFQW+vTpI6eeeqqtLJifWxqVBgAAAMQXM0K36IBnE6k6ZsyY2G4rpmsHAAAAEBMrV6604xbigUoDAAAA4svv27DEat0pojBOFQaDSkOKSxuoJ2rUTKpVy3LT3GksgUhALfNl6IkaC8oXqmX5DXoCTiCsb69sjZ7+EoqExCXoKM9Jy3KsV19nfV2Np9ShHvnuZJCKGj0FKFy2Xt+fsJ5y43cMJqsI6ussSm+vlpUF3Klc+Wl6qsyapfr5URPSz9de2b3Vsh/Kv1fLema7E1XWTf5ZLasOVnsapJcd1gesrW7Qk4W6Z+lpNCsr9CQnozJU6Wm9Eo54mgXI9Vo1OM7H9Q0V+kpNmlG+nq4UbtCvEavq9ePaOaujWlZTpp/L9RH9eRi1DXoym9+nH7wMn/5nu7recc45XpCI6KlL6T53mleGL8PTeVVbU+X5uqxZsnKes9yVQNe+Sr/2Am3J//zP/8hOO+0khx9++K/KfvzxRzs7dM+ev/688OCDD8qnn34qr732mudtM7kbAAAA4st8eRLLJUmNGzdO3njjjSbLdt55Z7n55pubLPv+++/lzTffjGrbVBoAAACABBeJRKKe9dmFSgMAAABaJz0pVouIjBgxQoYMGSITJkzg1W0BjGkAAABA0pk6daoUFBS09m4kDSoNAAAAiC/SkxIO3ZMAAAAAONHSkOIC01aqZbVhPRo0y++O4UtzRNvNWzNbLStML/AU8VmcoUfHhh1xgq79NDpkFqtlaxyRidUhPfqwMqhHDYZjNICpwRHl6pLt1+M/89P0CNzVjmOTn65Hqhol9Ss8xTv2z++vls0qn+kpPri5aOGV9fr7p1/hALWstHqNp/PK9XpUOc65LrldxKWuqs7T+eraV1fssiuS13V+pDte/+bijL1eP9Y2lLZ4NGhzXBHSHbOKPb13XOdOIBxUy9qn648zVjligHtl6zHRS2uXeToHXNcAV1Rtc4/15ekR2ogRZoROOFQaAAAAgATx73//287XsDVl5vfRotIAAACA+IrlfApJPE+D8cMPP9hla8pMFKtrYtEtQaUBAAAASAD77LNP1B/+vaLSAAAAgLgyH3x9JkEpRutOVpMmTWq1bZOeBAAAAMCJlgYAAADEF+lJCYdKQ4rzt9cjJdc2lKll9eEGz9t0xYp2zeriKfrRFXHqkuPPdZbPrZ6vlvXI7u5pX/vm9FHLSgN6vGN10P0cXa9JYYYeZZvpy/QUfbi8rsRTVGlzsYjdHOeA69z5ofxHtawwI99TFOXCmiXikumIHv65bLpa1iGjg1pWlFHoLcrW0XC8uGqxuGT4MzzFK2f49T8hdY6YX9fjqkJ6bOrSOj2m02jviHJ1nZNBR3RqIKLHkWb7szydV0a6I+55juO6E3FESLt0yOzgKY62uWt9frr+3ioLlHt675QHKtQyfxTdTtaE9HOyZwGRq0BzqDQAAAAgvkhPSjiMaQAAAADgREsDAAAA4sskJ8UoPSlm601xtDQAAAAAcKKlAQAAAPFFelLCodKQ4nwFeoLFwNz+all2mjsZZF71ArWsY2axWrYuqKdmtEtvp5YVZxR5Sn+ZWTVbXArS9dShkCNxxZU40uAoc6U55afpaStGlSNBKj8tz1NySue0jmpZ31w9BaoyWKmWrXdsz8h0vJY52fo5sKphtVrWJ6e3WlbWoCe8ZKe5E1XqHGksriQwV5LP7Oq5all7R7KSK3WpPCBOrkSeunCdWtYtv4datr5mnVq2xpEC5XrvdMnqJC55ae08vT9c7+Vcf46nY1PtSIEyfPYTU9N6OpLZXPsaiAQ8vSe7ZHZWy9Y6Et2aO+YNjv3p7NimK1lqYe1iT9f65pLZGn5c7nwsACoNAAAAiDfSkxIOLQ0AAABAAkhrpteBi8/nk2BQn3umOVQaAAAAEP8onljF8SRxzE/EMclpLB+b5Id1g0AgIB9//LFcffXVMmLECGnfvr1kZGRI165d5fDDD5d33323tXcRAAAAaFY4HP7VcsUVV0h2drZceuml8v3330t5ebldpk2bJpdddpnk5OTY+5j7RiPpWxo+++wzOeCAA+zPpqIwcuRIadeuncyYMUPefvttu5xzzjnyyCOP2GYbAAAAxBhjGlrEU089Jffdd5989NFHst9++21WNmzYMPnLX/5ivyTff//9ZbvttpMzzzzT87aSvqXB7/fLMcccI59//rmsWLFC3nnnHXnppZfkp59+khdffNH2DXvsscfk2Wefbe1dBQAAALbYQw89JHvttdevKgybGjVqlP3S/OGHH5ZoJH1Lw+jRo+3SlOOPP97WzJ588kn529/+JqeccoqknPqQp3jHymCVc7U7tN9eLfMX6LGi0qBH9K2rWKOWhSN6k1sgrK+zb44eG9pcvGFhkR5HmlGR4SkW0OcY4JS5bTdxKf1ptqeI3A699GMQWqPHowYa9LjJjp17qWVF5Xr0Y3PRkGn1+vHpnqUfH3+m/noUix7x2sERD2z4MvVLaH1djadY0R3yh6hlFQH99cjw688xp5no2KJuPdWy2lVrPc26WpDbXi1Lc0RqFgzQ43GDS93xn3WBWrWsQzs9rrWhXj+XM3z6axwRPZI5vat+Xhlrli5Uy/yOVu+O2wxSy8rnLfQUrdwxs4Natk27bcXFX6zHOc9e8L1alpupR7VW1uv7Oih/W0/vR6OiSj9/svYZ4HwsWp7p3RGrHh6p1HNk1qxZcsQRRzR7vx49eshbb70V1baSvqWhOTvvvLO9Xbp0aWvvCgAAALDF0tPTbe+Z5kyfPt3eNxopX2mYO3fDRErdurm/xQUAAEALpyfFakkRu+++u60QPPDAA+p9HnzwQVux2GOPPaLaVtJ3T3JZuXKlPP300/ZnM+4BAAAASBQ33XSTTJw4US6//HJ5+eWX5aSTTpJ+/frZskWLFsnf//53+eqrr2wrww033BDVtlK20mAmtzj55JOloqJChg4dKueee6563/r6ers0Wr9e728JAACAZpCe1CJM68Hzzz8vZ511lnz55Ze2gvDLuRny8vLk8ccflz333DOqbaVspeG8886z8zd06NBB/vGPf0hmpj449Y477pBbbrklrvsHAAAANOe4446TffbZR5544gk71cCyZcs2Dn7ed999bcxqS3TDT8lKg5n8wiQmFRUV2fSkbbd1p0Ncd911dlKMTVsaevXS02ESib9zrqdklPY99bQVo7ZktVqWWaHPSOgvbOcp4aV6lZ6slNOlo6fHGblpOWpZWmc9XSq7+r8tU79UE9BTdTIiegKOf5k7OaZ4yDZqWXDJWk8pLkUZegJOfg9HWlE7Pa0nXFEtLsWONCeX7GDIUwqUP1v/wmD1+hXObRaG9fSc7EK9LKNST/mpCurHpzhTT+QJOpK+CtL1fWmOKymtvqrBU7pYXq6e1hN2vFYSck9M5EpRq63Tj2tuof5e9jnOj3BFjadzrrn3Vlo7Pe0sXKqni+VnFXhKrMrN1x8XrtPT54y6Ffq1ZdsuehKYOAZk5jv+Rriuu66/O0ZBln7MfYXuhDHEAC0NLapLly7ypz/9yS6xknKVhiuvvNIOFjEzQ3/44Ycb05NcsrKy7AIAAACkopSqNIwdO9bOjFdYWGgrDLvuumtr7xIAAEDqiWXKUQqlJ23aC+a5556z4xrWrFkjY8aMsZ97jTlz5thB0aYLU3a23pLZnJSpNFx77bVyzz332AqD6ZI0YsSI1t4lAAAAICrmi3CTmlReXm4HPpvJ7cx4hkazZ8+WI488Ul544QX5/e9/73k7KVEXMxFTd911l+2SRIUBAACgjYxpiNWSImbOnClHHXWUTQM9//zz5aWXXrIVh00ddNBBkpubK2+++WZU20r6lgYzZfZtt91mfx44cKBMmDChyft17NhR7r333jjvHQAAAODN7bffLnV1dfLKK6/I0UcfbX93/PHHb3YfkxC60047yQ8//CDRSPpKQ1lZ2cafv/32W7s0pU+fPlQaAAAA4iKWLQKp09Lw6aefyrBhwzZWGDQ9e/aUGTNmRLWtpK80nHbaaXaBopMecdoQ1GNDM1dXOA9pdrEebScBPRqyvmydeJHbQY9wjASCaln+4L7O9QbmrdTXWx/0FDla1L+3WhauqlPLQmXuqNLQinK1rLZGj83s3G+gvj/l+uNCjnMg4nj+/hw9wtIIrPhvRf+XfGl6bGQkFPIUYSmZesxtt46D9MeZbTpiXl3xoPqzECkIuI+Ppr5GPz/8RY5o5WaiQzt10c9XX5b+JyStSL+2BFc6rh9+/bil9+2kP85EuTpiTn25+jkZKqvy1Ie3oV5/v+b0c2eiu6Jl03vrcbXhdfprJWn63uZn5KllkaDjmBfpjzP8jghlVzxqyBEd68tM9xyr6vSLLhubStvBfW4BbZUZ9Dxy5MgtmtS4utr9OUJSvdIAAACANob0pBZhAn6WL1/e7P0WLFggnTt3jmpbKTEQGgAAAEg2w4cPl++++06WLFmi3mf69Ol2PMNvfvObqLZFpQEAAADxRXpSizjrrLPsQOgTTzxRVq78dZfqtWvX2vuYRCVzGw0qDQAAAEACOvbYY+W4446Tr776SgYMGCAHHnig/f3kyZPl8MMPl/79+8s333xj53Ew0avRYEwDAAAA4iuW8ymk0DwNxvPPP2+nFbjvvvtk4sSJ9ndz5861i4lbvfLKK+XOO++UaFFpAAAAABJUWlqanZPsqquushGsZtBzOByWXr16yZgxY6IeAN2ISkOqq2pQi7Kycz1FLRrh9bX6Y9PTPMUURqrrPUUNhtdVe4rF3PDgiOdjoAksKdULI/r+hCvr3OsN6q9lbnGRp+hUV8RlaE5Ji0ctGn5HBGrWLnpEbrhSPz8Cc1aoZWmOSMmw65xrRnpXxzEod8SjZuvP3yWnrp2neGC7zeI8T+9XV+RscJl+nvuy9VjZSER/L0fqAuLkOHdc553rfHXJclwfmttXX36OWtYwW39vZfTT//hn9NTf5+EK/ZoccVxbIvXNHHOHmnl6okvuoF5qWdjx/sjt2t7Tc2zumh14d57+wDN2c64XHpGe1OKKioqana8hGoxpAAAAABLQ6NGj5e677272fvfee6+9bzRoaQAAAEB8MaahRUyaNEn69nVPVGvMnj1bPvvss6i2RUsDAAAAkMQCgYD4/dF97KelAQAAAPFlAo5ilp4Um9Umsp9++kk6dOgQ1TqoNAAAAAAJ4owzztjs/1988cWvftcoGAzKjBkz5N///redtyEaVBqgSuvuLYnDPrZztloWqa7zlnQU0JNafLlZelmGnv4SXF7mfh6dCjwl0vgL9SSbYIm+zcxB3dWyUIY7dSg9K8NbAkqWntgUqdETmTIHdPWWkORzN4/6cvVkncC81WpZxqCunlJTwhXVnlOHXO+R4Eo9lSqtU76n5JhIQN+fVauXqGXdtt1OXIJL1qplaR30ffXK105/v0bW6c8xo19H53qDi/TEJn92e0/nnCsBKKu4vafUKSNcXuXpmPty9H0NLtWvLT7XN7qO90ekyn2td13rsh0pWT5H4p1TUL9e+R3nVXNJcWgFpCd59vTTT2/23p43b55dXLp3725jWaNBpQEAAABIEE899ZS9jUQitoVh5MiRcuaZZzZ5XzO5W8+ePWX33XeXjAxvkd6NqDQAAAAgvkhP8uzUU0/d+PO4ceNshWDT38UKlQYAAAAgAS1atChu26LSAAAAgFZIT4rhutHiqDQAAAAACay+vl4+/fRTO4nb+vXr7XiHXzKDpm+88UbP26DSAAAAgPjy+zYssVp3Cnn99dfl3HPPldJSPUHOVCKoNCA6eXokXqikXC3zF+c5V1u+TI9/LO7Vx1P0oSv+0hWpKUV6JGDZjLn640SkQ7/OnmIq66v02Myc7p3UMn8X/biGHFGcRtgRjZixjSMedZn+Oku631Mcq88RtSghPTLRrteVcuqIaWyYtlgtq6jQL6SFHTt7Oh9tuWN/Mrfv7ikaNFxRo5b5C3PVsk45+vOQZqJjXRMsOaNDXbGZjjK/IzY0GsEVjmtWvh4DndFZj1bOSNf3NaO3PlFS/fSl4pLeS39spLpeLQtX6ZHVGQMd1yvH+9x1rW/uw5fr2ps+UI/IjazXrx+ROr0sXKlf5yKOWG67P930iGT/tsXOxwJt1bfffivHH3+8/fmEE06Qn3/+2U7kdu2118rcuXPlo48+si0PJl3JpChFg5YGAAAAxBfpSS3i3nvvlVAoZFsbzORtp59+uq00NM7JsGbNGjnllFPkn//8p0ybNi2qbXmcXQUAAABAa5o8ebIMGTJEne25U6dO8uKLL0p1dbXccsstUW2LSgMAAABaJz0pVkuKWLNmjQwePHjj/9PTN3Qiqqv7b1fGwsJC2XfffeW9996LaltUGgAAAIAElJ+fL8FgcLMKglFSUrLZ/cxs0CtXroxqW1QaAAAAEP8xDf4YLY5wh2TTs2dPWbr0v8ELja0OJn61USAQkK+//lq6dOkS1bYYCJ3q1lR7SmpxJqqYPnR77KSWBWYs1x+43pEc00lPOAmtrlDLfO301JS8dD1ZqbnEosyd9RQo//w1+v44UlwCP6/wllRjE0cCnhKSwo5jntaj2FOalUt6dz3BxO5PrSOVyZWetGa9WlY8ZBtPaU7B5WX645p5j4RWVHhKpUrrkO8pIcuVxhNcqqc1NcuVgtRef/7+/Cy1LFTqSAIL6q/H0s++1h8nIl17D/R0jYg4zoE013WntMrT62E53j8Zg/S0s4afS/RVrlynlmUO7aWWhdc5Xg+f+7oTXq+fk6EfHH9fsjP0Msd7wHV+hCvcCXPONLQq/boDtGUjR46UJ554QioqKmwrw6GHHmq7KF1xxRW2i1Lv3r3lsccesy0Pf/jDH6LaFi0NAAAAaJ30pFgtKeLII4+0rQ2fffaZ/X+3bt3k+uuvl8rKSrnkkkts+bvvvivt27eXP//5z1Fti5YGAAAAIAGNGTPGzsewqZtvvlmGDh0qr7zyipSVlcl2220nl112mW11iAaVBgAAAMRXLFOOUqehQXX00UfbpSXRPQkAAABIQKNHj7aTt8UDlQYAAADEV6ySkxqXFPHll19KQ0N8BvJTaQAAAAASUM+ePaW+vj4u29qiMQ39+/dvkY35fD6ZP39+i6wLLaSTO3JU43fEhhqBeavVsvTeHdWy0NpKtSy4SI8xzRigZw8H5q9SyzIH6NGGzcWKBheVeorG9EUiapm/IEctC5W54wTTHfGooVL9uPoLcr3FKTriHbNHbustitS8Xo7XOb2bI67VcVwjNfq3MJFgSC3LHNLTva9z9YjcjMHdPR0Df4c8fYNZ+iU77Iicdb3GRnrXDZMBNSW4otxTdGxgnj6JkD9fP8997bI8Raoaker/zoD6S+nd9fdH2BWd6ogIDlc4IqKL23m+RtZ/s8BThHRa1/ZqWaRK/1ARckSu+rMdMaVmvY4yV0SyuCJX8/TnGFy8xltUq3m9HBHakRpvEdKIQixTjlIoPel3v/udPPfcc1JdXS3t2nn7TNeilYZFixa1WKUBAAAASGXz5s2Te++9V7755hv56aefpEePHp4+b5ukpLffftsOejbzMfTpo88hFa0tTk869thj5Z577vG8oauuukpee+01z48HAABAkkjx9KSff/5Z3nnnHdltt90kEolIebmjVdfhyiuvlO23396ua9CgQbLzzjtL3759JScnp8kv75988snYVxry8vKiqr2YxwMAAACp7rDDDpMjjjjC/nzeeefJ+++/72k9Tz/99MaePGZA9JQpU+zSlLhUGg466CA7SUQ0zOMPPPDAqNYBAACAJBDLlKMESE/y+1smi+ipp56SeNmiSsM///nPqDd0xRVX2AUAAABoa2bPni0ffvihfPfdd3aZOXOmhEIhufXWW+WGG25o9vFmBuYJEybIDz/8YL/1HzhwoPzhD3+Qyy+/XDIy9MH/0Tj11FMlXpgRGgAAAJLq6UkPP/yw3H///Z4ee9lll9nHpqen2wnXTLf8Tz75RK655ho7UNlURpoaZ5BIqDSkui7tPMUJiitKz4iEPT02UqdHY2bu0Et/XK3+OH+RPp4mva8ew2jUf7dYLUvrrMdUhkvK1DJfIBSThDFXPKyE9NfD54jPjTgiV13xjg0/l+jbc8R02vUW669XpD6glmXt1Fct8xfpzzEwY6Wn88rI3EGPZA2vq/X0PHw5jihKx+sojvPctb3m35OOxzrOOVfcpitauGbecrUsp183fV/suZXmKQZZHO/JjJ17qGWh1es9RwtHavUIVH9hrqdIWtcxjzTor1VG386eopXtY/vpj3WJOM7l8LoaT5GzoRL3QFJXNLcvl49DENlhhx1scI8ZTDx8+HC5/fbb5dlnn2320Lzxxhu2wmAqCp999pl9rLF27Vpbgfjiiy/kxhtvtGlJsTRjxgw72duaNWvs4OjDDz/c/j4cDkswGJTMTHeEcnOifpcsW7ZMSkpKpK5Oz8feZ599ot0MAAAAkoU/hlMMe1zvWWed5Wncwe23325vr7322o0VBqNjx47y0EMPyd577y3jx4+3FYfCQv0LR6+WLl0qp59+unz66aebdVtqrDQ8/vjjcsEFF9jWjjFjxsS/0mD6bZn+XSZn1sV8c2pqNwAAAEAyWb58uUydOtX+fNJJJ/2qfOTIkdKrVy/7wf69996TE088sUW3X1ZWJvvuu6+d48G0lJgv6k1FZVO///3v5aKLLpK33nor/pWGl19+2T5pkytbXFxs82Dz890zMQIAAABtdUyDF9OmTbO35vNwv379mrzPrrvuaisN5r4tXWm46667bIXBdKsyP5sv639ZaSgqKrIppqabVDQ8VRoam2FM/y3T3JGWpvcjBQAAAOJt/frNxx1lZWXZpSUtXLjQ3vbu3Vu9j2lp2PS+Rk1NjW15MBYsWGD//49//MP+f8SIEVs8N9qbb75pv7y/8847neMi+/fvL5MnT5a4VxpMJNUee+whF198cVQbBwAAQAqKQ0tD44f1RjfffLOMGzeuRTdVWVlpb9u1a9fsBMebVmJWr14txx133Gb3a/y/mXvhtNNO26LtL168WA499NBmx1+YQdCmK1PcKw3t27ePanZotB1pOfopkNa9SH+gK6nHyNDXG67SB81HHCkmoVV6Gkkk6EiVcaj/5r+1/iaFI3qZI/0jY2BXtSxSoyfypHXQE3B8juNmH9tLTzOKVOsDr+qmzlfLsofpiURhV7KQ49i4nr9d73pHckpulqdt1n+9QC3LGKKn4zT8tNR9zDsWqGW+XD2lIq1jvqfUnfSBHfXHlVd7Siuyj1274Y9eU3w5WZ6St7KGdlfLgov0P1xZxfp57M9xJ38EVzjSc3yOP6iZelloYbmn7fkdr7+RvddAT4le6d3093LDTD21LL2bfj0PzC7xdC0z/F30a1ZoqZ68FK7W06Nc35a6ErJciXbNvUe6HTXE+VgkJtMlqKDgv9fplm5liIZpHTDd/KOVnZ29seLismTJkqgHYXuqNOy3334b+3ABAAAAbS09yVQYNq00xEL+f8b0VlfrldKqqqqN+9PSBg8eLN9//73dvtbaYaJfzYRzv/nNb6LalqeX66abbrKjxU3/KQAAACAV9e3bd2OrhqaxrPG+LenYY4+V0tJSueKKK+x8DE25+uqr7ZiJ448/Pv4tDaZWY7JeTzjhBDsA4+CDD7YDQLT+VKecckpUOwkAAIAkkiTpSTvvvLO9NR/czUDnphKUvv32W3u76RwOLeXCCy+UZ555Rp544gn57rvv5Oijj7a/nz9/vvzlL3+xUyR88803stNOO23xOIkWn6fBzDhnBlSYPlJmZ1yoNAAAACDZ9OzZ06Ydmbkann/+efnTn/60WbmJOTUtDWY8xSGHHNLi2zdjGj744AM7iNp8Nm8cPmC2axYzbsLsn5m1OiMjI/6Vhv/7v/+TK6+80v684447yjbbbLNxZHhbZmpbEyZMsP26GhoaZODAgfKHP/xBLr/88qgPJAAAAFKrpcG4/vrr5aijjrLd9k3vm8YWBdP6YKYmMMzkarGYDdro1q2brSCYysO7775rI1xNVyWTHmX254gjjnAGDMS00vDXv/5V0tPT5bXXXpPf/e53kgguu+wyO6+E2e/Ro0fbSs4nn3wi11xzjbz99tu2u1VOjjthBAAAAMnJDChu/JDf2MXHePTRR+Wdd97Z+PvXX3/dflBvdOSRR8oll1wiDzzwgOy+++521mUzKPnjjz+WdevWyV577SW33nprzPf/oIMOskuseKo0mINopqlOlAqDaZIxFQZTUfjss8821gDNaHJTgTC1sxtvvFHuvfdeSTWhlY6Yxjw9TtFX6D3yILBglafIVUnTt5k5SI8FDMxbrW8v6I6OzXLEItZPXayWpXd1fJvgiGIMOmJlXVGDRsPURWpZWlc9xjJzWz0aM1ThiD/N1C8fEVfkajMRc/5OerpEWic9qjRSG/D0/KUh5C1y1+xr+1x9tTOW6fvTQX8e6Y6o40i5I67YEYPcXCCxK5I1Ulnnqazu8zn69vL17fmzvbf6+tu38xTX6ooNDczSr1dZw/t6uu4YYcdr6YrrDToieX3Z+uMaHLGqrtc/tNyd6x5eX9vi0amu5x9ao0dLZvTrJF6tnuDoZj1a/zuAKPhimJ7k8Ut1M4/ClClTfvX7ZcuW2aVRff2vI4PN50xTOTA9Wkw3oUAgIAMGDJBrr73W9mgx8yQkOk+VBjMddadO3t+c8dY4g7V54TYdhNKxY0c71fbee+8t48ePtxWHWDUdAQAAoO0aNWpUVHMn/P73v7dLawmFQrZLVF2d/qWEa+bqmFQaTP8o0+Ri+ks1NwNdazPRsGZwinHSSSf9qnzkyJG2z5cZpGKm8z7xxBNbYS8BAABSSBKNaWht5nOumQ7B9KZpqhVk09a/YDM9LFw8feI3/bLMTpn+W2ZAcVvWOIq8uLi4yRgsY9ddd93svgAAAEBb9/XXX8u+++5rB0GbFob27dvb1oSmFvMleTQ8tTQ8/vjjtrXh4YcftqO0zQzR2jwNplZjuv20FpOZ21xzTONBbLwvAAAAErulwUSNpqWl2bkMzJKMbr75ZltZOOOMM+S2226TLl26xGxbnioN48aNs5UB0+9r8eLF8vTTT//qPo3lrV1pqKzcMGhKm1rbaIyLNQNgmmJaVTZt7tHuBwAAgLbTbaegQA/XSAZTpkyRQYMG2S/0WyJWtcUrDabfVKx3rC2544475JZbbpFkFJlfrpaFS6v0xwUdiTPNJB2lddPTYbL6Fuv7U66ndIRLqz0lg/g66ik2RsM0fVp4cfQL9DmSWqRW79KX5tifwJwV+jrNNtvpaVf+Qj3lJ1ylD5jKGNBRLQsuXadvz/H8fY59MQJLSr0lNrlSfhwD21yvVXPneWDeSrUsc0hPtSy40J2s4+XYSCTs6bxq7hwI1+mpVP5CbzHVlSv1RKLC7fqLV+FSPVkn7EjC8jvekxkDO6tlDdP0BDV/gfs8lzSfp0Si0Jr1ntK8MvrpzyNSoz9/Xwd34ktopX4dSOutXz98eVnO9arbW62nR0Ua3H21g8v090/Owdt52h9EwXxMiNWw2LY93LZFmTEKZrbneHwu99zSkCjy8zf8sayu1j9UVlVt+HCs1Uavu+46ueKKKzZraYi2XxgAAAAQjcGDB9spBOIh6etifftuyNE26UiaxrLG+/6SmfrbVCg2XQAAAOCN+WY8lkuqOOecc+Rf//rXxonoYinpKw0777yzvTW5tdpA52+//dbebjqHAwAAANDWKw0nnniiHHDAAXbqADNXQ6t2T3r++eftrHa/+c1vohqoYWpBTc2VEEs9e/a0o+fNYBjzPP70pz9tVm5mgzYtDaY14ZBDDonrvgEAAKQk5mloEf37bxgHtmjRIjnssMMkPT1dunXrpiaaRtMisUUtDSeffLI8+uijEo1HHnlE/vjHP0pruP766+3tnXfeKd9///3G35vWhwsuuMD+fNFFFzEbNAAAABLGokWL7NIY+hEIBGTJkiUbf//LJe4DoRPNkUceaSeie+CBB2T33XeXMWPG2AhWM6v1unXrZK+99rIT1gEAACD2aGhoGfGcY2yLKw3vv/++jB492vOGZs2aJa3p/vvvt5WDCRMmyJdffmlrYqbL1bXXXiuXX365ZGa6Y+WSlW+IHomXNq9MLQss0CMT7WM7F6plFTMXqGX5jqhBX3aGvsF6R/xprv7aBhevEad0b/XqwEJ9vb50vYHPl56mlqV1cMdmup5nYHaJvt4eesxtYLa3aFB/N/31lwZ3f8u0Tvme4hbTHVG+rljVcEWNWpY5qLu4uCIeI44Yz7CjzLVOV8SpzxFz7IqaNDL6dFLLwhX6ezLNEZ+b3lN/PdJXV3qKzs3844YxaprQUxvGpzUlrYt+TgaX69HT7hBPb+9Hu95FetqJL0u/1mUMcEzc5DgHXDGukUrHa5yvRzlvUbSsB6E1+vmR0V9//vU/6BG4RuZ2PfRCx3UZaMv69OkTt21t8SeilStX2iUarT2a/fe//71dAAAA0NotDbH5XJhC4UlxtUWVhk8//TT2ewIAAABgq5k5xJ577jnbm2bNmjW2K/7YsWNt2Zw5c+x4hn322Ueys92th1FXGvbdd1/PGwAAAAA2w4zQLebDDz+06aTl5eV2MLRpwenR47/d8WbPnm3H977wwgtR9bihEx8AAACQgGbOnClHHXWUVFRUyPnnny8vvfSSrThs6qCDDpLc3Fx58803o9oWlQYAAAAk3YzQZp6uIUOG2BCcZHX77bdLXV2drSyMHz9ejjvuuF/dx4T97LTTTvLDDz9Eta2UiFwFAABAajET+xYUFEgy+/TTT2XYsGFy9NFHNzvZ8YwZM6LaFpWGVLdWj5sMLCn1HEXqL26nlrXfYaCnKMr0vno0aHhVlVoWWuuId3REtRppeXrEpWR5i790xX+GVlV4imE0wtX1nmJVXRGfEgqrRRlD9TjSwE96xGu4Vt9Pw5+TpZc5Xg9fnv64wKwST+dyeldHdKwpH6BHFgfm6HG1Wbv0U8safljiKW6z6mc9q7vdNr3EJVRa5S0C1xFX63PFyjpiVcNVevxn3d/+OzlnUzJ31CM1Q45rhCvK1iW9t/76h8qrnY9N65jv6Troep+7kmhc1zpfruM957heWY5y17XFl6W/73yZelnDjGVqWboj6tsIV+nnneSlZux6q2KihhZhBj2PHDmy2fsFg0GprnZfl5pD9yQAAAAgARUWFsry5cubvd+CBQukc+fOUW2LSgMAAABapaEhVkuqGD58uHz33XeyZIneSj19+nQ7nuE3v/lNVNui0gAAAAAkoLPOOssOhD7xxBObnIR57dq19j4mUcncRoMxDQAAAIgvxjS0iGOPPdYmJr3yyisyYMAA2WuvvezvJ0+eLIcffrhMmjRJqqqq5A9/+IONXo17S8Po0aPlwAMPtM0hLnfddZe9LwAAAICW9/zzz8t1111nf544caK9nTt3rrzzzjvS0NAgV155pTz99NNRb8dTS4OptZiUhlGjRtlc2EMOOaTJ+82aNUs+++yzaPcRsVQfUouq1q5Ry/K76ikuRmhZuVoWrguIF5FyPfki4kj5CZXq6UmBkHtfctL0NI70nkXiRXidng6T3l1fZ2j1eud604r0xKqG2Xp6UPY+26plwUVletn8tZ4ScHzt3FPYly1drJZ12mWovj9LyzylLonHpCuj9uOZnpJcAjOWezo+wRX6+yq7Q7GnNDMjUqu/DyKOJB9xpY85jquLv4OeKhRp5toRdqTBuVLUXO8dl+AS/T3gL8h1PtaVruRKVgqu0x+XsZ2eaBZaXenp+ulM0TPna7r+Olev0v+G5OTmqWX+fP39mu5IgvMXuo952JH2JVWO8xyx4feJzx+jwQexWm8blZaWJrfddptcddVVNoLVDHoOh8PSq1cvGTNmTNQDoKPuntSnTx9ZtmyZnZbaTJpx9tlnt8gOAQAAANg6RUVFzc7X0CoDoU0rw1tvvSVZWVly3nnnyQ033NCyewYAAIDk5YvRgpiIaiD0b3/7W9v96NBDD5U77rhDli5dKk8++aSkNzPxFwAAAICW8+WXX8q8efOaLNt1111lyJAhUa0/vSXyYb/++ms5+OCD5bnnnpOSkhJ5/fXXJS9P768IAACA1GXGxrpmMY923clsl112kTlz5tjxC6Yy0Ojxxx+Xv/3tb00+Zscdd5Rp06ZFtd0WaRIw4xtM7eaII46Qjz/+2E5n/d5777XEqgEAAACI2M/Z5sP/mWeeuVmFoZGZj8EMft6UGYP8448/yieffBJVqmmL9SNq3769fPTRR3LKKafIyy+/LLvvvrsdtQ0AAABsimkavHnjjTdsS8rll1/eZLkpM5/HN7Vo0SI7h8Orr77aNioNRmZmprz44ou2svC///u/sny5HiuINiKgR67mdeiglvmbiSgMr9cjNyUS9hSp2DBzuafIwOw9t1HLslyRkebwzF2p78/0ZWqZPydLLUvr1l5f5wx9nem9O4pL2BGNmd5djymMrHdEDQYdr5WjzJetR5X62+nHxijq2dtT/KMvS7+cpXUuUMsiDUFvcaMm4nKAHj0cWl2h709X/RxwcsXDuiJOQxHnasOlVZ7ic537E9SvLS6u59FcNGrI8Txc3RW8xp+6rjvNRUu7zldfpuNPs08/PsFF+vsj6DgfM/p28hSp2lxMdDvHa+kv0GNVI5V1niK0Xa+H5bhmSZ47XhloK7755hvbw2drxif07dtXhg4dah8b9/SkfffdVwYPHqyW33PPPfLAAw9Es18AAACAZyNGjLAfrs3UAMli/vz5ssMOOzRZZromabbZZhtZuHBhVNv21NJgBl4056KLLrILAAAAEO/+SVOnTpWCAr2lORGtX79eCgubnjz0iiuukOOOO67JspycHKms1FvqtgTZqAAAAEACyMvLk4qKCjUhySxNWbduneTmumdNbw6VBgAAAMQVkavedOvWTf79739v9ePMY8xjW2VGaAAAAADxs+eee9qgoc8//3yLH2Pua2JX99prr6i2TUtDqivSEyycmkmpiFTr6Rf+Qj0BxbVWr4lErn0NrdATRZpLc/K3159HxJEc40rrcSXHOBNVmnmsKx2m7vsFalma4zn6MtI9Jc4EV5SLeHydfdkZaplrAJgrVcfFmRxknmeHfE/nhysBxnVcIwH93PHnOd7L62rEs3THedegvz98rv1xJPK43nPhaJ6Hg+t8DcxZ4Sk9KzB/lXOb4fKgp+tnes8Onq4RGUO7q2WhkvX6vqxcJy7BVRWeEqtc+xpwJD25uM4dI63IMensOv2YI0b8MfzqOom/Ej/55JPlySeflAsuuMDOkdbcmA0zjsHc17wfTzrppKi2ncSHFQAAAEge++67rxxwwAEyY8YMO7nbu+++q97XTLRsEqRmzpxpJ3zbb7/9oto2LQ0AAACIK8Y0ePf888/brkZz5syRww8/XIqKimT48OHSqdOGOVfWrFkj33//vZSXl9tW+IEDB9rHRItKAwAAAJAgOnToIFOmTLFTG7zwwgtSVlYmEydO3NglsLG7rt/vlxNOOMHOU9G+vcdJRTdBpQEAAABJN09DMissLJRnn31WbrnlFnnnnXfku+++k7Vr19qyjh072paH3/3udzJgwIAW2yaVBgAAACAB9e/fXy655JK4bItKAwAAAOKKhobEQ6Uh1QVCnspckZFGuKbBUahHY/oL9NkKVy/Ro0E7ru+qlqX37ug5OtYZ8VnpjuP0wu+IBGwucjW0wh2NqMkcoB+74NJStSziD3iKBq0q1ddppPvS1LLs/HxP506wpEwtC4T055GZ444kDixc7difHE+xsmFHbGRa50Jv0aDbuif0Ca3R389+13sgSz8nQ2vXe3pfuWJsm3sPOF+PfP31CK2t9HTMfTmZ+vaK85qJ/9QjeetnLtO36YhP9qXr753KaXPVsuwOxWqZ+N3dPFzbdEVPh6vqPL2XJahfW0LNXJPT87P1wvaOMgAWlQYAAADEFelJiYd5GgAAAAA40dIAAACA+GJG6IRDSwMAAAAAJyoNAAAAaJUxDbFaktXnn39uZ4JuDVQaAAAAkHRGjBghQ4YMsTMiJ4tRo0bJnXfeufH/o0ePlrvvvjsu22ZMQ4pL26bYU/xncEW5c72uyLxIbb140aFdJ0+PkzS/tzIRqSnTn2de7+5qWaRej82s/mmhWtZuSB/P8bDBVes8xVg2zF+plvmz9UhJnyM2NFKtxynmdXS/jqHySk/nlSuqNL27fp77Vld4eo623HH+uGJVXVGUEtFf59ByPTo2rVOB/rhm3q8+x+vsOq6+dP35R1yvhyMGOeyIFK1cuUpc8grae4oG9freqfh2llrWfp+h4tIwbbFaltGzo6f44Lqg/r5zyRreSy2r/0a/XhnhKj3mNLxeL/M74molU4/krVqnn8sFfXqKZ+u8HTu07Ykapk6dKgUF+rUxUUUi/42unzRpkvTt2zcu26WlAQAAAEgA+fn5smKFPi9PLNHSAAAAgLhiRmhvdtxxR/nkk0/kpptukoEDB9rfzZs3T/72t79t0eNPOeUUj1um0gAAAAAkhLFjx8qxxx4rt91228bfTZ482S5bgkoDAAAAEgdNDZ4cdthh8s0338gbb7whixcvlqeffloGDBgge+21l8Qa3ZMAAACABDFs2DC7GKbSMHLkSPm///u/mG+XSkOKC0xc6CkByJXUYoQciTTr6vWkko4d9fWGG/T9yezVQS0LLl6jlqX3cSf55FYVeXqO4tcTITKzstWylT9O1/clTU8OMtp10Z9LpK5BLUsryveUjuNKowk7EoDKVi8Xl6J8R7KOI3nLl5Hu7Vzurr/GgUWrxSW9U6G+P7l6Okxaof5aBhbq56v49eMarqjR9yVDf62a40rCijjOc397/TmWzpitlrXv1N1z8pZrX12Jb75M/dypXbVWLWvXvYtaFpitp5IZ9VV6SlSocr1altejq17mSoNzpK/VTtJfD9kkpWVr06XSu+hpVrUl+nmeVaAn93U4eFd9nRNniJMjqSdzpCO5DjHh8/vsEqt1p4qbb75Zdt5557hsi0oDAAAAkKCVhnih0gAAAIC4Mm0BMZumQVJPMBiUf/zjH/Lpp5/K8uUbWvR79Ogh++23nx04nZ4e/Ud+Kg0AAABAgvr3v/9tKwYLFy7cbOI344knnpAbb7xRXnnlFdlpp52i2g6VBgAAAMQX6UktoqSkRA488EBZu3atdOnSRU444QSbpmQsWLBAXnzxRZk/f74cdNBBtnLRrVs3z9ui0gAAAAAkoLvuustWGM466yy5//77JScnZ7Py22+/XS655BLb4nD33XfLX//6V8/bckQtAAAAAC3P5/PFdEkV//znP6V3797y8MMP/6rCYGRnZ8tDDz1k7/Puu+9Gta2kbmlYvXq1vP/++3aZOnWqLF26VPx+vz1wpinniiuukL59+0oq8+VkqGWRGj3esqRsiXO9wUhILevVXo+2C1foMYS+ND02MrRSj3EVR9xkuLTK/QbppsdxVv2sx9Vm5+sxhJGwfmyKM/Tt1YRqxWX18kVqWU7ary8kjYIRPY60qGdvTxGW/iI9MrG4fWdxyszwFAEbWqPHVIorirK0Ui3yZ+uxqcbyZXPVsq65ehNwRl9HPK4jVra8Uo//LO6kby9cqUeRGqvKlqll3XtuaOZuir+onVoWcpwfxb0c14A6/XyUYFAvM8fOESvq4svS/xRmNGR4il0OhBzPw8SK5rXzdAzCVfp1IFRZ6y0e2PH+iDS4j3nYsU1X1G9mEx9uNm6zXt9m7ccz1bL07sXiEiwpU8vCix0R2kAbtnTpUjnqqKMkzfEZyQyC3mOPPeyEcNFI6pYGUyk49dRT5aWXXpLc3Fw5/PDD7SjysrIyefDBB2WHHXaQjz76qLV3EwAAIAXjk2K4pIisrCxZv97xpdl/VFZW2vtGI6krDcXFxXLLLbfIkiVL5IcffpCXX37ZNs2YgSFmoEh1dbW9LS/XvxEDAAAA2qIhQ4bYmFXT4qAxn4PNfbbffvuotpXUlYYHHnhAbrrpJptTu6m8vDx58sknJT8/37Y6RNvHCwAAAFs/I3SsllRxyimnSG1trey///7y3nvv/ar8nXfekQMOOEDq6ursfaOR1GMaXEx3pUGDBsm3337rrJ0BAAAAbdHZZ58tr776qnz88cdy2GGH2V42/fr1s2Vm3gbz5biZu8FUKsx9o5HULQ0ugUBAFi3aMHA0msxaAAAAbB2GNLQMMwDa9JgZO3astGvXTkpLS+0X4mYxP5vfXXPNNbbFwYQBRSNlWxpM9ySTa2viqQ4++GBJVZF1eqpK2brValmHzA7O9WYVFahldWV60lFWdq5a1hDQ9zW7QH9cxZqValleup5gYgSWr9LXG9QHHmVUZ3hKlqoM6kk+xVnuZJB2OXpik0ttXbWndBhXIlFNaalalpOrJysZkXJHopWjybksoI9Nyo/oxyYjTX+tVq9f4W6xdKRSra/Xz/PsuXWeUrLqwvrjfBn65Tytk/5+NPKX6+dApK5BLQvM118rf362WrZ80Ry1rFvHXp7SgYzakH58cjP0a8SC1bPVsoL0Ak9pZ67zyghVO15LRwpKXYV+3cnt0UUtC67Sz8e0Dvr7Y+ky/bUyArV60lOfPD0lqy6gv5bZfn2wZmVQP+fySzafCfeXagI1allunjspDWjLMjMz5c4777TjeE1lYfny5fb3pnv+rrvuGvUA6JSuNPz0009y9dVX25/N1NpmBj2X+vp6uzTaklHqAAAAcE0IHZuxByk0TcNmTOVgr732klhps5UG08zy1ltvbfXjzIx3I0eOVMuXLVtm+3xVVVXZCNZrr7222XXecccdtvYGAACAxDBixAjbfefCCy+0C5K00lBSUiKzZ+tNxhpTGdCsXLlSxowZI4sXL5aDDjrIRrBuSS33uuuus3M+bNrS0KuX3oQOAACA5loaYnOEGtdrJvYtKHB3z0QSVBqee+45u7Tk7NCjR4+WOXPm2BHkZla8Le3jZe7XUv3BAAAAgETTZisNLWnNmjW2wjBz5kzb0mC6PWVn64P0AAAAkNgtDWhZSR+5ahKSTIXh559/thWGt99+2yYmAQAAANgySd3SYCa0MBWF6dOn2y5JpoWBCsOWqwnrkXgVde4EqZplC9Sy/HQ9crOzdPQUcbpw2WK1rFOmvs4V9XqkqlHniHDM9OsRff5MPW5x5foStaxDhh6ruqpWj8A11gX1SMVB+duqZWsb9HjUjID+PIoz9bhJl/VVejSqMa9GP3eKMgrVsmy/3nq4ql4/duk+Pd7S18z3KoV5evTw8gp90shMV6RkSB+XleHTL9nLl831FPO7oVyPzawurfYUD5tbq3850zlLf0+uLdNjbtc7rgHNHVfX6+w6d/LT9TjSlY7rR/fi3uKypHShWpbhy/D0PDJW6I9bVqdfd0LVQbUsP80d5ZyRpp+TMytm6Y/z64/LcryOrjjWihr3+eE6rvoZiVjx/edfrNaNlpfUlYazzjpLfvzxRzvY2cyQd/755zd5vyOPPNIuAAAAQKJYsmSJ/Zwbj4CepG9pMMz02SYpSdO3b18qDQAAAPESwzENqdTQ0LdvX9ljjz1k8uTJMd9WUlcaJk2a1Nq7AAAAAMSEiZTt16+fxENSVxoAAADQ9pCe1DKGDBkiS5fqY+haUtKnJwEAAADJ6Oyzz7Zdk8xEdrFGSwMAAADiygzeNUus1p0qTj/9dJk2bZoceOCBcvXVV8sxxxxjxznEYlJiKg0pLlSiR9SVOqI4++b0ca7XFWFYGij1FP1YGdSjKNultVPLltYuV8v65bpjESuDlWpZRYN+7DIq9Wi/mlCNvs6Avs72jrjR5o754uolalmXrM5q2ZqGtWpZWUO5p1jIJXXLxKVPjp4AUReuV8uqQno0qN/RqJrhOHfqwnrkrvHjmn+rZR0y9TjWsoB+7AodEZ+rHa9HnuN5uKJBjeIMPT43HImoZblpeqxqteP1KKvWn/+QvruoZWsWfSdeI1fLAxXixYIaPRq1V3ZPtWzh2nnO9bquZw3hBk/vj4U1evR0muM96YrkdUVvNxdL7XoernPOFcfqeu+4rjvNlUeq9H0F2rK0tP+e1zfeeKNdXJWpYFCPWG4OlQYAAADElWkLIDwpeiYhNBb3bQqVBgAAACABhcPhuG2LSgMAAADiijENiYf0JAAAAABOVBoAAADQKvM0xGpJNfPnz5exY8fKyJEjZdCgQfbnRlOmTJHHHntMKiq8BUI0ontSivPl6WkjQ/O3V8uW1umJREa2I8XElbji4koqCYu3Pn2BsDtFwJXw0SVTTx0KOFKgMnx6slLHLD1xpzkdsvXHLqtxv16a/LQ8tazekYziSlwpTC/wPFArw6dfsnLTctWyLF+mp3Mn0sx5leM4l13pUiFHWo1kdVSLitLbe0qc2bVouL49EVnfoP8h8Tm+W3KlS1UF9ZSwQXnbqGUzHAlJzZ07rv2pCFR6SiZzJbO50sXy0/X3TnPnVkF6V7WsJlTr6T3ZI7urp9SpxbV68lpzqW3uJLQ6T8/R6/u82fd6veM9CbRxzzzzjJx33nlSX1+/sevX2rX/vT7V1NTI+eefL5mZmXLaaad53g4tDQAAAGiV9KRYLani66+/lrPOOstWCO6++27bqvDLL9/23XdfKSwslLfffjuqbdHSAAAAACSgu+++21YS3n33Xds1qSl+v1922mknmTFjRlTboqUBAAAArZKeFKslVUyePFl22203tcLQqGvXrrJixYqotkWlAQAAAEhA69atk969ezd7v9raWmloiG7mc7onAQAAIK5imXKUQg0N0qFDB1m8eHGz95s3b55tbYgGLQ0AAABAAtp9993l22+/lZ9//tnZhcmUN9eFqTm0NKS6kB5vuaBmkVrWM7u7c7VlAT1uMsevR+Y1RBo8xeXlp+erZR3adVLLlq53xwn2bKfHvNY0VKtl/oj+NUeXToPUsh9X/lsty07TYxGNiqr1nqIqK4N6FGWnTD3+MxDR42pnV831FLfZXKzq4tqlalmXLD0Cd11gnVqW6ddjGts7Ik6bi5bNT9PPSRe/4yuyiqD+GnfMLPYUqdqcLMfxWVSrf7s1tHAHtWxpzTK1rFtWF7WsfaH+XjZmrp6ulvXK6aGWFWXor7M/U49ILq8u9RQpalQGq9SyDhl6fHLPdnrZ0mr9/VGQpT/HBZUL1LI+Oe5uD7n5+rWlokI/PoW5+vnqq1nn6Xx0vT+M9q7XuYserYvYYEbolnHhhRfKG2+8Icccc4y8+OKLdsDzpmbOnClnnHGGPd4XXHBBVNuipQEAAABJZ8SIETJkyBCZMGGCJKsxY8bIFVdcIXPmzJFddtlFtt12W1tB+OCDD2THHXeUoUOHyty5c+Xqq6+2rRLRoKUBAAAAcRXL+RQa1zt16lQpKHBPCpkM7r33XjsL9Lhx4+zYBcMkJZmlY8eOcvPNN9sWiWhRaQAAAAAS2Nlnn20neZs2bZosWLBAwuGw9OrVy7a2pKe3zMd9Kg0AAACIK9KTWp7pljR8+HC7xAKVBgAAACAJRCIRKS0ttbcmjtXMBt1SqDSkujSfp+ScrGw9AclypCd1ydFTbtI66Ikz4Yoatay0eo1alhsJeUrcMeoCejpOui9NLQtGAvo6Kys9JQuVNuhJJEZXR+qML1N/q1fX6vtTF65Xy9Y0rPWUgLM+4E44yfDr+9onr4++P7WrPSUkudK11lbp62z2PZKnp7EsLtXTarJ9WZ5SsOrDevJYl87uBJyasnJPKUAdMvUkn3lV89WyIkcqVYUjzau2TD8fje26DlXLFqyerZb5HZkgHTr1UsvqK/XZVXPTctSy5o5dfqZ+HSyr068Dvdrp+7qqZpX+uBw9JS7kuH7a/Vmnv0eK2+vX13C1/lrmpevvnfk1C9Wyjo7UqeaeS2iJ94QxeOMz/2I0oYJZd6r56KOP5H//93/liy++sBO5GdnZ2bL33nvL5ZdfLgcddFDU2yA9CQAAAEhQV199tfz2t7+VDz/8UGpqamwrg1lM5cH87pBDDpErr7wy6u1QaQAAAECrpCfFakkVzz33nG1hMK0KpmLw448/SmVlpV1++uknueqqqyQnJ0fuu+8+e99oUGkAAAAAEtCDDz4oaWlp8v7778s999wjO+ywg7Rr184u22+/vdx99922zHQFGz9+fFTbYkwDAAAA4or0pJYxffp0GTlypB27oGksN/NWRIOWBgAAACABZWdnS/fu3Zu9n7lPZqYeCrIlaGkAAABAXJnuMjFLT4rRetuiXXbZxY5jaI65z6677hrVtqg0pDh/p1xPsXe1ddXO9XbN7aaWRUKO2Ls1ehxnIBL0FJvpa5etltWUumNMsxxRnYGwHqtaG9LjBKtCNZ4iPKPhy3K81fVUWcnJzVPLemfr50ekQX+tfNkZ7otSj2K1rHruUrWskyvKt1h/HpFgWC0rqNcjTpvjL9K3WVihR2oW5urP35ehx/z68vWIz0i9/noYufn68wxU6O+R/DTH+TFge7WsfNFitaxTZz3+c8Uq/XFGuEaPne2a1dXT+3zlcj0et1sXPQK4rmyduBQ44nMbgvr1wySiaCrr9etnfrr+WmV31s+52lV6tLLRsV9/vTBd78ywrOwntaxHvn4O9A7rZT6f33PkavqRg5yPBdqqP/3pTzJmzBg7dmHs2LFN3seMdZg5c6Yd/xANKg0AAACIK8Y0ePP555//qlXloosukuuuu05eeeUV+eMf/yj9+vWzZQsXLrSJSd99951ccsklUU/0RqUBAAAASACjRo1qsvuVaYU0lYPvv//+V783HnjgAdvSEAy6W55dqDQAAAAg/jNCx2hGhWSeEXqfffZptTEbVBoAAACABDBp0qRW2zaVBgAAAMQVYxoSD/M0AAAAAHCipSHFRdbrEYW+ND3eMbd9kXvFIT3GMq2b/lh/nh6Pmr7aEce6TI8FTC/UY2Xbde8inp9HQB9M1LNDL7UssGiNWuYv0Pe17+DBapld77zVemGa/v1AfrZ+DEKllWpZ1i4b0hmaUv/9In1XHFGkdptlepxvThc9kjZcoUfZpnXUI06DK8o9RVE2d1xDa/Xztahnb0/xqGmdHM/DcV41xxVLXDRQf50Di1Z7ek+279bdUwRur12Gi0t4nX4OFOTrMdANc1aoZV176JGiaV0K1TL9iG7gz8lSy7K6tVfLckr08zVSp1/PJRDydB5n5+vnXHNc52TPrgPVMr8jljl7vf53SRyRxHa97fWY6PAn+jVLLtzTuV545NvQ2hATyTukQVVXVyfffvutlJSU2J81p5xyinhFpQEAAABIUPfcc4/cfvvtsn69/mVVIyoNAAAASBh+8dklVutOFePHj5drrrnG/jx06FDZZpttJD+KFkIXWhoAAACABK00pKeny6uvviqHHXZYTLdFpQEAAABxRXpSy1i0aJGduyHWFQaD9CQAAAAgAXXu3Fk6deoUl23R0pDi0vbs6Sn9I7S60r3eDnpKhWTpCRehEn0QT3ovPXUprYOeyOPLz/KUVGMf205P8fDlZnhLpcpM91Tm7+7uo+gv1VOHMoZ2VcvqPp6tP26g/jiX7D30ZBSf4/U3gkvXeTqvwpX14kX2mEFqWWihvi8b7qAn/YQLctSytM76axlxPI+QIyEqcwc9sUvSmunfG4qoRYGFegJO1nb69SNcWefpvRypCahlodIqtcyud6CeriVB/Tlm772Nvk3H+ejvqKedZTquO82J1OtJRxn9Onq6Lqf3LfZ2zJu51ruSl7KG9dEfl6lfB9J666lUDVOWqGWRoCMhyhyDno7kvu3j86EL/0VLQ8s4+OCD5YMPPpBwOCx+f2zbAmhpAAAAABLQzTffLA0NDXLJJZfY21iipQEAAABx5fP57BKrdaeK7t27yxdffCGHH364DBo0SPbbbz/p3bt3k60O5rjceOONnrdFpQEAAABIQJFIRO6//36ZNWuW7aL09NNPN1lZMPej0gAAAICEYtoCmBC6ZSZ2e/DBB23s6u9+9zs7T0Nenj7OMxq0NAAAAAAJ6IknnpDc3Fz517/+JTvvvHNMt0WlAQAAAHHFmIaWsXTpUhk1alTMKwwGlYYU97vTh6tln+3QWS3btr8e32f8/NNKT/sTqNWj/4ockYH1VXpMZeXSCrUsLcf9FnBt06V8UZlalttRjw2tWavHpjan/9m7qGVLZqxSy4Y4Hrd9n/Zq2cRJC9SyuhJHTGO2+5hnOsr67dJDLVuxUD/m2zsiZ13mLNDXaQSqvSVV5HXJ93YuT1+tluU73q9ZeVmez9e8HD1a2CWjXaan8zw0V9+X3/xhmOfXq/LbEvGi3fHbq2V1ZbWery29h3TxtD+u87xbP/16VemIVXWpWlXp+Vx2nVeh2qCnY+froW+v46h+4uJ6b+07Qo8PBtqyrl27Sn6+O5K9paRc5GpVVZX0799/Yw132bJlrb1LAAAAKTlPQ6yWVHHUUUfZrkl1dfrcOC0l5SoNV199tZ1yGwAAAMlrxIgRMmTIEJkwYYIkq3HjxklxcbGceOKJsnbt2phuK6W6J3300UfyyCOPyEUXXSTjx49v7d0BAABISfGYEXrq1KlSUFAgyeyyyy6z8zO88cYb8sknn8guu+zinKfhySef9LytlKk0rF+/Xs4880zp16+f3HnnnVQaAAAAkNCefvrpjZPZVVZWyqRJk9T7UmnYipqYGb8wceJEaddOH4gKAACA2PL951+s1p0qnnrqqbhtyxcxU8QluXfffddOeHHOOefIo48+an/XWCszUVU9e/bc6laLwsJCqaioSPpmLwAAkNja0ueWxn157+s50i4vNqk/1VWVcsju27aJ55tMkr57Unl5uZx99tnSq1cvO2seAAAAkn9MA1pW0lcazKDnFStWyD//+U/Ptc36+nq7bFpLBgAAAFJFm600jB07Vt566y1P02mPHDnS/vzaa6/J888/L6effrr89re/9bwvd9xxh9xyyy2eHw8AAID/YkbolnHGGWds8X2TdiB0SUmJzJ4929PkbYbJqj3//POle/fu8pe//CWqfbnuuuvkiiuu2KylwXR3AgAAAFozPcmlcQyvGcKctJWG5557zi5effHFF7J69Wo7yPnII49U73fcccdJVlaWnHbaaXZpiik3CwAAAKLHmIbYpieFw2FZvHixvPfee/Ltt9/aFNFhw4ZFta02W2loKSZm1Syar7/+2t6OGjUqjnsFAAAAROfUU09tdsZo0+X/8ccfl++//z6qbf16urgkYVoXTFOMtjQykavm/+agAgAAIH5jGmK14L9uv/12yc/Pl5tuukmikbSVBgAAACDVpaeny/Dhw+0Ex1Gtp8X2CAAAANgCpi0gVu0BtDP8Wm1trZ27LBq0NAAAAABJaubMmTYgKNrkz5Rtadh0XAMAAADih/SklvG3v/1NLausrLQVhmeffVbq6urkpJNOimpbKVtpAAAAABLZaaed5hz43fgl+RFHHCE33HBDVNui0gAAAIC4YkbolnHKKaeolYbMzEzp0aOH7L///rLnnntGvS0qDQAAAEASzgjdkqg0AAAAIO6YTiGxkJ4EAAAAwImWBgAAAMSV7z//YrXuVExL2tIxEF5RaQAAAACSIC2pOVQaAAAAkDCYp8Gb0aNHb3Wl4auvvpKampqoKhsGLQ0AAABAApg4ceIW3/df//qXjB07Vmpra+3/hw4dGtW2GQgNAACAVpmnIVZLKps+fbocdthhMmrUKJkyZYr06tXLRrNOmzYtqvXS0gAAAAAkuKVLl8qNN94of//73yUUCkmHDh3k+uuvlwsvvNBO9BYtKg0AAACIK8Y0tJzy8nK57bbb5KGHHpK6ujrJzc2VSy+9VK655hopKChose1QaQAAAAASTF1dnfz1r3+Vu+++W9avXy9paWlyzjnnyLhx46Rr164tvj0qDQAAAIgrWhq8C4fD8sQTT8j//M//yIoVKyQSicjRRx8tt99+u2y77bYSK1QaAAAAgATw2muvyZ/+9CeZM2eOrSzsu+++ctddd8luu+0W821TaQAAAEBcmXyj2M0InbyOPfZYmw7VOG7hkEMOkWAwKF9++eUWPX7PPff0vG0qDQAAAEACqampkTvuuMMuW8pUNkwFwysqDQAAAIgrxjR407t371abh4JKAwAAAJAAFi1a1GrbptIAAACAuIrlzM2pPiN0rPhjtmYAAAAASYGWBgAAAMQVYxoSDy0NAAAAAJxoaQAAAEBcmTkaYjdPA2MaYoGWBgAAAABOtDQAAAAgrhjTkHhoaQAAAADgREsDAAAA4srv89klVutGy6OlAQAAAIATLQ0AAACIK8Y0JB5aGgAAAAA40dIAAACAuKKlIfHQ0gAAAICkM2LECBkyZIhMmDChtXclKdDSAAAAgKSbEXrq1KlSUFAQk22kIloaAAAAADjR0gAAAIC4YkxD4qGlAQAAAIATLQ0AAACIL59PfLGauZkZoWOClgYAAAAATrQ0AAAAIK4Y05B4aGkAAAAA4ERLAwAAAOLKF8MxDTEbK5HiaGkAAAAA4ERLAwAAAOLKtAXEqj2AdobYoKUBAAAAgBMtDQAAAIgrxjQkHloaAAAAADjR0gAAAIC4Yp6GxENLAwAAAAAnWhoAAAAQV6QnJZ6UaWlYuHChXHzxxbLttttKbm6uFBQUyODBg+X000+XBQsWtPbuAQAAAG1WSlQaXnjhBRkyZIiMHz9esrOz5bDDDpNRo0ZJWlqaPP300zJjxozW3kUAAIAU4vvvwIaWXpipISaSvnvSxx9/LCeffLJ07txZXn75Zdl77703K1+0aJFkZWW12v4BAAAAbV1SVxpCoZCcddZZEg6H5dVXX5U999zzV/fp27dvq+wbAABAqmJMQ+JJ6u5Jb7/9tm1JGDlyZJMVBgAAAAAp3tLwwQcf2Nt99tlHgsGgvPnmmzJ58mSpra21LQxHHHGEHQwNAACA+GGehsST1JWGH3/80d6mp6fLbrvtJtOmTdus/Prrr5fLLrtM7r33XjudOQAAAIAU655UWlpqb++44w5ZsmSJPPfcc7JmzRpZunSp3HPPPbYy8Ze//EXuvPNO53rq6+tl/fr1my0AAACIbkxDrBakUEvD2LFj5a233trqxz3xxBN2DIMRiUTsbSAQkOeff14OPPDAjfe76qqr7ADpa665xlYqLrnkEmnXrl2T6zTlt9xyi+fnAgAAACSyNltpKCkpkdmzZ2/146qqqjb+nJ+fb2/N+IVNKwyNzj//fFtpqKyslG+++Ub222+/Jtd53XXXyRVXXLHx/6aloVevXlu9bwAAAGBQQyJqs92TTFci01Kwtctvf/vbjevo37//Zre/ZCoVnTp1sj+vWLFC3Rczj4OZQXrTBQAAAEgVbbbS0BJ22WUXe7t27Vp1Hod169bZn/Py8uK6bwAAAKmKMQ2JJ6krDcccc4xNRZo1a5YsW7bsV+WTJk2y4x3MfXbddddW2UcAAACgrUvqSsPAgQPl5JNPloaGBjn77LOloqJiY9nixYvl4osvtj8fe+yx0r1791bcUwAAgNSbpyFWC1JoIHRLefDBB+Xnn3+W999/31Yidt99d6mrq5Ovv/7aDpoeNmyYPPLII629mwAAAECbldQtDUZhYaGdBfr222+3rQmffPKJfPnll7LNNtvY+Rm++uorKS4ubu3dBAAASCGMakg0Sd/SYGRnZ9vYVLMAAAAA2DopUWkAAABA2xHLsQeMaYiNpO+eBAAAACA6tDQAAACgVUY0xGrdaHm0NAAAAABwoqUBAAAAccWYhsRDSwMAAAAAJyoNAAAAAJzongQAAIA4Yyh0oqGlAQAAAIATLQ0AAACIKwZCJx5aGgAAAAA40dIAAACAuGJEQ+KhpQEAAACAEy0NAAAAiC+aGhIOLQ0AAAAAnGhpAAAAQFz5/vMvVutGy6OlAQAAAIATLQ0AAACIL9+GuRpitW60PFoaAAAAADjR0gAAAIC4Ijwp8dDSAAAAAMCJlgYAAADEly+GgxpiNlgitdHSAAAAAMCJlgYAAADEFWMaEg8tDQAAAACcaGkAAABAXDGkIfHQ0gAAAADAiZYGAAAAxBVjGhIPLQ0AAAAAnGhpAAAAQHwxqCHh0NIAAAAAwImWBgAAAMQVYxoSDy0NAAAAAJxoaQAAAEBcMaQh8dDSAAAAAMCJlgYAAADEGaMaEg0tDQAAAECczZs3Tw455BDJy8uTjh07ygUXXCDV1dVt9nWgpQEAAABxlepjGioqKmT06NHSvXt3eeWVV6SsrEyuuOIKWbVqlbz66qvSFlFpAAAAAOLo0UcflTVr1si3334rnTt3tr/LycmRY445Rr777jvZZZdd2tzrQfckAAAAtMqIhlgtbd17771nWxoaKwzG4YcfbrsqvfPOO9IWUWkAAABAyps9e7Y8+OCDctppp8nQoUMlPT1dfD6f/PnPf96iY2O6GY0aNUqKioqkXbt2MmzYMLn77rslEAj86r4zZsyQ7bbbbrPfme1tu+22MnPmzDb5WtA9CQAAAJLqYxoefvhhuf/++z099rLLLrOPNR/8TQuCaTH45JNP5JprrpG3335bPvzwQ9v9qFF5ebm0b9/+V+sxFQ4zvqEtoqUBAAAAKW+HHXaQq666Sv7+97/bb/v/+Mc/btExeeONN2yFwVQUpkyZIh988IEdzDx37lzbYvHFF1/IjTfemPDHl5YGAAAASKrP03DWWWdt9n+/f8u+W7/99tvt7bXXXivDhw/f+HsTo/rQQw/J3nvvLePHj7cVh8LCwo0tCuvWrfvVukwLxDbbbCNtES0NAAAAgAfLly+XqVOn2p9POumkX5WPHDlSevXqJfX19XbwcyMznuGXYxdCoZDMmTPnV2Md2goqDQAAAGiVMQ2xWuJl2rRp9ra4uFj69evX5H123XXXze5rmEndPv30Uxu72siMfaiqqpJDDz1U2iK6J3kQiUTs7fr161v69QAAAGhRjZ9XGj+/tAWx/AzVuO5fbiMrK8suLWnhwoX2tnfv3up9TEvDpvc1zj33XJvUdMQRR9huS6Zbkpnczfy/sZLR1lBp8KCysnKzkwAAACARPr809qlvLZmZmdK1a1fZpm+fmG7HDEr+5ee0m2++WcaNGxeTz4Tt2rVz7ssvKzEmOcmkK11yySVy7LHHSnZ2thx33HFy7733SltFpcEDM+X30qVLJT8/3+b3Jjtzkps3nnnOBQUFrb07bRLHiGPEecR7ra3gesQx+iXTwmA+3JrPL63NfDg237g3NDTE/Dn/8jNaS7cyRMvMyfD+++9LoqDS4IEZTd+zZ09JNabCQKWBY8R5xHutLeB6xDHiPNo6rd3C8MuKg1mSQX5+vr2trq5W72PGKRiJ/hmKgdAAAACAB3379rW3pjeGprGs8b6JikoDAAAA4MHOO+9sb0tLSzcb6Lypb7/91t5uOodDIqLSgGaZPoBm8FBb6wvYlnCMOEacR7zX2gquRxwjxE/Pnj1lxIgR9ufnn3/+V+VmNmjT0mDelyZmNZH5Im0pfwsAAABoA0477TR55pln5NZbb5UbbrhBvd8bb7whRx11lE1J+uyzzza2KJjWh/32209++uknufLKK9t0MtKWoNIAAACAlPf999/LBRdcsPE4zJ8/X9auXWtbE3r06LHx96+//rp069Zts+N16aWXygMPPCAZGRkyZswYG8H68ccfy7p162SvvfaSjz76SHJychL6GFNpAAAAQMqbNGmSbRlozsKFC5sc1Pzyyy/LhAkT5N///rcEAgEZMGCAnHzyyXL55Zfb+SkSHWMaEBXzxrn44ott1nBubq6NExs8eLCcfvrpsmDBAo7uLyLX+vfvb3OjzbJs2bKUPj6rV6+Wv/3tb3LSSSfJNttsY+P3zDlkzh8z2c2iRYskVbzyyisyatQoKSoqst9ODRs2TO6++277RyfVmWNgvq27+uqrbb9hMyGS+SbPTA51+OGHy7vvvtvau9gmjR07duO15s9//nNr706bYeYGMN8Gjxw5UoqLi+11x3yLfPDBB8tLL73U2ruHVmauw6bXfnNLXyUF6fe//73tnlRRUSE1NTW2W9I111yTFBUGg5YGePbCCy/IGWecIXV1dTJ06FDZbrvtpLa21jbnzZgxQ95++2353e9+xxH+j/PPP18effRRe8ExzMCoVJzvo5H59uXvf/+7nfdkhx12kEGDBtmc66lTp8qaNWvsh2fTBHzAAQdIMrvsssvk/vvvl/T0dBk9erTtE2tmCTVN2uaDzYcffpjwTdrRmDhx4sZzwFQUdtllF3tumGvM9OnT7e/POecceeSRR1Jiss0t8eWXX8ree++98QNOc/2xU4X5ouaggw6y507Hjh1l9913t+eSuRabb4ZNxeEf//hHa+8m0HaZgdDA1po4cWLE7/dHunbtGvn8889/Vb5w4cJISUkJB/Y/PvzwQ1NTiFx00UX21ixLly5N6eNz8cUXR2655ZbIsmXLNvt9ZWVl5IQTTrDHqLi4OFJWVhZJVq+//rp9nnl5eZHvvvtu4+/XrFkTGTp0qC278sorI6ns448/jhxzzDFNXmdefPHFSFpamj1OzzzzTKvsX1tTXV0d2WabbSI9evSIHHnkkfbY3HrrrZFUV1NTExk8eLA9HuPGjYs0NDT86rhNmzat1fYPSARUGrDVgsFgpG/fvvbiO3nyZI5gMyoqKiK9evWK9OvXL1JVVUWlYQuYP+D5+fn2WD377LNJe46NGDHCPsc///nPvyr717/+ZcuysrIi69ata5X9SwRnnnmmPU5jxoxp7V1pEy655BJ7PN59993IqaeeSqXhP2688UZ7LM4555zWfYGABMaYBmw10+3I9Dc3XSf23HNPjuAWdD8xzeJPPPGEbQpH88zYBtNdqblZNhPZ8uXLbVcsw4zr+CXz/urVq5fU19fLe++91wp7mFgTKyXrebK1gzgffPBBOeWUUxI+D76lx8U8/PDD9mczNgaAN+keH4cU9sEHH9jbffbZR4LBoLz55psyefJkO57BDA464ogj7GBWiB2k+dRTT9k+16a/Orb8j3zjQOhfxtoli2nTptlbMxizX79+Td5n1113tR+GzX1PPPHEOO9hYpg7d25SnydbE7Rgxph16dJF7rvvvtbenTYXo2liM7t37y4DBw60g1Nfe+01KSkpseEDZvyHGc9gxlcB0FFpwFb78ccfN5w86emy2267bfzw0+j666+3366bSUxSeWBieXm5nH322fbb4nvuuae1dyehPPnkk/aPvBkAbP6YJ2vymNG7d2/1Pubc2fS+2NzKlSvl6aeftj8fc8wxKX14rrrqKnuemPAA80EYv/6bZYInrr32WptMtum8tnfddZdtsTITdLnej0Cqo1qNrWZmODTuuOMOWbJkiTz33HM27cZ8I2o+HJvKxF/+8he58847U/roXnTRRbJixQp57LHHbBQttoz5FrCxC8GNN95ovzlNRpWVlfbW1WXNJCkZ69evj9t+JQrTymkSuEy0oUlvO/fccyVVmYQtk8x2wgknyJFHHtnau9Nm/2aZL7hMBcFM3jV79mx77pgJt0xkuCk79NBDiTkGHGhpSMHs7rfeemurH2f645s+1kbjNzSmC8nzzz8vBx544GbfdoXDYZtLbCoVJm8/0frxt8QxMk3f5tiY+Sp++9vfSrJpiWPUFDP247DDDrNdLUwGv/lWEGjKeeedZ+dv6NChg43JTJYc9K1lPvieeeaZ0qlTJzueAb+26d8s081v/PjxG8v2339/W3EwY6hMhO+LL74of/zjHzmMQBOoNKQY04fTfMOytcyHuEb5+fn21oxf2LTCsOl8BKbSYL5J/eabb7ZodsVkOkamW405Bqb/rGlxSUYtcR411dVkzJgxsnjxYpulbmbWTObubY3vIzM3RXPHi5aqzV166aW2C5vphtP4TXGqBy2YicnM3APQ32tGUy1SpkuSaWV49dVX7bwgVBqAplFpSDGmK5FZomFmNf7uu+/srXaBNt96mS5LpntOqh2jL774ws52bPrPuroKHHfccZKVlSWnnXaaXVLtPNqUOV5moPicOXPsN3+mb7E5NsmscUZRV+pPY5k2+2gquvLKK+2MvmZmaNMtpzE9KVWZMQymS+hDDz1kl03NmjXL3poKlvkwbCbHM9+kp5pN/1Zpf7caf5+If7OAeKHSgK1mZmR95ZVX7DfqTQmFQnY22037ZKci8+2fWTRff/31xmnrU5mpXJoKw8yZM21Lg+n2lJ2dLcmu8cOu6W9tBrA2laD07bff2tvhw4fHff/aarc403pXWFhoKwwmXQobxnd89tln6qEwSWRm6dOnT0oeLvP+Ma2WppuS+bvVGDCwqca/Z6n8NwtoDgOhsdVMSom5AJtvsZr6UGyywk3fUXOfVPyjbloX/jNxYpPLpt8im/+PGzdOUpX5Q20qDD///LOtMJg5QExiUiowLVEjRoywP5vxL021WJlzxLS4kLkvdnyLCVowFQbTJanx2KU68wWNdq059dRT7X1uvfVW+//GGONUY1pYGsdSmRaXXzJ/rxorXSYREEDTqDRgq5mca5Na0tDQYCNFzUC8RqY/+sUXX2x/PvbYY22/fqApZWVltqJgBh+aLkmpVGHYNJ7YMEljJku+kWl9MAkvjSlc5oNyKrvhhhts6o3pkkSFAV7cfPPN9tYEdDS28ja20pgubwsWLLBda014BYCm0T0JnpiUDvPt8Pvvv28rEbvvvrvU1dXZi7EZvDls2DB55JFHOLpQnXXWWTY/3bRImQnOzOBxreUmWWMkzfMyCWOmj755D5lKlEkbM6lA5hvkvfbay35LnMpMd7XbbrvN/myuNRMmTGjyfmYQsJkbBmiKeW+Z95KJcTaTuZkWBdMCYSrrpgXGfGHxwgsvJG3EM9ASqDTAE/PNp5kF+q9//asdWPfJJ5/Y35vYuuOPP95+EEq1b42x9S0Nhuk2YZKSNGYQcLJWGoz777/fVg7Mh+Evv/zSdpUYMGCA7Y5z+eWXp2yU6C/Pk8YxHo3jPH7J9Nen0oDmWqxMZcHMmD1lyhSZOnWqrTiYIAqT+Dd48GAOIODgi2zayRoAAAAAfoExDQAAAACcqDQAAAAAcKLSAAAAAMCJSgMAAAAAJyoNAAAAAJyoNAAAAABwotIAAAAAwIlKAwAAAAAnKg0AAAAAnKg0AEAc9e3bV3w+38Zl//33j8t2X3zxxc22a5ZJkybFZdsAgMSX3to7AACp6JhjjpG8vDzZfvvt47K9fv36yamnnmp/fv/992XVqlVx2S4AIDlQaQCAVnDvvffaVod4+c1vfmMXY9SoUVQaAABbhe5JAAAAAJyoNABAE+bPny9paWlSVFQkNTU16jEy3YvM+ID33nuvRY7jokWL7PpMK0Q4HJYHHnhAdtxxR8nNzZVu3brJeeedJ2VlZfa+9fX1cuutt8rgwYMlJydHunfvLpdeeqlUV1fzmgIAWhSVBgBowoABA+TQQw+VdevWyd///vcmj9Gnn34qM2bMsPc9+OCDW/w4nnzyyXLttddKjx495KCDDrKViEcffdQOnjYVA3NrujkNGjTI/mwqN6aScdxxx/GaAgBaFGMaAEBxySWXyNtvvy0TJkyQs88++1fl5vfGBRdcYFsHWtLixYslPT1dZs6cKX369LG/Ky0tlT322EOmTZtmb03rwoIFC6RDhw62fOHChbLLLrvIP//5T5k8ebLstddevLYAgBZBSwMAKMy396b70Q8//CBffPHFZmXLli2TN99803YbOuOMM2JyDE2rQWOFwTCVg/PPP9/+PH36dHnyySc3VhgaE5JM64Tx8ccfx2SfAACpiUoDADTT2mCMHz9+s9+bbkLBYFD+8Ic/SPv27Vv8GJpWhgMPPPBXv99mm23sbe/evWWHHXZQy0tKSlp8nwAAqYtKAwA4mG/uzWDo1157TVasWGF/19DQII8//rj9+aKLLorJ8TODnk3F4ZfM3A6NlYam5Ofn29u6urqY7BcAIDVRaQAAB9P9yIxnCAQC8thjj9nfvfrqq3aeg7333tsmG8Xk4uz3R1UOAEBL4q8OADTjwgsvtPGrptJgKg+NXZVi1coAAEBbQ6UBAJphugIdeeSRdpzATTfdJF9++aWdE+Hoo4/m2AEAUgKVBgDYAmbSNOPOO++0t+eee26TYw4AAEhGVBoAYAuY8Qs777yz/TkjI0POOeccjhsAIGVQaQCALdQYgXrsscdK165dOW4AgJRB2zoAbIFQKCQvvvii/fniiy+O2THr27evRCIRtXzUqFHO8tNOO80uAAC0JCoNALAFTHLS4sWLZY899rBLtK666io754KZcfrqq6+O+WswZcoUefjhh+3Ps2bNivn2AADJhUoDAChmz54t99xzj6xcuVLef/99OzfCvffe2yLHy8z1YIwZMyYulYaFCxfKM888E/PtAACSky/iaucGgBQ2adIk2W+//SQzM1MGDx4s48aNk6OOOqq1dwsAgLij0gAAAADAifQkAAAAAE5UGgAAAAA4UWkAAAAA4ESlAQAAAIATlQYAAAAATlQaAAAAADhRaQAAAADgRKUBAAAAgBOVBgAAAADi8v+3tNPgKNOV6AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+mklEQVR4nO3dB5yU1bnH8WfK9r5L701ALCCKMYqKYE8sscRyjV0T7LFgb9dY401saIwaNTGWEBN77B0VUbFQBJTOUpZlG1un3c85ZhF0n7MwszO7M/P78nk/u+wzb5l3ZnbnzHnP/3gikUhEAAAAAEDh1QoAAAAAQKMBAAAAQLvoaQAAAADgRKMBAAAAgBONBgAAAABONBoAAAAAONFoAAAAAOBEowEAAACAk99dRlvC4bCUl5dLQUGBeDweThIAAOiyzDy+dXV10qdPH/F6O//z4qamJmlpaYnrPjIzMyU7Ozuu+0g3NBqiYBoM/fv37/hHAwAAIE6WL18u/fr16/QGQ3FOsTRLc1z306tXL1m8eDENhw5EoyEKpoeh9cVXWFjYkY8HAABAh6qtrbUfdra+f+lMpofBNBj2lYnij9Pb0KAE5fXVb9p90dvQcWg0RKH1kiTTYKDRAAAAkkFXuqQ6UzIlQzLism0vQ3bjovMvbAMAAADQpdHTAAAAgITymH9x6vnwRLpOj0oqoacBAAAAgBM9DQAAAEgoM+4gXmMPGNMQH/Q0AAAAIOWMGzdORo0aJVOnTu3sQ0kJ9DQAAAAgobwej13ism3xiEREZs6cScplB6KnAQAAAIATPQ0AAABIKI/tD4jPZ9fx2m6646wCAAAAcKKnAQAAACk3pgEdi54GAAAAAE70NAAAACChGNOQfOhpAAAAAOBETwMAAABSa0wDOhw9DQAAAACc6GkAAABAwsc0mH/x2jY6HmcVAAAAgBM9DQAAAEgoj8djl7hsmzENcUFPAwAAAAAnGg0AAABIKO/GUQ3x+PddD8a4ceNk1KhRMnXqVB7dDsDlSQAAAEg5M2fOlMLCws4+jJRBowEAAAAJxTwNyYfLkwAAAAA40dMAAACAhDIjGuI1nwLzNMQHPQ0AAAAAnOhpAAAAQEJ5PV67xGXbfCYeF/Q0AAAAAHCipwEAAAAJZWZtjtfMzcwIHR/0NAAAAABwoqcBAAAACcWYhuRDTwMAAAAAJ3oaAAAAkFDfzdIQnzEN8dpuuqOnAQAAAIATPQ0AAABIKGaETj70NAAAAABwoqcBAAAACeX1eOwSl20zpiEu6GkAAAAA4ESjAQAAAAkf0xCvf2bbxrhx42TUqFEydepUHt0OwOVJAAAASDkzZ86UwsLCzj6MlEGjAQAAAAnl8XjsEpdtM6YhLrg8CQAAAIATPQ0AAABIqNbxB/HaNjoeZxUAAACAEz0NQBwsWFWr1p5/YKa+YiCk16qbnPsMr9frkYaAWgutrFFrnuwMteYty1Vrvm1K1Zo06sditYTVUsbu/dRaYE6Fe7vaNrfrrtaan1vgXNe7ax99u73y1VrA9Vh+sz6qc+MS3tDirHvzM6Na15Ot/wnxFOrblIagWgqtrde3menTt2mfy/rrTkL6ufMNKFZrkRb9Nenx6tdjewe0M/jScQ48Y3uptbNO31WtZfv4HBDJw7x84jdPA+Ihrc5rS0uL3HXXXTJ+/HgpLS2V7Oxs6devnxx00EHy1FNPdfbhAQAAAF1S2vQ0rFixQg444ACZO3eudOvWTfbYYw/Jy8uT5cuXy7vvvmu/P+aYYzr7MAEAAFKeZ5P5FOKxbXS8tGg0NDY2yn777Sdff/21XHfddXLFFVdIRsb3l100NDTIggXuyxAAAACAdJUWjYabb77ZNhjOPPNMufbaa39Uz83NlTFjxnTKsQEAAKQbM54hfmMa4rPddJfy/TeBQEDuu+8++/0ll1zS2YcDAAAAJJ2U72n47LPPZN26ddKnTx8ZNmyYfPXVV/Kvf/1LysvLpaSkRPbcc087ENrrTfn2EwAAQJfAmIbkk/KNhi+//NJ+NSlJl112mdx2220SiUQ21m+99VbZaaed5JlnnpEBAwZ04pEiXYRmluu1cj3+tOXb1c7tBiN6NGTIUXN149YE9QjLLK8eqVnwVoG+v+xM9y+lvnpca+Or89VaZEOjWsscM1CtBT5YrtbCtfo2DX/4+98lP9T05Up9vQFlaq35y2VRnRt/vxK1Flq3QVwiLXr8Z8bQbmotuEiPhw2trY3q/rfMWaHWvMV54vLt0u9+37cl25ut1nxf+KJ6nhdm6VGt65sqxaV730Fqzb9AX/flMb3V2uE/0Z/nABCrlP94vbLyu1++s2bNsg2Es846S+bPny81NTXy2muvyfDhw23tZz/7mb2UqS3Nzc1SW1u72QIAAIDoeD3euC7oeCl/Vlt7FUyD4LjjjpN77rnHNhQKCwtl3333tQ0HM1/D7Nmz5cknn1QHUhcVFW1c+vfvn+B7AQAAAHSelG80FBR8f5nEr3/96x/VzSVJppfBeP3119vcxuWXX257JloXM7cDAAAAovPdLA3xW9DxUn5Mw5AhQ9r8vq3brFq1qs16VlaWXQAAAIB0lPI9DWPHjhXPf3OATYpSW1p/np+fn9BjAwAASEcejzeuCzpeyvc09OrVS8aPHy/vvfeevfzIJCVtyox1eOedd+z3u+66aycdJVLNC8/N1YshPXHHk6m/JD0+PeHFqG/SB+hnePXtNoWDUSXH+D3fz6r+Q94MfX+RprYDB1qFqxvUmq+7nsqk50OZVKpqvZjhOK9edxd3aKWeduXrUajWWubpyUqZ2/Z17DCsloKu+xhwnR33OWj+aJFa8xTkqLVQdb1ai7TozwGvY5vV5fp5M/pk6clC6wNVUdWG5bbdQ93e41GWq6dOGZH6JrUWrm9Wa+VLHI8z6UkA4igtmmKts0CbAc0fffTRxp8Hg0G56KKLZNGiRXbswymnnNKJRwkAAJAeGNOQfNKi0TBp0iS54YYbpKqqyk7mtscee8iRRx4p22yzjdx9992Sk5MjTzzxhPTs2bOzDxUAAAAdYNy4cTJq1CiZOnUq57MDpPzlSa2uuuoqe/nRHXfcITNmzJCZM2faS5dOPvlkufTSS2XkyJGdfYgAAABpwRPH+RRMfpJh3uuZiH10jLRpNBj777+/XQAAAABsubRqNAAAAKDzef77L17bRsdLizENAAAAAKJHTwOQaGE9clV8ejve37fUuVnfIj1yNRzR99kU1qMffR49inNly2q1NkD02NCCQvf98Jbp86VEWvR4WE+W/uvMW6jHeIZrG/Vt5rkndfQW6dsNfLNWrWUM66Xv0xF/Gm5siSqOtuUr9yz23sJc/XgcEaiROv3cZQzqrtZCq/XY0FBlnVorKnHHmIbr9OdyRUvb8/QYmY5o4UBEf86FInqUbXZesbjUVVaote776mPsGlfr5wdIKibS+r/zaHW4CD0N8UBPAwAAAAAnehoAAACQWJ449jQwpiEu6GkAAAAA4ERPAwAAABLK4/GIx4xriMe2w4xpiAd6GgAAAAA40dMAAACAxDKdAfEa00BHQ1zQaADioKCvPm19ZY0eUxmq3KDWwrUNzn0W5uoRjy3NehSliyumsndWT7XmcXVittMd3TBfjwfNGzVQrUUccbWuqNZQhR5V6w3p8a/txbVmDHLEg/od5ycYVkuRgB7x6d/eEXG6Rr+PRmCZHv+ZtaN+zsPZGXqtvlnfoSNW1u+Iag074liN6kCNWhuZP0KteR3vMJrDesxtbnGJfjAed0d+fk6RWmv5olytdT96lHO7ABAvNBoAAACQWOYDpDiNaaCrIT4Y0wAAAADAiZ4GAAAAJBY9DUmHngYAAAAATvQ0AAAAIPHzNMQpPSle2013NBqABPN2y4uqFpi7yrnd+go96Si3SE9qqa3Uk3VKM/R0mGxftlrL69VDrUUaHak6Jq2nUE8sCq6o1Ff067/OMobpx+NzJBKF69ypU54sf1RJWN7iXH2f1XpKlseRVtT8xrdqzd9HT9ayQuGo7mOkKaCv50iz8uTpz53g8sqotmn4PHoqk0tYImotN1N/TYYb9GQlb7a+TVsvyFFr/sFlaq1upTsJCwDihUYDAAAAEosxDUmHMQ0AAAAAnOhpAAAAQGKZcQdxmxGaMQ3xQE8DAAAAACd6GgAAAJBYjGlIOvQ0AAAAAHCipwGIg+z8TLUWXlev1xr1CMegIxrVyMnVo0oXr12o1vpk91ZrdcE6iUbFyiVqrcegoc51I474T1+PwqiiSoNL9RhPX1l+VFGkdp/1eiSrryQvuhjTlqBay9imu1oLfKtH7gaXr1drdp+O+xkqr9aPZ4h+POFa/dwE5pc7jkWPwPX316NIjaxF+nNgeeMKtZbp1V+v/hY9xjUQ0R+rgYUjxCnDEQ/bqG+3oK/+GgCSisf73RKvbaPDcVYBAACQcsaNGyejRo2SqVOndvahpAR6GgAAAJBQHq/HLnHZtny33ZkzZ0phIb1zHYWeBgAAAABO9DQAAAAgsUhPSjr0NAAAAABwoqcBiIO6NfVRpaZ4fdn6aoN6OPcZrtDTlbpndpNoNIQa1Vq2Vz/W0mw95caTl+XcZ3htjV4M6Mk60QpVOR6rcMS5rr+ffj+DK6vUWsYg/fHwFuboh1PbrB9Ln2K1FvhmrVqz+yzOVWueTP3PRGBRRVTriU//vMoTdqQVLXHfD48jMaUmqL8+embpry2P47O1gd31JDBfqZ6eZYRW66lU4Q3NUSWzAckljjNC/3dMAzoWPQ0AAAAAnOhpAAAAQOqMaYjQ0xAP9DQAAAAAcKLRAAAAAKSYxsZG+eKLL6SysrJDtkejAQAAAAnl8XjiuqSL9957Ty688ELbONjU448/Lj169JCxY8dK79695X//939j3heNBgAAACAJ/fnPf5Z77rlH+vbtu/Fny5cvl1NPPVXq6+ulqKhIgsGgXH/99fLOO+/EtC8GQgNx0GeQHn9Z64gNDTe2RBXRaEQc2/U6oijXNOsxlqUZJfr+JKzWPI5Y2cCCVWrtu+3qMaf+3vrxNC5drdZyh33/y3RrRJoCznpoXZ1a8xbp0ameYj2uNlK5Qa0FKuqiOuf+vvp5s9tdsk6teXP1iE9ftwK11jx7mb7NbH2btc3683xDqEFcmkJNam1s2U5qraZRj8fN9OoRwSvWLVFrfZv7qTW73e0cdT+f5yENMBC6Q8yYMUNGjx4t3bp9H+X9t7/9TVpaWuS6666Ta665xvZGTJgwQe69917Ze++9o94Xv5kAAACAJLRu3Trp12/zDyHefPNNyczMtJctGXvuuafstttuMmvWrJj2RaMBAAAAiWXGHcRzSRMbNmyQnJzve7YjkYjMnDlTdtllF8nPz9/480GDBkl5eXlM+6LRAAAAACSh0tJSWbLk+0slTW9CXV2d7L777pvdLhAI2N6HWNBoAAAAQOeMaYjXkibGjRsnH3/8sXz44Yf2/3feeadNj5o4ceJmt1u4cKFNUYoFjQYAAAAgCZ1//vn2kqTx48fbXofHHntMhgwZIvvvv/9m4x6++uor2WknPRBiS9BoAAAAQGLR09Ah9t13X/nLX/4iAwcOtIlJJh3p+eefF6/Xu1maUjgcjik5ySByFYiDior6qKI4g8v06MvKOj0a1Sgr6KHWcnx5+j6b9ahSl4ZQo1or8JWqNW+ZHtNp+fTPMoIr9FktMzP1aEyXUKUeY+rvV+Zc1zdQj9YNr9WfA4EvV6o1T4Eex+rvVaTvr75ZrQVX6pGiRuYYPf6z5fMVUT1WGQO6q7Ww45znOZ6rPo8eK2v0zdejdZfULokqkrgsI0Ot5fty1Zony/3nNbhKj5b199afV1VL3dHLANLPSSedZBfNb37zGztvw6YDo6NBTwMAAAAS6ruQo3jNCJ0+D+a7774rCxYscN7GpCutXbtWpk+fHtO+aDQAAAAASWjChAly6623tnu72267TfbZZ5+Y9sXlSQAAAEgsZoTuMGYgdCLQ0wAAAACksKqqKsnO1sfMbQl6GgAAAJBY8Zy5OcUHNSxbtuxHs0L/8GetgsGgzJkzR1599VUZOnRoTPul0QDEQWNlg150TDrjKdCTlcpCejqSXTdbT3mpWacnL3XP7KbWmsJNaq053KIfTKZ+LJLhTsCJNOnb9Ti2G2kK6Ovl6LNgZo7so9ZC6/UEJLvPSj1BKrhUT3ryD9GThUJraqNL3lpVFXUKVHi1nmYkLfp59ebpaU6Bb9fom2zWn1dZJYVqzVfneF6Z53mjfg5KMvRjXdNcodYavfpj3C1ff0168tyf6HkcyVPePnrC2IH7D3duF0DqGzRokB3w3erpp5+2S3uXMJ1wwgkx7ZdGAwAAABKLMQ1RGzBgwMZGg+lhyM3NlW7d2v4AMDMzU/r16ydHHnmkTJ48Ofqd0mgAAAAAkseSJd/PO2MmcTv66KPtBG/xlpYDoadMmbIxy/d3v/tdZx8OAABAWonfHA3fLeni4YcfltNOOy0h+0q7y5M++OAD+b//+z/7hEpURBUAAADQ0VwzQXe0tGo0NDQ0yMknnyy9e/eWcePGyTPPPNPZhwQAAJB+TG+AIxgkJuH06WnYVCgUksrKSmlqanKOh4hWWjUaLr/8clm4cKG8+OKL8o9//KOzDwcAAACIycyZM+Waa66Rd955R5qbm9XbmatsTARrtNKm0fD222/L3XffLSeeeKIcfPDBNBoQV8Emx4vSp38C4u9fqtYiJXnOfVZ+NV+tFebocZOLaxeptWxvlBPBRMJqqWWVHkVqZHYrjipW1pdXota8+VkSjdDK9e3cQL+fEUdUaeDrcrXmLdPjNkMVejSqf4AenRup1/+ItMe13cBiPcrXk6vH3OYN7anWgqtr9G2286lkY0i/n+sDehzr4NyBai3seC57HPHBvm7642i3u0H/JDC4cJ1ae/nVBWpt+Em7OPcJpE16Ury22wV99NFHMnHixI29CyUlJVJYqEdXxyItGg1m0otTTz1VevbsKXfccUdnHw4AAAAQs2uvvdY2GMz73BtvvNG+142XtEhPuvjii2Xx4sVy33332RYYAAAAusCM0PFaROz41VGjRsnUqVNT9qGeMWOGjBgxQh544IG4NhjSoqfBTJt9//33y7HHHiuHH354VNsw14dteo1Yba0+YysAAAC6xrX+8bpUp6swYxTGjBmTkJjZlO5pqKmpsdm13bt3t+MZonXzzTdLUVHRxqV///4depwAAABpOaYhXkuaGDlypKxbp4+D6kgp3Wi44IILZMWKFXLPPfeo02tvaeqSaYC0LsuXL+/Q4wQAAAC21plnninvvfeefPvttxJvKX150r///W/x+/1y77332mVTX3/9tf360EMPyeuvvy69evWSJ598ss3tZGVl2QXYUkPG9FZrC1/V04pCa/R0nEiLOyYtInrKS33TBrWW6dWf27m+HLVWmKWnHK2rWKnWeo4cKS6BJRVqLWNQd7UWcSQZuRJ5vPl6QlTGcP1xbC89yFuYq9fyHL9PHIk8wW/XqLWs3YaotRbH/bfHU5AdXWKVI+kpXN8U1XPZ30tP+qqd407e6papp4/VBvXLSrO8etLTmmb9MRbHlaoFq/RtGhkjekWVsFYyUH/dAckknjM3p9OM0GeeeaZ8+OGHst9++9kPyQ844ADx+fS/I7FI6UZD67VeJrdWs2TJErsMHKhH7gEAAABdzZAh331gZN7LHnLIIfbDcjOJsdfrbbMxFUuPREo3Gqqrq9WamRn60UcflRtuuEGuuuqqhB4XAABAWmOehg5hGgutIpGIBAIBWbZsWVx6YFK60QAAAACkqsWLFydsXzQaAAAAkFibzKcQl22niYEJvLw+pdOTAAAAAMQubXsaHnnkEbsAAAAgwRjT0KHMxMOPPfaYfPDBB1JRUSGTJk2SKVOm2NqCBQvs2Ie99tpLsrP1tLz2pG2jAYinRZ+vUmuhinpHzRG56oiwNAr8evxlQ6hBrVW26DGWWVl6bGRToFGtleU65kXxeaOO/wzX6efAW6xHnIar9fsfDoSiihv9rq6fH19ZflTxsE6Z+vEEl6zX99f4/Yz2bQm1BPR1m/SaxxEd63VEx7oex3Ct/ljllpWJS1Olfg4yvPqfu6qAHprRK9cRu+t4HMN1+uvDrrpOj0HO2EGPY61bo//+AJCeXn31VTn++OOlqqrKDoY2A5779u27sT5//nw5/PDD5YknnpBf/vKXUe+Hy5MAAACQWJ44L2li3rx58otf/MJOPjx58mR56qmnbMNhU2buhtzcXHn22Wdj2hc9DQAAAEASuummm6SpqUmmTZsmRxxxhP3ZMcccs9ltMjMzZcyYMfLFF1/EtC96GgAAANA56UnxWtLEW2+9JaNHj97YYND069dPVq3SL53eEjQaAAAAgCRUUVEhw4cPb/d2wWBQ6utjGxPF5UkAAABIKI/XY5d4bTtdFBUVycqVK9u93aJFi6RHjx4x7YueBgAAACAJjR07Vj799FNZtmyZepvZs2fb8Qw/+clPYtoXPQ1AHHQfoUeOrsrVYzqdfpCG8EPBiB4d6vPoL/X+2f3UWkXLOrWW48uRaAS+XeOs+3sV60VHjGdw8Vp9mwP0xyO43BE5O3aQOzaz0hGR64hyDa2qjirmNWOQI8rWwdddj+M1gqtrolo38M3aqGJeXffR44jkbV6vnzejJlgr0QiEg/rxOJ5zy+tXqLWBZSOc+/Q64mrD691xrUBKiGfKUfp0NMjpp59uI1ePO+44efrpp6VXr80jm9etW2dvYxKVzNdY0NMAAAAAJKGjjjpKjj76aPnwww9l6NChsv/++9ufT58+XQ499FAZMmSIfPzxx3YeBxO9Ggt6GgAAAJBg8Uw5SqOuBhF5/PHHZdiwYXLHHXfI66+/bn+2cOFCu5i41YsuukhuueWWmPdDowEAAABIUj6fT2688Ua5+OKLbQSrGfQcDoelf//+MmnSpJgHQLei0QAAAIDEMglH8Uo5SqP0pE2VlJS0O19DLBjTAAAAACShu+++W6qqqhKyL3oagAQLN7SoNW+RnkgUjoSd261vWK/WyvoPVGs1SxeqtQJ/vlrzevTPHGoa9V9g3cZsJy6RFj3JJrRWT/nxlukpP5GmgL5eqX4fQxV6OpLhydaTsIJLK9Ra5pgBai0wX0+X8uToqUOBRfr+MoZ0Fxd/ryK1Ft6gpyB5C7L19Vw7DAaj+oQwq1B/rIye4Ty19kn5x2ptSG5xVM+d3lk99fXC7rQzT5Y/qoz57bbvmMsMgE5HelKHOP/882XKlCl20PMpp5xiBzt74jRWhJ4GAAAAIAkdccQRNk512rRp8rOf/cyOY7jyyivtIOiORqMBAAAAiWU+DY/nkib++c9/Snl5uU1O2nHHHe33Jilp5MiRstdee8nDDz8s9fX1HbIvGg0AAABAkiotLZXzzjtPZs2aZZdzzjlHysrK5P3337cTupkJ30499VR59913Y9oPjQYAAAAkljfOS5oaPXq03HnnnbbHwfRCHHzwwdLc3CyPPPKITJw4MaZtp/FpBQAAAFKP3++34x3uu+8++fWvf21/ZsY+xLTNDjo2AAAAYCvSk+I09iB9hjS0yfQs/Pvf/7bjGd5880070Zux3Xbu9ML20GgA4qBi/rqoIhw9mf6o1jNKckvV2upl36i1HF+WWlvauFytdc/sptby+uixkBu+/FZc8nccqta8hblqLVy1Iar4S/8A/X54S/T92e0urVRrGY5YVQnpx5MxTD93wfJqtRau1ONhg47nleWI+HTFsUooHN3z1RE3GqlvUmuBWvdgvoxS/VhLM/VY1Qyvfjx1Qf15leHVI3D9jvthtMxfrdYyR/RSa198slKt7b1db+c+AaS2GTNm2MuQnnrqKampqbE9C0VFRXLsscfaONZdd901pu3TaAAAAEBCmbkE4jWfQLy22xWtWrVK/va3v8mjjz4qX3/9tW0omPu/zz772IbCkUceKdnZ+pw6W4NGAwAAAJCEBgwYYC8/Mo2FgQMHykknnWQbC+b7jkajAQAAAInFjNAdOuDZRKpOmjQpvvuK69YBAAAAxMXq1avtuIVEoNEAAACAxDIBDI4Qhpi3nSaKEtRgMGg0AHEwZIyeYvLNtno6TvOHS9Sar6zAuc9wbYNa6+HTj6dmg54ANDR3iFr7sm6OWtsuMlKtZWXliEtwaYVaa6ipUWvF47dXa6F1egJOuLZRX69SX8/wFjvSnGqaotqnx6dPn+Mt1M9duFJP8vH1LBSXSKOedBRYVBFVelL2wfpzoOmVBWrNW5Kv1jJz9KQvo27V6qjSvqoC+vOqJEP/g5yTmx/V42hENujPAcnQ1x0wsrtzuwBS2//+7//KmDFj5NBDD/1R7csvv7SzQ/fr1+9Htbvvvlveeust+de//hX1vpncDQAAAIllEo7iuaSo6667Tp555pk2azvttJNce+21bdY+++wzefbZZ2PaN40GAAAAIMlFIpGYZ3124fIkAAAAJBbpSUmHngYAAAAATvQ0AAAAILFIT0o69DQAAAAAcKKnAYiDRZ+vUmvBxVVqzd+3RK0Flqxz7jNQW6/WmsMtaq0hpEc/1gTXqLUxhTuotapAtVrLznRHx/oH65G0uYv19VrmrtSLgZBa8vUtVWseR6SoEWkJqrWwI67Vk+2IR+2vPweCi/TnQOZ2/fT1yvXHw/DmZUWVd+4fqMd/Nr30dVT3P7RKf31IOzGmoYj+OLc4XgNZ3ky15nF9thbWBxx6y/L09cyq9Xokr6fQHS0LpATGNCQdGg0AAABAkvj888/tfA1bUzM/jxWNBgAAACRWPOdTSOF5GowvvvjCLltTM1GsnhjPC40GAAAApJxx48aJz+eTs88+2y6pYK+99or5zX+0aDQAAAAgocwbX49jzFSs2zZmzpwphYWFkkrefvvtTts36UkAAAAAnOhpAAAAQGKRnpR0aDQAcfDzQ0eptWeeXaDWAosq1Fq4So/wtHXR4x+rgzVqrSXcrNZKM/T4T5ee2+n3P1RR51w3XNsYVcRlJBBQaxmOGNdwox7F6evujod1CTbpxxNxRLm6YlVdkaPNny3RV+sT3eNo1y3Ro0ObZn6r1jL6lqm1cHV9VHGsNVXu2OEMb0ZU0cItEf050CO/l1rb0Ki/rvL1l7LlLdbPq7c0W60t+9qx4Z8MdO8UAGJAowEAAACJRXpS0mFMAwAAAAAnehoAAACQWCY5KU7pSXHbbpqjpwEAAACAEz0NAAAASCzSk5IOjQYgDt75dIVa8w0tjio9yZPpfrlm6AEw0idLT4BZ2rhcrVW06Gk1Po9PrRXN19OBMkqLxCVcUSvRcKXuuNKK/P31ZKHg0vXOffr76I+lv7deE7836nSpaBKSvIU5UW3THs/KKrXm76Hfx3Btg77RTP2xcsn364lDRmOoSa3l+vRzEAqF1FpNg/4c8Dg664PNeiqZkZWrP16hFfpz4JArhju3CwDxQqMBAAAAiUV6UtKh0QAAAAAkAZ9P7+Vvj8fjkWAwGPX6NBoAAACQWN44xvGkcMxPJBLplHVT/LR+JxAIyBtvvCGXXHKJjBs3ToqLiyUjI0N69eolhx56qLz44oudfYgAAABAu8Lh8I+WCy+8ULKzs+X888+Xzz77TKqqquwya9YsueCCCyQnJ8fextw2Finf0/DOO+/IfvvtZ783DYXx48dLXl6ezJ07V55//nm7nHnmmfKnP/3JdtsAAAAgzhjT0CEefvhhueOOO+S1116TffbZZ7Pa6NGj5Q9/+IP9kHzfffeVbbfdVk477bSo95XyPQ1er1eOPPJIeffdd2XVqlXywgsvyFNPPSVfffWVPPnkk/basD//+c/yt7/9rbMPFQAAANhi9957r+yxxx4/ajBsasKECfZD8/vuu09ikfI9DRMnTrRLW4455hjbMnvooYfkr3/9q5x44okJPz6kpkB9QK0FZ+uxqr5uBWotXF3v3GcoosdGNof1PNZumaVqbYCvn1qrCdRGFccqEXf3qLc4L7pY1YB+/4NL9HMeaQpEtT+73fJqfd0Mxznw6Z/XePOz1VqkUX8c/cO6qbXmGYv1YzGH00OPwY206OdH/P7oao6BeP7BPfRj2dCob7OdaF3X66PYr9///GI9GrW5doNa82dmilNYv7bYW6rHw86Yv1atDe9d6N4n0IWYqzvidYVHOl058vXXX8thhx3W7u369u0rzz33XEz7SvmehvbstNNO9uvy5XpWPQAAANDV+P1+e/VMe2bPnm1vG4u0bzQsXLjQnojevXvHdCIBAACwFe9A47mkid122802CO666y71NnfffbdtWPz0pz+NaV8pf3mSy+rVq+WRRx6x35txDwAAAECyuOaaa+T111+X3/72t/KPf/xDjj/+eBk8eLCtLVmyRP7+97/Lhx9+aHsZrrrqqpj2lbaNBjO5xQknnCA1NTWyww47yK9//Wv1ts3NzXZpVVurX8sNAACAdpCe1CFM78Hjjz8up59+unzwwQe2gfDDuRny8/PlgQcekN133z2mfaVto+E3v/mNnb+hrKxM/vnPf0qmY9DazTffLNdff31Cjw8AAABoz9FHHy177bWXPPjgg3aqgRUrVmwc/Lz33nvbmNWOuAw/LRsNZvILk5hUUlJi05OGDx/uvP3ll19uJ8XYtKehf//+CThSJKvG+evUmqfYkY6zuk6thZv05Bwja2BPtbb+m6/VWvccPa1m6Yalaq3An6/WWhxpTdmBLHFxpUT5+upJT948fbsNS8rVWuHQYWot8OVKiZa3R2FUKT/eQv35EVir93IGF69Xa55sd5KPJ1P/U+DJ1BOkfH31ZKHA1/o595bqz51wrZ6QFHEkDhlVgRq1lu/TU7mCET0hqrpKTysq7t5HPxhX6pS5n1V68lLQ8fujaqme2AUkFXoaOlTPnj3lyiuvtEu8pF2j4aKLLrKDRczM0K+++urG9CSXrKwsuwAAAADpKK0aDVOmTLEz4xUVFdkGwy677NLZhwQAAJB+4plylEbpSZteBfPYY4/ZcQ0VFRUyadIk+77XWLBggR0UbS5hys7We7PbkzaNhssuu0x+//vf2waDuSRp3LhxnX1IAAAAQEzMB+EmNamqqsoOfDaT25nxDK3mz58vhx9+uDzxxBPyy1/+Mur9pEVbzERM3XrrrfaSJBoMAAAAXWRMQ7yWNDFv3jz5xS9+YdNAJ0+eLE899ZRtOGzqgAMOkNzcXHn22Wdj2lfK9zSYKbNvvPFG+/2wYcNk6tSpbd6uW7ducvvttyf46AAAAIDo3HTTTdLU1CTTpk2TI444wv7smGOO2ew2JiF0zJgx8sUXX0gsUr7RsH7994kin3zyiV3aMnDgQBoNAAAACRHPHoH06Wl46623ZPTo0RsbDJp+/frJ3LlzY9pXyjcaTj75ZLsAidRjr4FqbdUH3+UntyW4ojLqfTYvXaPW8hxxk+UNejRmRPRoUL/Hp9YyvBlRxY0avh5Fai1cqcdUesv0GM/CvbePKlbVFSn63cqhqO6nK+I0MH+1WvMPKNPXW+KI+fW28wfUUfcW56q1cHWDYz39ORdaXR3V/nxlBeJS1KzH3NaH9CjfDI/+fC3MKIwqVjVc//2EoG3J3LZvVLGzwaagc7sA0ktFRYWMHz9+iyY1rq/Xfw9uiZRvNAAAAKCLIT2pQ5iAn5Ur259TaNGiRdKjhz4v05ZIi4HQAAAAQKoZO3asfPrpp7Js2TL1NrNnz7bjGX7yk5/EtC8aDQAAAEgs0pM6xOmnn24HQh933HGyevWPL29dt26dvY1JVDJfY0GjAQAAAEhCRx11lBx99NHy4YcfytChQ2X//fe3P58+fboceuihMmTIEPn444/tPA4mejUWjGkAAABAYsVzPoU0mqfBePzxx+20AnfccYe8/vrr9mcLFy60i4lbveiii+SWW26RWNFoAAAAAJKUz+ezc5JdfPHFNoLVDHoOh8PSv39/mTRpUswDoFvRaADioGlDi1qLNOuRieG6JrXmaSd32p+ZqdYy8vSoyvq1egRb2KPHhmZ6s9SazxG36Yri/G6nEb1U7zg/BdlqrWW2Hivr76VHvLbHW5Sj1oLLv58j5odCq6rUWsbIPvp6FXVqzZOl/zr39XDEhrYT8ekrcUSnVkUX3+cf0E2tBZeti2o9oymsPz+qAjVqbWBOf7UWCOuxqpkt+ms5Y3hvcQk6ngOu+9l9hPscAEmD9KQOV1JS0u58DbFgTAMAAACQhCZOnCi33XZbu7e7/fbb7W1jQU8DAAAAEosxDR3i7bfflkGDBrV7u/nz58s777wT077oaQAAAABSWCAQEK83trf99DQAAAAgscwwvbilJ8Vns8nsq6++krKyspi2QaMBAAAASBKnnnrqZv9///33f/SzVsFgUObOnSuff/65nbchFjQagDionbM2qvW8jgQgT2aGc91Ik57Y9E35XLVW5NeTdUKRkKOmJ8eIxxtVOpIt1zboNcd99Dm26e9fGlXqUGDhj2fX3JQ3T3+8IiE9ecrXQ09sCq2p1fdXnKvWghX6epFCPeXJbtdRD1Vu0NfL0xO0Qo4ksEh9s1rzD+qu1sKO+2hkefUEsdKMErWWm+lI+8rWX3cex+PfMH+5uGR304/HP1ivVS2tdm4XSBqkJ0XtkUce2fi9x+ORb775xi4uffr0sbGssaDRAAAAACSJhx9+2H6NRCK2h2H8+PFy2mmntXlbM7lbv379ZLfddpOMDPeHj+2h0QAAAIDEIj0paieddNLG76+77jrbINj0Z/FCowEAAABIQkuWLEnYvmg0AAAAoBPSk+K4bXQ4Gg0AAABAEmtubpa33nrLTuJWW1trxzv8kBk0ffXVV0e9DxoNAAAASCyv57slXttOI//+97/l17/+tVRWVqq3MY0IGg1AF5QzSI9MbBxeFlW8Ze1id4SjKx51YE5/tRYWPQI1EAmoNZ8nus8cQqvdkZGuCNSMvvq58+br8Zfh6oao4kY92XqEp+XzRhVH6oocDTliRV3bzBjeW99fk/44tlt3RMeGG/UIXI/jWMOVdfp6jojTpjp9PbuuzXBsW0j018eahjVqLadZvx9FLfrrPGdgL3HxZOghwYHZetSvZ6x7uwDSyyeffCLHHHOM/f7YY4+VOXPm2IncLrvsMlm4cKG89tprtufBpCuZFKVY0NMAAACAxCI9qUPcfvvtEgqFbG+DmbztlFNOsY2G1jkZKioq5MQTT5T//Oc/MmvWrJj25ZiBCQAAAEBXNX36dBk1apQ623P37t3lySeflPr6ern++utj2heNBgAAAHROelK8ljRRUVEhI0eO3Ph/v/+7i4iampo2/qyoqEj23ntveemll2LaF40GAAAAIAkVFBRIMBjcrIFglJeXb3Y7Mxv06tX6eKktQaMBAAAAiR/T4I3TYradJvr16yfLl38flNLa62DiV1sFAgH56KOPpGfPnjHti4HQQBxk5OkJMDWzNm/9b2k6Tn637s59RjY0qrW19Xo6jEuGR78fq5v1TyzKKvQ0nm4/3dG5z5avlkeVVhRapacyeQr0ZKVIy/ef0PyQv3+pfixm3WZ9XQnrqVTh2saoogJDVfVqzdetQN+mI6nHiDiOx1uSpx/PWj3pKVylJ4FFHOcm4khWyi4tFpeqNUvVWiDsSALz6uenKEdPSHK9MWle6n7NZfbWk8CyJ/9EreX0cjzOANLO+PHj5cEHH5Samhrby/Czn/3MXqJ04YUX2kuUBgwYIH/+859tz8P//M//xLQvehoAAADQOelJ8VrSxOGHH257G9555x37/969e8sVV1whdXV1ct5559n6iy++KMXFxfK73/0upn3R0wAAAAAkoUmTJtn5GDZ17bXXyg477CDTpk2T9evXy7bbbisXXHCB7XWIBY0GAAAAJFY8U47Sp6NBdcQRR9ilI3F5EgAAAJCEJk6caCdvSwQaDQAAAEiseCUntS5p4oMPPpCWlpaE7GuLLk969913O2yHe+21V4dtCwAAAEhX/fr1k+bm5q7TaJgwYYJ4OmAkutnGphNQAOnI1/e7iVfa0vLJErUWrmtqZ8N6x2HPkr5qbVnlYrVWkqEfa2mmHkXpK9FjIQNf65GzRsawXvq63+gxr/6+ejxqJBRWa55M/ddguMYRjWrqlXqsaMY2eh62N1+P1g2W68fj61moH0zQcR+L9cjZ9iJgw46YV68jytb1SV/dylVqrWjQILUWcsSxGgX+fLVmcsrV4wnp2y1p1l8D2QX68zwj1x2N6opXDjw9T1/xZ9s4twskjXimHKVRetLPf/5zeeyxx6S+vl7y8vSI7I6wxQOhe/Tosdk01Vvr66+/lrVr10a9PgAAAIDNk5Kef/55O+jZzMcwcOBA6fRGw0EHHSR/+ctfot7RKaecIn/961+jXh8AAAApgvSkDnHRRRfJdtttJy+88IKMGDFCdtppJxk0aJDk5OS0ecXPQw89FPW+iFwFAAAAktAjjzyycQiBGRA9Y8YMu7QlIY2GJ554QgYPHiyxmDx5shx44IExbQMAAAApIJ4pR2mUnvTwww8nbF9b1Gg45phjYt7RrrvuahcAAAAAsTvppJMkUZinAQAAAJ2TnhSvpYv75ptv5De/+Y2MHTtWMjIy7DiEro4xDUAc1K2sjSoa0xk3ukCPqTQqqvR6VV21WvN7fGqtvEmPOM3w6r8++oR7q7WsXHckXHiDHi2bMVzfbnCxns7m66HHZvp66jGdLXPc59zXuziqmNfQGv35EWnSo0FdQo74V6/jWOy65VVqzddHj9Z18fXQ42GLuzkieefrkbyNzQ3OfbaE9QmOvB79M7LeWXo87oaQHjmbFcjVD6a9c762JqrfA0MnxHapMICuYc6cOXbwsrkKJxKJSFWV/nt4S82dO9dO9lZRUWEHRx966KH25+Fw2E55kJmZ2XmNhg8//FDeeOMNKS8vl6amprgMugAAAECK8cbxepckuI7mkEMOkcMOO8x+b3ocXn755ai3tXz5cptS+tZbb2122VJro+GBBx6Qs846S1599VWZNGlSYhsNDQ0N8stf/lL+85//2P+bFpKGRgMAAADwPa+3Y1o269evl7333luWLFki22+/vey1115y7733bnYb8579nHPOkeeeey7xjYYrrrhCXnrpJSkpKZETTjhBttlmGylwzIwJAAAAdOUZoefPn28/jf/000/tMm/ePAmFQnLDDTfIVVdd1e7606ZNk6lTp8oXX3xh40+HDRsm//M//yO//e1v7biFeLj11lttg+Hiiy+235sP63/YaDDv13fYYQd5//33Y9pXVI0Gc1KKi4vls88+i+vMcwAAAEAi3HfffXLnnXdGte4FF1xg1/X7/TJx4kTJz8+XN998Uy699FI7Y7NpjLQ14Vqsnn32WTuI+pZbbtk4X0NbhgwZItOnT49pX1H1jZjBGnvuuScNBgAAAKREepK5vMd8Yv/3v//d9jL86le/2qL1nnnmGdtgMA0FM7HaK6+8Ik8//bQsXLhw4yf8V199tcTD0qVLbQJTe5c7mUHQ5lKmhPc0mN6FjroWC0hFPz90lFp75oWFai24Sk85ak+BX08B6l6ipw411dWptW8blqi1Yp+eSOQSbtITbgxvnZ6eFA6E9BV9+u+kcLWeutP8mZ6OkzGom74/k/SzZJ1ayxyhJ+B4svVu6khLUK2F1+vH6i3Wk3yCy91/KFwJSa40J29JXlTrBZfp5622UU8VKioqE5fV6/S0r2K/nnSVn6M/l6tql6k119FU1ulpXka37n3Vmqc4W60t+tyR6PUTev6BWJx++umb/X9L3+vedNNN9utll11m38C36tatm71UyHzQfs8999iGQ1FRdH87NdnZ2VLn+DveatmyZTHvO6p3/scff7y8/fbbUl0d/RscAAAApHl6UryWBFm5cqXMnDlz4/vjHxo/frz0799fmpub7XjgjjZy5Eg7XKC+Xv9Qad26dXacxY477hjTvqI6reb6LNOFc9BBB9nuGwAAACDdzJo1y34tLS2VwYPbnkdll1122ey2Hemoo46SyspKufDCC+18DG255JJLbPLpMccck/jLk8x1UeZ6rZ/+9Kf2Wq0BAwbYpa1uHDMow8zlAAAAACQqPam2dvOJNLOysuzSkRYvXmy/mvfBGtPTsOltDfMmvrXnYdGiRfb///znP+3/x40bt8Xjhs8++2x59NFH5cEHH7SJT0cccYT9+bfffit/+MMfbHjRxx9/LGPGjJGTTz458Y0GMxB6v/32k9mzZ9s5GkzUk1na4hrJDQAAAMRD65v1Vtdee61cd911HbqPuv+OJ8jL08d4mQHSP2zErF27Vo4++ujNbtf6/4cffniL3+CbMQ3mg3yzrpkNurU3wwy+Not5n24aIWawdqyxr1HP02CunzLzM0yePNl+bT0hXVln5OcCAAAg8T0NZqbkwsLCjT/u6F6GWJiYVNfkyFujd+/etoFgGg8vvvii7bkwlyqZRpMZSmBmnu6ID/H90WbC9uzZUz766CM7YUQy6Kz8XAAAACSeaTBs2miIh4L/Tm7sGoi8YcOGjccTTwcccIBd4iWqRkNNTY0ceOCBSdNg2DQ/95133tkYh2VGk5sGRGt+7u23397Zh4oU8fq731+3+EOeXL1Xy1uoN1yXL53v3Gdxhh4pubRykVrL8+lRnfl+vbu1NEN//deHHDGmXnevXrhWj0f1NOm/snx9S9Wat0g/r55sfZuB+WvUml03yx91zGk0zwFfN71HN1yrR9V6czOd+wyt1I81c4zjutpgWC99o8efegv151xWg/7ckQyfXhORwSXD1NrKmuVqLbNRjyss8ut/5IPNzWqtW4/NL4v4IV/3795otMVbqj8HCvrG900HkDCeOKYceRLbY9Daq6FprbXeNllF9XCZy3qamvQ/UF1Ne/m5hsnPNY0hAAAAYEvstNNO9qtJMNp0oPOmPvnkE/t10/eg8RAKhexYCTMng7YkvNFw2mmn2U/sV6xYIV1dZ+fnAgAAoOvPCB2Nfv362YHGxuOPP/6jurmaxfQ0mPEUBx98cFyOwbzPNWMXzKVSZnyDiX5taxkyZEjiGw3nnnuuHVRhLu0xgy60XNiuoLPzcwEAAJC6rrjiCvv1lltusUFBrUzvw1lnnWW/P+ecczp8NmjDjC/ee++97ftxcxVQcXHxxqkQfrj8ME0qIWMahg4dar+amFXTajKDi03LRpunwWTFdpZo83MBAACQvOlJW8u84W99k2+0vn+9//775YUXXtj483//+9/2fW+rww8/XM477zy56667ZLfddpNJkybZCFYzT1l1dbXssccecsMNN0g8mBhZ01g49dRT5cYbb7RBRfESVaNh0zkZTFxUIBBQr5Pq7Hkaos3P3ZS5dMksrbTbAQAAIDmZ93czZsz40c/N5fgrNrkkf9P3hK1M4I5pHJhofzNfgnlvbD5kN+NpTbS/mRg5HszxjhgxQh544IG4v+eOqtGQbp/I33zzzXL99dd39mEgiTSu1tNYIjV64kqkKaDW+pTqvWXGskr9dVmWoScLVQf1AIAiv57wsqpZTxbqm/39JzA/5O/VTupaICTRCFdu0GvVeiJTxgj9U5mMId2d+wwsWSfR8OTpWeGebD1dKuI4N6FV1WrN19d9zr1l+VGlQLmONVynh2X48rLVWk6fHvo2K/XXldHYrD/OfYv0bvmWxka1Vt2ivz4Kc/XEMgkG9Vo7iV7BhZVqLVCv/44Akoo3julJUW53woQJMc2d8Mtf/tIuiRQMBu1sz4n4kD6qRsOWTm3dFXREfu7ll18uF1544WYt0VivCwMAAABiMXLkSDuFQCLEq43XZXREfq4Z8d46QUgiJgoBAABIZeaT8Xgu6eLMM8+U9957LyHjh1O+0dCV8nMBAACQGCYKddSoUXacQSo3Go477jjZb7/97NQBZq6GTr08af/997fTUl900UVR78jMtvzqq6/aJZFa83NNhq3Jz73yyisTnp8LAACAxKYnmfd+qX51yJD/zr1gQooOOeSQuCaablGj4fXXX7dvvmMxZ84cGz3VWfm5v/jFL2x+rpn8orVHIRH5uQAAAEA8JDLRdIsHQpvBwrFMP9062LgzdGZ+LgAAALr8NA1JaXECE023uNHw9NNP2yVZdVZ+LtJTRrEeKRkucsRtVviiits0BpS1PeO5UV1TodZ6Z+mRozUBfU6SHpnd1JqvQI+TrFrh/vChpJ8eLRter3/44C3Oiy7GdEOLWguurJJo+QfpMbeh9XqaW6Rej+T15uvPHb8jHtaT7/795joHEtbjB8MVtVGdc39vPao0EgrrtTo9GtWoq9cjWTMa9T93lS2VUcUOu3gLc531UHl1VBG4BT315zmA9DMwgYmmW9RoMLMpp8JI9M7IzwUAAEBbPQ3xeW+ZAm9ZuyT/1l4vBQAAAKDrMHOIPfbYY/ZqmoqKCnsp/pQpU2xtwYIF9r38XnvtJdnZ+pUQcZncDQAAAEilGaGT1auvvirHH3+8VFVV2cHQpgenb9++G+vz58+343ufeOKJmK64SbPTCgAAAKSGefPm2YTQmpoamTx5sjz11FO24bApM21Cbm6uPPvsszHti54GAAAAJFQ8Z25OhXG4W+qmm26SpqYmmTZtmhxxxBH2Z8ccc8xmtzFhP2PGjJEvvvhCYkFPAwAAAJCE3nrrLRk9evTGBoPGzLe2atWqmPZFTwMQBwNG6vGXc//4gVoLV+tRnJ489+ClDev0WNWinBK1tq5eX88lLHoUp/j1Xy2FfvfsnJ5Mfd2MoXo8rGT4oooxDdfqMZ6+Xu4JH13bdUaHNgWiqnly9OjU8IYmvfaNO6o0c9veEhWv49O8lnBU5zzseqwcNSPPp8eRLm5cqtayvHqUbVNI32dBlv5c9eTp22zvcfYW6a/1Jlc8LpBMmKihQ5hBz+PHj2/3dsFgUOrr9fcYW4KeBgAAACAJFRUVycqVK9u93aJFi6RHjx4x7YtGAwAAADqloyFeS7oYO3asfPrpp7JsmT5x6uzZs+14hp/85Ccx7YtGAwAAAFLOuHHjZNSoUTJ16lRJVaeffrodCH3cccfJ6tWrf1Rft26dvY1JVDJfEz6m4eWXX5YDDzwwph0DAAAgTSVgTMPMmTOlsNA9ji7ZHXXUUXL00Ufb9KShQ4fKHnvsYX8+ffp0OfTQQ+Xtt9+WDRs2yP/8z//Y6NWE9zQcfPDBMmLECLnzzjvtDHQAAAAAEu/xxx+Xyy+/3H7/+uuv268LFy6UF154QVpaWuSiiy6SRx55JOb9RNXTsO2229rJJC688EK56qqr5IQTTpCzzz5btt9++5gPCEgFy752JBKF9dQhj09PAKpYrV+vaJTl6YlNazf8uMuyVa4vR63N27BAre1StJNaW1w+T60NGbyDRJvIE1xRqdYigZBayxisD/6KtATVmsfXzucqjjQjCTrSg+r0pCNvgZ6c483Piio9yVukP8ZG0wcL1Zq/b6m+z1r9nLsEluivD3+v4qiStYzckJ6eVBAsUGstET2RqDRTTx6rrlqr1kraSTtzJaX5B+rnPFCvpy4BScXrEY8rgS3GbacTn88nN954o1x88cU2gtUMeg6Hw9K/f3+ZNGlSzAOgY2o0zJkzx3Z33HPPPfLcc8/J/fffL3/+859lr732knPOOcfOTOf1MlwCAAAASISSkpJ252uIRdTv7CdMmCD//Oc/ZfHixXLllVfaVsw777wjv/zlL2XgwIG2xbN2rf4pDAAAANKYJ04L4iLmyd369u0rN9xwg1xzzTW2EWF6Hz788EP7f/NzMzjD9D7EGvMEAAAAoG0ffPCBfPPNN23WdtllF5sk1SVmhM7IyLBxT6aRYBoMt9xyix188fe//90O0Nh9993l9ttvp/EAAACQ5jwej13ite1UtvPOO8uCBQvs+AXTGGj1wAMPyF//+tc219lxxx1l1qxZXaPRsGbNGjuuwSzl5eX2ZzvttJPsv//+8sQTT9joJzPN9dNPP20joAAAAABsuTfeeMO++T/ttNM2azC0MvMxmMHPm1qxYoV8+eWX8uabb8rEiROl0xoNpivEXJL0r3/9SwKBgB0AbQZhnH/++baRYJjxDWaw9HnnnSfXXXcdjQYAAIA0loBpGlLSM888Y3tSfvvb37ZZN7XXXntts58tWbLEzuFgPrhPeKPBzDxnLjsyM+yZaalNq8aM2D7jjDNs9KqJeNqUaUhMnjxZXnrppY35sUC6yti2p1oLLatWaz3ytnFuN7hsnVorzdBjI+uCG6JaryWsx1QO7jZMrXnz9NhQI9LkiJR0RKBmbddPrbXM1yNnvbl6bKqnux7Tafn14wmt0eewyRzRK6qowIDjfkRCevypr8x9PzK33/x39qZCa/X74R/QTa2Faxujih12Pf6RkB5jazQF9H2WN69SawOy9edOOKLv0+fRI5Lb44rzDa/T41gBpLePP/7YBg5tzfiEQYMGyQ477GDXjYU/2sHP1dXVtrGw3Xbb2R4EM1dDTo47C7xnz552nAMAAACArfPtt9/accJtMe/LNdtss40dA5HwRoNpMPz85z+3jYUfXjflMmXKFPnVr34VzS4BAACQKrg+KSq1tbVSVFTUZs1MumwCidpiPtivq6uThDcazNTUQ4YM2er1hg8fbhcAAAAAWyc/P19qamrUhCSzaB/45+bmSsIbDdE0GAAAAACDyNXo9O7dWz7//POtXs+sY9btlBmhAQAAgK5q3LhxdsCwCe5JFbvvvrusXLlS3n333S1ex9zWxK7uscceXWOeBgCbvLCyM9TTsWH+WrUWadCDAkJr2+6O3JJUotqaCrUWiOhpNd0z9XScrCw9+CDSElRr4eoGcXKkynh8elpNqMJxraYjASdzFz05KDBbTyuyx+M4556MKI/Vcf99vYvVWnBlVXSJVO3UfWX5znXVbTbrzwEJBqO6/66EKKMmoCc99cnSP2HbENLTisoyS9Vapld//JtW6WlmRlZJoVrzj+qh1rbbXq8BScUbx4+u/7vdmTNnSmGh/lpLRieccII89NBDctZZZ9lpD9q7f2Ycg7mt6dk5/vjjY9o3PQ0AAABAEth7771lv/32k7lz59rJ3V588UX1tmaqA9PbMm/ePBtctM8++8S0b3oaAAAAkFCMaYje448/bi81WrBggZ0w2cyVNnbsWOnevbutV1RUyGeffSZVVVU2hnXYsGF2nVjRaAAAAACSRFlZmcyYMUPOOecceeKJJ2T9+vV28mTTENt0vgYzufKxxx5rx3QUF+uXt24pGg0AAABILOZpiImZq+Fvf/ubXH/99fLCCy/Ip59+KuvWfTeWqlu3brbnwcypNnToUOkoNBoAAACAJDRkyBA72XIi0GgAAABAQtHRkHxoNABxUNAzT61t6F+i1gLz10QVRWnU1FRGFQ3ZHNZjXmuCeoRloEGP6SzwF6i1rCb3r52MUX3VWni9Ho0Zrm9Wa968bH29NfVRx8O6HhFvoR5J6ynWjycwb3VUMaaZ2+qRoi1fLBMX/2A9xjOwYJVayxjaU99oi/788Jbpz4+GJeVRxfwaPX368dS36DG3jS364xyK6DGvEUeUb3aROwbR9ZyMNOmP85zZemTz3tvFNnETALjQaAAAAEBCkZ6UfJinAQAAAIATPQ0AAABIuRmh0bE4rQAAAACcaDQAAACgU8Y0xGtJVe+++66dCboz0GgAAAAAksCECRPklltu2fj/iRMnym233ZaQfTOmAYiDqqXVas3XR4+bDC6vUmve+gznPiPNevxjIKzHX9aH9MjRPJ8eHZvry1VrWSV63GS4rklcAgv1yFHx6J9z+HsVRRXHKl79E6mMEb309cx2a/X7Elqrx9VKlX7OPdn64+zN06Nzgyv0507WbkP0Y2knAjZc26jWIi16NKjfFccajqilnF7d1Zq3QD9OY/38b9VadbBGrZVllKm1zJ6lam3tisVqLVvaiVwty1drEUeccUae+/cAkDSYqCFqkcj3v0PffvttGTRokCQCPQ0AAABAEigoKJBVq/T5c+KJngYAAAAkFB0N0dlxxx3lzTfflGuuuUaGDRtmf/bNN9/IX//61y1a/8QTT4xyzzQaAAAAkILGjRsnPp9Pzj77bLukgilTpshRRx0lN95448afTZ8+3S5bgkYDAAAAkkcCuhpmzpwphYXu8UXJ5pBDDpGPP/5YnnnmGVm6dKk88sgjMnToUNljjz3ivm8uTwIAAACSxOjRo+1imEbD+PHj5S9/+Uvc90ujAYiDQLWeqtPyyQq1FnEkC3mL9SQjo9CRELSkcalay/bqiTShSEit1Qf1BKCMKv1Xi9eRgGQ0rdeTp/LHfHf95tamFXkLc9RacGmlWosE9PtveHIz9Zoj6UhCetKVr48jBWpdfVQJUS1z3IPmXOfH369ErQXL9ccqvFJPc/I4UpBc57x6wSK1ZtcV/bzWBPTnR1mGnpBUvvwbtVbg1xOQQnV66pS1fL1aysx3PHeAFOHxeuwSr22ni2uvvVZ22mmnhOyLRgMAAACQpI2GRKHRAAAAgIQyfQFxG9Ig6ScYDMo///lPeeutt2TlypX2Z3379pV99tnHDpz2+2N/y0+jAQAAAEhSn3/+uW0YLF68eLOJ34wHH3xQrr76apk2bZqMGTMmpv3QaAAAAEBiMVFDhygvL5f9999f1q1bJz179pRjjz3WpikZixYtkieffFK+/fZbOeCAA2zjonfv3lHvi0YDAAAAkIRuvfVW22A4/fTT5c4775ScnM2DLW666SY577zzbI/DbbfdJn/84x+j3pc7xgQAAADoYB6PJ65LuvjPf/4jAwYMkPvuu+9HDQYjOztb7r33XnubF198MaZ9pXRPw9q1a+Xll1+2i5ngY/ny5eL1eu2JM105F154oQwaNKizDxMpqMfoXmpt9SA93rH54xp9vVWLnfsszihWawW+ArWW6dVjQ13WB/RIzcIMx2Q6ET0W08jK0uM/Q44YT19fPRo04ogjlQyfvk1HFKndbktQX7ebHscpWfo+Wz7WH2f/gG76sTTrx+LJcv+q92Tq9cA3a/V9tgTUmr+3/nh4e+nPx7o3Z6u1/Bw9jtb4tlqPR92xl34t77rq1WqtZ1Z3teZxPHc82Rni4nXEzobW6PGwALAp8972F7/4hZ35WmMGQf/0pz+1E8LFIqV7Gkyj4KSTTpKnnnpKcnNz5dBDD7WjyNevXy933323bL/99vLaa6919mECAACkYXxSHJc0kZWVJbW17X/QUFdXZ28bi5RuNJSWlsr1118vy5Ytky+++EL+8Y9/2K4ZMzDEDBSpr6+3X6uq9E8vAQAAgK5o1KhRNmbV9DhozPtgc5vtttsupn2ldKPhrrvukmuuucbm1G4qPz9fHnroISkoKLC9DrFe4wUAAICtnxE6Xku6OPHEE6WxsVH23Xdfeemll35Uf+GFF2S//faTpqYme9tYpPSYBhdzudKIESPkk08+cbbOAAAAgK7ojDPOkKefflreeOMNOeSQQ+xVNoMHD7Y1M2+D+XDczN1gGhXmtrFI6Z4Gl0AgIEuWLLHfx5JZCwAAgK3DkIaOYQZAmytmpkyZInl5eVJZWWk/EDeL+d787NJLL7U9DiYMKBZp29NgLk8yubYmnuqggw7q7MNBiqlaWq3WIi0hteZzJM70Lsx17rN5RYVaC0b0feZ59ZSX+mC9WstwrNcS1tOKCsr0NBorFI4qrSe4WE/58Q/U9xlyrOcb7v5AIeI41uDSyqiSdbzFeWotVLlBrWWO0BO7wjWNas3us1BP8nGJNLaoteAK/f57a/XjySpxJG8F9OexERb98Vi8Tk9W6pnVQ61lDO2p1kLr9deHBPU0q+9WdqSIOZ4f2fnRpZ0BSF2ZmZlyyy232HG8prGwcuVK+3Nzef4uu+wS8wDotG40fPXVV3LJJZfY783U2mYGPZfm5ma7tNqSUeoAAABwTQgdn7EHaTRNw2ZM42CPPfaQeOmyjQbTzfLcc89t9Xpmxrvx48er9RUrVthrvjZs2GAjWC+77LJ2t3nzzTfb1hsAAACQjrpso6G8vFzmz5+/1euZxoBm9erVMmnSJFm6dKkccMABNoJ1S1q5l19+uZ3zYdOehv79+2/1sQEAAKC1pyE+ZyJdexrSttHw2GOP2aUjZ4eeOHGiLFiwwI4gN7Pibek1XuZ2HXU9GAAAAJBs0iI9qaKiwjYY5s2bZ3sazGVP2dnRDfwDAABAx/Q0xGsxxo0bZyc/mzp1Kg9XKvc0dBSTkGQaDHPmzLENhueff94mJgEAACB1zZw5UwoLHYls2Cop3WgwE1qYhsLs2bPtJUmmh4EGAxIhp0yPR23OdUSVLihXa4GwHjdqZGXr+4y06PGOPo8vqghLl/y8YrXm8en7ay/GNHMHfSxRcEWVWgu7Ij4nDFdroeU1as3WV+n79Jbk6+tV1qk1X1lBVOemZc4KteYfrEeKGuENekSuJ0d/vkZaHLGiPr0jO9KkP5fDdU1qbX2THuNqDCsY5qxHs93sb9eotbqgPoauuE9f5z4jjvhYX55+OWzTBj3mFkgmnv/+i9e20fFSutFw+umny5dffmkHO5sZ8iZPntzm7Q4//HC7AAAAAMli2bJl9n1uIgJ6Ur6nwTDTZ5ukJM2gQYNoNAAAACRKHNOT0qmjYdCgQfLTn/5Upk+fHvd9pXSj4e233+7sQwAAAADiwozZGDx4sCRCSjcaAAAA0PUwT0PHMOlQy5cvl0RIi8hVAAAAINWcccYZ9tIkkxQVb/Q0AAAAIKHM4F2zxGvb6eKUU06RWbNmyf777y+XXHKJHHnkkXacQzwmJabRAMRB7bffDcLfWhmD9GjM5kV6pKbR2FSv1gr9ek611zFirGdZP7VWV+2Iv3REg7Ynczt9n+GqBrXmLcyJKnK1+e0F+ja7u/O9/QO76/vcoEeH+nuXqDVPflZUMZ2Zo4eqteYZi9WaXXdkH72Yo/+ZCC/VnwOeTFdUqx656u9fpta6Vbsn5VxQPlutDcjWn1dNYT1ydnWzHrnau6Bv1K+BjBG99GKWHkvcWKm/BgCkH98mMeZXX321XVyNqWDQEZXdDhoNAAAASCjzcRXhSbEzCaHxuG1baDQAAAAASSgcjr5nf2vRaAAAAEBCMaYh+ZCeBAAAAMCJRgMAAAA6ZZ6GeC3p5ttvv5UpU6bI+PHjZcSIEfb7VjNmzJA///nPUlNTE9M+uDwJiIOhu/VXa/Ofma/WwjV6yk+Gx/1ybQ63qLW8nAJ9Ra/+23XVOn3CmAyvfjwFeXoCULCy1j1Qq0m/H5EWPfUhY9u+Ud1H/2A9sapl3kp9m+0k/Ygj6UgK9XSc4HI9eStjUDe1FlpVp9b8/RzHafa5Wv9D4uvueO64OM65tzBXrQWWrNXXcyQyGSX+YrW2LqCf1yK/fh8zvY40K0dCUqhaTzMzPK7kKcfrp2Sgfh8BpKdHH31UfvOb30hzc/PGS7/WrVu3sd7Q0CCTJ0+WzMxMOfnkk6PeDz0NAAAA6JT0pHgt6eKjjz6S008/3TYIbrvtNtur8MOUpL333luKiork+eefj2lf9DQAAAAASei2226zjYQXX3zRXprUFq/XK2PGjJG5c+fGtC96GgAAANAp6UnxWtLF9OnTZdddd1UbDK169eolq1atimlfNBoAAACAJFRdXS0DBgxo93aNjY3S0qKPGdwSXJ4EAACAhIpnylEadTRIWVmZLF26tN3bffPNN7a3IRb0NAAAAABJaLfddpNPPvlE5syZ47yEydTbu4SpPfQ0AHFQUaHHLXp75Km1yJwVai0jX4+ptPXMIrUWrtqg1uqCeq0x3ODYo348Hp8eKRqOuKe89xfkqDVvpv4rK+SIDfX3LVFrkaaAWvOVueNGvTmZai0cbtZr1fp59fcvjSoa1d/L8fg3uLukw454UI9P/2zJV5av1oKrqtRapL5J32ZedlQxrkb3rD5qbc6qL9Varld/zm0I6o9Vbkhfr6jIHXPr6+OITg3qr5G6Ne4oVyBZMCN0xzj77LPlmWeekSOPPFKefPJJO+B5U/PmzZNTTz3Vnu+zzjorpn3R0wAAAAAkoUmTJsmFF14oCxYskJ133lmGDx9uGwivvPKK7LjjjrLDDjvIwoUL5ZJLLrG9ErGg0QAAAICEYp6GjnP77bfL/fffb8csmLELJoLVJCXNnj1bSktL5e6775Zbbrkl5v1weRIAAACQxM444ww7ydusWbNk0aJFEg6HpX///jJu3Djx+zvm7T6NBgAAAKRcepJ5w+zz+ex1/2ZJdR6PR8aOHWuXeKDRAAAAgJQzc+ZMKSwslHQSiUSksrLSfjVxrGY26I5CowFIMG+P3KjSYTbUVju3m1+mp7VUtKzTd+kY2tQrS890bgrpCTiRcESt+bOyxCVcWafWMscM1Ndb70iV8ev3MVyvpxz5erj/2AS+Wa3WvIWOdKnsDLUWXFSh1jJ30SfwCcxbo9b8rqQeczyZ+vFEAiF9RUeykic7M7q0pgw9eWvdevdspkV+/fHK9+upZdVB/bXVJ6u3Wsvw6udNHOfUCMxdqa+662DnukAq8Jh/cepqMNtON6+99pr83//9n7z//vt2IjcjOztb9txzT/ntb38rBxxwQMz7YCA0AAAAkKQuueQSOfDAA+XVV1+VhoYG28tgFtN4MD87+OCD5aKLLop5PzQaAAAAkFCkJ3WMxx57zPYwmF4F0zD48ssvpa6uzi5fffWVXHzxxZKTkyN33HGHvW0saDQAAAAASejuu++2g71ffvll+f3vfy/bb7+95OXl2WW77baT2267zdbMpWD33HNPTPtiTAMAAABSLj0pHcyePVvGjx9vxy5oWutmYHgs6GkAAAAAklB2drb06dOn3duZ22Rm6gEVW4KeBgAAACSUuVwmbulJadTVsPPOO9txDO0xt9lll11i2heNBiAOGisb1FpoSY2+oiOqtHBwf/c+l66OKooyGNEjNeuCevxptjdbrXkc0bGe0nxxCa3W4y9bvlim1nx9StRapDmo11qiqxn+vqXOurrdpoBayxilR3w2f7xUrfm6F6i1YLk7rtdXpj8m4caWqO6HKzrXFdUqjplLywp66OuZSNZaPXa2OaxH6/o9esxrZobjee6KnM1y/3n19defO+HV+rlrnK/HJwNIP1deeaVMmjTJjl2YMmVKm7cxYx3mzZtnxz/EgkYDAAAAEooxDdF59913f9Srcs4558jll18u06ZNk1/96lcyePB3c70sXrzYJiZ9+umnct5558U80RuNBgAAACAJTJgwoc3Lr8y8DKZx8Nlnn/3o58Zdd91lexqCQXcPuguNBgAAACR+Rug4zdycyjNC77XXXp02ZoNGAwAAAJAE3n777U7bN40GAAAAJBRjGpIP8zQAAAAAcKKnAYiD0bv0VWsznpij1jJG6hO0BBascu4zMzNLrc2tmqfWemf1lGjUh+rVWva6KrWWmaVHWBreEj3+05urT0zjLcxRay1f6lGt/kHd1VpwSYVaa2/d9uJaNaFyPZI3c0w/tdby+Qq15ivNc+/UFR2aqf+Z8GRnRBWd64pq9Rbrxxqu2iAuGxzPyW4ZZWqtOazHylY26hGn3Qp7RhXza4RWOx7ncQPUWo+9Bjq3CySNOM4IncJDGlRNTU3yySefSHl5uf1ec+KJJ0q0aDQAAAAASer3v/+93HTTTVJbW9vubWk0AAAAIGl4xWOXeG07Xdxzzz1y6aWX2u932GEH2WabbaSgQJ/sMxb0NAAAAABJ2mjw+/3y9NNPyyGHHBLXfdFoAAAAQEKRntQxlixZYuduiHeDwSA9CQAAAEhCPXr0kO7d9VCOjkRPAxAHX3yyUq15ivSUo3C5njizoV6vGaFISK31y9ZTmXwen16L6LUsb2ZUSU7eUj0dyahbqadEFW07RF8xHFFL/gHdokpdCtc0SrS8Ofr58XTXz0+ook6tNb+/UN9mnr5Nj+NYjOBSPSXKW6ZfGxtaVRVVstT6ufr9KKrT70fGUHfSV59v9MSi9S36sfbK7xVVslS4SU9d8jnWMzwFeopYpEFPlwJSBT0NHeOggw6SV155RcLhsHi98e0LoKcBAAAASELXXnuttLS0yHnnnWe/xhM9DQAAAEgoj8djl3htO1306dNH3n//fTn00ENlxIgRss8++8iAAQPa7HUw5+Xqq6+Oel80GgAAAIAkFIlE5M4775Svv/7aXqL0yCOPtNlYMLej0QAAAICkYvoCmBC6YyZ2u/vuu23s6s9//nM7T0N+vnvsYLToaQAAAACS0IMPPii5ubny3nvvyU477RTXfdFoAAAAQEIxpqFjLF++XCZMmBD3BoNBowGIg9G79FVrH7/0jVqL1DertbzMdqaFD4X1miP+sbZZj3Jd2bRarfXO0uMvs/NL9WMJ6NGwRvH2w9RaqKperfn76/v0F+rxlkFHzG3mmH7i0jJrmb7PfmVqLdKsR4OGq+ujehwzBvdQa4HFa/Vtmvu5Xb+oYmfDjuNxxbGWDBus1hoX65G7GUvcUaSuWNWI6K+PBdUL1FqBX+/mz/PlqbWSYv3xt8fTpN8XT6YedVy3xvH8AJB2evXqJQUF7bw/6CBpF7m6YcMGGTJkyMYW7ooVKzr7kAAAANJynoZ4LeniF7/4hb00qampKe77SrtGwyWXXGKn3AYAAACS2XXXXSelpaVy3HHHybp16+K6r7S6POm1116TP/3pT3LOOefIPffc09mHAwAAkJaYEbpjXHDBBXZ+hmeeeUbefPNN2XnnnZ3zNDz00ENR7yttGg21tbVy2mmnyeDBg+WWW26h0QAAAJDCxo0bJz6fT84++2y7pKJHHnlk42R2dXV18vbbb6u3pdGwFS0xM37h9ddfl7w8ffAaAAAA4svz33/x2rYxc+ZMKSwslFT28MMPJ2xfadHT8OKLL9qTeuaZZ8rEiRM7+3CQ5sJr9fQTXw/9l1ukxZ0cE6jVt5uRq6cH1dZvUGs9MrupteKMIv1ggno6kKcw131+HAlSkaYWtRZypCCF6/UBYr4e+v0IzNPTowxvsf4BRKTFcQ4cqUP+3iX6etkZai1UqT+Onkx9PSO4fL1+PMP1VCaPI83KlRAVXFKh1kIRPV0rw5UQZupe/U9aZYt+Hwv9+usuJPrxFHXvFVU6kuEt01OZvH30WuPqOud2AaSXk046KWH7SvlGQ1VVlZxxxhnSv39/O2seAAAAOhdjGpJPyjcazKDnVatWyX/+85+ou6iam5vtsun4CAAAACBddNlGw5QpU+S5556Lajrt8ePH2+//9a9/yeOPPy6nnHKKHHjggVEfy8033yzXX3991OsDAADge8wI3TFOPfXULb5tyg6ELi8vl/nz50c1eZthsmonT54sffr0kT/84Q8xHcvll18uF1544WY9DeZyJwAAAKAz05NcWpOVIpFI6jYaHnvsMbtE6/3335e1a9dKv3795PDDD1dvd/TRR0tWVpacfPLJdmmLqZsFAAAAsWNMQ3zTk8LhsCxdulReeukl+eSTT2yK6OjRo2PaV5dtNHQUE7NqFs1HH31kv06YMCGBRwUAAADENz3JzBhtLvl/4IEH5LPPPotpXynbaDC9C6Yrpr3umuXLl9veCKAjLauojyqK0RU36i0rcO6zoUqfPr5izXK11j9Hf/6vbl6j1jKDesRnkegRr6G1NeKSsW1ftebJ8Om1nMyookpdvHnuHkaPo94yR/+wInvcEMdO9dzycK0jOranIzZ0jTu8weeI/wx8udJxPA1RPV+9Jfr+ciN6JG/D+ipxaQrrr58+2Xo86oag4344cuQ3rNOjY4u3HyYuEUd8bPNbi9Ra9uRdndsFkgVjGhLnpptukieffFKuueYa+dvf/hb1dvSwcAAAAABJze/3y9ixY+0ExzFtp8OOCAAAANgCpg8vPvNBx2+7yayxsdHOXRYLehoAAACAFDVv3jwbEBRr8mfa9jS4xjsAAAAgfkhP6hh//etf1VpdXZ1tMJhxDE1NTXL88cfHtK+0bTQAAAAAyezkk0/eGO7j+pD8sMMOk6uuuiqmfdFoAAAAQEKRntQxTjzxRLXRkJmZKX379pV9991Xdt9995j3RaMBiIOmDS3RxX86IlcbFunRl0ZRSTe96Bj7FIno0Y8u2T49VtVbqMdmip4MagW/dcS8jh6g1gLzV6u1SEsgqmP1luSJS7haj+rMGNpTrQWW6PG4vh6O6NRV1RINryNS1Qg6thsJhdRaliM6tvmzJWot3KS/Pnx5+vMqJ8vxvDLnPFinH09Y32d58yq1NrbHzmptba2+Xv5qd7Swr3tBVLWfHzrKuV0A6eWRdmaE7kg0GgAAAJBwjqtq0AWRngQAAADAiZ4GAAAAJJTnv//ite10TEva0jEQ0aLRAAAAAKRAWlJ7aDQAAAAgaTBPQ3QmTpy41Y2GDz/8UBoaGmJqbBj0NABxEKjX03qCyyr1FX36MCOfx+fc57r1epJLWa6erLSuvkKt5fn0tJqsQj2RJ1xdr9YkM8M90KpYTywKlldHde78g3vo64X1iR7DG5r09WwqU1CtZezQW62FltdEdTyuFCT/4FK1Fly8Xt9fO4lePkeCVLhWPz+RJv014BJ2JIj5ehQ51w1tKFdrWd5MtTY8b2hU6Vo9QnpClrSTSuYtylFrIcfz/PkHZqq1i66Z5NwngOT3+uuvb/Ft33vvPZkyZYo0Njba/++www4x7ZuB0AAAAOiUeRritaSz2bNnyyGHHCITJkyQGTNmSP/+/W0066xZs2LaLj0NAAAAQJJbvny5XH311fL3v/9dQqGQlJWVyRVXXCFnn322negtVjQaAAAAkFCMaeg4VVVVcuONN8q9994rTU1NkpubK+eff75ceumlUljYzoyqW4FGAwAAAJBkmpqa5I9//KPcdtttUltbKz6fT84880y57rrrpFevXh2+PxoNAAAASCh6GqIXDoflwQcflP/93/+VVatWSSQSkSOOOEJuuukmGT58uMQLjQYAAAAgCfzrX/+SK6+8UhYsWGAbC3vvvbfceuutsuuuu8Z93zQagDjYd6/Bau258UPUWssXemRk7q7bOPdZ88Gnas2T6XipO9JRW8Itam1DdZVay8vWo0E9XneqRbhej6r05mWrtUiLHvEZWqkfq7c4N+rY0EizHrka+EqPwJWQI44zwxfV49herKpLYMlatZa140C1Fq5uUGuZ2/ZVaxHH/W+av0KttazW44GN3gX6PhfXfCvRaF6pvwa69x2k1sK1+rkxgksro4rAHXrAMOd2gWRh/hLEb0bo1HXUUUfZdKjWcQsHH3ywBINB+eCDD7Zo/d133z3qfdNoAAAAAJJIQ0OD3HzzzXbZUqaxYRoY0aLRAAAAgIRiTEN0BgwY0GnzUNBoAAAAAJLAkiVLOm3fNBoAAACQUPGcuTndZ4SOF2/ctgwAAAAgJdDTAMTBy68ucLzq9LZ6pEFPagmVVzv3uT6gJwSVtXRTaxle/ddAVYu+T59HT/nJaNHTXzLb+QTI40gPClfrUU/+Afp9jLToA79C6/Vt+roXqLXvVg5HlXTkH64fa3DBOrUWbtSfH96cTLUmPvfnQ/4yfcbQwNd6opevT4laC66uiSpBy+fXnzvSzvi9YHOzWsvz5am1ZkdKWLZXT+yqX62nTuWWlYmT4xy4Er2+/Wi5vs2f6ElXQFfDmIbkQ08DAAAAACd6GgAAAJBQZo6G+M3TwJiGeKCnAQAAAIATPQ0AAABIKMY0JB96GgAAAAA40dMAAACAhPJ6PHaJ17bR8Wg0AHGQU6ZHJjatrFNr4dqGqPc5LHeIWqtv2hDVNrtl6LGRub4ctZaZmaXWvAX6ekawslatZW3bT19vmR5V6i3To1MzBunxp54cR/ynebyq9McrVKVHuYojkTdc26jWvGX5jpr+nAuv1p9z7fGW5kcVEewt0KNKw5V1Ua0n1XrErbG6eY1a65XbW63VNuvRwvUh/XHskddTrdWt04/FKN52mFoLV+qv15xe7cQAA0Cc0GgAAABAQjGmIfkwpgEAAACAEz0NAAAASCh6GpIPPQ0AAAAAnGg0AAAAoFNmhI7XP2PcuHEyatQomTp1Ko9uB+DyJAAAAKScmTNnSmFhYWcfRsqg0QDEQffueWqt0hFT6etRpNYCyyqc+wxGQmotv7BYrZWvXybRCIsef5kZyFRrTeuqnNvNGaxHY4brm9Wat7v+h8FXoj8ewZVV0cV/mnqhHh/r762f88CCVfp6Q/UYz3C1HvEaaQpEFeFp9zmku1rzZPiiipwNrtLPq69vqVqr+3qJWsvwuP9kZXr1592ahjVRxaoGIvp5zWjQI3nLeunxwEakJajWfH305w6QKhjTkHy4PAkAAACAEz0NAAAASCyPRzzxmrmZGaHjgp4GAAAAAE70NAAAACChGNOQfOhpAAAAAOBETwMQB+VLqqNLualrUmu+Aj2px/A4UplqairVWp5PTxZqCuvHk+11JAv59M8jshxJTka4plEvBvXEGW9Jvlpb8/EXaq20R1+1Flqvp+q0y3EOPI7HMrS6Rt+mV7/+15uXFdWxGC1fLVdrGcN7R5UA5PHpqUvBJXoSmM+jr9cQcjw32qlHJKLWivzRRTJmePU/oaHKOue6Ptfzw5FYFXT8/gCSiSeOYxriNlYizdHTAAAAAMCJngYAAAAklOkLiFd/AP0M8UFPAwAAAAAnehoAAACQUIxpSD70NAAAAABwoqcBAAAACcU8DcmHRgMQB65YRG+RIzo1FFZLgW/XOPfpiml0aQnrUa3dM7upteVNK9VaXp4jwjKi30dbdkTH+noVR3Xuug0dGlVUaahyg74/e0DeqI5Hwnr8pyc3U615C/XnTnDZOn2b2fo2241VrW9Wa74BJVE9X/2Duqu1bEfscGadO3I1u1mPAV7dvCaqeMZcX65aawnr58aTnSEukRb9d0QkEFJrgdXtPCcBIE5oNAAAACChSE9KPmkzpmHx4sVy7rnnyvDhwyU3N1cKCwtl5MiRcsopp8iiRYs6+/AAAACAListGg1PPPGEjBo1Su655x7Jzs6WQw45RCZMmCA+n08eeeQRmTt3bmcfIgAAQBrxfD+woaMXZmqIi5S/POmNN96QE044QXr06CH/+Mc/ZM8999ysvmTJEsnK0q9pBgAAANJdSjcaQqGQnH766RIOh+Xpp5+W3Xff/Ue3GTRoUKccGwAAQLpiTEPySelGw/PPP297EsaPH99mgwGIl2BTMKqUo8CSiujTWByJTXUhPXElw6P/GihvXq3WQpFgVMeyob5aXHyO48kPFUaVOBOp1xN5Ii36/fAW68k57SUkeUvz1Fq4ukGteRyJTK7zmjmqr1pr/myJWrPHs15/fvj7l6m10MqaqM5duLJOouHr7kjlMudnuX5ew47UrlBEf+7kZOn3I+R4nYeb9BQww+d4nD3Z+mugcLsezu0CQLykdKPhlVdesV/32msvCQaD8uyzz8r06dOlsbHR9jAcdthhdjA0AAAAEod5GpJPSjcavvzyS/vV7/fLrrvuKrNmzdqsfsUVV8gFF1wgt99+uzOnGwAAAEhnKZ2eVFlZab/efPPNsmzZMnnsscekoqJCli9fLr///e9tY+IPf/iD3HLLLc7tNDc3S21t7WYLAAAAYhvTEK8FadTTMGXKFHnuuee2er0HH3zQjmEwIpHvZl0NBALy+OOPy/7777/xdhdffLEdIH3ppZfaRsV5550neXltX4Ns6tdff33U9wUAAABIZl220VBeXi7z58/f6vU2bPh+QF9BQYH9asYvbNpgaDV58mTbaKirq5OPP/5Y9tlnnza3efnll8uFF1648f+mp6F///5bfWwAAABgUEMy6rKXJ5lLiUxPwdYuBx544MZtDBkyZLOvP2QaFd27d7ffr1q1Sj0WM4+DmUF60wUAAABIF122p6Ej7LzzzjJt2jRZt26dOo9DdfV38Y/5+fkJPjqksrNO31WtTV2hj4nJG1GqbzQ/073TDXrE4zaOmFdxRJUGPl0VVTSof/vvGuNtySvO1o/FbLefI1Z19lq9VuuIuPTrxxpepceNtqf3FD3Kee2zX+uHM1KPMRXX+XE9Byob1VJu/3Y+6Mj0Rnc8rufVSj1WNbRcfw34XK+BXu7f076Xv1VrRT12UmuRBj3K1ttDj87Ncjx3PAXu16vXdV6HFKulXx1E4h9SA/M0JJ8u29PQEY488kibivT111/LihUrflR/++237XgHc5tddtmlU44RAAAA6OpSutEwbNgwOeGEE6SlpUXOOOMMqan5fiKipUuXyrnnnmu/P+qoo6RPnz6deKQAAADpN09DvBZ0vJS+PMm4++67Zc6cOfLyyy/bRsRuu+0mTU1N8tFHH9lB06NHj5Y//elPnX2YAAAAQJeV0j0NRlFRkZ0F+qabbrK9CW+++aZ88MEHss0229j5GT788EMpLXVcQwsAAIAOxkwNySblexqM7OxsG5tqFgAAAABbJy0aDQAAAOg64jn2gDEN8UGjAYiDbEcc6UU3/HiiQaSgCcM6+wjSz6UTOvsIACBl0WgAAABAQjFPQ/JJ+YHQAAAAAGJDTwMAAAASijENyYeeBgAAAABONBoAAAAAOHF5EgAAABKModDJhp4GAAAAAE70NAAAACChGAidfOhpAAAAAOBETwMAAAASihENyYeeBgAAAABO9DQAAAAgsehqSDr0NAAAAABwoqcBAAAACeX57794bRsdj54GAAAAAE70NAAAACCxPN/N1RCvbaPj0dMAAAAAwImeBgAAACQU4UnJh54GAAAAAE70NAAAACCxPHEc1BC3wRLpjZ4GAAAAAE70NAAAACChGNOQfOhpAAAAAOBETwMAAAASiiENyYeeBgAAAABO9DQAAAAgoRjTkHzoaQAAAADgRE8DAAAAEotBDUmHngYAAAAATvQ0AAAAIKEY05B86GkAAAAA4ERPAwAAABKKIQ3Jh54GAAAAAE70NAAAACDBGNWQbOhpAAAAABLsm2++kYMPPljy8/OlW7ductZZZ0l9fX2XfRzoaQAAAEBCpfuYhpqaGpk4caL06dNHpk2bJuvXr5cLL7xQ1qxZI08//bR0RTQaAAAAgAS6//77paKiQj755BPp0aOH/VlOTo4ceeSR8umnn8rOO+/c5R4PLk8CAABAp4xoiNfS1b300ku2p6G1wWAceuih9lKlF154QboiGg0AAABIe/Pnz5e7775bTj75ZNlhhx3E7/eLx+OR3/3ud1t0bsxlRhMmTJCSkhLJy8uT0aNHy2233SaBQOBHt507d65su+22m/3M7G/48OEyb968LvlYcHkSAAAAJN3HNNx3331y5513RrXuBRdcYNc1b/xND4LpMXjzzTfl0ksvleeff15effVVe/lRq6qqKikuLv7RdkyDw4xv6IroaQAAAEDa23777eXiiy+Wv//97/bT/l/96ldbdE6eeeYZ22AwDYUZM2bIK6+8YgczL1y40PZYvP/++3L11Vcn/fmlpwEAAACS7vM0nH766Zv93+vdss/Wb7rpJvv1sssuk7Fjx278uYlRvffee2XPPfeUe+65xzYcioqKNvYoVFdX/2hbpgdim222ka6IngYAAAAgCitXrpSZM2fa748//vgf1cePHy/9+/eX5uZmO/i5lRnP8MOxC6FQSBYsWPCjsQ5dBY0GAAAAdMqYhngtiTJr1iz7tbS0VAYPHtzmbXbZZZfNbmuYSd3eeustG7vayox92LBhg/zsZz+TrojLk6IQiUTs19ra2o5+PAAAADpU6/uV1vcvXUE830O1bvuH+8jKyrJLR1q8eLH9OmDAAPU2pqdh09sav/71r21S02GHHWYvWzKXJZnJ3cz/WxsZXQ2NhijU1dVt9iQAAABIhvcvrdfUd5bMzEzp1auXbDNoYFz3YwYl//B92rXXXivXXXddXN4T5uXlOY/lh40Yk5xk0pXOO+88OeqooyQ7O1uOPvpouf3226WrotEQBTPl9/Lly6WgoMDm96Y68yQ3LzxznwsLCzv7cLokzhHniOcRr7Wugt9HnKMfMj0M5s2tef/S2cybY/OJe0tLS9zv8w/fo3V0L0OszJwML7/8siQLGg1RMKPp+/XrJ+nGNBhoNHCOeB7xWusK+H3EOeJ5tHU6u4fhhw0Hs6SCgoIC+7W+vl69jRmnYCT7eygGQgMAAABRGDRokP1qrsbQtNZab5usaDQAAAAAUdhpp53s18rKys0GOm/qk08+sV83ncMhGdFoQLvMNYBm8FBXuxawK+EccY54HvFa6yr4fcQ5QuL069dPxo0bZ79//PHHf1Q3s0GbngbzujQxq8nME+lK+VsAAABAF3DyySfLo48+KjfccINcddVV6u2eeeYZ+cUvfmFTkt55552NPQqm92GfffaRr776Si666KIunYy0JWg0AAAAIO199tlnctZZZ208D99++62sW7fO9ib07dt348///e9/S+/evTc7X+eff77cddddkpGRIZMmTbIRrG+88YZUV1fLHnvsIa+99prk5OQk9Tmm0QAAAIC09/bbb9uegfYsXry4zUHN//jHP2Tq1Kny+eefSyAQkKFDh8oJJ5wgv/3tb+38FMmOMQ2IiXnhnHvuuTZrODc318aJjRw5Uk455RRZtGgRZ/cHkWtDhgyxudFmWbFiRVqfn7Vr18pf//pXOf7442Wbbbax8XvmOWSeP2aymyVLlki6mDZtmkyYMEFKSkrsp1OjR4+W2267zf7RSXfmHJhP6y655BJ73bCZEMl8kmcmhzr00EPlxRdf7OxD7JKmTJmy8XfN7373u84+nC7DzA1gPg0eP368lJaW2t875lPkgw46SJ566qnOPjx0MvN72Fy1394ySElB+uUvf2kvT6qpqZGGhgZ7WdKll16aEg0Gg54GRO2JJ56QU089VZqammSHHXaQbbfdVhobG2133ty5c+X555+Xn//855zh/5o8ebLcf//99heOYQZGpeN8H63Mpy9///vf7bwn22+/vYwYMcLmXM+cOVMqKirsm2fTBbzffvtJKrvgggvkzjvvFL/fLxMnTrTXxJpZQk2Xtnlj8+qrryZ9l3YsXn/99Y3PAdNQ2Hnnne1zw/yOmT17tv35mWeeKX/605/SYrLNLfHBBx/InnvuufENTnvXY6cL80HNAQccYJ873bp1k912280+l8zvYvPJsGk4/POf/+zswwS6LjMQGthar7/+esTr9UZ69eoVeffdd39UX7x4caS8vJwT+1+vvvqqaSlEzjnnHPvVLMuXL0/r83PuuedGrr/++siKFSs2+3ldXV3k2GOPteeotLQ0sn79+kiq+ve//23vZ35+fuTTTz/d+POKiorIDjvsYGsXXXRRJJ298cYbkSOPPLLN3zNPPvlkxOfz2fP06KOPdsrxdTX19fWRbbbZJtK3b9/I4Ycfbs/NDTfcEEl3DQ0NkZEjR9rzcd1110VaWlp+dN5mzZrVaccHJAMaDdhqwWAwMmjQIPvLd/r06ZzBdtTU1ET69+8fGTx4cGTDhg00GraA+QNeUFBgz9Xf/va3lH2OjRs3zt7H3/3udz+qvffee7aWlZUVqa6u7pTjSwannXaaPU+TJk3q7EPpEs477zx7Pl588cXISSedRKPhv66++mp7Ls4888zOfYCAJMaYBmw1c9mRud7cXDqx++67cwa34PIT0y3+4IMP2q5wtM+MbTCXK7U3y2YyW7lypb0UyzDjOn7IvL769+8vzc3N8tJLL3XCESbXxEqp+jzZ2kGcd999t5x44olJnwff0eNi7rvvPvu9GRsDIDr+KNdDGnvllVfs17322kuCwaA8++yzMn36dDuewQwOOuyww+xgVogdpPnwww/ba67N9erY8j/yrQOhfxhrlypmzZplv5rBmIMHD27zNrvssot9M2xue9xxxyX4CJPDwoULU/p5sjVBC2aMWc+ePeWOO+7o7MPpcjGaJjazT58+MmzYMDs49V//+peUl5fb8AEz/sOMZzDjqwDoaDRgq3355ZffPXn8ftl11103vvlpdcUVV9hP180kJuk8MLGqqkrOOOMM+2nx73//+84+nKTy0EMP2T/yZgCw+WOeqsljxoABA9TbmOfOprfF5lavXi2PPPKI/f7II49M69Nz8cUX2+eJCQ8wb4Tx479ZJnjisssus8lkm85re+utt9oeKzNBl+v1CKQ7mtXYamaGQ+Pmm2+WZcuWyWOPPWbTbswnoubNsWlM/OEPf5Bbbrklrc/uOeecI6tWrZI///nPNooWW8Z8Cth6CcHVV19tPzlNRXV1dfar65I1k6Rk1NbWJuy4koXp5TQJXCba0KS3/frXv5Z0ZRK2TDLbscceK4cffnhnH06X/ZtlPuAyDQQzedf8+fPtc8dMuGUiw03tZz/7GTHHgAM9DWmY3f3cc89t9XrmenxzjbXR+gmNuYTk8ccfl/3333+zT7vC4bDNJTaNCpO3n2zX8XfEOTJd3+bcmPkqDjzwQEk1HXGO2mLGfhxyyCH2UguTwW8+FQTa8pvf/MbO31BWVmZjMlMlB31rmTe+p512mnTv3t2OZ8CPbfo3y1zmd88992ys7bvvvrbhYMZQmQjfJ598Un71q19xGoE20GhIM+YaTvMJy9Yyb+JaFRQU2K9m/MKmDYZN5yMwjQbzSerHH3+8RbMrptI5MpfVmHNgrp81PS6pqCOeR21dajJp0iRZunSpzVI3M2um8uVtra8jMzdFe+eLnqrNnX/++fYSNnMZTusnxeketGAmJjNzD0B/rRlt9UiZS5JML8PTTz9t5wWh0QC0jUZDmjGXEpklFmZW408//dR+1X5Bm0+9zCVL5vKcdDtH77//vp3t2Fw/67pU4Oijj5asrCw5+eST7ZJuz6NNmfNlBoovWLDAfvJnri025yaVtc4o6kr9aa1ps4+mo4suusjO6GtmhjaX5bSmJ6UrM4bBXBJ677332mVTX3/9tf1qGljmzbCZHM98kp5uNv1bpf3dav15Mv7NAhKFRgO2mpmRddq0afYT9baEQiE7m+2m12SnI/Ppn1k0H3300cZp69OZaVyaBsO8efNsT4O57Ck7O1tSXeubXXO9tRnA2laC0ieffGK/jh07NuHH11UvizO9d0VFRbbBYNKl8N34jnfeeUc9FSaJzCwDBw5My9NlXj+m19JcpmT+brUGDGyq9e9ZOv/NAtrDQGhsNZNSYn4Bm0+x2npTbLLCzbWj5jbp+Efd9C78d+LENpdNP0U2/7/uuuskXZk/1KbBMGfOHNtgMHOAmMSkdGB6osaNG2e/N+Nf2uqxMs8R0+NC5r7Y8S0maME0GMwlSa3nLt2ZD2i03zUnnXSSvc0NN9xg/98aY5xuTA9L61gq0+PyQ+bvVWujyyQCAmgbjQZsNZNzbVJLWlpabKSoGYjXylyPfu6559rvjzrqKHtdP9CW9evX24aCGXxoLklKpwbDpvHEhkkaM1nyrUzvg0l4aU3hMm+U09lVV11lU2/MJUk0GBCNa6+91n41AR2tvbytvTTmkrdFixbZS2tNeAWAtnF5EqJiUjrMp8Mvv/yybUTstttu0tTUZH8Zm8Gbo0ePlj/96U+cXahOP/10m59ueqTMBGdm8LjWc5OqMZLmfpmEMXONvnkNmUaUSRszqUDmE+Q99tjDfkqczszlajfeeKP93vyumTp1apu3M4OAzdwwQFvMa8u8lkyMs5nMzfQomB4I01g3PTDmA4snnngiZSOegY5AowFRMZ98mlmg//jHP9qBdW+++ab9uYmtO+aYY+wboXT71Bhb39NgmMsmTFKSxgwCTtVGg3HnnXfaxoF5M/zBBx/YSyWGDh1qL8f57W9/m7ZRoj98nrSO8Wgd5/FD5np9Gg1or8fKNBbMjNkzZsyQmTNn2oaDCaIwiX8jR47kBAIOnsimF1kDAAAAwA8wpgEAAACAE40GAAAAAE40GgAAAAA40WgAAAAA4ESjAQAAAIATjQYAAAAATjQaAAAAADjRaAAAAADgRKMBAAAAgBONBgBIoEGDBonH49m47LvvvgnZ75NPPrnZfs3y9ttvJ2TfAIDk5+/sAwCAdHTkkUdKfn6+bLfddgnZ3+DBg+Wkk06y37/88suyZs2ahOwXAJAaaDQAQCe4/fbbba9DovzkJz+xizFhwgQaDQCArcLlSQAAAACcaDQAgOLcc8+11/7vueeeEgwGf1S/8sorbX3s2LHS1NTUIedxyZIldpumFyIcDstdd90lO+64o+Tm5krv3r3lN7/5jaxfv97etrm5WW644QYZOXKk5OTkSJ8+feT888+X+vp6HlMAQIei0QAAiv/7v/+TXXbZRd5//3256qqrNquZcQE333yzFBYWyj/+8Q/Jzs7u8PN4wgknyGWXXSZ9+/aVAw44wDYi7r//fjt42jQMzFdzmdOIESPs9w0NDbaRcfTRR/OYAgA6FGMaAECRmZlpGwSmJ+G2226TvffeWw466CBZsWKF/OpXv5JIJCIPPvigDBs2rMPP4dKlS8Xv98u8efNk4MCB9meVlZXy05/+VGbNmmW/mt6FRYsWSVlZma0vXrxYdt55Z/nPf/4j06dPlz322IPHFgDQIehpAIB2UoceeeQR20AwDQXzxvzYY4+VdevWyTnnnBPXT/VNr0Frg8EwjYPJkyfb72fPni0PPfTQxgZD67Ga3gnjjTfe4HEFAHQYGg0A0I7DDjtMLrzwQvtJ/0477WQ/xTeXLZnLl+LF9DLsv//+P/r5NttsY78OGDBAtt9+e7VeXl4et2MDAKQfGg0AsAVuvfVWGTVqlNTU1EheXp69bMlcvhQvZtCzaTj8kJnbobXR0JaCggL7taMGZgMAYNBoAIAtMGPGDFmwYIH93gxC/uqrr+J63rxeb0x1AAA6En91AKAdZvyCGcdgYldPOeUUG4l68skn28HKAACkAxoNAODQOgDaJCadeOKJ8pe//EUuuugiqaqqkmOOOUYCgQDnDwCQ8mg0AICDmYvBzMlgxjPce++9G39mIk/NJUtTpkzh/AEAUh6NBgBQvPvuu3LNNdfY2ZinTZtmB0AbZoDyk08+KaWlpXLHHXfIs88+yzkEAKQ0Gg0A0IaKigo57rjjJBQKydSpU21Pw6ZMepGZv8GMbzDjHJYsWcJ5BACkLE/EXLALAEiIQYMG2QHUZpI4831nmDBhgrzzzjvy1ltv2e8BAGjPj0PAAQBxd/HFF9s5F7bbbju55JJL4r4/M/7ivvvus99//fXXcd8fACC10GgAgE7w9NNP26+TJk1KSKPB9Gw8+uijcd8PACA1cXkSAAAAACcGQgMAAABwotEAAAAAwIlGAwAAAAAnGg0AAAAAnGg0AAAAAHCi0QAAAADAiUYDAAAAACcaDQAAAACcaDQAAAAAcKLRAAAAAEBc/h/BjkP9OoXP2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnr0lEQVR4nO3dB3gU1drA8Xd3kxBKEkBQehXlooggQRSUpqKoiIIKXkVQLAgiAiIqKF6VJnhFil1REVAsKHaRooAiKBakKr2olBBCQuru95zj3XwBciZhd2eS3f3/eObZZc/szGSySead95z3uHw+n08AAAAAwMBtagAAAAAAggYAAAAARSLTAAAAAMASQQMAAAAASwQNAAAAACwRNAAAAACwRNAAAAAAwBJBAwAAAABLMdbNKIzX65Xdu3dLQkKCuFwuThIAACi11Dy+aWlpUqNGDXG7S/5+cWZmpmRnZ9u6j7i4OImPj7d1H9GGoCEAKmCoXbt26L8bAAAANtmxY4fUqlWrxAOGimUrSpZk2bqfatWqyZYtWwgcQoigIQAqw+D/4UtMTAzl9wMAACCkDh06pG92+q9fSpLKMKiA4SLpKDE2XYbmSq4s+HOh3hfZhtAhaAiAv0uSChgIGgAAQDgoTV2q4yROYiXWlm27GbJri5Lv2AYAAACgVCPTAAAAAEe51D+bMh8uX+nJqEQSMg0AAAAALJFpAAAAgKPUuAO7xh4wpsEeZBoAAAAAWCLTAAAAAEe5XS692LJtcYn4bNl0VCPTAAAAAMASmQYAAAA4yqXzAfbcu7Zru9GOswoAAADAEpkGAAAAOIoxDeGHTAMAAAAAS2QaAAAA4CjGNIQfMg0AAAAALJFpAAAAQGSNaUDIkWkAAAAAYIlMAwAAABwf06D+2bVthB5nFQAAAIAlMg0AAABwlMvl0ost22ZMgy3INAAAAACwRKYBAAAAjlIVjuwa00D1JHuQaQAAAABgiUwDAAAAHMU8DeGHTAMAAAAAS2QaAAAA4Cg1osGu+RSYp8EeZBoAAAAAWCLTAAAAAEe5XW692LJt7onbgkwDAAAAAEtkGgAAAOAoNWuzXTM3MyO0Pcg0AAAAALBEpgEAAACOYkxD+CHTAAAAAMASmQYAAAA46p9ZGuwZ02DXdqMdmQYAAAAAlsg0AAAAwFHMCB1+yDQAAAAAsESmAQAAAI5yu1x6sWXbjGmwBZkGAAAAAJbINAAAAMDxMQ3qn13bRuhxVgEAAABYItMAAAAAR7lcLr3Ysm3GNNiCTAMAAAAAS2QaAAAA4Kh/RjTYc+/aru1GO84qAAAA4KB33nlHrr76aqlTp46UK1dOzjjjDJk0aZLk5OSU2u8DmQYAAAA4yu36Z64GW7Ytpd/EiROlXr16MmHCBDnllFNk+fLlMnLkSPnll1/ktddek9IoqoKG7Oxsee655+Ttt9+WtWvXSkZGhlSpUkWaNm0qffr0keuvv76kDxEAAAARbv78+VK1atX8/3fo0EF8Pp+MGjUqP5AobaImaNi5c6d07txZBwsqUGjTpo2UL19eduzYIV9//bV+TtAAAABgPzWXgiuK52moWiBg8DvnnHP04+7du0tl0FD6z2oIHDlyRC6++GIdMIwePVp/M1SEN2fOHFm2bJns3btXp4QAAAAQnTZs2CBTpkzRvU9UL5SYmBhdFvbxxx8v1vvnzp0r7du3l0qVKumb0c2aNdNZg+KOU1A3sePi4qRhw4ZSGkVFpmHs2LGyfv16uf322+WRRx45rl0NQDn77LNL5NgAAACijRrPYN+YhsC2++yzz8rkyZMDeu/gwYP1e1Wg0bFjR6lQoYIsXLhQ7r//fn2j+osvvpCyZcsa369ubKv3q2vVxMREKY0iPtOgojv1IVDuu+++kj4cAAAAlEJnnnmmDBs2TN58801Zt26d3HTTTcV637x58/QFvwoUVqxYIZ9//rm8++67smnTJp2xWLp0qR6rYLJv3z7p1q2bnHrqqTJu3DgprSI+0/Djjz/qb0aNGjX0N+PXX3+V9957T3dRUumjCy64QC677DJxuyM+fgIAACgVSuOYhn79+h31/+JeG44ZM0Y/jhgxQlq0aJH/uhpDO336dH2tOXXqVB04JCUlHfXetLQ0fR2qivUsXrxYd2sqrSI+aFClq5RatWrpb6bqW6ZGp/uNHz9emjdvrqNEVSsXAAAAKI5du3bJypUr9fMbbrjhuPa2bdtK7dq1deGdTz75RHr16pXflpWVJVdddZVs3bpVZyPUDe7SLOJvr+/fv18/rl69WgcId911lx7okpqaKl9++aWcdtppuu3yyy83DlRR39RDhw4dtQAAACAwbpfb1kU59tpNXc+F2urVq/Vj5cqVpX79+oWu07Jly6PWVfLy8qRnz5464FDBxOmnny6lXcQHDf6sggoIVHSn0kMqUFCDTC666CIdOMTHx8uaNWt0NSXTQGqVTvIvKmIEAABA6aWu1wpev6nruVDbsmWLfrTqreK/bvSvqwwYMED3clEDpVUA8d133+UvpfXmdMQHDQkJCfnP77jjjuPa1TdZZRmUBQsWFLqNBx54QGcm/ItKMQEAACAw/4xosG9R1PVawes3dT0XamlpafrRaiyCGiCtFAwGPvvsM/2oxjmcd955Ry1qPG5pFPFjGho0aFDo88LW2bNnT6HtZcqU0QsAAADCg+pVUlrLl27dulXCTcRnGtQodjUxh6KqKBXG/7o/EgQAAIB9XC63rYvTPVrS09ON6xw+fFg/ltYAprgiPmioVq2aHrlu6n6kxjosWbJEP2/VqpXjxwcAAIDwVK9ePf1o1XXd3+ZfN1xFfNCg+GeBVgNg1AATv9zcXBk6dKhs3rxZR4p9+/YtwaMEAACIDk6MaXBC8+bN86t1FhzoXNCqVav0Y8E5HMJRVAQNnTp1kscee0xSUlL0BBtt2rSR7t27S6NGjWTKlCl6Wu/Zs2fLKaecUtKHCgAAgDBRq1YtSU5O1s9nzZp1XLuaf0FlGtTY2C5dukg4i4qgQRk5cqSe1vviiy+W9evXy/z583WJqz59+uhR6v4KSgAAALCXy8Y5Gpwc06A8+OCD+nHcuHFHVT5S2Qc1P5gycODA42aDDjcuX8HpkVEsqmSW+sar8l3hPqgFAABEttJ03eI/lhGJwyTeZU9lykxflow7NPGEv151we+/yFf++OMPXSxHZRNq1qyZ//r7778v1atXP+q999xzjzzzzDMSGxure7ioEqxfffWVHDx4UPdwUfOCqZ4t4SziS64CAACgdHH9759d2w40oFmxYsVxr+/cuVMvfoXNLD158mQdHEybNk2WL1+uC+00bNhQRowYIffee6/ExcVJuCNoAAAAQNRr3769BNMB57rrrtNLpIqaMQ0AAAAoJdwuexcRPUC5SZMm+u4/gkemAQAAABFn5cqVJT6GI5IQNAAAAMBZLtc/iz0bt2m70Y3uSQAAAAAskWkAAACAo1wul7j+N/Yg5Nv2kmmwA5kGAAAAAJbINAAAAMBZKhlg15gGEg22INMAAAAAwBKZBgAAADirwHwKoUeqwQ5kGgAAAABYItMAAAAAZ5FpCDtkGgAAAABYImgAAACA8/M02LgoycnJ0qRJE5k2bRrf3RCgexIAAAAizsqVKyUxMbGkDyNiEDQAAADAWYxpCDt0TwIAAABgiUwDAAAAnKXGHdg2IzTzNNiBTAMAAAAAS2QaAAAA4CzGNIQdMg0AAAAALJFpAAAAgLNc7n8Wu7aNkOOsAgAAALBEpgEAAACOcrlderFl20L1JDuQaQAAAABgiUwDAAAAnEX1pLBDpgEAAAARJzk5WZo0aSLTpk0r6UOJCGQaAAAA4DAbZ4T+35iGlStXSmJiok37iD5kGgAAAABYItMAAACAyBnT4KN6kh3INAAAAACwRNAAAAAARJgjR47Izz//LPv37w/J9ggaAAAA4CiXy2XrEi2++eYbGTJkiA4OCpo1a5acfPLJ0qJFC6levbr85z//CXpfBA0AAABAGHrhhRdk6tSpUrNmzfzXduzYIbfccoukp6dLUlKS5ObmyqOPPipLliwJal8EDQAAACiZgdB2LVFixYoV0qxZM6lSpUr+a2+88YZkZ2fL6NGj5cCBA/nBwvTp04PaF0EDAAAAEIb27dsntWrVOuq1hQsXSlxcnO62pFxwwQXSunVrWb16dVD7ImgAAACAs9S4AzuXKHH48GEpW7Zs/v99Pp+e1K5ly5ZSoUKF/Nfr1asnu3fvDmpfBA0AAABAGKpcubJs3bo1//8qm5CWlibnn3/+Uevl5OTo7EMwCBoAAADgLMY0hERycrJ8//338u233+r/T548WVeP6tix41Hrbdq0SVdRCgZBAwAAABCG7rnnHt0lqW3btjrrMHPmTGnQoIFccsklR417+PXXX6V58+ZB7YugAQAAAM4i0xASF110kbzyyitSt25dXTGpXbt2Mn/+fHG73UdVU/J6vbotGC6fCk9wQg4dOqTr3qampkpiYiJnDwAAlFql6brFfyyjzhwv8Z54W/aRmZcpj625X0477TTxeDwyYMAAvUTzzNDZ2dl6YLQ6H4GKCelRAQAAAEX4p8iRPVWO/JtVVYRKOkiy29dffy3VqlXTAZKJqq60c+dOPWv0hRdeGPC+6J4EAAAAhKH27dvL+PHji1xvwoQJ0qFDh6D2RaYBAAAAzrJz5mZf9MzToDg10oBMAwAAABDBUlJSJD4+uDEkZBoAAADgLDtnbo7wGaG3b99+3KzQx77ml5ubK7/99pt88cUX0rBhw6D2S9AAAAAAhIl69eodNYj83Xff1UtRXZhuvPHGoPZL0AAAAABnMaYhYHXq1MkPGlSGoVy5clKlSpVC142Li5NatWpJ9+7dpX///oHvlKABAAAACB9bt27Nf64mcbv22mv1BG92i8qB0MOHD9cRmloef/zxkj4cAACAqOK/DrNriRavvvqq3HrrrY7sK+q6Jy1fvlwmTZqkP1BMhg0AAIBwdfPNNzu2r6gKGjIyMqRPnz5SvXp1SU5Olnnz5pX0IQEAAEQfl43zNHijJ9NQUF5enuzfv18yMzPFajxEoKIqaHjggQdk06ZN8vHHH8vbb79d0ocDAAAABGXlypXy8MMPy5IlSyQrK8u4nuplo0qwBipqgobFixfLlClTpHfv3tKlSxeCBgAAgEisnmTXdkuh7777Tjp27JifXahUqZIkJibasq+oCBrUpBe33HKLnHLKKfL000+X9OEAAAAAQXvkkUd0wKCuc5944gl9rWuXqAgahg0bJlu2bJH3339fR2AAAAAoQcwIHRIrVqyQ008/XV588UXbq0ZFfNCgps1+/vnnpWfPntKtW7eAtqH6hxXsI3bo0KEQHiEAAABw4tQYhbPPPtuRMrMRPU9Damqqrl1btWpVPZ4hUGPHjpWkpKT8pXbt2iE9TgAAgKgc02DXEiUaN24s+/btc2RfER00DB48WHbu3ClTp041Tq9d3KpLKgDxLzt27AjpcQIAACC0VHn9Jk2ayLRp0yL21N5+++3yzTffyB9//GH7vly+CJ7hrGLFipKeni5t2rQ5rm39+vXy119/Sb169aRu3bpSrVo1mTNnTrG2q7onqYyDCiDsGqEOwBnf/77X2Lbk4YWW7/Vl5Bjbcjf8bX5jGXPPUO+Bw8a22IbmAW6uivHGNk/zauZjEZGGnU81tnU7t67lewGUfqXpusV/LKPPf0biY8raso/M3CMyevmgUvH1OqFv37663Kq6Sd65c2fxeDy27CcmGvp6qRNpsnXrVr2owAEAAAAIFw0aNNCP6lr2yiuvlJiYGD2Jsdt9fGciNe4hmIxERAcNBw8eNLapmaFfe+01eeyxx2TkyJGOHhcAAEBUY56GkFDBgp/qPJSTkyPbt28vdN1gB0tHdNAAAAAARKotW7Y4ti+CBgAAADiLeRpCwsnu9RFdPQkAAABA8KI20zBjxgy9AAAAwGGMaQh5VaqZM2fK8uXLZe/evdKpUycZPny4btu4caMe+3DhhRdKfLy50l5RojZoABB+Zn+z2di2/T/mKmmZK83VIv7KMpdGzfRmWh6Px2X+FZqWm2Zsi3PHGdvcFgngpH27zPvLs9jfZ2XEyuax5vJ8P5cxz3ETV99cAjZxeFtj24BezS2PBwBQfF988YXccMMNkpKSogdDqwHPNWvWzG/fsGGDdOvWTWbPni3XXXedBIruSQAAAHCWy+YlSqxbt06uvvpqPSdF//795a233tKBQ0Fq7oZy5crJBx98ENS+yDQAAAAAYWjMmDGSmZkpc+fOlWuuuUa/dv311x+1TlxcnJx99tny888/B7UvMg0AAAAomepJdi1RYtGiRdKsWbP8gMGkVq1asmfPnqD2RdAAAAAAhKG9e/fKaaedVuR6ubm5kp6eHtS+6J4EAAAAR7ncLr3Yte1okZSUJLt2mYtk+G3evFlOPvnkoPZFpgEAAAAIQy1atJAffvhBtm/fblxnzZo1ejzDueeeG9S+yDQAcNQzr/9g2Z42ZrGx7c/tvxvb0vPMaddcX54EItubbdleObaSsa28p7yxLc/ieMp5yhrbcnw5xjbvMdUyCirjMpd4Lapc656sv8xvXG9uK3PremPb4w/WMbadOaensa3buc7NfArAZnZWOYqeRIP069dPl1zt1auXvPvuu1KtWrWj2vft26fXURWV1GMwyDQAAAAAYahHjx5y7bXXyrfffisNGzaUSy65RL++bNky6dq1qzRo0EC+//57PY+DKr0aDDINAAAAcJidVY6iKNUgIrNmzZJTTz1Vnn76aVmwYIF+bdOmTXpR5VaHDh0q48aNC3o/BA0AAABAmPJ4PPLEE0/IsGHDdAlWNejZ6/VK7dq1pVOnTkEPgPYjaAAAAICzVIUju6ocRVH1pIIqVapU5HwNwWBMAwAAABCGpkyZIikpKY7si0wDgIBk5nmNbU+3fcHYtnn1SsvtHsk7YmxzWfR/dVvcAynnKWdsy/ZmGdvyXB4JlFXlpVh3YL96rapAxXvijW0ZXvM5VVwW5y4jL8PYVimmorEty2f++vf+ZS4N+Em7/xjb1jZuJlaG/DDQ2Bbv4R4ZUKpQPSkk7rnnHhk+fLge9Ny3b1892Nnqb2Uw+C0KAAAAhKFrrrlGl1OdO3euXH755Xocw0MPPaQHQYcaQQMAAACcpe6G27mISHJysjRp0kSmTZsWsd/dd955R3bv3q0rJ5111ln6uaqU1LhxY7nwwgvl1VdflfR08zxGJ4KgAQAAABFn5cqVsnbtWhkwYIBEssqVK8ugQYNk9erVehk4cKCcdNJJsnTpUj2hm5rw7ZZbbpGvv/46qP0QNAAAAMBZbpuXKNWsWTOZPHmyzjioLESXLl0kKytLZsyYIR07dgxq21F8WgEAAIDIExMTo8c7PPvss3LHHXfo19TYh6C2GaJjAwAAAE6gepJN8ylE5zQN+VRm4f3339fjGRYuXKgnelPOOOMMCQZBAwCjZ17/wdiWMuh9Y9sfGVuMbbGuWMsz7rEoc5oUk2g+ntyDxja3xV+QBE+Csa28x1xWVknPSw+oBKrL4ngyvZnGtjh3GQmE12f9dZTzlDW25fnijG2HLb7+AznmuuEVPOWNbRVjk4xtqX9sFStPVH7I2FbjlRuMbf27N7XcLgCEgxUrVuhuSG+99ZakpqbqzEJSUpL07NlTl2Nt1apVUNsnaAAAAICj1FwCds0nYNd2S6M9e/bIG2+8Ia+99pqsX79eBwrq6+/QoYMOFLp37y7x8eabWCeCoAEAAAAIQ3Xq1NHdj1SwULduXbn55pt1sKCehxpBAwAAAJzFjNAhHfCsSqp26tTJ3n3ZunUAAAAAtvjzzz/1uAUnEDQAAADAWW7XP4td244SSQ4FDApBAxDlJv3nK2Pb1nHvBFTlqIxFlZ8cb47l8ZS3qKxjVSEpxuJ4UnMPGdtqx9cKqAKQ4nHFBFSxKNZtriCVlZdtsU1zje2EmArGtmzJEitW56dybKWAzo9Vpas8X15AFamyvOZzo6RYHE967xeNbZO+72JsGzr+Ust9AoCT/vOf/8jZZ58tXbt2Pa7tl19+0bND16p1/N+1KVOmyKJFi+S9994LeN9M7gYAAABnqQpHdi4RavTo0TJv3rxC25o3by6PPPJIoW0//vijfPDBB0Htm6ABAAAACHM+ny/oWZ+t0D0JAAAAzqJ6Utgh0wAAAADAEpkGAAAAOIvqSWGHTAMAAAAAS2QagCgw6e4PjW17XjWXXC3jjjO2peSkGtt8Yi43GmexzaJKbp4cV8XY9lfWXmNbvDve2HYw1+rrsB5QluXNCqgEbGZeZkDnvGJMRWNbWt5hi2Mxl3hV4ixL5OYa26pafD/+zPrL2FYxtmJAJXnTvebPhlLJojysVbnWP54xlyCclGn++odOvsLyeABYYExD2CFoAAAAAMLETz/9pOdrOJE29XqwCBoAAADgLDvnU4jgeRqUn3/+WS8n0qZKsbqCPC8EDQAAAEAYuPDCC4O++A8UQQMAAAAcpS58XaqCkk3bjlSLFy8usX1TPQkAAACAJTINAAAAcBbVk8IOQQMQIabNXm1s2zvja2PbgZwUY1uuL8/YVsaiTGecy1ziNMdnLqmpxHviAyuravE+K1YlPpNiEi3f6/V5AyrzalWONS0vzdjmsXpfblpApVGVHF9uQN+vWDGXci3rKRvQeYt1m7eZ4K4gVvIsPq9WpXytvs9bX/zY2PZq19ONbX07NTK2AUA4ImgAAACAs6ieFHYY0wAAAADAEkEDAAAAnKUqJ9m5iEhycrI0adJEpk2bxnc3BOieBAAAgIizcuVKSUy0HpuG4iNoAAAAgLOonhR2CBqAMJGZZ644o+wf8L6x7WBuqrHN6/MFVCHJqupQnCfO2FbBU16sHMw9GFBFHp+Yvw4rZdzmY42zaFPqn3Ka+b1Nahrb3CeXM7bl/Wmu8uM9YG6rlFvf2LZ1/c8SqFiXuZqRT7wBVYiyqnKUkXfE2JblzhIrVp9Xq6pMKRafOavP685/zza2bfl1iFipX9W6EhQAlDYEDQAAAHAW1ZPCDkEDAAAAEAY8HnMWtygul0tyc83z8hSFoAEAAADO1++0q4ZnBNcG9Vl0KbbzvRF+Wv+Rk5MjX331ldx333269FbFihUlNjZWqlWrJl27dpWPPzbP9gkAAACUFl6v97hlyJAhEh8fL/fcc4/8+OOPkpKSopfVq1fL4MGDpWzZsnodtW4wIj7TsGTJErn44ov1cxUotG3bVsqXLy9r166V+fPn6+X222+X5557TqdtAAAAYDPGNITEq6++Kk8//bR8+eWX0qFDh6PamjVrJk899ZS+SX7RRRfJv/71L7n11lsD3lfEZxrcbrd0795dvv76a9mzZ4989NFH8tZbb8mvv/4qc+bM0X3DXnjhBXnjjTdK+lABAACAYps+fbq0adPmuIChoPbt2+ub5s8++6wEI+IzDR07dtRLYa6//nodmb388svy+uuvS+/evR0/PqC4Jp020bJ9f+Z+Y5tHzAOn3BYZtoy8DGNbldiTjG1ei1KcViVVlRyveZCWxxMTUAnYWvE1jG2V+pt/0Q4df6lEg0n3fWJsy5z3m7Ft6451AZXyLW9RxtSqzG3l2Epi5YhFudYDOSnGtqpxVYxth/PMZW63pPxubHv7urfEyv2LAr/bB0QC1bvDrh4e0dRzZP369XLVVVcVuV7NmjXlww8/DGpfEZ9pKErz5s31444dO0r6UAAAAIBii4mJ0b1nirJmzRq9bjCiPmjYtGmTPhHVq1cP6kQCAADgBK5A7VyiROvWrXVA8MwzzxjXmTJlig4szjvvvKD2FfHdk6z8+eefMmPGDP1cjXsAAAAAwsXDDz8sCxYskHvvvVfefvttueGGG6R+/fq6bevWrfLmm2/Kt99+q7MMI0eODGpfURs0qMktbrzxRklNTZWmTZvKHXfcYVw3KytLL36HDh1y6CgBAAAiENWTQkJlD2bNmiX9+vWT5cuX6wDh2LkZKlSoIC+++KKcf/75Qe0raoOGO++8U8/fcNJJJ8k777wjcXHmwXdjx46VRx991NHjAwAAAIpy7bXXyoUXXigvvfSSnmpg586d+YOf27Vrp8ushqIbvssX7PRwYUhNfqH6flWqVEkHDv7B0CeSaahdu7bOUiQmJjpwxIgWk547+g5BQZvufcXyvXm+vIAqCyXFBPYZzvJlG9u8PnP1pExvpuV2y3nKGdsSPBWMbSdf1srYdt/cXpb7RGCe7GWuELT9g8XGttRcc7a2gkVlpSyv+TOnZFu0W1VlsvpMJsQkWOwvy2J/ZcRKoyE9jG1Dn+hs+V7gRKnrlqSkpFJx3eI/lsf7zZb4OPPv+2BkZmfIyJd6lYqvN5JEXaZh6NChOmBQM0N/8cUXRQYMSpkyZfQCAAAARKOoChqGDx+uZ8ZTEa4KGFq2bFnShwQAABB97KxyFEXVkwpmcGbOnKnHNezdu1c6deqkr3uVjRs36kHRqgtTfHy8BCpqgoYRI0bIk08+qQMGNaFbcnJySR8SAAAAEBR1I1xVTUpJSdEDn9Xkdmo8g9+GDRukW7duMnv2bLnuuusC3k9UxGKqxNT48eN1lyQCBgAAgFJSPcmuJUqsW7dOrr76aj1+o3///vLWW2/pwKGgzp07S7ly5eSDDz4Ial8Rn2lQU2Y/8cQT+vmpp54q06ZNK3S9KlWqyMSJEx0+OgAAACAwY8aMkczMTJk7d65cc801+rXrr7/+qHVUhdCzzz5bfv75ZwlGxAcNBw4cyH++atUqvRSmbt26BA0AAACOsDMjED2ZhkWLFkmzZs3yAwaTWrVqydq1a4PaV8QHDX369NELEA4yRn8ZUElVJc4VF1BHxJTcgwGVv3Rb/FI2F1wtusTryYnmWtJJEy43tg3qfY7ldhF6980++m5WQZOeq2Ns2z5kprGtfIz5M7fjyD+1x00qxiYZ29Lz0o1tbosfkNQcc3nYcp6yxrb4IkquHpmx0txIyVUAxaQGPbdt27ZYkxqnp5t/DxZHxAcNAAAAKGWonhQSqsDPrl27ilxv8+bNcvLJJwe1r6gYCA0AAABEmhYtWsgPP/wg27dvN66zZs0aPZ7h3HPPDWpfBA0AAABwFtWTQqJfv356IHSvXr3kzz//PK593759eh1VUUk9BoOgAQAAAAhDPXr0kGuvvVa+/fZbadiwoVxyySX69WXLlknXrl2lQYMG8v333+t5HFTp1WAwpgEAAADOsnM+hSiap0GZNWuWnlbg6aeflgULFujXNm3apBdVbnXo0KEybtw4CRZBAwAAABCmPB6PnpNs2LBhugSrGvTs9Xqldu3a0qlTp6AHQPsRNAAOe/WrTca21MP7jW1Z3izL7Xpd5kKnse5YY1u8O978Ppf5fRneIwEda2JMBbFSbngHYxtlVcPH0DvPM7Y9U85cHnhz/1eNbZVjK1nuM8uXLYEoa1E61YpPjp51taDMIn5et+3fbGxb8LO5EspFzWoW8+iAUo7qSSFXqVKlIudrCAZjGgAAAIAw1LFjR5kwYUKR602cOFGvGwwyDQAAAHAWYxpCYvHixVKvXr0i19uwYYMsWbIkqH2RaQAAAAAiWE5OjrjdwV32k2kAAACAs1SBI9uqJ9mz2XD266+/ykknnRTUNggaAAAAgDBxyy23HPX/pUuXHveaX25urqxdu1Z++uknPW9DMAgaAIftGTjf2JaSk2psi3F5LLebkWeuZuT2ZgZUISnba65GU95T3tjmcptv85x8cSuxMnTIBZbtCH9WVbAmbdhnbNv81PuW2/WI+WfEZdEbNz0v3dhWJdZ8Zy7HlxPQz6NSMTbJ2PbjA18Z2y76pLfldoGwQfWkgM2YMSP/ucvlkt9//10vVmrUqKHLsgaDoAEAAAAIE6+++k9pap/PpzMMbdu2lVtvvbXQddXkbrVq1ZLWrVtLbKz5JmFxEDQAAADAWVRPCtjNN9+c/3z06NE6ICj4ml0IGgAAAIAwtHXrVsf2RdAAAACAEqieZOO2EXIEDQAAAIg4ycnJ4vF4ZMCAAXqJZFlZWbJo0SI9iduhQ4f0eIdjqUHTo0aNCngfBA0AAABwlqqyZ1FpL+hti8jKlSslMTFRIt37778vd9xxh+zfv9+4jgoiCBqAMJOx6y9j20GLkquV4ypZbjcptoyxrZy7rLFtR+bOgMqq+sRrbKtdsa6xbfj7/za2AUOf6Gw8CY+9vMLyBG1JMZcc9LjM98i8hdyR81N/ZAN5n6eIEslpuYeNbZkr/rB8LwD4rVq1Sq6//nr9vGfPnvLbb7/pidxGjBghmzZtki+//FJnHlR1JVVFKRhkGgAAAOAsqieFxMSJEyUvL09nG9TkbX379tVBg39Ohr1790rv3r3l008/ldWrVwe1L/NsNwAAAABKrWXLlkmTJk2Msz1XrVpV5syZI+np6fLoo48GtS+CBgAAAJRM9SS7liixd+9eady4cf7/Y2L+6USUmZmZ/1pSUpK0a9dOPvnkk6D2RdAAAAAAhKGEhATJzc09KkBQdu/efdR6ajboP//8M6h9ETQAAADA+TENbpsWiwIGkaZWrVqyY8eO/P/7sw6q/KpfTk6OfPfdd3LKKacEtS8GQgM2WPDzLmPbX9l7jW1x7jhjm9dnrlak5PlyLdryAqqQFO+JNx+PmCvHlLu5lbENCFTZLmdYtsfPNlcCy8g7YmxLijWXZEzPyzC2Hc5ND2ibSo43x9i2/8g+Y9v3v5t/f7Q6tarlPgFEnrZt28pLL70kqampOstw+eWX6y5KQ4YM0V2U6tSpIy+88ILOPPz738FVLyTTAAAAgJKpnmTXEiW6deumsw1LlizR/69evbo8+OCDkpaWJoMGDdLtH3/8sVSsWFEef/zxoPZFpgEAAAAIQ506ddLzMRT0yCOPSNOmTWXu3Lly4MAB+de//iWDBw/WWYdgEDQAAADAWXZWOYqeRIPRNddco5dQonsSAAAAEIY6duyoJ29zAkEDAAAAnGVX5ST/EiWWL18u2dnZjuyLoAEAAAAIQ7Vq1ZKsrCxH9lWsMQ0NGjQIyc5cLpf88ccfIdkWUJr9/PwqY1uGRQnHsp4yxrZYd6zlPjPz/n/2x2N5LG66eMUbUKnWijH/TCBTmKHjLzXvEAjQsFe6W7aPfOd7Y9vhPHN5VI94jG2ZXvPPVYWY8gH97CjpFsdzMCfV2LbkgQXGtlZze1nuEyhV7KxyFEXVk6644gqZOXOmpKenS/ny5t9JjgUNW7duDVnQAAAAACB4qlLS/Pnz9aBnNR9D3bp1xS7Frp7Uo0cPefLJJwPe0bBhw+S9994L+P0AAACIEFRPComhQ4fKGWecIR999JGcfvrp0rx5c6lXr56ULVu20Jv3L7/8sv1BQ4UKFYKKXtT7AQAAAITGjBkz8nvyqAHRK1as0EthHAkaOnfurCeJCIZ6/yWXXBLUNgAAABAB7KxyFEXVk1599VXH9lWsoOHTTz8NekdDhgzRCwAAAIDg3XzzzeIUZoQGAACAs6ieFHYIGgAb5K7fb2w7Je5kY9uBnBRjW7bXug5zji/H2JbgNo8pinPFBVRuslKDepbHAzit7ClVjG3ZWzYb23bk7DS2VY0zb9PjMpdqTc05JFbKeY4fpOgXHxtvfmMs0ysBKNzatWv1ZG979+7Vg6O7du2qX/d6vZKbmytxcea/944EDTt37pTdu3dLZqb54uLCCy8MdjcAAACIFCr+tSsGjrLYeseOHdK3b19ZtGjRUd2W/EHDiy++KHfddZd88cUX0qlTJ+eDhrlz58rIkSPl999/t1xPjdRW0Q0AAACA0Dlw4IC0a9dOz6l25pln6hv106dPP2qd6667TgYOHCgffvih80HD22+/Lb169RKfzyeVK1fW9WATEhICPggAAABEEcY0hMT48eN1wKDmQ1PP1c36Y4OGSpUq6SqmS5cuDWpfAQUNY8aM0Y+TJ0/W6Q6Px9yvEwAAAEDoffDBB/rm/bhx4/LnayhMgwYNZNmyZc73+tqwYYOcd955cvfddxMwAAAAILBMg11LlNi2bZu0aNFC3G7rS3o1CFp1ZXI801CxYsWgZocGIl3e3+bKKYfz0o1tce7AKxuUjSlnbMvIO2Jsc7vcAVVkcieaq78AJSGmVmVjW9VdVQKsWpYd0M9OWU8ZsZLgSQjod0Tuhr2W2wUQXeLj4yUtLa3I9bZv3y5JSUnOZxo6dOggq1evDmrHAAAAiPLqSXYtUaJx48by448/Snq6+WbDvn375Oeff5azzjorqH0FdFoffvhh2bVrl+4/BQAAAMB5PXr0kP3798uQIUP0fAyFue+++yQjI0Ouv/5657snqahG1Xrt2bOnHoBx2WWXSZ06dYz9qXr37h3UQQIAACCCUD0pJAYMGCCvvfaavPTSS/LDDz/INddco1//448/5KmnntJTJHz//fdy9tlnS58+fYLaV8DzNKgZ59SACtVHSh2MFYIGAAAAIPRjGj7//HO59tpr9bW5f/iAKq+qFjU9QnJyssybN09iY2OdDxpeeeUVGTp0qH6u+kc1atRIKlSoIKWdiramTZum+3VlZ2fLqaeeKv/+97/l3nvvDfpEAgAAoJjINIRM9erVdYCggoePP/5YNm/erLsq1a5dW/cGuuqqqyzLsdoaNPz3v/+VmJgYee+99+SKK66QcDB48GA9r4Q67o4dO+ogZ+HChXL//ffL/PnzdXersmWpBgMAAIDw07lzZ73YJaCgQfWTUtNUh0vAoFIyKmBQgcKSJUt0PVv/aHIVQKjobNSoUTJx4sSSPlREihhzjYEjFuVPE2MSjW3pFmUYFbfHvE+fFD44Ssnx5gVUFjL2rFMsjwcoTT93abmHjW3x7viAfnayvFnGNncRdUaOeDONbRU85Y1t3kPm3x9AWHHZWOUoeqZpcFRA3y41HXXVqlUlXPhnsB4xYkR+wKBUqVIlf6rtqVOnSmpqaokdIwAAABCovLw8+fvvv/V4Y9PieKZB9Y/66quvdH+pomagK2mqNOzKlSv18xtuuOG49rZt2+o+Xzt27JBPPvlEevXqVQJHCQAAEEUY0xAy6jpXTYegetNkZZkzoGpcQ25ubsD7CeiK/7HHHtMHNWjQID2guDTzjyKvXLmy1K9fv9B1WrZsedS6AAAAQGn33XffSbt27fQg6MzMTKlYsaKeBqGwRd0kdzzT8OKLL+psw7PPPqtHaasZok3zNKioRo0XKClbtmzRj+r4TPwn0b8uAAAAbESmISQeeeQRHSzccsst8sQTT8gpp9g33jCgoGH06NE6GFC1X7dt2yYzZsw4bh1/e0kHDWlpafqxfHnzwDJ/udhDhw4V2q6yKgXTPab1AAAAAKesWLFCTj/9dH1DPxRlVUMeNKh+U3YfWGkyduxYefTRR0v6MBBGfGnmyiixbvOPXaZFRZU8n7nKkZJtUcnFZdkT0bzdPKu2PeZqNEBJcMWbf7biPeYKSVYy88w/k0kW1c6sKjIpW49sM7blxpjnPTrZ67PcLhA21J8lu4bFlu7htiGlxiio2Z6duC4PONMQLhIS/ikZmZ5uLld5+PA/Fz+JiYX/AXjggQdkyJAhR2Uagu0XBgAAAASjcePGegoBJ0R8LFavXj39qKojmfjb/Oseq0yZMjqgKLgAAAAgMOrOuJ1LtLj99tvlm2++0XOo2S3ig4bmzZvrx/379xsHOq9atUo/FpzDAQAAACjtQUOvXr3k4osv1lMHqLkaSrR70qxZs6Rhw4Zy7rnnBjVQQ0VBhc2VYKdatWpJcnKyrmGrvo6HHnroqHY1G7TKNKhsQpcuXRw9NgAAgKhE9aSQaNCggX7cunWrXHnllRITEyPVq1c3VjQNJiNRrEzDjTfeKM8//7wE47nnnpObbrpJSsKDDz6oH8eNGyc//vhj/usq+3DXXXfp5wMHDpSkpKQSOT4AAADgRKlgQS2Kqlqak5OjZ372v37s4vhA6HDTrVs3PRHdM888I61bt5ZOnTrpEqxqVuuDBw9KmzZt9IR1AAAAsB+JhtBwco6xYgcNn332mXTs2DHgHa1fv15K0uTJk3VwMG3aNFm+fLmOxFSXqxEjRsi9994rcXFxJXp8iCyek82D5V07zQm+KnGVjW17s62rI+R4zVPDe1weY1usO1YC4d1rrkgGlIg8czlSj3gCKi1s9bNjxap8slLWU9bYlpKTan6jO3oGeAIoWt26daXUBQ1//vmnXoJR0qPZr7vuOr0AAACgpDMN9lwXRlHxJEcVK2hYtGiR/UcCAAAA4ISpOcRmzpype9Ps3btXd8UfPny4btu4caMez3DhhRdKfHxgE10WO2ho165dwDsAAAAAjsKM0CHzxRdf6OqkKSkpejC0yuDUrFkzv33Dhg16fO/s2bOD6nET8fM0AAAAAJFo3bp1cvXVV0tqaqr0799f3nrrLR04FNS5c2cpV66cfPDBB0HtKyqqJwEAAKD0sHPm5pIeQ+ukMWPGSGZmpsydO1euueYa/dr1119/1Dqq2M/ZZ58tP//8c1D7ItMAAAAAhKFFixZJs2bN8gMGq8mO9+zZE9S+yDQANnAlxAdUwjEt97CxLd5tPXjJJdkBvTfG4ngO5KQY2/L+sigLCZSAnE1/Gdt84jW2ZeaZy6PGe8w/O5neLGNb1bgqYsV7TPeBgo7kHTG2xdQyl2UGwgoTNYSEGvTctm3bItfLzc2V9PTgSqWTaQAAAADCUFJSkuzatavI9TZv3iwnn3xyUPsiaAAAAECJJBrsWqJFixYt5IcffpDt27cb11mzZo0ez3DuuecGtS+CBgAAAMBBv//+u9x55536oj82Nlbq1asX0Hb69eunB0L36tWr0EmY9+3bp9dRFZXUYzAY0wAAAABnRfmYht9++00++ugjadWqlb6gV3MsBKJHjx5y7bXX6upJDRs2lDZt2ujXly1bJl27dpXFixfL4cOH5d///rcuvep4pqFjx45yySWX6HSIlfHjx+t1AQAAAPzjyiuvlJ07d8p7770XdLehWbNmyQMPPKCfL1iwQD9u2rRJByXZ2dkydOhQmTFjhgQroEyDilpUDdz27dvrSSS6dOlS6Hrr16+XJUuWBHuMQNjxVCtvbHO7zLG6V8wVVbItKrUUVY3lYO5BY1usK9bieMwVZ3bt3GR5PIDTDv1pLieY6c0MqKKZlXLusgFVHitKxdiKxraYM6sGvF2gVHG7xOW2KSNg13ZDyO0O3QgBj8cjTzzxhAwbNkyXYFWDnr1er9SuXVs6deoU9ABov4CPuG7dupKVlaWnpX7xxRdDcjAAAABASdiwYYNMmTJF+vTpI02bNpWYmBh9k/zxxx8v1vtVFyF1Q71SpUpSvnx5PX/ChAkTJCcnR5yg9qvma1DBw/Dhw/U4h1AFDEEFDeqkfPjhh1KmTBk9kGPkyJEhOygAAABEOJdNS4CeffZZGTRokLz22mu64lBeXl6x3zt48GC57rrr9FgCNU7h0ksv1RWN7r//ft1V/8gR8/wr4SKogdDqhKjuR5dffrmMHTtWduzYIS+//LKOzAAAAIBwceaZZ+q79M2bN9dVjcaMGSNvvPFGke+bN2+eTJ48WSpUqKCvi9V7/ZWLVMCwdOlSGTVqlEycONHW41++fLmuylSYli1bSpMmTYLaftBX9+rEfPfdd3LZZZfJzJkzZffu3fL+++/rEwcAAAAcS3X7UYsdAt3usSVJizvuYMyYMfpxxIgR+QGDUqVKFZk+fbpccMEFMnXqVB04qMnYgnXOOefIxo0b9fgFFQz4qeECr7/+eqHvOeuss2T16tVB7TckozDU+AYV3ahprL/66iv9qIIHAAAAIFLt2rVLVq5cqZ/fcMMNx7Wra2I1IFmNA/7kk0+C3p+6zlYX/z179jwqYPBT5VtVdqPgctppp8kvv/wiCxcuDGrfIetHVLFiRfnyyy+ld+/e8vbbb0vr1q31SQIAAAAicZqG1f+7e1+5cmWpX79+oeuoi3vVhV+tqwYnB0N1hVKZlHvvvbfQdtWmrscL2rp1q57D4d133w1qKoSQDj6Ii4uTOXPm6GBh0qRJOvoCotGpA1oZ27bM/Sqgbca5y1i2p+YcMrZViCkfULnJ8mJ+n8+iHOukMYuMbUMf7GBsA6xMumOeZfvh3IyA2irElDO2ecT88/FX9t/GtmplThErh3LNP68JngRj2zUPM/cRUFyHDh39c6aK96gllLZs2aIf69SpY1zHfxPdv66SkZGRn3lQJVLV/9955x39/+TkZN2LpzDff/+9bjuR8QlqtmlVDUq91/HuSe3atZPGjRsb25988kl55plngjkuAAAAIGDqYl2NIfAvqmhPqKWlpelHVWLVxD/Ot2AQ8/fff+uZnNWiMgN79+7N/78aq2Dyxx9/6AHbhVFdk0waNWp0VNDiWKbB6ovxGzhwoF4AAAAAp/snqS5BiYmJ+S+HOssQDHX33+oi30QFHqbB1EOGDNFBR2HKli2bH+AEitqoAAAAiDgqYCgYNNghIeGf7oTp6enGdQ4fPpx/PMFSWYvU1FRjhSS1FObgwYNSrpy5K2ZxEDQAAABAor3kaqAZA39Ww8Tf5l83GNWrV5effvrphN+n3qPeW+IlVwEAAIBo07x5c/24f/9+45iBVatW6ceCczgE6vzzz9eFhr7++utiv0etu3PnTmnTpk1Q+ybTANig27mFVz1Qfk0wR/o/7TPfPUiKNVdUUcq44wKqkJTjzTG2pXvN6daEGPMEjllvWEwgQ/UkBOjIp2st29PzzJ/X6hbVjLJ82QH9XHkt+iMfyEkxtv2zXXPf6qpVahrb6ldl4lRECLeNt64dvCVeq1YtXe1IzdUwa9Yseeihh45qV7NBq0yDGk/RpUuXoPd34403yssvvyx33XWXniOtqC5PahyDWldlXwqbR+JEkGkAAAAAAvTggw/qx3HjxsmPP/6Y/7rKPqgLdkUVBwrFbNCqgunFF18sa9eu1fM/fPzxx8Z1VUlXFdCsW7dOOnXqJB06BFfynEwDAAAAJNrHNKgLfv9Fvr+8qfL888/LRx99lP/6+++/f9T4gG7dusmgQYP0dANqcmN1ga5KsKrZm9UAZNUt6LHHHpNQURkNtc2NGzdK165dpVKlSrrrU9WqVXW7Kt+qvpaUlBRdoenUU0/V7wkWQQMAAACinipnumLFiuPOgxoPsHPnzvz/Z2VlHbfO5MmT9YX8tGnTdLehnJwcPQvziBEj9OzNagLkUDnppJP0carsxezZs+XAgQOyYMGC/GDJX8rV7XZLz5499TFVrFgx6P0SNAAAACDi5mk4Ue3btw9o7gS/6667Ti9OUF2d3njjDXn00Ud1FuSHH36Qffv26bYqVarozMMVV1yhA5dQIWgAAAAAwlCDBg101ygnMBAaAAAAJZJosGtR1CDgJk2a6O45CB6ZBsBhMbVPMrZVPlTJ2JaZl2m53TiL0pDpueZSlLHumIDKqub68oxtW7asMbZNvO09sTLsxWss2xHZnrxujrFt29+/B7zdtLy0gEqnpuWa35cUay51mJGXYXk8eb7cgH5HACg+VQbV7hmhowlBAwAAACTaqyfBGt2TAAAAAFgi0wAAAABnRciM0NGE0woAAADAEkEDAAAASmRMg11LpPr666/1TNAlgaABAAAACAPt27eXcePG5f+/Y8eOMmHCBEf2zZgGwGHVJnQ2tu28wlyqNMt1/LT1BXlcnoBKp7os7h0c8ZrLRh7ONbdViatsbNv25pdi5elzaxnbBvdrZflehIdJE5YY23Z+9E1An3HlsNdcWriMRUlit8VdySSPVVnVI8a2WFesWImxaK877mLL9wIRoRTOCB0ufAXKRC9evFjq1avnyH7JNAAAAABhICEhQfbs2VMi+ybTAAAAAEeRaAjMWWedJQsXLpSHH35YTj31VP3a77//Lq+//nqx3t+7d+8A90zQAAAAgAiUnJwsHo9HBgwYoJdIMHz4cOnRo4c88cQT+a8tW7ZML8VB0AAAAIDw4UCqYeXKlZKYaB6XFI6uvPJK+f7772XevHmybds2mTFjhjRs2FDatGlj+77pngQAAACEiWbNmulFUUFD27Zt5ZVXXrF9vwQNgMP6dmpkbNuZVMPYlpmy2XK7iRYVkvZlHzC2xbrNVVxyvLkBVUiyqnJjVXFG2TLoNWPbtPLmYx3Qq7nlduGsSVPNqfJDT3xubPsr+29jW7w73nKfSbHmO4qxLvOfu/Q8c9WllJxUY1ul2CRjW47P/LOj1DvtLGNbrwsaWL4XiAQut0svdm07WjzyyCPSvLkzf/8IGgAAAIAwDRqcQtAAAAAAR6lcgG1DGiT65ObmyjvvvCOLFi2SXbt26ddq1qwpHTp00AOnY2KCv+QnaAAAAADC1E8//aQDgy1bthw18Zvy0ksvyahRo2Tu3Lly9tlnB7UfggYAAAA4i4kaQmL37t1yySWXyL59++SUU06Rnj176mpKyubNm2XOnDnyxx9/SOfOnXVwUb169YD3RdAAAAAAhKHx48frgKFfv34yefJkKVu27FHtY8aMkUGDBumMw4QJE+S///1vwPtyh+B4AQAAgGJzuVy2LtHi008/lTp16sizzz57XMCgxMfHy/Tp0/U6H3/8cVD7iuhMw99//y2fffaZXtQEHzt27BC3261PnErlDBkyROrVq1fShwnkS5pwufFs+G6bbHmm/sraa2wrH1M+oLN8SpmqAe0v1m3+1RLnLmO5z305+41t3ltfMLZN/PIiY9uwV7pb7hOBefK6Oca2LfMXBlR2t3JsJWPbYYvSqP9sN8PYluBJCKiUa1l3OWNbti/b2FbeY36fUuauVpbtAFAc6tr26quv1jNfm6hB0Oedd56eEC4YEZ1pUEHBzTffLG+99ZaUK1dOunbtqkeRHzhwQKZMmSJnnnmmfPnllyV9mAAAAFFYPsnGJUqUKVNGDh06VOR6aWlpet1gRHTQULlyZXn00Udl+/bt8vPPP8vbb7+tUzNqYIgaKJKenq4fU1JSSvpQAQAAgBPSpEkTXWZVZRxM1HWwWueMM86QYER00PDMM8/Iww8/rOvUFlShQgV5+eWXJSEhQWcdgu3jBQAAgBOfEdquJVr07t1bjhw5IhdddJF88sknx7V/9NFHcvHFF0tmZqZeNxgRHTRYUd2VTj/9dP3cKjoDAABA+ElOTtZ34qdNmyaR6rbbbpNOnTrJpk2b5Morr5SqVatKq1at9KKeX3XVVbpNraPWDUZED4S2kpOTI1u3btXPg6lZCwAAgBNj59AD/3ZVEZzExESJZB6PR/eYUT1rVJWk/fv366Vg75oBAwbo7vqqGFAwXL5jp46LEs8995z0799fl6dSM+ipCTGKSw04SUpKktTU1Ij/MKL0GNfWXDlI+WPVd8a2HG+OsS0hpoKxLdObZWzzuMyVGtJy0wJ6n1IppqKxzaqMnlU1pyZVzP04y13fwtg2dPIVEg0mTVhibMt4yty2KzWwLK1HzJ+BTG+msc3tsv6DF+sy3wc7kJMS0GeyosXncb9Fpa9mZ7cXKw+sGmDZDoRSabpu8R/L9A9+lLLlzX9/gnEk/bDcdVWLUvH1OikrK0tWrVolu3bt0v9X3fNbtmwZ9ADoqM40/Prrr3Lffffp52pq7aICBvVNUItfcUapAwAAwGpCaHtyDVE0TcNRVHDQpk0bsUupDRqGDx8uH3744Qm/T81417ZtW2P7zp07dZ+vw4cP6xKsI0aMKHKbY8eO1WkdAAAAIBqV2qBh9+7dsmHDhhN+nwoGTP788089EGTbtm3SuXNnXYK1OFHuAw88oOd8KJhpqF279gkfGwAAAPyZBnvORLRmGqI2aJg5c6ZeQjk7dMeOHWXjxo26LJWaFa+4fbzUeqHqDwYAAACEm1IbNITS3r17dcCwbt06nWlQ3Z7i4+NL+rAAAACiEpmG8BPx8zTs27dPBwy//fabDhjmz5+vKyYBAAAAKJ6IzjSo2Z5VoLBmzRrdJUllGAgYEK5GLL3duj1ho7Ftd9YeY1tarnkckNuiY6hVGVcrFTzlLduzfNnGNq/Xa2yrXsZcBe3vQ+avf9+0N4xtA174yNim91m5lrEtvtM/k0cWxptm/hqtxlnl/W3+XnlT0o1tf2/9Q6xYlda1+j5Xik0KqARuWU/ZgMqq5vlyxUrFGPPx5Fi816pUq0/Mn7l6Zesa2+5d0d/YBkDNpfDPPzvYtd1oF9FBQ79+/eSXX37Rf4QrV66s52UoTLdu3fQCAAAAhIvt27fr61wnCvREfKZBUfPXqUpJJvXq1SNoAAAAcIqN1ZOiKdFQr149Oe+882TZsmW27yuig4bFixeX9CEAAAAAtlAzXtevX1+cENFBAwAAAEofqieFRpMmTWTHjh3ihIivngQAAABEottuu013TVq5cqXt+yJoAAAAgKPU4F07FyU5OVnfiZ82bVrEfnf79u0rd911l1xyySUyZswY2bBhg2RlmSviBYPuSUCEqDr2amNb5v2zjW0HclKMbV6feX/ZXnPZ0MqxlczH4s00b1Tv07xTj8tjbMuyOJ4Yi/clxFQwtqXnmcuYKpv3mcvcxry9xdjmE4sTayEjL8PYVjGmorHtiNf8PqW8RRncWE9MQOfc6rxm5B0J6PNRzqJUa1HbtSqrarVPq8/y6fPuMLbFe7gnB5Q0dfdd9fmPZB7P//99GzVqlF5MVDCVm2tdutoKQQMAAAAcpXIBFE8KnqoQase6hSFoAAAAAMKQ12LS01AjaAAAAICjCo49sGPbCD06XQIAAACwRNAAAACAEpmnwa4l2vzxxx8yfPhwadu2rZx++un6ud+KFSvkhRdekNTU1KD2QfckIEIMHdjG2DZpm/kXRcyznxvb9mUfMLbFumKNbTm+3IAq9RTFqtJTvDve2JaSezCgr8OqAlAwVYASPAkBva9K7EnGtixfdkD7UzK85q8jzhUXUFWmGIvzGu8xf6/i3HEBV53KkzxjW1pumrGtjMU+qw+5wtjWt1Mjy+MBACe89tprcuedd+aXWlXds/bt25ffnpGRIf3795e4uDjp06dPwPsh0wAAAIASqZ5k1xItvvvuO+nXr58OCCZMmKCzCsdWSWrXrp0kJSXJ/Pnzg9oXmQYAAAAgDE2YMEEHCR9//LHumlQYt9stZ599tqxduzaofZFpAAAAQMTNCB0Nli1bJq1atTIGDH7VqlWTPXv2BLUvggYAAAAgDB08eFDq1KlT5HpHjhyR7Gzz2LfioHsSAAAAHGVnlaMoSjTISSedJNu2bStyvd9//11nG4JBpgEAAAAIQ61bt5ZVq1bJb7/9ZtmFSbUX1YWpKGQagCgw9MkuxrZJ1c3lODMeeiOgsqpen3la+/S8dLFiVaqzYkxFi+PJMbZVsCjz6rK4d3Iwx7qmdfkY83YruCz2aXEbzO0qa2xLyzOXDfW4zL/OD3utz3ms23zOfWL+XlrJ9prT4Hk+c2nUWHdMQF9jUZ87q3K1tXt2NLYN/c/FlvsEEBhmhA6NAQMGyLx586R79+4yZ84cPeC5oHXr1sktt9yiz/ddd90V1L7INAAAAABhqFOnTjJkyBDZuHGjnHPOOXLaaafpAOHzzz+Xs846S5o2bSqbNm2S++67T2clgkHQAAAAAEcxT0PoTJw4UZ5//nk9ZkGNXVAlWFWlpDVr1kjlypVlypQpMm7cuKD3Q/ckAAAAIIzddtttepK31atXy+bNm8Xr9Urt2rUlOTlZYmJCc7lP0AAAAICIq56kLpg9Ho/u96+WSOdyuaRFixZ6sQNBAwAAACLOypUrJTExUaKJz+eT/fv360dVjlXNBh0qBA1AlBs65AJj26RMc4Wkv8fON7btyfrL2FbGXUYCle0zV+SJtaisY1UhyarqksflsTye9FxzVaKEMhWMbX9l/21sc1scq1XVobIx5YxtR3wZYiUzL9PY5rWonmR1rFbvszrnOXnmtoqx5upZuj0mydhW+4V/G9sG9GpuuV0AoedS/2xKNahtR5svv/xSJk2aJEuXLtUTuSnx8fFywQUXyL333iudO3cOeh8MhAYAAADC1H333SeXXnqpfPHFF5KRkaGzDGpRwYN6rUuXLjJ06NCg90PQAAAAAEdRPSk0Zs6cqTMMKqugAoNffvlF0tLS9PLrr7/KsGHDpGzZsvL000/rdYNB0AAAAACEoSlTpujB3p999pk8+eSTcuaZZ0r58uX1csYZZ8iECRN0m+oKNnXq1KD2xZgGAAAARFz1pGiwZs0aadu2rR67YOJvVwPDg0GmAQAAAAhD8fHxUqNGjSLXU+vExcUFtS8yDQAAAHCU6i5jW/WkKEo1nHPOOXocQ1HUOi1btgxqXwQNAIyGPtjB2LbltmRj25vJU4xt2/7cZHnG03IPG9vKuM13SbIkK6DSoAkx5tKoFTzljW16n15zCdg/LcrOWonzmL/GbIv9peWlGdtUFY1AWZWddVv8YY51mUvrJngSjG2Hcg8Z2+q3bi1Wrnv7evN7q5q/zwAQrh566CHp1KmTHrswfPjwQtdRYx3WrVunxz8Eg6ABAAAAjmJMQ2C+/vrr47IqAwcOlAceeEDmzp0rN910k9SvX1+3bdmyRVdM+uGHH2TQoEFBT/RG0AAAAACEgfbt2xfa/UpllFVw8OOPPx73uvLMM8/oTENurnnS1qIQNAAAAMD5GaFtmrk5kmeEvvDCC0tszAZBAwAAABAGFi9eXGL7JmgAAACAoxjTEH6YpwEAAACAJTINAAJiVcJy5NYHjG2TnvvWcruZTy0ztu3YsUEC4RFz2dA8X56xLT0v3XK7R/LMZV6TYhONbWm5aQGVHPValE612l+ez3rgm8vi/pHbZW47KbaysW1/zgFjW/XKtYxtZz9/jbHttiuaGNsAhBkbZ4SO4CENRpmZmbJq1SrZvXu3fm7Su3dvCRRBAwAAABCmnnzySRkzZowcOmS+6eRH0AAAAICw4dY5TntSAnZttzSaOnWq3H///fp506ZNpVGjRpKQYJ5AMxhkGgAAAIAwDRpiYmLk3XfflSuvvNLWfRE0AAAAwFFUTwqNrVu36rkb7A4YFKonAQAAAGHo5JNPlqpVqzqyLzINABw19M7zrFewaH/1q03Gtr9GfmVs+/OXNRKILG+2ZXtZTxljW2aeuXpFQoy5v2mONyegSkZWM6AW9XXEumKNbdXLnGJsS2j9L2Nb68c6GNu6nVvX8ngARD4nMg3Jycni8XhkwIABeolEl112mXz++efi9XrF7bY3F0CmAQAAABFn5cqVsnbt2ogNGJRHHnlEsrOzZdCgQfrRTmQaAAAA4CiXy6UXu7YdLWrUqCFLly6Vrl27yumnny4dOnSQOnXqFJp1UOdl1KhRAe+LoAEAAAAIQz6fTyZPnizr16/XXZRmzJhRaLCg1iNoAAAAQFhRuQAmhA7NxG5TpkzRZVevuOIKPU9DhQoVxA5kGgAAAIAw9NJLL0m5cuXkm2++kebNm9u6L4IGAAAAOIoxDaGxY8cOad++ve0Bg0LQACBs9O3UyNxo1WYhM89rbJs24jPL9+b9utfYlrszxdjmy82TQLg8FgXvYj3GpjLnW5c4rdGrqbGt1wUNindwAADHVatWTRISzGW8QynqSq4ePnxYGjRokB/h7ty5s6QPCQAAICrnabBriRZXX3217pqUmWmeGyhUoi5ouO+++/SU2wAAAEA4Gz16tFSuXFl69eol+/bts3VfUdU96csvv5TnnntOBg4cKFOnTi3pwwEAAIhKTswIHQ0GDx6s52eYN2+eLFy4UM455xzLeRpefvnlgPcVNUHDoUOH5NZbb5X69evLuHHjCBoAAAAQ1mbMmJE/mV1aWposXrzYuC5BwwlEYmr8woIFC6R8+fKh+U4BAADghLn+988Odm23NHr11Vcd21dUZBo+/vhjfVJvv/126dixY0kfDoBSJN6iItHQJ7s4eiwAAJyIm2++WZwS8UFDSkqK3HbbbVK7dm09ax4AAABKFmMawk/EBw1q0POePXvk008/lcTExIC2kZWVpZeC4yMAAACAaFFqg4bhw4fLhx9+GNB02m3bttXP33vvPZk1a5b07dtXLr300oCPZezYsfLoo48G/H4AAAD8P2aEDo1bbrml2OtG7EDo3bt3y4YNGwKavE1RtWr79+8vNWrUkKeeeiqoY3nggQdkyJAhR2UaVHcnAAAAoCSrJ1nxV1by+XyRGzTMnDlTL4FaunSp/P3331KrVi3p1q2bcb1rr71WypQpI3369NFLYVS7WgAAABA8xjTYWz3J6/XKtm3b5JNPPpFVq1bpKqLNmjULal+lNmgIFVVmVS0m3333nX5s3769g0cFAAAA2Fs9Sc0Yrbr8v/jii/Ljjz8GtS9zrcEwp7ILKhVjWvx27Nih/69OKgAAAJwb02DXgv83ZswYSUhIkIcffliCEbFBAwAAABDtYmJipEWLFnqC46C2E7IjAgAAAIpB5QLsygeQZzjekSNH9NxlwSDTAAAAAESodevW6QJBwVb+jNpMQ8FxDQAAAHAO1ZNC4/XXXze2paWl6YDhjTfekMzMTLnhhhuC2lfUBg0AAABAOOvTp4/lwG//TfKrrrpKRo4cGdS+CBoAAADgKGaEDo3evXsbg4a4uDipWbOmXHTRRXL++ecHvS+CBgAAACACZ4QOJYIGAAAAOI7pFMIL1ZMAAAAQcZKTk6VJkyYybdq0kj6UiECmAQAAAI5y/e+fXdtWVq5cKYmJiRIt1ZKKOwYiUAQNAAAAQARUSyoKQQMAAADCBvM0BKZjx44nHDR8++23kpGREVSwoZBpAAAAAMLAggULir3uN998I8OHD5cjR47o/zdt2jSofTMQGgAAACUyT4NdSzRbs2aNXHnlldK+fXtZsWKF1K5dW5dmXb16dVDbJdMAAAAAhLkdO3bIqFGj5M0335S8vDw56aST5MEHH5QBAwboid6CRdAAAAAARzGmIXRSUlLkiSeekOnTp0tmZqaUK1dO7rnnHrn//vtDWj2KoAEAAAAIM5mZmfLf//5XJkyYIIcOHRKPxyO33367jB49WqpVqxby/RE0AAAAwFFkGgLn9XrlpZdekv/85z+yZ88e8fl8cs0118iYMWPktNNOE7sQNAAAAABh4L333pOHHnpINm7cqIOFdu3ayfjx46VVq1a275ugAQAAAI5S9Y3smxE6cvXo0UNXh/KPW+jSpYvk5ubK8uXLi/X+888/P+B9EzQAAAAAYSQjI0PGjh2rl+JSwYYKMAJF0AAAAABHMaYhMHXq1CmxeSgIGgAAAIAwsHXr1hLbN0EDAAAAHGXnzM3RPiO0Xdy2bRkAAABARCDTAAAAAEcxpiH8kGkAAAAAYIlMAwAAAByl5miwb54GxjTYgUwDAAAAAEtkGgAAAOAoxjSEHzINAAAAACyRaQAAAICj3C6XXuzaNkKPTAMAAAAAS2QaAAAA4CjGNIQfMg0AAAAALJFpAAAAgKPINIQfMg0AAAAALJFpAAAAgKOYETr8kGkAAAAAYIlMAwAAABzFmIbwQ6YBAAAAgCUyDQAAAHCWyyUuu2ZuZkZoW5BpAAAAAGCJTAMAAAAcxZiG8EOmAQAAAIAlMg0AAABwlMvGMQ22jZWIcmQaAAAAAFgi0wAAAABHqVyAXfkA8gz2INMAAAAAwBJBAwAAAEpkTINdi5KcnCxNmjSRadOm8d0NAbonAQAAIOKsXLlSEhMTS/owIgZBAwAAABzFPA3hh+5JAAAAACyRaQAAAICjqJ4UfqIm07Blyxa5++675bTTTpNy5crpPm6NGzeWvn37yubNm0v68AAAAIBSKyqChtmzZ+vR81OnTpX4+Hi58sorpX379uLxeGTGjBmydu3akj5EAACAKOL6/4ENoV6YqcEWEd896auvvpIbb7xRTj75ZHn77bflggsuOKp969atUqZMmRI7PgAAAKC0i+igIS8vT/r16yder1feffddOf/8849bp169eiVybAAAANGKMQ3hJ6K7J82fP19nEtq2bVtowAAAAAAgyjMNn3/+uX688MILJTc3Vz744ANZtmyZHDlyRGcYrrrqKj0YGgAAAM5hnobwE9FBwy+//KIfY2JipFWrVrJ69eqj2h988EEZPHiwTJw4MX/KcQAAAABR1D1p//79+nHs2LGyfft2mTlzpuzdu1d27NghTz75pA4mnnrqKRk3bpzldrKysuTQoUNHLQAAAAhuTINdC6Io0zB8+HD58MMPT/h9L730kh7DoPh8Pv2Yk5Mjs2bNkksuuSR/vWHDhukB0vfff78OKgYNGiTly5cvdJuq/dFHHw34awEAAADCWakNGnbv3i0bNmw44fcdPnw4/3lCQoJ+VOMXCgYMfv3799dBQ1pamnz//ffSoUOHQrf5wAMPyJAhQ/L/rzINtWvXPuFjAwAAAIMawlGp7Z6kuhKpTMGJLpdeemn+Nho0aHDU47FUUFG1alX9fM+ePcZjUfM4qBmkCy4AAABAtCi1QUMonHPOOfpx3759xnkcDh48qJ9XqFDB0WMDAACIVoxpCD8RHTR0795dV0Vav3697Ny587j2xYsX6/EOap2WLVuWyDECAAAApV1EBw2nnnqq3HjjjZKdnS233XabpKam5rdt27ZN7r77bv28R48eUqNGjRI8UgAAgOibp8GuBVE0EDpUpkyZIr/99pt89tlnOoho3bq1ZGZmynfffacHTTdr1kyee+65kj5MAAAAoNSK6EyDkpSUpGeBHjNmjM4mLFy4UJYvXy6NGjXS8zN8++23Urly5ZI+TAAAgCjCqIZwE/GZBiU+Pl6XTVULAAAAgBMTFUEDAAAASg87xx4wpsEeEd89CQAAAEBwyDQAAACgREY02LVthB6ZBgAAAACWyDQAAADAUYxpCD9kGgAAAABYImgAAAAAYInuSQAAAHAYQ6HDDZkGAAAAAJbINAAAAMBRDIQOP2QaAAAAAFgi0wAAAABHMaIh/JBpAAAAAGCJTAMAAACcRaoh7JBpAAAAAGCJTAMAAAAc5frfP7u2jdAj0wAAAADAEpkGAAAAOMv1z1wNdm0boUemAQAAAIAlMg0AAABwFMWTwg+ZBgAAAACWyDQAAADAWS4bBzXYNlgiupFpAAAAAGCJTAMAAAAcxZiG8EOmAQAAAIAlMg0AAABwFEMawg+ZBgAAAACWyDQAAADAUYxpCD9kGgAAAABYItMAAAAAZzGoIeyQaQAAAABgiUwDAAAAHMWYhvBDpgEAAACAJTINAAAAcBRDGsIPmQYAAAAAlsg0AAAAwGGMagg3ZBoAAAAAh/3+++/SpUsXqVChglSpUkXuuusuSU9PL7XfBzINAAAAcFS0j2lITU2Vjh07So0aNWTu3Lly4MABGTJkiPz111/y7rvvSmlE0AAAAAA46Pnnn5e9e/fKqlWr5OSTT9avlS1bVrp37y4//PCDnHPOOaXu+0H3JAAAAJTIiAa7ltLuk08+0ZkGf8CgdO3aVXdV+uijj6Q0ImgAAABA1NuwYYNMmTJF+vTpI02bNpWYmBhxuVzy+OOPF+vcqG5G7du3l0qVKkn58uWlWbNmMmHCBMnJyTlu3bVr18q//vWvo15T+zvttNNk3bp1pfJ7QfckAAAASLSPaXj22Wdl8uTJAb138ODB+r3qwl9lEFTGYOHChXL//ffL/Pnz5YsvvtDdj/xSUlKkYsWKx21HBRxqfENpRKYBAAAAUe/MM8+UYcOGyZtvvqnv9t90003FOifz5s3TAYMKFFasWCGff/65Hsy8adMmnbFYunSpjBo1KuzPL5kGAAAASLTP09CvX7+j/u92F+/e+pgxY/TjiBEjpEWLFvmvqzKq06dPlwsuuECmTp2qA4ekpKT8jMLBgweP25bKQDRq1EhKIzINAAAAQAB27dolK1eu1M9vuOGG49rbtm0rtWvXlqysLD342U+NZzh27EJeXp5s3LjxuLEOpQVBAwAAAEpkTINdi1NWr16tHytXriz169cvdJ2WLVseta6iJnVbtGiRLrvqp8Y+HD58WC6//HIpjeieFACfz6cfDx06FOrvBwAAQEj5r1f81y+lgZ3XUP5tH7uPMmXK6CWUtmzZoh/r1KljXEdlGgquq9xxxx26UtNVV12luy2pbklqcjf1f3+QUdoQNAQgLS3tqA8BAABAOFy/+PvUl5S4uDipVq2aNKpX19b9qEHJx16nPfLIIzJ69GhbrgnLly9veSzHBjGqcpKqrjRo0CDp0aOHxMfHy7XXXisTJ06U0oqgIQBqyu8dO3ZIQkKCrt8b6dSHXP3gqa85MTGxpA+nVOIccY74HPGzVlrw+4hzdCyVYVAXt+r6paSpi2N1xz07O9v2r/nYa7RQZxmCpeZk+OyzzyRcEDQEQI2mr1WrlkQbFTAQNHCO+Bzxs1Ya8PuIc8Tn6MSUdIbh2MBBLZEgISFBP6anpxvXUeMUlHC/hmIgNAAAABCAevXq6UfVG8PE3+ZfN1wRNAAAAAABaN68uX7cv3//UQOdC1q1apV+LDiHQzgiaECRVB9ANXiotPUFLE04R5wjPkf8rJUW/D7iHME5tWrVkuTkZP181qxZx7Wr2aBVpkH9XKoyq+HM5StN9bcAAACAUqBPnz7y2muvyWOPPSYjR440rjdv3jy5+uqrdZWkJUuW5GcUVPahQ4cO8uuvv8rQoUNLdWWk4iBoAAAAQNT78ccf5a677so/D3/88Yfs27dPZxNq1qyZ//r7778v1atXP+p83XPPPfLMM89IbGysdOrUSZdg/eqrr+TgwYPSpk0b+fLLL6Vs2bJhfY4JGgAAABD1Fi9erDMDRdmyZUuhg5rffvttmTZtmvz000+Sk5MjDRs2lBtvvFHuvfdePT9FuGNMA4KifnDuvvtuXWu4XLlyupxY48aNpW/fvrJ582bO7jEl1xo0aKDrRqtl586dUX1+/v77b3n99dflhhtukEaNGunye+ozpD4/arKbrVu3SrSYO3eutG/fXipVqqTvTjVr1kwmTJig/+hEO3UO1N26++67T/cbVhMiqTt5anKorl27yscff1zSh1gqDR8+PP93zeOPP17Sh1NqqLkB1N3gtm3bSuXKlfXvHXUX+bLLLpO33nqrpA8PJUz9Hla99ota6hmqIF133XW6e1JqaqpkZGTobkn3339/RAQMCpkGBGz27Nlyyy23SGZmpjRt2lT+9a9/yZEjR3Q6b+3atTJ//ny54oorOMP/079/f3n++ef1LxxFDYyKxvk+/NTdlzfffFPPe3LmmWfK6aefrutcr1y5Uvbu3asvnlUK+OKLL5ZINnjwYJk8ebLExMRIx44ddZ9YNUuoSmmrC5svvvgi7FPawViwYEH+Z0AFCuecc47+bKjfMWvWrNGv33777fLcc89FxWSbxbF8+XK54IIL8i9wiuqPHS3UjZrOnTvrz06VKlWkdevW+rOkfherO8MqcHjnnXdK+jCB0ksNhAZO1IIFC3xut9tXrVo139dff31c+5YtW3y7d+/mxP7PF198oSIF38CBA/WjWnbs2BHV5+fuu+/2Pfroo76dO3ce9XpaWpqvZ8+e+hxVrlzZd+DAAV+kev/99/XXWaFCBd8PP/yQ//revXt9TZs21W1Dhw71RbOvvvrK171790J/z8yZM8fn8Xj0eXrttddK5PhKm/T0dF+jRo18NWvW9HXr1k2fm8cee8wX7TIyMnyNGzfW52P06NG+7Ozs487b6tWrS+z4gHBA0IATlpub66tXr57+5bts2TLOYBFSU1N9tWvX9tWvX993+PBhgoZiUH/AExIS9Ll64403IvYzlpycrL/Gxx9//Li2b775RreVKVPGd/DgwRI5vnBw66236vPUqVOnkj6UUmHQoEH6fHz88ce+m2++maDhf0aNGqXPxe23316y3yAgjDGmASdMdTtS/c1V14nzzz+fM1iM7icqLf7SSy/pVDiKpsY2qO5KRc2yGc527dqlu2IpalzHsdTPV+3atSUrK0s++eSTEjjC8JpYKVI/Jyc6iHPKlCnSu3fvsK8HH+pxMc8++6x+rsbGAAhMTIDvQxT7/PPP9eOFF14oubm58sEHH8iyZcv0eAY1OOiqq67Sg1khepDmq6++qvtcq/7qKP4fef9A6GPL2kWK1atX60c1GLN+/fqFrtOyZUt9MazW7dWrl8NHGB42bdoU0Z+TEym0oMaYnXLKKfL000+X9OGUujKaqmxmjRo15NRTT9WDU9977z3ZvXu3Lj6gxn+o8QxqfBUAM4IGnLBffvnlnw9PTIy0atUq/+LH78EHH9R319UkJtE8MDElJUVuu+02fbf4ySefLOnDCSsvv/yy/iOvBgCrP+aRWnlMqVOnjnEd9dkpuC6O9ueff8qMGTP08+7du0f16Rk2bJj+nKjiAepCGMf/zVKFJ0aMGKErkxWc13b8+PE6Y6Um6LL6eQSiHWE1Tpia4VAZO3asbN++XWbOnKmr3ag7ouriWAUTTz31lIwbNy6qz+7AgQNlz5498sILL+hStCgedRfQ34Vg1KhR+s5pJEpLS9OPVl3WVCUl5dChQ44dV7hQWU5VgUuVNlTV2+644w6JVqrClqrM1rNnT+nWrVtJH06p/ZulbnCpAEFN3rVhwwb92VETbqmS4art8ssvp8wxYIFMQxTW7v7www9P+H2qP77qY63479CoLiSzZs2SSy655Ki7XV6vV9clVkGFqrcfbv34Q3GOVOpbnRs1X8Wll14qkSYU56gwauzHlVdeqbtaqBr86q4gUJg777xTz99w0kkn6TKZkVIH/USpC99bb71Vqlatqscz4HgF/2apbn5Tp07Nb7vooot04KDGUKkSvnPmzJGbbrqJ0wgUgqAhyqg+nOoOy4lSF3F+CQkJ+lGNXygYMBScj0AFDepO6vfff1+s2RUj6RypbjXqHKj+syrjEolC8TkqrKtJp06dZNu2bbqWuppZM5K7t/l/jtTcFEWdLzJVR7vnnnt0FzbVDcd/pzjaCy2oicnU3AMw/6wphWWkVJcklWV499139bwgBA1A4QgaoozqSqSWYKhZjX/44Qf9aPoFre56qS5LqntOtJ2jpUuX6tmOVf9Zq64C1157rZQpU0b69Omjl2j7HBWkzpcaKL5x40Z950/1LVbnJpL5ZxS1qvrjbzPNPhqNhg4dqmf0VTNDq245/upJ0UqNYVBdQqdPn66XgtavX68fVYClLobV5HjqTnq0Kfi3yvR3y/96OP7NApxC0IATpmZknTt3rr6jXpi8vDw9m23BPtnRSN39U4vJd999lz9tfTRTwaUKGNatW6czDarbU3x8vEQ6/8Wu6m+tBrAWVkFp1apV+rFFixaOH19p7RansndJSUk6YFDVpfDP+I4lS5YYT4WqRKaWunXrRuXpUj8/Kmupuimpv1v+AgMF+f+eRfPfLKAoDITGCVNVStQvYHUXq7CLYlUrXPUdVetE4x91lV3438SJhS4F7yKr/48ePVqilfpDrQKG3377TQcMag4QVTEpGqhMVHJysn6uxr8UlrFSnxGVcaHmvujxLarQggoYVJck/7mLduoGjel3zc0336zXeeyxx/T//WWMo43KsPjHUqmMy7HU3yt/0KUqAgIoHEEDTpiqc62qlmRnZ+uSomognp/qj3733Xfr5z169ND9+oHCHDhwQAcKavCh6pIUTQFDwfLEiqo0pmrJ+6nsg6rw4q/CpS6Uo9nIkSN11RvVJYmAAYF45JFH9KMq0OHP8vqzNKrL2+bNm3XXWlW8AkDh6J6EgKgqHeru8GeffaaDiNatW0tmZqb+ZawGbzZr1kyee+45zi6M+vXrp+unq4yUmuBMDR43ZW4itYyk+rpUhTHVR1/9DKkgSlUbU1WB1B3kNm3a6LvE0Ux1V3viiSf0c/W7Ztq0aYWupwYBq7lhgMKony31s6TKOKvJ3FRGQWUgVLCuMjDqhsXs2bMjtsQzEAoEDQiIuvOpZoH+73//qwfWLVy4UL+uytZdf/31+kIo2u4a48QzDYrqNqEqJZmoQcCRGjQokydP1sGBuhhevny57irRsGFD3R3n3nvvjdpSosd+TvxjPPzjPI6l+usTNKCojJUKFtSM2StWrJCVK1fqwEEVolAV/xo3bswJBCy4fAU7WQMAAADAMRjTAAAAAMASQQMAAAAASwQNAAAAACwRNAAAAACwRNAAAAAAwBJBAwAAAABLBA0AAAAALBE0AAAAALBE0AAAAADAEkEDADioXr164nK58peLLrrIkf3OmTPnqP2qZfHixY7sGwAQ/mJK+gAAIBp1795dKlSoIGeccYYj+6tfv77cfPPN+vlnn30mf/31lyP7BQBEBoIGACgBEydO1FkHp5x77rl6Udq3b0/QAAA4IXRPAgAAAGCJoAEADO6++27d9/+CCy6Q3Nzc49ofeugh3d6iRQvJzMwMyXncunWr3qbKQni9XnnmmWfkrLPOknLlykn16tXlzjvvlAMHDuh1s7Ky5LHHHpPGjRtL2bJlpUaNGnLPPfdIeno631MAQEgRNACAwaRJk6Rly5aydOlSGTly5FFtalzA2LFjJTExUd5++22Jj48P+Xm88cYbZcSIEVKzZk3p3LmzDiKef/55PXhaBQbqUXVzOv300/XzjIwMHWRce+21fE8BACHFmAYAMIiLi9MBgcokTJgwQdq1ayeXXXaZ7Ny5U2666Sbx+Xzy0ksvyamnnhryc7ht2zaJiYmRdevWSd26dfVr+/fvl/POO09Wr16tH1V2YfPmzXLSSSfp9i1btsg555wjn376qSxbtkzatGnD9xYAEBJkGgCgiKpDM2bM0AGCChTUhXnPnj1l3759MnDgQFvv6qusgT9gUFRw0L9/f/18zZo18vLLL+cHDP5jVdkJ5auvvuL7CgAIGYIGACjCVVddJUOGDNF3+ps3b67v4qtuS6r7kl1UluGSSy457vVGjRrpxzp16siZZ55pbN+9e7dtxwYAiD4EDQBQDOPHj5cmTZpIamqqlC9fXndbUt2X7KIGPavA4Vhqbgd/0FCYhIQE/RiqgdkAACgEDQBQDCtWrJCNGzfq52oQ8q+//mrreXO73UG1AwAQSvzVAYAiqPELahyDKrvat29fXRK1T58+erAyAADRgKABACz4B0Crikm9e/eWV155RYYOHSopKSly/fXXS05ODucPABDxCBoAwIKai0HNyaDGM0yfPj3/NVXyVHVZGj58OOcPABDxCBoAwODrr7+Whx9+WM/GPHfuXD0AWlEDlOfMmSOVK1eWp59+Wj744APOIQAgohE0AEAh9u7dK7169ZK8vDyZNm2azjQUpKoXqfkb1PgGNc5h69atnEcAQMRy+VSHXQCAI+rVq6cHUKtJ4tTzktC+fXtZsmSJLFq0SD8HAKAoxxcBBwDYbtiwYXrOhTPOOEPuu+8+2/enxl88++yz+vn69ett3x8AILIQNABACXj33Xf1Y6dOnRwJGlRm47XXXrN9PwCAyET3JAAAAACWGAgNAAAAwBJBAwAAAABLBA0AAAAALBE0AAAAALBE0AAAAADAEkEDAAAAAEsEDQAAAAAsETQAAAAAsETQAAAAAMASQQMAAAAAsfJ/NSEmmq+U9C4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAPxCAYAAABthsLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVsElEQVR4nOzdB3hU1fbw4ZWeAEnoEnqzUaQjCgiCSLGBIgqIoqIoIAIXL0URuaAgV/QiAnaxgAUQlKLApYiIIE2UYqOD9JKEAKnzPWvf/+RLmQlJ5kwyk/N7n+c4ycyZc/acJLj2PmuvHeBwOBwCAAAAoMgLLOwGAAAAACgYBP8AAACATRD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/XjRv3jzp1q2bVK1aVYoVKyZ169aVKVOmSHJysjdPCwAAALgU4HA4HK5fgqdatGgh1atXl65du8oVV1wh69evlwkTJkiPHj3kww8/5AIDAACgQBH8e9HJkyelXLlymZ7T4H/MmDFy7Ngx0yEAAAAACgppP16UNfBXTZo0MY9///23N08NAAAAFK3g//fff5dp06ZJ3759pX79+hIcHCwBAQFmdD035s6dK23btpVSpUpJ8eLFpUGDBjJ58mSv5uSvXbtWQkNDpVatWl47BwAAAOBKsPixmTNnytSpU/P13iFDhpj3aoehXbt2UqJECVm1apWMGDFCFi1aJMuXL5eIiAhL27tr1y5zzscff1yioqIsPTYAAABQpEf+69WrJ8OHD5fZs2fL7t27pU+fPrl638KFC00QrgH/xo0bZdmyZTJ//nz5888/zR2EdevWmbz8jGbNmmXuKlxu0wo/rpw6dcpM/K1du7ZMmjTJks8PAAAA2Gbkv1+/fpm+DwzMXV/mpZdeMo8jR46Uxo0bpz9ftmxZmTFjhrRu3VreeOMN0wGIjo42r2nJTq3eczmVKlXK9lx8fLx07txZkpKSZM2aNSbFCAAAAChofh3858eRI0dk06ZN5utevXple71Vq1ZSpUoVOXTokCxdulR69uxpntdOgLMjkBeJiYly1113yf79+80dhYoVK1rwKQAAAIC8s13wv23bNvNYunRpqVGjhst9mjZtaoJ/3dcZ/OdHamqq3H///aazofMJrr766lx3GHRzSktLkzNnzkiZMmVMahEAAAB8i8PhMNkeOtCb22yUwmC74H/fvn3mUVfddUdH/jPum18DBw408wvGjx9vOgIbNmxIf61OnTpuJ/1OnDhRxo0b59G5AQAAUPAOHToklStX9tlLb7vgX3tkKqe8e50IrOLi4jw617fffmsede5A1gnEq1evNmVGXRk1apQMGzYs/fvY2FjTWdFfJqoEAQAA+J64uDgzgBwZGSm+zHbBf0HSPP/8CAsLM1tWGvgT/AMAAPiuAB9P0fbdhCQvcfbGEhIS3O5z/vx581jYgfb06dNNelCzZs0KtR0AAAAoGmwX/FevXt08agqNO87XnPsWFp0zoAuDOasTAQAAAJ6wXfDfqFEj83j69Gm3E3o3b95sHjOuAQAAAAD4O9sF/zr72plGM2fOnGyvay1+HfnXnPsuXboUQgsBAAAA77Bd8K9Gjx5tHidNmiRbt25Nf17vBgwYMMB8PWjQoHwt6mUlcv4BAABgpQCHrkjgpzRwdwbras+ePXLq1Ckzul+pUqX05xcsWCAxMTGZ3vv000/L66+/LiEhIdK+fXtT+nPlypVy7tw5admypaxYsUIiIiLEV0pHaUdES34W9iRkAAAA+G+8FuzvF3njxo3Znj98+LDZnDKulus0depUE+Tr6Pr69eslOTlZatWqJSNHjpShQ4dKaGio19sPAAAAFCS/Hvm3C3/pSQIAANhVnJ/Ea7bM+fcX5PwDAADASoz8+wF/6UkCAADYVZyfxGuM/AMAAAA2QfAPAAAA2ATBvw8j5x8AAABWIuffD/hLDhkAAIBdxflJvMbIPwAAAGATBP8AAMDn7N+/XwICAqRv375efY83jgH4MoJ/AABgGWfw3KlTJ8uv6po1a8yxX3jhBcuPDdhFcGE3AAAAIKtKlSrJ7t27TQ61N98D2A3Bv49X+9EtNTW1sJsCAECBCgkJkWuuucbr7wHshrQfHzZw4EDZtWuXbNq0qbCbAgDIJ4cjTVIunfabTdvrzXSdzZs3S4cOHSQyMtKM0Hfr1s2kCl0u917fe/PNN5uvx40bZ15zbs73u8rXT0pKkmnTpknHjh2lSpUqEhYWJuXLl5e7775btm3b5vFn27p1qzmnHi+js2fPms/Yvn17j88BWImRfwAAvCg18azs+7Kp31zjGndvluDwMl45tg5mTZ482QTx/fv3N8H3woUL5ddff5UdO3ZIeHi42/e2bdvWBPcffvihtGnTxnzvVLJkSbfvO3PmjAwZMkRat24tXbp0kVKlSsnevXvl66+/lm+++UbWrl0rzZo1y/dn0lQjdfjw4UzP63nuuece+eijj+TUqVNStmzZfJ8DsBLBPwAAKBBLly6Vzz77TO6777705x588EH5+OOPTSfg/vvvd/teZ7Cvwb9+ndtJvxqEHzx4MD1Id9q5c6e0aNFCRo8eLStWrMj3Z9K7CJpulDX4V/Xq1ROHwyG//PKLtGvXLt/nAKxE2g8AACgQN910U6bAXz3yyCPm0VsprprmkzXwV3Xr1jV3IHTkPzk5Od/H15SfmJgYOX78uKSkpLjc58KFC/k+PmA1gn8AAFAgmjRpku25ypUrm8dz58557bw///yz9OrVS6pWrSqhoaHpcwUWLVpk5gRoWo4n9DOkpaXJ33//nen51atXm8f69et7dHzASqT9AADgRUFhpUwevT+111uioqKyPRcc/L9QxFuV7davX5+ecnPrrbfKlVdeKSVKlDDBv6Yabd++XRITEz06R8a8f+1gOO9kfPvtt+buQrVq1Sz4JIA1CP59GKU+AcD/BQQEem0CLS7vxRdfNMH9999/L61atcr02oYNG0zw76msk37Pnz9vKg5px+bVV1/lxwSfQtqPD6PUJwAA/19QUFCe7xLs2bNHSpcunS3w1zx8LdNpBWfwf+jQITPBVycx62Jj77zzjjRs2JAfIXwKwT8AAPALGsQ7g+zc0pQbrbmv1X2ctPMwfPhwOXnypCXtcs5b0Hb169dPFixYIFOnTjWdAMDXkPYDAAD8gq7eW7FiRVMuVKv4aNCtuftPPfWUWTDMFX1t+fLlZuS/R48eZi0BXXTsyJEjpmSofm3VyP+bb75pUoz+85//mPMCvoiRfwAA4DdpP19++aWpz//pp5/K888/L2PGjDEj++7cfvvtMm/ePKlZs6Z88sknMmfOHNOJ+OmnnyybiOsM/vWOwvvvvy9PP/20JccFvCHAoclp8GlxcXFmRCM2NtZlpQQAAAAUrjg/idcY+QcAAABsguAfAAAAsAmCfx+v81+nTh1p1qxZYTcFAAAARQA5/37AX3LIAAAA7CrOT+I1Rv4BAAAAmyD4BwAAAGyC4B8AAACwCYJ/AAAAwCYI/gEAAACbIPgHAAAAbILgHwAAALAJgn8AAADAJgj+AQAAAJsg+AcAAABsguAfAAAAsAmCfx82ffp0qVOnjjRr1qywmwIAALLYv3+/BAQESN++fbk28BsE/z5s4MCBsmvXLtm0aVNhNwUAgDxbvXq13HfffVKlShUJCwuT0qVLS6tWreS1116TS5cueXxF16xZY4LvF154gZ8OkEvBud0RAAAgN1JSUswA1ttvvy3FixeXzp07S+3atSU2NlaWL18uw4YNkzfffFOWLFlinvdXlSpVkt27d0t0dHRhNwXINYJ/AABgqVGjRpnAX9NWFyxYYIJkp9TUVPnXv/5ltk6dOsnWrVslKirKL38CISEhcs011xR2M4A8Ie0HAAAvSnM45HRiot9s2l5P/PHHH/Lqq6+aFJ9FixZlCvxVUFCQjBs3Tnr16iV79uyRV155Jf21WbNmmTQefbxcio8+3nzzzeZrPZ6+5tw0Fz/jXYiJEydKrVq1JDw83Nxp0O/37t3rNl//gw8+kOuvv15KlChhNv3aVZvc5fxnbOvmzZulQ4cOEhkZae4QdOvWLVP7PGmnO+PHjzfvWbZsWbbX9Geir02ZMiXXx0PRwsg/AABedDYpSZou/9pvrvHmW++UMmFh+X7/hx9+KGlpafL444/LFVdc4Xa/MWPGyJw5c+T99983dwHyqm3btiaI1vO1adPGfO9UsmTJ9K8feeQR+fjjj6VmzZomFSkxMdHMOfjxxx9dHnfw4MEybdo002l59NFHzXPz58+Xhx9+WLZt2yZTp07NdRt1zt7kyZNNJ6V///7m/QsXLpRff/1VduzYYYL8/LYzJ3oe1bhx42yv6Z0Wd6/BHgj+AQCAZdavX28e27dvn+N+mi5TsWJFOXLkiBw6dMhMCs4LZ7Cvwb9+7WrS78qVK01A3bBhQ/nhhx+kWLFi5vlnn31WGjVqlG3/tWvXmsD/2muvNUG3M5dfj92iRQt5/fXXpXv37tK6detctXHp0qXy2WefmUnPTg8++KBpk3YC7r///ny1MzfBf+XKlaVcuXJug389F+yJtB8AAGCZY8eOmcfcBPPOfY4ePeqVn8Ann3xiHp9//vn0gFrFxMTI008/nW1/7Ug4g/2Mk3hLlSolY8eONV+7Sv9x56abbsoU+DtH+FXGSn55bWdOzp49a+6IuBvZ1+C/evXq5jPBngj+AQBAkbR9+3bzqOVFs2rZsqXbdJmMKUROzvkFP//8c67P36RJk2zP6Yi8OnfuXL7bmRNn+1wF/ydPnpTDhw/n624Cig7SfgAA8KJSoaEmj96f2uuJChUqyG+//WZSea6++uoc99V9nCPc3hAXFyeBgYFStmzZbK+5mo/g3N9VuozurxNldZ/cclXFKDg4OL3qUX7bmRNnB8ZVgO9M+SH4tzeCfwAAvCgwIMCjCbT+5sYbbzTVbjSP/ZZbbnG7n3YQ/v77bzOx1pn+owGws/JNVrpGQF5p8K2Tj0+dOpUtoD9+/Ljb/XWEvHz58pleO3HihDgcDq+UJc1rO/M72dc5H4Pg395I+/GiL7/80tzC0568rmyoM/h1YRPNxwMAoCjSCa0axL/zzjsmiHbnxRdfzJQDr5x56DoJ2F1Qm7VsaNZR9IwaNGhgHnUSrbtAOCNnUKydl6ycz3ljomxe25kTvU56h0InU2eknQutWqQI/u2N4N+Lzpw5Y/IG33vvPVNrd+jQofLRRx+ZSgEAABRFmuqjk1RPnz4td9xxR7bJvBqEah16neSqNe2HDx+eKUdeA1etkHPp0qX05//880+XJTZ1LYGM6UNZ9e7d2zxqKdGLFy9mmpTs6ngPPfRQ+roBGdN79K6DPpdxHyvltZ3u6Hv1joreochYIlS/1wnLO3fuNB2srGsvwF5I+/Gifv36ZfpeOwJa01drHx88eFCqVq3qzdMDAFAotLa9Bsxaw//KK6+U2267zQT6GlAvX77cBPP6vJbCzJhGo6PVPXv2NPX/tSOgKwBruo2uEqxfO0eus5YL1c6C3mHXybTaeXjqqadMtR5NO9LFxPR49evXl65du5r6+V988YVZuEsXvHKmGjmr8+h7tdxnvXr15J577jGBs55XJ8rqGgC6j9Xy2k53dP0AvQuiKUudO3c27Y+IiDB3D/TaO+cs6PoFM2bMMNcM9kPwX8CcoxTJyckFfWoAAAqETmrVu94ayL/99tuybt06E8AXL17c1NB/4okn5MknnzSBaVbvvvuuSZf9/PPPZfr06eZOgh5Dg/yswb+m/WiK7YgRI+TTTz+V+Ph48/wDDzyQXqpTy3fqObUjokG9dhCGDBli1iHQoDprDr/W8te0mJkzZ5rzqrp165pReV3oy1vy2k5XnKlR2vnSkX+9JkpXGNYFw/Q6ff311+YOAYG/fQU4tEvrp37//XczgrBlyxaz7d692/R49Xbic889d9n3z5071/zDoiW2kpKSzFLaeutN03NCQkIsa6e2SYN9Xc1Pcxt1YtOSJUty/X7tpes/YjqK4o2JRgAA2I12Mh577DEzAq4dkaLQTu1UvfXWWyYe0rsiKFhxfhKv+fXIv/bK85ILl5H2pvW9OjrRrl07KVGihKxatcr0irWHrZ0KVyMS+VGmTJn0KgW33nqruY0HAAC8T/PmnWU6nXRC8YQJE8ydg9tvv73ItFNH/nWRsKuuusrLrYU/8+sJv5qPpxOFZs+ebXq5ffr0ydX7dEltDfw14N+4caOZjKu3EjUHUXPt9PbkmDFjMr1HV/TTP8jLbfPmzXNZIUBn8L/55puya9cuMwHKXWUCAABgnUmTJplgWO+8jxw50uTWa3rNgQMHzP/rc7MSsT+0U+MKzfnXOCY38wNgX8FFaUJtbn/ZX3rpJfOof1wZ6+BqjqHeVmvdurW88cYb5o/NmTPYrVs3adGixWWP7WoGvbMsmNY+1q/1OJr7SNUfAAC8SycK68CbpttqqW0tvHHdddfJgAEDTIBdVNqpVX40l98bpUhRtPh18J8fegtt06ZN5mtXf0xal19711o2TKsQ6GQlpZ0AZ0fAE9rZ0DsEf/31l8fHAgAAlw+qdSvq7dRJyX48jRMFyHb3hZwz4bXqTo0aNVzu07Rp00z7WknTf/SPUxf8ckfLe+mkkYwbAAAA4Cnbjfzv27fPPOZUY9+ZV+fcN786duxoSnRpb1xLamln4t///re5jac1fN2ZOHFi+mIiAAAAgFVsF/w7awBrrWF3dCKw8nTEvXnz5mYFQ2cnonr16iZ3b9iwYRIaGur2faNGjTL7OGk7fGVCEgAAAPyX7YL/gqTrDeiWV3qXgMU3AAAAYDXb5fxHRkaax4SEBLf7nD9/3jwW9gINugBZnTp1pFmzZoXaDgAAABQNtgv+NfVGaTUfd5yvOfctLAMHDjRlv5zViQAAAABP2C74b9SokXk8ffq02wm9mzdvNo8Z1wAAAAAA/J3tgv/KlSunp9HMmTMn2+u6uq+O/GvOfZcuXQqhhQAAAIB32C74V6NHj05fSnvr1q3pz+vdAK3GowYNGmTJol6eIOcfAAAAVgpw+PFycBq4O4N1tWfPHjl16pQZ3a9UqVL68wsWLJCYmJhM73366afl9ddfl5CQEFOLX0t/rly5Us6dOyctW7aUFStWSEREhPgCLfWpHZHY2NhCn4QMAAAA/43Xgv39Im/cuDHb84cPHzZbxhVzs5o6daoJ8nV0ff369ZKcnCy1atWSkSNHytChQ3Osww8AAAD4I78e+bcLf+lJAgBgJy+88IKMGzdOVq9eLW3bti3s5vgMvRbfffed2C3EjPOTeM2WOf/+gpx/AIC/0oD4vvvuMyvUaxGN0qVLS6tWreS1116TS5cuWXKOvn37SkBAgOzfv9+S4/k7vQ56PTp16uR2nzVr1ph9nnjiiQJtG3wHwb8Po84/AMDfpKSkSP/+/aVdu3ayZMkSadGihQwbNkzuv/9+OXbsmPm6QYMG8tdff4m/0+Igu3fvlubNmxd2UwB75PwDAADfMmrUKHn77bdNWW0tuJGxAEdqaqr861//MpuOTmvhDl9Oj7icsmXLmg3wJ4z8AwDgRY40hySfSvCbTdubX3/88Ye8+uqrJsVn0aJFmQJ/FRQUZHLke/XqZSr0vfLKK5le13QUd7nz1atXN1vG7z/88EPzdY0aNcx7Xb3/yy+/lKZNm5oKfldccYU89thjcvbs2WzHc9KqgUOGDDHH1HSl8uXLS48ePWTHjh0uc/71nJpKkzX1RlOS9O5Gt27dpFSpUqaq4C233CLbt293+fk0R/6mm24y+5UpU8akTOm6Q/p59HjetmXLFnMno169eiZvXa9X/fr1TVl0LYriiq6N1KZNm2xtdiXjtZo1a5ZZSLVYsWKZfl4HDhyQRx991PzeaOEVrd6o3x88eDDb8ZzXRdumx9afpf68rrrqKpkxY0a2/TXVbMqUKeauk34+bbO+R3+27n4mRRUj/z6e86+bjpQAAPxTypkLsqXOVPEXTXY9LSFli+frvRqMp6WlyeOPP24CbXfGjBljFtp8//33zV2A/NAAXYNIDdy0fHfJkiXN8xkDej2+Bo96d+HBBx80Qd/SpUulQ4cOJmjUct8ZnTx5Um644QbTMdHgUlOV9u3bJ/PmzTMpTMuWLTPzFnJDOwGa8lS3bl155JFHzDG/+uorufnmm02qUMbrs3z5crnttttM50gD6IoVK5o5E3ou7TgUhHfeecd02LQDooucXrhwwQTqeidn06ZNMn/+/Ez7a3n0zp07S2BgYHqb9TmtpJhTm//973+bz3bXXXfJrbfeaj6zs+Oon1d/BnfccYe5btrh0p+htks7GhrYZ9WzZ0/56aefTFv0WF988YVJm9afrXb0nB566CHz2nXXXScPP/yw6ShoR0Xbop9POwV2QfDvw/SXVzfn7HEAAHyZls5Wun5OTq655hoTLB45csQEYDopOD/B/88//2yCf/066yi+rtujnQId4d28ebNceeWV5vmXXnpJOnbsaEa6q1Wrluk9I0aMMEG6Bry6n5N2GDQ416Dx999/NwHv5ehIvo6a6zEzdnomTJggH3zwgSktrnSATztL+ugM+DMGrB999FGer43ecdDRcFfcTY7WBVB1wNEZjCut1tOvXz8TgP/www8msFfODp7O71i7dm16m3X/Bx54wHTscrouWqZd7ypkpBOQNfB/6623zLGddBRfY6Enn3zSdC6y0tLu2klwpo/pz1zvXugovzP41+o7c+fOlSZNmphzZ/yMet3j4+PFTkj7AQAAltAJvSo3wbxzn6NHj3rl6uso+/nz583IvzPwV8HBwSYAzyopKUk+/fRTk77y3HPPZXpNR8L1boEG1RoE54amDT3zzDOZntO2KB1pdtIRbU130dHurHcVtJ0ZA9Xc0g6Mple52pypUllVrVo127k0rUYDb/Xf//43U5v37t0rt99+e6Y26/7aacqpzRrYZw38Na1HOz516tTJNFrv7BRoZ3HVqlUuU4omTpyYad7I1VdfbTop2klzBvXaLu2YhIeHZ+u4aVudd43sguAfAAAUOc48bldpOtdff73pBGT022+/mbxwrdyjuehZabqO0rsNudGwYcNsgabmsDvvSuSmndpB0qA8r/TOhga7rjYNsl3Rzo/O19DPr8G0tl2DZh0tV3///Xe2Nrdu3TrbcfRuSk6dP1eVkZzXVOcPZJ3foO3QVKSM+2XkbF9O11k/j3bgtOPWuHFj00FxLvBqR6T9AADgzf/Rli5m8uj9qb35VaFCBRNE6witjsDmxDmKGxMTI96gKbNKJ+xmpQFl1io9zv3dzVVwttO53+W4qmLk7HBknMuXUzud7dF5B97WvXt3k1uvefWaw6/t0bx5DaCnTp0qiYmJ6ftqGs3l2uwuvcjV9fXk2uf2Omvajwb9c+bMkWeffTb9vZrKpc+76vAVVQT/AAB4UUBgQL4n0PqbG2+80UwS1dxsrWzjjnYQdCRZq7pkHCXWUV/NI3dFA868zH9zBoUnTpzI9prmrGtVn4zViJz7Hz9+PMeUJqtLk+bUzpzaYyVNQ9LAX+8Y6MTmjGk7GzZsMMF/Rs6fQ37a7KpyUUFcew3uNY1qwoQJpjOld0DefPNN89kuXrxo5hrYBWk/PowVfgEA/kQr6uioulaO0cmb7rz44ovmUavgZKRVYnQScFY6ipwxVcbJGaS6qornrN7iKkdfq8Nk7WRoXrnmhGsgrJVusnKW89R0Hivl1E6dzOqqzKXVdI6AclYcyuj7779322ZXr+n8BXflPt1xXlOdPKypSRnp9/p8xv08VaNGDfO7p5OPS5QoIV9//bXYCcG/D2OFXwCAP9FUH622cvr0aTOBNetkXh1xHz9+vHzyySdSq1YtGT58eKbXdWEwDfQ1KMuYi66rArui6wkoV8GmlpLUwO69995LD26VBv1adScrrSuvZSP1joBOIs3o22+/NWU+a9eunV7xxiqa6695/Try/uOPP2Z6TdtZEOW+nVWPdCJvRjt37sx2LZxt1gB68eLFmd6jgbpWDcprm/Xz65wKPZ9WFspIF4zT0qi6YnR+qkIp7Yi6Wqfh7NmzJp1JO312QtoPAACwzOTJk02KjgZxWmVHR5M10Nd8ba1n/+eff5rntXxm1jQODfJ1H52cqYG4pmqsWLHCVGNxNTdAA0JdKEwryNxzzz2mrKcGsn369DHv0Qms+ppOCtWa/c46/1rjXUuNZp2Q+/LLL5uOh6aG6IRQnRisnRHNF9e2aInO3JT5zAsdadf0kzvvvNN8Hs2318+q7dC7IDrK/ssvv4g36SRc3bQOvnbYdH0CveOgI+L689N1DjLSa6BBuf6cNL3LWedfK/Lo+7WWfl7bPHPmTNOp0Go/2hHSyj/aGdA2lCtXzryeX3odGzVqZK7lddddZ9K9tIOqFaF00m/WTmiR54DPi42N1Xtg5hEAAH+wYsUKx7333uuoWLGiIyQkxFGyZEnHDTfc4JgyZYrjwoULbt83d+5cR/369R2hoaGOChUqOJ566ilHfHy8o1q1ambLavLkyY4rr7zSnEP/X9mmTZtsx2vUqJEjLCzMUb58eUe/fv0cp0+fdpQoUcLRoEGDbMc7efKkY/DgweZcesyyZcs6unfv7vj111+z7Tt27FhzztWrV6c/t2/fPvPcQw895PLzuWqjWrVqlaNVq1aOiIgIR+nSpc21O3jwoKNevXqO6OhoR244z92xY0e3+2hbdZ/+/ftnev7EiROORx55xPy8wsPDzc9g+vTpjr1797r9PGvXrnXcdNNNmdp84MAB8/myhpiurlVW+/fvdzz88MOOmJgYR3BwsHnU7/X5rFydw0nbqq/p9VBnz551vPDCC6atMTEx5ndLP2enTp0c33zzjcNu8VqA/qewOyDImXORLx1JsXqiEQAAdqP1+vXuQ48ePeTzzz8XX6V16rUCjtbF18Wp4Nvi/CReI+cfAAAUSc6c7oy0ssvQoUPN1127dhVfkJCQkG2VWc2b10XCtL2+0k4UDeT8AwCAIknz5nVV3VtvvdVMKtXJvJqXrnn8zvx6X6DzIDTfXUtt1qxZ03QEtJLOrl27pG7dujJ48ODCbiKKEIJ/Hy/1qVtBzPQHAKCo0cC5Q4cOpozmwoULzXNasUcrDukkT6sn7+aXTkC99957TWdFKwtpRSLtrGgbdUEqncgMWIWcfz/gLzlkgN05UtIk5dxFrxw7uGSEBAT7RqACAPDfeI2RfwCwwMm5O2T/qGWSGpc5v9hK1f51i5TtXtey49GhAAD7YeTfD/hLTxKw84j/5mte82rg7y10KADAXvEaI/8AbMnKFJ2UMxf9MvBXB57/r9msEhQVJtUndpRy99az7JgAAOsQ/AOwnYJI0bErvaZ6bct2q8McBQDwQQT/AGw34l8QgX+DdY9LcOkIj49zat5OS0fmC4JeW72rElKWCiUA4GsI/gHYigal3g7800qESHjN0paMfMc80VzKPtJYzpzKvACQJ+K/3C2n/rVGvElToazE5GQAsAbBvw+jzr//SUlLk9jkZMuPGx0SIsEW16P2p7ZaKSXN4dXjJ0QEyqz7S0vtlEQJSvX8Oiw8fEAm7NoulqomEvh2bSl+wZo1RCLj02TKmAOZntve6m2xEnMJAMAaVPvxA/4ye9zuFhw+IGN/3SbxKdYH1JHBITKufiPpVrma7dpqde38U8di5UC7WZme+8f4ahIfaU2HJaFYkKQFBYidRManyNtD9nn9PHpH5YY//sFcAgA+Kc5P4jVG/gGLRtG9FUwrPe6wbT9Jy7LlJSjAsyA11ZFmjuUtVrY17stdcnLMKknzcpqOBv7xkfxz6EmHR+94FL+YJt4UeD5ZLp25IBHlS3j1PABQlPF/O8ACmj7jrcA/o+tXLBZ/4WlbA1Md8vbIvV4PKNW8G9tJmZiSHnWo/OlnYzW90zGrdznpO/uk139ecSnJ4vk0agCwL4J/AD5J89ELIvDXEeva5aKkTFiYR8d5tVFzr979Uc/VaSBdLUqnstrCOgfk8eY/WzaPwN1cAgCAZwj+AS9Z0bajlAoN84vR5I0dbvcoRcdfR7418P+sTwVpE+FZ4K90jsMdFat4ZRK1P0ykfrTWVfJQjdqWfv7TR8/JmTHvWXY8AADBP+A1Gvj7+miyc3Ju+XDPEykKYuTbyom5KjAqXMY2bGxZUK3H8fRn7s+s/vwpoaFyxrKjAQAUI/+AD/On0WSr25py+oLsk5mZnvvyji4SXKaY2GU0HQAAqxH8Az7On0aTrWxrcmiKZC0eWTo0VEL85FoAAOCLGPICAAAAbIKRf9iWlSvcnk3ybh16AAAAKxD8w5a8ucItAACAryLtB7bj7dV4AQAAfBXBvw+bPn261KlTR5o1a1bYTSlSCmI1Xi2hqZVkAAAAfAnBvw8bOHCg7Nq1SzZt2lTYTUE+audTQhIAAPgacv4BC1bjzYja8YD3pCaek5RLaZYcKyg0WgIC+d8gAHvhXz3AotV4AXjf4f92l4Ti1qz7GxgSKeWajpOoGt0sOR4A+APSfgAAviktxbuHT46Xk5vHisPL5wEAX8LIPwDAEhpEpybFWnY1UxKOZH/yfJikOcItOX5ARKKkSbxpc3B4GUuOCQC+juAfAOCxuH0LzCi6jqZb5WxCaRG5J9NzaRNvl7MWHT8gPFGKd18vcrdFBwQAP0DaDwDA4xF/qwP/guC4FCYJ824UR4o1E4gBwB8Q/AMAPKJpM14J/COSJCEi0OsdgJTYRK+eAwB8CcE/AMAnBQQ5ZFbvcl7vAKSmMfIPwD7I+QcAWK7abSskMKyUR8dISUuT7SXXyePNI6X4hVRL2hUZnyZTxhzI9FxcSqqUsOToAOD7CP4LSEpKijRu3Fh+/fVX+fTTT+X+++8vqFMDBUZzp1POXbTkWClnrDkOCocG/p5W0NH/QY2r31jG/rpN4oOSLWoZZT0B2BvBfwGZOnWqnDx5sqBOBxS4k3N3yP5RyyQ1jvxpWKdb5WpyR8UqEptsTfB//MABiZN9lhwLAGwV/Ldr186SBgQEBMjKlSulKDt8+LCMGzdO3njjDXnooYcKuzmAV0b8CfzhLcGBgZatwJ0YEiJxlhwJAGwW/K9Zs8ay4L+oGzJkiNx5551y0003FXZTAK/QVB9vj/gHRYVJcMkIr54DAICizqO0n06dOsmIESPy/f5JkybJ8uXL8/3+33//3bx/y5YtZtu9e7ekpqbK+PHj5bnnnrvs++fOnSvTp0+X7du3S1JSktSuXVt69+4tQ4cOlZCQELHCt99+a9qobU1MJB0CyG/gX31iRwkIpkAZAACFFvxXqFBB2rRpk+/3z5o1y5PTy8yZM00ufX5H4/W9wcHBJoWpRIkSsmrVKtOZWbRokQnYIyI8G2W8dOmSDBo0SMaOHSsxMTGyf/9+j44H+JMG6x6X4NLWjNTriD+BPwAAnsv3MNpVV11lAlpPOw96nPyqV6+eDB8+XGbPnm1G/fv06ZOr9y1cuNAE/hrwb9y4UZYtWybz58+XP//8U+rXry/r1q2TMWPGZOuoaIrS5bZ58+alv+ell16S0NBQGTx4cL4/I+CvNPAPKVvcko3AHwCAQh75/+233zw++cSJE82WX/369cv0fWBg7voyGpSrkSNHmvKbTmXLlpUZM2ZI69atzeRc7QBER0eb17p16yYtWrS47LErVapkHg8cOCCTJ082HZOEhATzXFzc/6aZXbhwQWJjY9OPDQAAABQE25X6PHLkiGzatMl83atXr2yvt2rVSqpUqSKHDh2SpUuXSs+ePc3zGqjnJVjft2+fyfHv3r17ttceffRRczfg/PnzHn0WAAAAIC9sF/xv27bNPJYuXVpq1Kjhcp+mTZua4F/3dQb/edWwYUNZvXp1pueOHTtmjqd3FDp06OD2vdppyDg52HnHAAAAAPCE7YJ/HZFXVatWdbuPjvxn3Dc/SpYsKW3bts30nHPCb506dUxqkTuaCqXrAgAAAABWsrxu3sGDB+Wjjz4SXxUfH28eixcv7nYfnQhcmCPuo0aNMnMCnJvehQAAAAB8buRf8+kffvhhefDBB60+tN+rXr26OByOy+4XFhZmNgCA9zmSYiXl0mlLjhUUGi0Bgba7qQ7Aj9juX6jIyEjz6KzA44pzIm5UVJQUJl2ATDdduAwA4B1H1j4qF4qfseRYgSGRUq7pOImq0c2S4wFAoQX/NWvWzNV+WsbS10ffVU6pNM7XnPsWloEDB5pN048oCwoAvi8tOV5Obh4rkdXu4A4AAP8O/g8fPmwWwGrevHmO++3du1f++9//iq9q1KiReTx9+rSZ0Ouq4s/mzZvNY8Y1AAAA/i8o5H9zurzdAUhNipXg8DJePxcAeC3418BfA+WZM2fmuJ+ulOvLwX/lypWlWbNmZm7CnDlz5Nlnn830uq7uqyP/mnPfpUuXQmsnAMALXOXjnw+TNEe4JYcPiEiUgKDLz+0CAJ8P/jVg1kWvciM3k1oL0+jRo82KvZMmTZLOnTunj/Dr3YABAwaYrwcNGlToqTbk/AOA96VNvF3OWnWw8EQp0X29yN1WHRAACin4f+aZZ3I1Eq77eFIfPy+2bt2aHqyrPXv2mMe33npLFi9enP78ggULJCYmJv37rl27mhV2X3/9dWnRooW0b9/elP5cuXKlnDt3Tlq2bCnjx4+XwkbOPwD4mUthcm5+a3H8K62wWwIAngX/tWrVMtvlRERESLVq1aQg6ETYjRs3upyfoJtTxtVynaZOnWqCfB1dX79+vSQnJ5vPN3LkSBk6dKiEhoZ6vf0AgIIVFB0uCRGBUvyi94Lz4IvBknj2ohTA9AIAsFepT11B15MUox49epgNAGAPJSPC5LM+FeT+j495tQMQl5IqxP4AimTw/+WXX0rHjh1zXDEX+UPOPwBYKzgwULo8cbP8o8VWSYu7ZMkxI+PTZMqYA5YcCwB8Pvi/9957Zffu3XLVVVdZ0yKkI+cfAKzXrXI1uaNiFYlNTrbkeMcPHJA4IfgHYJPg39cr+wAA4OoOQJmwMEsuTGJIiMRxiQH4icDCbgAAAACAgkHw7+M5/3Xq1DFrLAAAAACeIvj38Zz/Xbt2mdWIAQAAAE8R/AMAAAA2QfAPAAAA2ATBPwAAAGATBP8AAACATXgc/H/wwQcSExNjTWuQCdV+AAAA4FOLfD300EPWtATZsMIvAPgnR1KspFw6bdnxgkKjJSDQ4/9lA0D+g/969epJv3795IEHHpCyZctyKQEA+D9H1j4qF4qfsex6BIZESrmm4ySqRjeuMYDCSfvR+vP/+Mc/pHLlynLvvffKt99+Kw6Hw7PWAACAbNKS4+Xk5rHiSEvh6gAonOB/ypQpZvQ/KSlJ5s+fL7fddptUrVpVnn/+edm7d69nrQIAwE8EhZQosA5AalJsgZwLQNGV7+B/6NChsn37dvnpp5/kiSeekOjoaDly5Ii8+OKLcuWVV0r79u1lzpw5kpiYaG2LAQDwJeTiA/AjHs8eatq0qdlee+01cwdAq/+sXr3abGvWrJFBgwZJz5495ZFHHpEmTZpY02oAAHxY5VvmSfmYKI+OkZZ4Vg4s6WBZmwDA0jr/YWFh0qtXL1mxYoXs27dPxo4dK9WqVZNz587Jm2++Kc2bN5eGDRvKG2+8IWfPnuXq5wKlPgHAPwWFlZTg8DIebYFhpQr7YwAogrxSN6xKlSom+Ndt1apV8v7778uCBQvkl19+kaefflr++c9/yoULF7xx6iKFUp8A4J/OHvc8Nz81MU7OJpQ2X0eGx0pwUKoFLQNgd14vGtyuXTuzLVmyxKT+nDx5knkAAIAi7VzHOXLOkiPdY/57NCJATty7R2rcbclBAdiYZWk/rhw9elRefvllueaaa+TOO+80gb+qX7++N08LAECRUuyiQ8rPrSXJSZT6BOBjI/8pKSny9ddfm1Sf5cuXS2pqqqn/HxUVZSb+Pvroo2aCMAAARUHpspGys1igFLuQ5vUOwNnTFyTCs3nEAGzOsuB/x44d8t5778ns2bPl9OnT6Qt+tW7d2gT8uhBYRESEVacDAMAnhIQGS9KoFiITN3i9AwAAhRr8x8bGmmBfy3tu3brVPKdBf4UKFeShhx4yOf5a8x8AgKKsU/+2kvxwKzlzKt6yY546dFji71hk2fEAwKPgX8t6Lly40Eze1YA/KChIunTpYkb5dbVf/R4AADvdAbiionXlOVMTz4l1XQkA8DD4/+yzz8xj7dq1zQh/3759zYg/rK3zr5vOmwAAAAAKLfjv06ePGeW/6aabPG4EXKPOPwAAAHwi+P/www8tbQgAAAAAP1zka9euXbJ+/XpT179u3bqmxr9KS0szpUBDQ0O9cVoAAAAABbXI16FDh+SWW24xi3j1799fnnvuOTMp2Omdd94x5T5Xrlxp5WkBAAAAFGTwf+bMGWnTpo2sWrXKjPY/+eST6bX+nXr06CGBgYFmETAAAAAAfhr8v/zyy7J//34ZPny4bN++Xd54441s+5QqVcrcFVi3bp1VpwUAAABQ0MH/V199JdWrV5dJkyZJQECA2/1q1qwpf//9t1WnBQAAAFDQwf+BAwekcePGJq0nJzrZV1OEAAAAAPhptZ/w8HCJj7/8WoQHDx6U6Ohoq04LAIBtOJJiJeXSaUuOFRQaLQGBXin6B8CHWfZXf80118jWrVslISFBihcv7nKfU6dOmfkA119/vVWnBQDANo6sfVQuFLfm7nlgSKSUazpOomp0s+R4AGyW9tO9e3c5ffq0DBs2zNTzd+WZZ56RCxcuyH333WfVaQEAQD6kJcfLyc1jxZGWwvUDbMSy4H/gwIFSr149effdd6V58+by0ksvmef37Nkjr776qtxwww3y0UcfScOGDaVv375WnRYAgCIpKKREgXQAUpNivX4eAEU053/ZsmVy7733mtV9t23bZp7Xsp66ac3/Zs2amUW/QkJCrDptkTZ9+nSzpaamFnZTAAAFjXx8AF5g6UyfmJgYE+hrJ2DJkiWyd+9ekwJUpUoV6dy5s9x11105lgFF9rspusXFxTFJGgAglW+ZJ+VjovJ9JdISz8qBJR24koCNeWWaf8eOHc0GAACsExRWUoLDS+X7/WT3A7As5x8AAACADUf+Nef/r7/+cvla06ZNpU6dOt44LQAARVpsUpIEJybm+/0pSUlyLuB/5bgjHRclSFxX5wNQdHkU/Ddp0kT++OMPWb16tQnqnd555x1T2ceV6667Ln0yMAAAyL3u61dJfKSH43YlxpqH4o6LMvDSQnmMHwBgK/n+F2TlypUmiH/00UczBf5OWt2nffv2mZ47fPiw/PLLL7Jq1Spp165dfk8NAIAtRcanWZa5n1AsXKaHd5WH09K8kwYAwCfl++9dS3Zq5Z6hQ4e6fF1fW7FiRabn9u/fL7Vq1ZL58+cT/AMAkIOo4OxlsaeMOWDZNUuICJRZvctJbNsUCecnAdhGvif8/vTTT1KtWrU85e9Xr15d6tevb94LAADcCw70bmns4hfTpO/sk+JIIe8fsJN8B/+6cq+u6OuKpvy4c+WVV8q+ffvye1oAAGwhuGSEBEWFeb0DkBab5NVzACgiwX9OC08NGzZMvv76a5evRURESHx8fH5PCwCALQQEB0r1iR293gEAYC/5zvkvUaKExMbGuq3oo5sr586dk2LFiokdrFmzRm6++eZsz9etW1d27NhRKG0CAPiPcvfWk7Ld6kjKuYuWHO/YwYNypNMCS44FwGbBf0xMjPz88895fp++R99rJ++++64J+J3s0vkBAFhzByCk7P9q83sqKJ6pvYDd5Tvt58Ybb5QjR47I2rVrc/0e3VfLfbZs2VLsRAP/Fi1apG/u7ooAAAAAPhn8P/DAA2Zi74ABA0z+/+Vonr/uqyVAe/Xqld/TAgAAACjo4L9NmzbSoUMH2bVrl1nka8mSJW73Xbp0qTRr1kx2795tFv5ylQefH7///rtMmzZN+vbta0qIBgcHm87FhAkTcvX+uXPnStu2baVUqVJSvHhxadCggUyePFmSk5PFSnfddZcEBQXJFVdcIY8//ricOXPG0uMDAAAAueHRon5z5swxKTx//PGH3HnnnSaIbty4sZQrV868fvLkSdm6daucPXvW3CWoXbu2eY9VZs6cKVOnTs3Xe4cMGWLeqx0GXW1YJzDrysMjRoyQRYsWyfLly01lIk9oNaR//OMfpoOhx9+4caNMnDhRfvzxR9m8ebOEhVHBAQAAAH4w8q/KlCljAtrevXubEXcd0f7vf/8rn332mdn0a31OX+vZs6dZ3Kts2bKWNV7XGRg+fLjMnj3b3FXo06dPrlcn1sDfGZAvW7bMrDr8559/mjsI69atkzFjxmR6z6xZs8znuNw2b9689Pc0atRIXnnlFbn99ttNB0A7Fnq3QSv9fPrpp5ZdBwAAAMDrI//O0e2PP/5Yxo0bJ4sXL5YtW7bIqVOnzGsa6OudAA1+a9WqJVbr169fpu8DA3PXl3nppZfM48iRI037nLS9M2bMkNatW8sbb7xhOgDOtQy6detmJuteTqVKlXJ8XVOlSpcuLZs2bTLpSgAAAIDfBP9ONWvWlMGDB4uv0wpFGngrVxOPW7VqJVWqVJFDhw6ZuQp6x0JpJ8Ddomb5oXcJAAAAAL9J+/FH27ZtM486+l6jRg2X++gE5oz7WklTjDQVqnnz5m73SUxMNBWUMm4AAACAz4z8+4t9+/aZx6pVq7rdR0f+M+7rSTlU7WA0adJEIiMjzfyCl19+WRo2bCj333+/2/fppGBNowIAwNscSbGScum0ZccLCo2WgEDbhReA38j3X6fmzWtpzNtuuy3fJ9fyoNu3b5fRo0dLQdH1BpSW9nRHJwIrT0fcdXEvrW6kk4svXrwolStXlkcffVTGjh0roaGhbt83atQoGTZsWPr32g5nhwQAACsdWfuoXChuXQnqwJBIKdd0nETV6GbZMQH4QNrPc889ZyrkeEIr42StqlOUaBD/66+/muBd1w7QOwmvvvrqZecOaAnQqKioTBsAAP4gLTleTm4eK460lMJuCgAXbJfzr+k3KiEhwe0+58+fN4+FHXRPnz5d6tSpYxZIAwDAU0Eh/7uzXRAdgNSk2AI5F4C8CfZ05H7NmjX5fr+zJGhBql69unnUaj7uOF9z7ltYBg4caDa9c2BlpSEAgE2Riw/YnkfBv46QO0fJ/aXkpS68pU6fPm3ScFxV/NHVd1XGNQAAACiKKt8yT8rHeHanOy3xrBxY0sGyNgHwweDf00o4hUUn3Woajdb618m4zz77bKbXdXVfHfnXvPsuXboUWjsBACgIQWElJTi8lEfHILsfsEHwX61aNfFXWl1IV+ydNGmSdO7cOX2EX+8GDBgwwHw9aNCgQk+10Zx/3VJTUwu1HQAAACga/LoQ79atW9ODdbVnzx7z+NZbb8nixYvTn1+wYIHExMSkf9+1a1ezGvHrr78uLVq0kPbt25vSnytXrpRz585Jy5YtZfz48VLYyPkHAACAlfw6+NeJsLpwVlaHDx82W8YVc7PS2vsa5OvI+vr1600pzlq1asnIkSNl6NChOdbhR8FKSUuT2ORky453Nin77wMAAIAd+HXw37ZtW3E4HPl+f48ePcwG37Xg8AEZ++s2iU+xLvgHAACwK78O/os6u+f864g/gT8AeFdsUpIEu7hDnhcpSUlyLqC4+TrScVGCJM2i1gGwGsG/D7N7zr+m+hTEiH9kcIhEh4R4/TwA4Iu6r18l8ZEWhAMlxpqH4o6LMvDSQnnM8yMC8AKCf9iaBv7j6jeS4EDbLXYNAEZkfJqlxToTioXL9PCu8nBaGkEG4IMI/uFXVrTtKKVCwyw7no74E/gDsIuo4Ox3OaeMOWDpORIiAmVW73IS2zZFwi09MoBCDf4rVaokzzzzjAwZMsSShiA7u+f8u6KBf5kw64J/ALCT4MAAr5+j+MU06Tv7pDiGk/cP+KJ85zocPXpUfvnlF5evrVixQuLj4z1pF/4v53/Xrl1mNWIAADwVXDJCgqLCCqQDkBab5PXzAMg7ryQ6d+zY0e0dgZ9++skEtAAAoGAFBAdK9YkdC6QDAMBmOf/u6u/PnDlTPvroI1JZAAAoBOXurSdlu9WRlHMXLTvmsYMH5UinBZYdD4D3MOEXAAAb3gEIKfu/uvxWCIpnai/gL6hvCAAAANgEwb8P00o/derUkWbNmhV2UwAAAFAEEPz7MKr9AAAAwGeC/82bN5vR6e+++05Onz5tXasAAAAA+NaE3x07dsjgwYPTvy9fvrzUq1fPfH3s2DE5fPiwVK5c2fNWAgAAACi84P+LL76QLVu2mG3r1q1y5swZOX78uNnUsmXLpFq1alKmTBlp0qSJ2Ro3bmz2AwAARZsjKVZSLlmTFRAUGi0BgRQoBKyQ77+k7t27m83pwIED6Z0BZ4fg1KlTZtOOwPLlyy1pMAAA8H1H1j4qF4pbM+AXGBIp5ZqOk6ga3Sw5HmBnlnWjdZRft7vvvjv9uUOHDmXqDOjjiRMnJCAgwKrTAgCAIi4tOV5Obh4rkdXu4A4AUFjB/5EjR6RSpUo57lOlShWzde3aNdP7tBOAy9PJ1LqlpqZyuQAAPisopESBdABSk2IlOLyM188FFGX5Dv6rVq0qFSpUMLn8TZs2NbXo9bFcuXI5vk87DJfrNOD/l/rULS4uTqKjo7ksAADfRD4+UPSD/4oVK5pR/MWLF8uSJUvSn9eR/oydAd0IXAEAsJfKt8yT8jFR+X5/WuJZObCkg6VtAuBB8K/5/EePHpWNGzeabcOGDSad5+DBg+a1BQsWpO9bq1at9M6APmrVn2LFinH9AQAoooLCSkpweKl8vz/F0tYAsGTCb0xMjMnnd+b0T5gwQcaOHWtq+1911VUmXeWXX36Rv/76S/bs2SOfffaZ2S8oKEiSkpI8OTUAAACAglzhN6N3333XBP6vvPKKKfu5YsUKc0dA6/q/9957pkPgcDhMWlBoaKhVpwUAAABQ0MH/f/7zH5POM3To0EzPR0REyMMPP2xWA27ZsqXpAOidAAAAAAB+GvxrWk/t2rXdvh4ZGSlz586VkydPymuvvWbVaQEAAAAUdPCvJT53796d4z5aGrRt27aZqgPBPa3xX6dOHTNJGgAAAPCZ4L9Tp07y66+/yrJly3LcT9OA9u/fb9VpizSt8b9r1y7ZtGlTYTcFAAAARYBlwf+oUaNMYN+jRw/56quvXO6j1X/Wr19v1SkBAAAAFEbwX6NGDZk9e7Yp4Xn33XdLu3btZNasWSYVSKv/fPvtt+buwIkTJ6RFixZWnRYAAABAQdT5z+quu+6S1atXS9++fWXNmjXy3XffZXpdK/2EhYXJiy++aOVpAQCAj4lNSpLgxMR8vz8lKUnOBRQ3X0c6LkqQpFnYOsC+LA3+lY7qa566Luj15ZdfmlV/dbRfq/20atVKnnvuOWnYsKHVpwUAAD6k+/pVEh/pYZhRYqx5KO64KAMvLZTHrGkaYGuWB/8qMDBQevXqZTYAAABPJAREyPTwrvJwWpp3AhfARvL9NzRv3jzp0qWLFCtWzNoWAQAAvxIVHJLtuch4TdNJseT4CcWCJCEoQmJTUiTckiMC9pXv4F+r+mh1H53EqxN877jjDomKirK2dQAAwOcFBwZke27KmAOWHT8hIlBm9S4n0sayQwK2le9qP2PGjJGaNWvKggUL5MEHH5Ty5cvLbbfdJu+//76cOnXK2lYCAADbKn4xTfrOPimOFCb9AoUW/I8bN84s6vXbb7/J+PHjpV69evLNN9/IY489JjExMdK+fXuZMWOGHD161ONGAgAA3xVcMkKCosK83gFIi03y6jkAO/C4zv9VV10lo0ePls2bN8u+ffvk3//+tzRv3tyU+hw0aJBUqVJFWrZsKa+++ior+wIAUAQFBAdK9Ykdvd4BAOA5SyfNV6tWTYYNG2a2Y8eOmVKf8+fPl7Vr18qPP/4ozzzzjDRq1MjMEdDtmmuusfL0AACgkJS7t56U7VZHUs5dtOR4xw4elCOdFlhyLAD/n9cqZlWoUEEGDBhgtjNnzsjChQtNR2DlypWydetWM2fg5ZdfluHDh3urCX5v+vTpZktNTS3spgAAkKs7ACFl/7cwl6eC4qnrA/hk2k9ulC5dWh555BFZsmSJWfDr448/lm7duklAQPbqAPj/Bg4caBZM27RpE5cFAAAAhTfyX6pUKWncuHH61qRJE5P/fzlaDrR3795mAwAAAOAHwX9sbKysXr3aTOx1KlGihDRs2DC9M6CP1157LSP8AAAAgD8H/5q3v2XLlvRNy37Gx8fL999/bzZnSo8uBNagQYP0zoA+1q1bVwIDCyTjCAAAAICnwb+O8Ov26KOPmu91UurOnTvTOwPaOdi+fbtcuHDBVPrRzdkhCA8Pl4SEhPyeGgAAAEBhVvsJCgqS6667zmwPP/yweS4tLc1MWHV2BhYvXmzWArh06ZJVpwUAAACQS17NvdHUnuLFi8vJkydl48aNLPIFAAAAFLU6/3/88YfMmzfP1PX/+eefzXMOh8Os9quLe91zzz3eOC0AAACAggj+d+zYkR7wa6qPM+CvVauWCfZ1a9asmVWnAwAAAFCQwb/m8TsD/r/++ssE+6pOnTrpAb/OAQAAAPCUIylWUi6dtuRCBoVGS0CgVxIgAJ+W79/6mjVryoEDB8zXGvQ3atQoPeC/+uqrrWyj3/v8889lypQp5u6IVjrSa/XJJ59ITExMYTcNAAC/cWTto3Kh+BlLjhUYEinlmo6TqBrdLDkeUOSD//3795vSnTrK/69//UvuuOMOCQ6mB52VBv2jRo2S4cOHy8svv2xKnK5du5aKRwAAFKK05Hg5uXmsRFa7gzsAsBWPonUd8df8/u7du0toaKjUq1cv0+q+mvKjz9uVpkJp4D916lR58skn05+//fbbC7VdAAD4uqCQEgXSAUhNipXg8DJePxfg98H/F198kWlBrzNnzqR//+677/7v4MHB5s5AxtV9dbVfTX2xg/fff990fpwLoQEAgFwiHx/wreBfR/t1c9L8f2fw7+wQnDp1yqzyq9sHH3yQvhjYNddcI7/88ovHjf/9999l+fLl6efcvXu3WWl4/Pjx8txzz132/XPnzpXp06eb9iUlJUnt2rWld+/eMnToUAkJCfG4fevXrzef9cMPP5QJEybIkSNHpG7dujJp0iTp3Lmzx8cHAMBOKt8yT8rHROX7/WmJZ+XAkg6WtgnwN5Yl6VerVs1sWsff6dChQ5k6A/p44sQJ2blzpyXnnDlzpkmpyY8hQ4aY9+rdiXbt2kmJEiVk1apVMmLECFm0aJHpVERERHjUvmPHjpmAf+zYsSbf/4orrpBp06bJnXfeadY/0I4AAADInaCwkhIcXirflyuFCw3kf4VfDWovRxf16tq1qxmJX7JkiQmGtUOwYMECSy69zjHQibSzZ882o/59+vTJ1fsWLlxoAn8N+HXl4WXLlplypX/++afUr19f1q1bJ2PGjMn0nlmzZpkJzpfbtPSpU1pampw/f96kQWnbbr31VnOeChUqmM4AAAAA4Bcj/1WrVjVBrObxN23a1CzgpY/lypXL8X2VKlUymxX69euX6fvAwNz1ZV566SXzOHLkSDMXwals2bIyY8YMad26tbzxxhumAxAdHW1e69atm7Ro0eKyx8742UqV+t/oxM0335z+nM4BaNmypWV3PwAAAACvB/8VK1Y0o/+LFy82o/oZR/szdgZ0cwbQvkDbvGnTJvN1r169sr3eqlUr8xn0DsXSpUulZ8+e5nn9DHn9HJrW89NPP7msknTp0qV8fwYAAACgQIN/DY6PHj1q0mZ027Bhg8npP3jwYLbUnlq1aqV3BvRRR9uLFSsmhWHbtm3msXTp0lKjRg2X+2g79TPovs7gPz80t18nOq9cuTK9vGdiYqJJK7rlllvcvk/30c0pLi4u320AAAAALJnwqyvUak6/bkor2ujk1sqVK8tVV11lglat6qP17vfs2SOfffZZesUfra5TGPbt25eetuSOjvxn3NeT4P+GG24w6UkTJ040aVI64ffs2bPyz3/+0+37dN9x48Z5dG4AAADAsgm/WemkVg38X3nlFVP2c8WKFeaOgNb/f++990yHQNNdNLAuzIW/4uPjzWPx4sXd7qMTga0Ycdc5CJoW1aVLF/nHP/5hKiHpBGCtKpRTpR9dGCw2NjZ907sQAAAAgM+U+vzPf/5j0nm0Rn5GWi7z4YcfNmsCaBCsaUF6J8AuNL1IF/vSLbfCwsLMBgAAAPjkyL+m9egiWe5ERkaaRbVOnjwpr732mhQWbYdKSEhwu4+OzquoqPwvJGIFXYBMV0jWeRIAAACAzwT/WuJTa+3nRHPe27Ztm6k6UEGrXr26ecwplcb5mnPfwjJw4EDZtWtXenUiAAAAwCfSfjp16mRy+3XBrI4dO7rdT9OA9u/fL4WlUaNG5vH06dNmQq+rij+bN282jxnXAAAAAIUrNilJgjNUw8urlKQkORfwvzl/kY6LEiRpFrYOsFnwr5NU58yZIz169JCPPvpI7rrrrmz76ATa9evXS2HSiceaRqOj6dreZ599NtPrWoZTR/41517nKAAAAN/Qff0qiY/0MHQpMdY8FHdclIGXFspj1jQNsF/aj46gz54925Tw1Ko27dq1k1mzZplUIK3+8+2335q7AydOnMjVSrneNHr0aPM4adIk2bp1a/rzejdgwIAB5utBgwYV+uJk5PwDAOAdCQERMj28q6SkMfoPe7Fs5F/paP/q1aulb9++smbNGvnuu+8yva6lPnVE/cUXX7TkfBq4O4N156Rj9dZbb5kSm0664JiuSeCk6xIMHjxYXn/9ddMRad++vSn9qYtxnTt3Tlq2bCnjx4+XwqY5/7rpHZPC7ogAAFCQooJDCqQDEJuSIuFePxNQRIN/pcG0TlLVBb2+/PJLs+qvjvZrlZ1WrVrJc889Jw0bNrTkXBoU61oCWR0+fNhsThlXy3WaOnWqCfJ1dF1TkZKTk81KxCNHjjTlSgtzLQIAAOwuODCgsJsAFEmWB//Oxa169eplNm/SykF6NyG/dH6CbgAAwPctu66NBJaOyPf7T58/Kfdv3mK+TigWJGlBdDBgP14J/mENvSuhW2pqKpcUAGB7B9rN8vgavP1/jwkRgTKrdzmRNra/rLAZyyb8wnrU+QcAwDuKX0yTvrNPiiOFCb+wF4J/AADgc4JLRkhQVJjXOwBpsUlePQfgawj+AQCAzwkIDpTqEzt6vQMA2A05/z6MnH8AgJ2Vu7eelO1WR1LOXbTkeMcOHpQjnRZYcizAXxH8+zDq/AMA7E7vAISULW7JsYLiqegPkPYDAAAA2AQj/wAAwLYcSbGScum0ZccLCo2WgEDCK/gufjsBAIBtHVn7qFwofsay4wWGREq5puMkqkY3y44JWIm0HwAAAIukJcfLyc1jxZGWwjWFTyL49/FqP3Xq1JFmzZoVdlMAAPB7QSElCqwDkJoUWyDnAvKK4N+HscIvAAAWIhcfIOcfAADYV+Vb5kn5mCiPjpGWeFYOLOlgWZsAb2LCLwAAsK2gsJISHF7Ko2OQ3Q9/QtoPAAAAYBME/wAAAIBNEPwDAAAANkHw78Mo9QkAAAArEfz7MEp9AgAAwEoE/wAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0EF3YDAAAACktsUpIEJyZ6dIyUpCQ5F1DcfB3puChBkmZR6wDrEfz7eJ1/3VJTUwu7KQAAFEnd16+S+EgLwqESY81DccdFGXhpoTzm+REBryDtx4dR5x8AAP+SEBAh08O7Skoao//wTQT/AADAFqKCQwqsAxCbklIg5wLyiuAfAADYQnBgQGE3ASh05PwDAADbWtG2kwSXKebRMU7GH5fOP260rE2ANxH8AwAA2yodGiohYWEeHSMlsWDSiQArkPYDAAAA2ATBPwAAAGATBP8AAACATRD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPz7sOnTp0udOnWkWbNmhd0UAAAAFAEE/z5s4MCBsmvXLtm0aVNhNwUAAABFACv8AgAA20o5c9HjY6TGX5LI+BTzdUKxIEkLCrCgZYB3EPwDAADb2t7qbUuO4zxKQkSgzOpdTqSNJYcFLEfaDwAAgEWKX0yTvrNPiiMljWsKn0TwDwAAbCG4ZIQERYUVSAcgLTbJ6+cB8oPgHwAA2EJAcKBUn9ixQDoAgK8i5x8AANhGuXvrSdludSTlnOcTfZ2OHTwoRzotsOx4gDcR/AMAANvdAQgpW9yy4wXFh1t2LMDbSPsBAAAAbILgHwAAALAJgn8vatu2rQQEBLjcJk2a5M1TAwAAANmQ8+9FM2bMkLi4uEzPffzxx+b5Ll26ePPUAAAAQDYE/15Up06dbM8NHjxY6tevL9ddd503Tw0AAABkQ/BfgP7880/ZtGmTvPzyy/wqAgBQhDmSYiXl0mlLjhUUGi0BgYRssIZf/yb9/vvvsnz5ctmyZYvZdu/eLampqTJ+/Hh57rnnLvv+uXPnyvTp02X79u2SlJQktWvXlt69e8vQoUMlJCTE8vZ+8sknEhgYKL169bL82AAAwHccWfuoXCh+xpJjBYZESrmm4ySqRjdLjgd78+vgf+bMmTJ16tR8vXfIkCHmvcHBwdKuXTspUaKErFq1SkaMGCGLFi0ynYqIiAhL2zt79mxp06aNVK5c2dLjAgCAoistOV5Obh4rkdXu4A4A7F3tp169ejJ8+HATVOuof58+fXL1voULF5rAXwP+jRs3yrJly2T+/PkmLUfz8detWydjxozJ9J5Zs2a5rdyTcZs3b57Lc27YsEH27NkjDzzwgCWfHQAA+IagkBIF0gFITYr1+nlQ9Pn1yH+/fv0yfa8pNbnx0ksvmceRI0dK48aN058vW7asqcTTunVreeONN0wHIDo62rzWrVs3adGixWWPXalSJbcpP+Hh4dK9e/dctREAAPgJ8vHhR/w6+M+PI0eOmEm3ylXufatWraRKlSpy6NAhWbp0qfTs2dM8r50AZ0cgr1JSUuTzzz+XO+64Q6Kiojz8BAAAwNdVvmWelI/J///z0xLPyoElHSxtE2DL4H/btm3msXTp0lKjRg2X+zRt2tQE/7qvM/j3hKYVnTp1KtcpP4mJiWZzyrpWAAAA8G1BYSUlOLxUvt+fYmlrABsH//v27TOPVatWdbuPjvxn3NdTmvJTpkwZ6dy5c672nzhxoowbN86ScwMAgIIXm5QkwRkG8vIqJSlJzgUUN19HOi5KkKRZ2DrYme2C//j4ePNYvPj//qBc0YnAVo24nz9/Xr7++mt56KGHcl0+dNSoUTJs2LD077Udzg4JAADwfd3Xr5L4SA/DrBJjzUNxx0UZeGmhPGZN02Bztgv+C5p2JBISEvL0nrCwMLMBAAAkBETI9PCu8nBaGoEb7F3qMz8iIyPNY04BuY7Wq8KenKsLkNWpU0eaNWtWqO0AAADuRQVbvzCoqw5AbAozAeA52wX/1atXN486odcd52vOfQvLwIEDZdeuXenViQAAgO8JDgwo7CYAuWa7tJ9GjRqZx9OnT5sJva4q/mzevNk8ZlwDAAAAILdWtO0kwWWK5fuCnYw/Lp1/3MgFh+VsN/JfuXLl9DSaOXPmZHtdV/fVkX/Nue/SpUshtBAAAPi70qGhUiYsLN9bqVDvpxLBnmwX/KvRo0ebx0mTJsnWrVvTn9e7AQMGDDBfDxo0KN+LelmFnH8AAABYya/TfjRwdwbras+ePebxrbfeksWLF6c/v2DBAomJiUn/vmvXrjJ48GB5/fXXpUWLFtK+fXtT+nPlypVy7tw5admypYwfP14Km+b866alPgu7IwIAAAD/59fBvwbFGzdmz4c7fPiw2ZwyrpbrNHXqVBPk6+j6+vXrJTk5WWrVqiUjR46UoUOHSmhoqNfbDwAAABQkvw7+27ZtKw6HI9/v79Gjh9kAAAAAO7Blzr+/IOcfAAAAViL492HU+QcAAICVCP4BAAAAmyD4BwAAAGyC4N+HkfMPAAAAKxH8+zBy/gEAAGAlgn8AAADAJgj+AQAAAJsg+AcAAABsguAfAAAAsAmCfx9GtR8AAABYieDfh1HtBwAAAFYi+AcAAABsguAfAAAAsAmCfwAAAMAmggu7AQAAAEVNypmLHr0/Nf6SRManmK8TigVJWlCARS2D3RH8AwAAWGx7q7c9PobzCAkRgTKrdzmRNh4fEiDtx5dR6hMAABS/mCZ9Z58UR0oaFwMeI+ffh1HqEwAA3xdcMkKCosK83gFIi03y6jlgDwT/AAAAHggIDpTqEzt6vQMAWIGcfwAAAA+Vu7eelO1WR1LOeTbR1+nYwYNypNOCTM85kmIl5dJpS44fFBotAYGEgXbETx0AAMCiOwAhZYtbci2D4sOzPXdk7aNyofgZS44fGBIp5ZqOk6ga3Sw5HvwHaT8AAAA2k5YcLyc3jxVH2v/KicI+CP4BAAB8TFBIiQLpAKQmxXr9PPAtBP8AAAC+hnx8eAk5/z5e51+31NTUwm4KAAAoZJVvmSflY6Ly/f60xLNyYEkHS9sE/0Pw7+N1/nWLi4uT6Ojowm4OAAAoREFhJSU4vFS+3092PxRpPwAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0Q/AMAAAA2QfAPAAAA2ATBPwAAAGATBP8AAACATRD8AwAAADZB8A8AAADYBMG/D5s+fbrUqVNHmjVrVthNAQAAQBFA8O/DBg4cKLt27ZJNmzYVdlMAAABQBBD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0Q/AMAAAA2QfDvZV999ZW0aNFCoqKipHz58nLbbbfJzz//7O3TAgAAANkQ/HvRihUrpFu3bnLllVfKvHnz5K233pITJ05I+/bt5ejRo948NQAAAJBNcPanYJU5c+ZItWrV5KOPPpKAgADzXIMGDaRWrVqybNky6du3LxcbAAAABYaRfy9KTk6WEiVKpAf+Kjo62jympaV589QAAABA0Qr+f//9d5k2bZoZQa9fv74EBwebQHvChAm5ev/cuXOlbdu2UqpUKSlevLgZlZ88ebIJ2q3wyCOPyG+//SavvfaanD17Vg4dOiRPPfWUVKlSRe6++25LzgEAAADYIu1n5syZMnXq1Hy9d8iQIea92mFo166dGaFftWqVjBgxQhYtWiTLly+XiIgIj9qnx/3yyy+ld+/eMmzYMPNcjRo15L///a+ULFnSo2MDAAAAthr5r1evngwfPlxmz54tu3fvlj59+uTqfQsXLjSBvwb8GzduNPn38+fPlz///NPcQVi3bp2MGTMm03tmzZpl7ipcbtOJvU4bNmyQBx98UHr16mUCfj1vTEyMdO7cWY4fP2759QAAAACK7Mh/v379Mn0fGJi7vsxLL71kHkeOHCmNGzdOf75s2bIyY8YMad26tbzxxhumA+DM0deqPVqy83IqVaqU/rWm+Nx4443y5ptvpj938803m0nAmgo0adKkXLUXAAAAELsH//lx5MgR2bRpk/laR+SzatWqlcnJ1/z8pUuXSs+ePc3z2glwdgRya+fOnWaUPyOt91+7dm1zlwEAAAAoSLYL/rdt22YeS5cubfLvXWnatKkJ/nVfZ/CfH9WrV5fNmzdnei4uLk7++usvadOmjdv3JSYmms0pNjY2/b12Ep+YKGkXLmR+Li5OQsLCCq1NcC05PkES0i5lei4uPk5CQlO5ZDaQcilezl/IXMEsLi5egpNCCq1NgL+Lj4/L9u+qPhcRF5TvY/K36l3OOM3hcIgvs13wv2/fPvNYtWpVt/voyH/GffNr0KBBMnDgQOnfv7/cc889cv78eZkyZYoJ7B977DG375s4caKMGzfObbvszHV3DT6p5vjCbgEK02P8tQKWu8YL/67yt2q506dP5zlbpCDZLviPj483j1ra0x2dCGzFSPuTTz4p4eHhZv6ALvil1YN0jsHq1avl6quvdvu+UaNGpVcHUufOnTPzBA4ePOiVX6ZmzZqlp0J543057efuNVfP5+a5jN/rz8+ZwqXpVr5w3ay4Zjm9ntdr5A/XLC/v43fN2muW0+v8rvHvGr9reftby+vfXm724/+hvvXvWmxsrBlc1uwSX2a74L8gafUfrfWvW16EhYWZLSsN/L0RkAUFBeXruLl9X077uXvN1fO5ec7VPvq9r1w3K65ZTq/n5xr5+jXLy/v4XbP2muX0Or9r/LvG71re/tby+reXm/34f6hv/rsWmMsCNIXFt1vnBZGRkeYxISHB7T6anqO8Efz4Ik1N8ub7ctrP3Wuuns/Nc/n9LPmRn3NZcc1yej0/18jXr1le3sfvmrXXLKfX+V3j3zV+1/L2t5bXv73c7Mf/Q+3175pVAhy+PishD3Sl3w8//FDGjx8vzz33nMt9dAGvO++8U8qUKSOnTp1yuY+uvrtgwQKzhsC///1vKWyaiqGj/no7yS4dEitw3bhm/K75Lv4+uW78rvk2/kaL7jWz3ch/o0aN0idjuJvQ66zQk3ENgMKkKUBjx451mQoErhu/a4WPv1GuGb9rvou/T64bv2s2H/lXzZs3N5MzJkyYIM8++2ym13R1X13kS/+x0FV4fXm2NgAAAJAXthv5V6NHjzaPusLu1q1b05/XuwEDBgxIL9NJ4A8AAICixK9H/jVwdwbras+ePSaPv3LlylKpUqX05zV/PyYmJtN7n376aXn99dclJCRE2rdvb0p/rly50pTVbNmypaxYscKU5gQAAACKCr8O/tesWSM333zzZffT3H5dbTerL774QqZPny4///yzJCcnS61ateSBBx6QoUOHSmhoqJdaDQAAABQOv077adu2rVlC+XKbq8Bf9ejRQ7777jszK/vChQvy66+/yogRI4ps4D9v3jzp1q2bWYCiWLFiUrduXbPisHZ84N5ff/0lTzzxhJkArneK3P0+2fXadOnSxSyMV7ZsWXMnLqcyuuD3Kb/49yvvvvzyS2nVqpX529R5bDVr1jQLSJ49e5Y/xVxISUmR6667zqzZ89lnn3HNLjMYq9cp61avXj2u22V8/vnnZi6qxmW6OJhmoxw9elS8iUW+bOSVV14xgevkyZPliiuukPXr15uJ0b/88ouZKA3Xdu7cKYsXLzZ/nNqZ5H+c/6Od5nbt2knFihVl7ty5cubMGRNY6ET5+fPn8+vE7xP/fhUy/ZvUQbJnnnnGzGHTAa5x48bJ9u3bTZorcjZ16lQ5efIklykP3n33XTOw6KQBLdzTAdhRo0aZ0vIvv/yyGTxbu3atXLp0SbxK035gDydOnMj23Pjx4zXty3Hs2LFCaZM/SE1NTf+6f//+jmrVqhVqe3zFyy+/7AgPD3ccP348/bn58+eb36fNmzcXatt8Gb9P+cO/X9Z4++23zd/ogQMHLDpi0XTo0CFHZGSk48MPPzTX69NPPy3sJvm01atXm+v0448/FnZT/Maff/7pCAkJccyYMaPAz+3XaT/Im3LlymV7rkmTJubx77//5nK64evLdBeWpUuXmpH/8uXLpz+nC+hpCpDeKYFr/D7lD/9+WUPTChTpnjkbMmSI+ffspptusujKA5m9//77Js380UcflYJGVGOh33//XaZNm2bWG6hfv74EBwebnDddTyA3NHVCb9GWKlXKVB9q0KCBSdHx5j/SentJf/l0snNh8cfr5qsK8lru2rVLrr322kzP6fmuuuoq2b17t/gTfgf987r5wr9f/nDNUlNTTRqBLmCpaT86T4dr5v6affvtt7J8+XL597//Lf6sMH7X7rrrLgkKCjKpxY8//rhJPfMnvxfgNdPU62uuucakXVerVs2cS/f/5ptvxOsK/F5DEfb000+b215ZN02tye17g4ODHbfeeqvj7rvvdpQsWdI816pVK8eFCxcsb+/OnTsdERERjkGDBjkKkz9dN19P+ynIa6n7uTpu+/btHR06dHD4k8L6HfT13ydf/tv1lX+//OGaRUdHp59H33f+/HmHPynIa3bx4kVHrVq1HK+88or5ft++fX6b9lOQ123r1q2Of/zjH45FixaZFKBJkyaZ37t69eo5Ll265PAXTxfgNbv66qsdJUqUcMTExDg++ugjx7Jlyxy33367ef+OHTu8+Cn/Vw0HFnnnnXccw4cPd8yePduxe/duR58+fXL1S7NgwQKzn/4SbNmyJf35kydPOurXr29e0z+qjD744AOXv6BZt7lz57o8px77yiuvNMcv7P8R+NN18/VgrSCvZVEK/gvyuvnT75OvXjdf+vfLH67Ztm3bHD/88IPjzTffdFSuXNlx8803O1JSUhz+oiCv2ZgxYxzXXnutIykpye+D/8L6+3Ravny52Vf/v+sv3inAa6b/hunzS5YsSX8uMTHR/I3qeb2J4N+LHnrooVz90jRr1szsN2HChGyvff/99+a1sLAwx7lz59Kf16/1F/NyW1xcXLZj6nNNmzY1QceRI0ccvsZXr5s/BmvevJblypVz+T+Axo0bO+677z6HP/PmdfPn3ydfuG6+/u+Xr/6uOW3YsCHHAQ47X7P9+/eb7+fNm+c4e/as2bZv3272e++99y57bX1dQf+uqdKlSzsGDBjg8FcPefGaNW/e3Dyf9Y6A/v9T/z/qTeT8F7IjR47Ipk2bzNe9evXK9rrWaK5SpYokJiaaCZZOWrZNc8Uut0VGRmY6nh5Hc/L2798vy5YtM2Ua/VFBX7eiLL/XUvP9s+b2a27xH3/8kW0uQFGU3+tmd55ct6Ly71dh/q7peiWaw6xrdBRl+blmuiCoft+9e3eTs62b5mArnZRZqVIlKeq88e+a/r4VZUfyec0ylkTNSAfmvV3qk+C/kG3bti29AkONGjVc7tO0adNM++aXBmb333+/+SXVX8Crr75a/FVBXreiLr/XUicNrl69OlMd7EWLFsn58+fltttuk6KO38GCvW5F6d+vwvxd++GHH0xwoQt+FWX5uWYNGzY0/6Zl3D799FPz2pgxYwpmImYR+l3TDrpO+NU1coqybfm8ZlpNSmVcc0M7COvWrUvf31tY5KuQ6UiD0lV33dEeY8Z982vgwIGycOFCGT9+vPkf6YYNG9Jfq1OnjkRFRYm/KMjrpqs/O3vre/fuNd/raqOqWbNmZpa+P8vvtezfv7+piqAjsfo/Rl38TBf50u+9/Q+XP1+3ov775K3rVpT+/Sqoa9axY0ezWqiOMOoKvxp4aAUbXbW2a9euUpTl55qVLFnSVGrJSO8yOX/HWrduLUVdfn/XHnjgARP4avlwvXO+ceNGs2iVdqi0016U7cvnNdPg/4YbbpB+/frJxIkTpUKFCub/qfr/0n/+859ebTPBfyGLj483j1oSyh2tm67i4uI8OpeWL1MaqOmWkY5wZP1Hz5cV5HU7ceKE3HvvvZmec37/wQcfmJJg/iy/11L/R7lq1SoZPHiwuU0eHh5urouuJG0H+b1uRf33yVvXrSj9+1VQ10xHXD/55JP0gENXeB8wYIDppGuJ1KKsIP8fUZTk97ppB3POnDlmVeSLFy9K5cqVTarU2LFj+V0T19dM13zRNXF0dd9//OMf5rrpAJD+f9VdSpBVCP5txDmCgbzR/2HqbXJkpzX9nUEZ+H3yJv79yju9S6Ib8o9//3Nn1KhRZkPeaKqQLvalW0Ei57+QOSeWJiQkuN1Hc6hVUb6tnVdcN65lYeN3kOvG75rv4u+T68bvmnsE/z4wqqAOHTrkdh/na859wXXjd7Dw8bfLdeN3zXfx98l143fNPYL/QtaoUSPzePr0abcTU3VJdmeJNnDd+B30Dfztct34XfNd/H1y3fhdc4/gv5DppBid4KF0skxWWvJJR/61UoOWVgTXjd9B38DfLteN3zXfxd8n143fNfcI/n3A6NGjzeOkSZNk69at6c/r3QCtzKAGDRpkFqgC143fQd/B3y7Xjd8138XfJ9eN3zXXAnSZXzevIY80cHcG62rPnj1y6tQpMwKRcWXABQsWSExMTKb3Pv300/L6669LSEiIqcusZbZ04Ydz585Jy5YtZcWKFRIREVEkfyZcN65lYeN3kOvG75rv4u+T68bvmsU0+Ic1Vq9erR2py2779u1z+f7PP//ccdNNNzmioqIcERERjnr16jkmTZrkSExMLNI/Iq4b17Kw8TvIdeN3zXfx98l143fNWoz8AwAAADZBzj8AAABgEwT/AAAAgE0Q/AMAAAA2QfAPAAAA2ATBPwAAAGATBP8AAACATRD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPwDgJdUr15dAgICLrvNmjWLn0Eu7N+/P9u1mzBhgtv9L168KDNnzpQ77rhDqlSpIsWKFZOIiAipXLmydOzYUSZNmiR79+71+Nrv2bNHAgMDTXt+++23y+6fnJws5cqVM/t/8cUX5rljx45l+2wvvPCCx20DgKyCsz0DALBUy5YtpXbt2m5fz+k1ZFe8eHHp3r27+bpBgwYuL9GKFSukT58+cvz4cROYN2zYUJo3by6hoaEm0P7hhx9k+fLl8txzz8nkyZNl2LBh+b7UtWrVkjZt2siaNWvk/fffN8fLyddffy2nTp2SMmXKSNeuXc1z2il56KGHzNc///yzbN++nR89AK8g+AcAL+vXr5/07duX62yRsmXL5ni3ZPHixSaoTk1NlYcfftjcHahYsWK20XcNwl966SX5448/PG7To48+aoL/jz/+2BwzONj9/161g6AeeOAB0xlR0dHR6Z9JR/wJ/gF4C2k/AIAi4/Tp0yao1sB/6NChJtDOGvirkJAQueeee+Snn36Sxx57zOPz6rFKlixp7ip88803bvc7evSoLFu2zHz9yCOPeHxeAMgrgn8A8DHOnG81f/58adWqlURFRZl0F00hWrp0qdv3pqSkyLvvvitt27aV0qVLS1hYmNSoUUOefPJJOXToULb9dbRaz6X7X7hwQZ5//nm59tprTX68zllwcjgcJpBu2rSpeU1TVjp37izr16/PdAynDz74wDynufXu/P333yYI15QXDdqtMG3aNImNjZUKFSqYnP7LCQoKkiZNmrh87ezZszJ27FiTMhQZGWk+d/369c2dBL1WGeln6NWrV6aRfVc+/PBD0zHR63jdddfl+fMBgKcI/gHAR2ngee+995qvu3TpIldeeaUJtm+//XZZsGBBtv3j4+OlQ4cOZiR7y5YtJri88847TQfgzTfflEaNGsm2bdtcnuvSpUsmeH/11VdNZ0Hfp+dzGjhwoElt0fdr7vytt95qOhM33XSTSbPJSgNhndSquffu0mreeust01np2bOn6UxY4auvvjKPPXr0SE+pyY9du3aZ+QT/+te/5MSJE6YDdsstt8jJkydlzJgxphOmnYyM9PqoJUuWmPe4op2ijPsCQIFzAAC8olq1ag79Z/aDDz7I0/v0PbqVLFnSsWHDhkyvjR071rx21VVXZXtfr169zGu333674/jx45lee+2118xrV155pSMlJSX9+dWrV6ef77rrrnMcPXo023G/+uor83qJEiUcP/zwQ6bXpkyZkv7+Nm3aZHrt2WefNc8PHjw42zGTkpIcFSpUMK9v2bIlV9dl3759Zn+9rq4kJyc7AgMDzT4ff/yxI78uXLjgqFWrljnOc88950hMTEx/LSEhwdGzZ0/z2sMPP5ztvQ0bNjSv6XXJat26dea1iIgIx7lz59ye3/kz1kcAsBrBPwB4Ofi/3Hb27NnM/zD/3/Ovv/56tmNeunTJER0dbV4/ePBg+vO7du1yBAQEOCpWrOiIi4tz2Z4uXbqY9y1atMhl8L927VqX72vXrp15fdSoUS5fb9asmcvg/8iRI46QkBDT3vPnz2d67dNPPzXvueGGGxy5dbngXzs8zs/y7bffutznjTfecDz00EPZtoxmzpyZ3olyJT4+3lG+fHlHcHCw48yZM5lemzZtmnlvvXr1sr3vkUceMa898MADOX5Ogn8A3kS1HwAo5FKf7tJTtD59VprCU7NmTZN+c+TIEVO/Xuk8AO03aB6+5qe7omk9up8zdSij8uXLS+vWrbO9R9NydH/Vu3dvl8fVFJ9NmzZle14n2mpJzk8//dRUwXniiSfSX5s+fbp5HDRokBSk1atXm3kUWWWsHqRpO+q+++5zeYwSJUqYnH29lvq5NQXKSScbP/PMM7Jjxw4zmVhTpFRCQkJ6TX9SfgAUJoJ/APDRUp9Vq1Z1+bxO/nXm6Ts5F6t67733zJYTzVvPKuPk3oy0Hr3zPO72cfe8Gjx4sAn+Ndh3Bv+//PKLrFu3Tq644or0ev1W0AnOOslYO0GuPqOaN29e+teHDx9O7zxl5LyWuk6AbjnJeh6t+HP33XfLnDlzzMRfZ/Cvgf/58+fT1wQAgMJC8A8APkoXp8qttLQ086iVadwtfOV0/fXXZ3tOq9Xkl7MykSstWrQwAbCOgn/33Xcm8HWO+j/++OMeTcrNSmvr6yRnrZG/efNmMwqfH85r2alTJ9NByUm1atWyPacj+xr8f/bZZ/Laa6+Za+uc6KvlPXO6XgDgbQT/AFAEOEewNcXojTfesOy4WoVHU40SExPlwIEDUqdOnWz77N+/P8dj6Oi/BuLaLu2YzJ492wTqGdOArKJVijT415H2f//736aUaH6u5W+//WaC+Pzcmbj55ptNapbeQfjyyy9NZ+v77783ZUWdq/gCQGGh1CcAFAGa66901dqM6UCe0uD5hhtuMF/raLYrmtaTEy27GRMTIwsXLpQXX3zR5L9369bN5eJbntKOhqZF6WJazz77rEfX0pmjn1c6su9cwEtTf5x1/3XNg0qVKuXrmABgFYJ/ACgCtIa/rjKrtfc159zVaLwG3Trqfvz48TwH1Or111+XDRs2ZHpt6tSpsnHjxst2IHSRMZ08/Morr3h1om/ZsmXlo48+MilTOvKvax5oRyArnRfwww8/uDyGpiNpOs/cuXNlxIgRZv2ErHQl33feecdtO3SOh4706wTjt99+2zzHRF8AvoC0HwDwMl1xV1fBdUerxThXh/WE5pWfO3dOvvnmG7n66qtNio0u2KWBrnYGNB0mKSlJdu/efdlc9ox0lF4DYg1idbErrQqkI/m//vqrOdbQoUNNbntO+fv9+/c3o/6aPqR5+bo4mLfcddddpmLPgw8+aK69XhedC6ETk52rCWu1JA3gtZOQdW6ArqSs79eKSJMnTzafW9tcuXJls7KvLlqmn1srJGnnwhUd4deRfq0IpOfTBc9cVW8CgIJG8A8AXqYjzO5GmZ0VYqwI/rXE5/Lly+Xzzz+XTz75xKzy+/PPP5s0GA3WtVSn5sRrxZm80hWCmzVrJjNnzjSj/+Hh4WYi74wZM9LvMuiouzsaKGsArncJdLVgb9PJuvv27TMlPDUA147Pzp07TUdI5zHUq1fPtEOvu+bnZ1W3bl1TlUg/t66mrF//+OOP5jNqJ2D48OGmU5QTHenXcyutGpSf+QcAYLUALfZv+VEBALah+e06uj5lyhQZNmyYy310tPyaa66R6Ohosz5BsWLF8nwe7WTonQxNybncJGN/9sILL8i4ceNk7Nix5msAsBIj/wCAy9JRc02b0ZSYjCUxdU0BHV3XOwE9e/Z0+/7nn3/ejLpr7n9+Av+saw84103QeQ5FIZ0mNjZWnn76afO13q0BAG8h+AcAXJZOntXqNzqxWPPZdfLwrl27zAi8TmzV9B9NLcpIKw999dVXpuOg6T4VKlSQf/7znx5fbT33hx9+aL7WlZOLQvB/8eLF9M8EAN5E8A8AuKz77rtP4uLi0ucRaOUezePX54cMGWIW88pq69atpsylzkW45ZZb5NVXXzXzG/JL7zwU1UxV7RgV1c8GwLeQ8w8AAADYBHX+AQAAAJsg+AcAAABsguAfAAAAsAmCfwAAAMAmCP4BAAAAmyD4BwAAAGyC4B8AAACwCYJ/AAAAwCYI/gEAAACbIPgHAAAAbILgHwAAALAJgn8AAADAJgj+AQAAAJsg+AcAAABsguAfAAAAsAmCfwAAAMAmCP4BAAAAmyD4BwAAAGyC4B8AAACwCYJ/AAAAwCYI/gEAAACbCC7sBuDy0tLS5O+//5bIyEgJCAjgkgEAAPgYh8Mh8fHxUrFiRQkM9N3xdYJ/HzZ9+nSzJSUlyZ49ewq7OQAAALiMQ4cOSeXKlcVXBTi0mwKfFhsbKyVLljS/TFFRUYXdHAAAAGQRFxcnVapUkXPnzkl0dLT4Kkb+/YAz1UcDf4J/AAAA3xXg4ynavpuQBAAAAMBSBP8AAACATRD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0Q/AMAAAA2QfAPAAAA2ATBvw+bPn261KlTR5o1a1bYTQEAAEAREOBwOByF3QjkLC4uTqKjoyU2NlaioqK4XAAAAB5wpKVIalKspdcwLi5eylxRw+fjteDCbgAAAABQUOL2LZCTm8dKWnK8pcc9fyFN/AFpP4AL+/fvl4CAAOnbt69X3+ONYwAAAPcj/ic3j5Xk5AQ5F1Dc4q2YX1x2Rv5RpGjwXKNGDenYsaN8++23lh57zZo1cvPNN8vYsWPlhRdesPTYAADA+1KTYmW5o7bMjLhL5GKotcd2XBCRfuLrCP4BFypVqiS7d+82cy28+R4AAFBwUtLSZMu2DvLanKNS/KK1aToJaZfkFvF9BP+ACyEhIXLNNdd4/T0AAKDgnLuUJD3nxFoe+PsTcv5twOFIk5RLp/1i07ZaTdN1NI9eU3U2b94sHTp0kMjISDNC361bN5MqdLnce32vpvyocePGmdecm/P9rvL1k5KSZNq0aSYNqUqVKhIWFibly5eXu+++W7Zt2+bxZ9u6das5px4vo7Nnz5rP2L59e4/PAQBAUZEWm2TrwF8x8m8DqYlnZd+XTcUf1Lh7swSHl/HKsTdt2iSTJ082QXz//v1N8L1w4UL59ddfZceOHRIeHu72vW3btjXB/Ycffiht2rQx3zuVLFnS7fvOnDkjQ4YMkdatW0uXLl2kVKlSsnfvXvn666/lm2++kbVr13q0joOmGqnDhw9nel7Pc88998hHH30kp06dkrJly+b7HAAAoOgg+IdtLF26VD777DO577770p978MEH5eOPPzadgPvvv9/te53Bvgb/+nVuJ/xqEH7w4MH0IN1p586d0qJFCxk9erSsWLEi359J7yJoulHW4F/Vq1dPdBmPX375Rdq1a5fvcwAAUJRV+rabVKha1ePjxMXHidQcL76OtB/Yxk033ZQp8FePPPJI+l0Bb9A0n6yBv6pbt665A6Ej/8nJyfk+vqb8xMTEyPHjxyUlJcXlPhcuaPUBAADgSlCpcAkpW9zzrUxx8QcE/7CNJk2aZHuucuXK5vHcuXNeO+/PP/8svXr1kqpVq0poaGj6XIFFixaZOQGaluMJ/QxpaWny999/Z3p+9erV5rF+/foeHR8AABQdpP3YQFBYKZNL7y9t9RZXS20HB//vTyA1NdUr51y/fn16ys2tt94qV155pZQoUcIE/5pqtH37dklMTPToHBnz/rWD4byToesc6N2FatWqWfBJAABAUUDwbwMBAYFem0SLnL344osmuP/++++lVatWmV7bsGGDCf49lXXS7/nz503FIe3YvPrqq/yIAABAOoJ/IJeCgoLyfJdgz549Urp06WyBv+bha5lOKziD/0OHDpkJvjqJWRcbmzVrljRs2NCScwAAgKKBnH8glzSIdwbZuaUpN1pzX6v7OGnnYfjw4XLy5ElLrr1z3oK2q1+/frJgwQKZOnWq6QQAAABkxMg/kEu6em/FihVNuVCt4qNBt+buP/XUU2bBMFf0teXLl5uR/x49epi1BHTRsSNHjpiSofq1VSP/b775pkkx+s9//mPOCwAAkBUj/170119/yRNPPCGNGzc2tdirV6/uzdOhANJ+vvzyS1Of/9NPP5Xnn39exowZY0b23bn99ttl3rx5UrNmTfnkk09kzpw5phPx008/WTYR1xn86x2F999/X55++mlLjgsAAIqeAIcmCcMrvvrqKxk4cKA0b95c9u3bZ4JEXSU2r+Li4szIcmxsrMuKNQAAALi8v/ftk4PXf5rpuaobe0rFGjU8vnz+Eq8x8u9Fd9xxh6nAoqPF119/vTdPBQAAAFwWwb8XBQZyeQEAAOA7bBed/v777zJt2jRTB11XPtVa6Dppc8KECbl6/9y5c81EzVKlSknx4sWlQYMGMnnyZElOTvZ62wEAAABP2K7az8yZM00ZxPwYMmSIea92GHTVVl2pddWqVTJixAhZtGiRqeoSERFheZsBAAAAK9hu5L9evXqmxvrs2bPNQkh9+vTJ1fsWLlxoAn8N+Ddu3CjLli2T+fPny59//mnuIKxbt85UfgEAAAB8le1G/nURpPzk5b/00kvmceTIkaZ0p1PZsmVlxowZ0rp1a3njjTdMB8BdzXcAAACgMNlu5D8/dEGmTZs2ma979eqV7XVdwKlKlSpmgaWlS5cWQgsBAACAyyP4z4Vt27aZx9KlS0sNN3VgmzZtmmlfT2gnQmvFZtwAAAAAT9ku7Sc/dIEuVbVqVbf76Mh/xn3VhQsX0u8E7N2713yvq72qZs2auV3hdeLEiTJu3DhLPwMAAABA8J8L8fHx5lFLe7qjE4FVxlH6EydOyL333ptpP+f3H3zwgSk36sqoUaNk2LBh6d/rMZ2dCwAAACC/CP69qHr16uJwOPL8vrCwMLMBAAAAViLnPxciIyPNY0JCgtt9zp8/bx6joqKs+tkAAAAAliL4z+UIvjp06JDbfZyvOfe1wvTp06VOnTpmfgAAAADgKYL/XGjUqJF5PH36dKYJvRlt3rzZPGZcA8BTAwcOlF27dqWXGQUAAAA8QfCfC5UrV04ffZ8zZ06213V1Xx351zz9Ll26ePQDAQAAALyF4D+XRo8ebR4nTZokW7duTX9e7wYMGDDAfD1o0CBW90WB2b9/vwQEBLitGgUAACB2D/41cG/RokX6tmTJEvP8W2+9len5o0ePZnpf165dZfDgwWZir77euXNn6d69u9SuXVt+/fVXadmypYwfP97StpLz75nVq1fLfffdZ8qk6l0ZXaRNV2N+7bXX5NKlSx7/fNasWWOC7xdeeMHjYwEAABQE25X61Jr5GzduzPb84cOHzZZxld2spk6daoJ8DcrXr18vycnJUqtWLRk5cqQMHTpUQkNDLW2r5vzrpm2Ojo629NhFWUpKirlub7/9tlmbQTtq2kmLjY2V5cuXmzUU3nzzTdPx0+f9VaVKlWT37t38bgAAgFyzXfDftm3bfNXed+rRo4fZ4Lt0kTQN/HWexoIFC0yQ7JSamir/+te/zNapUydzJ8hfy7OGhITINddcU9jNAAAAfsR2aT92lOZwyOnERL/YtK2e+OOPP+TVV181KT6LFi3KFPiroKAgGTdunPTq1Uv27Nkjr7zySvprs2bNMmk8+ni5FB99vPnmm83Xejx9zblpLn7GuxATJ040d4jCw8PNnQb9fu/evW7z9XX15+uvv96sGq2bfu2qTe5y/jO2VatQdejQwaxVoXePunXrlql9nrTTHU1/0/csW7Ys22v6M9HXpkyZkuvjAQAA69hu5N+OziYlSdPlX4s/2HzrnVLGg9WNP/zwQ0lLS5PHH39crrjiCrf7jRkzxlRuev/9981dgPzcQdIgWs/Xpk0b871TyZIl079+5JFH5OOPP5aaNWuaVCRNJ9M5Bz/++KPL4+q8kmnTpplOy6OPPmqemz9/vjz88MOybds2k3qWW1oidvLkyaaT0r9/f/P+hQsXmjkqO3bsMEF+ftuZEz2Pu7K3zsnyVpbEBQAAuUfwjyJF52Ko9u3b57ifpstUrFhRjhw5Ysq06qTgvHAG+xr869euJv2uXLnSBNQNGzaUH374QYoVK2aef/bZZ9PXjsho7dq1JvC/9tprTdDtnOehx9ZJ5q+//rqZZN66detctXHp0qXy2WefmUnPTg8++KBpk3YC7r///ny1MzfBv5bHLVeunNvgX88FAAAKHmk/PoxqP3l37Ngx85ibYN65T9bKTlb55JNPzOPzzz+fHlCrmJgYefrpp7Ptrx0JZ7CfcYJ3qVKlZOzYseZrV+k/7tx0002ZAn/nCL/KuHBcXtuZk7Nnz5o7Iu5G9jX411Ww9TMBAICCR/Dvw1jh179t377dPGp50ay0apS7dJmMKUROzvkFP//8c67P36RJk2zP6Yi8OnfuXL7bmRNn+1wF/ydPnjQVtfJzNwEAAFiDtB8bKBUaanLp/aWtnqhQoYL89ttvJpXn6quvznFf3cc5wu0NWqI1MDBQypYtm+01V/MRnPu7SpfR/XWirO6TW66qGAUHB6dXPcpvO3Pi7MC4CvCdKT8E/wAAFB6CfxsIDAjwaBKtP7nxxhtNtRvNY7/lllvc7qcdhL///ttMrHWm/2gA7Kx8k5WuEZBXGnzr5ONTp05lC+iPHz/udn8dIS9fvnym106cOGFK1HqjLGle25nfyb7O+RgE/wAAFB7SflCk6IRWDeLfeecdE0S78+KLL2bKgVfOPHSdBOwuqM1aNjTrKHpGDRo0MI86idZdIJyRMyjWzktWzue8MVE2r+3MiV4nvUOhk6kz0s6FVi1SBP8AABQegn8fxoTfvNNUH52kevr0abnjjjuyTebVIFTr0OskV61pP3z48Ew58hq4aoWcS5cupT//559/uiyxqWsJZEwfyqp3797mUUuJXrx4MdOkZFfHe+ihh9LXDciY3qN3HfS5jPtYKa/tdEffq3dU9A5FxhKh+r1OWN65c6fpYGVdewEAABQc0n58fMKvbhoIZqz+gpxpbXsNmLWG/5VXXim33XabCfT1Oi5fvtwE8/q8lsLMmEajo9U9e/Y09f+1I6ArAGu6ja4SrF87R66zlgvVzkJYWJiZTKudh6eeesr8vDTtSBcT0+PVr19funbtaurnf/HFF2bhLl3wyplq5KzOo+/Vcp/16tWTe+65xwTOel6dKKtrAOg+VstrO93R9QP0LoimLHXu3Nm0PyIiwtw90GvvnLOg6xfMmDHDXDMAAFCwCP5R5Oik1vfee88E8m+//basW7fOBPDFixc3NfSfeOIJefLJJ01gmtW7775rJr5+/vnn5s6L3knQY2iQnzX417SfL7/8UkaMGCGffvqpxMfHm+cfeOCB9M6alu/Uc2pHRIN67SAMGTLErEOgQXXWHH6t5a9pMTNnzjTnVXXr1jWj8rrQl7fktZ2uOFOjtPOlI/96TZSuMKwLhul1+vrrr80dAgJ/AAAKR4BDhxbh05wj/zqa7Y0Jnyh42sl47LHHzAi4dkSKQju1U/XWW2/J7t27zV0RAAB8zd/79snB6/83OOVUdWNPqVijhm3iNXL+AS/SvPms/WudUDxhwgRz5+D2228vMu3UkX9dJOyqq67yYksBAIAnSPsBvGjSpEmyZMkSad26tcmFP3jwoCxevNikCOlKvrlZidgf2qm5/przf9111+VqfgAAACgcBP+AF+lE4V27dpnA+uzZsxIeHm4C5AEDBphJtkWlnVrlR3P5vVGKFAAAWIecfx+mE05101HVP/74w+dzyAAAAHzZ3+T8k/Pvy7TMp47Gbtq0qbCbAgAAgCKA5FwAAADAJgj+AQAAAJsg+AcAAABsguAfAAAAsAmCfwAAAMAmCP4BAAAAmyD4BwAAAGyC4N+H6QJfderUkWbNmhV2UwAAAFAEEPz7MBb5AgAAgJUI/gEAAACbIPgH/NQLL7wgAQEBsmbNmsJuik9p27atuS4AACA7gn8USatXr5b77rtPqlSpImFhYVK6dGlp1aqVvPbaa3Lp0iVLztG3b18TZO7fv9+S4/k7vQ56PTp16uR2H+2o6D5PPPFEgbYNAAD8D8E/ipSUlBTp37+/tGvXTpYsWSItWrSQYcOGyf333y/Hjh0zXzdo0ED++usv8XeDBg2S3bt3S/PmzQu7KQAAwE8EF3YDACuNGjVK3n77bVMhacGCBVKpUqX011JTU+Vf//qX2XR0euvWrRIVFeW3P4CyZcuaDQAAILcY+bcBR5pDkk8l+MWmbc2vP/74Q1599VWT4rNo0aJMgb8KCgqScePGSa9evWTPnj3yyiuvZHpd01E0X9yV6tWrmy3j9x9++KH5ukaNGua9rt7/5ZdfStOmTSUiIkKuuOIKeeyxx+Ts2bPZjud06tQpGTJkiDmmpiuVL19eevToITt27MhVzr8z9UZTkvTuRrdu3aRUqVJSvHhxueWWW2T79u0uP993330nN910k9mvTJkyJmXq0KFDBZY/v2XLFnMno169ehIdHW2uV/369WXSpEmSnJzs8j3r1q2TNm3aZGuzKxmv1axZs6Rx48ZSrFixTD+vAwcOyKOPPmp+b0JDQ6Vy5crm+4MHD2Y7nvO6aNv02Pqz1J/XVVddJTNmzMi2v6aaTZkyxdx10s+nbdb36M/W3c8EAABvYOTfBlLOXJAtdaaKP2iy62kJKVs8X+/VYDwtLU0ef/xxE2i7M2bMGJkzZ468//775i5AfmiArkGkBm5PP/20lCxZ0jyfMaDX42vwqHcXHnzwQRP0LV26VDp06GCCxpCQkEzHPHnypNxwww2mY6LBpaYq7du3T+bNm2dSmJYtW2bmLeSGdgI05alu3bryyCOPmGN+9dVXcvPNN5tUoYzXZ/ny5XLbbbeZzpEG0BUrVjRzJvRc2nEoCO+8847psGkHpEuXLnLhwgUTqOudnE2bNsn8+fMz7b9y5Urp3LmzBAYGprdZn2vZsmWObf73v/9tPttdd90lt956q/nMzo6jfl79Gdxxxx3mummHS3+G2i7taGhgn1XPnj3lp59+Mm3RY33xxRemRK/+bLWj5/TQQw+Z16677jp5+OGHTUdBOyraFv182ikAAKAgEPyjyFi/fr15bN++fY77XXPNNSZYPHLkiAnAdFJwfoL/n3/+2QT/+nXWUfxz586ZToGO8G7evFmuvPJK8/xLL70kHTt2NCPd1apVy/SeESNGmCBdA17dz0k7DBqca9D4+++/m4D3cnQkX0fN9ZgZOz0TJkyQDz74QEaOHJmeCqWdJX10BvwZA9aPPvooz9dG7zjoaLgr7iZHjx492ixq5wzGlcPhkH79+pkA/IcffjCBvXJ28HR+x9q1a9PbrPs/8MADpmOX03XZuHGjuauQkU5A1sD/rbfeMsd20lF8DeaffPJJ07nI6vDhw6aT4Ewf05+53r3QUX5n8B8bGytz586VJk2amHNn/Ix63ePj4922FwAAq5H2gyJDJ/Sq3ATzzn2OHj3qlbboKPv58+fNyL8z8FfBwcEmAM8qKSlJPv30U5O+8txzz2V6TUfC9W6BBtUaBOeGpg0988wzmZ7TtigdaXbSEW1Nd9HR7qx3FbSdGQPV3NIOjKZXudqcqVJZVa1aNdu5NK1GA2/13//+N1Ob9+7dK7fffnumNuv+2mnKqc0a2GcN/DWtRzs+upp2xtF6Z6dAO4urVq1ymVI0ceLETPNGrr76atNJ0U6aM6jXdmnHJDw8PFvHTdvqvGsEAEBBIPj3YToSqgGJTl6Ff3HmcbtK07n++utNJyCj3377zeSFa+UezUXPStN1lN5tyI2GDRtmCzQ1h915VyI37dQOkgbleaV3NjTYdbVpkO2Kdn50voZ+fg2mte0aNOtoufr777+ztbl169bZjqN3U3Lq/LmqjOS8pjp/IOv8Bm2HpiJl3C8jZ/tyus76ebQDpx03nWugHRS9S+VuLgMAAN5E2o8P01FP3eLi4ky+eH4Fly5mcun9gbY1vypUqGCCaB2h1RHYnDhHcWNiYsQb9GemdMJuVhpQZq3S49zf3VwFZzud+12OqypGzg6Hpprkpp3O9ui8A2/r3r27ya3XvHrN4df2aN68BtBTp06VxMTE9H01jeZybXaXXuTq+npy7XN7nTXtR4N+TUl69tln09+rqVz6vKsOHwAA3kDwbwMBgQH5nkTrT2688UYzSVRzs7WyjTvaQdCRZK3qknGUWEd9NY/cFQ0489IBcwaFJ06cyPaa5qxrVZ+M1Yic+x8/fjzHlCarS5Pm1M6c2mMlTUPSwF/vGOjE5oxpOxs2bDDBf0bOn0N+2uyqclFBXHsN7jWNSjftTOkdkDfffNN8tosXL5q5BgAAFATSflBkaEUdHVXXyjE6edOdF1980TxqFZyMtEqMTgLOSkeRM6bKODmD1IwjvE7O6i2ucvS1OkzWTobmlWtOuAbCWukmK2c5T03nsVJO7dTJrK7KXFpN5wgoZ8WhjL7//nu3bXb1ms5fcFfu0x3nNdXJw5qalJF+r89n3M9TOh9Df/d08nGJEiXk66+/tuS4AADkBsE/igxN9dFqK6dPnzYTWLNO5tUR9/Hjx8snn3witWrVkuHDh2d6XedWaKCvQVnGXHRdFdgVXU9AuQo2tZSkBnbvvfdeenCrNOjXqjtZaV15LRupdwR0EmlG3377rSnzWbt27fSKN1bRXH/N69eR9x9//DHTa9pOVx0bqzmrHulE3ox27tyZ7Vo426wB9OLFizO9RwN1rRqU1zbr59c5FXo+rSyUkS4Yp6VRdcXo/FSFUtoRdbVOg673oOlM2ukDAKCgkPaDImXy5MkmRUeDOK2yo6PJGuhrvrbWs//zzz/N81o+M2sahwb5uo9OztRAXFM1VqxYYaqxuJoboAGhLhSmFWTuueceU9ZTA9k+ffqY9+gEVn1NJ4VqzX5nnX+t8a6lRrNOyH355ZdNx0NTQ3RCqE4M1s6I5otrW7REZ27KfOaFjrRr+smdd95pPo/m2+tn1XboXRAdZf/ll1/Em3QSrm5aB187bLo+gd5x0BFx/fnpOgcZ6TXQoFx/Tpre5azzrxV59P1aSz+vbZ45c6bpVGi1H+0I6UR77QxoG8qVK2dezy+9jo0aNTLXUtum6V7aQdWKUDrpN2snFAAAr3LA58XGxmougnlE7qxYscJx7733OipWrOgICQlxlCxZ0nHDDTc4pkyZ4rhw4YLb982dO9dRv359R2hoqKNChQqOp556yhEfH++oVq2a2bKaPHmy48orrzTn0J9RmzZtsh2vUaNGjrCwMEf58uUd/fr1c5w+fdpRokQJR4MGDbId7+TJk47Bgwebc+kxy5Yt6+jevbvj119/zbbv2LFjzTlXr16d/ty+ffvMcw899JDLz+eqjWrVqlWOVq1aOSIiIhylS5c21+7gwYOOevXqOaKjox254Tx3x44d3e6jbdV9+vfvn+n5EydOOB555BHz8woPDzc/g+nTpzv27t3r9vOsXbvWcdNNN2Vq84EDB8zny/pPm6trldX+/fsdDz/8sCMmJsYRHBxsHvV7fT4rV+dw0rbqa3o91NmzZx0vvPCCaaseU3+39HN26tTJ8c0337htDwDAekf27nX8WO7FTJs+Z6d4LUD/493uBTzlrPajI9pWT/hEwdN6/Xr3oUePHvL555/77I9A69RrBRyti6+LUwEA4O/+3rdPDl7/aabnqm7sKRVr1LBNvEbOP+AlzpzujLSyy9ChQ83XXbt29Ylrn5CQkG2VWc2b10XCtL2+0k4AAOA5cv4BL9G8eV1V99ZbbzWTSnUyr+alax6/M7/eF+g8CM1311KbNWvWNB0BraSza9cuqVu3rgwePLiwmwgAACxC8A94iQbOHTp0MGU0Fy5caJ7Tij1acUgneVo9eTe/dALqvffeazorWllIKxJpZ0XbqAtS6URmAABQNBD8A16ief2fffaZz19frWajlYQAAEDR5xtDjwAAAAC8juAfAAAAsAmCfwAAAMAmCP4BAAAAmyD492HTp0+XOnXqSLNmzQq7KQAAACgCCP592MCBA02t9U2bNhV2UwAAAFAEEPwDAAAANkHwDwAAANgEwT8AAABgEwT/AAAAgE0Q/AMAAAA2QfAPAAAA2ATBPwAAAGATBP8AAACATRD8AwAAADZB8A8AAADYBME/AAAAYBME/wAAAIBNEPwDAAAANkHwDwAAANgEwb+X/fXXX9KlSxcpUaKElC1bVgYMGCAJCQnePi0AAACQTXD2p2CV2NhYadeunVSsWFHmzp0rZ86ckWHDhsnx48dl/vz5XGgAAAAUKIJ/L3rrrbfk5MmTsnnzZilfvrx5LiIiQu655x7ZsmWLNGnSxJunBwAAADIh7ceLli5dakb+nYG/uvPOO00K0OLFi715agAAACAb2wX/v//+u0ybNk369u0r9evXl+DgYAkICJAJEybk6v2avtO2bVspVaqUFC9eXBo0aCCTJ0+W5OTkbPvu2rVLrr322kzP6fmuuuoq2b17t2WfCQAAAMgN26X9zJw5U6ZOnZqv9w4ZMsS8VwN4HdHXEfxVq1bJiBEjZNGiRbJ8+XKT1uN09uxZKVmyZLbjaMdB8/8BAACAgmS7kf969erJ8OHDZfbs2Wb0vU+fPrl638KFC03grwH/xo0bZdmyZWbS7p9//mnuIKxbt07GjBnj9fYDAAAA+WW7kf9+/fpl+j4wMHf9n5deesk8jhw5Uho3bpz+vJbvnDFjhrRu3VreeOMN0wGIjo5OH+E/d+5ctmPpHYErr7zSw08CAAAA5I3tRv7z48iRI7Jp0ybzda9evbK93qpVK6lSpYokJiaaSb5Omu+fNbc/NTVV/vjjj2xzAQAAAABvI/jPhW3btpnH0qVLS40aNVzu07Rp00z7Kl3ca/Xq1abcp5PODTh//rzcdtttbs+nnYi4uLhMGwAAAOApgv9c2Ldvn3msWrWq23105D/jvqp///6mw3DXXXfJN998I3PmzJEnnnjCfO/sLLgyceJEkzrk3JzHBgAAADxB8J8L8fHx5lFLe7qjE4FVxlF6rfSj1YCioqKke/fu8tRTT0nXrl3lk08+yfF8o0aNMqsDO7dDhw7l9ucJAAAAuGW7Cb8FTWv6f/vtt3l6T1hYmNkAAAAAKzHynwuRkZHmMSEhwe0+msevdJQfAAAA8EUE/7lQvXp185hT+o3zNee+Vpg+fbrUqVNHmjVrZtkxAQAAYF8E/7nQqFEj83j69OlME3oz2rx5s3nMuAaApwYOHCi7du1KLzMKAAAAeILgPxcqV66cPvquFXuy0tV9deRf8/S1vCcAAADgiwj+c2n06NHmcdKkSbJ169b05/VuwIABA8zXgwYNSl/dFwAAAPA1tqv2o4G7M1hXe/bsMY9vvfWWLF68OP35BQsWSExMTPr3WqJz8ODB8vrrr0uLFi2kffv2pvTnypUr5dy5c9KyZUsZP358AX8aAAAAIPdsF/xrHf6NGzdme/7w4cNmy7jKblZTp041Qb5OxF2/fr0kJydLrVq1ZOTIkTJ06FAJDQ21tK16Ht1SU1MtPS4AAADsKcDhcDgKuxG4fIdF04l0wS9KiQIAAOTP3/v2ycHrP830XNWNPaVijRq2idfI+QcAAABsguAfAAAAsAmCfwAAAMAmCP59GCv8AgAAwEoE/z6MFX4BAABgJYJ/AAAAwCYI/gEAAACbsN0iXwAAAPAPjpQ0STl30bLjpZ69JHZH8A8AAACfc3LuDtk/apmkxiUWdlOKFNJ+fBjVfgAAgF1H/An8/Wzk//jx47Jy5UrZunWr+frs2bNSqlQpueKKK6RJkybSrl078zVyrvajm3O5aAAAADvQVJ+CGPFPiAiUwOhQsRNLg//k5GT5/PPPzYj1Tz/9ZJ5zOBzZ9gsICDCP119/vQlue/ToISEhIVY2BQAAAMgx8J/Vu5y8EmyvRBjLgv+PP/5YRo0aJUePHjUBf7ly5eSGG26QunXrSpkyZSQqKkpiY2Pl9OnTsmPHDvnxxx9lw4YNsnHjRhk5cqRMnDhRHnjgAauaAwAAgCKkwbrHJbh0hEfHOBl/Qjr9uMF8nVAsSNKC/jcgbSeWBP8a5OtIf9myZWXw4MHSt29fadCgwWXf9/PPP8sHH3wgn376qTz00EMyY8YMWb9+vRVNAgAAQBGigX9I2eIeHSMoNFziI+1d78aS+xx//vmnTJ48WQ4ePCivvfZargJ/1bBhQ5k6daocOnRIJk2aJH/88YcVzQEAAADggiVdn71795q0nvwKCwuTZ555Rvr3729FcwAAAAB4a+Tfk8DfG8cpKij1CQAAACtZmvS0atUqWbx4sezbt89M+tWJvldffbU0b95cWrZsSUWfPKLUJwAAwP+cSUqS4ETPQtezScm2v5yWBP+JiYlyzz33yDfffJOptKezpKeKiIgw+2hAq50BAAAAILc6rPnW9pN1fSbtZ+zYsbJ06VKpVKmSPPfcczJt2jQzAbh+/fqmMxAaGioXLlww5UC1MtD9999vFv0CAAAAskpJy75OFHxo5F8X9tIUH13NV8t9Ou3cuVN+/fVXE+h/9913MnfuXPnss8/kiy++MKVB16xZI1WrVrWiCQAAACgi4lIKJj2nuOOiRAfbq/SnJSP/x44dk3bt2mUK/DMKDw+Xjh07yrvvvmvKgT766KOyf/9+6dSpkyQlJVnRBAAAACBPgf/ASwslOJAVfvNMV/M9f/58rvYtXbq0vPPOO1K9enUZM2aMvP766zJ8+HB+VQEAAODWvBvbSZmYkh5doZTEM3JwSQfzdaTjogRJmu2uuCVdnVtuucWk9Rw/fjzX73n22WflqquuMqv7AgAAADmJDg2VMmFhnm2hoVLSkWA2Owb+lgX/I0aMkOTkZOnRo4fEx8fn+n2NGjViVd8cUOcfAAAAPhf8ay3/N954Q77//ntp2LChmQCcseSnK/r69u3bTSUguKZlUXft2iWbNm3iEgEAAMBjls1weOyxx2T27Nly8uRJ6dWrl6nis3btWvPaH3/8IQkJCeZrvUOwZcsW6datm/z+++/SqlUrq5oAAAAAIAeW1jbq2bOntGnTRl544QXTEbh48aJ5/tprr3U58l+iRAl56aWXrGwCAAAAADcsr21UsWJFefvtt+Xo0aMya9YseeCBB8zE3qCgIBPw6xYdHS29e/eWbdu2Sd26da1uAgAAAAAXvLaqQVRUlDz44INmU6mpqWYycEBAgAn+AQAAABSsAlvSTEf+S5b0rDYrAAAAgPyz15JmAAAAgI0R/AMAAAA2QfAPAAAA2ATBPwAAAGATBTbh1+m7776Tn3/+WapVqyZ33nmnBAbS/3Bn+vTpZtNKSQAAAICnvBJ5a33/xo0by7p16zI9/9RTT0m7du1k2LBhcs8990inTp0IbHMwcOBA2bVrl2zatMkbPyYAAADYjFeC/3nz5smePXukWbNm6c9t3rzZjGKHh4fLXXfdJZUqVZKVK1fKZ5995o0mAAAAACiI4H/Hjh1Sv359CQsLS39Og3xd4Ovjjz+WL7/8Un766SfTEXj//fe90QQAAAAABRH8nz59WipXrpzpubVr15pVf7t27Wq+r1ChgrRu3Vr++usvbzQBAAAAQEEE/8nJyZly+RMTE2X79u1y4403ZprgW65cOTlx4oQ3mgAAAACgIIL/ihUrys6dOzNV+NEOgQb/GcXFxUl0dLQ3mgAAAACgIIL/tm3byu+//y6TJk0yI/5jx441+f5a3Sfr3ICs6UEAAAAA/Cj4Hz16tJQoUUKeffZZU/Jz48aNcsstt0iTJk3S9/njjz9k37590qJFC280AQAAAEBBLPJVu3ZtWb9+vUyZMsXk9Ddv3lyeeeaZTPtomc8GDRrIbbfd5o0mAAAAoAA5UtIk5dxFS46Vdsaa4yC7AIfD4XDxPHyIc25EbGysqZgEAADgS07O3SH7Ry2T1LhEr52jxs9PyhUVS3l0jJRLp2Xfl00zH/fuzRIcXsY28ZpXRv4zSkpKki1btsiRI0fM97q4l6b/hIaGevvUAAAAKIARf28H/vCD4D8lJUXGjRsn06ZNk/j4+EyvRUZGyuDBg+X555+X4GCv9z8AAADgJZrq4+3APyEiUIKiw716DrvwSuSdlpYmd955pyxbtkw0q6hUqVJSo0YN85pO8j179qy8+OKL5o7AokWLMtX+BwAAADIG/rN6l5P/BBMv+mzw/+6778q3334r1atXl1deeUXuvvvuTK8vWLBA/vGPf5h93nvvPXnssce80QwAAAAUggbrHpfg0hH5fv+ZpCTpsOZb83VCsSBJCwqwsHX25pXg/6OPPpKIiAhZtWqV6QBk1a1bN2nYsKHUrVtXPvzwQ4J/AACAIkQD/5CyxfP//sRgiY8kNdwbvHL/RBfv0oW+XAX+TpoG1K5dO7MvXJs+fbrUqVNHmjVrxiUCAACAbwb/iYmJptTR5ejEX90Xrg0cOFB27dolmzZt4hIBAADAN4P/KlWqyI8//iipqalu99HXNmzYIJUrV/ZGEwAAAAAURPDfsWNHOXjwoDz99NOSnJzssva/lvrUfTp37uyNJgAAAKCQ6ITd04mJ+d7OJpEZ4i1emUkxcuRImTNnjsycOVO++uoruf/++9NLfe7du1c+//xz+fvvv6V06dIyYsQIbzQBAAAAhUQr9TBh10bBv67iq2U87733XjO6/+qrr2Z6XWv/V61aVebNm2f2BQAAgH9KSXMUdhOQB16roaQVav744w+ZO3eurFmzRo4cOWKe12BfKwFpxyA0NNRbpwcAAEABiEvJnuJttcjgEIkOCfH6eezAqwVUNbjv3bu32QAAAID8BP7j6jeS4EBW+LUCqycAAADAUvNubCdlYkpaciwd8Sfwt45XulCffvqp1KxZ0+T9u6Ov6T6a9w8AAICiIzo0VMqEhVmyEfj7SfB/7tw5s4KvOzfffLOcPXtWZs+e7Y0mAAAAACiI4P+XX36R6667LscJvWFhYdKgQQPZvn27N5oAAAAAoCCC/2PHjuWqhKfuo/sCAAAA8NPgv1ixYnL69OnL7qf7UO4TAAAA8OPgv27duvLDDz/ImTNn3O6jr61bt06uueYabzQBAAAAQEEE//fcc48kJCTIAw88IBcuXMj2+sWLF6VPnz7msXv37t5oAgAAAICCqPPfv39/eeedd2TZsmVy1VVXSa9evdJH+H/77TdTDejvv/+Wq6++WgYMGOCNJgAAAMAFR0qapJy7aNm1STtj3bHgp8F/RESECfy7desmW7ZskSlTpmR63eFwSKNGjWTBggVmfkBR9ddff8krr7wiP/30k/z6669mgvP+/fsLu1kAAMCmTs7dIftHLZPUuMTCbgqK2gq/lStXNkHvokWLzIJeBw4cMM9XrVpVOnXqJHfeeacEBARIUbZz505ZvHixNG/e3HR4dF0DAACAwhrxJ/CH14J/pcG9Bvm62dEdd9whd911l/n6iSeeyHHFYwAAAG/SVJ+CGPFPiAiUoOhwr58HPjThF/93cQO5vAAAwD408J/Vu5wEBBMD2XLk39t+//13Wb58uZlXoNvu3bslNTVVxo8fL88999xl3z937lyZPn26WWU4KSlJateuLb1795ahQ4dKSEhIgXwGAACAwtJg3eMSXDrCo2OcSUqSDmv+l92QUCxI0oKKdlq3v7Mk+H/66afl+eeflzJlyuT7GCdPnjRB++uvv57r98ycOVOmTp2ar/MNGTLEvDc4OFjatWsnJUqUkFWrVsmIESPMPAXtVOjEZQAAgKJKA/+QssU9O0ZisMRH+vV4sq1Yck9GR89r1Kgho0aNkj///DPPo/fPPPOM1KpVywTzeVGvXj0ZPny4zJ4924z669oBubFw4UIT+GvAv3HjRlOZaP78+abt9evXN4uPjRkzJtN7Zs2aZeYwXG6bN29enj4DAAAAUFAs6aZt2rRJnnrqKXn55Zdl8uTJcsMNN0j79u3N47XXXmvuCGigff78eTl9+rTs2rVLfvzxR1mxYoWpCKSVcFq2bCnTpk3L03n79euXrxz7l156yTyOHDlSGjdunP582bJlZcaMGdK6dWt54403TAcgOjravKZlS1u0aHHZY2s5TwAAAKDIBv9as19Hy3XU+7XXXpP169eb4D4nGvCrG2+80eTY66rABeHIkSOms6J08bGsWrVqJVWqVJFDhw7J0qVLpWfPnuZ57QQ4OwLelpiYaDanuLi4AjkvAAAAijZLp2J3795dfvjhB9m6dasZNdfRfF3ESwN956bfa4CtcwR0P+00FFTgr7Zt22YeS5cubVKVXGnatGmmfQvaxIkT0zsbumlnBAAAAPCUV2ZnNGzY0GwvvPCC+f7ChQsSGxsrJUuWLPRJtPv27UtfbMwdZ7Dt3De/9HPr3QO1d+9e871zTkCzZs2kWrVqLt+ncyeGDRuWaeSfDgAAAAB8IvjXVJqcct11tF83XxAfH28eixd3P7Nd5ydYkW5z4sQJuffeezM95/z+gw8+kL59+7p8X1hYmNkAAAAAnwv+dRS9QoUK0qRJE5Myo6Pa+liuXDmxs+rVq6fPbQAAAPA1WqNfS3V64myS91cNho8F/xUrVjSj/4sXL5YlS5akP6+pKhk7A7oV1KRZdyIjI81jQkKC2320KpGKioqSwqQlVHXThcsAAACspotzUaPfXiwJ/rUyztGjR03NfN02bNhgVtw9ePCgeW3BggXp+2o9f2dnQB+11GZBpgTpaLyzze44X3PuW1gGDhxoNk0/KuxOEwAA8G8paWQjwMIJvzExMdK1a1ezqQkTJsjYsWOlcuXKctVVV5kA9pdffpG//vpL9uzZI5999pnZLygoSJKSkgrsZ6FlSZWuN6ATel1V/Nm8ebN5zLgGAAAAgD+LS0kukPNEBodIdEhIgZwLhVzq0+ndd981gf8rr7wiBw4cMIt56R2BM2fOyHvvvWc6BJoLr2lBoaGhUpD03HrHQc2ZMyfb61p6VEf+dcJtly5dCrRtAAAAGTlS0iT5VIIlW9qZiwUS+I+r30iCc7nwKopIqc///Oc/ZtRcF+/KSMt8Pvzww2Y9AA2sNS1I7wQUtNGjR5sVeydNmiSdO3dOH+HXuwEDBgwwXw8aNIhUGwAAUGhOzt0h+0ctk9Q4702onXdjOykTU9Ky4+mIP4G/DYN/Tetxpv+4m3Q7d+5cqVmzplkR+OWXX87Xef5fe3cCHlV1Pn78TTLZCEkgIcq+CBVFkF1RqEYQQVoVEFFBrVv5WbEoaH8s6kMRFBf+FKi4VP3JY9UqoFgFBCkQKi6IbIK4oewuLBESAmSd//MeO9MskwAz9yb35n4/zzNMmLnbnLk5ee+557xHJwkLBOuB/apnn33WDD4O0DEH2i0pQI9t1KhRMmvWLOnRo4f06dPHpP5cvny5HDp0yExONnnyZKlpDPgFAMC7Lf52B/4qNS5O0kkv7ilRfhtyUWrqT51Bd+PGjVUuF2j937JlS1j7ycrKkksuueSEy2nf/lCDd+fOnWsCbD3OwsJCMxj5hhtuMHcsqrs7UlUCA351orSazkAEAADsp9101rWbaes+8hKjpePWu6VBUs1OwFqdio4flO1vdivzWqvBn4ovId0z8ZotLf/9+/c3ffuXLl0q/fr1q3Q57Qa0Y8eOsPeTmZkZUR79oUOHmgcAAICXaOA/Z3iGzPDRN99rbAn+x48fbwbTamD90ksvyVVXXRXy6ujDDz+0Y/cAAAC1TsfVI8SXlhjRhF6a11/l1YmRkpgoC48Ong7+NX3mK6+8Itddd50MHjxYLr74Yrnpppvk/PPPNzn9v/jiC3nooYdk3759J9VtBwAAwOs08I9tkBT++vk+JvSCPcG/0tb+lStXys0332z65q9atarM+9pdR9NpPvzww3wNlWDALwAAAKxka0cvzaSzdetWefnll01qTR0InJCQIBkZGeaOwEcffWTuBiA0nd1Xy2/t2rUUEQAAACJmW8t/QHR0tAwbNsw8AAAAALi85X/+/Ply9OhRKzYFAAAAwMnBv2b10a48V199tRnoq5l8AAAAANTCbj8PPvigvPnmm2Ym3bfeektiY2PNrLl6MXDllVdKgwYNrNgNAACAZ2mqTs3YE66fC+ydLRgenOH366+/Nl2A9EJg/fr1EhUVZfr8X3TRReZCQAf9NmrUyKrdeSrbj5at02eMAwAA9s3wO2JGK8tTdX562ZWSHh8vXlHEDL/WBv+l7dy5U9544w3z+Pjjj01qT70Q0Ow+eiGg2X5atmxpx65rHbdMFw0AAKxxbN8R2dR+VpnXCP4jV0Twb1+qzxYtWsiYMWPkgw8+kL1798qTTz5pJvv65JNP5L777pPWrVtLt27d5JFHHpEvv/zSrsMAAABwnZyiQtv3keyLldTYWNv3Aw/l+Q9o2LCh3HnnnbJ8+XL56aef5Pnnn5f+/fvLli1b5IEHHpBzzjlHpk2bVh2HAgAA4Hka+E/q0Fl80dUSCsJLef7LS0tLk1tvvdU8tDvLO++8YwYK6/gAAAAAhDb/wt6S3qieJcWjLf4E/t5kSfBfv3596dKlS/DRtWtXOfPMM0+4nvZfHz58uHkAAAC4mb+oRIoOHbNkWyXZFbeTGhfnqcG5cHDwrwNRV65cKVlZWcHX6tatK506dQpeDOjz2WefTQs/AACodfbP2yI7xi+V4hzSacIDwb+m9Vy3bl3wsXnzZsnNzZX333/fPAJdehITE6Vjx47BiwF91v7+mgUIVaf6BAAAzm3xJ/CHW9iS6lOD1c8//zx4MaAXB5s2bZJjx/57CytwQZCQkCB5eXlWH0KtQqpPAADclZPfanmJ0dJx693SICnR1v3UdkWk+rRnwG9MTIyce+655nHLLbeY10pKSmTr1q3Bi4GFCxfK9u3b5fjx43YcAgAAQK2ggf+c4Rkyw0dPCbgo24927UlKSpL9+/fLmjVrZMeOHdW1awAAgGrVcfUI8aWF30qfXVAgfbOWmJ/z6sRISQxZEeGS4P/rr7+W+fPnm5l+N27caF7TnkbNmjUzs/zqbL8AAAC1iQb+sQ2Swl8/3ye5ydWekR0eYMtZpZN3BQJ+7eoTCPh1Vl8N9vXRvXt3O3YNAAAAwO7gX/vxBwL+bdu2mWBftWvXLhjw6xgAAAAAAC4O/s844wzZuXOn+VmD/s6dOwcD/rZt21qxCwAAAABOCP518K6m7tRW/oceekiuuOIK8fnopxYp8vwDAADASpZF6Nrir/37hwwZInFxcdK+ffsys/tqlx99HSdv5MiR5hHI8w8AANxBs/XooN1w/VzATMFwcPA/d+7cMhN6ZWdnB////PPP/7Ijn8/cGSg9u6/O9quTfAEAANQmmqaTbD2otcG/tvbrI0D7/weC/8AFwYEDB8wsv/p48cUXg5OBnXXWWfLZZ59ZcRgAAADVrqjklyQngBvY0jG/RYsW5qF5/AN2795d5mJAn/ft2yeff/65HYcAAABQLXKKCm3fR7IvVlJjY23fD2o/S4L/vXv3SpMmTapcRif10sfAgQPLrKcXAQAAANXFX1QiRYeOWba9kmzrtlVZ4D+pQ2fxRUfbuh94gyXBf/PmzaVhw4amH3+3bt3MBF76nJGRUeV6esFwoosGAAAAq+yft0V2jF8qxTn2Dqidf2FvSW9Uz5JtaYs/gT8cFfw3btzYtOIvXLhQFi1aFHxdW/pLXwzog6w1AACgplr8qyPwV6lxcZIeH2/7foAaCf61P/8PP/wga9asMY+PP/7YdOfZtWuXeW/BggXBZVu3bh28GNBnzfxTp04dKw4DAACgUtrVpzoC/7zEaIlJJZshavmA30aNGpn+/IE+/VOmTJGJEydK06ZN5cwzzzS56jWrz7Zt2+Tbb7+V1157LZjxp6CgwKrDAAAAqDEa+M8ZniEzfPTPh4ey/Whufw38p02bJqNHjw6+fuzYMRP0//nPfzZ3BHSsgKYABQAAqAkdV48QX1pixBN6aV5/lVcnRkpioiw6OsAlwf+MGTNMd57Sgb9KTEyUW265xcwJMGDAANMtSO8EILTZs2ebR3FxMUUEAIANNPCPbZAU2TbyfUzoBdew5Z6Udutp06ZNpe8nJyfLvHnzZP/+/fKXv/zFjkOoFUaOHClbt26VtWvX1vShAAAAoBawJfjXFJ9ffPFFlctoatDMzMwy2YEAAAAAuKzbT//+/eWFF16QpUuXSr9+/SpdTrsB7dixw45DAAAAtYCVE3IV2TwZF+DZ4H/8+PHy6quvytChQ+Wll16Sq666qsIymv3nww8/tGP3AACgFqiuCbkAL7Gl20+rVq3klVdeMSk8Bw8eLL1795Y5c+aYrkA7d+6UJUuWmLsD+/btkx49ethxCAAAwMWqc0IuwEtsaflX2tq/cuVKufnmmyUrK0tWrVpV5n2/3y/x8fHy8MMP23UIAADApapjQq6YlHjx1YsszSfgNrbOQKGt+pqt5uWXX5ZBgwaZvP4JCQlmQLDeEfjoo4/k/PPPt/MQAAAAQgb+Laf2kygm44LH2NbyHxAdHS3Dhg0zDwAAgJqckEsVlfglLynGBP4H8yO/u/BzAV2T4B62B/8AAABOmZBrwZ6dMnHzBsktKuRLgSfZ2u0HAADAKYpKSgj84Xm0/AMAAE/k5D9cWFgtLf7JvlhJjY21fT9AOAj+AQBAxMjJ/9/Af1KHzuKLpnMFnIngHwAAeDYn/7LMflI/Lt6y7WmLP4E/nIzgHwAAOD4nf3RKvBxOjJaoCLLzhMrKo4F/erx1wT/gdAT/AADA0fISo2XO0HqyesXCmj4UwPUI/h1s9uzZ5lFcXFzThwIAQLXm5Ndc/H1WLpEjxYWSVydGSmKi+AYACxD8O9jIkSPNIycnR1JTU2v6cAAAqLac/Dn5+fJDHb+toQpZeeBFBP8AAMBy2QUF4sv3OXbWXLLywKsI/gEAgOX6Zi2R3GSfYzPzkJUHXkXwDwAAIqL986sDmXmAyDEDBQAAiEgOs+YCrkHwDwAAHI3++YB16PYDAAAsN//C3pLeqJ4l26J/PmAdgn8AAGC51Lg4Zs4FHIjgHwAAj/EXlUjRoWOWba8k27ptAbAXwT8AAB6yf94W2TF+qRTn2JtHH4AzEfwDAOChFv9vxr4r0UcKa/pQANQQsv0AAOARx7OPVkvgn5cYLTGpCbbvB8CpI/gHAMAjqiMfvwb+r93YUOolWjMTLwBr0e0HAACPDM4NNTD33sktJDfZurbA6JQEmdipi/iiaV8EnIjgHwAADw/OfbHfpZbl41fk5AecjeAfAAAHps/0F/vl25Fvi93Ixw94C8G/jebPny+vvPKKrFu3Tg4cOCCtWrWSW2+9VUaNGiWxsbF27hoAUI3cmj6TgbmA99Ahz0bTpk2T+Ph4efzxx2XRokUybNgweeCBB+T222+3c7cAgGpu8Xdr4D9neIZE+QgFAC+h5d9G77zzjmRkZAT/f8kll4jf75cHH3zQXBCcfvrpdu4eAFANXXSKso9VW+DfZfMoiYqJCnv97IIC6Zu1xPycVydGSiLYFgB3Ivi3UenAP6Br167m+fvvvyf4B4Aa4MYuOjEp8dJyaj+JO71uRNvx5fskN5k//YCXuboG+Oqrr+S9994zfer18cUXX0hxcbFMnjzZdK85kXnz5sns2bNl06ZNUlBQIG3atJHhw4fL6NGjbeuT/+9//1vi4uKkdevWtmwfAFDzXXQ6rh4hvrREy7bnq5dI9xwAlnB18P/000/LzJkzw1r3nnvuMev6fD7p3bu31K1bV1asWCFjx4413XX0oiIx0bqKW23dutXsc8SIEZKSkmLptgEAJ6ZdfewO/LWVPuGMNIJ1AI7k6lE+7du3l/vuu89k1NFW/xtvvPGk1nvrrbdMEK4B/5o1a2Tp0qXyxhtvyDfffCMdOnSQ1atXm375pc2ZM0eioqJO+NAMP6Fotp+BAweauwuPPvqoJZ8fAODM7jkMogXgVK5u+S+fNSf6JGcTfOSRR8zzuHHjpEuXLsHXGzRoIE899ZT8+te/lieffNJcAKSmppr3Bg0aJD169Djhtps0aVLhtdzcXLn88stN16KsrCxJSko6qeMEANjPyi46dM8B4HSuDv7DsXfvXlm7dq35WVNvlterVy9p1qyZ7N69WxYvXizXX3+9eV0vAgIXAqciPz9frrrqKtmxY4e5o9C4cWMLPgUAwCoa+Mc2oFEGgDe4uttPODZs2GCe09LSzKRboXTr1q3MsuHSwcfXXXedudjQC4m2bdue9AVDTk5OmQcAAAAQKc+1/G/fvt08N2/evNJltOW/9LLhGjlypBlfoNmH9ELg448/Dr7Xrl27Sgf9Tp06VSZNmhTRvgEAAADxevCv/e9VVf3udSCwirTFfcmSXyZS0bED5QcQr1y5UjIzM0OuN378eBkzZkzw/3ocgQsSAIC3FJWUyOHCQku29XOBe+Y2AGAPzwX/1Un7+YcjPj7ePAAA3rZgz06ZuHmD5BZZE/wDgOf6/CcnJ5vnvLy8Spc5cuSIeSYXPwCgJlv8CfwBWM1zLf8tW7Y0z5rNpzKB9wLL1hSdfVgfOl4AAOCd7jmBLjp2t/gn+2Il1aYZ7QE4k+eC/86dO5vngwcPmgG9oTL+fPrpp+a59BwANUEHDOtD+/yHk2YUAGoDf1GJmZnXCkXZ1mynNnTP0cB/UofO4jvJOXIA1A6eC/6bNm0q3bt3N+k3X331Vbn//vvLvK+5+LXlX/vcDxgwoMaOEwAgsn/eFtkxfqkU5zh3oGp1ds9ZltlP6sdZMyZMW/wJ/AHv8VzwryZMmGBm7H300UfNzLuBFn69G3DnnXean++66y5a2wGghlv8nR74K+3qUx2Bv7bUt0yqS8AOwLvB//r164PBuvr222/N87PPPisLFy4Mvr5gwQJp1KhR8P8DBw6UUaNGyaxZs6RHjx7Sp08fk/pz+fLlcujQIenZs6fJzV/T6PMPwMu0q4/dgX90SrwcToyWqPx8R6fPpIsOAKu4OvjXvvBr1qyp8PqePXvMo/SMueXNnDnTBPkaYH/44YdSWFgorVu3lnHjxsno0aMlLi5Oahp9/gHAPnmJ0TJnaD1ZveK/jUVO7J6j6KIDwCquDv51kiy/3x/2+kOHDjUPAICzBuZWNji34+oR4ktLDH+bJX7ps3KJHCkulLw6MVISEyV20MA/nflaADiQq4N/AIC3Bubm1I0RX7Ivoi46P9Tx2/rnj/SZAJyM4B8A4JqBuX2zlkhuBMG/3eibD8DpnFuDggG/AFyhOgbmBvroa1cdq5E+E4CXEPw7GAN+AaDU4NzhGZb30Sd9JgCvIfgHAFgu0oG5KrugwHTzUXYMzqWLDgAvIvgHAFj/xyUtUWIbJEW2jXxfhf79dNEBgMgQ/AMAXIMUmgAQmegI1wcAAADgEgT/DqazD7dr1066d+9e04cCAACAWoBuPw5Gth8AdsycG+CrlyhRPtqAAMBLCP4BwKMz58akxEvLqf0k45r2lm8bAOBMNPkAgEdnztXt6vZ1PwAAb6DlHwAc2j2nKNv+mXN1+3rMkablBAC4A8E/ADi8ew4AAFYh+AcAh3fPsXLmXL2bsKnX3yw9JgCAexD8OzzVpz6Ki4tr+lAAVEG7zVRH4K8DdBPOSCNDDwAgbAT/DkaqTwDlM/O4JTVndkGB+PIj+xPzcwFdqADAagT/AODA7jnVmZM/0kC9qKCgwmt9s5ZIbjJ/YgDAaaiZAcCOyjUt0TUZdCIN1JNzi4RRBADgDu64fwwAsERRid+1JZnsi5XU2NiaPgwAcDWCfwDwkJyiQnFr4D+pQ2fxRfNnCwAiQbcfAI6d5Ko6+rvDHssy+4svvY5l29MWfwJ/AIgcwT8Ax09yFch0k3FNe8u3DZH5F/aW9Eb1wi6KooNHZbs8Xea1tLg4iY2Pp3gBwGEI/gE4fpIr3a5uv8GgdpbdAbDyLoVOnOVmqXFxkh5BoF4YVyTbLT0iAIBdCP4djEm+4BbVMcmVbl/3Y0UGHTvvUrhRSfYxKYyL8+zFDwB4CcG/gzHJF+C+uxRutLP3HNlZ0wcBAKgWBP8AHDnJlbYmb+r1N1fepdAxCjpIGQAApyH4ByBen+TKjsHJVmYnKiopkcOF1qTozEmMkrzEaEk6ViJ24eIHAJyL4B+ALbILCsSXH34VU1RQIG65S2FnWtIFe3bKxM0bJNfC/Py9hmfIza/st+UCwI6LHwCAdQj+Adiib9YSyU0Ov4pJzi0S6zv92HuXQlvos7WFvtiSw5Jif4mM2fCJWG31BSny4XnJknS0OJiTX1NzWoE5GQDA2Qj+AUSsqMRfbfuJFWeyo4XeTiUxUebiTGfOTW+YygRaAOARBP+AR1mZ5/7QvhypDjlFheLEYbTa4u+mwD9AA/9JHToT+AOAhxD8Ax5Enntr6WDc6gr81/T9rcREWdOfPjU2lsAfADyG4B+eaqEuz4v9k6srz/38C3tLeqN6Ya9/8IdDki0vWHpMbhZopT8twYn3PgAAbkHwD0+3UAcyk2Rc0168ojry3GsqyTYZKZIeHx/2Nori4iRb3GtZZj+pHxf+5y+PVnoAgBUI/h1s9uzZ5lFcbFHqEBe2UH8z9l2JPmJfdwoNgnUfDQa189wdADsD/znDM2SGi8oz0rSkPxdUvJjSwD+Six8AAOxA8O9gI0eONI+cnBxJTU0Vr3XROX4gz9bAP0D3cTz7qCSeVtexXZTs7p507+QWkptszfbz6sSYTDJ2KMk+JoURpqTUmYOtTksKAIBb8NcOlnHzIFIrssjY+fmt7J4UKi2nBv5uCH539p4jO2v6IAAAcDHn/7WHK1TXIFIrWqiTc0vk/z2401WfX7f77ci3JfWilhIVYat6daTl1MGp2kfdq7z++QEAzkXwD1cNIp0z9DeSVieyNnqTRebBF1z3+dX6DrPEK7njY1ITzHeedKxE7KT70K5KViF3PgDAyQj+4a5BpHUSIx5E6fYsMk5My2lHVhod46Df+c2v7LftAiBwXi3t09+yzDxk5QEAOBnBP2zTcfUI8aUlRpSBRQdi2j2I1Kmf31/sr5aWfivSctpl9QUp8uF5yZJ09JeMV8sy+0tahAN+Q51XZOYBAHgFwT/sO7nSEiW2QVL46+f7XDEI1a7Pr1rPvtLWsQRuSMupwXngPMhNjhFfXGTnRG5BsavPKwAAIsFfQMDBNLuPzkFgZfpQN99R6Zu1tKYPAQAAVyP4BxxO+75HegehNt1RAQAA4SMC8CirJ6MKNXESEOnAWc2ck1tk70RvpOUEAHgJwb8HuXkyLniHZgzSlKETN2+w7QKAtJwAAK8h+PeY6pqMC7DCoKYt5IrGzeRwoT3BP2k5AQBeQ/DvMdU1GVVMSrz46kU2GRcQuAPgxDSkAAC4kXPz+8G1NPBvObWfGagKAAAA56Dl38Fmz55tHsXFv0xw5NTJqMrTFn8CfwAAAOch+HewkSNHmkdOTo6kpqY6ejIqtztcUCC+/PC7QxUVFFh6PAAAAHYg+AdEZMiHKyLKfZ+cWyR/oyQBAIDD0SkbsElRiZ+yBQAAjkLLv4tk5+dLYQRdUxTdU0RSfLFSHXKKCoV8RwAAwEkI/l3k4hWLJbpOnYi2QfcUTR0ZZdl3AgAA4CYE/zDdU6qnLdy5lmX2F196+BdWB384JNnygtihqKTE0kmufi5ggjcAALyK4B90TxGRtLg4iY1gIqmiuDjJtjiDkHprz06ZsnUTZykAALAEwT/g0AxCAAAAViMycZFVvQdIckpKRNuws3sK3CnZFyupsV7v+AUAgDcQ/LtI8pEiSYkqimgbBUeKK3RPgXsyCNkR+E/q0Fl80WT9BQDACwj+XWRj96clKTqhpg8DNZRB6IF2HWVg0xaWblNb/An8AQDwDoJ/wKEZhEojSAcAAFYg+Pe4vMRoiUnlboITMwgBAABYjY6+Hg/85wzPkCgfpwEAAIAX0PLvIp3W/kFSkiPL9pNdUCB9s5aYn/PqxEhJDLPdAgAAeAXBv4vEpidJbEpSRNvw5ftszT1v5Wy0zEQLAABgLYJ/G7355psyffp0+fLLLyU3N1eaNGkiAwcOlAcffFDq168vtc2CPTtl4uYNkltkTfAPAAAAaxH82yg7O1syMzPlT3/6k6SmpsrmzZtl0qRJsmnTJlm+fLnUJtriT+APAADgbAT/Nrr99tvL/F8vBBISEmTEiBGya9cuad68udQW2tXH7hZ/ZqIFAACIDGleqllaWpp5LrSoX7xXMBMtAACAx1v+v/rqK3nvvfdk3bp15vHFF19IcXGxTJ48WR544IETrj9v3jyZPXu26YZTUFAgbdq0keHDh8vo0aMlNjbWsuPUY9Jgf8uWLabbz4ABA6R169ZS2y3L7Cf146zJc88kVwAAAB4P/p9++mmZOXNmWOvec889Zl2fzye9e/eWunXryooVK2Ts2LHyzjvvmIuKxMRES44zPT1dDh8+bH6+7LLLZO7cueIFGvinu2SSq6LsYzW6PgAAQHVwdfDfvn17ue+++6Rz587SpUsXeeSRR+Tvf//7Cdd76623TOCvAf+qVavMuurAgQPmQmD16tUmI8+0adOC68yZM0duueWWk7qbMGTIkDKvZWVlydGjR82A3ylTpsgVV1why5Ytk5iYmLA+N6y3qdffKFYAAFDr+WrTgNro6JMbwqAXCWrcuHHBwF81aNBAnnrqKfn1r38tTz75pLkA0Cw9atCgQdKjR48TblvTeZbXqVMn83zhhRean3U7CxYsqHCRAAAAANjJ1cF/OPbu3Str1641Pw8bNqzC+7169ZJmzZrJ7t27ZfHixXL99deb1/UiIHAhEAm92IiKipJt27ZFvC2Ex1cvUWJS4qU4J9+2ItTt634AAACcxHPZfjZs2BDMutOqVauQy3Tr1q3Mslb64IMPxO/3yxlnnFHpMvn5+ZKTk1PmAetE+aKl5dR+JkC3g25Xt6/7AQAAcBLPtfxv377dPFeVY19b/ksvG65+/fpJnz595JxzzpH4+HhzMfHEE0/Iueeea2b6rczUqVNNViDYJ+Oa9tJgUDspOmT9QF1t8SfwBwAATuS54D83N9c8JyUlVbqMDgRWkba4n3feefLyyy8HLyJatmwpd955p4wZM0bi4uIqXW/8+PFmmQA9jsAFCayjAXpsg8rPAwAAgNrGc8F/ddL5BvRxqvQugT4AAAAAK3ku+E9OTjbPeXl5lS5z5MgR85ySkiJe8HNBviO2AQAAAHt5LvjXrjdKs/lUJvBeYNmaorMP60NnCLZT36yltm4fAAAAzuC5dCQ6IZg6ePBgpQN6P/30U/Nceg6AmjBy5EjZunVrMDUpAAAAEAnPBf9NmzaV7t27m59fffXVCu/r7L7a8q997gcMGCC1TWpsrCT7Ym3fj+5D9wUAAADn8FzwryZMmGCeH330UVm/fn3wdb0boNl41F133WXJpF5O44uOlkkdOtt6AaDb1n3ovgAAAOAcUX6dccqlNHAPBOvq22+/lQMHDpjW/SZNmgRfX7BggTRq1KjMunfffbfMmjVLYmNjTS5+Tf25fPlyOXTokPTs2VOWLVsmiYmJjunz//XXX8vhw4ctG4RcVFIihwsLxQ7a4k/gDwAAnKbo+EHZ/uYvk7kGtBr8qfgS0iPetqZm14ZjK+M1O7g6+M/KypJLLrnkhMtp3/5Qg3fnzp1rguuNGzdKYWGhtG7dWm644QYZPXp0lXn4q5tbTiYAAAAnKyL4d3e2n8zMTInk2mXo0KHmAQAAAHgBnbIBAAAAjyD4BwAAADyC4N/BdDxCu3btgqlJAQAAgEgQ/DsYk3wBAADASgT/AAAAgEcQ/AMAAAAeQfAPAAAAeATBPwAAAOARBP8ORrYfAAAAWIng38HI9gMAAAArEfwDAAAAHkHwDwAAAHgEwT8AAADgEb6aPgCcmN/vN885OTkUFwAAQJiKjufKkaMlZV7LyckVX0FsxGUaiNMCcZtTEfy7wMGDB81zs2bNavpQAAAAapfft7I8bktNTRWnIvh3gbS0NPO8a9cuR59MTqNX4HrBtHv3bklJSanpw3EFyoxy41xzNn5HKTPONec6fPiwNG/ePBi3ORXBvwtER/8yNEMDf4LYU6dlRrlRZtWBc40yqy6ca5QZ55rz4zancvbRAQAAALAMwT8AAADgEQT/LhAfHy8TJ040z6DcONech99Ryoxzzbn4/aTcONfKivI7PR8RAAAAAEvQ8g8AAAB4BME/AAAA4BEE/wAAAIBHEPxHYN68eZKZmSn169eXpKQk6dixozz++ONSWFh4ytvKy8uTqVOnSrdu3Uz+5tjYWGnYsKH89re/lbfffrvKdbdt2yY333yzNG3a1Axs0mf9/3fffVflerm5uTJhwgRp27atJCYmSoMGDeQ3v/mNrFixQmprmX311VcyY8YMGTBggDRp0kTi4uLMut27dzfbOnLkSMj1duzYIVFRUVU+xo0bJ7W13LKysk74+Z955plK9+nFc033faIy08ett95aa8+1o0ePmnLr1KmT2VZycrL5XfvrX/8qxcXFVa7r1XotnDKjXguv3Lxer4VTZm6r1/R3Qz+P1h0dOnQQn89n9jVlypSItvuvf/3LxBH6net3f9ZZZ8n9999faQzhuHpNB/zi1N199906UNrv8/n8l112mX/w4MH+evXqmdd69erlP3r06Elv68CBA/527dqZdevWrWu2N3ToUH+XLl3Ma/oYNWpUyHVXr17tr1OnjlnmnHPO8V977bXmWf+flJTk/+ijj0Ku99NPP/nPPPNMs1yjRo3811xzjf+iiy7yR0VFmcesWbNqZZk1adLEvJeQkGD2ed111/kvueQS8399vXXr1v6dO3dWWG/79u3BMv3d734X8jF37ly/HZxQbitXrjTvnX766ZV+/hUrVoTcp1fPtalTp1ZaVtdff31w3ZdeeqlWnmsHDx70d+zY0aybnJzs79u3r79///7B7en/8/PzQ67r1Xot3DLzer0Wbrl5uV4Lt8zcVq8Fyqz8Y/LkyWFvc/r06WYb+j3rd67ffcOGDc1rbdu29e/fv9/x9RrBfxgWLFgQDATWrVsXfF2/8A4dOpj37r333pPengYOuk7Xrl3NL2RpixYtMr/o+n75EyMvL8/fuHFj89748ePLvKf/19ebNWsWskK46qqrzPt9+vQx2ym9v5iYGH90dLR/06ZN/tpWZr179/a/8MIL/tzc3AoVU+CXUP9olheouFq0aOGvTk4pt8AfyYsvvviUP4NXz7WqvP7662ad1NTUCr+fteVc0z9Quk779u39u3btCr7+448/+s877zzz3oQJEyqs5+V6Ldwy83q9Fm65ebleC7fM3FavPffcc/777rvP/8orr/i/+OIL/4033hhR8L9+/XoTcOt3vHjx4uDreg7ouaDbvvrqqx1frxH8h6F79+7mi5gyZUqF995//33zXnx8vP/QoUMntT395dN1Krvq1StwfV+vNkubPXu2eV2vCIuLi8u8p/8PXCk+88wzZd77/PPPzet60uzYsaPC/m677TbzvrYe1bYyq0rgOPSxe/duR1RcTim3cP9Icq6Fpq12Wp533HFHhfdqw7m2d+9e8wdS19Fzpzz9Q6XvJSYm+nNycsq859V6LZIy83K9Fkm5ebVes+tcc2K9Vp7eYZAIgv/ARdPtt99e4T09FzQQ1/f1QsPJ9Rp9/k/R3r17Ze3atebnYcOGVXi/V69e0qxZM8nPz5fFixef1DYTEhJOajnt41XaggULzPN1110n0dFlv0r9/7XXXmt+fvPNN0Ou17NnT2nRokWF/QQ+1zvvvBNWP0Inl1lVOnfuHPx59+7dUtPcUm5V4VyrSM8t7S+qbrvtNnECq8+1Tz/9VBuWzJiaiy66qML75557rmRkZMixY8cqbM+r9VokZebles2ucqsK55o76jWrFRQUyKJFiyo9d7Xe0fqn9Dni1HqN4P8UbdiwwTynpaVJq1atQi6jgwJLL3sil19+uXl+7LHHJDs7u8x7WlmtXLnSDC688sorQx5LYH8nexwnu54Ocvzmm2+kNpVZVUp/1kaNGoVcRsvk0UcflTvuuEP++Mc/msHDOqDIDk4st59++kkeeugh+Z//+R+5++675emnn5Zdu3ad8DNwrv3XnDlzpKSkxAQllZWL28+1wKC3evXqVfhDV/4Cc926dSGPxWv1WiRl5uV6zYpy81q9Zse55sR6zWpff/21GSRtZ/1UXfWa76SXhLF9+3bz3Lx580pLRFstSi97ImPHjpVPPvlEli5dGrxy1F9KHRWuv3j6/xdeeEFSU1PLjPw+ePBglccSOI79+/ebE0NH85/MZ9BsJvrIyckxy7Zr165WlNmJaIWkunTpIi1btgy5zIEDB2T8+PFlXhszZowMHz7c/MGoW7euWMWJ5fbll1/KxIkTy7ym2RO0EteME/rzqXwGr51r2kKpfyRPpnXMzefaaaedZp737dtnAo3yx6pBws6dOytsz8v1Wrhl5vV6zYpy81q9ZvW55tR6zWrb/1MWWv9rZqST/R6cWK/R8n+K9EtUgS8mlMDJq1/GydBt6S2b++67z3zpGmS8/vrrJrBIT0+XSy+91KSlDHUcVR1L6V+i0sdix2dwQ5lVRSsuXT8mJkZmzpxZ4X1NyfX73//e7Edvb+rV/+effy6TJ0+WOnXqyMsvvyxXX321qQSt4qRy08D2nnvukVWrVskPP/xg1v3ss89k9OjRJm3aX/7yF7nzzjur5TO4pcwqSy2oKd30fLrhhhtCLlMbzrXzzz/fHKt6/vnnK7z/0ksvBVvQQtVNXqzXwi0zr9drkZSbV+s1q881p9ZrVssN83twYr1G8O8AWulo66HmotXcs/pLpFfj2trYtWtXmTRpkukHWfoE8jory2z58uXmdq/SVh5drzy9Xf63v/1NLrvsMpOXV/Ps6hX2Aw88YPLs6h/X9957T/75z39KbSw37Tesfwi1T612C9LKWnMmT58+XV577TWzzHPPPScbN26U2sbKc03vEKirrrrK3MIPpTaca9oqdu+995qftZVv1qxZphy1pVGDDW1R1bkSVGXdDrzG6jLzSr0WSbl5tV6z+lzzSr1Wm1DrnqLArR5tIThRfzq9FXMyfve735kBUHoFrJM4aJ8+vcrTyTYWLlxoKqNNmzbJtGnTKhxHVcdSerKJ0sdix2dwQ5mFsnr1alNh6UAeve2rtx9P1XnnnSdXXHGF+VlbiK3i5HIrbfDgwWaSmFCfn3Ptvw4fPhwczBXugDg3nWv6+6T9eo8fP276UTdu3FhOP/100/qnXVACkwCVDha8Xq+FU2aheK1es6rcvFSvWVVmTq7XrJYc5vfgxHqN4P8UBfpMVpU1IfBeZf0ry2c+WLZsmfn5+uuvr/C+Xn0PGTLE/BwYSR84IQK/lJUNTAochw7cKX3LKHBcla2nt44Ct49O5jO4pczK+/DDD80MffpLpTPz/fnPf5ZwnX322eZ5z549YhWnltupfH7Otf/6xz/+YTKOaN9N7SpUm881pS152odXu1HoHZMRI0aYIFRnRNaB5YE6Ri84A7xcr4VbZl6v16wqNy/Va1aWmZPrNau1/E/ZHjp0qNI7vaG+ByfWawz4PUWBtGk6eEMHV4Qaea+px5RePZ9I6S+0squ2wEDC8tlZdPsapOn+AlfNJ3Mc+n+9Ug+8X9l6egKeeeaZUpvKLODjjz+W/v37B6fMjnSq78BgnsoGAdWWcjvVz8+59l//93//Z55vueWWiLq6uOFcK02Dh/IBhPbr/eCDD8zPffv2LfOeV+u1SMrMy/WaFeXmtXrNyjJzcr1mtbZt25quYTpeQcv7kksuOaX6yVH12inNCgDLJ9vQKdcDE7C89957IZfRyRv0/csvv9ySSSO2bNkSnDQi1JTvTp+gJJIyU2vWrPGnpKSENYNhKEeOHDFTbuv2HnvsMb+VnFRuldmzZ4+ZDEbX0xkeS/P6uRawefNms4xOrBNqopbadq6dyGuvvWa2d8EFF1R4z6v1WiRl5uV6LdJy82K9ZlWZuaFeq+5JvmJiYiyd5Muuc43g38Jptg8cOFDpNNtvvvmmv23btmYa9sp+qc8++2wzC15pf//734Mz8enPlU0XXb6y1//r602bNq1yuuhLL720zPs6XXV1Tk1e3WW2du1aM/X4qf6BfPbZZ8tMgR7w3XffBaf0rlevnplq3UpOKbcZM2aE/Gx6jnTu3Nms07p1a//x48crLOPVc620e+65xyyjMyh75VzTWURDfY533nnHBKkaqIT63r1cr4VbZl6v18ItNy/Xa+GWmdvqtXCC/7/+9a+m3G688cYK72nZa52v3/G7775bpt4KfI6rr77a8fUawX+YRo0aZb6M2NhYf//+/c2XrSeuvtazZ88KX+CLL75Y6dTWevXcoEED835CQoI/MzPTP2TIEP8555wTbHW84YYb/CUlJRXWXb16tb9OnTpmmfbt25urP33W/yclJfk/+uijkMf/008/+X/1q1+Z5fSKe+jQoWa/gUBm5syZ/tpYZvXr1w9WMloJVPYof9XesWNHUzZatoMHDzblfP7555sKUreXnp7uX7VqleVl5pRy08BCK5muXbua5fV80Z8DU5k3b97cv3Xr1pDH79VzLaCgoCC4vraonUhtOdc0WNHP0alTJ/+gQYPM937WWWcFA5jSfzjL82q9Fm6Zeb1eC7fcvFyvRfL76aZ6TYN13U/gETjmpk2blnn9+++/D64zceJEs8zFF18ccpvTp08P3vHQ71zLLnDnQi8aKruAcVK9RvAfAb0VeNFFF5mrZL09qF/io48+6s/Pz6+wbFW/hOrHH3/0jx071n/uueeak8Dn8/kzMjL8/fr1q3DLsbxvvvnGf9NNN5mrSq0U9Fn/v23btirXO3z4sH/cuHHmpNJfwLS0NFOh/Otf//LX1jILBGsneqxcubLMei+88EKwctRy0n1ppautwlpR6C+nnWq63B5//HHT+tCmTRvzB1PX0XLo1auX/4knnvDn5ORUefxePNcC5s+fb7atnzlUC2J5teVc03pJA069na3BhG5L/zCOHj3adKk4ES/Wa+GWmdfrtXDLzcv1WqS/n26p1/ScP5nfje2l7uqeKPhXy5YtM9+1fhb97vUcGD9+/AnPGafUa1H6z8mPEAAAAADgVqT6BAAAADyC4B8AAADwCIJ/AAAAwCMI/gEAAACPIPgHAAAAPILgHwAAAPAIgn8AAADAIwj+AQAAAI8g+AcAAAA8guAfAOB6X375pdx6663SrFkzSUhIkJYtW8rYsWPl+PHjNX1oAOAoUX6/31/TBwEAQLiee+45GTlypPh8Prn44oulbt26smLFCsnOzpbLL79cFi9eTOECwH8Q/AMAXOsf//iHDBs2THr27Clz586Vxo0bm9f37dsnXbt2lT179siyZcvk0ksvrelDBQBHoNsPAMCV9u7dKyNGjJAWLVrIokWLgoG/Ou200+Tmm282Py9cuLAGjxIAnIXgHwAQ0tGjR2XGjBnSq1cvqV+/vsTHx5tA+4orrpBXX321wvLayv7HP/5RfvWrX5l+96mpqaZF/tlnn5Xi4uIKy3/zzTemn36rVq3MtrW7jm7/N7/5jbz44osn/FYmTZokR44ckUceecTsq7zTTz/dPG/fvp1vGAD+g24/AIAKdu/eLf3795etW7dKnTp1TBCfnp5uWts/++wzqVevnuzYsSO4/Nq1a83y2s++efPmcsEFF8jhw4clKyvLDLrt16+fvP322xIXF2eW37Jli9lmTk6OtG3bVs455xyJiYkxFxCbN2+W1q1by8aNGyv9ZnTbjRo1Mhclu3btMuuW98QTT8j//u//mosV3TcAQMRHIQAASispKZHBgwebwP+yyy6Tl19+WTIyMoLvazCvA2oD8vPz5ZprrjGB/x133CGzZs2S2NhY8953330nffr0kaVLl5qW+ocffti8Pn36dBP4T5kyRe6///4y+z927Ji5mKjKW2+9ZZbT1v3bbrst5DIbNmwwz3rRAgD4BS3/AIAy/vnPf8rAgQNNy/rXX39tuuNURS8ObrzxRtPnXoN97cJT2htvvCFDhgyR5ORkMxBXuwRp1x7NwrN+/Xrp3LnzKX8Duj/d78mYOnWqjBs3jm8ZAOjzDwAob8mSJeZZs+icKPBX2rVHXXfddRUCf6V3EbR7Tm5urqxbt868dt5555nnP/zhD+auwKnm4w/cGdC7E5qxuvxDxysEjiWwLwAAA34BAOXs3LnTPJ911lknVTY6DkDpwN1QoqKigu8Flv3Tn/5k0m+uWbPGjBVISUmR7t27y7333nvCLj9FRUXy7bffmp+bNm0acpl///vfpjtSYmKiGVsAAPgF2X4AANVOBxFr/v1PPvlEHnroITMuQLsY6VgAbanXSbsqo3cQ9AJAVXZnYt68ecG7DqHuRgCAVxH8AwDK0Gw96ssvvzypkmnSpIl51v7+lQmk2wwsG6Ct/Q8++KC8++67cvDgQRO0a2v9U089JStXrqz0TkJAQUFBhfd1Ozr5l7rrrrv4dgGgFIJ/AEAZ2g1HaQCdl5d3wtLJzMw0z6+//nrIvvsLFiyQn3/+2Qz41Vl3K+Pz+czAYE0LqipL9alpRvWhNO1oeTq4V/v867Z69OjBtwsApRD8AwDKuPLKK00Gnu+//96k8NSW9NI0wNeW+gBdRu8W6PJjxowJdskJtPhrP36lE4Bpph+lLftfffVVhZL/8ccf5dNPPzU/64RfldFsQWry5MkmNanSgb6aSvT55583x/PMM8/wzQJAOaT6BACEHPSrLfAaoGv/fJ3lNzDJ16ZNm6qc5EuDdm1x1775Oh9AqEm+OnXqZLajA4Hbt29vBvzu379f3n//fZO/v3fv3iYLkN4NCGXbtm3mAkVn+NWByR07djR5/XXcwJlnnmkyFlU2ABkAvIzgHwAQkgbW2kI/f/580/9f+9c3bNjQBNqaBvTaa6+tMCvwY489Zu4K6Ey9OtBWA/ubbrpJbr/99jKB/KJFi8zj448/NsvqjL2nnXaatGnTRm655Ra5/vrrgxOFVUZnAp4wYYKsXr3aHJsG/Zpu9O677w7eYQAAlEXwDwAAAHgEff4BAAAAjyD4BwAAADyC4B8AAADwCIJ/AAAAwCMI/gEAAACPIPgHAAAAPILgHwAAAPAIgn8AAADAIwj+AQAAAI8g+AcAAAA8guAfAAAA8AiCfwAAAEC84f8DR6hWXUmOzzQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in filename.keys():\n", + " #if k!=\"ATLAS\": continue\n", " data = awk.from_parquet(\"output/\"+filename[k])\n", " vx = np.array(np.squeeze(data[\"vertex\"]))\n", " if k==\"ATLAS\": \n", - " x = 8\n", - " nbins=70\n", + " x = 3.82*2\n", + " nbins=79\n", " elif k==\"DUNE\": \n", " x = 500\n", " nbins=30\n", " else: \n", " x = 5000\n", - " nbins=50\n", + " nbins=60\n", " \n", - " plt.hist2d(vx[:,1],vx[:,2],bins=np.linspace(-x,x,nbins),norm=LogNorm())\n", + " plt.hist2d(vx[:,1],vx[:,2],bins=np.linspace(-x,x,nbins),norm=LogNorm(),cmap=\"BuPu\")\n", + " if k==\"IceCube\":\n", + " plt.plot([-564.19,-564.19,564.19,564.19,-564.19],[-500,500,500,-500,-500],color=\"black\",linestyle=\"dotted\",label=\"IceCube\")\n", + " iceair_boundary = 6374134-6372184\n", + " rockice_boundary = 6371324 - 6372184\n", + " plt.plot([-x,x],[iceair_boundary,iceair_boundary],color=\"black\")\n", + " plt.plot([-x,x],[rockice_boundary,rockice_boundary],color=\"black\")\n", + " plt.text(-0.95*x,1.3*iceair_boundary,\"Air\",fontsize=20,rotation=90)\n", + " plt.text(-0.95*x,0.5*0.5*(iceair_boundary+rockice_boundary),\"Ice\",fontsize=20,rotation=90)\n", + " plt.text(-0.95*x,3*rockice_boundary,\"Rock\",fontsize=20,rotation=90)\n", + " plt.legend()\n", " plt.xlabel(\"y [m]\")\n", " plt.ylabel(\"z [m]\")\n", " c = plt.colorbar()\n", " c.set_label(\"Number of Generated Events\")\n", + " plt.tight_layout()\n", " plt.savefig(\"figures/%s_yz.pdf\"%k,dpi=100)\n", " plt.show()\n", " \n", - " plt.hist2d(vx[:,0],vx[:,1],bins=np.linspace(-x,x,nbins),norm=LogNorm())\n", + " plt.hist2d(vx[:,0],vx[:,1],bins=np.linspace(-x,x,nbins),norm=LogNorm(),cmap=\"BuPu\")\n", + " if k==\"IceCube\":\n", + " r = 564.19\n", + " theta = np.linspace(0,2*np.pi,100)\n", + " plt.plot(r*np.cos(theta),r*np.sin(theta),color=\"black\",linestyle=\"dotted\",label=\"IceCube\")\n", + " plt.legend()\n", " plt.xlabel(\"x [m]\")\n", " plt.ylabel(\"y [m]\")\n", " c = plt.colorbar()\n", " c.set_label(\"Number of Generated Events\")\n", + " plt.tight_layout()\n", " plt.savefig(\"figures/%s_xy.pdf\"%k,dpi=100)\n", " plt.show()\n", " \n", - " plt.hist2d(vx[:,0],vx[:,2],bins=np.linspace(-x,x,nbins),norm=LogNorm())\n", + " plt.hist2d(vx[:,0],vx[:,2],bins=np.linspace(-x,x,nbins),norm=LogNorm(),cmap=\"BuPu\")\n", + " if k==\"IceCube\":\n", + " plt.plot([-564.19,-564.19,564.19,564.19,-564.19],[-500,500,500,-500,-500],color=\"black\",linestyle=\"dotted\",label=\"IceCube\")\n", + " iceair_boundary = 6374134-6372184\n", + " rockice_boundary = 6371324 - 6372184\n", + " plt.plot([-x,x],[iceair_boundary,iceair_boundary],color=\"black\")\n", + " plt.plot([-x,x],[rockice_boundary,rockice_boundary],color=\"black\")\n", + " plt.text(-0.95*x,1.3*iceair_boundary,\"Air\",fontsize=20,rotation=90)\n", + " plt.text(-0.95*x,0.5*0.5*(iceair_boundary+rockice_boundary),\"Ice\",fontsize=20,rotation=90)\n", + " plt.text(-0.95*x,3*rockice_boundary,\"Rock\",fontsize=20,rotation=90)\n", + " plt.legend()\n", " plt.xlabel(\"x [m]\")\n", " plt.ylabel(\"z [m]\")\n", " c = plt.colorbar()\n", " c.set_label(\"Number of Generated Events\")\n", + " plt.tight_layout()\n", " plt.savefig(\"figures/%s_xz.pdf\"%k,dpi=100)\n", " plt.show()\n", " \n", @@ -208,18 +361,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "cb18973f-6f80-418a-b7b0-d7794080b8c5", "metadata": {}, "outputs": [], "source": [ - "from siren.LIController import LIController\n", + "from siren.SIREN_Controller import SIREN_Controller\n", "from siren import math,detector\n", "def plot_Aeff(data,controller,fid_vol,gamma,**kwargs):\n", - " nu_flag = data[\"primary_type\"]==\"ParticleType.NuMu\"\n", + " nu_flag = data[\"primary_type\"]==14\n", " nu_momenta = np.squeeze(data[\"primary_momentum\"][nu_flag])\n", " # muon\n", - " muon_flag = data[\"secondary_types\"]=='ParticleType.MuMinus'\n", + " muon_flag = data[\"secondary_types\"]==13\n", " muon_momenta = data[\"secondary_momenta\"][muon_flag]\n", " # mask out entries that are not muon\n", " muon_momenta = awk.mask(muon_momenta, awk.num(muon_momenta,axis=2)>0)\n", @@ -228,6 +381,7 @@ " norm = 1. / (1./(1e3) - 1./(1e6))\n", " elif gamma==1:\n", " norm = np.log(1e6) - np.log(1e3)\n", + " norm *= 4*np.pi # solid angle\n", " dphi_dE = nu_momenta[:,0]**-gamma * norm # normalized\n", " #Aeff = nu_momenta[:,0]/dphi_dE\n", " positions = np.squeeze(data[\"vertex\"])\n", @@ -250,20 +404,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "e799f4ea-6930-4120-96b7-10b4b5e02f8a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "99999\r" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvQAAAIiCAYAAACnu1wkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZNklEQVR4nO3dCXhTZfb48dPShQptWUV2ENxYRKBFFFAWRUVlcQdFUXGjKIuMLCPjMPIHBnWcsqqj4gbqAJYRRRZZREQ7VBhQQQYQhOLG2gJKKZD/c15/t5O2aUnbNPfe5Pt5nvvcNrlJbtKkOffc8543wuPxeAQAAACAK0XavQMAAAAASo+AHgAAAHAxAnoAAADAxQjoAQAAABcjoAcAAABcjIAeAAAAcDECegAAAMDFCOgBAAAAF4uyewfgn9OnT8sPP/wg8fHxEhERwcsGAADgMB6PR44cOSJ16tSRyMjg5c0J6F1Cg/n69evbvRsAAAA4gz179ki9evUkWAjoXUIz89YbJCEhwe7dAQAAQAHZ2dkmAWvFbcFCQO8SVpmNBvME9AAAAM4VEeTyaAbFAgAAAC5GQA8AAAC4GAG9w02fPl2aNWsmycnJdu8KAAAAHCjCo/114IpBFomJiZKVlUUNPQAAgANl2xSvkaEHAAAAXIyAHgAAAHAxAnoAAADAxQjoAQAAABcjoC9n8+bNkz59+kiDBg3krLPOkubNm8tzzz0nubm55f3QAAAACAPMFFvOnn32WWnUqJFMnjxZatWqJWvXrpUnn3xSNm3aJK+//np5PzwAAABCHAF9OVu4cKHUrFkz7/cuXbqIdgodO3ZsXpAPAAAAlBYlN+XMO5i3tG3b1qx/+OGH8n54AAAAhLiwDOi3bt0qU6dOlQEDBkjLli0lKipKIiIiZPz48X7dfu7cudK5c2epWrWqVKpUSVq1amWy7f7Wxa9evVpiYmKkSZMmZXwmAAAACHdhWXIzc+ZMSU1NLdVthw4dam6rBwFdu3aVypUry4oVK2TkyJGmvGbp0qUSFxdX5O03b95sbv/ggw8y4ysAAADKLCwz9C1atJARI0bI7NmzZcuWLdK/f3+/brdgwQITjGsQn56eLkuWLJH58+fLtm3bTKZ/zZo1pja+KPv375fevXtL06ZNZdKkSQF8RgAAAAhXYZmhHzhwYL7fIyP9O66ZMGGCWY8aNUratGmTd3mNGjVkxowZ0qlTJ5k2bZoJ6hMTE/Pd9siRI3LdddfJiRMnZNWqVaZUBwAAIBScPH1ashzUkrtqTIxERkRIuAjLgL409u7dK+vWrTM/9+vXr9D1HTt2lPr168uePXtk0aJF0rdv37zrcnJypFevXrJr1y6Txa9Tp05Q9x0AAKC8pGV+L099tUGOnHROQJ/RvadUj42VcBGWJTelsWHDBrOuVq2aNG7c2Oc2SUlJ+bZVp06dkjvuuMMcDGigf8EFF/j1eHoQkJ2dnW8BAABwWmbeacF8OCJD76edO3eatc74WhTN0Htvq1JSUkzt/dNPP22C+y+++CLvumbNmhU5MHbixIkybtw4f3cPAAAg6LTMhmDefmTo/aQ18Kq42ncdLKu8s+mLFy82a62rv+yyy/It69evL/K+Ro8eLVlZWXmLlvIAAAAABZGhL2daN18asbGxZgEAAHCTZZ2vkaoxsbYPig0nBPR+io+PN+tjx44Vuc3Ro0fNuqgymtKYPn26WbRcBwAAwOk0mA+nAalOQMmNnxo1amTWxZW+WNdZ2waC1uDrZFRWhx0AAADAGwG9n1q3bm3WBw4cyDfo1VtGRoZZe/eoBwAAAMoTAb2f6tWrJ8nJyebnOXPmFLpe+8trhl7r3nv06BGwP5CW22g3HOuxAQAAAG8E9CUwZswYs540aVK+DjWatR80aJD5efDgwYVmiS0LSm4AAABQnAiPx+ORMKPBuBWAqx07dsj+/ftNFr5u3bp5l6elpUnt2rXz3XbIkCEyZcoUiY6Olm7dupk2lsuXL5fDhw9Lhw4dZNmyZRIXFxfwfdZWmHqgoC0sAznoFgAAoLQO5ORI0tL3w3qWVifEa1Hh+mKnp6cXujwzM9Ms3rO1FpSammoCdy2FWbt2reTm5kqTJk1k1KhRMmzYMIkJcJskutwAAAB/ZmzVSZ6C7dCJwrESgi8sM/RuRIYeAAD4kpb5vTz11QbHzNhKhj4x6Bl6augBAABcnJl3UjAPexDQAwAAuJSW2TgpmI+PipbE6Gi7dyPsENA7HG0rAQCAG2gwP65la4mKJLwMNmroXYIaegAA4E+XmWWdr5GqMcHvMqOZ+XAP5rPpcgMAAICy0mA+XNtGhquwbFsJAADg9paRiraRUAT0DkcfegAAnMtpLSMRnqihdwlq6AEAcF5mvs2S9x0XzIdzH/hwjdfCe+QCAABAiLSMVLSNDE8E9AAAACGAtpHhixp6AACAALGrZaSibWT4IqB3OAbFAgDgHrSMhB0I6B0uJSXFLNYgCwAA8D+0jAQI6AEAgEvRMhL4HYNiAQCAKzPz9H8HfkdADwAAXIeWkcD/ENADAACUES0jYScGxQIAgJBAy0iEKwJ6h6NtJQDAyezqMnPoRE6hy2gZiXAV4fF4PHbvBM7MaluZlZUlCQkJvGQAANs5rctMRveeUj3WnkmdADvjNWroAQBAidFlBnAOAnoAAOD6LjM6KDUxOtru3QBsQQ09AAAuxSypv6PDDMIdAT0AAC7ktPp1O7vMaGY+KpKiA4QvAnoAAFzGqfXrdJkB7MHhLAAALuO0+nVFDTtgHwJ6AABQJtSwA/ai5AYAgBDALKlA+CKgdzhmigUA+IP6dSB8UXLjcCkpKbJ582ZZt26d3bsCAAAAByJDDwCAy/rAHzqRE/THBOBcBPQAAIRIH3gA4YmSGwAAQqQPPIDwREAPAIDL+8DTAx4IbwT05Wz79u3y8MMPS5s2bSQ6OloaNWpU3g8JAAgj9IAHQA19Ofvmm2/kgw8+kHbt2onH45FDhw7xrgOAEGRXH/jE6GiJiiQ/B4QzAvpyduONN0qvXr3Mz5qpX7x4cXk/JACEBbs6zBTVZYY+8ADsQkBfziLJmgBAwNFhBgD+JyzP0W3dulWmTp0qAwYMkJYtW0pUVJRERETI+PHj/br93LlzpXPnzlK1alWpVKmStGrVSiZPniy5NmWKACCc0GEGAPILywz9zJkzJTU1tVS3HTp0qLmtHgR07dpVKleuLCtWrJCRI0fKwoULZenSpRIXFxfwfQYAOLPDjKLLDAA7hWWGvkWLFjJixAiZPXu2bNmyRfr37+/X7RYsWGCCeQ3i09PTZcmSJTJ//nzZtm2byfSvWbNGxo4dW+77DwBwDrrMALBbWGboBw4cWKo69wkTJpj1qFGjTBtKS40aNWTGjBnSqVMnmTZtmgnqExMTA7zXAACndZhRdJkBYLewDOhLY+/evbJu3Trzc79+/Qpd37FjR6lfv77s2bNHFi1aJH379rVhLwEgOOgwAwDOQUDvpw0bNph1tWrVpHHjxj63SUpKMgG9bktADyBU0WEGAJyFgN5PO3fuNOsGDRoUuY1m6L23Vb/++qvJ2KvvvvvO/D5v3jzze3JysjRs2NDnfeXk5JjFkp2d7e+uAkC5ocMMADgPAb2fjhw5YtbaprIoOli2YPD9yy+/yK233ppvO+v3WbNmmdaZvkycOFHGjRvn7+4BQFDQYQYAnIeAvpw1atRIPB5PiW83evRoGT58eN7vepBgnQEAAPyODjMAQEDvt/j4eLM+duxYkdscPXrUrBMSEsr83oqNjTXL9OnTzXLq1CnerwAciQ4zAGAvMvQlyLQrHfRaFOs6a9tASElJMYtm6GmFCcCJtF1k9Vh7WkYCAMJ0YqnSaN26tVkfOHAg36BXbxkZGWbt3aMeAAAAKE8E9H6qV6+e6Uqj5syZU+h6nSVWM/RaJtOjR4+A/YG03KZZs2Z5jw0AAAB4o+SmBMaMGSN9+vSRSZMmyXXXXZeXides/aBBg8zPgwcPDmhpDCU3AJw0sdOhE/9rpwsAcIYIT2lasLjc+vXr8wJwtWPHDtm/f7/JwtetWzfv8rS0NKldu3a+2w4ZMkSmTJki0dHR0q1bN9PGcvny5XL48GHp0KGDLFu2TOLi4gK+z1YNfVZWVkAG3QJwL6dN7JTRvSc19AAg9sVrUeH6Yqenpxe6PDMz0ywW74mdLKmpqSZw11KYtWvXSm5urjRp0kRGjRolw4YNk5iYmIDuK11uAHhjYicAQEFhmaF3IzL0ANSBnBxJWvq+o/rAr7+mp0RFMiQLALJtytDzHxgAUCpM6gQAzhCWJTcAEErsmtgpMTqazDwAOAABvcNRQw84j10dZorqMsPETgAQ3qihdwlq6AFncFqHGUWXGQBwBmroAcDh6DADAHAiBsUCgJ+0zMZJmXlrYKrWsgMAwhcBvQtq6Js1aybJycl27woAh6HLDABAUUPvEtTQA87sAW9XhxlFlxkAcBZmigUAF6LDDADAbpTcAAAAAC5GQA8AAAC4GAE9AAAA4GLMFOtwzBQLOHuWVgAA7EaXG5egyw3ALK0AAGfLzs6WxMREycrKkoSEhKA9LiU3AFyBWVoBAPCNgB6AKzBLKwAAvhHQA0ApMEsrAMApGBQLwLWYpRUAAAJ6x6PLDVA0ZmkFAICA3vFSUlLMYo2aBsK1bSQtIwEA8I2SGwB+S8v8Xp76aoMcOWlPH3gAAFAYg2IB+IW2kQAAOBMBPQBXto3ULjOJ0dF27wYAALYjoAfgOrSMBADgf6ihB+C6tpGamY+KJB8BAIAioAdQarSNBADAfqS4AAAAABcjoAcAAABcjIDeBTPFNmvWTJKTk+3eFQAAADgQNfQOx0yxcMIsrYqZWgEAcCYCesAlmKUVAAD4QskN4ALM0goAAIpCQA+4gNNmaVXM1AoAgDMQ0AMoMWZqBQDAOaihD4Lt27fLY489JqtXr5aKFSvKbbfdJs8884xUqlQpGA+PEGXXLK2KmVoBAHAOAvpylpWVJV27dpU6derI3Llz5eDBgzJ8+HD5+eefZf78+eX98AhhzNIKAAAUAX05e/HFF2Xfvn2SkZEhZ599trksLi5Obr75Zvnyyy+lbdu2vBMBAABQatTQl7NFixaZDL0VzKuePXtK5cqV5YMPPijvhwcAAECIC8sM/datW2Xp0qUmQ67Lli1b5NSpU/L000/Lk08+ecbba+mMzuC6ceNGOXHihDRt2lTuvPNOGTZsmERHR+fbdvPmzXL33XfnuywqKkrOP/9887hwDyZ1AgAAThSWAf3MmTMlNTW1VLcdOnSoua0G5Zp510z7ihUrZOTIkbJw4UJzoKAlNZZDhw5JlSpVCt1P1apVTT093IFJnQAAgFOFZclNixYtZMSIETJ79myTJe/fv79ft1uwYIEJ5jWIT09PlyVLlpiBrdu2bZOWLVvKmjVrZOzYseW+/wguJnUCAABOFpYZ+oEDB+b7PTLSv+OaCRMmmPWoUaOkTZs2eZfXqFFDZsyYIZ06dZJp06aZoD4xMTEvE3/48OFC96WZ+/POO6+MzwTBwKROAADAycIyQ18ae/fulXXr1pmf+/XrV+j6jh07Sv369SUnJ8cMhLVcdNFFhWrltV7/v//9r7kOKCkmdQIAABLuGfrS2LBhg1lXq1ZNGjdu7HObpKQk2bNnj9m2b9++5rIePXrIuHHjTOvKmjVrmsu01v7o0aNy/fXXB/EZIJCY1AkAADgFAb2fdu7cadYNGjQochvN0Htvqx566CGZOnWq9OrVy5TiaKmNTiylv+sBQFE006+LJTs7299dRRAwqRMAAHAKSm78dOTIEbOuVKlSkdvoYNmCwbd2uNEuOAkJCXLLLbfIo48+Kr1795a33nqr2MebOHGiqcO3FutgAQAAAPBGhj4ItOf84sWLS3Sb0aNHm0y+RQ8SCOoBAABQEAG9n+Lj48362LFjRW6jdfFKs/FlFRsbaxadwEoXHUgLAAAAFETJjZ8aNWpk1jrotSjWdda2gZCSkmJmm7U67AAAAADeyND7qXXr1mZ94MABM+jVV6ebjIwMs/buUY/ATvCkPeGD7dCJ/w1OBgAAcBoCej/Vq1dPkpOTTaZ8zpw58sc//jHf9TpLrGbotUxGW1UGCiU3v0vL/F6e+mqDHDkZ/IAeAADAySi5KYExY8aY9aRJk2T9+vV5l2vWftCgQebnwYMH580SGwiU3PyemSeYBwAA8C3C4/F4JMxoMG4F4GrHjh2yf/9+k4WvW7du3uVpaWlSu3btfLcdMmSITJkyRaKjo6Vbt26mjeXy5cvl8OHD0qFDB1m2bJnExcUFfJ+1y40eKGRlZQVk0K2bHMjJkaSl74uTZmpdf01PiYrkeBgAANgfr0WF64udnp5e6PLMzEyzWLwndrKkpqaawF1LYdauXSu5ubnSpEkTGTVqlAwbNkxiYmICuq+U3DiLBvPjWrYmmAcAAI4Rlhl6NyJDnz9Dv6zzNWa21mBLjI4mmAcAAD6RoQdKQIP56rHBD+gBAACchiJgAAAAwMUI6B1Oa+ibNWtmWmYCAAAABRHQOxxtKwEAAFCcsOxyA/fM0qqYqRUAAKBoBPQ4I2ZpBQAAcC5KbhzO7hp6ZmkFAABwNgJ6h7O7hl7LbI6ctKfUprjJnbQfPAAAAAjo4TLM1AoAAJAfNfQoMbtmaVXM1AoAAJAfAT1KjFlaAQAAnIMaegAAAMDFCOgdzu4uNwAAAHA2AnqHs7vLDQAAAJyNgB4AAABwMQbFuszBnBzJzckJ2uMdOhG8xwIAAEDJEdC7zJUrFknkWWfZvRsAAABwCEpuAAAAABcjoEeJZ2rVyZ0AAADgDAT0DuektpUazI9r2VqiInnbAAAAOEWEx+Px2L0TOLPs7GxJTEyUBu+8Jst79DGztQabZuYJ5gEAAIqP17KysiQhIUGChUGxLqTBfPXY4Af0AAAAcB5qJwAAAAAXI6AHAAAAXIyAHgAAAHAxAnoAAADAxQjoAQAAABcjoAcAAABcjIAeAAAAcDECeodz0kyxAAAAcB4CeodLSUmRzZs3y7p16+zeFQAAADgQAT0AAADgYgT0LvNJ1x5SNSbG7t0AAACAQxDQu0y12FiJjIiwezcAAADgEAT0AAAAgIsR0Jez7du3y8MPPyxt2rSR6OhoadSoUXk/JAAAAMJIlN07EOq++eYb+eCDD6Rdu3bi8Xjk0KFDdu8SAAAAQggZ+nJ24403SmZmprz33nty6aWXlvfDAQAAIMwQ0Jf3CxzJSwwAAIDy4/poc+vWrTJ16lQZMGCAtGzZUqKioiQiIkLGjx/v1+3nzp0rnTt3lqpVq0qlSpWkVatWMnnyZMnNzS33fQcAAAAk3GvoZ86cKampqaW67dChQ81t9SCga9euUrlyZVmxYoWMHDlSFi5cKEuXLpW4uLiA7zMAAAAQKK7P0Ldo0UJGjBghs2fPli1btkj//v39ut2CBQtMMK9BfHp6uixZskTmz58v27ZtM5n+NWvWyNixY/Pd5rXXXjPZ/zMt8+bNK6dnCwAAAIRYhn7gwIGlqlmfMGGCWY8aNcq0lLTUqFFDZsyYIZ06dZJp06aZoD4xMdFc16dPH2nfvv0Z77tu3bolfBYAAABAmAb0pbF3715Zt26d+blfv36Fru/YsaPUr19f9uzZI4sWLZK+ffuayzWwt4J7AAAAwPUBvdadB4KWqSxfvlyCZcOGDWZdrVo1ady4sc9tkpKSTECv21oBfTDl5OSYxZKdnR30fQAAAECIB/SrVq0KWEAfTDt37jTrBg0aFLmNZui9ty2tX3/91WT51XfffWd+t2rsk5OTpWHDhj5vN3HiRBk3blyZHhsAAAChr8wlN9dee63pClNakyZNMt1kgunIkSNmrW0qi6KDZQORGf/ll1/k1ltvzXeZ9fusWbNMu01fRo8eLcOHD8/7XffDOsgAAAAAAhbQn3POOXLllVeW+vbaOSaUNWrUSDweT4lvFxsbaxYAAACg3NpWnn/++VK7du0yHxDo/QRTfHy8WR87dqzIbY4ePWrWCQkJYqfp06dLs2bNTHkOAAAAENAM/bfffitlpbXiugQ7a6500GtRrOusbe2SkpJiFi25ocMOAAAAQm5iqdJo3bq1WR84cKDIQa8ZGRlm7d2jHgAAAHCasAzo69Wrl1fCMmfOnELX6yyxmqHXGvYePXqInSi5AQAAQMAD+n379snGjRvz6sx9dZFZvXq1ONmYMWPyuuysX78+73LN2g8aNMj8PHjwYNvLXLTcZvPmzXkTYQEAAADeIjwlaMFy8uRJeeCBB+SNN94wv8fExMhDDz1kauDj4uLytktPT5fLL79cTp06JeVNg3ErAFc7duyQ/fv3myx83bp18y5PS0srNIB3yJAhMmXKFImOjpZu3bqZNpY6wdXhw4elQ4cOsmzZsnzPy05WDX1WVpbtA3UBAADgnHitRINiNfh999135S9/+Yu0bdtWPvnkE3OZrhcvXiy1atUSO144PYAoKDMz0ywW71lXLampqSZw17KWtWvXSm5urjRp0kRGjRolw4YNMwcsdtN90yUYB0cAAAAI8Qx9ixYt5M477zSTHlm0HKR3794m4FyyZIk0bdo0qBn6cEGGHgAAwNmybcrQl6iGXjvCaKDuTXukf/7551KtWjWT7fauRwcAAADgoIC+Ro0a8vPPPxe6vHr16rJy5Upp3ry5dOnSxdShIzDocgMAAICAldzcdNNNUrFiRZ+tHtWJEyfk9ttvl3/9618SERFByU0AUXIDAADgbNluKLnp16+fKbvR1o6+6CDS+fPny4MPPigNGjQI1D4CAAAACESGHvYhQw8AAOBs2W7I0AMAAABwFgJ6h2NQLAAAAIJacqOzyc6dO9d0uvnhhx/k+PHjvh84IoJuOCVAyQ0AAICzZbthptgz2bdvn3Tv3l02bdokZzpO0IAeAAAAgIMC+ieeeEI2btxoZot95JFH5LzzzpP4+PhAPgQAAACA8groP/jgA6lVq5Z88cUXZuZYAAAAAC4aFPvbb79Jhw4dCOYDiEGxAAAACFpAryU2GtQjcFJSUmTz5s2ybt06XlYAAACUb0B///33y6pVqyQzMzOQdwsAAAAgGAH94MGD5YYbbpCuXbvKkiVL5PTp04G8ewAAAADlOShWvfjii3LllVdKjx49JCoqSmrXri2RkZE+21bu2LEj0A8PAAAAhJWABvR79uyRTp06mbX2oc/NzZXdu3f73JY+9AAAAIDDAvqRI0eaAL5jx44yfPhwM0i2cuXKgXwIAAAAAOUV0H/88cfSsGFDWbZsmcTGxgbyrsO6baUup06dsntXAAAAEA596Nu1a0cwH0C0rQQAAEDQAvpmzZrJwYMHA3mXAAAAAIIV0D/66KPyySefyNdffx3IuwUAAAAQjID+rrvukhEjRpg+9Nq+sqgONwAAAAAcOCi2QoUKeT8PGjSo2G21beXJkycD+fAAAABA2AloQK+958tjWwAAAABBCOhPnz4dyLsDAAAAEMwaegAAAADBRUAPAAAAuBgBvcPpLLHa3z85OdnuXQEAAECoBfQTJkyQDz/8sEw7oLfX+4FvzBQLAACAcgvon3zySZk/f35Z7kLmzZsnY8eOLdN9AAAAAOGKkhsAAAAgnNtWaoZ91apVpb79/v37y7oLAAAAQNgqc0B/9OhRs5SFzhoLAAAAIMgB/c6dO8ty87CgZzBmz54tX375pTkb0bhxY7nvvvvksccek+joaLt3DwAAAOEc0Dds2DBwexKinn32WWnUqJFMnjxZatWqJWvXrjWDiTdt2iSvv/663bsHAACAcC+5QfEWLlwoNWvWzPu9S5cu4vF4TGcfK8gHAAAASosuN+XMO5i3tG3b1qx/+OGH8n54AAAAhDjXB/Rbt26VqVOnyoABA6Rly5YSFRVlBtmOHz/er9vPnTtXOnfuLFWrVpVKlSpJq1atTOY8Nze33PZ59erVEhMTI02aNCm3xwAAAEB4cH3JzcyZMyU1NbVUtx06dKi5rR4EdO3aVSpXriwrVqyQkSNHmlKZpUuXSlxcXED3d/PmzeYxH3zwQUlISAjofQMAACD8uD5D36JFCxkxYoTpJLNlyxbp37+/X7dbsGCBCaw1iE9PT5clS5aYWW+3bdtmMv1r1qwpNIPta6+9ZrL/Z1q0s40v2uWmd+/e0rRpU5k0aVJAnj8AAADCm+sz9AMHDsz3e2Skf8coEyZMMOtRo0ZJmzZt8i6vUaOGzJgxQzp16iTTpk0zQX1iYqK5rk+fPtK+ffsz3nfdunULXXbkyBG57rrr5MSJE2YiLi3vAQAAACTcA/rS2Lt3r6xbt8783K9fv0LXd+zYUerXry979uyRRYsWSd++fc3lGthbwX1J5OTkSK9evWTXrl0m81+nTp0APAsAAACgnEtutC7922+/NT+/8cYbcuDAAUe85hs2bDDratWqmYmefElKSsq3bWmdOnVK7rjjDnMAoQcHF1xwgd8HAdnZ2fkWAAAAIKgBvXZzycrKMj/fe++9smPHDnECa4bbBg0aFLmNZui9ty2tlJQUU6+vA201uP/iiy/yluKC9IkTJ+adEdDF2h8AAAAgaCU3Wkv+/vvvm8mTdDKln376SXbv3l3k9sUF2IGk9eyquDp2HSyrypoZX7x4sVlrLX7BQbYrV640LTN9GT16tAwfPjzvd90PgnoAAAAENaB/9NFH5YknnjAdXbT7iw4qLY5msEON1s2XRmxsrFkAAAAA2wJ6bSepnV20neRtt90mTz/9tGnZaLf4+HizPnbsWJHbHD161Kzt7hU/ffp0s4TiwQ4AAABc0OWmefPmZrnnnntMR5miBqEGU6NGjcxau9gUxbrO2tYuWoOvi5bclKbDDgAAAEJb0LrcdOnSxfZst6V169ZmrV13ihr0mpGRYdbePeoBAAAApwnLLjf16tWT5ORk8/OcOXMKXa+94jVDrzXsPXr0EDtpuU2zZs3y9hcAAAAIWkBvdbnRgaHeXW6KWoJpzJgxZq0DdtevX593uWbtBw0aZH4ePHiw7WUuWm6zefPmvImwAAAAAG8RHo20y8mzzz5rutxohxt/lGbgpwbjVgCu9CzA/v37TRZeDygsaWlpUrt27Xy3HTJkiEyZMkWio6OlW7dupo3l8uXL5fDhw9KhQwdZtmyZxMXFiRNYNfR6xsMppUsAAACwP15zfZcbfeHS09MLXZ6ZmWkW75lXC0pNTTWBu5a1rF27VnJzc6VJkyYyatQoGTZsmMTExIjd6HIDAAAA2zL03rSG/k9/+pMjuty4ERl6AAAAZ8u2KUNfrjX03mbNmmVmOn3ppZdk4MCB0r17d9m2bZu5bt68ebJ169Zg7QoAAAAQMsq9D71FB8ZeddVV8sMPP0jLli1NW8gjR46Y67Ru/aOPPpJXXnklWLsDAAAAhISgZeiHDh1qZmj97rvv5LPPPjNdbyydO3c2LS5RGG0rAQAA4IiAXrPwf/7zn+Wcc84p1PVGu8/s3bs3WLviKrStBAAAgCMCeg3iIyN9P5y2mTzrrLOCtSsAAABAyAhaQH/ZZZeZAbG+vPXWW3LFFVcEa1cAAACAkBG0QbHag/7KK6+U9u3by6233moy9trdZty4caYc5/PPPw/WrrgKfegBAADgiD706t///reMHDlS1qxZY2aF1RKcyy+/XJ577jlJTk4O1m64En3oAQAAnC3bpj70QQ3oLcePH5eDBw9KlSpVqJ33EwE9AACAs2XbFNAHreTGW8WKFaVOnTp2PDQAAAAQUqKCnZnftGmT/Oc//zHLjBkzgvnwAAAAQMgpt4D+l19+yQvcrWXbtm1y+vTpvG0I6M+MQbEAAAAo9xr6//73v4WC959//jnfNtbD6EDYxo0bS/PmzWXBggVlfeiwQQ09AACAs2W7sYZeO9R89dVX8uuvv+Zd5n18UL16dbn44ovlm2++kX379klGRoZcdNFFpoYeAAAAgM0B/RdffGH6yVeoUEHOP/98adWqlQngrbU18LVTp04moG/dunUAdhkAAABAQAL6mJgYyc3NlRo1asgf/vAHueeee8pydwAAAABKKFLKYMuWLXLDDTfITz/9JPfdd58pwfnyyy/LcpcAAAAAghXQ6+DWf/3rX/LRRx+Zkhstwbn00ktl4MCBpsQGAAAAgIMDess111xjBsc+88wzUrlyZXn11VdNgP/3v/9dTp06FYiHCOu2lc2aNZPk5GS7dwUAAACh2rayYP/5kSNHyhtvvGF+v+CCC+TYsWOSmZlJcF8GtK0EAABwtmyb2lYGJEPv7eyzz5ZZs2bJ559/LklJSfLtt9/Knj17zHXbt28P9MMBAAAAYS3gAb2lXbt2kp6eLq+88orUqlXL9Kdv0aKFjBgxwhy9AAAAAHBwQG+59957zUyyw4YNM0H9888/L+edd5689NJL5f3QAAAAQMgLeA19cbT8ZujQobJ06VKJjIyUkydPBuuhXY8aegAAAGfLDpUa+uJceOGFsnjxYklLS5NGjRoF86EBAACAkBTUgN7Sq1cv2bx5sx0PDQAAAIQUWwJ6FRMTY9dDAwAAACHDtoAeAAAAQNkR0DscM8UCAADAMV1uUHp0uQEAAHC27HDocgMAAAAgsAjoAQAAABcjoAcAAABcjIAeAAAAcDEC+nL23nvvSceOHaVGjRoSGxsr5557rgwfPlwOHTpU3g8NAACAMBBl9w6EuoMHD0rnzp3lD3/4gxn1/NVXX8m4ceNk48aNsnz5crt3DwAAAC5HQF/OBg4cmO93De4rVqwoDz74oOzevVsaNGhQ3rsAAACAEEZAb4Nq1aqZdW5urh0PDwAAEFCe0yfl1Iksx7yqFWKrSkRE+FSWuz6g37p1qyxdulS+/PJLs2zZskVOnTolTz/9tDz55JNnvP3cuXPNbKxaAnPixAlp2rSp3HnnnTJs2DCJjo4O2H7qPmkA//XXX5uSmx49ekiTJk0Cdv8AAAB2yN6ZJvsynpLTuUcc8wdofFOGRFWsLuHC9QH9zJkzJTU1tVS3HTp0qLltVFSUdO3aVSpXriwrVqyQkSNHysKFC82BQlxcXED2s3r16mbWMNW9e3f55z//GZD7BQAAsDMz77RgPhy5/lxEixYtZMSIETJ79myTne/fv79ft1uwYIEJ5jWIT09PlyVLlsj8+fNl27Zt0rJlS1mzZo2MHTs2321ee+01iYiIOOMyb968Qo+3atUq+eyzz+SFF16QzZs3y4033miy9gAAAG6lZTYE8/aLCrVBp5GR/h2jTJgwwaxHjRolbdq0ybtc20vOmDFDOnXqJNOmTTNBvXanUX369JH27duf8b7r1q1b6LJLLrnErC+//HLzs95PWlqa3HLLLX7tLwAAABCSAX1p7N27V9atW2d+7tevX6HrtW98/fr1Zc+ePbJo0SLp27evuVwDeyu4Lws9gNBM/vbt28t8XwAAAE7S8PplEhlb1fZBseEkLAP6DRs25HWbady4sc9tkpKSTECv21oBfaBo6Y3H4zGTTAEAALi1y8zpnMITZWowH04DUp0gLAP6nTt3mnVxPeA1Q++9bWldc8010q1bN2nevLmZKVYPEJ555hm5+OKLpXfv3kXeLicnxyyW7OzsMu0HAAAITU7sMoPgCsuA/siR39/wlSpVKnIbHSwbiEC6Xbt28tZbb+UdGDRq1EgGDRokw4cPl5iYmCJvN3HiRNPeEgAAoCh0mUHYBvTBpP3wdSmp0aNHm6DfogcW1lkDAAAAJ3aZiYyOlwoxZR9viJIJy4A+Pj7erI8dO1bkNkePHjXrhIQEsYOW5+iik17pQotLAADgZBrM10waJxGRYRle2iosX3Ete1E66LUo1nXWtnZJSUkxi2boA9FhBwAAhMaA1KIGpdrVZUYz8wTz9gjLgL5169ZmfeDAAVPb7qvTTUZGhll796gHAABw+oBUusyEH9fPFFsa9erVk+TkZPPznDlzCl2vs8Rqhl5LXnr06CF20nKbZs2a5e0vAABwBgakwinCMqBXY8aMMetJkybJ+vXr8y7XrL12oVGDBw+2vcxFy202b96cNxEWAABwBqcNSFUMSg1PER6d4cjFNBi3AnC1Y8cO2b9/v8nC161bN+/ytLQ0qV27dr7bDhkyRKZMmSLR0dGmV7y2sVy+fLkcPnxYOnToIMuWLZO4uDhxAquGPisry7aBugAA4H9OHj8gO99Lctyg1ITGfezelbCVbVO8FhUKL1x6enqhyzMzM81i8Z6kyZKammoCdy1rWbt2reTm5kqTJk1k1KhRMmzYsGL7xAcLXW4AAHAPuwakKgalhi/XZ+jDBRl6AACcn6FvfFOGRFWsbts+ITzjtbCtoQcAAABCAQE9AAAA4GIE9A5H20oAAAAUhxp6l6CGHgAA583S+v2HV+e7jBr68JZNlxsAAOA2dgbUR3YtkP3rx9vy2ICTuL5tJQAAsEf2zjTZl/GU4yZXAsINNfQORw09AMCpmXmC+fyYpRV2IaB3uJSUFNm8ebOsW7fO7l0BACCPltmQmS88S2tEJMUPCD7edQAAwPVqtHlS4hv1tu3xmaUVdiKgBwAAAdHw+mUSGVs16K8mwTTCHQE9AAAICA3moypW59UEgowaegAAAMDFCOgdji43AAAAKA4zxboEM8UCAApillTAWZgpFgAA+B84MKkTgP9DyQ0AAC7DpE4AvNHlBgAAl5W8nM455LhJnZglFbAPAT0AAKVAycv/MEsqYC8CegAAQqDkxa5JnRQTOwH2IqB3QdtKXU6dOmX3rgAA/o+W2TgpmNcMeXR8I4mI5GsdCEcMinW4lJQU2bx5s6xbt87uXQEAOBDlLgA4lAcAwMUlL5S7ACCgBwAgADSYj6pYndcSQNAR0AMAXMnuWVIBwCkI6AEArkPLSAD4HwbFAgBcxYktIwHATgT0AABXcVrLSMUsqQDsREAPAEBZvkij46Vm0jh6wAOwDTX0DsfEUgBwZsySCiCcRXg8Ho/dO4Ezy87OlsTERMnKypKEhAReMgBh6+TxA7LzvaR8lzW+KYOWkQDCNl6j5AYAAABwMQJ6AAAAwMWooQcAlBiTOgGAcxDQAwBKhEmdAMBZKLkBAPiNSZ0AwHkI6IPk5MmTcvHFF0tERIS88847wXpYAAgoJnUCAOeh5CZIUlNTZd++fcF6OAAhzq4a9tM5h8RJmNQJAAjogyIzM1PGjRsn06ZNk3vuuYf3HYCQqmFnUicAsBcZ+iAYOnSo9OzZU6644opgPByAEObEGvbI2KpM6gQANnJ1Df3WrVtl6tSpMmDAAGnZsqVERUWZGvXx48f7dfu5c+dK586dpWrVqlKpUiVp1aqVTJ48WXJzcwO2j4sXL5alS5fKM888E7D7BBC+nFbDriUvFWIS7d4NAAhrrs7Qz5w509SmlzZrrrfVg4CuXbtK5cqVZcWKFTJy5EhZuHChCcLj4uLKtH/Hjx+XwYMHy1NPPSW1a9eWXbt2len+AMBJqF8HAGdwdUDfokULGTFihLRu3VratGkjEyZMkDfffPOMt1uwYIEJ5jWI/+STT8xt1f79+01wv2bNGhk7dqw8++yzebd57bXX5N577/Ur63/LLbeYn3V/YmJi5LHHHivT8wQAJ9awa2Y+ItLVXyMAEBJc/Z944MCB+X6PjPSvgkgDbTVq1Ki8YF7VqFFDZsyYIZ06dTIDWDWoT0z8/VRynz59pH379me877p165r1999/b8p3Zs+eLceOHTOXZWdnm/Wvv/4qWVlZefcNAGVBDTsAhDdXB/SlsXfvXlm3bp35uV+/foWu79ixo9SvX1/27NkjixYtkr59+5rLNfguSQC+c+dOycnJycvWe7v//vtN1v7o0aNlei4AAABA2AX0GzZsMOtq1apJ48aNfW6TlJRkAnrd1groS+qSSy6RlStX5rvsp59+Mvenmf+rr7662NvrwYAuFiu7DwAAAIR1QK+Zc9WgQYMit9EMvfe2pVGlShXTQcebNSi2WbNmpqynOBMnTjS96wE4j12TOjlxYicAgP3CLqA/cuT3dm/aprIoOljW7qz46NGjZfjw4Xm/675YBxoA7OO0SZ0AAAi7gN5OjRo1Eo/H49e2sbGxZgHgHE6c1AkAAFdPLFUa8fHxZm11nvHFGqyakJAgdps+fbop0UlOTrZ7V4Cw57RJnRQTOwEAIsMxS6500GtRrOusbe2UkpIimzdvzuvMAwAWJnYCAIRlyY1OQqUOHDhgBr366nSTkZFh1t496u3M0Oty6tQpu3cFgIMmdVJM7AQACMuAvl69eqZ8RTPec+bMkT/+8Y/5rtdZYjVDr/XrPXr0ECdk6HXRQbFMRAU4D5M6AQDsFnYlN2rMmDFmPWnSJFm/fn3e5Zq1HzRokPl58ODBBNAAAABwvAiPv21XHEiDcSsAVzt27JD9+/ebLHzdunXzLk9LS5PatWvnu+2QIUNkypQpEh0dLd26dTNtLJcvXy6HDx+WDh06yLJlyyQuLk6cwsrQZ2VlOWKwLhCOTh4/IDvfS8p3WeObMiSqYnXb9gkA4Bx2xWtRbn/R0tPTC12emZlpFov3jKuW1NRUE7hrffratWslNzdXmjRpIqNGjZJhw4ZJTEyMOAE19AAAAAjZDH04IUMPOGOW1u8/vDrfZWToAQAWMvQAcAbM0goAQGFhOSjWTZhYCvgds7QCAOAbAb3DMbEU8DtmaQUAwDcCegAoBWZpBQA4hau73AAIb8zSCgAAAT0AF2OWVgAAKLlxPAbFAgAAoDjU0Dscg2IBAABQHAJ6AAAAwMUYFAvAFTO16iytAACgMAJ6AH5jplYAAJyHkhuHY1AsnIKZWgEAcCYCeodjUCycwmkzterEThViEu3eDQAAbEdAD8B1mKUVAID/oYYegOtmatXMfEQk/74AAFB8IwIoNWZqBQDAfgT0gIvY1TJS0TYSAABnIqAHXIKWkQAAwBcGxTocbSuhaBkJAACKQkDvcLSthBNbRiraRgIA4AwE9ABK/o8jOl5qJo2j0wwAAA5ADT3gUna1jFS0jQQAwDkI6AGXomUkAAAwMQEvAwAAAOBeBPQAAACAi1FyA/iJSZ0AAIATEdADfmBSJwAA4FSU3ABnwKROAADAyQjoHY6ZYu3HpE4AAMDJCOgdjpliURCTOgEAAG/U0AOlwKROAADAKQjogVJgUicAAOAUlNwAAAAALkZADwAAXGfDhg1SoUIFmTNnTqlu36hRI7MEW+fOnSUiIkLCya5du8xzHjBgQJnu589//rO5n1WrVpX6Pg4ePCiJiYnyxBNPSCghoC9n+qbTN1/BpUWLFuX90ACAcg5QvJezzjpL6tSpI926dZM//elPsmPHDp+3fe2118z2GpwUpahtNADVy2vWrClHjhzxeduKFSsWClSt+ytu8TfYsvahqGXBggV52+p9el8XFRUlVatWlWbNmsmdd94p8+bNkxMnTkhpDB8+XC688EK54447SnV7hKdq1arJY489JlOmTJHvv/9eQgU19EHy8ssvS/PmzfN+13/8AAB3a9Kkidx1113m55ycHPnll1/k3//+tzz99NMyYcIEkwX8f//v/wU8I7t//36ZPHmyeZyS0IONjh07+rzukksu8ft+NDP+5JNP+rxOg+yC7r//fqlXr554PB7Jzs6Wbdu2ycKFC012/aKLLpJ33nlHLr74Yr8ff8WKFSZh9sorr0hkZOlyk8uXLy/V7eB+Q4cOlb/+9a8yfvx4+cc//iGhgIA+SDSYb9++fbAeLmQneNKe8MF2OudQ0B8TgDs0bdrUZ6Z9zZo10r9/f5k4caIJfksaeBcnOjpaateuLc8//7xpbXzOOef4fdurrrpKRo0aVeZ90Ex7cWcYCho4cGCh70A9w/DUU0+Z59G9e3dZv369OcPhj5kzZ0pcXJzccsstUpaDMYSn6tWry3XXXSdvv/22PPfcc5KQkCBuR8kNXCF7Z5p8N7+N7HwvKejL9x9ebffTB+AymgVfvHixxMbGmkz6nj17AnbfmpEeN26cHDt2zKzdKj4+Xv72t7+Zspyff/7ZZEv9cejQIfnXv/4l11xzjc9AbOXKlSZY04MDff1r1aolnTp1kpdeeumMNfTeNdp69kDPWuiBgx5ADRkyRH777bdCj3fy5Elz4KYHCFrupAd5+vt3331X4rpxfV56FkXLkvS+tDz32WeflVOnTpW4Vn3Lli1yww03SJUqVcz99e3b15zZUZ9//rl5HH399Do94NL3ky+zZs2SSy+9VCpXrmwW/VlLuHzR/dTMt74G3q/F6dOnfW6v+6pjCgIxxmHTpk2m/Er/VjExMdKwYUN59NFH5cCBAz63v+2228xznjt3roQC1wf0W7dulalTp5o3b8uWLU3WQN8g/v5j0D+kvpn0DV2pUiVp1aqV+eebm5sb0P3s1auXydLoP5YHH3zQDMqA/5n5fRlPyelc3/WiAJzD4zktJ48fcM2i+1teLrjgAhM0aI24d115INx9990m2NNyzv/+97/iZmPHjjXrf/7zn6Yk50xWr15tvqN9nfX+8MMPTaCanp5uAv7HH39cevbsacqh3nzzTb/3adq0aea7Ws+uP/LIIyZG0JprDXwLuu+++2TMmDHmZz1jcu2115qzDlrWURKjR4+W3r17m7jmpptukkGDBpmDiT/84Q8lHiewc+dOufzyy83z1n3W2EbLmvT+9eyRvkYanOtz1AMRLV3S4LcgrTXX57d3715TNqWL/nzvvfeaA5yC9P70DJAG8Ppa6N9AD9p8bRtI77//vrRr186sNabT115jQv07XnbZZeYgsCC9PJRKr1xfcqOn3VJTU0t1W/2D6231IKBr167mza11eSNHjjS1fUuXLjUfprLQkdT6D0XfYHr/+k9Gj1b16DgjI8NkD1A8LbNxUjCvM7VWiEm0ezcARzqVc8ic2XKLxjdlSFTF6uV2//q/XwPJdevWBfR+NUs/adIkk4HVYFIHl/rj448/luPHj/u8ToNGX/XvvmhW2lfJTWkGqZ577rlSv359cxZDA1H9vTifffaZWbdt27bQda+++qo5KNAsvQax3orK1Bb1On355ZfmoEzpOAjN1mtQ/Mwzz+SVBmkwqH9fvU73yxof98c//lFat27t9+MtW7bM/D01AJ4/f75JMCp9LhrYv/DCC+bym2++2a/704Oev//973mBtN6PvlcWLVokN954oyk10USj0oOjpKQk8zw0PtHEo3UfmjDVMQ4as2g8o/TvrgdTeoCjJU969kPpWQ19/fV119fCeg76/izJ+IyS0r9r//79pUaNGuZxNTNv0b+XnpnQQer6XLzp+0wP1Kz3k9u5PkOvGYoRI0bI7Nmzzekl/aP6Q7MlGsxbQfaSJUvMh0UH6uhRnR7BWlmDknQJ0MX7H6t+oPV0mX6Q9B+7HizoWYGvv/7afKDgLhrM10waJxGRrj8WBhAEVuBnlToE0vXXXy9XXHGF+e7Sgbj+0ABUy3R8Ld9++63fj62lFb7uQwOo8n6dMjMzzdoKPH3xlYzTuml/aSBsBfPW/WlgqJlnDfQtb731lllrwOjd7MIq0fGXZpKVlgVZgbDSmEIDfV2XJGbQrLtm173vxzrQ0rjECuatMRkamOtB2ubNm/Muf/311/MCeCuYVxoE69gH5V1688Ybb+S9Ft7PoW7duuWaodfHzc7ONgcj3sG80ufcpk2bIt+X+h764Ycf/Doz5HSuj0oKnv7yd7S7dh9QempI/9gWPcKbMWOGOeLUD5gG9dYbuU+fPn4NbNU3b3Guvvpq0zZJMzZl7ckarhpev8zM1hpsmpknmAfgFFoiqt9LmizSrPSZaNATiEGxena5qEx/ebMy7VobXpAGcO+99555Tfr162dKS/T7XL/bS8JX9l+79KjDhw/nXbZx40az9tU5qEOHDn4/3hdffGGCYM1w+6IHFCU54NKOQQU7K+lBhvKVLbeu0+DWu8+/8lXj3qVLF7P+z3/+U+i1sDL23nxdFij62ilNzvpqFavvUz1Q1KXg+0BjMT2Q0b+pHqi4mesD+tLQ+i/r9Kd+4AvSD6Z1+k9PT+lRudLA3vsotazCbWKJQNJgvjxPkwNAIFgBkvaNL5h4KmqgoPd1Z0pS6QBFrbfWIFa/r3r06BEyr9OZsu++DihuvfVWcwZe67a1TGX69Onmu1YDUO1m4m/ph6/Btlqeq7wHqGpmWP9Gvg4YijuDUJCOq9PAsrhBzkUNWi3p/hd3nff4Qeu5+fqb6HPT11W3sWRlZQXktSgpa0zi9OnTi91OX7+C+2YNcg6FVuJhGdBbR516ZNa4cWOf22g9mQb0uq0V0AeKlvfoG1AHcBRFB7LoYvH+0ACAU1WIrWrq0t20v+XJmtEyOTk57zIrMVRcTbdVeuJPEknPOOtgQM2864BMt9FuMPp9q4GjP11NrACzqOYSWk6ii7bF1PpoPdjRQZ/62miW21dmv7Q0ONaDL/17FQx8tXNPSe5HA+TyKM0q63Pbt2+fnH322fmu0/kWtEzF++BA36slfS30OeuBjC96gODP+9/ah6+++qrEk3bqe0i7LYXCeEbX19CXhg66UQ0aNChyG83Qe29bWjrhiJbtaMZAaxf1H692PdAsQXEDh/S0qHVGQBdrfwDAySIiIs3ZM7csur/lRbvPaOcWDRa0ZNOi47SUDjQsinWdP5Mtaa23dh/RgKYknVycwurRf/vtt/t15tp6/bQbTHE0UNMgXuvSrdaYWpYRSNbAW18DK9euXev3/eiZFj3A03F8TmEN6rUOSr1Zl3mf8bBei08//bTQ9r4uU1rmolUTvtpvepc2nem1O9PnqaiMvY7HsN5PbheWAb01Xbb3oI2CdLBsIDLj2vJKg3ltMab/WHRGMv3Hqx8G7ZNaXPsqPTq1lkD2MAYAlC8N8LRjiZ5p1cy599gq7a6hpZ16BthXP2/tsKKd1jRb7W/tsQ5c1LIBHZBYXCmPkxw9etR0gdPXQGu4rdaPZ3LllVeata/gXDuz+OrZrhllpb3RA+nOO+8067/85S/5etT/9NNPJerAZw1g1RaRvs7c6P1p449guueee8xay4AKltZYpUHWNspqSqKvhXd5kAbsRb0WeuZKg/dPPvkk7zJt8zp8+HC/91NbaMbHx5vOQt98802h63/99de8OntvOrhZ3yvW+8ntwrLkJpg0MNelpDSjEwqngAAglG3fvj2vfaMGIho4ascZzZbr3CNPPvlkXkcQb9o/XjvUaDCiAa2WYOr2OjmOTkilwblm263a5jPR2WKHDRtm2iuWtm2l3sfDDz8s5UGfrz4vLdPQpJpmojWI05818aVdSKyBmWeiZy30oEhbPfoKjLUeXw+Y9IBIM/7atU7/JjpQ1tfg1bLQmXd1LJ5OQqWZXu3zrgdxemZGM8d6YOZPsw5N+OnZfD1boZMx6e/asUWDe32PaYZb59fRFpLBou9P7U2v7R61lEVbZurfT7sqaWZbX2vdxqLjFPT9rBNR6WuhZ6X0tXj33XfNa//BBx8UegwN3LVFuI790PJmfd/r31XLovx9P2h5z9tvv23GT+hZAn3ttH2qPrZ1sKA9+fX95816/+jfLBSEZUCvR3JnGmCimQNl93TAOshDF39niQMABI921bCylTpYUwMRDSY0ONPspbYPLKpMRjuEaFtjHcyqXdU0s66ZfO3eppMJaWBXEk888YS8+OKLxdZha+lnURPpaDBUXgG91rArPWjR72BtU6kTPmkwpfXu2jrRXxqkP/TQQ6azjwbq3uPRNIGmNfOafdXxanq/Gtjr7KXaz10fP9C0vaMG2tqhRoNf7Yaj89xohx0N6P2NIzSzrQGy9nfXv5GWnGirTR3rpweN1tmAYNJ90dIbnfPHmmlXD8B0XzV4L0irEM4//3yz1ve0vhYatGupsa+Avnv37ubgR+9PD2B1bKMG5lqeXJJ6+Ouvv96c8dI5AvSgVYN1rcLQx9f91PLngrTduZYMFTee0U0iPKHQfNOL1snph0uPcjUz4ot+wPQfiX5QivrHp10D0tLSTI97fYPYTU93aS29nuqy+yAj2HQ2x4IT1ZT3ZDAAAOfSwYyapdfgT4NHJ9KzEg888IBpha2zzcI5Pv74Y9NCXONFLYkOhXgtLDP01kAPPZWlg159dbrRWVyVd4/6cOY5fdLM2GqH0zmFp2wGAIQvzeRqNl7PhGjyruCEQsGk9e1WG0fvunEtkdEzAjqxJJxl3LhxJjvvK3PvVmEZ0OspGB2Iob3ote5NB1J403o7HYSqNex29/R1QslN9s402ZfxlJzO/X0wMQAAdtPZR7VOevfu3bYG9DqT64cffmgGMGt7R90fLS/R8QFaKkOXOued3enWrZvceOONfk9G6gZhGdArHU2vAzb0g3jdddflZeI1a691dmrw4MEBnUiqNFJSUsxincKxIzNPMA8AcBrtWKNdfeymgzA3b95sgvpDhw6Z/dKBuxpL+Jq8Evaf3fnz/w1kDyWur6Ffv359XgBuDVDSunjNwnu3CdN6+IIjpvXoXgd86KAZPVrTARTWQBSdslkHVVgz0tnNrposX/XrdouMjpdzb14vEZFhezwKAAAcKJsa+tK/cL560WpLJV0s3rOuWrQvqgbuWtKiE0DolMfakUB7Bmv7r+L6xIdTyY3TgvmaSeMI5gEAAEIlQx8unJShb3j9Moks5+nSi1IhJpFgHgAAOFI2GXq4hQbztIwEAABwhtAZ3gsAAACEIQJ6h9P6+WbNmpk2mwAAAEBBBPQOpy0rtR2W9swHAAAACqLvn8ucPH5QTsbkBu3xmKUVAADA2QjoXeb796+UymdxYgUAAAC/IzJ0OGroAQDBFBERIZ07d+ZFB1yEgN7hnFZDrxM7aS94AAh3u3btMsHvtddeG9THPXTokIwfP14uu+wyqV69upntvGbNmnLVVVfJ1KlT5ejRo0HdHwD2o+QGfmOWVgCw1/Lly+W2226TgwcPykUXXSS33nqrCeoPHDggq1evlscee0z+/ve/y44dO/hTAWGEgN6F7JqplVlaAcA+GzdulBtvvNH8/NZbb8mdd95ZaJtVq1bJ6NGjbdg7AHai5MbFM7UGe4mI5PgPAM7kxIkT8vzzz5v5Q+Lj46Vy5cpmPpHhw4ebchlvv/zyiwwbNkyaNm0qsbGxUqNGDbn55pvl66+/LnS/mn3/7bffTFmNr2Beae27BvWW1157zZQF6bog3U6v+/Of/+zzvjIzM6Vv375mn8466yzp0KGDfPzxx0U+57/97W/Spk0bqVSpknnenTp1kvfff/+MrxeAsiOgdzgGxQKAe2jA3bVrVxO8Z2Vlyb333iuPPPKInH/++fLiiy/K999/n7etlsW0bdvWlMg0adJEHn30UenRo4csXrxY2rdvL+np6Xnbbt++3ZTU1K9f39xncfTAoKz0wEMD+G3btsnAgQNNYK9nCHS8wIIFC/Jtm5OTI9dcc408/vjj4vF45P7775e77rrLPNdevXrJtGnTyrw/AIpHytUFg2J1yc7OlsREBqMCcLbTHo8cOnFC3KJqTIxERkQE7P7Gjh0rn332mfTv319mzZolFSpUyLtOA3zv3++++2758ccfTQCvAbHlySeflKSkJHnggQdk06ZN5jK9T3XllVdKZGT55+L0cfv162dKezSLr4YMGWLOOjz44INmf+Pi4szlf/nLX0y2X5/7uHHj8rY/cuSIObjRQP+mm26SOnXqlPt+A+GKgB4AEDAazCctdU+ZRUb3nlI9ABltdfLkSXnppZdM8iU1NTVf8K68kzIbNmyQtWvXyn333ZcvmFeazddgXktYtPSmRYsW8tNPP5nr6tWrJ8Gg+z5hwoS84FxdfPHF5kDllVdekUWLFpnSoNOnT8vMmTPNGQbvYF5p2c2f/vQn6dmzp7z33nsyePDgoOw7EI4I6AEACIBvv/3WZKW1fWTVqsU3Lvjiiy/M+ueff/ZZw673Za01oA+2Bg0aSMOGDQtdrnXxGtDrAYkG9Fu3bjXlOZp914C+oH379uV7PgDKBwE9AAABoCU1qm7dumfcVttOqg8//NAsRTl27JhZn3POOWa9d+/eoPytatWqVezl1nO1nsc333xjljM9DwDlg4AeAIAAqFKlit9Bd0JCgllrxxp/SlF0gKrSWnUtc/G3jt7aTsuBCrKCcl/0zEFxl1vlQ9bz0Gz9vHnz/NonAIFHQA8ACOggU61Ld9P+BsoFF1xgAlyd2VvLUIoru7n00kvN+vPPP/croNe2lldccYXpdPP6668X2+lGu85YnW6sffB1kKFlM0XZvXu36VJTsOzm008/NevWrVubtU5upc85IyNDcnNzzay1AIKPtpUOR9tKAG6iHWN0kKlblkB2uImKipKHHnrIZL61I8ypU6fyXa+XHz161Pzcrl07E9S//fbb8u677xa6L83Cf/LJJ/ku04G22llGDwB83cYKuLWzjEXbYupA1XfeeUeOHz+ed7m2o9T7K4ru+5gxY0wbSu/ON2+++abUrFnTtNe0nrO25dTgf8SIESaoL0gH9mq/fQDlJ8Lj/WmFY1ltK9f/o4G0vGu9megJAGCfXbt2SePGjU2XGm09qTRo7t69uwmszzvvPLnuuutMtvy7774z26xZs0YuueQSs+3OnTulS5cuJhjWvvM6KZMG7Jod18y9Dij1DsLV8uXL5bbbbjO16zpZlWbtq1WrZn7X1pZfffWVyeZrwG7RSajmzJljttc+8hpcp6WlmZ/nz58vTz31VL6BuXoAoB1tDh8+bIJ3HeSr+6IHEdpnX2/Tu3fvfGcEdAbbZcuWmW43uk9nn322OSug+6P96/X56HMEwiVey8rKyitJCwZKbgAACJCKFSuawFYnU9Ie7v/4xz9MC0jtGvPwww9Lo0aN8rbVgwEte9H2lDpZk9W3vnbt2iYovuWWWwrdf7du3UywPmPGDDOYVoNs7ayjAUTLli1lypQpphWmt5dfftnM9qrb6llfLQ3S9pramUaDc1+0VEfvX7Pu+hx+/fVXU2ajnWyuvvrqfNvqActHH31kut+88cYb5j41yNcBtHoQoc9b9w1A+SFD7xJk6AEAAJwt26YMPTX0AAAAgIsR0AMAAAAuRkDvMg17fiIVYoufgRAAAADhg4DeZaIqVpOICP5sAAAA+B2RIQAAAOBiBPQAAACAixHQOxwzxQIAAKA49KF3Cbv6mgIAAMA/9KEHAAAAUGKU3AAAAAAuRkAPAAAAuBgBPQAAAOBiBPQAAACAixHQAwAAAC5GQA8AAAC4GAE9AAAA4GIE9AAAAICLEdADAAAALkZADwAAALgYAT0AAADgYlF27wD84/F4zDo7O5uXDAAAwIGy/y9Os+K2YCGgd4kDBw6Ydf369e3eFQAAAJwhbktMTJRgIaB3iWrVqpn17t27g/oGcYLk5GRZt26dhNv+BPpxynp/pb19SW9Xku3PtK1mSvQgeM+ePZKQkCDhxGmfG8Vnp3xfL3+392c7Pjvh99lx2neOWz87WVlZ0qBBg7y4LVgI6F0iMvL34Q4azIdbYFKhQgVHPedg7U+gH6es91fa25f0diXZ3t9tdRsnvYfC8XOj+OyU7+vl7/YluV8+O+Hz2XHad47bPzuR/xe3BQuDYuF4KSkpEo77E+jHKev9lfb2Jb1dSbZ32nvDSZz42vDZKd/Xy9/tnfjecBInvj7B2CenfeeU5T5SwvCzE+EJdtU+SkVPf2p2Xk/lOC3rBjgVnxuAzw4QDt87ZOhdIjY2Vp566imzBsDnBuA7B3CeWJviNTL0AAAAgIuRoQcAAABcjIAeAAAAcDECegAAAMDFCOhD0HvvvScdO3aUGjVqmEEZ5557rgwfPlwOHTpk964BrnHy5Em5+OKLJSIiQt555x27dwdwrFWrVpnPScGlRYsWdu8a4ArvvvuutGvXTs466ywzIVW3bt3kxx9/LNF9MLFUCDp48KB07txZ/vCHP5jWSV999ZWMGzdONm7cKMuXL7d79wBXSE1NlX379tm9G4BrvPzyy9K8efO83zU4AVC85557TkaPHi0jRoyQv/71r3Ls2DFZvXq1HD9+XEqCgD4EDRw4MN/vGtxXrFhRHnzwQdm9e7eZkhhA0TIzM81B8LRp0+See+7hpQL8oMF8+/btea0AP23fvt0E85pAeuSRR/Iuv+GGG6SkKLkJE3oKR+Xm5tq9K4DjDR06VHr27ClXXHGF3bsCAAhRr776qsTExMj9999f5vsioA+SrVu3ytSpU2XAgAHSsmVLiYqKMjWG48eP9+v2c+fONZn2qlWrSqVKlaRVq1YyefLkYgP0U6dOmVM2GRkZJtvYo0cPadKkSQCfFRB6n53FixfL0qVL5ZlnngnwMwFC+zunV69eUqFCBalVq5Y5I6zln4DbbA3iZ2ft2rVy4YUXyuuvvy4NGzY0j6Xbf/TRRyXfcQ+CYsiQIR59uQsuTz/9tN+3jYqK8nTv3t1z0003eapUqWIu69ixo+fXX3/1ebvExMS8x9HbHT16tByeGVC+gvnZ+e233zxNmjTxPPvss+b3nTt3mm3ffvvtcnt+gNs/N+vXr/c8/vjjnoULF3pWrlzpmTRpkvn+adGihef48eP8geEqQ4L42bngggs8lStX9tSuXdvzxhtveJYsWeK54YYbzO2//vrrEu03AX2Q/OMf//CMGDHCM3v2bM+WLVs8/fv39+sNkpaWZrbTP/iXX36Zd/m+ffs8LVu2NNfpP1JfNmzY4Pnss888L7zwgqdevXqeLl26eE6ePBnw5waEymdn7Nixnosuushz4sQJ8zsBPdzKju8cb0uXLjXbzpo1KyDPBwjFz855551nLv/www/zLsvJyTExmz5uSRDQ2+See+7x6w2SnJxsths/fnyh6z799FNzXWxsrOfw4cPF3s8XX3xhtp07d26Z9x0Ixc/Orl27zO/z5s3zHDp0yCwbN240273yyitn/IwBThbs7xxVrVo1z6BBg8q030Aof3batWtnLi+Yub/99ts9bdq0KdF+UkPvYHv37pV169aZn/v161foeu01X79+fcnJyZFFixYVe19t2rQxNWA6ohoIdaX57OzcudP8fsstt5jaR120llHpgKW6desG+VkA7v3Osej3DhDq9pbys+Pd5tWbJtxL2raSgN7BNmzYkNehpnHjxj63SUpKyrdtUT777DPzBtFJpoBQV5rPziWXXCIrV67Mt7z99tvmurFjx5ZukBIQpt85S5YsMYNidbIcINRtKOVnR7upKe85gjToX7NmTd72/qIPvYNpxlAV1zdej/i8t1XXXHONmWVMj/x0plh982jHDp31snfv3kHYc8B9n50qVaqYzgTedu3aZdbNmjWTTp06leMeA+79zrnrrrtMENO2bVuJj4+X9PR0M0GOHiTfcccdQdhzwJ2fHQ3oL7vsMjN/0MSJE+Wcc84xHXYOHTokTzzxRIn2gYDewY4cOWLW2vaoKJUrVzbr7OzsvMs0I/LWW2/lvWkaNWokgwYNkuHDh5t+p0CoK+1nBwhnpf3caPJozpw5ZnKc3377TerVq2fK1J566im+cxAWjpTysxMZGSkffPCBmSX28ccfN5+f5ORkWbFiRZHlOEUhoA9BTz/9tFkAlI0eDGupGoCi6UyXugAoOS3T0QmmdCkLaugdTE9dqmPHjhW5zdGjR806ISEhaPsFOB2fHYDPDRBO3zkE9A7PDqo9e/YUuY11nbUtAD47AN85QHjFawT0Dta6dWuzPnDgQL5BFN4yMjLy2lIC4LMD8J0DhF+8RkDvYDqwSAdHKB1wVJC2NdIjPu1k06NHDxv2EHAmPjsAnxsgnL5zCOgdbsyYMWY9adIkWb9+fd7lehSonWvU4MGDJTEx0bZ9BJyIzw7A5wYIl++cCJ0utlzuGfnoH9f6g6odO3bI/v37zVGd9wyUaWlpUrt27Xy3HTJkiEyZMkWio6NNf3lti6STEBw+fFg6dOggy5Ytk7i4OF5xhCQ+OwCfG4DvnDPQgB7lb+XKlXrgdMZl586dPm//7rvveq644gpPQkKCJy4uztOiRQvPpEmTPDk5Ofz5ENL47AB8bgC+c4pHhh4AAABwMWroAQAAABcjoAcAAABcjIAeAAAAcDECegAAAMDFCOgBAAAAFyOgBwAAAFyMgB4AAABwMQJ6AAAAwMUI6AEAAAAXI6AHAAAAXIyAHgAAAHAxAnoACDFz586ViIiIMy61a9cOyOPt2rWr0H2PHz++2NusWrVKHnjgAWnWrJlUrVpVoqOjpXr16tKuXTsZPHiwfPzxx+LxeMq8b3fffbfZnzvuuMOv7Z9//nmzve6X5cILL8z33Dp37lzm/QKAQIoK6L0BAGz35ZdfmnXz5s0lKSmpyO1atmwZ0MetVKmS3HLLLebnVq1a+dxm//79cuedd8rSpUvN73Xr1pUOHTpIYmKiZGVlyddffy3Tp083S+vWrWX9+vVl2qf7779f3nzzTVmwYIEcOnTIHDwUZ9asWXm3s/Tp00d+/PFH+emnn2TJkiVl2h8AKA8E9AAQogH9Qw89JI8++mjQHrdGjRry2muvFXn94cOHpWPHjrJ161aT9Z4xY4Z06dKl0HYa1Gum/J133inzPl1xxRXStGlT2b59u8yePdtk/4uybt06+eqrr8zZgv79++ddPnHixLyzCgT0AJyIkhsACDFWVrtFixbiJHpwocH8ueeeK2vXrvUZzFv7/corr8jKlSvL/JhaInPffffly74Xxbr+hhtukLPPPrvMjw0AwUJADwAhROvZDx486LiAfseOHTJnzhzzs2bfz1T6orSe3pfffvtNnnvuOWnfvr1UqVJFKlasKBdccIE88cQTcuDAgULbDxgwQCpUqGAOdDZt2uTzPo8fPy5vv/12oXIbAHADAnoACMFyG80w16xZU5zigw8+kNOnT5tAXjPgpfXDDz/IpZdeKiNGjJBt27ZJcnKy9OjRQ3JycuSZZ54xYwa+//77fLfRwb+6jdLMvy/vvfeeKQmqU6eOXHvttaXePwCwAwE9AIRgQO+k7Lz3frVp00YiI0v31aNdb2677TZT565ZdD0bsWzZMhOMa438448/bi679957C93WyrprHf2JEyeKLLexsvkA4CYMigWAEGIFzitWrDD140VZvHixXHPNNUHbL+1uo4o6a7Bx40ZTilPQwIEDzUBapQNSP/vsM7nkkkvkhRdekKio/32F6c+TJ08222jtvQ6s9T6ouf766+Wcc84xnWref//9vG48avfu3eb1Ur4OBgDA6QjoASAEB8RqsK4BbFG0/txJ9uzZI6+//nqhy7XnuxXQf/jhh2Z988035wvmLZr51642GszroFvvgF63v+eee+Svf/2rvPrqq/kCes3OaznQlVdeaTriAIDbENADQIjQTLOVCX/xxRelYcOG4hTa0lLt27fP5/VaV+89kdRVV10ly5cvz7fNd999Z9Zjx441S3F8PY52u9GAXnvg79271/TA18e0Wm0yGBaAWxHQA0CIldvojKslCeaHDRtmstY6sZN38Pvtt9+aTHcgaO28TvCkZxA0G16aOnq9ndKMfZMmTYrdVifVKuj888+XTp06yaeffipvvPGGjB492pTnaN29TmzlnbUHADchoAeAEAvo27ZtW6LbaaY6Oztbjh49KpUrVzaX6eBT7QyjLTCrVatW5n3TDLwOWtXZWhctWlSqTjf169c36169epkuN6WhWXgN6LXMRgN6PZBRd9xxh8TFxZXqPgHAbnS5AYAQq58vTUCvtAzFUqtWLVOOkpmZGZB909r022+/3fw8fPjwfGcD/HXdddeZ9dy5c/OV55TErbfeKgkJCablpbbS1A45inIbAG5GQA8AIcK7NWRJaO/1ggG9ltuo4gbWltT06dNNYK/B9OWXXy6ffPKJz+20BMbXgYRm5rXv/L///W/TjcZXnbyeAdAOOCdPnvR532eddZb07ds3r6xIJ6lq2bKluV8AcCtKbgAgBGgA/Msvv5iftT5cs89Fefjhh/N1uSmYodfsd2pqqnTp0sVMUBUoOqmUtp3s16+fGfCqHWzq1atn2lDqjK8aXGuwr33mdR800NaJoixad79gwQLTglI74sybN09atWolDRo0ML3lddCs3vbUqVOmn7yvTjhWNl4HDVsHBGTnAbgdAT0AhFB2Xi1cuLDYbQvWnxcM6LUTjPaF/+KLLwK+n3qA8PHHH5uAfs6cOSbAX716tfz6668SHx8vjRs3lgcffNAMUO3atWuhwbN6NkH3SzvTvPvuu7Jp0yaTsdc6f71OD1Z69uwpFStWLHIfNBuvBwsa/MfExMhdd90V8OcJAMEU4SltISIAIGRo9lwD227dupkBsTqjqtab+0NLZDQQ1846+nOoWrVqlTlrof3q9WcAcAoy9AAAk6X/6KOP5OWXXzY16P4G8960B76WuliTP914440h8cpqN5wff/zRzDILAE5EQA8AMAH9ihUrTBvH/v37l+oVOXbsWN5srzr4NVQC+rS0NNm6davduwEARaLkBgAAAHAx2lYCAAAALkZADwAAALgYAT0AAADgYgT0AAAAgIsR0AMAAAAuRkAPAAAAuBgBPQAAAOBiBPQAAACAixHQAwAAAC5GQA8AAAC4GAE9AAAA4GIE9AAAAIC41/8HwJviXsjbe+0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in [\"DUNE\",\"IceCube\"]:\n", - " controller = LIController(1,k if k==\"IceCube\" else k+\"FD\")\n", + " controller = SIREN_Controller(1,k if k==\"IceCube\" else k+\"FD\")\n", " for x in controller.detector_model.Sectors:\n", " if k==\"DUNE\" and x.name==\"dune_far_detector\":\n", " fid_vol = x.geo\n", " elif k==\"IceCube\" and x.name==\"icecube\":\n", " fid_vol = x.geo\n", " kwargs = {\"bins\":np.logspace(3,6,20),\n", - " \"label\":k}\n", + " \"label\":k if k==\"IceCube\" else k+\" FD (single module)\"}\n", " data = awk.from_parquet(\"output/\"+filename[k])\n", " plot_Aeff(data,controller,fid_vol,gamma=1 if k==\"DUNE\" else 2, **kwargs)\n", "plt.legend()\n", @@ -277,11 +449,84 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "8075ce89-7264-499c-8c49-a19232c0e902", + "execution_count": 7, + "id": "64b70612-9f96-48e5-8809-ee40cef86bbd", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.37^{+ 1.24}_{- 1.31} \\times 10^{-5}\n", + "5.63^{+ 0.98}_{- 0.76} \\times 10^{-5}\n", + "3.74^{+ 0.14}_{- 0.10} \\times 10^{-5}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAIiCAYAAADRge6vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqmklEQVR4nO3dCbxU8//H8U/7vqgsaS+KtCIiJWWNyC6kRUSFVJII0a/IVhSyZd9ahKQkJYmUIiqplDaStKf9/h/v7+935j/33jP3zr137mz39Xw8jrn3zJkz55wZt8985vP9fPOlpKSkGAAAAIBU8qf+FQAAAACBMgAAABACGWUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4K+q1E9h06dMg2bNhgpUqVsnz58nEpAQAA4ozm29uxY4cdffTRlj9/6LwxgXKEKUiuUqVKpHcLAACACFu7dq1Vrlw55P0EyhGmTLJ34UuXLh3p3QMAACCHtm/f7hKbXtwWCoFyhHnlFgqSCZQBAADiV2ZlsgzmAwAAAHwQKEfIqFGjrG7dutakSZNI7RIAAAAxlC9Fw/4Q0ZqXMmXK2LZt2yi9AAAASOB4jYwyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlCOE9nAAAADJhfZwEUZ7OAAAgPhGezgAAAAgByi9AAAAAHwQKAMAAAA+CJQBAAAAHwTKAAAgYvLly2ctW7bkiiIpECgDABADq1evdkHl+eefH9Xn3bJliw0ePNhOO+00K1++vBUqVMgOP/xwO/vss+2ZZ56xnTt3RvV4gHhWMNYHAAAAomP69Ol21VVX2T///GPHH3+8XXnllS5Y3rx5s82aNctuv/12Gz58uK1cuZKXBCBQjuyEI1oOHjzIGwsAEHd+/PFHa9u2rfv5zTfftOuuuy7dNjNnzrR77rknBkcHxCdKLyKkR48etmTJEps3b54lk7XDZqVbAAC5Z9++ffbUU09ZkyZNrFSpUlayZEmrW7eu9e7d25VNBPvrr7/szjvvtGOOOcaKFCliFSpUsMsvv9x+/vnndPtVtvjff/915RV+QbKotljBsufVV1915SG6TUvb6b4HH3zQd1/r1q2z9u3bu2MqXry4NWvWzD7//POQ5/zkk0/aiSeeaCVKlHDn3bx5c/voo48yvV5AbiJQBgAgTiiQbdWqlQuKt23bZp07d7Zbb73VateubaNHj7bff/89sK3KI0466SRXKlGrVi277bbbrE2bNjZlyhRr2rSpzZ07N7DtihUrXGlFlSpV3D4zooA7pxTQKzBevny5de3a1QXMymirHnvixImptt27d6+dd9551qdPH0tJSbEbb7zRrr/+eneul1xyiY0cOTLHxwNkFzXKAADEiYEDB9rXX39tHTp0sDFjxliBAgUC9ylwDv79hhtusD/++MMFxgo0Pffdd5+dfPLJdtNNN9miRYvcOu1TzjzzTMufP/dzZHrea6+91pV4KOssd9xxh8uS33zzze54ixUr5tY/9NBDLjutcx80aFBg+x07drgPDQqgL7vsMjv66KNz/biBtMgoAwAQBw4cOGAvvPCClSlTxkaMGJEqKBatVxmGLFy40ObMmWMdO3ZMFSSLss8Kkn/66adACcaff/7pbitXrhyVc9GxDxkyJBD0SoMGDdwHgE2bNtnkyZPdukOHDtlzzz3nMuLBQbKo/OL+++93ZRkTJkyIynEDaZFRBgAgDvzyyy8ui6o2bYcddliG23777bfuduPGjb41wtqXd1uvXj2LtqpVq1q1atXSrVfd8csvv+wCfdVSL1u2zJVpKFusQDktBdXB5wNEG4EysizUgL4q/VpwNQEgm1RaIZUqVcp0W7V3k08++cQtoezatcvdHnXUUe52/fr1UXl9jjzyyAzXe+fqncfixYvdktl5ANFGoAwAQBwoW7Zs2MFs6dKl3a06WPTs2TPT7TWwTlQLrHKHcOuUve1UFpKWF+z6UaY7o/UqIwk+D2WXx40bF9YxAdFEjTIAAHGgTp06LnBUm9G0beDSOvXUU93tN998E9a+1T6uRYsWtnbtWnvttdcy3FZdKDxeCYhf8K7yiVDWrFmTqkOH56uvvnK3jRs3drea9ETnPH/+fNu/f39Y5wJEE4EyAABxoGDBgtatWzeXqVWHiLQTWGm9N730Kaec4oLld955x9577710+1LW+Msvv0y1TgME1WlCGWi/x3iBrDpNeNR+TgPs3n33XduzZ09gvdq+aX+h6NgHDBjg2r0Fd8J444033HTZamPnnbPa3ymo7tu3r2+wrAGJ6hcNxAKlFwAAxAm1StNAPQWUur3gggtcX+PffvvNtYGbPXu2NWrUyG2rIPmss86ya665xvVS1mQdCoSVzVWmWQPhgoNbPe7jjz92U1jrMXouZZnLlSvnaoXVQk6dMpR99miQnXogv/322y5oVh9kBa0ffPCB+3n8+PG+56EOFzpWtYPT4EQdi4Jzr7OH1xpONIhvwYIF9vTTT7t6ax3TEUcc4bLYOh71X9b5aB0QbQTKEcIU1gCAnCpatKhNmzbNTbKhHsQvvviia7WmLhK33HKLVa9ePbBtjRo1XPmDZrTTJB5e3+WKFSu6YPOKK65It//WrVu7bPCzzz7rglIFr+q0oZrh+vXru2C1S5cuqR7z0ksvudn1tK3+rVOJiIJdBdGhAmWVbGj/yhLrHHbv3u3KLRQUn3POOam21QeBTz/91HXDeP31190+Vf6hgX+akVDnrWMDYiFfSvD3Isix7du3uz84+orMG6SQyLIyZTVdLwAAQDLFa9QoAwAAAD4IlAEAAAAfBMoAAACADwbzAQDi0uZFwy1elW/QK9aHACAKyCgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAJLUJEya4qbPLlStn+fLls9WrV2e4/dChQ+3kk0+2UqVKuam0r7rqqgwfc+utt7r9aupxmD344IPuegQvup6JiEAZAAAkvJYtW9qrr77qe9+uXbusRYsW9tBDD4W1ry+//NJuu+02mzt3rk2ZMsX++ecfu+CCC+zAgQPptp00aZJ98803dvTRR+f4HJJJw4YN7Y8//ggsU6dOtUREH2UAAJDUOnTo4G5//vnnsLZXcBzsxRdftJo1a9qSJUusQYMGgfUbN2502eTJkydb27ZtI3zUia1gwYJ21FFHWaIjowwAAFw2Nu3X5WmX1q1bh3Wl9uzZY71793ZZXGVaixYt6oKmZs2a2ZgxY2z//v259ty5Ydu2be5WpRvBOnfubLfffrvVr1/fYunNN9+0bt26ufKGIkWKuOsVKrsebN68edamTRsrW7aslShRwpo2bWrvv/9+RI5p6dKlVrFiRTvmmGPcdfrzzz8tEZFRBgAA1qhRI3vggQd8r8S4ceNs8eLFdt5554V1pXbu3GnPPfecnXLKKXbhhRfa4Ycfblu2bLFPP/3UunTpYu+++677OX/+/BF/7kg7ePCg9e3b1wWUlStXDqxXPbJKOvr06WOxdt9999nvv/9uFSpUcMGpfs7MjBkz3DXVh5hrrrnG1WOPHz/err76alu7dm2OzuvUU091gfpxxx1n69evt/vvv99atWplCxcudIF8IsmXkpKSEuuDSAajRo1yi/6H+vXXX92nz9KlS1uiWztsVtjbVunXIlePBUDewhTW8WHfvn0uK6x/19atW+cGt2Xm0KFDrp63cOHCqdZrnQbVzZw509X2KojO7nMPGTLELZ5///3XChUq5L7yDw7Yg6n0QtnfVatWWfXq1TM9D4VIN998s6tZ/vrrr13AL7/88oudeeaZrobZ249uFVD37NnTwvHGG2+4jHu1atV871c8MWLECLe/tNcxrc8//9yOPfZYt69HHnnE7rnnHpe579Spk+/2eh0UxOqafvvtt+6Diug668ONBi4qlqn2v2Pr37+/PfrooxkeQ0bh5KZNm6xq1aou83355ZdbPNi+fbuVKVMm03iN0osI6dGjh6td0tcYAACEQwFbZiUHWpTNjJWJEyfa5s2b7aKLLgorSBZliv2COwWxl156qft5xYoVOXruW265xX744YfAorIDDdYLXpcTCvy6d+/ugtDp06cHgmRRcKngT2UFOictyuLecccdgaAzIwpQb7rpJjcA0S/7qw8aHTt2dFndF154IdP9nX322SEDbj9ffPGFrVy50q699tpUx6vAccCAAe4DymuvvRZYr+NQKUVGS0Z07fRBQu/3cCizrQ8iRxxxhMt468OSzlHro43SCwAAYkS1usElBwsWLLCPP/7YZVqD22mptjdWXnrpJXfbtWvXHO9LAaA3UK5evXo5em7VCwfXDBcrVswFVgpec0pBshJgn3zyicsmV6lSJdX97dq1S9fuTGUMyuCqHjczKuF45513XNu5s846y2XYlXENDpLfeustu+GGG1ywHml6Pjn33HPT3eeVuOi8gwPd4A8KWaWyG30gCCeLr5IdnbNKSPShqnz58q6++bvvvrMPPvgg6hlpAmUAQFwq36CXJbvatWu7nrMefWWuQLlXr14ug5aZ4cOH29atW8N+PgV44WQ8PQpulE1VYHf++edbVikzqfIIBZ7KDGtfKltQMJnZ4LycPncwtXdbs2aNy6KKvgHWdVNw6gXbqjlWIKbnVJCsQFavhQJwbyCatlWmXIPftART2Yc3eC0cCgL1HO3bt3eZZQWvOlcF2ypRuO6661z5hFfHHUnLly93tyrXSEuDLkuWLBnYJjvuuusu1wVE11fZc2WpK1WqFNY3I/pwpGusbwT0wSeY3kPRRqAMAECc+PHHH91tcAuyzALlcAZueZTRy0qgrEBNGU4FbwUKFLDsBMqDBg0K/K4yEtXxakKP3H7uYB999FGqTK9XGx1cx/v3338HAmllNaV58+bpBsApqI2UK664wtUiKyhWZllZanWd0OA6lT7kRpAc3MVDpRZ+VLPrbZMdGgyoc9A1VcmMyihUk128ePGwHq8PHVrSUnY52giUAQCIo0BZGb20mbRQMpthLicUpCqQVHCrThXZocykssna14YNG1yGVtlFTdCh3sOhBlFl57m9cgI/CoZDDWzzKLPvZfez0+cgu6+FukxocN31119vv/32m8v6K6Oc0w8HsfTuu+9m+7EKsPv16+dKc1RDrQ8QZ5xxRswaJDCYDwCAOKDsm4JJzWgWDzSITeUKautVo0aNHO1LmVGVFWhyDg1OUweJ//znP1F57ninoFyD6zxqhaeJTHKTl0kOlTX2OkLEgr5xePnll90AvieeeMJl/5VJ1geIcAcDRhIZZQAA4sCiRYvcbVYC5dysUY7kIL5g3gCyjDLAufXc8cZrP/fKK6+4zLLqejWQT1lUlXnk1rTYXm2y6pBPOumkVPepHltt9dQmLha8bxG0qCb5q6++crXcKknR8er/k2hm2wmUAQCIA8uWLXO3devWDfsxuVWjrADlww8/dIPXvHZukaKsufjVoObWc0+YMMHVHX///feuA0M4fZSfeuopF7Dr+qr924knnuhqqzWZRk72GxwkazY9PYe6X6jLhQJAZd815bbXDUMDBCNNNcM6l88++8yVOgSbOnVqYJtY8zLJWvSNizLvaitYp06dqB0DpRcAAMQBfd0tmiEtK3WxCrjCXTKr0/Vo4JUG4qluNrOZ1DQATp0sgqelVleJ3bt3p9tW6zS1tYTqgJCV5w6XZtDT5B7qsxwu9SV+8sknXd34nDlzXDcLtU4L7ryQnf2KXguVobz44oupgmRRFwxdA11XBcu5MfWzOo7UrFnT3n777VT9plWKoS4l6jqh1nSxoA8HaWvE9d5S5xJRX+VoYma+GM30kiiYmQ8AokOtyS677DIXkKlXrAJJBWGxoNnrNIudvubWzxlRBlVZ1+BsqgbFKcjUICyt07+HmspY01Yr0FQ3CWUu1XotJ8+dVVmdmc/v33cFcmmzrVndr66FMtTaj4LV4NkEPVqvYFVTQetDQ0aUlZ49e7b7+aeffnL9uNV722tVp9chbRlLqCms9Vo+/vjjMZuau2zZsu790rRpU/dhRUHytGnT3IcvdQkZO3ZsVOM1Si8AAIgDF198sevfqwBJ0wVnpY1bJGliBwV+qlHNbqCqmfRUYqFMrDpcqOZVQYna3ikoU/2pX3AYiefODcpwaxDiYYcdFpHjUk9hXRf1Gfa7DqKOD2oXp17bmVGQHDyTnmjApBZP2kBZ2Wo9ThPevPfeey4g1bnpvad66VgZOnSom5RG7wV1SSlRooTVqlXLlbjceOONUT8eMsoRRkYZAID4lNXMrwaSXXDBBfbvv/+6tn3qx5x28Ft29ovEideoUQYAAAmnf//+rkNCRktOKaOrGl5lxhUwq55Yg8qQd1B6AQAAEo5qaMMdnJhdqqFWna8WdbtQWzVNhKIpmpE3ECgDAICEc/jhh7slmtSNYe/evVF9TsQWpRcAACCpqbWYSii8XtXqoKDfvZZjMnLkSNc2zXP33Xe7wXDqArFw4UK76aabbN26da4jSVb2i8RGoAwAAJKaBuE1btzYtRcTTYus37Xeo9pj9S72qGuHOnSo64Ra9WlaaQ3uO/7447O0XyQ2ul74OHDggOtvqF6EmjYx7aw1GaHrBQAAQHyjj3IOjBgxwjZt2mR5SVYmFgEAAMgLKL1IQ/VHgwYNcg23AQAAkHfR9SKNXr16udmRYjVtKOLb8GWLfdf3qnNC1I8FAADk4YyyRpE+88wzrk+iZrzRNI9qID548OCwHq/5wFu2bOmmnNQUiA0bNrRhw4a5aRr9aMrEzz77zB577LEInwkAAAASTVxnlDWvt+qFs5sZ1mMVXLdq1cpKlixpX3zxhWv3ornDFRCrkbhnz5491rNnTzfnecWKFW316tURPBMgsjYvGu67vnyDXlxqAADyQka5Xr161rdvX3vrrbds6dKl1qFDh7AeN3HiRBckKzieO3euTZ061caPH2/Lly93menZs2fbwIEDUz1myJAhVrhwYbv99ttz6WwAAACQSOI6o9y1a9dUv+fPH15cr6DXmwdebd48FSpUsGeffdaaN2/uGosrWC5TpoxrJq6SDAXku3btCrQNkd27d9u2bdvcdgAAAMg74jpQzo7169fbvHnz3M/XXnttuvvPOOMMq1Kliq1du9YmT55s7du3t1WrVrkpKb2G4cFuvPFGl2XeuXNnVI4fCGfwYHjfrQAAgJxIukBZ00xKuXLlrEaNGr7bnHzyyS5Q1rYKlBs1amQzZsxItc2ff/7p7lPW+Zxzzgn5fAqwg+d99zLRiB06UwAAgEhIukBZ2WGpWrVqyG2UUQ7etmzZsq47RjBvMF/dunVdqUYoQ4cOdX2XEXrSkir9aLUHAAAST1wP5suOHTt2uFu1gwtFg/wilf295557XA2ztyhTDQAAgMSXdBnlSKlevbqlpKRkul2RIkXcAiR72zi/fdOODgCQzJIuo1yqVCl363Wv8OMNzCtdunTUjgsAAACJJX8yZoIloxII7z5v20gYNWqUq2du0qRJxPYJxDtlmf0WAJnTWBjNNhu8FC9e3I4++mhr3bq13X///bZy5cp0j3v11Vfdtg8++GDIfYfaRv/uaf3hhx8eKFVMq2jRoun+ffT2l9GiWXSBZJN0pReNGzd2t5s3b3aD9fw6X8yfP9/dBvdYzqkePXq4RXXP9FyOfYcLAEgUtWrVsuuvv979rC5Kf/31l3333Xf28MMPu3kB+vXrZ//5z39cMBopf//9t5s/QM+RFQrg1WbVjzpIAckm6QLlypUru6yueim//fbbdu+996a6X7PyKaOsuuI2bdrE7DgR3wjAAUTLMccc45sd1r9XmpFW3ZUKFCiQ5aA2lEKFClnFihXtqaeecgmeo446KuzHnn322W4yLyCvSLrSCxkwYIC7feSRR2zBggWB9coyd+/e3f3cs2dPMr+Iu+A87QIg71LmdsqUKS6xo+xvpLoqaZZbtTXVWB7amwIJHCgryG3atGlg+eSTT9z60aNHp1r/xx9/pHpcu3btArPp6f4LLrjAzbqnT+0//fSTNWvWLGKfzAEAyC116tSxq666yvbt22cTJ06M2H5vuOEGq1evnr300kv266+/Rmy/QLKJ69IL1fvOnTs33fp169a5xRM8M55nxIgRLiDWILs5c+bY/v37XR2YvjK68847rXDhwhE9Vj2PloMHD0Z0vwCAvE0TYr3xxhuupDBSlFXWt64XXXSR+xZ23LhxYT3u888/tz179vjed80119hxxx0XsWME4kHBeP/jEE4v41D0KVxLNDCYDwCQG9QFwxuAF0kXXnihtWjRwsaPH+8GD55yyimZPmb69OluCTWYj0AZySauA2UgkkLV/PaqcwIXOgjt3YC8Q7XPKlG8++67bcaMGZlur4GFDOZDXkKgDOQBzKoHJK4NGza4W/U+9som5NChQyEf493nbRvKqaeeapdddplNmDDBJk+eTDcoIJEG8wEAkNfNnDnT3XoTWnm9+tXJKRSvTCOcvv7q1VywYEGXKc4o+AbyIgLlCGFmPgBApKkjxfvvv+9axF166aVuXf369d3tN998E/Jx3n0NGjQIq7PGjTfe6LpCadAggP9HoBzBwXxLliyJ6KhkAEDe9fXXX9t5553nOjsp21upUiW3vmbNmq7H8sKFC93U0n6dKT7++GM3DXXz5s3Dei5NeKLpszVtNlll4P9RowwAQAytWLEiMDOf+iV7U1grw6sZ+e677z574IEHUj1G/Y/VsaJz584uWFbHCm27aNEiN0mJgl5lh1VSEQ7NzqfWqZoqO7vt4bSPW265JezzBhIBgTKQSx016KYBIBwrV64MzJBXrFgxK1u2rGuzNnDgQOvYsaObA8CvXOKHH36wxx9/3A3CGzlypMsEK+vctWtXu+uuu9wkW1nRr18/N6FXRm3oMmoP17BhQwJlJJ18KTlpVAzfSVI0eGLbtm1WunTphLlCa4fNyrV9V+nXItf2HYlpnv0C2nifPrrD3mk53kf5Br2i3h4u1HMCABCP8Ro1ygAAAIAPAuUIoesFAABAcqFGOUKYwhoAIiueS6AYgwDkDWSUAQAAAB8EygAAAIAPAmUAAADABzXKQBbs3vit7/riRzblOgIAkGQIlIEEDMytbLSPBACAvIfSiwihPRwSjSYW8VsAIBmNGDHCqlWrZkWLFrUzzjjDfvzxx0wnpOjZs6dVqVLFTQneunVr++WXX1Jts2PHDjcb4dFHH20lSpSwxo0b27hx4yyve/DBBy1fvnyplpNPPtkSEYFyBNvDLVmyxObNmxepXQIAgDC1bNnSXn31Vd/73n77bbv77rvt4Ycftu+//95N733eeee5YDgUTQU+e/Zse++999x04ZpW/JxzzrGdO3cGtrnzzjtt5syZ9v7779tPP/1kV111lV1zzTW2aNGiPP+6NWzY0P7444/AMnXq1IS8JgTKAAAgqT311FMu83vDDTfYCSecYC+99JIdOHDABdB+/v33X5swYYI9+uijdvrpp1vt2rXtmWeesX379tk777wT2O7bb7+1Tp06uQx1zZo17Z577nHTIi9YsMDyuoIFC9pRRx0VWMqXL2+JiEAZSECjt5byXQAgJ6pXr57uK3NvUcY2Oz744AOXiVWgpLKHGjVqWPv27W3t2rWBbfbs2WO9e/e2Fi1auDIGbafgqlmzZjZmzBjbv39/ts9Jwe3ChQvt7LPPThXE6Xy++eYb38coiD548KAVK1YssC5//vxWuHBh+/rrrwPrFER/+OGH9ueff1pKSoqNHTvW9u7da2eeeaZF05tvvmndunVz5Q1FihRxr1eo7HowfQvepk0bK1u2rCsdadq0qcuOR8LSpUutYsWKLnvfuXNnd40SEYP5AABAgDKivXr18g2is0KBo7K4L7zwgtWqVcuVJJQqVco2bNhgX375pf3++++u/ldUzvDcc8/ZKaecYhdeeKEdfvjhtmXLFvv000+tS5cu9u6777qfFaxm1d9//+2C3iOPPDLV+iOOOMJWrlzp+xgd56mnnmoPPfSQyzofdthhrsZ53bp1rozA8/TTT7vjU0Co4Fu1zMpE68NANN13333uelaoUMEdi37OzIwZM1z5iT6UeK/N+PHj7eqrr3YfYvr06ZPt49G1U6CucpX169fb/fffb61atXIfWBTIJxICZQAAEKDsogZj5ZSCSAXJ3bt3dz8XKFAgXdbWU65cOdu2bZvL2KbdRtnozz77zAXKCqI9Q4YMcUtwuYRKITQAzxNcT5ydLG3Hjh1dgK1jVwb6/PPPT7WNgmcNCtSxKUD9+OOPXaCprHPdunUz3P8bb7zhMugaYOhHwb32r/NJe13SUinJscce6/b1yCOPuBKQjOi63nTTTe6Dx6xZs6xRo0ZuvQJafVgZMGCAXXHFFYFj69+/vytDyeyDkeeCCy4I/Fy/fn076aSTrGrVqjZp0iS7/PLLLZFQegEAQIysWrUqZKlD8KKvxxOJgtZBgwa5ul0Fe2mDZFEGNm1Zg982l156qft5xYoVqe5TtlqD7LxFZQfKAAevE2VZ9fwbN25M9fi//vrLlXeEopIBBbwa8Kcs+Oeff+6y3F62WOc4cOBAe/LJJ10ArcFryuzqOJ599tkMr48y0wpUFXz7ZX8PHTrkgnRldfVhIzMqKwkVcPv54osvXDb92muvDQTJ3rcJCpJVrvLaa68F1us4VEqR0ZIRfUOgbyT0fg+HMtsqX1HWXxlvlePoHLU+2sgoI88bvmxxnr8GAGJDtbcPPPBA4HcNAlNWUpnT4HZaqtWNFtXY6mtzBYelS5e2Jk2auK/Ss0IZYAWVqk1VZvSjjz6yX3/91WWrFfAoCA2HAsYpU6a4n+vVq5fqPmWhtXhUT6zAKu2+FYCrbdv06dPtoosuCmRU1a1i8ODBmR6DShK0/PbbbzZ//vxAtl2vnZa0HwL0u447I5UrV3aDAtUl46yzznLHooxrcJD81ltvucGHyshHmp5Pzj333HT3qRxDVB4THOhqyS69F/SBIJzyHZXg6JyVodeHJNW2q775u+++c/Xu0c5IEygDiBq/Ps3lG6SvhQSkV50Tkv5CqJtCcJmDvjJXoKwa4eDBZ6EMHz7ctm7dGvbztWvXLlUG0Y+CEgW4wRQsK7BTrXE41ILNCxobNGjgguTg7LHaqj3++OPpHqdMpsop9DX+5s2bXXCr3sU6HvUxzi4934033uhKAE488UT33MpWK6PqGTlypAvE9JyiAF3HqsBb7V/vuOMO9wHGK7/Qh4jmzZtb37593WOV9dQHgmnTptnkyZMzPSYFgbqmGtiozLKCVwXQ6qKhso/rrrvODWTMTl12ZpYvX+5uVa6RlrLsJUuWDGyTHXfddZe1bdvWBf/KnitLXalSpbC+GVEZiT7c6BsBffAJpvdEtBEoR3DCES365AwAQHZ4k2AouAyHAuVwBm55lNHLKFBWQKrgT9lbBUsKcFVaoHpaBarqFazsamZU1iB6rAJTZQOPP/54N5jr5ptvtieeeMIF3bfeemu6QFklGx6VnSgQHTp0qOWEAuJNmza5gE0lGMrWq6+vgt3gQX/Bg/uUBdX2GoymgO36669PV7utQYbqz3zllVe6GmsF1crGe1nZzKgOWHGDgmJllnVc6jqhwXUqfciNIFl0rF6phR9dF2+b7NBgQJ2DrqlqvFVGofeQBjuGo1ChQm5JKxYt5vKlBFdfI8dUy6Q3nt5gwf8Dxru1w2bl2r6r9GuRNGUToaaULn5k06g+Xyjdyu6wRENGGfh/yrrpq/fgzgrxQCUACnQU4KqNW2YUDL/44ouuHEK1xcq2en7++WdXz6ta37R1xx5dA5V+KLuuYFW9j5WlTaR/V7NCZRYKxL2sv2b386vrDoc3mE/ZaGWn/ajkQplvZY39ymD0PtRAyG05CJaz67HHHrN+/fq594w+4OgDhPpUR/q1DzdeYzAfAABxQNk3BYcKIuONevRKcA/hjHiZSmVIg4NkUbZag/yUvQ1VNqJMqsoQlHHWYDY973/+8x9LRspXanCdZ/HixekGHkaa9/qECoS9IDIW9A3Cyy+/7N43+mCmchdlkvUBItzBgJFE6QUAAHHAm/Y4K4FybtQo+1HnCNm1a1dY29epU8fdavCeH2+9OkeE2sbjDTjzBqAlW5Cs7Psrr7zi2sqprlcD+ZRFVZ/jtB8yIsWrTVZGWXXbaWvUlU1Wm7hYULmNelNrUU3yV1995Wq5VZKi49X/J9nNtmcHgTIAAHFg2bJl7jaz/ru5WaMcyty5cwOPD4cCPfFrG6ZOESq50Exw4XRSUJZd/GpWs0Jt6lQz7dUoa1xRqA8lOk+/6zps2DA3UM2zZs0alwFVGYPqq/XaTZw40ZUuhBMkK1OvwWvqfqHyCwWAyqZ36NAh0A1D3R8iTTXDqvtWdxLVEgdT7ba3Tax5mWQt+sZFmXe9d7wPYtFA6QUAAHFAX3dLOIPlPKtXr3YBV7hLqJpVUXeJ3bt3+67XgDUJ7hLhUQmFtgmeZloD9ZQJVlCjQDBtDa2y4Or64PVSVlcJv+fWOq8mOie9pDW7ns7h4Ycfdh05VJerAXfeNfeb2ll14t6ix8tll10W2EbZTtXOKiOuHsvKdGrCjnBmntNrobIS1XEHB8miLhiqB9d1VbCcG1M/a2Cmyl90Xl6/aa8UQ11H1HVCdemxoA8HaYfP6b31zz//uJ/VVzmayCgDABAnreJEAZ26RCgw1Mxt0aIODsq4erPFKeOrrhcaRKdARQPE/I5HQZeyr6ofDc44a9KN008/3U2soSyrpjNW1wtlBbV/Ddry6Gt1PbcCT+1Dg6vUbUIz3ikgVScOtXjLrqeeespNUOIFfwre1QZNgaLWp5U2060Z5XTuwe3xNFOdBiQGTwgSbvs8ZcnVik7dMhQkB0++4gXLChZ1vArCvYF+oeh8Zs+e7X5WZxJvnVeuouvatWvXwPZ6Pt2vDws6r+AprPVaqn1eVqcsjxRlj/X6N23a1L1P9N5Txl4fpoJnC4wWAmUgTmS1wwWA5HLxxRdbjx49XPCmICw7JRI5oeylSiUUzKouVNlc1SYrYNcEEH6TU2REQaMm6FCWVT2J9TW/glOdo9YF98jVRCAKHufMmWPffPONq5HVYDK1yVMQp3rVtMFkuFQSoXMKnthF+1LvYj2XX6AcTFlWBbVpZ9tTRw71VNYEGLpeCuD0YSI46xyKSjP03OozHOq8lL1XiYj3ASojCpKDZ9ITDYAMHnwZHCh7r7cep+vy3nvvuYBU003rvad66VgZOnSoe7/ow6KusT6w6b2kiUjUCzvaaA8XYbSHy532cPEye15utoeLRKBMezgASE0BuAJTBV6aOMWj4F/lDV5NbijPP/+8q0tWCYSCNo9XAqDgWB9yNFGJvg3QILxofhOA7KE9HAAASFr9+/d3HRIyWiJBHSlURxwcJHu9nhV4KyOrKbI1qE+Z8eBSDCQ+Si8AAEDC6dOnT4aDEz0qH9FAubS9iTV7oEpBMqKexhrYp/rptPTYtN0XNPugykeQPAiUAQBAwtGAu3Day6mDgzK+Ko1QxlcOHDjgBroNHjw402yyeg5rMFxaGqiYdmZBDX6M9mAz5C7aw0WI+jGqf2Jw/RMAAIg9dcxQrfGbb77puidokg8Nogtudzdy5EjXwcOjYFrbd+7cOeQ+NRhOs8cpYNb+NfhMbd+QPMgoR4hG8WqJ5bSPAAAgPQXEmzZtsgEDBgQmHNEgPrUh82hCCw3u83zyySduXah+wqeeeqqNHTvW7r33Xrvvvvtcdwr9rkwzkgddLyKMrheJ1/XCr9tEqC4WdL2IvPINeuXCXgEACI2uFwAAAEAOUKMMAAAA+CBQBgAAAHwwmA/wwXTSAACAQBm5bu2wWbkywC+eZGVAIAAASAyUXgAAAAA+CJQBAAAAH5ReAFFG/TMAAImBjDIAAADgg0AZAAAA8EGgDAAAAPigRhlATG1eNNx3ffkGvaJ+LAAABCOjDAAAAPggUI6QUaNGWd26da1JkyaR2iUAIA/p0qWL5cuXz8qXL2979+5161avXu3WhbtUr17dPW7mzJnu91tuuSXLx/H6668H9jdv3rwMt/3555+tY8eO7nmLFCliZcqUsWOOOcYuu+wyGzFihKWkpGTzagDxgdKLCOnRo4dbtm/f7v5QAAAQrh07dtj777/vgtN//vnHJk6caFdffbWVLVvWHnjggXTbDxo0yP1b06tX6hIlbZ9TL7/8sjsOBbmvvPJKyATQtGnT7KKLLrIDBw7Y2WefbZdeeqkVLVrUVq5caV9++aV98MEH7t/FggUJNZC4ePcCABBj7733nu3atct69+5tw4cPd8GqFyg/+OCDvoFyqPtyYvny5TZr1iy7+OKL7ZdffrF33nnHnnzySStWrFi6bW+99VY7ePCgff7553bWWWeluk9B9meffWYFChSI6PEB0UagDCSR0VtL+a7vVnZH1I8FQPgUGCvz2q9fP/vxxx9t+vTp9vvvv1u1atWiehmVQZYbbrjBli5dagMHDrRx48ZZhw4dUm33119/ucxxw4YN0wXJooz0eeedF7XjBnILNcoAAMTQkiVL7Ntvv7Vzzz3XjjzySBekHjp0yMaMGRPV41B2+LXXXrPDDjvMlVQoOFbAqyA+LZV9KLD/448/XCYcSFYEygAAxJAXiHpZWw2EK1GihAuUFTBHy+TJk13ge9VVV7mBecpmN2/e3JVirFixItW2ul/lGcosn3baafbMM8/Y999/b/v27Yva8QLRQKCMPGP3xm99FwCIlf3799sbb7xhpUuXtnbt2rl1JUuWdAPj1qxZ4+p/ox2wK6Pt0c/eoL60XnjhBWvbtq399NNPdvvtt9vJJ59spUqVsmbNmtnTTz9t//77b9SOHcgtBMoAAMTIhx9+aJs2bbIrr7zSdYzweMGqX9lDbvjzzz/tk08+ca3dTj/99MB6HZcG8qkkQ6UZwdTG7qOPPrJff/3VBcbXX3+9Va1a1ebMmWN33HGHnXLKKa6DB5DICJQBAIgRvyyutG7d2ipVquQC6WgEmwqE1eYt7aA9ZbovueQS27Bhg02ZMsX3sccee6zddtttLjOurhkLFy60E044wfVYVncOIJERKAMAEANr1651LdTkzDPPTDVxiNqqrV+/3k088uabb+b6sXilFerZnHYSk3fffTdL2e1GjRq5mmX54osvcvGogdxHezgAAGLg1VdfdYP1zjjjDKtTp066+5XhVaZXAapqgHPLV1995conatWqZS1btvTdRiUWkyZNcoP3jjjiiEz3qTprIBkQKAMAEGUaIKeuFsrYKhiuWbOm73YKYL/55hubP3++GyyXG7xM8b333mudO3f23WbAgAE2dOhQN7113759XUs4TYzSrVs3q1ChQroA/7HHHnM/60MAkMgIlAEAiDKVJKxatcqVXIQKkkWBqwJlBbPZCZRnzJhhnTp18r1PQaxawY0dO9a1o9PAvVC0DwXKOg4FyurWcd9997mZAdUeThOPqJ5548aNNnXqVFu3bp3VqFHDd/ptIJEQKAMAEGVeFjdUEOvRNNbqIJHRVNIZUUZaSygq/di9e7d17Ngxw3KJ2rVru7ZvX3/9tetq0bRpU9d3WUHx7NmzXbC9efNmK168uNv2pptucsetiUmARJYvRd//IGK2b9/u/jBs27bNfbpOFGuHzYrq81Xp1yJL2w9ftjjHzxntnsnFj2waF8eRqFNYl2/QK9aHAADI4/EaXS8AAAAAHwTKAAAAgA9qlP9nwoQJrv7rl19+sR07drhG75pOdODAgXbYYYf5XTsAQBKVhOVm+RiAxESg/D+a+Uj9I++66y5Xs6K56zWj0I8//mjTp0+P7asEAACAqCNQ/p+uXbumujAKmosWLWo333yzrVmzxs1fDwAAgLyDGuUMlCtXzt2qXyQAAADylrgOlJctW+bmi1efyfr161vBggXdLEaDBw8O6/Hq66jMsGqM1UxdDdGHDRuWYeB78OBB27Nnj5sFSaUXbdq0cdN6AgAAIG+J69KL5557zkaMGJGtx/bq1cs9VsF1q1atXCN1zYR0991328cff2yfffaZb+P28uXLu556cu6559r777+f4/NA3hSLfskAACCPZJTr1avnpsp86623bOnSpdahQ4ewHjdx4kQXJCs4njt3rps5aPz48bZ8+XKXmdYsQupm4WfmzJlu5qHnn3/elixZYm3btnVZZgAAkJgUE1SrVs2NPdLU3Rqon1knrHPOOceVYOqb7NWrV4fc9tZbb3XbjBw50vK6Bx980F2L4CU7U6/Hk/zxPsDuscces2uvvdaOO+44y58/vMMdMmSIu+3fv7+deOKJgfUVKlSwZ5991v2sN7SXOQ7WqFEjO/30061bt242btw4mzFjhn3wwQcROycAABA5KrF89dVXQ97/9ttvu2+TH374Yfv+++/tmGOOsfPOO8/NzBbKrl27rEWLFvbQQw9l+NyTJk2yb775xo4++ugcnUMyadiwof3xxx+BRcnKRBbXgXJ2rF+/3ubNm+d+VoCdlj5JVqlSxfbu3evmqc+Igmx9GlqxYkWuHS8AAMg9Tz31lN1yyy12ww032AknnGAvvfSSHThwwAXQoegbbH3zrCA8lI0bN7ps8htvvGGFChXKpaNPPAULFrSjjjoqsKikNZElXaC8cOFCd6uvS2rUqOG7jfc1gLdtKCrBSElJsZo1a4bcRgG3PpUGLwAAJBoNZO/du7fLpCpDqjIFBTrNmjWzMWPGhNUBSpndtF+9p11at26d6X4effTRwPbffpv98R779u1z/9afffbZqQI5BcDKBOdE586d7fbbb3clnbH05ptvum/BFdsUKVLEXbOMMuyihKKaFZQtW9Y1O2jatGnExmQtXbrUKlas6DL3ukZ//vmnJbK4HsyXHatWrXK3GfU9VkY5eFvR1zD6n1efNvVG0/9YKvto0KCBm6EvlKFDh7ruGAAAJLKdO3e6QfSnnHKKXXjhhXb44Yfbli1b7NNPP7UuXbrYu+++637OqAxS5YsPPPCA730qZ1y8eLH79zYjP//8s9uHAjiVQOTE33//7cYZHXnkkanWH3HEEbZy5cps71flmzq2Pn36WKzdd9999vvvv7vyUgWo+jkjKinVa6APQtdcc42VKlXKjeO6+uqrbe3atTk6p1NPPdUF6SqX1Tf8999/v2uooJhKsVUiSrpAWdNPi/4HC0WD/CQ4+6s/DPpU5gXP1atXt+7du7tP14ULFw65r3vuucdt49E+vUAcAIBEoW9iNXYn7b95KlPQwDZ1i1KgrCA6o0BZi19mV8GlsrkdO3YM+XhlrXW/9nHssce6f5f9xiF5Y5Hk33//dVnnnj17pgr6c8svv/zi6p3VLCDcsVPBVKqhrL0GF/pRYK/BhzqfjOIPj0pJdK20v0ceecTFJaHotbzpppvccc+aNSvwWimgVRw0YMAAu+KKK1IdW//+/V2GPyP69l0uuOCCwDpl2k866SSXuFQt9+WXX26JKOlKL7JLb/pFixa5QFuLprDW6M3SpUtn+Dh9QtI2wQsAAOFQciazUgUt+po8tyl48gvMFNxeeuml7ufsjtlRN6rNmzfbRRddlC67G+w///mPyzq/8sorVqBAAd9tVG/8ww8/BBaVHGjQXfA6j7Ks2o/qiYP99ddfrqwkOxSUb9q0yZUW6NpoURb3jjvu8P2QEGzdunUuUFXph1/m99ChQ+6DgrK6L7zwQljHo7KSUEF3WmqTq0y6xnAFH2uZMmVckKwPNK+99lqqx/Tp08eVU2S0hKJvJZR4DP4GPyPKbJ955pku46+Mt0qAdH5aHytJl1HWVwiS0dc13idNgtr4M3zZ4lgfAgBEjTKowaUKCxYscL3+lbUNbqulOuFYUfA2ZcqUQNvW7FDW0+tmFYrOXYGygt66detmmPn2Zs4VzYmgwEqBa1oK/Bs3bmzTp093QbqXVVUr2HAnL0tL5ZhpW56plEGTo6kmNyOVK1e2d955x6666io766yz3HF4paJekKyWuBp4qG+1I03P580TkZZXEvPll1+mC3YPP/zwbD2fSnf0gUDBcmZU9qNzVvmIPphpEKDqm7/77jvXfSxWGemkC5S9F0N1NqF494XzwoVr1KhRbqHnMgBERpV+LZL+UtauXdt9e+nR1+YKlDVpVvAAtFCGDx9uW7duzVKQl1nWU1lFlTbo63RlgRVkqtxAQWA4A/HSUqCkfShIPP/880MOjFdwqGPr16+fRdKdd95pN954oysDUDerxx9/3GWBvc5YKglRIKZj9Pzzzz+2Zs2aQB2z5lXQdVZQqyBdg+CCqeuFN4AtMwoCFSy3b9/eZZYVvOraKNBWqcl1113nBk9mp6wjM5pPQlSqkZYy7CpN9bbJjrvuusvNP6HrpOy5stSVKlUK6xsRfZjSBxt9I6APPsH0PoyVpAuU9cnRu6hK9ft1vtD01BLcYzmnevTo4RbVKOsrDAAAssqbCEMDycOhQDmzwVvBlCAKJ1AOHqSu0g9N/qXB69mhoE/ZUgWCocopVCOrAE19jkNtk10KiFUqoaBNJRjKBqu3r/etsgb8pR3Y99FHH6XKDnt12ToXnUdOqQ5YiTUFxcos65jUdUKD61T6kBtBsnjzR4SKU3RN/OaYCJcSkToHXVOV2KiMQjXZxYsXD+vx+sDh12ovli3mki5Q1qeyJk2auNYn6pF47733prpfs/LphVRtcTRqvgAAyEqgrMxe2oxaKBnNGJddyioqm6zgdsOGDS7DrSBT7dQ0/0BWyha1DwWXCrbVOcOP9qssrzLr2Snt8MoJMqL6YS1+9LzBWX1RMJyVgDg7r4O6TKgM5Prrr7fffvvNZfuVUY70B4Voevfdd7P9WAXY+jZB7wF9uNEHCM19Eesy2aQczKf/oUWjP1Xz5FGW2av50WhSMr8AgHihLJwCU81sFg+U1VTySZNqaGCZ5hZQDXFWfP75566EQS3C/L7hVaCoulxl0NVdIS/RhxENrvNoEGPaQYeR5sU9obLGsfxWvG/fvvbyyy+7AXxPPPGEy+Irk6wPEOEOBsxzGWUFucHF7N5XI6NHj3atRjyqLVJtkEcXVU3An376addEWzVVahen+iPVGGlQhLpcAAAQL9R5SbISKOdGjbIfb/BXONnbrAzi0+B6ryY2VCu00047LfBvfUbzGiRakHzzzTe77h7KLKuuVx8YlEVVn+PcmhLbq03WNVfNdjANnNProTZxsZDvf986aFFi86uvvnK13CpJ0fHq/49YZNvjOlDWJxv1KUxLBeJaggcBpKUehAqINcBuzpw5bmRxrVq13CdWFfaH05swKxjMBwDIiWXLlrnbjDo+RKNG2Y8y3ZKVqZoV7Hz44Ydu8JvXXi4tlUFqoJ0f9flVgHTxxRcH2oxll2KCJ598MlCjrH+zM/pAMmHCBNeFQTXT6tygjGba58/qPoODZM2kpw8R6n6hLhcKAJXB19TZXjeM4ARgpKhmWLXm6omtUodgqtv2tom18v/LJGvRNy3KvKs1YZ06daJ+LHEdKGs0qNfEOjv0BtQSDQzmAwDkhDcJltfmNNo1yursoGAw7cCr3bt3BybW8hvbo297vWRUcCCtQVwaGKga3FCzsqm1m5d1Tks1wgqU1QlE3w5nl8Yr3X333a58RFlUzbqrVmi//vpryPpXtZjVpCCXXHKJ3XbbbRHZpyimUSnLiy++mCpIFnXBkOBgObu9nkPRN+w1a9Z0x69v3r0PTSrFUKcTJRHVfSQWZs6c6YJ0ZZY9el+pA4mor3IsxHWgDABAXqFWcaIATL1jFZQqWIsWfcWtDKkGUClgVsCnaYg1G5+yw82bN3ffyPoFX8pqp826qt40s97J0fDUU0+5SUq8AFCBuQJQBYta70fBqjeddqT26WXmVUJy5ZVXuiBZbeqCKVhWMK39qr5bHzIyo+dWowLRZGneOq9MRq+n9xro+XSfgnq9t4KnsNZrqEGVkWydmxXKHus9pw9FmkBFQfK0adPcB7i0swVGE4EyAABxQCUG+nZSwZamDM5OiUROaEIOBXIqV1QnCtWramCXBtopoFLtaNrALhQF+goyVe+qqYxjRRnthQsXpprUReegb6x1jhkFtbmxT/UU1jbqMxzqWqrjg0o5vA9OmVGQnHY2PQ281OIJ/rCibLUeo+N/7733XECq10jvOdVLx8rQoUPdxDZ676jTisaW6VsKlcCEKs+JhnwpOaltQMgRo/oaI9YtTbJi7bBZcTGRQG7OzLd747eWV3Uru8MSTfkGvWJ9CAASnAJ/BacKvtQ61qNGASoZ8epyQ1GwryAyOFue030iseK1pGwPFwsq4tcAjOD/aQAAQGRpUL7qWDNagEih9CJCGMwHAEDu69OnT9iTgVSoUMENlkvbn/ivv/7K9kC53Ngn4heBMgAASBhqFaclHOri0LhxYzePgmqwvUlONNBt8ODB2Xr+3Ngn4helFwAAIGmpU8fzzz/vpodWBwVN9KGBdBo0JyNHjnSdO4KpJdkPP/wQ6G2tx+l3r1VZZvtE8iCjDAAAkpaC102bNtmAAQMCk4NowJ03gEsTWngz/3o++ugj69y5c+B3TacsY8aMcWUfme0TyYOuFxFG14vw0PUiuuh6AQBA1uM1MsoRwhTWQGRtXjTcdz1t4wAA0UKNcgS7XqhOad68eZHaJQAAAGKIjDLia4KTS8pH+1AAAAB8kVEGAAAAfJBRBvKA0VtLJcUAPwAAoomMMgAAAOCDQBkAAADwQaAMAAAA+CBQjmAf5bp161qTJk0itUsAAADEEIFyhNBHGQAAILkQKAMAAAA+CJQBAACAaAfK27Zts5SUlNx8CgAAACD+Jhz5+eef7YsvvrDzzz/fateuHVg/Y8YM69Kli61Zs8bKlStnjz32mHXq1CkSx4vcmjoaAAAAkcsoP/3009a7d28rVqxYYN3mzZutXbt29vvvv7tssn7v2rWrLVy4MCdPBQAAACROoPz111/bCSecYFWqVAmse+ONN2zHjh3WrVs327p1q73++ut26NAhe+aZZyJxvAAAAED8B8obN260qlWrplo3bdo0K1CggA0ePNhKly5t119/vTVu3Ni++eabnB4rAAAAkBiB8vbt261MmTKp1s2dO9caNWpk5cuXD6w79thjbf369ZbMmHAEAAAgueQoUFbGODgAXrp0qf3zzz92+umnp9s2X758lsyYcAQAACC55ChQVuZ4zpw5tmLFCvf7yy+/7ALiM888M9V2q1atsooVK+bsSAEAAIBEaQ+nAXtqD3fSSSdZzZo1bdGiRXbEEUfYhRdeGNhGA/t++OEHa9u2bSSOF8jU7o3fcpUAAEBsM8pXXnmlPfjgg3bgwAH78ccfrVq1ajZ27FgrUqRIYJv333/f9u/fny7LDAAAACRtRlnuv/9+69+/vxvYV6FChXT3n3POOa6Hcq1atXL6VAAAAEBiZJQ1854G7xUuXNg3SBa1j9Oi7QAAAIA8ESjXqFHD7rrrrky369evn6thBgAAAPJEoKwpqrWEuy0AAACQJwLlcKnzhcozAAAAgDwzmC8jhw4dssWLF7sWcmmnugYAAACSKqNcoECBwCKvvfZaqnXBS6FChdykJJs3b7bLLrvMkhlTWAMAAOTxjHJwrbFm4cuo9liBcuXKle3yyy+3QYMGWbJPYa1FbfLKlCkT68MBAABAtANllVN48ufPb506dbJXXnklp8cBAAAAJE+N8gMPPGCNGzeO3NEAAAAAyRIoAwAAAMkoKu3hAAAAgDwXKGsa61tvvdWOPfZYK168eMgOGAUL5monOgAAACCichS9/vLLL9asWTPbunVrpjPvMTMfAAAA8kxG+d5777UtW7bYueeea99++61t27bNdcUItQAAAAB5IqP85Zdfuhn3PvzwQ6aoBgAAQFLJUUZ59+7ddsoppxAkAwAAIOnkKFCuWbOm7dq1K3JHAwAAACRDoNyhQwebNWuWbdq0KXJHBAAAACR6oNynTx877bTT7IILLrCff/45ckcFAAAAJPJgPnW72L9/vy1YsMAaNWrkBvZpyZ8/ffydL18+mz59ek6eDgAAAEiMQHnmzJmBn9X+bfXq1W7xo0AZAAAAyBOB8owZMyJ3JAlu1KhRbjl48GCsDwUAAACxDpTPPPPMSBxDUujRo4dbtm/fbmXKlIn14QAAACCWg/kAAACAZJWjjLInJSXFPv30U5szZ45rFXfqqadaly5d3H36XdNc16pVywoUKBCJpwMAAADiP1D+8ccf7eqrr7bly5e7gFmD9tQJwwuUp02b5votT5w40dq2bRuJYwYAAADiu/Ri3bp1dvbZZ9uvv/7qeikPGzbMBcvB2rVrZ4UKFbIPP/wwp8cKAAAAJEagPGTIENu8ebMNHz7cJk2aZH379k23TfHixa1hw4Y2b968nDwVAAAAkDilF1OmTLHjjjvObr/99gy3q169Oq3kAETE5kXDfdeXb9CLKwwAiJ+M8oYNG6x+/fqZbqe6ZbVNAwAAAPJEoFyiRAnX1SIzq1atsnLlyuXkqQAAAIDECZSVTf7+++/t77//DrnN77//7jpjnHTSSTl5KgAAACBxAuXrr7/eduzYYV27drXdu3enu3/fvn3WvXt31y5O2wIAAAB5YjBf586d7a233rKPPvrIDeo7//zz3XplkDXAT+vXrFnjWsip1zIAAACQJzLKmmnv448/tvbt29v69evtpZdecusXLlxoI0eOdEHy5ZdfbhMmTIjU8QIAAACJMTNfyZIlXVZ54MCBNnnyZPvtt9/s0KFDVqVKFTcJSaNGjSJzpAAAAEAiBcoelV5oAQAAACyvl16o7ELZYwAAACDZ5ChQvuSSS1yJxd13321Lly6N3FEBAAAAiRwon3jiifbHH3/YY489ZvXq1bPTTz/dXnzxxYSchW/cuHF26aWXWtWqVa148eJ2wgkn2BNPPOFa2wEAACDvyVGgPH/+fFu0aJH16tXLKlSoYN9++63dcsstVrFiRbvhhhvsiy++sETx+OOPW5EiRWzYsGH2ySef2LXXXmv33Xef6xENAACAvCdfSkpKSiR2dODAAZs0aZKNGTPGPv30U/d7vnz5XIZW/ZY7duxo1apVs3ilqbgPP/zwVOsGDx7sunn8+eefduSRR4a1H2XTy5QpY9u2bbPSpUtbvFk7bJbFs/GXlM/xPnZv/DYix5LsupXdYcmkfINesT4EAECCCDdey1FGOVjBggWtXbt29uGHH7qeysrQ1q1b101hPWjQIDvmmGMsnqUNksWbdnvDhg0xOCIAAADEUsQC5bRBZ+/eve27776zO+64w5S0zk53jGXLltkzzzxjnTp1svr167tgXFlqZXrDMXbsWGvZsqUddthhVqJECWvYsKErrQi37njWrFlWuHBhq1WrVpaPHQAAAIktYn2Ug6lWWSUY77//fmBgX7ly5bK8n+eee85GjBiRrWNQ3bQeq+C6VatWbmIU1UyrQ4fa2n322WdWrFixkI9fsmSJe/zNN98clyUUyaryK7/4rl/XhR7dAAAgQTPK6n7x6KOP2vHHH2/NmjVz3S927Nhh5557rr377ruuHCOr1Emjb9++buY/tZ/r0KFDWI+bOHGiC3IVHM+dO9emTp1q48ePt+XLl7vM9OzZs13tcSh///23KyNRucgjjzyS5eMGAABAHs8o79u3zwWlr776qk2bNs2VV6jMQqUKKpfQUqlSpWzvP23Hifz5w4vrhwwZ4m779+/vWth51Jnj2WeftebNm9vIkSNdsKxC7mAK7jX1ts5t5syZrmQDAAAAeU+OAmW1gdu6dasLjtV7+IorrrAuXbpYixYtLFaUuZ43b577WS3e0jrjjDPcJClr1661yZMnW/v27QP37d27102isnr1apd1Pvroo6N67AAAAEiSQHnLli122mmnueD46quvdqUOsbZw4cJATXSNGjV8tzn55JNdoKxtvUD54MGDds0117ggW7XMderUCev5FFxr8STiZCsAAACIcKCsuuFwA8poWbVqlbtV/+ZQlFEO3lZ69OjhykgefvhhFzRrQKJHbe5CDegbOnSoa38HAACAPDyY7/XXX7c5c+YEfg8OkpVJ3bNnj+/j3nnnHdcuLhpUYywZ1RZ7me/g7O+UKVPcreqWlSUPXhYsWBByX/fcc49rVu0tylQDAAAgjwXKGpz30ksv+d6nXsXKyvpRK7bstnmLFtUlq9bab1Ev5lA07bWyzcELAAAAEl/E2sN5QWWslSpVyt3u2rUr5DY7d+50twS1AAAAiOrMfLFUvXp1d5tRCYR3n7dtJIwaNcrVMjdp0iRi+wQAAEDsJF2g3LhxY3e7efPmVIP1gs2fP9/dBvdYzimVnWg2P681HQAAABJb0gXKlStXDmR133777XT3qz+yMsqqLW7Tpk0MjhAAAACJIOkCZRkwYIC71fTTwR0rlGXu3r27+7lnz57pZuUDAAAAItJHObcpyPUCW1m5cqW7HT16tE2aNCmw/oMPPnCzBHratWtnt99+uz399NPWtGlTa926tWsXN336dDeTYLNmzVy/5EhSjbIW9WAGAABAHgyUV6xY4fopZ+U+rc8O9TmeO3duuvXr1q1ziyd4ZjyP2tEpIFbwqt7P+/fvt1q1aln//v3tzjvvtMKFC1skqUZZi46ZTDUSweit/+0Qk1a3sv/tRQ4AQF6XLyULPd3y589v+fLly/KT6Cn0uLyQbfUCZU0+Eo/t59YOm2XxbO7mTb7r13U5Lux97N74/7MqIusSNVAu36BXrA8BAJBk8VqWMsqaFjo7gTIAAACQaApmdfY6AAAAIC9Iyq4XAAAAQE4RKEcIM/MBAAAkFwLlCGFmPgAAgORCoAwAAAAk2oQjQGZoBQcAAHILGWUAAADAB4EyAAAA4INAOULoegEAAJBcCJQjhK4XAAAAyYVAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoRQns4AACA5EKgHCG0hwMAAEguBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQjhAlHAAAAkguBcoQw4QgAAEByIVAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKEcIU1gDAAAkFwLlCGEKawAAgORCoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwEdBv5UA8q7RW0v5ru9WdkfUjwUAgFgiowwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAcIaNGjbK6detakyZNIrVLAAAAxBCBcoT06NHDlixZYvPmzYvULgEAABBDBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwU9FsJAIlm86Lh6daVb9ArJscCAEgOZJQBAAAAHwTKAAAAgA8CZQAAAIBAGQAAAAgPGWUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4YMKR/1mxYoU9/vjj9t1339lPP/1klSpVstWrV/tdM8RA5Vd+8V3/64VRPxQAAJBHECj/z+LFi23SpEl2yimnWEpKim3ZsiW2rwwAAABiitKL/2nbtq2tW7fOJkyYYKeeempsXxUAAADEHIGydyHycykAAADw/+I6Oly2bJk988wz1qlTJ6tfv74VLFjQ8uXLZ4MHDw7r8WPHjrWWLVvaYYcdZiVKlLCGDRvasGHDbP/+/bl+7AAAAEhscV2j/Nxzz9mIESOy9dhevXq5xyq4btWqlZUsWdK++OILu/vuu+3jjz+2zz77zIoVKxbxYwYAAEByiOuMcr169axv37721ltv2dKlS61Dhw5hPW7ixIkuSFZwPHfuXJs6daqNHz/eli9f7jLTs2fPtoEDB+b68QMAACBxxXVGuWvXrtmqIx4yZIi77d+/v5144omB9RUqVLBnn33WmjdvbiNHjnTBcpkyZSJ81AAAAEgGcZ1Rzo7169fbvHnz3M/XXnttuvvPOOMMq1Kliu3du9cmT54cgyMEAABAIki6QHnhwoXutly5clajRg3fbU4++eRU2+aEAu7t27enWgAAAJD44rr0IjtWrVrlbqtWrRpyG2WUg7eV3bt3BzLMv/32m/t93Lhx7vcmTZpYtWrVfPc1dOhQGzRoUETPAQAAALGXdIHyjh073K3awYWiQX4SnP3966+/7Morr0y1nff7mDFjXIs6P/fcc4/17t078Lv26QXiAAAASFxJFyhnV/Xq1d3U1VlVpEgRtwAAACC5JF2NcqlSpdztrl27Qm6zc+dOd1u6dOmoHRcAAAASS/5kzAzL2rVrQ27j3edtGwmjRo2yunXrunpmAAAAJL6kC5QbN27sbjdv3pxqsF6w+fPnu9vgHss51aNHD1uyZEmgNR0AAAASW9IFypUrVw5kdd9+++1092tWPmWUVVfcpk2bGBwhAAAAEkHSBcoyYMAAd/vII4/YggULAuuVZe7evbv7uWfPnszKBwAAgMTseqEg1wtsZeXKle529OjRNmnSpMD6Dz74wCpWrBj4vV27dnb77bfb008/bU2bNrXWrVu7dnHTp0+3rVu3WrNmzezhhx+O8tkAAAAgkcR1oKyexHPnzk23ft26dW4Jnh0vrREjRriAWIPs5syZY/v377datWpZ//797c4777TChQtH9Fj1PFoOHjwY0f0i62q899+uJuFadfV/+2oDAAAEy5eSnebByDC4L1OmjG3bti0u28+tHTbL4tnczZuytP2vF25Nt45AOXd0K/vfyXwSSfkGvWJ9CACABI7XkrJGGQAAAMgpAmUAAADAB4EyAAAAkGiD+RIJg/mQ7EZv/e/08IlUt7x50fAsbU9NMwAgGBnlCGFmPgAAgORCoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfdL2IELpe5O4MfKFkdRY+AACAcJFRjhC6XgAAACQXAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD7ooxwh9FHOXft3rsvlZ0B2jN5aynd9t7I7uKAAgIRHRjlC6KMMAACQXAiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4oI9yhNBHOXHVeG9nunWrri4Zk2PJi+jFDACIV2SUI4Q+ygAAAMmFQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPgo6LcSWTdq1Ci3HDx4kMuHbKnx3s5061ZdXTIhr+boraV813cruyPsfWx+bZ/v+vIdC1tuHd8Av+NYNNz/OBr0sngwfNli3/W96pxgeVG8v15rh83yXV+lX4uo7gNAeMgoR0iPHj1syZIlNm/evEjtEgAAADFEoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMBHQb+VyLpRo0a55eDBg1y+JFDjvZ053seqq0tavBxfbh1LqOMI9XybX9uXfuUl/vv+fk8R3/XnWorv+tFbS6Vb163sDsuKzYuGp1v32eh8/sfRLf22Ur5Br3Tr1g6b5bttlX4tcnRsTpFzLLf82meY7/raT/SzaBq+bLHv+l51TsjxvofMetl3/YAWN6ZbN+7u8b7bXvHo5WE/3+zfF/qub28twj73Nhu/DbH3FmG/d/zep4kg1P8HiXo+iH9klCOkR48etmTJEps3b16kdgkAAIAYIlAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgHGTFihXWpk0bK1mypFWoUMG6d+9uu3bt8rtuAAAASHIFY30A8WLbtm3WqlUrO/roo23s2LH2zz//WO/evW3jxo02fvz4WB8eAAAAooxA+X9Gjx5tmzZtsvnz59sRRxzh1hUrVswuv/xy+/777+2kk06K9msDAACAGKL04n8mT57sMspekCwXX3yxK8OYNGlSrF4fAAAAxEhcB8rLli2zZ555xjp16mT169e3ggULWr58+Wzw4MFhPV4lFC1btrTDDjvMSpQoYQ0bNrRhw4bZ/v370227ZMkSO/7441Ot0/PVrl3bli5dGrFzAgAAQGKI69KL5557zkaMGJGtx/bq1cs9VsGuMsXKDH/xxRd2991328cff2yfffaZK63wbNmyxcqWLZtuPwqyVa8MAACAvCWuM8r16tWzvn372ltvveWyuh06dAjrcRMnTnRBsoLjuXPn2tSpU92AvOXLl7vM9OzZs23gwIG5fvwAAABIXHGdUe7atWuq3/PnDy+uHzJkiLvt37+/nXjiiYH1avn27LPPWvPmzW3kyJEuWC5Tpkwgc7x169Z0+1Km+dhjj83hmQAAACDRxHVGOTvWr19v8+bNcz9fe+216e4/44wzrEqVKrZ37143gM+j+uS0tcgHDx60X3/9NV3tMgAAAJJf0gXKCxcudLflypWzGjVq+G5z8sknp9pWNNHIjBkzXIs4j2qZd+7caRdeeGGuHzcAAADiS9IFyqtWrXK3VatWDbmNMsrB20q3bt1ccH3JJZfYp59+am+//bbdcsst7ncvsPajzPT27dtTLQAAAEh8cV2jnB07duxwt2oHF4oG+UlwUKuOF+qKcfvtt9sVV1xhRYsWtSuvvNIef/zxDJ9v6NChNmjQoIgdP5JHjfd2xsU+4mnf31uRHO979NZSYT/nZ5bPfydX+6/+bHSI7X1sfm2f/x0dh/us/P+xEsGGzHo57HM5qaj/8x2553Pf9e+Y/3o/q64u6X8ce/xfr/KL/M4x59c01HHU/iR9RyJZW35zunXFz7ccX2unRfpV+3euy9K+B7S40cI1fNli3/W7N34b9j42h3hd/P6fqX23/4yzZ1231rJi95T07+3xl5T33bbyK7/4rr/i0ctz/P9/N59zL9+gl8ULv9fG79pJlX4+b74I8Xuf9apzQq493+YQ78l4em3yXKCcE+qZPGXKlCw95p577nFTXXsUfHsZawAAACSupAuUS5X676fNXbt2hdxGdcdSunTpHD9fkSJF3AIAAIDkknQ1ytWrV3e3a9eG/vrIu8/bFgAAAEj6QLlx48budvPmzakG6wWbP3++uw3usZxTo0aNsrp161qTJk0itk8AAADETtIFypUrVw4Eq+pckZZm5VNGWeUSagkXKT169LAlS5YEejgDAAAgsSVdoCwDBgxwt4888ogtWLAgsF5Z5u7du7ufe/bsGZiVDwAAAEiowXwKcr3AVlauXOluR48ebZMmTQqs/+CDD6xixYqB39u1a+favD399NPWtGlTa926tWsXN336dDdNdbNmzezhhx+O8tkAAAAgkcR1oKxWa3Pnzk23ft26dW4JnvQjrREjRriAWLXDc+bMsf3791utWrWsf//+duedd1rhwoUjeqx6Hi2a9hoAAACJL64D5ZYtW1pKSkq2H3/VVVe5JRpUo6xFwT0lHQAAAIkvKWuUAQAAgJwiUAYAAAB8ECgDAAAAPgiUAQAAAB8EyhHCzHwAAADJhUA5QpiZDwAAILkQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAACDRprBOtK4XWg4cOOB+11TW8WjHnl0WD3bv3Z2l7ffv25Nrx5IX7NlVIN263XFyTf2OLaPjy+r2ubWPnfn2+q4vvPNQ+v2G+P9uz65/wz6OUM+3e1+K5VRWr8eOneE/5+59+XJ+HHsL+x+Hz3U9uDPU+6Zgls7R7294Vt+TWdrHzp1hv0d27t0T9nsv1LmHvKYhrl8ofu/tPTuLZOnvflb+vQz1/8yOgumPu1Ac/Tvsd11D/V3IzfjB732Wm8+3I8T7KR5eG++8U1Iy/nuWLyWzLZAl69atsypVqnDVAAAA4tzatWutcuXKIe8nUI6wQ4cO2YYNG6xUqVKWL1/4mZRQmjRpYvPmzbNEFI/HHotjitZz5sbzRHqfOd2fMgD6IKo/bKVLl47YcSG64vFvQywk8nWIt2OP1fFE43lz6zkiud8mEdhXtP++K0+8Y8cOO/rooy1//tCVyJReRJgudkafTLKqQIECCRsQxOOxx+KYovWcufE8kd5npPanfcTbewuJ/bchFhL5OsTbscfqeKLxvLn1HJHcb4EI7iuaf9/LlCmT6TYM5kuAiUwSVTweeyyOKVrPmRvPE+l9xuN7AtHH+yDxr0O8HXusjicaz5tbzxHJ/faIs/dDJFF6ASBh6Ks5ZQC2bdsWV9ksAEBy/n0nowwgYRQpUsQeeOABdwsASB5F4vTvOxllAAAAwAcZZQAAAMAHgTIAAADgg0AZAAAA8EGgDCBP07TzDRo0cBMEvfvuu7E+HABADkyYMMHOOOMMq1ChghsYWLNmTevdu7dt2bIlW/tjwhEAedqIESNs06ZNsT4MAEAE/PPPP9ayZUu76667XLu5n376yQYNGmQ//vijTZ8+Pcv7I1AGkGetW7fO/QEdOXKkdezYMdaHAwDIoa5du6b6XUFz0aJF7eabb7Y1a9ZY1apVs7Q/Si8A5Fm9evWyiy++2Fq0aBHrQwEA5JJy5cq52/3792f5sQTKACJu2bJl9swzz1inTp2sfv36VrBgQVcDPHjw4LAeP3bsWJcFOOyww6xEiRLWsGFDGzZsWLb+yIUyZcoU++yzz+yxxx6L2D4BINktS4C/73Lw4EHbs2ePzZ8/331z2KZNG6tVq1aW90PpBYCIe+6551ztb3azvHqs/vi2atXKSpYsaV988YXdfffd9vHHH7vgtlixYjk6Pv3x7Nmzp5sFqmLFirZ69eoc7Q8A8orn4vzvu6d8+fJuOmw599xz7f3338/WfsgoA4i4evXqWd++fe2tt96ypUuXWocOHcJ63MSJE90fUf3xnDt3rk2dOtXGjx9vy5cvd5mL2bNn28CBA1M95tVXX3XZjMyWcePGBR4zZMgQK1y4sN1+++0RP3cASGb14vzvu2fmzJn29ddf2/PPP29Lliyxtm3buixzVpFRBpDrgyny5w/vM7kCWOnfv7+deOKJgfVq8/Pss89a8+bN3cA7/THVaGa59NJLrWnTppnuu1KlSu72999/d1/z6Y/8rl273Lrt27e72927d7sMhLdvAEDi/H0P1qhRI3d7+umnu5+1nw8++MCuuOIKywoCZQBxYf369TZv3jz387XXXpvufvXFrFKliq1du9YmT55s7du3d+v1BzUrge2qVats7969vn8sb7zxRpdl3rlzZ47OBQAQ/b/voSgwV+Z5xYoVWX4spRcA4sLChQsDo5Nr1Kjhu83JJ5+catvsUGZhxowZqZZ33nnH3adMxqeffprtfQMAYvf3PRSVYKSkpLjJR7KKjDKAuKBMr2TU41IZh+Bts6Ns2bJuxHUwbzBf3bp13dd/AIDIidbfdznvvPOsdevWdsIJJ7iZ+RR4q7uRZmBt165dlvdHoAwgLuzYscPdql1QKBoEElxTDACIfzui+Pf9lFNOsTfffDMQcFevXt26d+/uprHWIO6sIlAGkOfpD6m+lgMAJLaHH37YLZFCjTKAuFCqVCl363Wi8OMNsitdunTUjgsAkHf/vhMoA4ibrK5o1HMo3n3etgCA+Fc9gf++EygDiAuNGzd2t5s3bw45mENTkUpwD04AQHxrnMB/3wmUAcSFypUrW5MmTdzPb7/9drr7NWuTMg4axdymTZsYHCEAIK/9fSdQBhA3BgwY4G4feeQRW7BgQWC9shAatSw9e/Zk5jwASDADEvTve74UhnoDiDD9EfT+8MnKlSvt77//dlmF4KlGNZ1oxYoVUz32jjvusKefftoKFSrkemGqndD06dNt69at1qxZM5s2bZoVK1aM1wwAYmBBHvv7TqAMIOJmzpxpZ511VqbbqVbNb+DG+++/b6NGjbIffvjB9u/fb7Vq1bLrr7/e7rzzzmz1wQQARMbMPPb3nUAZAAAA8EGNMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAaSTPXq1S1fvnyZLq+++mqsDxVJ9p5bvXq1JbJkOY9I0XVI+3dj8ODBOdrncccdl2p/LVu2jNjxArmhYK7sFUDMNWvWzI455piQ92d0XzwHMr///rutWrXK/QyuO++d3FeiRAm74oor3M8NGzbM0b4uvfRS++OPP+zPP/+0qVOnRugIgdxDoAwkqa5du1qnTp1ifRjIA6ZPn2779++3SpUqWSJLlvOItAoVKkTsG6ihQ4e625kzZxIoIyEQKAMAcqRWrVpJcQWT5TwARA41ykAe98svv7hawcMOO8z27NkTcruTTz7Zbffhhx+mWv/vv//aE088YU2bNrWyZcta0aJFrU6dOtavXz/bvHlzuv14tYkyfvx4O+OMM6x06dLu612Vi0yePDndY5TN0mNUdiE1atRIVeeo7FQ4fv75Z7v88stdhqx48eJWv359Gz58uB06dCjD+tSsnmN2zzNSzzdmzBg77bTTrEyZMqnO6bvvvnP7OOWUU+yoo46ywoUL25FHHmlt27a1zz//PNvXPbPa3nXr1tltt91mxx57rDsXHZeuwejRo+3gwYMRvXbZPYeMziP4eN588013/UqWLGmHH364tW/f3tasWePuS0lJsZEjR1qjRo3csep9pm91/vrrr4i+1hnRNQ5njIIWvU8iYfny5dalSxd3bYsUKeKuTbVq1ezCCy+M2HMAMZMCIKlUq1YtRf9rjxkzJuzHnHbaae4x77zzju/9ixYtcvcfeeSRKfv37w+sX79+fUr9+vXdfeXKlUs5++yzUy699NLAMVSvXj1l9erVqfal9Vruv//+lHz58qU0a9Ys5eqrr05p2LChW691EyZMSPWYr776KqVjx44pJUqUcNtcfvnl7ndvWbp0aabnOHPmzJRixYq5x9eqVSvlmmuuSTnnnHNSChcu7J7fO+ZVq1alelx2zjG75xmJ5+vZs2dK/vz5U84444yU9u3bp5x66qmB7Vu3bu3u0/7btGmTcuWVV6aceOKJgccOHz48W9c91LWT7777zp2H7q9ataq7Bueff35K0aJF3brzzjsvZe/evRG5dn6y8t4JdR7e8fTv3z+lYMGCKa1atUq54oor3PlofZUqVVL++eeflKuuusqdl85Pr9kRRxzh7m/QoEG6c8zJax3Kv//+m9KpU6dU51enTh23r5NOOinVei1r1qzJcH+6DnqsjieUn376KaV06dJuOz3XZZdd5t5X+ptSsmRJ95r5mTFjhnvMmWeeGfb5AbFAoAwkmewEyi+++GIgaPFz5513uvv79OkTWHfo0CEXwGj9jTfemLJ9+/bAfQqmta3uO+uss3yDjrJly6Z8++23qe574IEH3H21a9fO8Nz8ArKM7N69O6VSpUqBczh48GDgvsWLF7sPAN5xBe87u+eY3fOMxPMpaPnmm298r8PkyZNTNmzYkG79nDlz3OMKFSqUsm7duixf91D379mzJ3DfLbfckrJv377AfStXrnSBoO4bMGBAxN4joYTz3sksUC5fvnzKDz/8kOp9pQ8kuk8Brz6ABQe2mzZtSjnmmGPc/W+++WbEXuusUNCu/YwdOzbLjw0nUO7cubPbZvDgwenu0/X58ssvfR9HoIxEQaAMJBnvH/vMli1btgQeo3+kixcv7rKNaQMlBTeHH364e8zPP/8cWP/pp5+6dY0aNUqVZfYoGK1Xr57bRlknj/f8Tz/9dLrHKLAqU6aMu98v25XdQPn1118P/IMfHKx5Ro4c6RsoZ/ccs3uekXi+hx56KCU77rnnHvf4UaNGRSxQfuONN9z6o48+2p1zWuPGjXP3lypVymVDI/Eeyc1A2e/aKLPt3f/JJ5+ku/+JJ55w9ymgDJaT1zorvA+By5cvz5VAWd9MaJsFCxZkad8EykgU1CgDSUq1nB07dgy5qD7VU6pUKdf+SbW6r7/+eqr9fPLJJ7Zp0yZXl3nCCSekWi+q+S1YMP244Pz581uLFi3cz3PmzEl3v+pi01J9Y82aNd3P69evt0j58ssv3e2VV15phQoVSnf/dddd5/u4nJ5jVs8zEs/ntfEKRXWveo1VA3vTTTe5Glot3jVatmyZRYpX/3vNNde4c07rsssuc7XxO3bssO+//z6m75FwtGnTxrcmWPR6nXvuuSHv37BhQ6r1kXitM6M2bBs3bnT/f+fWQEX9XZBbb73VdbHIaJwDkIjoegEkqay2h9NgHAVQGvx0zz33BNZ7g3E6d+6cavvffvvN3Q4cONAtGVGgnVbVqlV9t9WgLYnkP7gaTCahei9rEJUGmG3bti2i55jV84zE82XUX/rFF1+0O++803bt2hVym+3bt1ukeIGsBnn50YAy3bdlyxbfoDea75Fw+B2PBq5JxYoVfQNeBal+xxqJ1zozCxYscLcaXOgNRoy0u+66y2bPnu0Gg55//vnug6h6LSvI1wekJk2a5MrzAtFCoAzA0T9syjr9+uuvLoN1+umnu9H66jCgkfj6Ry+Yss+ijgSZZauCM9HBGbNoyyhY8Lsvp+eY1fOMxPMVK1bMd70ytt26dbMCBQrYo48+6rK1CvzU/UPn/sILL7j7/1tpEB9i8R7J7vFk9Vgj8VpnZuHChe62cePGllv0/pk2bZrNmzfPpkyZ4v52aJk/f749+eST1r17dxs1alSuPT+Q2wiUATgKlpSBVnZLWWQFymqFdeDAAbvqqqtc1jVYlSpV3O0ll1xiffv2jeur6E0gEap9mTLJW7duTbc+2ueYm883duxYFwSrTZvKLvxafOXWdfeyp340y2LwtnlFNN5bP/74YyCjnNuUOfayx/qbMXHiRLvhhhvs2WefdeVAZ511Vq4fA5Ab4uvjOoCYUqCszNj7779vu3fvDll2IRdccEGqACwavLpq/UOcFV6tp47V77Fvv/227+OifY65+Xz//POPu1V/27RUFqB+xZG+7i1btnS37733nm+ZxAcffODKLlSecNJJJ1luyu455JZovLdWrlzpbmvXrm3RpBIUBcfnnXee+/2HH36I6vMDkUSgDCCgcuXKds4557g61QEDBrgJOvT1fKtWrdJdJWXClEHSJBYKpP3qKBUEPf/88xELTnR8snjx4iw9ToP4VEOqjPK9994b+Nrbm3DloYce8n1ctM8xN5/v+OOPd7evvfaaGzznUQCrr8e9zG6kr7vePxrI1rt371THrOfr06eP+1lZbpX35KbsnkNuicZ7y3vc3r17LbcoY+w3APTPP/905RehPpwBCSPWbTcARJbX4ko9WtNOMBC8vPXWW76Pf/fdd1O1kdOkD6FowgS1t9J2mtDh9NNPdxN5aNIBrS9QoIC7z6/1VyiagED3q31UqDZumshAz6H+s1p++eWXTK/L9OnTA5NcqLetjvPcc891E45oggRv8gidU07PMSfnmVvPp3aA3ntD/YDbtWvnJt/QpBhqz3bHHXe4+/TeyOp1D3fCEW2niUPUUiycCUeyeu0yEs57J7P2cNlpoZZRG7Tsvtbh6tKli3t8hQoV3Htc1yDS7eG8SWBq1KiR0rZt25TrrrvO/X/lTe6jyVn82t/RHg6JgkAZyKN9lBUY+VGfWi+w0Qxov/32W4bPp+2ff/55NzGCAjDNXKbgS//Q9+jRI2Xq1KkRC4LUW3bo0KEpJ5xwQiDQykrA9OOPP7qZz3R+enzdunVTHnvsMReoKWBWH2m/oCSr55jT88yN5/MmwOjevbubGKNIkSKuv/H111/veuxqgppQgXJm1z2zHsXqd6zjrlmzprvOCsw1c9tzzz3nG0TlRqAcznsn2oFydl/rcOn1VoCsiVsy+9Cb3UB50qRJKbfeemtK48aNXb91vb6VK1dOadmyZcprr73m27dcCJSRKPLpP7HOagNALM2aNcvOPPNMq1+/vi1atIgXA/jf4Fe171PpRKiBsDnpsa0Bfvr/zuu3DcQjul4AyBNUA7pz5850PX1Vh62JN0INWgTyur///jvQk10TpPhNBBMu9WjXRCiqYQYSAYEygDxBg7iUwapbt66b2U39hjWgTJMyaHCfBjFqUBmA1DRBjQaByjHHHJOjQFmdTiI5+yOQ2yi9AJAnqPPCkCFD3FTNmgVOnR/UlkyTOVx77bUuq+w3sxoAIO8iUAYAAAB80EcZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAABMoAAABAeMgoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAACw9P4PUed/h2KKLJUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12.83^{+ 1.45}_{- 3.36} \\times 10^{-5}\n", + "8.63^{+ 1.41}_{- 1.93} \\times 10^{-5}\n", + "6.58^{+ 0.21}_{- 0.29} \\times 10^{-5}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAIiCAYAAADRge6vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvEklEQVR4nO3dCbxM9f/H8c+177tKIVIpWcuVEolSaaNdUUgRsqWSVuVHaUNUWrUvEpVEEikkoiQSIkubZJcl7v/x/v5+Z/5z7z1z78y9c++dmft6Ph7HXGfOnDnnzF0+85nP9/NNSklJSTEAAAAAqRRI/V8AAAAABMoAAABACGSUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4KOS3Ell36NAh+/XXX6106dKWlJTEpQQAAIgxmm9v586dduSRR1qBAqHzxgTKUaYguVq1atHeLQAAAKJsw4YNVrVq1ZD3EyhHydixY93y77//Bi58mTJlorV7AAAARMmOHTtcYlMVABlJSlHuGVG98GXLlrXt27cTKAMAAMRxvMZgPgAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8EChHiVrD1alTx5KTk6O1SwAAAOQh2sNFGe3hAAAAYhvt4QAAAIBsoPQCAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAuUoYcIRAECiSkpKspYtW+b1YQC5jkA5Snr16mXLly+3hQsXRmuXAIA4s27dOhdUnnfeebn6vFu3brWhQ4faaaedZhUrVrTChQtb5cqV7eyzz7Ynn3zSdu3alavHAySKQnl9AAAAIOtmzpxpV155pf3999924okn2hVXXOGC5S1btticOXOsT58+NnLkSFuzZg2XGYgQgTIAAHHqu+++s4suush9/dprr9m1116bbpvZs2fbnXfemQdHB8Q/Si+AGLZhxBzfBUB82b9/vz3xxBOWnJxspUuXtlKlSlmdOnVswIABrmwi2J9//mn9+/e3Y4891ooWLWqVKlWyyy67zJYtW5Zuv8oW//PPP668wi9IFtUWK1j2jB8/3pWH6DYtbaf77r//ft99bdy40Tp06OCOqUSJEtasWTP79NNPQ57z448/bieffLKVLFnSnXfz5s3tgw8+yPR6AbGCQBkAgBykQLZVq1YuKN6+fbt16dLFbr75Zjv++ONt3Lhx9ssvvwS2VXnEKaec4kolatWqZbfccou1bdvWpk2bZk2bNrUFCxYEtl29erUrrahWrZrbZ0YUcGeXAnoFxqtWrbJu3bq5gFkZbdVjT548OdW2+/bts3PPPdduvfVWS0lJsRtuuME6duzozvWSSy6xMWPGZPt4gNxA6QUAADnonnvusblz51qnTp3spZdesoIFCwbuU+Ac/P/rrrvOfvvtNxcYK9D03H333da4cWO78cYbbenSpW6d9ilnnnmmFSiQ83kvPe8111zjSjyUdZa+ffu6LPlNN93kjrd48eJu/QMPPOCy0zr3IUOGBLbfuXOne9OgAPrSSy+1I488MsePG8gOMsoAAOSQf//915599lkrW7asjRo1KlVQLFqvMgxZsmSJzZs3z66//vpUQbIo+6wg+fvvvw+UYPz+++/utmrVqrny+unYhw0bFgh6pX79+u4NwObNm23q1Klu3aFDh+zpp592GfHgIFlUfnHvvfe6soz33nsvV44byA4yygAA5JAff/zRZVHVpq18+fIZbvvVV1+52z/++MO3Rlj78m7r1q1rua169ep29NFHp1uvuuMXXnjBBfqqpV65cqUr01C2WIFyWgqqg88HiGUEygAA5BCVVshRRx2V6bZq7yYfffSRW0LZvXu3uz3iiCPc7aZNmyw3HH744Rmu987VO48ffvjBLZmdBxDLCJQBAMgh5cqVCzuYLVOmjLtVB4vevXtnur0G1olqgVXuEG6dsredykLS8oJdP8p0Z7ReZSTB56Hs8rvvvhvWMQGxihplAABySO3atV3gqFlb07aBS+vUU091t/Pnzw9r32of16JFC9uwYYO9/PLLGW6rLhQerwTEL3hX+UQo69evT9Whw/PFF1+420aNGrlbTXqic160aJEdOHAgrHMBYhWBcpSMHTvW9cTU6F8AAKRQoULWvXt3l6lVh4iDBw+mujBa700v3aRJExcsv/nmm/b222+nu4DKGn/++eep1mmAoDpNKAPt9xgvkFWnCY/az2mA3VtvvWV79+4NrFfbN+0vFB374MGDXbu34E4Yr776qpsuW23svHNW+zsF1QMHDvQNljUgUf2igViXlBL8HY9s27Fjh/v4Sb/8vI+fgKwKNblItdtbcFGBGLRu3TqrWbOm61qhFm+iYLRNmzYuYD3uuOPs/PPPd32Nf/75Z7fNl19+aQ0bNnTbrl271s466ywXZKpvsibrUCCsbK4yzRoIFxzcpp3CWgkbZZkrVKjg/q8WcuqUoeyzAmGPJid544033Pbqg6ygddKkSe7riRMn2n333ZdqQKECa3W42LZtmwuKNThRx6LgXH2i9Zh27dqlymBrxsAZM2a47hc6psMOO8xlsXU86r+s89E5ArEcr1GjDABADipWrJgLGDXJhnoQP/fcc67VmrpI9OjRw2rUqBHYVkG2yh80o50m8fD6LlepUsUFm5dffnm6/bdu3doFwU899ZQbBKjgVZ02FATUq1fPRo8ebV27dk31mOeff97Nrqdt9YmoSkTUxk6dKhT0+lHJhvavLLHOYc+ePa7cQp0tzjnnnFTb6o3Axx9/7LphvPLKK26fCp418E/Buc5bxwbEOjLKUUZGGdFERhkAgLyL16hRBgAAAHwQKAMAAAA+CJQBAAAAHwzmAwDkii1LR8bsla5Yv19eHwKAGESgDOQyBugBABAfKL0AAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAACQ0N577z03zXaFChUsKSnJ1q1bF9Hjb775Zvc4TUMe7P7773frg5fGjRtbfnZ/gl0TAmUAABD3WrZsaePHj/e9b/fu3daiRQt74IEHIt7vlClTbP78+XbkkUf63t+gQQP77bffAsv06dMtv2uQQNeE9nAAACChderUyd0uW7Ysosf98ccfLps8depUu+iii3y3KVSokB1xxBFROc5EUSiBrgkZ5SgZO3as1alTx5KTk6O1SwAAsuW1116z7t27u4++ixYt6j4GD5V1lU2bNtnIkSOtTZs2Vr16dStSpIgLeC677DJbsGBBRM+dkpLiSh7OOussq1KlipUoUcJq167tjufnn39Ote3evXttwIABLuurzG2xYsXc8zZr1sxeeuklO3DggOWFLl26WJ8+faxevXoht1mxYoU7v2OPPdZt//vvv1usv86ycOFCa9u2rZUrV85KlixpTZs2tXfeeScqx7MiBq5JtJBRjpJevXq5ZceOHVa2bNlo7Rb5SKiJSAAgq+6++2775ZdfrFKlSi5w0dcZefLJJ+3hhx+2WrVquWC5cuXKtmrVKps8ebJb3njjDbvqqqvCeu6BAwfa448/7p63Xbt2VqZMGfvuu+/sueeeszfffNPmzZtndevWddvu2rXLnn76aWvSpIldcMEF7nm3bt1qH3/8sXXt2tXeeust93WBArmX31M9sko2br311pDbnHrqqS4gPeGEE9ybjHvvvddatWplS5YscQFrrL7Os2bNsnPPPde9Ibn66qutdOnSNnHiRPfabtiwIcNzzkysXJNoIVAGACBBPf/883bcccfZ0UcfbQ899JDdeeedGW6vQHX27Nl25plnplr/xRdfWOvWrV0ZgoLezAIeZRCVmdbzKjgOTiA98cQTLnusIPrFF1906zTIbvv27S6DHezff/91g/A++eQTFygriPYMGzbMLZ5//vnHvvrqK+vdu3dgnQLwrPjxxx/twQcfdFn0jILz888/P/C1ss6nnHKKy8SrrllZ+Iy8+uqrLoOua+Tn4MGDNmrUKHc+aa9Ldl5nXdMbb7zRndecOXOsYcOGbr0CWr3+gwcPtssvvzzVcQ0aNMi9gcrsE4TsXpNYROkFAABRsnbt2nQj/v0WfeSdG84+++yQgZifSy+9NF2QLM2bN3clFMryfv/995nuR10lDh065Eon0n7KeuGFF7rbzZs3B9YpaPMLBlXr2r59e/f16tWrU93Xo0cP+/bbbwOLyg40WC94XVYp4NbxqXRAx6BFWdq+ffsGAks/yoTXqFHDfR9kZOPGjS5Y1QBEv+yvrt3111/vMrvPPvtsVF/nzz77zNasWWPXXHNNqnPR66Qgef/+/fbyyy+nesytt97qyikyWrJ7TYIpu63vw8MOO8xlvVWOo3PU+txGRhkAgChRLe19990X+P/ixYvtww8/dJnQ4BZZCiDjTeHChd2tgsbMKLupwHfu3LmuJFFlFx5lFkUZ6swoYJw2bZr72ivT8CgLrcVTvHhxF1gpuM0uZc3TtjRTqULnzp1dzW0oeiOhwFeBYUaqVq3qyk+uvPJK9wZEWXxlXYOD5Ndff92uu+4669mzp0WTnktUWpOWzlE+//zzdMFu5cqVs/R84V4Tj0pwdM4qIdGbpIoVK7pPKL7++mubNGlSrmelCZQBALmiYv1+CX+ljz/+eNdH1qOPwBUo9+vXz2XEMqNyhW3btkUU0GWU4YyW9evX26effuqCl4wGtnkU3KgEQJlI1apecsklgRplZTQVCAWXSHiUzVQ5hT7G37Jli82cOdOVQSg4DSewDuXvv/9256BMqixfvtxdZwWnXrCtmmQFYnpODXDTkvaNgjdAzXPbbbe5bhjaj7LEysgeddRRYX1ioCBQwXKHDh1cZlkBrAJoBeManHfttde6gYzRrstWzbn3ZiYtDaAsVapUYJusyM418cpI9CZLnwjojU8wfU/kNgJlAAByiAJDqV+/fljbK1DObCBWMGXpcjpQVpZc7dX27dvn6lQLFiwY1uP69+/vAqRu3brZM888E1h/xhlnuI/9/TLTCpSHDBkS+L/KVDQocPjw4dk6hw8++CBVJtirdVYgqsBU/vrrr0AgHS4NfNNgOD328MMPd+UCqj1Wh49wqBZYtcgKipVZVhZbnSe0T5U/5MTgRdWCS6jGA3pD422TFdm9Jt6bEu8TjLRvwHIbgTIAADkYKCtLlzYzFkqkM8blNJUBKJDUoC/V1Hr9iMOheuGhQ4e6244dO7oMrbKECqCVQVW96cUXX5zqMcpmKpus5/31119dNl4ZSU34oV7GwSUcoUoK/OgcvIA4FH0SEPxpQDivjbpxZJc6TWiAna6R2ubpUwJllMN9QxJr3srmNVGQffvtt7tSG72h0hsIvbnK6LXPSQzmAwAgByijpmBPs5TFIwWras2mlnAK4oKzwplRmYZqtVVeoY4JKilQEKyAR8GvsoUZtSBTJlWPUZcNDWZTrfN//vMfS0R6Y6ByFM8PP/zgJjrJKV4mOVTWOK/b3A4cONBeeOEFN4Dvsccec9l/ZZL1BiKSAYHRQkYZAIAcsHTpUncbSaAcKzXKCpJVqvDKK6+4Glr1xY2kDECt3ETZwLSUYVfdsvrqqn2bAuiMeIPOMsoYx3OQfNNNN7k2ecosq7ZXA/l03dTrONS02dnh1SarDlmt24Jp0JxeE7WJyytJSUnuDZoW1SSrNaFquVWSomPWz1VuZtsJlAEAyAErV650t5q1NVyxUKMcHCQreFN9aaSBiWqN07aAC6b1Crz96lDTUlZewtk2FPVu1iAxXVvVRp988smu7lmTY2T3MRokqCzojBkz3Hnr9dbkLKrPzixI1mx6eg51v1CXC11nXReVuHjdMDSAMJpUM6zzUG9qlTkEmz59emCbWFDxf5lkLfqERpl3tQnUDI+5hdILAFk2cuUPvguA/36ELZr1LFyqg1UAFe6SWd1tVsstFCRfccUVYdXKagCcOlMETzPttb/TpCJpP+JXCYe6IZx22mmBiUvUhWLPnj3p9q11mpxEstN7Wj2GdSyqGdeMgOpcoVZoGXVRCOcx+lrlJKq/VrmJsp2auCOzCVn02qmsRLMUBgfJogy+3pzouipYjvb0z+oecswxx7iSmuBe03qd1HFEHSfUli6vzJ49OzB5iUffW+pcIuqrnJuSUtIeDbLFq+3RN1xeFZ4j8aeqrnZ7C4sFoYLifrVPyvVjAWKNWo1pAg8FWOr9qkBPM7HlJmUrv/zyS/e1JgpRX2cFsV6LMwV56krh0WA2dZ1QOYQm1/DrTJG23ENZbWVdVT/q9cpVJwdNW6xBgBrIqEF7Cib1/MoKquexAiLvI349r4JSHY/2ob+fmv5YJRwKRjXhibKdelw0/1b7zUIYyWM06Eyz96XtO5wZnZsy1NqPAla/66z1ClhV9qIa8Wi+zqGmsNbr+Oijj2ZrCuvs0veJXv+mTZu6NysKkpWt15spdQmZMGGC5Wa8RukFAAA5QMFhr169XMCjtmq50e84LQVPaWdZ08A4LZ7gAMrr7KA61VCD58Ip91B2VB/tq3xBtaW6BipLULswBX3qZHHiiSemmq1PJRbK3KrDhZ5fQYza6imQU5Y7nIlOwqHj0ADB8uXLh9UTOqPHaGDieeed594IqZZWgZ16Z+sNUkZUlqHzVK/hUOeljg9qF6fe3NF+nZWp1mM04PLtt992wajOS9+nKrfJS8OHD3eTzGiCEV3fkiVLWq1atdxEJDfccEOuHw8Z5Sgjo4zMkFEGgNynQPb888+3f/75xw0oVG/ltIPZIn2MVwag4FhvjDRZyR133OEytrn96QFyJl6jRhkAAMQdtZ1Th4SMlmDKzqomV1lrBb+qDdYAsYxk9hjVdCcnJ7vMbKNGjdygPmXHlX1GYqD0AgAAxB3V0UYymFH1zarZ1aLOFWqTppn5NOVyVh+jLHPaDgwqKVFgjcRAoOxDM+SoyF4F8erdl7Z9CgAAyFuVK1d2S1apl4Gm5c7OY04//XTXrizYTz/95GqVkRgIlH2MGjUqZO9HAIiWLUtH+q6vWL8fFxmIItUNq4ZYs/2pzdhTTz3lWtRpEJ5nzJgxrlOJ6ozDfYym41Z3Cc0gd8kll7gWcRqAFmkXDMQuAuU09EOg1jj6gdHsOEA8DQiMlbZxABBL1FFDnw7/+eefVqFCBVdXrIF6wZ03VHus3sWRPEblGGpXdtddd9ndd9/tOlTo/8o0IzEQKKfRr18/9w6S0aoAACQGTeCRGfVy1hLJY6R9+/ZuQWIqEOvTfz755JOuWF/9/dRrUKNYhw4dGtbj9a6uZcuWru+h+vA1aNDARowYkWr2oGDq26e+j4888kiUzwQAAADxJqYzymourXrhrGaG9VgF15odSLMMaTYg1RypfkgBcfAMP3v37rXevXu7Fi+aV91rug4AfqgvBoDEF9MZ5bp167qehJoDfcWKFdapU6ewHjd58mQXJCs41tSSmvZSUzOuWrXKZaY1G80999yT6jHe/OZ9+vTJobMBAABAPInpjHLwdItSoEB4cb2CXq8Zudq8eSpVquRGrWrOeA3WU7CsWVk0t7lKMhSQ7969OzBji+zZs8fN2qLtAAAAkH/EdEY5KzZt2mQLFy4MzJOe1hlnnGHVqlVzfRCnTp3q1q1du9b9//LLL3f1zFpUzyyaV1xzsgMAACB/iemMclYsWbLE3aqVS82aNUNOSblhwwa3bYcOHaxhw4ZuXvZgv//+u7tPWedzzjknV44dwP8bufIH38vRr/ZJcVe7TF9kAIhPCRcoKzss1atXD7mNMsrB25YrV851xwjmDearU6eOK9UIRZno4Fl6vJINIBoWbPGf+ObUilmfjQoAAOTTQHnnzp3uVu3gQtEgv2gFtcOHD3cTlABAtJCVBoDYkHCBcrTUqFHDzememTvvvNMGDBgQ+L+Cby9jDQAZtZIDAMS2hAuUS5cu7W697hV+du3a5W7LlCmT7ecrWrSoWwAAAJBYCiRiJlg0WC8U7z5vWwAAACDhA+VGjRq52y1btgQG66W1aNEidxvcYzm7xo4d6wb+JScnR22fAAAAyDsJFyhXrVo1EKy+8cYb6e7XrHzKKKtcom3btlF73l69etny5csDPZwBAAAQ3xIuUJbBgwe724ceesgWL14cWK8sc8+ePd3XvXv3ZrY9IE77K/stQCxQa9GkpKRUS4kSJezII4+01q1b27333mtr1qxJ97jx48e7be+///6Q+w61jcoItb5y5cqBzk9pFStWLF25obe/jJbOnTtn+VoAiSCmB/MpyPUCW/F+uYwbN86mTJkSWD9p0iSrUqVK4P/t2rWzPn362OjRo61p06bul5Paxc2cOdO2bdtmzZo1swcffDCXzwYAkF/UqlXLOnbs6L5Wr/0///zTvv76a/e3Z9iwYXb77bfbf/7zHxeMRstff/1lI0aMiPjvm/5GatZaP5qQC8jPYjpQVqu1BQsWpFu/ceNGt3iCJ/zwjBo1ygXEqh2eN2+eHThwwP3iGjRokPXv39+KFCmS48cPAMifjj32WN/ssMr/OnXq5HrwFyxYMGpJm8KFC7uE0RNPPOFKAY844oiwH3v22We7v40A4qz0QrPlqZdxZkuo7hVXXnmlff7557Z9+3bbs2ePff/993bHHXfkSJDMYD4AQGaUuZ02bZobJ6Psb0YdmiJRoEABN/mVWqMyCRaQTwLleMJgPuD/UUcMhFa7dm2XyNm/f79Nnjw5apfquuuus7p169rzzz9vP/30Ey8BkOilFwAAJCJ9Yvrqq69GtVOSssoaxH7hhRe6Qe3vvvtuWI/79NNPbe/evb73XX311XbCCSdE7RiBeEOgDABALlMXDG8AXjRdcMEF1qJFC5s4caIbPNikSZNMH6OB7lpCDeYjUEZ+RukFAAAJRLXPojE54dDAwlBjgNRFCsjPCJSjhMF8AIBw/frrr+5WvY/dH+MC//1zfOjQoZCP8e7ztg3l1FNPtUsvvdRmz55tU6dO5UUBsoHSiygO5tOilnZly5aN1m6BhOI3MUi/2iflybEAeUlBrHgzyXp/NzQxVihemUY4f2PUq/mDDz5wbd/OO++8KB01kP+QUQYAIBepI8U777zjWsS1b9/eratXr567nT9/fsjHeffVr18/rM4aN9xwg2uLqkGDALKGQBkAgFwyd+5cO/fcc91EWcr2HnXUUW79Mccc43osL1myxE0t7deZ4sMPP3TzBjRv3jys59KEJ5o+W9NmZ1TSASA0Si8AAIiy1atXB2bmU79kbwprZXg1I9/dd99t9913X6rHqP+xOlZ06dLFBcvqWKFtly5d6iYpUdCr7HChQuH96dbsfJqJVlNlZ7U9nPbRo0ePsM8bSDQEygAARNmaNWsCM+QVL17cypUr59qs3XPPPXb99ddbrVq1fMslvv32W3v00UfdILwxY8a4TLCyzt26dbPbbrvNTY0didtvv93GjRuXYRu6jNrDNWjQgEAZ+RqBchS7Xmg5ePBgtHYJAIgzKo1QW7WsqlKlij322GNuCde6detC3lemTBnbvHmz732dO3d2C4DQCJSjhK4XAHLSlqUjfddXrN+PCw8AOYRAGUBCoPUcACDaCJQBAHn2ZiZW0M8bgB8CZQBxH+QAAJAT6KMMAAAA+CBQBgAAAHwQKEeJWsPVqVPHkpOTo7VLAAAA5CEC5Si2h1u+fLktXLgwWrsEAABAHiJQBnLIhhFzfBcAQPa89957ds4551iFChUsKSkpw0lX/Nx8883ucZr9MJr7TVT333+/ux7BS+PGjS0/IFAGAAAxp2XLljZ+/Hjf+3bv3m0tWrSwBx54IOL9TpkyxebPn29HHnlkVPeb6Bo0aGC//fZbYJk+fbrlB7SHA5Br9vzxVfqVtU/iFQAQkU6dOrnbZcuWRfS4P/74w2WTp06dahdddFHU9psfFCpUyI444gjLb8goAwCQoFJSUlw5wVlnnWVVqlSxEiVKWO3ata179+72888/Z2mfkyZNcuUJFStWtGLFilnNmjWtQ4cOtmHDhsA2e/futQEDBrjsrDK32k5BVrNmzeyll16yAwcOWF7o0qWL9enTx+rVq2ex7LXXXnOvkcobihYt6kodQmXXg2mcVNu2ba1cuXJWsmRJa9q0qb3zzjtROaYVK1a476Fjjz3WXcfff//d8gMyygAAJKiBAwfa448/7gKcdu3aWZkyZey7776z5557zt58802bN2+e1a1bN+ygu0ePHvbss89arVq17Oqrr7bSpUvbr7/+ap9//rn98ssvVq1aNbftrl277Omnn7YmTZrYBRdcYJUrV7atW7faxx9/bF27drW33nrLfV2gQO7l61SPrNKKW2+91WLd3Xff7a5npUqV3GunrzMza9YsO/fcc92bEu+1mThxol111VXuTUx2zvvUU091gfoJJ5xgmzZtsnvvvddatWplS5YscYF8IiNQBnLIgi2bfdefWrEy1xxAjlPGb+TIkXb00Ue74Lhs2bKB+5544gmX8VUQ/eKLL4a1v9GjR7sguWfPnu7rggULprr/33//DXytwXDbt2+3IkWKpNtG2ehPPvnEBcoKoj3Dhg1zi+eff/6xr776ynr37h1YpwA8K3788Ud78MEHbcGCBTkWnL/66qsug67r7efgwYM2atQodz5pr0tazz//vB133HFuXw899JDdeeedGW6v63rjjTe6c5szZ441bNjQrVdAqzcrgwcPtssvvzxwbIMGDbKHH3440zdGnvPPPz/wtbLxp5xyilWvXt3Ve1922WWWyCi9AIAMbFk60ncB/KxduzZddwC/RR+P5zR1bDh06JArdwgOkuXCCy90t5s3+7+hT0tB65AhQ+yYY45xwV7aINmrYfUoYPMLBrVN+/bt3derV69OdZ+y1d9++21gUdmBBtUFr8sqBdw6V5UN6Bi0KEvbt2/fQFCZHRs3bnSBqgYg+mV/9Tpcf/31LqurNxuZOfvss0MG3H4+++wzW7NmjV1zzTWpzkevu4Lk/fv328svvxxYr+NQKUVGS0YqV65sNWrUcN/v4VBm+8wzz7TDDjvMZbxVjqNz1PpYR0Y5ihOOaNE7RiCvstUTV/7gu74fA+aAXKHa2/vuuy/w/8WLF9uHH37oMqfB7bQUvOY0ZSQVrM6dO9d27Njhyi48ygRK69atw9qXMsAqnVBtqv7OffDBB/bTTz+5WlgFPApAw6GAcdq0ae7rtCUfykJr8RQvXtwFVuHuOyMqO0nbzkxlCp07d3bnlF1Vq1Z1pSxXXnmlqwefPXu2y7gGB8mvv/66XXfddS4jH216PmnTpk26+3SeovKY4EBXS1Zt3brVvSFQsJwZleDonFVCojdJqm3Xpx1ff/21q3eP9Yw0gXIUJxzRol9Gad+5AwDyxxu2448/3vWc9egjcwXK/fr1cwFlZlQqsW3btogCwFAZUQUk+the2UPVll5yySWBGmVlIBW8BJc1ZOSbb75xt8ok169f3wXJwdnj/v3726OPPpruccpkqpxCH+Nv2bLFZs6c6cogFJyGG6T7+fvvv239+vUuiyqa8EvXTcGpF2yrJlmBmJ5TAb2WYIULFw4MTotkv6EoCFSwrIGNyiwreFUArWBcg/OuvfZaN5AxJ0o/Vq1aFXhzlJYGUZYqVSqwTVbcdtttrkuIroOy58pSH3XUUWF9MqIyEr1h0ycCeuMTTN8TsY5AGUDCClUiUbF+v1w/FuRPCkpFwWU4FCiHM3DLo4xeRqUDCmAV0HTr1s2eeeaZwPozzjjDfUwfXC6RkT///NPdqqb55JNPdtnAE0880Q3muummm+yxxx5zA/zUei1toKySDY/KTjTAcPjw4ZYdymgHZ4K9WmcFogpM5a+//goEvNHcb0ZUB6yMu4JiZZaVxVbXCQ2uU+lDTtVHqx5cQiXq9AbJ2yYrNmzY4M5B1/Twww93ZRSqyVYXlXDoTYkWvzdzsY4aZQAAcjBQVkYvbSYto7piZV/DXTIL3lTj27FjR5cBVLCzc+dO++KLL1z7NmU9FRiGQ+UDoszg5MmTLTk52WUpmzdvbhMmTHABoILltLSNjlPBo55fJYrKMOq59QlsRpSRDXV+Wp/Z9VBmP6OZ9XRf2ox6OPvNjLpMKChW+z0Fycr6K6PsV9cdL9566y3X3URvfPQ66nzCraFWgK1uIyq1UWZaPawze+1jCYEyAAA5QNk3BRea0SwvfPrpp65eWsGguhyoDECBq7LJKgdRhi/clmFeplIZ0rQz2ikA0iA/ZW9DlY0okNbzK+OswWyqm/7Pf/5jiUiBtUpbPD/88IOb6CQnea9PqKxxXpaFDhw40F544QX3faM3U8rSK5OsNxDhDgbMS5ReAEjcWf9SlyQCuWrp0qXuNpJAOZo1ymq/JioBSEtZbtUtq3RCLdcUQGdEk5RI2jpfj7de3TFCbePxBpx5A9ASLUhWKYpa7imzrLpeDeTTa6A+x37TZkeDV5usOmS1bgumgXN6jdUmLi8kJSW53tlaVJOsTzRUy61su45XPyexnG0nUAaQp0aG6NSRk6hdRm5YuXKlu61Tp07Yj4lmjbI+Js+oBZzWK9PrVzualhds+7UNU6cPtXrTTHDhdFJQll3Ced5QNNuguilokKE6MCgzmVkHBmVVVYLy/vvvu4DttNNOc6UgesMQ3F9apSF6DVS/rXps1VNrwo1wgmTNpqfHq/uFulwoANQ11tTYXjcMDSCMNtUM6zjVnUSlDsGmT58e2CavVfxfJlmLPnFR5l3fO94bsVhE6QUAADnAq8PUDGnhimaNsteCTgPw0n4kr4F96l6gYDHtzGoqoVBniuBppjVQT5lgBTUKBIOps4ay4Or64A0OVLeIPXv2pDsmrdNEJ5KdXtKqedXkHqrBDpcGNH755Zf29ttvuw4MCpA1+UnwJCaqu9X1Um25Zi1URwy1V8usO4NeC5WVaMbD4CBZ1AVDA990XRUs58TUz+ogovKXN954I1W/ab3u6jqi2nK1pssLs2fPTjV5ieh7Sx1GRH2VY1lSStqjR7Z4dUD65gzuWYn85907JmZ7Zr5Q/ZJD2dj1/zMj0W7LFY3Mr195RInDm2Z7v6H23b3cTkt0dPCIXWpNdumll7pgS71iFRgquMstGkCnaYY1U5sGE1588cWuLEK9nZXJU59iBTFpP5JXZlYZ1bRZWgV6p59+uuuAoTpTr3RD+1KAqUk9VNLhDaRTwKl6aO1Dfw819bHKQRR0ahCgMp06huxYtmyZmykus4yySkL0huWjjz4K9BXWAEVld4cOHeomC8nob7quU0YZWZ2bss/aRsGqXzcRrVewqqmgNcAyI3ozoqBevv/+e/ea6Y2P18pO11WBfzhTWOu1VOu+vJq6u1y5cu71b9q0qfs+UZA8Y8YM92ZKXUI0GDSW4zVKL4B8wC/IzQ89bYG8pMBU/fUVIGm64GjMABcJZTT1UbzKCVQPquNQOYbae3mdMNTiLVzKKi9atMhNi6xJQ7RvBcY6R60L7uyhmf9UYqGs7Pz5813WVkGJ2uQpiFO9arit6aJBUzzrjUNwYO7NHqiBhX6Bsq6VBh6WL1/eBeMZUQs+naf6DIc6L7Xj02BI9drOjILk4Jn0RMepxZM2UFa2Wo/TAE5lzRWQ6rj1vad66bwyfPhw9/2iloIaRKoSHX0vqXTmhhtusFhHRjnKyCgjFjPKfiINlMkoxyYyysjPws0oizKaGrSoNwwKfjUVt9qVqaTEq+MVDTY7//zzXRZabwTUQi/tADnkn3iNGmUAAJDn1MJOHRIyWrJDvX8V/CqjrsyyspznnXdeuklAlPVVna+y4QqYVXOsgWfInyi9iBKNnNWij3YAAEBkVEMbycQekVJ9r0oXNOmKAmaViijLrNriYAqita0WdbtQ6zXNzKfsM/IfAuUoUY2Wlrxs6g0AQLxSa7lw2stllwa5adHMeaq51sDDjKjnwb59+3L8uBCbCJQBAEBcUWux9evXu04cog4KalGnwXQVKlRw68aMGeM6j8ycOdP9X6UWKrNQpljb9+3b13XvUPmF54477nCDMDWLoJ7jqaeecm301LUE+ROBMoA8b+0GAJHQALsuXboE/q+AV1Qi4ZVvqK7YC6RFE5Oo04dauansQp0/0maT1alDXTnUAk8Bd3JyshvcF0l3ECQWul5EGV0vkKhdL4bNeSHbgTJ9lKOPrhcAEDm6XgAAAADZQHs4AAAAwAeBMgAAAOCDQBkAAADwQdcLIEZEOnAPAADkLAJlAAlr3LbSvuu7l9uZ68cCAIg/BMoAos6vDVyk29KjGQCQ16hRBgAAAHwQKAMAAAA+KL0AgDi2ZelI3/XM2AcA2UegDCCswMvMf2AcAACJikA5SsaOHeuWgwcPRmuXQMSqvvij7/qNXU/gagIAECEC5Sjp1auXW3bs2GFly5aN1m6BhOluAQBAvGEwHwAAOaBr166WlJRkFStWtH379rl169atc+vCXWrUqOEeN3v2bPf/Hj16RHwcr7zySmB/CxcuzHDbZcuW2fXXX++et2jRoi7xc+yxx9qll15qo0aNspSUlCxeDSA+kVEGACDKdu7cae+8844LTv/++2+bPHmyXXXVVVauXDm777770m0/ZMgQF5T269cv1Xptn10vvPCCOw4FuS+++KIlJyf7bjdjxgy78MIL7d9//7Wzzz7b2rdvb8WKFbM1a9bY559/bpMmTXKfnBYqROiA/IPvdiCfGrnyB9/1nXL9SIDE8/bbb9vu3bttwIABNnLkSBeseoHy/fff7xsoh7ovO1atWmVz5syxiy++2H788Ud788037fHHH7fixYun2/bmm29242w+/fRTO+uss1LdpyD7k08+sYIFC0b1+IBYR+kFAABRpsBYmdfbb7/dBZ0zZ860X375JdevszLIct1111mnTp1s+/bt9u6776bb7s8//3SZ47p166YLkkUZ6XPPPdfdAvkJgTIAAFG0fPly++qrr6xNmzZ2+OGHuyD10KFD9tJLL+XqdVZ2+OWXX7by5cu7kgoFygp0FcSnpbIPBfa//faby4QD+C8CZQAAosgLRBWYigbClSxZ0gXKCphzy9SpU13ge+WVV7qBeUcffbQ1b97clWKsXr061ba6X+UZyiyfdtpp9uSTT9o333xj+/fvz7XjBWIRgTIAAFFy4MABe/XVV61MmTLWrl07t65UqVJuYNz69etd/W9uB+zKaHv0tTeoL61nn33WLrroIvv++++tT58+1rhxYytdurQ1a9bMRo8ebf/880+uHTsQKwiUAQCIkvfff982b95sV1xxhesY4fGCVb+yh5zw+++/20cffeRau51++umB9TouDeRTSUbaCbLUxu6DDz6wn376yQXGHTt2tOrVq9u8efOsb9++1qRJE9fBA8hPCJQBAMjBLK60bt3ajjrqKBdI50awqUBYbd688g+PMt2XXHKJ/frrrzZt2jTfxx533HF2yy23uMy4umYsWbLETjrpJNdjWd05gPyEQBnIZQu2bPZdAMS3DRs2uBZqcuaZZ6aaOERt1TZt2uQmHnnttddy/Fi80gr1bE47iclbb70VUXa7YcOGrmZZPvvssxw8aiD20EcZyKGexFW5skC+Mn78eDdY74wzzrDatWunu18ZXmV6FaCqBjinfPHFF658olatWtayZUvfbVRiMWXKFDd477DDDst0n6qzBvIjAmUAALJJA+TU1UIZWwXDxxxzjO92CmDnz59vixYtcoPlcoKXKb7rrrusS5cuvtsMHjzYhg8f7qa3HjhwoGsJp4lRunfvbpUqVUoX4D/yyCPua70JAPITAmUAALJJJQlr1651JRehgmRR4KpAWcFsVgLlWbNmWefOnX3vUxCrVnATJkxw7eg0cC8U7UOBso5DgbK6ddx9991uZkC1h2vQoIGrZ/7jjz9s+vTptnHjRqtZs6bv9NtAIiNQBgAgSlncUEGsR9NYq4NERlNJZ0QZaS2hqPRjz549dv3112dYLnH88ce7tm9z5851XS2aNm3q+i4rKP7yyy9dsL1lyxYrUaKE2/bGG290x62JSYD8JClFnxchanbs2OF+kWiaUL0bRz6uUX7xR4sVG7ueEPa2nfbN8F0/bltpy00lDm8a0fZ7/vgq7G27l9tpia5i/X55fQgAEPfxGl0v/ue9995zH1upNkszFOmjswEDBtjWrVtz6zUDAABADKH04n/U11Kjg2+77Tb3DkMzE6lf5HfffWczZ87M21cJAAAAuY5A+X+6deuW6sIoaNasSjfddJObdlSzEwEAsm7DiDkxe/mq3d4irw8BQAyi9CIDFSpUcLcaDQwAAID8JaYD5ZUrV7rZgDSKuF69elaoUCHXo3Lo0KFhPV6jdpUZLl++vGuVo3Y3I0aMyDDwPXjwoO3du9f1uFTpRdu2bV3TdgAAAOQvMV168fTTT9uoUaOy9Nh+/fq5xyq4btWqlWuToz6Xd9xxh3344YdumlG/tjwVK1Z0IyClTZs29s4772T7PAAAABB/YjqjXLduXdcI/fXXX7cVK1ZYp06dwnrc5MmTXZCs4HjBggWuL+TEiRNt1apVLjOtHpH33HOP72Nnz57t+ko+88wztnz5crvoootclhkAAAD5S6F4GmBXoEB4cf2wYcPc7aBBg+zkk08OrFfrt6eeesqaN29uY8aMccFy2ubpDRs2dLenn366+1pN2CdNmmSXX355FM4IAAAA8SKmM8pZsWnTJlu4cKH7+pprrkl3v3olV6tWzfbt2+dmIcqIgmzVRK9evTrHjhcAAEROnxwfffTRrkOV/rarnWsomq5bU4aXLl3aDj/8cDfV97p169LNp3DOOee4gfz625/2/vzq/vvvd9cjeMnK9OvxKuEC5SVLlrhbfaNrXno/3gvsbRuKSjA0caEmHwEAALlHg/HHjx/ve98bb7zhxhw9+OCD9s0339ixxx5r5557rpttzc/nn39ut9xyiyvHnDZtmps74fzzz7d///03sM3u3butRYsW9sADD+TYOcWrBg0a2G+//RZYVNKaX8R06UVWrF271t1m1PdYGeXgbUU/YK1bt7aTTjrJzcynIPqRRx6x+vXrW7t27ULuS5lpLZ5QP6RArAk55XO53D4SAIjME088YT169LDrrrvO/f/555+3I444wgXQWp+WguNgzz33nEuCaSyS/s6LNw5q2bJlvBxpFCpUyF3f/CjhMso7d+50t2oHF4oG+aUNaps0aWKvvfaaXX311da+fXt75ZVXrGfPnvbFF19YkSJFMvw4R3XO3uIF4QAAxAqNtVFZgTo7qVRBn7h26NDBNmzYEPY+atSoke4jeG9R9jctfSKrcoazzjrLqlSpYiVKlLDatWtb9+7d7eeff87yuezfv98ls84+++xUgZyOYf78+WHtw+tu5c2XEEsUi+ga6dNvJe50fUNl1oOp7FQtbcuVK+diII2xilbnrhUrVrjXUJn7Ll262O+//275RcJllLNKH99oidSdd95pAwYMCPxfwTfBMgAgFihYVYb12WefdXMCKBmkOt1ff/3VlSP88ssvEf3NUkJI7Vf9gui01LXq8ccfdwGWPpktU6aMqyNWNvfNN9+0efPmue5Wkfrrr79cNyrVGgc77LDDbM2aNZk+Xo/VsSmorFq1qsWau+++270uakCga6evMzNr1iz3ybjeBHmvsbp9XXXVVe7N0K233prl4zn11FNdoH7CCSe4cWD33nuva7urNysK5BNdwgXK+ubwao1C2bVrl7vVD2126ZskP3yjAADiz+jRo12QrE9I9XXBggVT3R9coxsOZSs1uCszyjiOHDnSDbZTcBzcYUplE0owKYh+8cUXU3Ws8rpWyT///GNfffWV9e7dO93f7+y+cVi/fr0bhxQtr776qqtv1vmGCs41+FDnktGn1F4ZyXHHHef29dBDD7mEXEb0Gt54442uM9icOXMC3bsU0OrT8sGDB7vOXd6xqSPYww8/nOl18px//vmBr9Vi95RTTnHlrVOmTLHLLrvMEl3ClV5472oz+jjJu8/vHTAAAFmlsS+hyhOCF2Uzc5oCTc0wq1pcBWlpg2SvZCEnqGPEoUOHrFmzZunasF544YXudvPmzanWK4D99ttvA4tKDzSwLnidKNOqc/njjz9SPf7PP//MsI5WwZ/eMHz66ac2c+ZMq1y5clTOdePGjS5QVemHX/ZX1+H66693WV29acmMSkpCBdx+NJmaMunq9OUFyaLrriBZpSovv/xyYL2OQ6UUGS0ZqVy5soufgsd5ZUSZ7TPPPNNl/JXxPvLII905an08SLiMcqNGjdztli1b3Ivo1/lC01NLcI/l7Bo7dqxbmJwEAPKvAwcO2H333Rf4/+LFi91ssBdccEGqlloKIHOaZqDdunWrqynV36YPPvjAfvrpJ5cVVqCietNIafC6PoZX6YY+lU1OTnYfzaeljKgyp8raqiQx+BNcZSJFA+iDqV44uGZYs+cquEp7nNqv/tYr2PWCbmVVNWHY0KFDQwbJvXr1so8++siVnESzRFLlGyolUcs51WPrOLyGAl6QrInTNPBQgXq06fm82YTTUjmG6JyDA93svEnYunWre0MQTrJRMyzrnFVCovFfqpHXpw1ff/21q5uPh4x0wgXK+obVD66K2jX69a677kp1v2blU0ZZ5RLRfEevH0At+oWQ9t0zAMCs2u0tEv4yHH/88alKE/SxuQJl1fUGDz4LReUK27ZtC/v5VPsbnEUMprZpouyrOjsoSPboY/r+/fvbo48+apFQkKPAO5j+5ipQVA20RwGRygaUvVRt6yWXXBKoUVYGVMFTcElFpHTsN9xwgysDUNJL56HsePD8CZpYTMGYAmr9fdYx6rVQAO4NRlNg7pVCqGWcSjK8Omd1xNBroaA3s0F/CgK1fw2QVGZZwavikc6dO7vBeddee6299NJLYU+cFgnNOuy9OUlLGXY1MPC2yYrbbrvNzVKs66DsubLURx11VFgxlMpIdH31aYDe9ARTQjMeJFygLHoR9U2rH1LV1niZY70o3rs5/YAS0AIAcpI3CYbXgiycQDmcwVseZfVCBcoqRRDVAuvvoLJ4J554ohuEddNNN9ljjz3mgtubb745rOdSgKyZbTUAT8GXAm/tW/W5yg5///33gXFCXjCrgEqz7D7zzDOB9ZocRAFtdso+9HiVbujvvUowlK1Xb9/gzLUG/XlBrzKbouNPOwjO69ihjHvwmwB9CiAKcBXwZkZ1wMrcKyhWZlnHpK4TGlyn0oecCJKDO3iEiml0TbxtsmLDhg3uHHQ9NYBSZRR6zdXFJByFCxd2S1p6MxUPklKCK7ZjjD6yCv6YQt/weqH0Lk0/fB69Y1RaP1jfvn3dwAW9OPoBVqsUvavUu0N95DVjxgz3rjLavIyyvimjMVgQ8WHkyh/Srav64o8WKzZ2PSHsPsrdy/23xWJa47b9/x/A3FDi8KaR9X+OQKhzTCQV66fvTIDcp79V+vhdkzTkNgXD6jChv3WaYVa1oR71CtYkEipPzO7ssyopUOCkwDu4C5Tqi1UKoduOHTu6kg9lFhVA61Y1qhdffLElGpVZ6Hy9jP+7777rWx8eDm8wX0bBukouFNMoa+xXTqPvQQ2CzE6wnFWaj+L2229333t6c6M3EHqjFAvxUbjxWkxnlHUSmkUnLaX+tXiCJ/zwaOCCAmLVDasFjerG9M5Zoz31Q5rZqFMAeSsaAXEooYL+/BBAI/cosaNaXq9ONLd5GUZlNoODZFFWWIP8FCQrgaQgNqvU81eBsuqRvUBZA+ZUq62/t/q761GQpPIHPbfKMhItUFbuUaUlnh9++MFlvNNe/5x4nUMFwoqlypcvb3lh4MCBLnOsjL7eSHklMsrWq/tJqBmUY0lMB8r6OCQ7CW8V1mvJDQzmAwAEW7p0qbtV5jZc0axR1uQeEioI9tarO0Z2AmV1oUjblvXjjz92t8og+tXNqm5ZJSDKdHqTgMU7xSvK4qvlnfoXq65XA/l0DVTikVPBslebrIyyaraDqRZb11ht4vJCUlKSde3a1S0qf9UkbqrlVkmKjlc/I1nNtueWmA6U4wmD+QAAwVauXOlu69SpE/aFiWaNshek+rX70qesyiarLDG7bdK8T36DuyCoJZlfCziP1qtm1692NVz65Fg10l6NshJWod6UaBZdlXroNVFtrepsR4wYkeqYlXlVzfP777/vgrrTTjvN7VNBfThBsjLrGrymBJ3KLxQA6hw1NbbXDSNtmWg06Fx0fupyolriYKrb9rbJaxUrVnRv7LTo0xZl3vU96L2hi1UJ10cZAIBYoMBLgge4hdN/WEFXuEtGg8xUbqj6VQUjCuDS1r4qc62B72kH1Wk80I8//uiCaY/+v2fPnnTPofV33HGH+zq444TX/k6BbNqSAA3sU/mkAtGsTtilrlZ6Xs2oq+4eqs1ViYt3zdNSe7RbbrnFBfXTpk1zHS402D94whUNOlRnrLffftvVUCtA1rTfmU1yotdBAyJVDx4cJIu6YKgsRddUwXJOTP2scVgqZdE18XpNi667JnBRqanqyPPC7Nmz01UG6PtK11/UVznWxfRgvnjEYL78icF8iSGRapQZzJf3NND80ksvdUGc+sWqnZZmb8tNCtBOP/101wFDdaFeyYOyeZrUQjPfpZ2kQ1lWZbU1F4GXcVXLOwW93uxzykSr68XUqVNd4KMBZ8Gz6qn7g6Y51kxxagumWmSVd2iQvp5bAwwVRGW1JEAt6RSMKwMvCnh1Hho8qIlLMqNzU3CpriTqSKLyE72hUZ9lr6ZcgzCVAdY+NaFIKJrWWV1FlLVVsOrXzUPrFayqB7U30C8UvalRwC7qJKJrpnP1BuqpzltBfThTWOt1VF1wdqawzg695hoo17RpU/d9o+8VDTxU6z11CZkwYYLllYQYzAcg9+V2dwsgUSk4VFmegiRNGRyqRCInKausSbY0nbEyqfp4XgGljkvr0va2DUXZUJVwKMhWnamyy6pNVvCv7lRpJ7tQRlXPpQFbqkfVNVA5htqLKVBUiYNa1WWF9qPjCJ7YRcGpxjXNnz8/rEDZy3J7/ZEVaCu4D+6GpbIJb9KUjAJldZXQ86rPcKiWd8q2qzxEfbYzoyA5eCY90TEET7mdNlDW66PH6ZooI66AVNNN6/tO9dJ5Zfjw4e77Tq0JNYhTb7D0PanBfeqDHQ/IKOfAYD69y6Y9XP6SSBnl/IyMMhD71ElEwamCL2WWPQrYlUH36nJD0d9pZV9V9qEMskdZTw0sVFCvLhGqgdZkG3oTkNk+EX/CzShToxwleneujxI0IyAAAIiM2sipS0JGS3ap2lQZZ83ApzKIYJpBTyUYynors6xM6HnnnZdjE4UgPlB6AQAA8pzqaMOZAU8lHyrtULeLYKrDTltvnTZIVtZZPZ5VO52224dqgFXesHPnThcwqyxFWWZvdl/kTwTKAAAgzylwDadVneqGGzVq5GbbvfDCCwM1xhocqIF3oYJkffKrUgt1wKhWrVrI/WsgnJaff/7Z1XdrICPyLwJlAAAQVzTjnwaDaYINZXy9Gd+CW9SNGTPGdR5RQK0gWRNdaECZyiq8Nm0azOfN1KtSC5VZKLOsUsq+ffu6TiEqv0D+RaAMAADiigJiTVqi7hnehCMacBc8KEuTWmhwn6jLgjRv3jxdWzV1y5CtW7e6/andm8ou1J2DbDLoehEldL3I3+h6kRjoegEA+cMOul7kLrpeAAAAJBZ6ngAAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAH7eEAIAFtWTrSd33F+v1y/VgAIF6RUY5ie7g6depYcnJytHYJAACAPESgHCW0hwMAAEgsBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADI7UB5+/btlpKSkpNPAQAAAMReoLxs2TIbPXq0/fTTT6nWz5o1y2rWrGkVKlSwww47zMaPH5/d4wQAAADiJ1BWkDxgwAArXrx4YN2WLVusXbt29ssvv7hssv7frVs3W7JkSTSOFwAAAIj9QHnu3Ll20kknWbVq1QLrXn31Vdu5c6d1797dtm3bZq+88oodOnTInnzySUtkTDgCAACQWLIVKP/xxx9WvXr1VOtmzJhhBQsWtKFDh1qZMmWsY8eO1qhRI5s/f74lMiYcAQAASCzZCpR37NhhZcuWTbVuwYIF1rBhQ6tYsWJg3XHHHWebNm3KzlMBAAAA8RMoK2McHACvWLHC/v77bzv99NPTbZuUlJSdpwIAAADiJ1BW5njevHm2evVq9/8XXnjBBcRnnnlmqu3Wrl1rVapUyd6RAgAAAPESKGvA3oEDB+yUU05xdchPPPGEawd3wQUXBLbRwL5vv/3W6tatG43jBQAAAGI/UL7iiivs/vvvt3///de+++47O/roo23ChAlWtGjRwDbvvPOOC6bTZpkBAACAWFYouzu49957bdCgQW5gX6VKldLdf84557geyrVq1cruUwEAAADxkVFev369G7xXpEgR3yBZ1D5Oi7YDAAAA8kWgrGmqb7vttky3u/322+2YY47JzlMBAAAA8RMoa4pqLeFuCwAAAOSLQDlc6nyh8gwAAAAgXuRooHzo0CH7/vvv7bPPPks31XWiGTt2rNWpU8eSk5Pz+lAAAACQF4FywYIFA4u8/PLLqdYFL4ULF3aTkmzZssUuvfRSS2S9evWy5cuX28KFC/P6UAAAAJAX7eGCa401C19GtccKlKtWrWqXXXaZDRkyJOtHCQAAAMR6oKxyCk+BAgWsc+fO9uKLL0b7uAAAAID4nXDkvvvuc1NXAwAAAIkm24EyAAAAkIhypT0cAAAAkO8CZU1jffPNN9txxx1nJUqUCNkBo1ChbCWvAQAAgFyVrej1xx9/tGbNmtm2bdsynXmPmfkAAACQbzLKd911l23dutXatGljX331lW3fvt11xQi1AAAAAPkio/z555+7Gffef/99pqgGYsCBXRtD3HNCLh8JAAD5PKO8Z88ea9KkCUEyAAAAEk62MsrHHHOM7d69O3pHAwB5aNy20unWdS+3M0+OBQAQ5xnlTp062Zw5c2zz5s3ROyIAAAAg3gPlW2+91U477TQ7//zzbdmyZdE7KgAAACCeSy/U7eLAgQO2ePFia9iwoRvYp6VAgfTxd1JSks2cOTM7TwcAAADER6A8e/bswNdq/7Zu3Tq3+FGgnMjGjh3rloMHD+b1oQAAACCvA+VZs2ZF4xgSQq9evdyyY8cOK1u2bF4fDgAAAPIyUD7zzDOz+/wAAABA4g3mAwAAABJVtjLKnpSUFPv4449t3rx5rlXcqaeeal27dnX36f+a5rpWrVpWsGDBaDwdAAAAEPuB8nfffWdXXXWVrVq1ygXMGrSnThheoDxjxgzXb3ny5Ml20UUXReOYAQAAgNguvdi4caOdffbZ9tNPP7leyiNGjHDBcrB27dpZ4cKF7f3338/usQIAAADxESgPGzbMtmzZYiNHjrQpU6bYwIED021TokQJa9CggS1cuDA7TwUAAADET6A8bdo0O+GEE6xPnz4ZblejRg377bffsvNUAAAAQPwEyr/++qvVq1cv0+1Ut6z+wgAAAEC+GMxXsmRJ19UiM2vXrrUKFSpk56kAZMOeP77i+gEAkJsZZWWTv/nmG/vrr79CbvPLL7+4zhinnHJKdp4KAAAAiJ9AuWPHjrZz507r1q2b7dmzJ939+/fvt549e7p2cdoWAAAAyBelF126dLHXX3/dPvjgAzeo77zzznPrlUHWAD+tX79+vWshp17LAAAAQL7IKGumvQ8//NA6dOhgmzZtsueff96tX7JkiY0ZM8YFyZdddpm999570TpeAAAAID5m5itVqpTLKt9zzz02depU+/nnn+3QoUNWrVo1NwlJw4YNo3OkAAAAQDwFyh6VXmgBAAAALL+XXqjsQtnjRPDuu+9a+/btrXr16m42wZNOOskee+wxNxARAAAA+U+2AuVLLrnElVjccccdtmLFCotnjz76qBUtWtRGjBhhH330kV1zzTV29913u44eAAAAyH+yVXpx8skn2+LFi+2RRx5xgeapp57qOmGow0WZMmUsnig7Xrly5cD/zzrrLEtJSXG11wqeDz/88Dw9PgAAAMRRRnnRokW2dOlS69evn1WqVMm++uor69Gjh1WpUsWuu+46++yzzyxeBAfJHm+SFE3VDQAAgPwlW4Gy1K1b1x5//HHXHk5t4C688EJX1/vaa6/ZOeecYzVr1rQHHnjAzdAXqZUrV9qTTz5pnTt3drMAFipUyJKSkmzo0KFhPX7ChAnWsmVLK1++vJtuu0GDBi47HG7d8Zw5c6xIkSJWq1atiI8dAAAA+TxQ9iiIbdeunb3//vsuaFYpRp06dVyAPGTIEDv22GMj3ufTTz/tJi55+eWXbdmyZXbw4MGwH6ss95VXXmlz5861Jk2auMlQ1NdZ9dStWrWyf/75J8PHL1++3EaNGmU33XRT3JWRAAAAIIYC5bRlDAMGDLCvv/7a+vbt62p9s9IdQ9nqgQMHuj7NGizYqVOnsB43efJkF+Sqx/OCBQts+vTpNnHiRFu1apXLTH/55Zeu9jiUv/76ywX9Cu4feuihiI8bAAAA8S9qfZSDqVb5pZdesnfeecd27Njh1lWoUCHi/aTtOFGgQHhx/bBhw9ztoEGD3IBDj+qon3rqKWvevLmbOVDBctmyZVM9dufOnW6ilP3799vs2bNdyQYQaw7s2pjXhwAAQMKLWkb5t99+s4cffthOPPFEa9asmT333HMu6GzTpo299dZbrhwjN+h5Fi5c6L5Wi7e0zjjjDNfSbt++fW4mwWBap5Z369atc1noI488MleOGQAAAAmWUVbWVWUO48ePtxkzZrjyCpVZaPCbBuBpOeqooyw3LVmyJJDB1kBCP40bN7YNGza4bTt06ODWqf756quvdkG2unXUrl07V48bAAAACRQoqw3ctm3bXHCs2ewuv/xy69q1q7Vo0cLyytq1a92tZtgLRRnl4G2lV69eLuh/8MEHXdCs8hGPBiWGGtCnLLQWj1dqAgAAgHwcKG/dutVOO+00FxxrkhENnstrKveQjGqLveMMDmqnTZvmblW3nHag36xZs1ybOT/Dhw93XT0AAACQWLIVKKsTRaKUKKguOSvuvPNO1+HDo+Dby1gDAAAgnwTKr7zyimuZdvrpp7v/BwfJChA1OUexYsXSPe7NN990tb+amCSnlS5d2t3u3r075Da7du1yt9Hoj1y0aFG3ALGs5tv//Z4PtvaqvP8ECACAhOl6ocF5zz//vO99mv1Odb5+PvnkE9fXODfUqFHD3WqwXijefd62AAAAQI61h9OAPi15rVGjRu52y5YtqQbrBVu0aJG7De6xnF1jx451g/6Sk5Ojtk8AAAAk2Mx8ealq1aqBYPWNN95Id79m5VNGWeUSbdu2jdrzKpuuaa+9Hs4AAACIbwkXKMvgwYPdraafXrx4cWC9ssw9e/Z0X/fu3TvdrHwAAABAjk5hHS0Kcr3AVtasWeNux40bZ1OmTAmsnzRpkuvp7GnXrp316dPHRo8ebU2bNrXWrVu7dnEzZ850fZ81c6D6JQMAAABxGSirk8aCBQvSrd+4caNbPMETfng0eFABsWqH582bZwcOHHAzBg4aNMj69+/vOnREk55HiyYrAQAAQPyL6UBZk3xkZ4DglVde6ZbcoBplLQruKekAAADIh4Hy6tWrXT/lSO7TegAAACChA+W5c+e6Ja2kpKSQ9ykrrPsBAACAhAyUq1evTsALAACAfCGiQHndunU5dyQAAABADEnIPsp5gZn5AAAAEguBcpQwMx8AAEBiIVAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwLlKKHrBQAAQGIhUI4Sul4AAAAkFgJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKEcJ7eEAAAASC4FylNAeDgAAILEQKAMAAAA+CvmtBAAkpi1LR6ZbV7F+vzw5FgCIdQTKAJCBcdtK+67vXm4n1w0AEhylFwAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoBwlTDgCAACQWAiUo4QJRwAAABILgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoBwlY8eOtTp16lhycnK0dgkAAIA8RKAcJb169bLly5fbwoULo7VLAAAA5CECZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4K+a1E5MaOHeuWgwcPcvkQF2q+vct3/dqrSuX6sQAAEIvIKEdJr169bPny5bZw4cJo7RIAAAB5iEAZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAACJQBAACA8JBRBgAAAHwQKAMAAAA+CJQBAAAAHwTK/7N69Wrr0aOHnXzyyVa4cGGrUaOG3/UCctWBXRt9FwAAkPMK5cJzxIUffvjBpkyZYk2aNLGUlBTbunVrXh8SAAAA8hAZ5f+56KKLbOPGjfbee+/ZqaeempevCQAAAGIAgbJ3IQpwKQAAAPD/Yjo6XLlypT355JPWuXNnq1evnhUqVMiSkpJs6NChYT1+woQJ1rJlSytfvryVLFnSGjRoYCNGjLADBw7k+LEDAAAgvsV0jfLTTz9to0aNytJj+/Xr5x6r4LpVq1ZWqlQp++yzz+yOO+6wDz/80D755BMrXrx41I8ZAAAAiSGmM8p169a1gQMH2uuvv24rVqywTp06hfW4yZMnuyBZwfGCBQts+vTpNnHiRFu1apXLTH/55Zd2zz335PjxAwAAIH7FdEa5W7duWaojHjZsmLsdNGiQa/fmqVSpkj311FPWvHlzGzNmjAuWy5YtG+WjBgAAQCKI6YxyVmzatMkWLlzovr7mmmvS3X/GGWdYtWrVbN++fTZ16tQ8OEIAAADEg4QLlJcsWeJuK1SoYDVr1vTdpnHjxqm2BQAAAOKq9CIr1q5d626rV68echtllIO3lT179gQyzD///LP7/7vvvuv+n5ycbEcffbTvvpSZ1uLZsWNHlM4EAAAAeSnhAuWdO3e6W7WDC0WD/NIGtX/++addccUVqbbz/v/SSy+5FnV+hg8fbkOGDInKsQMAACB2JFygnFU1atRwU1dH6s4777QBAwYE/q/g28tYAwAAIH4lXKBcunRpd7t79+6Q2+zatcvdlilTJtvPV7RoUbcAAAAgsRRIxMywbNiwIeQ23n3etgAAAEDCZ5QbNWrkbrds2eIG6/l1vli0aJG7De6xnF1jx451y8GDB6O2TwDIDVuWjvRdX7F+P14AAPlawmWUq1at6rpUyBtvvJHufs3Kp4yyyiXatm0bteft1auXLV++PNDDGQAAAPEt4QJlGTx4sLt96KGHbPHixYH1yjL37NnTfd27d29m5QMAAEB8ll4oyPUCW1mzZo27HTdunE2ZMiWwftKkSValSpXA/9u1a2d9+vSx0aNHW9OmTa1169auXdzMmTNt27Zt1qxZM3vwwQdz+WwAAAAQT2I6UFartQULFqRbv3HjRrd4gif88IwaNcoFxKobnjdvnh04cMBq1aplgwYNsv79+1uRIkWieqzUKAMAACSWpJSsNA9GhsF92bJlbfv27VFpP4f4MHLlD+nWVX3xx2zv98Cu/39DmFvWXvXfCXmQse7l/ju5USJjMB+A/B6vJWSNMgAAAJBdBMoAAACADwJlAAAAwAeBMgAAAOCDQDmKXS/q1KkTmOwEAAAA8Y1AOUqYmQ8AACCxECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4FylND1AgAAILEQKEcJXS8AAAASC4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4K+a1E1trDaTl48CCXD3Gt5tu7fNevvapUrh8LAAB5iYxylNAeDgAAILEQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPhgwpEoYcIRIGuTmcTSRCaxfnwAgNxFRjlKmHAEAAAgsRAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAH4X8ViJyY8eOdcvBgwe5fEAEar69y3f92qtKZXs/ke4jlo3bVtp3ffdyOy2WbVk60nd9xfr9cv1YACBSZJSjpFevXrZ8+XJbuHBhtHYJAACAPESgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwEchv5WI3NixY91y8OBBLh/yjZpv7/Jdv/aqUrn+nLlt3LbSYR9fqOvRvdzOiPYdDVte3p9uXcXri/hvu3Sk7/qK9fulWzdszgu+23YvF/Ehhn0ckfA75mgZufIH3/X9ap9ksSrUNd0z7WTf9dVub5HDRwTEJjLKUdKrVy9bvny5LVy4MFq7BAAAQB4iUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAcZPXq1da2bVsrVaqUVapUyXr27Gm7d+/2u24AAABIcIXy+gBixfbt261Vq1Z25JFH2oQJE+zvv/+2AQMG2B9//GETJ07M68MDAABALiNQ/p9x48bZ5s2bbdGiRXbYYYe5dcWLF7fLLrvMvvnmGzvllFNy+7UBAABAHqL04n+mTp3qMspekCwXX3yxK8OYMmVKXr0+AAAAyCMxHSivXLnSnnzySevcubPVq1fPChUqZElJSTZ06NCwHq8SipYtW1r58uWtZMmS1qBBAxsxYoQdOHAg3bbLly+3E088MdU6Pd/xxx9vK1asiNo5AQAAID7EdOnF008/baNGjcrSY/v16+ceq2BXmWJlhj/77DO744477MMPP7RPPvnElVZ4tm7dauXKlUu3HwXZqlcGAABA/hLTGeW6devawIED7fXXX3dZ3U6dOoX1uMmTJ7sgWcHxggULbPr06W5A3qpVq1xm+ssvv7R77rknx48fAAAA8SumM8rdunVL9f8CBcKL64cNG+ZuBw0aZCeffHJgvVq+PfXUU9a8eXMbM2aMC5bLli0byBxv27Yt3b6UaT7uuOOyeSYAAACINzGdUc6KTZs22cKFC93X11xzTbr7zzjjDKtWrZrt27fPDeDzqD45bS3ywYMH7aeffkpXuwwAAIDEl3CB8pIlS9xthQoVrGbNmr7bNG7cONW2oolGZs2a5VrEeVTLvGvXLrvgggty/LgBAAAQWxIuUF67dq27rV69eshtlFEO3la6d+/ugutLLrnEPv74Y3vjjTesR48e7v9eYO1HmekdO3akWgAAABD/YrpGOSt27tzpbtUOLhQN8pPgoFYdL9QVo0+fPnb55ZdbsWLF7IorrrBHH300w+cbPny4DRkyJGrHD8Sqmm/virvny8l9rL2qVLb38Ykl+W9vu8J+vnHbSvuu717uv78LwxFqH6F0GjEn/cqmEe3C3uyVvqNRh7F9fbf9ZJz/dTql2L506ypeX8R323fv8J9hdWPXE3zXt332o3Trjn/sdovET7eOCHsfG/yuqZm92nRVunWdvvIfN1PivMX++yh6Tvp9+G5p9uUv//9Ja7C1c9IfhwxucYOFa8vSkb7rK9bvZzkh1DUNdZ1y6jgQ3xIuUM4O9UyeNm1aRI+588473VTXHgXfXsYaAAAA8SvhAuXSpf+bGdm9e3fIbVR3LGXKlMn28xUtWtQtAAAASCwJV6Nco0YNd7thw4aQ23j3edsCAAAACR8oN2rUyN1u2bIl1WC9YIsWLXK3wT2Ws2vs2LFWp04dS05Ojto+AQAAkHcSLlCuWrVqIFhV54q0NCufMsoql1BLuGjp1auXLV++PNDDGQAAAPEt4QJlGTx4sLt96KGHbPHi/x/dqixzz5493de9e/cOzMoHAAAAxNVgPgW5XmAra9ascbfjxo2zKVOmBNZPmjTJqlSpEvh/u3btXJu30aNHW9OmTa1169auXdzMmTPdNNXNmjWzBx98MJfPBgAAAPEkpgNltVpbsGBBuvUbN250S/CkH2mNGjXKBcSqHZ43b54dOHDAatWqZYMGDbL+/ftbkSL+vTazSs+jRdNeAwAAIP7FdKDcsmVLS0lJyfLjr7zySrfkBtUoa1FwT0kHAABA/EvIGmUAAAAguwiUAQAAAB8EygAAAIAPAmUAAADAB4FylDAzHwAAQGIhUI4SZuYDAABILATKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAAiLcprOOt64WWf//91/1fU1kj/9i7a1e6dXv27cn2fg/s32vxaO/ugr7r98Tp+cTCOYZ6vlB2FvI/jl379vvs+5/I9r13d9j7CHUce/YnpVsX6vdmqGu6K2lfunVFdh3y30eIn0e/n1237317wz6+aOzD75qGuq6htj24y/867T2Q/vh2+hxbqNclo++/SP7W7QxxfIVz6O9lpNcpp44Dscn73k1JSclwu6SUzLZARDZu3GjVqlXjqgEAAMS4DRs2WNWqVUPeT6AcZYcOHbJff/3VSpcubUlJ/u/MI5GcnGwLFy60eBSLx54Xx5Rbz5kTzxPtfWZ3f8oA6I2ofrGVKVMmaseF3BWLvxvyQjxfh1g79rw6ntx43px6jmjuNzkK+8rt3+/KE+/cudOOPPJIK1AgdCUypRdRpoud0TuTSBUsWDBuA4JYPPa8OKbces6ceJ5o7zNa+9M+Yu17C/H9uyEvxPN1iLVjz6vjyY3nzanniOZ+C0ZxX7n5+71s2bKZbsNgvjiYyCRexeKx58Ux5dZz5sTzRHufsfg9gdzH90H8X4dYO/a8Op7ceN6ceo5o7rdXjH0/RBOlFwDihj6aUwZg+/btMZXNAgAk5u93MsoA4kbRokXtvvvuc7cAgMRRNEZ/v5NRBgAAAHyQUQYAAAB8ECgDAAAAPgiUAQAAAB8EygDyNU07X79+fTdB0FtvvZXXhwMAyIb33nvPzjjjDKtUqZIbGHjMMcfYgAEDbOvWrVnaHxOOAMjXRo0aZZs3b87rwwAARMHff/9tLVu2tNtuu821m/v+++9tyJAh9t1339nMmTMj3h+BMoB8a+PGje4X6JgxY+z666/P68MBAGRTt27dUv1fQXOxYsXspptusvXr11v16tUj2h+lFwDyrX79+tnFF19sLVq0yOtDAQDkkAoVKrjbAwcORPxYAmUAUbdy5Up78sknrXPnzlavXj0rVKiQqwEeOnRoWI+fMGGCywKUL1/eSpYsaQ0aNLARI0Zk6ZdcKNOmTbNPPvnEHnnkkajtEwAS3co4+P0uBw8etL1799qiRYvcJ4dt27a1WrVqRbwfSi8ARN3TTz/tan+zmuXVY/XLt1WrVlaqVCn77LPP7I477rAPP/zQBbfFixfP1vHpl2fv3r3dLFBVqlSxdevWZWt/AJBfPB3jv989FStWdNNhS5s2beydd97J0n7IKAOIurp169rAgQPt9ddftxUrVlinTp3CetzkyZPdL1H98lywYIFNnz7dJk6caKtWrXKZiy+//NLuueeeVI8ZP368y2Zktrz77ruBxwwbNsyKFCliffr0ifq5A0Aiqxvjv989s2fPtrlz59ozzzxjy5cvt4suushlmSNFRhlAjg+mKFAgvPfkCmBl0KBBdvLJJwfWq83PU089Zc2bN3cD7/TLVKOZpX379ta0adNM933UUUe5219++cV9zKdf8rt373brduzY4W737NnjMhDevgEA8fP7PVjDhg3d7emnn+6+1n4mTZpkl19+uUWCQBlATNi0aZMtXLjQfX3NNdeku199MatVq2YbNmywqVOnWocOHdx6/UKNJLBdu3at7du3z/eX5Q033OCyzLt27crWuQAAcv/3eygKzJV5Xr16dcSPpfQCQExYsmRJYHRyzZo1fbdp3Lhxqm2zQpmFWbNmpVrefPNNd58yGR9//HGW9w0AyLvf76GoBCMlJcVNPhIpMsoAYoIyvZJRj0tlHIK3zYpy5cq5EdfBvMF8derUcR//AQCiJ7d+v8u5555rrVu3tpNOOsnNzKfAW92NNANru3btIt4fgTKAmLBz5053q3ZBoWgQSHBNMQAg9u3Mxd/vTZo0sddeey0QcNeoUcN69uzpprHWIO5IESgDyPf0i1QfywEA4tuDDz7olmihRhlATChdurS79TpR+PEG2ZUpUybXjgsAkH9/vxMoA4iZrK5o1HMo3n3etgCA2Fcjjn+/EygDiAmNGjVyt1u2bAk5mENTkUpwD04AQGxrFMe/3wmUAcSEqlWrWnJysvv6jTfeSHe/Zm1SxkGjmNu2bZsHRwgAyG+/3wmUAcSMwYMHu9uHHnrIFi9eHFivLIRGLUvv3r2ZOQ8A4szgOP39npTCUG8AUaZfgt4vPlmzZo399ddfLqsQPNWophOtUqVKqsf27dvXRo8ebYULF3a9MNVOaObMmbZt2zZr1qyZzZgxw4oXL85rBgB5YHE++/1OoAwg6mbPnm1nnXVWptupVs1v4MY777xjY8eOtW+//dYOHDhgtWrVso4dO1r//v2z1AcTABAds/PZ73cCZQAAAMAHNcoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZiECNGjUsKSkp02X8+PFc1zx4XdatWxe1fXqvZSLKiesV68cQC+ccDYlyHtGi65D29+/QoUOztc8TTjgh1f5atmwZteNF/CmU1wcAxKNmzZrZscceG/L+jO6L5T/Av/zyi61du9Z9Da5jPEmE799EOIe8UrJkSbv88svd1w0aNMjWvtq3b2+//fab/f777zZ9+vQoHSHiFYEykAXdunWzzp07c+1ixMyZM+3AgQN21FFH5fWhIEYlyvdIopxHtFWqVClqn+QNHz7c3c6ePZtAGQTKAOJfrVq18voQEOMS5XskUc4DiBfUKAM56Mcff3Q1buXLl7e9e/eG3K5x48Zuu/fffz/V+n/++ccee+wxa9q0qZUrV86KFStmtWvXtttvv922bNmSYV3txIkT7YwzzrAyZcq4jyVVLjJ16tR0j1EWRo/RR75Ss2bNVPV5yqqEkpKS4jI5BQoUSHc8X3/9dWAfTz31VLrHHnPMMe6+n3/+Od19kZ53RnWby5Yts8suu8wdZ4kSJaxevXo2cuRIO3ToUNj1nuFcy+xcx2B79uxxx6fn0/dN0aJF7eijj7aLLrrI3njjjXTb6zrrujRp0sSOOOIIK1KkiB1++OFu+08//TSs58zq83v1oRmVCURaUxvp+YR73TM7jo0bN9ott9xixx13nPt+K1u2rHudx40bZwcPHozKz1ookXzvhDqP4ON57bXX3PUrVaqUVa5c2Tp06GDr168P/MyOGTPGGjZs6I5VPxf6dOzPP/8MeXyR/jxmRtc4nLEeWl566SWLhlWrVlnXrl3dtdX3tK6Nvq8vuOCCqD0HElQKgLAdffTRKfqxeemll8J+zGmnneYe8+abb/rev3TpUnf/4YcfnnLgwIHA+k2bNqXUq1fP3VehQoWUs88+O6V9+/aBY6hRo0bKunXrUu1L67Xce++9KUlJSSnNmjVLueqqq1IaNGjg1mvde++9l+oxX3zxRcr111+fUrJkSbfNZZdd5v7vLStWrMjw/K644gr3uLfffjvV+v/85z+B49FxB1uzZo1bX7NmzXT7y8p5e/etXbs21frZs2enFC9e3N1Xq1atlKuvvjrlnHPOSSlSpIi7LqEel5Vrmd3rKOvXr0+pU6eOe3yJEiXcseqYmzdvnlK2bFl3vGm1bt06pUCBAu6atW3b1r0eJ598cuD4R44cme4xoc470ufX47Wt33Fl9lyh1kd6PuFe94xe66+//tp9r+n+6tWru9f5vPPOSylWrJhbd+6556bs27cv2z9roUTyvRPqPLzjGTRoUEqhQoVSWrVqlXL55Ze789H6atWqpfz9998pV155pTsvnZ9+rg477DB3f/369dOdY1Z/HjPyzz//pHTu3DnV+dWuXdvt65RTTkm1Xou+JzMSzvfg999/n1KmTBm3nZ7r0ksvdd9X+t1cqlQp95r5mTVrlnvMmWeeGfb5IfEQKAM5HCg/99xzgT+2fvr37+/uv/XWWwPrDh065P7wav0NN9yQsmPHjsB9Cqa1re4766yzfP9YlitXLuWrr75Kdd99993n7jv++OMzPDe/QCIj48aNc4+78cYbU63XsSkgPeGEE9zx/Pvvv5k+Jqvn7Xfse/bsSTnqqKMC1/bgwYOB+3744Qf3xsS7XhkFypFey6xeRx1f48aN3WPbtGmT8ueff6YLMD766KN0j5s6dWrKr7/+mm79vHnzXHBQuHDhlI0bN2Z6jFl5/pwIlLNyPhntL7P79+7dG7ivR48eKfv370/1hk6BoO4bPHhw1H7WQgnneyezQLlixYop3377baqfgzPOOMPdp4BXbxiDA9vNmzenHHvsse7+1157LSo/j5FS0K79TJgwIeLHhvM92KVLF7fN0KFD092n6/P555/7Po5AGUKgDETA+yOV2bJ169bAY/THRdk5ZcnS/oHXH+XKlSu7xyxbtiyw/uOPP3brGjZsmCrLHBzU1K1b122jbInHe/7Ro0ene4wCAmUFdb9fliarAZ5fdlh/fIoWLeoyMbfddpu7PziYCJWFzup5+x37K6+8EvgDGhz8eMaMGRNWoBzptczqdZw8ebJ7XJUqVVJ27tyZEg133nmn2+fYsWMzPcasPH9OBMpZOZ9w9hfq/ldffdWtP/LII93rmta7777r7i9durR7sxCNn7WcDJT9ro0y2979fm+2HnvsMXefAspo/DxGynvTumrVqogfG873oD6Z0DaLFy+OaN8EyhC6XgA50B5OdZWe0qVLu7ZFr7zyilvuvPPOwH0fffSRbd682dUTnnTSSanWi2prCxVK/2OqmuAWLVq4+tt58+ZZ3bp1U92ves60VJenuuAlS5bYpk2brFq1ahYN2qfq/tTSas2aNW6w0RdffGH79u2zc845x5KTk+2RRx5x9aWnnnqqq5H87LPPXP1h69atU+0ru+cd7PPPP3e3V1xxhRUuXDjd/ddee6317t070/PLrWs5bdo0d3vNNde4+slIqE5U107XZevWra4rgleXKStXrszR54+2aJxPuLz636uvvtq9rmldeumlrlZbx/HNN9+4n/28+lkLR9u2bX1rgkU/U23atAl5/6+//ppjP4+hqA3bH3/84X5P5tRARf1+Vc34zTffbEOGDLEzzzzT1VkD4SBQBnKhPZwGkShI1qCd4EDZG0TSpUuXVNt7A9zuuecet2REgXZa1atX991Wg40ko4GFWXH22Wfbc88954Jh/bHzBl0pUNbgOQUOWnfXXXe54EGBUKNGjaxixYpRPe+0g7Mk1EAzDUrSgK3t27dnuJ/cupbeQC5NdhAJXff+/fvb7t27Q26zY8eOHHv+aIvW+YRLgazozZ4fvaHTfQqUvW3z8mctM37H473xqVKlim/AqyDV71ij+fMYyuLFi92tBhfm1AQ/t912m3355Zfud9B5553n3jir17KCfL1B0pt5IBQCZSAX6BeyAsiffvrJZV5OP/10N8pcWQ5lNvTLOpg6MohG0meWZQnORAdnenKTFyjPmDHDunfv7v4gKQunbh46Fp3v3LlzXUcFL4jWY9LK7nn7yeiPbzh/mHP7WkZCGU5d74IFC9rDDz/sspsKlNTdQ+f27LPPuvv/+8l83vBe00Q5n1j//sjoeCI91pz4eUxLb5xFb5xzir5/9Ltp4cKF7pMT/Q7WsmjRInv88cetZ8+eNnbs2Bx7fsQ3AmUgF+iPvDLQysooi6zAUS2c/v33X7vyyitddjOY91HtJZdcYgMHDoz510glFDrHWbNmuTcA3377rZvdyvvDrKBY982ZMyfDQDma5+1NyBCqHZgyydu2bbNY4WUC1VIwXBMmTHBBo9qaqVVXWl6pQk49v1ditHPnTt/7VTKhj9bz4nwi/T7xa1PoUVlR8Lb5RW78Hvruu+8CGeWcpsyxlz3W797Jkyfbdddd59pXqjzurLPOyvFjQPyJrbfCQAJToKzA8Z133nGZ1VBlF3L++eenChxygxf06A9IpFRCoT90f//9t6tH1jGr7MLjBcVTpkxxH4GqFKN58+Y5et7K4nv78jsnv57EeXkd9ZGwvPnmmxmWHQTT9Rb1g01LH6Orv29OPr969Op8dRx+fXg1/W8k1yE755PV696yZUt3+/bbb/uWSUyaNMmVXag84ZRTTrFY/RnMCbnxe0jjGuT444+33KQSFAXH5557rvu/3twDfgiUgVxStWpVFzyqvnLw4MFuAIyyeK1atUq3rTI4ynxo8gUF0n71f/rj/cwzz0Ttj6qOT3744YcsPd4LhjWZgQQHyirBUNb8hRdecJMXKKNevHjxHD1vDeJTTaYyyqqNDi4BUNb0gQcesJyQ1et48cUXu4+fNaBKx552IgcFcR9//HGqdSeeeKK7ffnll1NldbWtPk72MqE59fyq9fTekNx9992prrEyheEMlozW+WT1uutc9XOo8x4wYECq7ys936233uq+VpY7pweAZfdnMNpy4/eQ9zgN/s0pyhj7DQD9/fffXflFqDdngEPzDyB8Xmsm9RZN2xg/eHn99dd9H//WW2+laiOnyQpCUaN/tWXSdpqI4PTTT3eTP6hZvtYXLFjQ3efXsioUtWvT/Wp7FKpdmhrw6znUN1XLjz/+GNa1mT59euD5/SYS0SQF3v2ajCSa5x2qZdbMmTMDk0aoV6z2ox7B6u+sFnXeZAx6zrSyei2zcx3V39abfEEtBXWsHTp0SGnRooXvhB9qQ+idu/rntmvXzk1WoUkk1M6sb9++7j59TwYLdb0ifX5R2z9dT69vsCa50EQO6nes542kPVxWzyec6x7uhCPaThOHqKVYOBOOZOVnLZRwvncyaw+XlRZqGbVBy8rPYyS6du3qHl+pUiX3M6lrEO32cN4kMPq9dNFFF6Vce+217nvbm4xIk7P4tb+jPRyEQBnIgT7K+oPuR/1VvT/Imrnr559/zvD5tP0zzzzjGvorcNCMWwoa9AeqV69eLjiN1h9v9UQdPnx4ykknnRQIECL5Q+/1TvabSETU39Xb54IFC6J63hkFQd99950L0nXddV6aee6RRx5xgY8CPPW39vsjn9Vrmd3rqB7GDz/8cEpycrILDnVNdX4XX3yxe6OVliaM6Nmzp5tIQtuqH3DHjh1dT1pNjBNJoJyV55f58+e7wEMTgij4UGDy1FNPuQkrIu2jnJXzCee6Z9ajWP2O9b11zDHHuO8LnbsC/qeffto3iMqJQDmc753cDpSz8vMYCb3eCpA1cUtmyYOsBspTpkxJufnmm1MaNWrk+tbr9a1atWpKy5YtU15++WXfPutCoAxJ0j8k1wHkNxpYqH6qal+3dOnSvD4cAFmg0iq171PpRKiBu9npsa0Bfvo94fXbRv5D1wsACUs1lbt27UrXI1f14TfeeGPIwZQA4stff/0V6G2vCVL8JoIJl3rdq1uLapgBAmUACUuDopQRqlOnjpspTQMINUBLkxxo4JkGHGqQFoD4pk4tGgQqmjU1O4GyOp1Ec/ZHxDdKLwAkLHUyGDZsmJvOWrOqqZOC2nxpcgRN1aysst9MZQAACIEyAAAA4IM+ygAAAIAPAmUAAADAB4EyAAAA4INAGQAAACBQBgAAAMJDRhkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgKX3f/jyYWJMqKZNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "base = -5\n", + "for k in filename.keys():\n", + " data = awk.from_parquet(\"output/\"+filename[k])\n", + " sorted_times = np.sort(data.event_gen_time)\n", + " mu = sorted_times[0.5*len(sorted_times)]\n", + " sig_plus = sorted_times[(0.5 + 0.68/2)*len(sorted_times)] - mu\n", + " sig_minus = mu - sorted_times[(0.5 - 0.68/2)*len(sorted_times)]\n", + " print(\"%2.2f^{+ %2.2f}_{- %2.2f} \\\\times 10^{%d}\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base))\n", + " label = k+\"\\n\"+r\"$\\tau = %2.2f^{+ %2.2f}_{- %2.2f} \\times 10^{%d}$ s\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base)\n", + " plt.hist(sorted_times,bins=np.logspace(-4.5,-3,100),label=label,alpha=0.5)\n", + "plt.xlabel(r\"Event generation time $\\tau$ [s]\")\n", + "plt.ylabel(\"Events\")\n", + "plt.legend()\n", + "plt.loglog()\n", + "plt.savefig(\"figures/DIS_gen_timing_distributions.pdf\",dpi=100)\n", + "plt.show()\n", + "\n", + "base = -5\n", + "for k in filename.keys():\n", + " data = awk.from_parquet(\"output/\"+filename[k])\n", + " sorted_times = np.sort(data.event_weight_time)\n", + " mu = sorted_times[0.5*len(sorted_times)]\n", + " sig_plus = sorted_times[(0.5 + 0.68/2)*len(sorted_times)] - mu\n", + " sig_minus = mu - sorted_times[(0.5 - 0.68/2)*len(sorted_times)]\n", + " print(\"%2.2f^{+ %2.2f}_{- %2.2f} \\\\times 10^{%d}\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base))\n", + " label = k+\"\\n\"+r\"$\\tau = %2.2f^{+ %2.2f}_{- %2.2f} \\times 10^{%d}$ s\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base)\n", + " plt.hist(sorted_times,bins=np.logspace(-4.5,-3,100),label=label,alpha=0.5)\n", + "plt.xlabel(r\"Event weight calculation time $\\tau$ [s]\")\n", + "plt.ylabel(\"Events\")\n", + "plt.legend()\n", + "plt.loglog()\n", + "plt.savefig(\"figures/DIS_weight_timing_distributions.pdf\",dpi=100)\n", + "plt.show()" + ] } ], "metadata": { diff --git a/resources/Examples/Example2/DipolePortal_CCM.py b/resources/Examples/Example2/DipolePortal_CCM.py index 517e280ce..76c6d8d9d 100644 --- a/resources/Examples/Example2/DipolePortal_CCM.py +++ b/resources/Examples/Example2/DipolePortal_CCM.py @@ -2,7 +2,7 @@ import numpy as np import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Define a DarkNews model model_kwargs = { @@ -24,7 +24,7 @@ experiment = "CCM" # Define the controller -controller = LIController(events_to_inject, experiment) +controller = SIREN_Controller(events_to_inject, experiment) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu diff --git a/resources/Examples/Example2/DipolePortal_MINERvA.py b/resources/Examples/Example2/DipolePortal_MINERvA.py index 980e16a81..536508af8 100644 --- a/resources/Examples/Example2/DipolePortal_MINERvA.py +++ b/resources/Examples/Example2/DipolePortal_MINERvA.py @@ -1,7 +1,7 @@ import os import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Define a DarkNews model model_kwargs = { @@ -23,7 +23,7 @@ experiment = "MINERvA" # Define the controller -controller = LIController(events_to_inject, experiment) +controller = SIREN_Controller(events_to_inject, experiment) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu diff --git a/resources/Examples/Example2/DipolePortal_MiniBooNE.py b/resources/Examples/Example2/DipolePortal_MiniBooNE.py index fc2b0288a..7fd7c62cd 100644 --- a/resources/Examples/Example2/DipolePortal_MiniBooNE.py +++ b/resources/Examples/Example2/DipolePortal_MiniBooNE.py @@ -1,7 +1,7 @@ import os import siren -from siren.LIController import LIController +from siren.SIREN_Controller import SIREN_Controller # Define a DarkNews model model_kwargs = { @@ -23,7 +23,7 @@ experiment = "MiniBooNE" # Define the controller -controller = LIController(events_to_inject, experiment) +controller = SIREN_Controller(events_to_inject, experiment) # Particle to inject primary_type = siren.dataclasses.Particle.ParticleType.NuMu @@ -74,7 +74,7 @@ def stop(datum, i): secondary_type = datum.record.signature.secondary_types[i] return secondary_type != siren.dataclasses.Particle.ParticleType.N4 -controller.injector.SetStoppingCondition(stop) +controller.SetInjectorStoppingCondition(stop) events = controller.GenerateEvents(fill_tables_at_exit=False) diff --git a/resources/Examples/Example2/PaperPlots.ipynb b/resources/Examples/Example2/PaperPlots.ipynb index 348f32bf1..a3864244b 100644 --- a/resources/Examples/Example2/PaperPlots.ipynb +++ b/resources/Examples/Example2/PaperPlots.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "15a15725-d033-4b56-b3f4-55c2e949025e", "metadata": {}, "outputs": [], @@ -12,18 +12,21 @@ "from matplotlib.pyplot import cm\n", "from matplotlib.colors import LogNorm\n", "plt.style.use(\"../figures.mplstyle\")\n", - "import numpy as np" + "import numpy as np\n", + "import os\n", + "try: os.mkdir(\"figures\")\n", + "except FileExistsError: pass" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "9500a367-6e8a-404e-8e64-fe7442a282ba", "metadata": {}, "outputs": [], "source": [ - "filename = {\"MINERvA\":\"MINERvA_Dipole_M4.70e-01_mu2.50e-06_example.parquet\",\n", - " \"MiniBooNE\":\"MiniBooNE_Dipole_M4.70e-01_mu2.50e-06_example.parquet\",\n", + "filename = {\"MiniBooNE\":\"MiniBooNE_Dipole_M4.70e-01_mu2.50e-06_example.parquet\",\n", + " \"MINERvA\":\"MINERvA_Dipole_M4.70e-01_mu2.50e-06_example.parquet\",\n", " \"CCM\":\"CCM_Dipole_M2.35e-02_mu6.00e-07_example.parquet\"}\n", "\n", "POT = {\"MINERvA\":12.2e20,\n", @@ -61,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "1e42dae5-0015-41c6-9f53-ddc1ce7c67ca", "metadata": {}, "outputs": [], @@ -71,43 +74,46 @@ "def plot_kinematics(data,POT,Emax,axis,ylim_E=None,ylim_C=None,nbins=30,savestr=None):\n", " \n", " fig,ax = plt.subplots(1,2,figsize=(16,6))\n", - " ax[0].set_prop_cycle(color=['red', 'green', 'blue', 'orange'])\n", - " ax[1].set_prop_cycle(color=['red', 'green', 'blue', 'orange'])\n", + " # ax[0].set_prop_cycle(color=['red', 'green', 'blue', 'orange'])\n", + " # ax[1].set_prop_cycle(color=['red', 'green', 'blue', 'orange'])\n", " \n", - " dec_flag = data[\"primary_type\"]==\"ParticleType.N4\"\n", + " dec_flag = data[\"primary_type\"]==5914\n", " fid_flag = data[\"in_fiducial\"][dec_flag]\n", " \n", " # initial nu\n", - " nu_flag = data[\"primary_type\"]==\"ParticleType.NuMu\"\n", + " nu_flag = data[\"primary_type\"]==14\n", " nu_momenta = np.squeeze(data[\"primary_momentum\"][nu_flag])\n", "\n", " # N\n", - " N_flag = data[\"primary_type\"]==\"ParticleType.N4\"\n", + " N_flag = data[\"primary_type\"]==5914\n", " N_momenta = np.squeeze(data[\"primary_momentum\"][N_flag])\n", "\n", " # gamma\n", - " gamma_flag = data[\"secondary_types\"]=='ParticleType.Gamma'\n", + " gamma_flag = data[\"secondary_types\"]==22\n", " gamma_momenta = data[\"secondary_momenta\"][gamma_flag]\n", " # mask out entries that are not gamma\n", " gamma_momenta = awk.mask(gamma_momenta, awk.num(gamma_momenta,axis=2)>0)\n", " gamma_momenta = np.squeeze(gamma_momenta[~awk.is_none(gamma_momenta,axis=1)])\n", " \n", " # nu out\n", - " nuout_flag = data[\"secondary_types\"]=='ParticleType.NuLight'\n", + " nuout_flag = data[\"secondary_types\"]==5910\n", " nuout_momenta = data[\"secondary_momenta\"][nuout_flag]\n", " # mask out entries that are not nuout\n", " nuout_momenta = awk.mask(nuout_momenta, awk.num(nuout_momenta,axis=2)>0)\n", " nuout_momenta = np.squeeze(nuout_momenta[~awk.is_none(nuout_momenta,axis=1)])\n", "\n", " kwargs = {\"bins\":np.linspace(0,Emax,nbins),\n", - " \"weights\":data[\"event_weight\"]*POT,\n", - " \"histtype\":\"step\"}\n", + " \"weights\":data[\"event_weight\"]*POT}\n", "\n", " # Energy\n", - " n,_,_ = ax[0].hist(nu_momenta[:,0],**kwargs,label=r\"Initial $\\nu$\")\n", - " ax[0].hist(N_momenta[:,0],**kwargs,label=r\"Upscattered $\\mathcal{N}$\")\n", - " ax[0].hist(gamma_momenta[:,0],**kwargs,label=r\"Outgoing $\\gamma$\")\n", - " ax[0].hist(nuout_momenta[:,0],**kwargs,label=r\"Outgoing $\\nu$\")\n", + " n,bins = np.histogram(nu_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(n,n[-1]),where=\"post\",label=r\"Initial $\\nu$\")\n", + " _n,bins = np.histogram(N_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Upscattered $\\mathcal{N}$\")\n", + " _n,bins = np.histogram(gamma_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Outgoing $\\gamma$\")\n", + " _n,bins = np.histogram(nuout_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Outgoing $\\nu$\")\n", " \n", " # Angle\n", " def CosTheta(momenta):\n", @@ -115,34 +121,45 @@ " \n", " kwargs[\"bins\"] = np.linspace(-1,1,nbins)\n", " \n", - " m,_,_ = ax[1].hist(CosTheta(nu_momenta),**kwargs,label=r\"Initial $\\nu$\")\n", - " ax[1].hist(CosTheta(N_momenta),**kwargs,label=r\"Upscattered $\\mathcal{N}$\")\n", - " ax[1].hist(CosTheta(gamma_momenta),**kwargs,label=r\"Outgoing $\\gamma$\")\n", - " ax[1].hist(CosTheta(nuout_momenta),**kwargs,label=r\"Outgoing $\\nu$\")\n", + " m,bins = np.histogram(CosTheta(nu_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(m,m[-1]),where=\"post\",label=r\"Initial $\\nu$\")\n", + " _n,bins = np.histogram(CosTheta(N_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Upscattered $\\mathcal{N}$\")\n", + " _n,bins = np.histogram(CosTheta(gamma_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Outgoing $\\gamma$\")\n", + " _n,bins = np.histogram(CosTheta(nuout_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",label=r\"Outgoing $\\nu$\")\n", " \n", " # fiducial events\n", " \n", - " kwargs[\"ls\"] = \"--\"\n", - " kwargs[\"weights\"]=kwargs[\"weights\"]*fid_flag\n", + " kwargs[\"weights\"]=np.squeeze(kwargs[\"weights\"]*fid_flag)\n", " kwargs[\"bins\"] = np.linspace(0,Emax,nbins)\n", " \n", " # Energy [fiducial]\n", - " ax[0].hist(nu_momenta[:,0],**kwargs)\n", - " ax[0].hist(N_momenta[:,0],**kwargs)\n", - " ax[0].hist(gamma_momenta[:,0],**kwargs)\n", - " ax[0].hist(nuout_momenta[:,0],**kwargs)\n", + " _n,bins = np.histogram(nu_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(N_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(gamma_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(nuout_momenta[:,0],**kwargs)\n", + " ax[0].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", " \n", " kwargs[\"bins\"] = np.linspace(-1,1,nbins)\n", " \n", - " ax[1].hist(CosTheta(nu_momenta),**kwargs)\n", - " ax[1].hist(CosTheta(N_momenta),**kwargs)\n", - " ax[1].hist(CosTheta(gamma_momenta),**kwargs)\n", - " ax[1].hist(CosTheta(nuout_momenta),**kwargs)\n", + " _n,bins = np.histogram(CosTheta(nu_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(CosTheta(N_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(CosTheta(gamma_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", + " _n,bins = np.histogram(CosTheta(nuout_momenta),**kwargs)\n", + " ax[1].step(bins,np.append(_n,_n[-1]),where=\"post\",ls=\"--\")\n", " \n", " ax[0].plot([],[],label=\"All Events\",color=\"black\")\n", " ax[0].plot([],[],ls=\"--\",label=\"Fiducial Events\",color=\"black\")\n", " \n", - " ax[0].legend(loc=\"upper left\",ncol=3)\n", + " ax[0].legend(loc=\"upper right\",ncol=2)\n", " ax[0].semilogy()\n", " ax[0].set_xlabel(\"Energy [GeV]\")\n", " ax[0].set_ylabel(\"Event Rate in %2.2e POT\"%POT)\n", @@ -153,7 +170,7 @@ " ax[1].plot([],[],label=\"All Events\",color=\"black\")\n", " ax[1].plot([],[],ls=\"--\",label=\"Fiducial Events\",color=\"black\")\n", " \n", - " ax[1].legend(loc=\"upper left\",ncol=3)\n", + " ax[1].legend(loc=\"upper left\",ncol=2)\n", " ax[1].semilogy()\n", " ax[1].set_xlabel(r\"$\\cos \\theta$\")\n", " ax[1].set_ylabel(\"Event Rate in %2.2e POT\"%POT)\n", @@ -170,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "a167ce8f-adef-42e9-87cb-5448eaf6f04d", "metadata": {}, "outputs": [], @@ -181,9 +198,9 @@ " c.set_label(\"Number of Generated Events\")\n", " plt.xlabel(labelx)\n", " plt.ylabel(labely)\n", - " plt.text(bins[0][1],bins[1][-4],\n", + " plt.text(0.96*bins[0][1],0.96*bins[1][-4],\n", " title,\n", - " fontsize=14,\n", + " fontsize=16,\n", " bbox=dict(boxstyle=\"round\",\n", " ec=\"black\",\n", " fc=\"white\")\n", @@ -193,7 +210,7 @@ "\n", "def plot_positions(data,range1,range2,slice1=\"x\",slice2=\"y\",savestr=None):\n", " \n", - " dec_flag = data[\"primary_type\"]==\"ParticleType.N4\"\n", + " dec_flag = data[\"primary_type\"]==5914\n", " fid_flag = data[\"in_fiducial\"][dec_flag]\n", " \n", " fid_vertex = data[\"vertex\"][data[\"in_fiducial\"]][fid_flag]\n", @@ -204,20 +221,20 @@ " axis1 = {\"x\":0,\"y\":1,\"z\":2}[slice1]\n", " axis2 = {\"x\":0,\"y\":1,\"z\":2}[slice2]\n", " \n", - " bins = (np.linspace(range1[0],range1[1],50),\n", - " np.linspace(range2[0],range2[1],50))\n", + " bins = (np.linspace(range1[0],range1[1],80),\n", + " np.linspace(range2[0],range2[1],80))\n", " \n", - " for target in np.unique(np.array(data[\"target_type\"][~dec_flag])):\n", - " target_flag = np.squeeze((data[\"target_type\"]==target)[~dec_flag])\n", - " data_reduced = data[target_flag]\n", - " label = target[target.find(\".\"):target.find(\"Nucleus\")]\n", - " plt.scatter(np.array(data_reduced[\"vertex\"][~dec_flag[target_flag]][:,0,axis1]),\n", - " np.array(data_reduced[\"vertex\"][~dec_flag[target_flag]][:,0,axis2]),\n", - " alpha=0.5,label=label)\n", - " plt.xlim(bins[0][0],bins[0][-1])\n", - " plt.ylim(bins[1][0],bins[1][-1])\n", - " plt.legend(ncol=2)\n", - " plt.show()\n", + " # for target in np.unique(np.array(data[\"target_type\"][~dec_flag])):\n", + " # target_flag = np.squeeze((data[\"target_type\"]==target)[~dec_flag])\n", + " # data_reduced = data[target_flag]\n", + " # label = target[target.find(\".\"):target.find(\"Nucleus\")]\n", + " # plt.scatter(np.array(data_reduced[\"vertex\"][~dec_flag[target_flag]][:,0,axis1]),\n", + " # np.array(data_reduced[\"vertex\"][~dec_flag[target_flag]][:,0,axis2]),\n", + " # alpha=0.5,label=label)\n", + " # plt.xlim(bins[0][0],bins[0][-1])\n", + " # plt.ylim(bins[1][0],bins[1][-1])\n", + " # plt.legend(ncol=2)\n", + " # plt.show()\n", " \n", " position_plot(np.array(data[\"vertex\"][~dec_flag][:,0,axis1]),\n", " np.array(data[\"vertex\"][~dec_flag][:,0,axis2]),\n", @@ -243,23 +260,276 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "0cff9723-3d17-4de3-bbe4-3cda1e0d3a74", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAJOCAYAAAD/KYUYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdB3xT5frA8Sejiy6gBUSZ4iwgshQVECeiguC6iChO9ApuvW4RF66rfxTQq14Vt+IVxT1xIA4QRAVcKCJ4r4yWthQ60uT/ed6a2rRJSdOTNCf5ff3Etm9OTk5PmnDe93nf53H4fD6fAAAAAAAAAAAAxDlnSx8AAAAAAAAAAABAOAhqAAAAAAAAAAAAWyCoAQAAAAAAAAAAbIGgBgAAAAAAAAAAsAWCGgAAAAAAAAAAwBYIagAAAAAAAAAAAFsgqAEAAAAAAAAAAGyBoAYAAAAAAAAAALAFghoAAAAAAAAAAMAWCGoE4fF4ZK+99hKHwyHPPvts7F8VAAAAALb0wQcfmH5E/VuvXr1a+tAAAACAhOBu6QOIR9OnT5cNGza09GEAAAAAsKmHH35YevbsWftzq1atWvR4AAAAgERBUKOetWvXytSpU2XGjBkyYcKElnlVAAAAANiaBjQGDRrU0ocBAAAAJBzST9Vz0UUXyahRo2To0KEt84oAAAAAAAAAAAD7BTW+//57ue++++S0006T3r17i9vtNvlob7755rAeP2fOHBk2bJi0adNGMjMzpU+fPnLHHXdIVVVV0O3ffPNNefvtt+XOO++0+DcBAAAAkCz9CnXMMceIy+WSDh06yMSJE6WwsNDC3wgAAABIXnGdfur+++839S0iXXGhj9UOy8EHHyxZWVny/vvvyxVXXCGvvPKKCV5kZGTUbl9eXi6TJ0+WKVOmSMeOHWX16tUW/iYAAAAAkqFfkZubK5deeqkJgui2n3/+uUybNk0+/fRTWbx4saSlpVn4mwEAAADJJ65XavTq1Usuu+wyeeqpp2TlypVyyimnhPW4l156yXQ8/J2It956S/7zn//Ijz/+aGZmLViwQK677rqAx9x6662SmpoqF1xwQZR+GwAAAACJ3q/o27ev3HXXXXL00UebwIYGP3Slx7fffivPPPNMlH5DAAAAIHnE9UqNs846K+BnpzO8GIwGKNSVV14p/fr1q23Pz8+XWbNmyZAhQ0whcO2A6EyqX3/91Swf105OWVmZ2bakpMR83bp1qxQXF5vtAAAAANhPrPoVoRx22GHStm1bWbRokUmBBQAAACBBV2pEYt26daazoMaNG9fg/sGDB0vnzp2loqJCXn/9ddP2yy+/mJ+PP/54kydXb5onV5155pmy0047xfi3AAAAAGC3fsX2aB0PAAAAAM2TcEGNpUuXmq86E6p79+5BtxkwYEDAtnvvvbfMnz8/4OZfGq6zrt54442YHT8AAAAAe/YrQtG0VVoofJ999onCkQIAAADJJa7TT0VCV12oLl26hNxGZ1TV3bZ169Ym321d/kLhBQUFZll5KDozS29+Xq/XdFjy8vKYiQUAAIAW5/P5pLS0VHbcccew0y4hsn6FGj9+vAmC9O/fX7Kzs00tjttvv91MpBo7dmzIfdGvAAAAQDzzxVG/IuGCGnpiVWZmZshttNBf3boZzTFt2jSZOnVqs/cDAAAARNNvv/0mnTp14iRHuV/Rs2dPefrpp02B8W3btplzriltp0yZIqmpqSH3Rb8CAAAAdvBbHPQrEi6oYZVu3bqZ6NP2XHXVVXLJJZfU/qxFxXU2l764OTk5UT5KAAAAoHE64K4rCnTVAKJP+wd6i+Rx9CsAAAAQr0riqF+RcEEN/0ktKysLuc2WLVvMVyuCDmlpaeZWn+6boAYAAADiBUWqm4Z+BQAAABCf/QpnIq6wULpSIhT/ff5tAQAAACAe+hUzZ840df0GDhzICwIAAAAkQ1Cjb9++5uumTZsCCvbVtXjxYvO1X79+MT02AAAAAPbQUv2KSZMmyYoVK2TRokWW7RMAAABIJAkX1NAiJf5ZTVqgr74FCxaYGVWaMurII4+07HmZUQUAAAAkjpbqVwAAAABIsqCGuvrqq83X2267TZYsWVLbrrOszjvvPPP95MmTJTc317LnZEYVAAAAkFhaol8BAAAAoHEOn8/nkzilHQd/Z0GtWrVKNm7caGZN7bTTTrXtc+fOlY4dOwY89sILL5R7771XUlJS5JBDDpHMzEx57733ZPPmzXLAAQfIO++8IxkZGVGpAq+dmuLiYgqFAwAAoMVxfUq/AgAAAEikfoVb4vxEff755w3a165da25+FRUVDbaZPn26CV5oWqiFCxdKVVWV9OjRQ6688kq5+OKLJTU1NerHDwAAAKDl2alfoc+jt+rqakv3CwAAACSKuF6pYUfxFLECAAAAuD61J143AAAAxJOSOBr3TsiaGgAAAAAAAAAAIPEQ1AAAAAAAAAAAALZAUMMimve2oKBABg4caNUuAQAAAAAAAABAHQQ1LDJp0iRZsWKFLFq0yKpdAgAAAEgyTJYCAAAAGkdQAwAAAADiBJOlAAAAgMYR1AAAAAAAAAAAALZAUAMAAAAAAAAAANgCQQ0AAAAAAAAAAGALBDUAAAAAIE5QKBwAAABoHEENi9D5AGAHq1evFofDIaeddlpUHxONfQCwB97vQPNQKLzlcJ0EIB4/ZwAADRHUsAidDwCxuPg94ogjLN/3Bx98YPZ9ww03WL5vAA3Nnz9f/va3v0nnzp0lLS1N2rZtK4MHD5Z77rlHysvLm33KeE8DSDZcJwGJg+skAEA43GFtBQBICDvttJOsXLlScnNzo/oYAA15PB4zCeLBBx+UzMxMGTFihOyyyy5SXFwsb7/9tlxyySXywAMPyGuvvWba7YrPDAB2xXUS0HK4TgIANAVBDQBIIikpKbLHHntE/TEAGrrqqqtMQGPgwIEyd+5cM3jmV11dLTfeeKO56YqsJUuWSE5Oji1PI58ZAOyK6ySg5XCdBABoCtJPAYBN1U0xs3jxYjnssMMkOzvbrKgYM2aMScWwvRyu+tiDDjrIfD916lRzn//mf3ywvK+VlZVy3333yfDhw2tT6LRv316OPfZYWbp0abN/Nx3Q1efU/dVVVFRkfsdDDjmk2c8BxNIPP/wgd999t0k19corrwQENJTL5TLvwXHjxsmqVavkrrvuqr3vscceM+8H/bq9VFPhvKf9syGnTZsmPXr0kPT0dLMyRH/++eefQ+Z5fvTRR2XfffeVrKwsc9Pvgx1TqFzRkXxmRXKcwfCZAiQfrpMA++A6ieskAGgqVmoAsCWfzyvVFUViF660NuJwRCeOvGjRIrnjjjvMQOY555xjggovvfSSfPPNN/Ltt9+agcBQhg0bZgYSZ8+eLQceeKD52a9169YhH1dYWCgXXXSRDBkyRI488khp06aNGWScN2+evPHGG/LRRx+Z2eiR8g/4rl27NqBdn+e4446Txx9/XDZu3Cj5+fkRPwdantcrsmmT2EZenogzwrexvse8Xq9MnDhROnToEHK76667Tp5++ml55JFHzKqNpgr3PX3GGWfIE088ITvvvLNJiVVRUWFqenz66adB93vBBReYQKa+N88880zT9p///EdOP/1085kzffr0qHxmNfU4Q+EzBcmG66S/cJ0Eu7LTdVJzrpEU10l/4ToJAMJDUAOALWlA45cXB4hddD92sbjT86Ky79dff12effZZU3jY79RTTzUDgTpQOHbs2JCP9Q94akdCvw+3WLgGF9asWdNgtvny5ctl0KBBcvXVV8s777wT8e+kqz40BUT9oIbq1auX+Hw++frrr+Xggw+O+DnQ8rSj3r59Sx9F+NavF2nXLrLHLly40Hzd3iojTfW24447yrp16+S3334zK6GaIpz39HvvvWc+H/bee2/55JNPpFWrVqb9mmuukb59+zbYXoOUGtDYc889TTDBX19H963v93vvvVeOP/54E+S08jOrqcfZGD5TYCczZ840N01LFymuk/7CdRLsyk7XSc25RlJcJ/2F6yQACA/ppwDA5oYOHRowOOif3eyf6RMNmm6qfkBD9ezZ08y+1kHQqqqqiPevaWU6duwof/zxh0k/E8zWrVsj3j8Qa//73//M13CCFP5t/vvf/0blWJ588knz9frrr68NFCh9z1144YUNttcAiT+I4Q9o+IObU6ZMMd8HS0PV3M+sph5nY/hMgZ3oqqQVK1ZE7d/wZMN1EhD/uE76C9dJABAeghoAYHP9+/dv0NapUyfzdfPmzVF73q+++srk/+/SpYukpqbW5u3XegFac0PTQzWH/g6aruf3338PaJ8/f7752rt372btH0hWy5YtM18HDx7c4L4DDjigQZu/Tk7dVFZ+/vod+nlg9WdWU49ze/hMAZIT10kAmoLrJPpeAOyB9FNxtEwcACKRk5PToM3trvl4j9Znki4R96d+Ovzww2XXXXc1hYM1qKHpY7QzoLnvm6NuDnwNnCidtfrmm2+agdSuXbta8JsAsbHDDjvId999Z1JK7b777o1uq9v4VyREQ0lJiTidzqA1aYLV+/Bv3y5IXgndXt/3uo3Vn1lNPc7t4TMFSE5cJwHxj+ukv3CdBADhIahh4TJxvWkHvG5qBgDRK7ytdSrsdLyJ5JZbbjFBi48//rjBLOrPPvusdoZTc9Qv7LtlyxY57bTTzODn3Xff3ez9Iz6KSmoOZjsdb6T2339/+eCDD0ydiEMPPTTkdhr40NVJ+vfvT0OlA/sqWCq24uLiJh+LdpZ1FZSupqofqNCUb6G237Bhg6lNUdf69etNjZtgHfDmaupxbg+fKUgmXCe1LK6TkGzXSc25RlJcJzUd10kAkh1BDQC25HA4o1Z4O9m4XK4mr+pYtWqVtG3btkFAQ+tcLFmyxJLj8g9A6qx1HTTVQsIrV640ufu1cDDsT8fqm1NU0k707/e2226Thx56SC655JKgqx78A2F1a0z4a1coLR4eKjVUU97Tffr0MY/T4tujR48OWqizLi3KrdtrUObEE08MuE/bVDTek009zu3hMwXJhOsk63CdhJbCdVJDXCf9heskAMmOmhoAkOQ0OFE35U04NPVTUVGRLF++vLZNB1Avu+wyM5vbCv4c+3pcZ511lsydO1emT59uBocBu9GUU1rcetOmTTJy5MgGRcB1RcJNN91kimP36NHDvJfq5oPXFE/PPvuslJeX17b/+OOP5j3R1Pf0ySefbL7eeOONsm3btoAincH2N2HCBPN16tSpAWmmdJWIttXdxkpNPc7t4TMFQCS4TgKij+ukpuM6CUCyY6UGACS5PfbYQ3bccUczYJqWlmYG/nQA9fzzzw+ZTk/ve/vtt81KDZ25nZ6ebmZs60xyLSbsn73dHP5Z1Q888IBJdfV///d/5nkBu7rjjjtMIOCRRx4xdWiOOuooE8DQQIG+nzRIoe2vv/56QDonfX+edNJJ8vTTT5sAxxFHHGHSPmmgT7//z3/+06T3tKa/GjdunNlf7969zSoIfY89//zzsu+++8orr7xSm/JKDR061Dz2vvvuk169eslxxx1nVk/p82p6uAsuuMBsY7WmHuf28JkCIBJcJwGxwXVS03CdBCDZEdQAgCSnaRVefPFFueKKK+SZZ56R0tJS0z5+/PiQQY2jjz5aXnjhBbn11lvNzPJWrVqZwuE6yKqzqq3gH4DUFSA6CHz66adbsl+gpWg9mH//+98mQPHggw/KggULzHsmMzNT9txzTzn33HPl73//u2RkZDR47MMPP2wKZj/33HMyc+ZMM6NR96HBi/pBjXDe07NnzzbPqe8tDVZo4OOiiy6SQw45xAQL6tfIuPfee00aqvvvv988r+rZs6d5v0fzvdnU42wMnymwC32P660paSERPVwnAbHBdVLTcZ0EIJk5fDrVDpbxFwrXmZjRKJoJAAAQLRo8Ofvss2XWrFkmwBKv7HKc8YLrU3vidQOA+GKX6w+7HCcA+ymJo3FvamoAAAAkGa1LUX9ei6aPu/nmm82sZF2NFQ/scpwAACBx2OX6wy7HCQDRQPopAACAJHPbbbfJa6+9JkOGDJH27dvLmjVr5NVXXzWpqm644Qbp3LmzxAO7HCcAAEgcdrn+sMtxAkA0ENQAAABIMlpgfMWKFaYjXFRUJOnp6bLXXnvJeeedZ4pzxwu7HCcAAEgcdrn+sMtxAkA0UFMjCgX9fvjhh7jILQYAAADEU+5bhI/XDQAAAPGkJI76FdTUsMikSZNMhHzRokVW7RIAAAAAAAAAANRBUAMAAAAAAAAAANgCQQ0AAAAAAAAAAGALBDUAAAAAAAAAAIAtENQAAAAAAAAAAAC2QFADAAAAAOLEzJkzpaCgQAYOHNjShwIAAADEJYIaAAAAABAnJk2aJCtWrJBFixa19KEAAAAAcYmgBgAAAAAAAAAAsAWCGgAAAAAAAAAAwBYIagAAAAAAAAAAAFsgqAEAAAAAAAAAAGyBoIZFZs6cKQUFBTJw4ECrdgkASCCrV68Wh8Mhp512Wkye7+WXX5YuXbrITjvtJB9//HFMnhPWGjZsmPmbqeuDDz4wbTfccAOnGwCQMLhOQlNxnQQAyY2ghkUmTZokK1askEWLFlm1SwBoMJDZ2IB4ONvYwfYGbRnU3b6VK1fKuHHjpKSkRH7//Xe58847LX+dELkzzjjD/I3n5eVJRUVFVE+lvo/0uRq7xXOARD/P9Bh1sAsAQuE6qeG5iOfP9pbGdVJ84zopfFwnAUhm7pY+AAAAEL758+ebVYFZWVkht7n33nvlhRdekL322kuOPPJIOeiggzjFcaK0tFSef/55M+BUWFgoL730kvztb3+L+vMed9xx0qtXr5AzHQEASARcJ9kb10kAgHAR1AAAwEZ01cWYMWPk7LPPDnp/dXW1rFq1SkaMGGF+XrZsWYyPEI157rnnpKysTC655BL5v//7P/n3v/8dk6DG8ccfL2PHjuXFAQAkNK6T7I3rJABAuEg/BQAJrG4KggULFpgZ2dnZ2dK6dWszc/unn35q8Jj//Oc/cuCBB0r79u0lPT1ddtxxRzn00ENNe30fffSRjB49Wjp06CBpaWnSuXNnOfbYY81z+VVWVsp9990nw4cPN/frdrpv3W7p0qUB+9Pj9K8qmDp1akCKHE0/s7376x7XyJEjJT8/3zzfrrvuKtdee61s3bo15PlZuHChHH744ebc1K9jEO7+/EGF22+/XXbZZRdz/vTrtGnTxOv1ihUWL14sDzzwQMj7tX7G4MGDLXkuWE+DGG63W/7xj3+Yv+X33ntPfv3117g41U888YT527/xxhuD3r9kyRJz/8knnxzQvn79ern44ovN37q+P/R9op8v3377bYN9dOvWzdy2bNkiF154ofl80cfoqiJdXVR/29mzZ5vvu3fvXvter7uyRI9JAzZaP0b3065dO7OS6ZZbbrHorABIZFwncZ2E+MJ1EtdJABAuVmoAsCWvzydFlZViF21SU8VZb6A8lj777DMzsH7EEUfI+eefL8uXL5e5c+eaAXC9b+eddzbb3X///XLeeedJx44dzWoAzfn/v//9T7744guzvQ5U+k2fPt0MZGZkZJhtdVBx3bp1JqChg5P+gXVNsXPRRRfJkCFDTCqkNm3ayM8//yzz5s2TN954wwQMdBBS6WClBid0IFMDK3UHLzXYsL37/b+D1jnSnzUQoQEUDQToIKemJNBbampqwPnRgMatt95qBpknTpwoa9asqb2vqfvTxz/yyCNmEFYfV15eLnfffbd5jubS333Dhg3m9vnnn8u+++7bYBt9nc466yyxAw30bNq0SexC3w9OZ+TzQbT2lr7f9H2ggcBTTz3VBDUeffTRuMh9roHGv//97/LUU0/J9ddfHzTooU455ZTaNl0VpO/DtWvXmqCgBjk1yKFB0Lfeesv8fvX/Tquqqsy2RUVF5jNFg4PPPvusnHjiifLmm2+a+5R+bjz22GNmtZEGQPzvcQ12qK+++kr2339/cblccswxx0jXrl1l8+bN5jw/+OCDcs0110T1fAHxjOukpuE6ieukeGSn66TmXiMprpNqcJ0EAOEhqAHAljSgMeDteWIXiw8fJXlpaS32/Dq4qLP7zznnnNq2f/3rX3LuueeawcJXXnnFtD388MNmgF4HC3Xwvq66nSodZNT0ORr8+OSTT2oHGZXP55P//ve/tT9rEEODBDvttFPA/jSwMmjQILn66qvlnXfeMW3+IIUGLfT7+gO927tfO0MXXHCBmfWtg6nawfK77bbb5KqrrjKrRi699NKAx+nzayDi9NNPb9b+dMan7qdPnz7mvGRmZpp2/R333ntvaa5FixaZ86mDwbNmzQoa1NDz2rt3b7ED/Zuq/3cWz3SwXlcCNGf2Yd2ggAYRNIioQQ0NIjR3MKAxGmj87rvvgt6nnwM77LCD+XvVAOWTTz5pApn77LNPwAqkZ555xmx32GGH1bZrYEbf7xqM0NVYfrqSacCAASZN2tdffx3wfFq8XgOZ+n7xBwS1sL2uCNMAYN2ghn4W6eeNfl/3c8YfZNFC61qXRIMaddllEAiIFq6TmobrJK6T4pGdrpOae42kuE6qwXUSAISH9FMAkAR22223BjUY9GdNo/Taa6+Zmf9+KSkp5lZf3QF9DYjo7LGbb765wUCjpofRlDJ+mhKmfkBD9ezZ06yM0JUaOiPJCnpcHo/HBBrqHq/SdD/a2dKB2fr69evXIKARyf4ef/xx81UHqP0BDaW/vwaPmksHmnWFiJ5TndmuHci6vvzyS/O7IP7o37gOwufk5JjVDEqLvWsQQYN+7777blSfX1dOaMq2YDddjeXnD7hoYKOut99+W/744w9Tl0NXRihNH6crkCZMmBAQ0Kj7mfPNN98ETUN1zz33BKxwOuSQQ8xKCw3cNZWuFquv/vsVABrDdRLXSWhZXCcF4joJALaPlRoAkAQOOOCABrPA9Wdt//HHH81MaJ0lrQOWOljfq1cvM3Nagw6aRkoHYusPriv/jOrt0dnWd9xxh0lNpQOo9YMYGzduNKs+rEgfofxpb+rTYE2w2er+9FfN3Z+/KLem2qovWFtT6eoPnbGuqad0tcqMGTMC6h/ojHUdJEf8efnll03w8MwzzzS1VuqudNAAgs5ODPf9FAkNvoVTKFyDC/pe1KCZrprQ+h91gxx1U0/53x8a7AiWPsv/3tCv+pnip2mkND1bfZ06dZJPP/007N9J01VpsXX9m9di67qCZOjQoUGDqICdzJw509x0hRRig+ukGlwnoaVwncR1EgA0FUENALABf0CisWLT/vuCpbDR/P3B+NuLi4vN18suu8zMcNY6Ev/85z/lrrvuMoOaRx11lJkx5B+I1O11RUY4gQidyX3wwQeb73XQVleH6Ax1fbwOwmsgQFPIWEHrd6imFgkOdX6auj89L3r+tVByuM8RrpKSElNcWQdsNfCks/510Ovyyy83xd+VBjtCFXlGy/KnVNAgRv0ggr6m2pnXv7e2bdtKS9JVGBrQ1Pe/BvP0va9/d/peLSgoCFgJ5H9/6GovvYVSVlYW8HNubm7Q7fSzprHPuPo0/ZqmsNJ6OE8//bRJ4+UPUt5+++0mKAvYkdZj0pt+7od6vyAQ10nh4TqJ66R4xXXSX7hOAoDwENQAYEtaeFvrVNjpeJvDf3HbWJ54Xe1Qd9u6dCZ1MP52/2M00HDGGWeYmz6XFhLXGd7PP/+8WdGhufF10FNnWvtrZ2xvVrQGBDRoofvyFw+vO9Pbv7rBCv4VJToQ5B/oD4f+3lbsT8+jDsrqa1E/r3Co1yBcr7/+eu1Mfh1cPumkk0xBZ63toedYCzbvsssuIX+XeKQBtPoptOJZpCmNfvvtN5O+SWmB+1B0NYTWcGlpuhpDgxp6PBrU0NRVWsy77iqNuu8PTc82efLkFjlWXQH1xhtvyLZt20xQT+sDab0ZPW5Ne7Xzzju3yHEBLY3rpIa4TuI6ieuk6GlO2keuk6KH6yQAiYygBgBbcjocLVp4O9Z23313k39e881rjQd/Spi6/GlbtKh1sLRFOthedxWH/qyrKHQQXAtbB+ucaO5/velAwPvvvy8//fSTORYtILx48WIzUBusFkVdOtius8/rBzR0kHTJkiUNtvfn6w+VdqOx+3Xmtu5TgyV1ixlHqqn70/Oo22sAR4tA16VtzaEFyOuuGLnpppvkxRdfNCmC9DXQmf52Sz2lf4/NLSppB4899ph5v+l7QN8/9el7WtOJ6SzFeAhq6N+xFpvXv6nS0lIT3NDPiZNPPjlgO3+hev3siVZQY3ufB3XragwbNszcNOiqdW3eeecdOeecc6JyXEC84zqJ6ySuk7hOsguukyLHdRKAZEahcACwAc3Br/njNSe/FueuT4vxPvzww2Y1QbCB7R9++EEeeuihgDb9Wdt1RrN/YFlTuegKjLq0/oU/XYG/FsC5555rLqKvvfZa+fXXXwO218f//vvvtT9r8d+ioiJZvnx5bZt2tDXVVd0C5X7+9Ds6ayuYxu4/77zzTMDn/PPPN8WX69u8ebMpbhyupu7PP5NdU0DVTbmzbt06mT59ujRFZWVl7fdak0DPYd3aH5oK7KqrrpLy8nJTqHn+/PlmQBfxRd8PmhZJgwIauND3af2bdub3228/sxJKg4XxQP+WdfXDvffeawKausKkc+fOAdtocFMDG7qa67nnnmuwDw3kfPjhh806jsbe7xpM0b//+vyrourWLgGQ2LhO+gvXSTW4TrIHrpO4TgKASLFSAwBsQtPBaHqVqVOnyquvvmoGGbUTr4GJefPmmU6BpiPSWcr1DR8+3MwA1xRGPXv2NAEGTdOitR/qDrbrqgxNKTNo0CATjNCAhs52XrFihRx//PGmTeksbi3Qq/vU/enj9D4tAv7RRx+ZQInerzQgoCs6dJa6Bmb0mDV4ogP9Ogiv39e1xx57yI477mgKFaelpZniwTogrPvR9E6N3a/FiDX1zN///nczI/7II4+UHj16mNnmP//8sxlgPe200+SBBx4I65w3dX+aw19XTeggtp4jDTBp6i0d8NVzqq9bODTYo7VH9DzeeeedZp+XXnppg+20toYOKOuKm/Hjx5sCn4gvGhD45ZdfzPu1sVRI+hrrIL2u1hgwYIDlx/HCCy8EFLWvS99T9YuIa12NK6+80nzeaHCifuopP/370797fby+57Xmhq6a0CCg/j76txws8BAurcejtX0mTpwoxx13nGRmZprPGj0erZuhwTwtDq6DV/rZoiul3nvvPXOu7bZyCUDzcJ3EdVJ9XCfFP66TuE4CgIj5YKni4mKd4my+AoDVNm/e7JsyZYqvT58+vszMTF9KSoqvc+fOvnHjxvmWLFnSYPv58+ebzyR9zMcff+w78MADzeNycnJ8Y8aM8f34448B28+aNcs3atQoX9euXX3p6em+vLw83z777OO7//77fZWVlUH3f/TRR/vatm3rS01N9XXq1Ml33HHH+T755JOA7V544QVfv379fK1atfLl5+f7TjzxRN+qVat8EyZMMMf3yy+/BGz/2WefmWPNzs4299ffZnv3f/HFF76xY8f6dtxxR3OO9Dn1+a+88krfypUrg56fxoS7P+XxeHzTpk3z7bzzzuac6Ndbb73V99NPP5nn0t95e/zb+m+jR4/2eb3eoNsuXbrUPM+LL7643f0i9k466STzGj766KONbqfXDRkZGb7c3Fzf1q1bTZv+jde/VAv3b9ZPt6v7txTsdswxxwR97KGHHmru18+Cxq5rCgsLfddee62vV69e5nfIysry7brrruZzqf7fpX626C2YYL+vuuOOO8z+9L2n9+t26s033/Sdeuqpvt133918FujzFhQU+K6++mrfhg0bwjo/yYLrU3vidWs6rpNqcJ30F66T4hvXSVwnAbCX4jga93bo/yIPicBv5syZ5qYpVXTWdHFxcW0BTQBoKboKQmdRT5kyRW644QZeCBvRWehaoF1reWjKsWB1VPx0JcjIkSOlVatWMT1GAPZQUlJiVrpxfWovvG7Rx3WSfXGdBABAcl+fkn7KIpMmTTI3/4sLAEBzXHHFFeYWjr/97W+cbAAAkDS4TgIAILlRKBwAAAAAAAAAANgCQQ0AAAAAAAAAAGALpJ8CgAQ2bNgwrbrb0ocBAAAQd7hOAgAAsCdWagAAAAAAAAAAAFsgqAEAAAAAAAAAAGyBoAYAAAAAAAAAALAFghoAAAAAYDGPxyN77bWXOBwOefbZZzm/AAAAgEUIagAAAACAxaZPny4bNmzgvAIAAAAWI6gBAAAAABZau3atTJ06VW6//XbOKwAAAGAxghoAAAAAYKGLLrpIRo0aJUOHDuW8AgAAABYjqAEAAAAgYX3//fdy3333yWmnnSa9e/cWt9tt6lzcfPPNYT1+zpw5MmzYMGnTpo1kZmZKnz595I477pCqqqqg27/55pvy9ttvy5133mnxbwIAAABAuTkNAAAAABLV/fffb+pbRLriQh+rgZCDDz5YsrKy5P3335crrrhCXnnlFRO8yMjIqN2+vLxcJk+eLFOmTJGOHTvK6tWrLfxNAAAAAChWagAAAMSBDz74wMwev+GGG8J+jM4e18fEymOPPWaeT782h+5Djx2IhV69eslll10mTz31lKxcuVJOOeWUsB730ksvmYCGBjI+//xzeeutt+Q///mP/Pjjj2bFx4IFC+S6664LeMytt94qqampcsEFF0TptwGA5MR1EgCgLoIaAAAAUaQztXUQv7Hb5s2beQ22M4jR2C2eAyRWBYIQubPOOsukgho3bpzsscce4nSG1wXSAIW68sorpV+/frXt+fn5MmvWLPP9jBkzpLi42Hz/66+/mrRUN910k5SVlZn3dUlJiblv69attdsBAP7CdVLzcJ0EIFmRfgoAACAGevToIePHjw96X3p6uuyzzz5mFrkOmMarMWPGyKBBg0xanVjr37+/HH300UHv69atW8yPB4lt3bp1smjRIvO9BkPqGzx4sHTu3Fl+++03ef311+Wkk06SX375RSoqKuT4449vsP2ZZ55pVm9s2bIlJscPAHbDdVLzcJ0EINkQ1AAAAIiBXXbZZbuppXQWeTzLzc01t5YwYMCAJqXmAppj6dKl5mvbtm2le/fuIf8mNaih22pQY++995b58+cHbPO///3P3Kdpqg477DBeFAAIgeuk5uE6CUCyIf0UACAul6CfdtppLX0oQNzkitbc/QceeKBkZmZKXl6e/O1vfzODqcHoe0f3E6xAse5b79Pnqu+jjz6S0aNHS4cOHSQtLc3MQj/22GPNc28vldLcuXPNwK0OSLRq1coEPoYMGWLqD8SSpv/R1EJa0DmYqqoqsxJGfzev11vbXllZKXfffbdJMaTnODs72xz/vHnzQp5fnZV/7733mkCUnq+uXbvK1KlTA/ar255++unme/1aN2WW33//+1+58MILZddddzUFp1u3bi177rmnnHvuuaQrakH6+qouXbqE3Eb/jupuq6+dpkKre9OVTaqgoMD8TTVGV3louqq6N6A+rpOQrLhOaj6ukwAkElZqAIDN6CzQBx54QBYuXCjr1683A3A6WHLcccfJ3//+d5PGprkdhoMOOkimTJnCrGjEzIYNGyJ+rBbx1cHgYDZu3Cg+ny+i/ergvL6/Wtp7770nI0aMMIP1GszYcccdTdsBBxwgbdq0seQ5tBjyxRdfbM6jppjSgVxNv6MBjRdeeMGk2mnMVVddZYoj63aamkpfTw0IaBoeHfg///zzJRY0sDB06FD58MMPZe3atdKpU6eA+zVN0KZNm+SKK66oraugA8lHHHGE+ezTmfaaJkiDH6+99pocc8wxct9998nkyZMbPNfll19unkdTYg0fPtwUldagkQZIbrnlFrONBom0rsLLL79s9qX7r0vrLOjrqIOUhx9+uDn3+ngdJH/iiSdMceuWWhmT7EpLS83Xxj4D9LNHWRV8mDZtmgmMoXm4TkIi4jopNK6Twsd1EoBEQlADAGzC4/HIpEmT5MEHHzSDLDrIqbOitfDo22+/LZdccokJduhAnLbb1U477WTqCjCQl1zat28f8WO1UK++N4LRGe8a2IiE1YG9n376Kej+dEDdP5u7Pp31P3HiRPP+15UU/uCCBmq0PsfTTz/d7ONatmyZ+fzQYMQnn3wSUJ9Cn0dXEmyPBgt23nnngDatHbD//vubtDsaKNAgUXMsXrw45OtR9xyecsopJtig5+Yf//hHwHYaKPBv43fjjTeagIYepw4o+1dR6KC2rvi49NJLzYoVDSbVtWTJEvn6669r64vo43W1hQZB9G9Hgzx1gxr6ff0VaDoQowGMiy66SO65554G5y8lJaUZZwzxQN9P4QZWNTio70U/DZb4V4Ng+7hOQiLjOonrpO3hOglAsiGoAQA2oYMdGtAYOHCgSfWig/9+1dXVZmBObzq4p4NtOTk5Ykc6iBfvdQWASKxatSroLGxNWRMqqKErJX7++WcZOXJkwGoJHXi/9dZb5bnnnjPv/+b417/+ZYInN998c4OC2/o89Qfzg6kf0PDPYtdBfA0KaMFlTZ/VHF9++aW5BVP3HOrqEF1Z8eSTTwYENTS48Oqrr5rVEj179jRt+nvff//9pjhp3YCG0hRU119/vYwaNUpefPHFBqs1NIhRt2C6prXS1RizZ8+W77//Xnr37h327xZspZF/FQBahr7+qqysLOQ2/qLfVv17q2nM9IbIcJ0E2BvXSVwnhcJ1EoBgqKkBADbwww8/mHzvWrD0lVdeCQhoKJfLZQbkxo0bZzoEd91113Zz4AfLTatfNfWU8g/w+W918/PrbEhNk6EDgZruSleG6M86+BqqHsajjz4q++67rxmo05t+H+yYQuWKrnusOhNJC67qoJOu6NCULcHqB0RynMHo4KjOutZzo6lrgtGUN3rB7c+tDtSnKYp0xnb9m87Sb2wVhQqWi19TCFgxi/uLL74wXzX9UaQ0FZ7OMNeVMboiw/+5oQEN9fvvvzf7OM8555yg56/+OdTPBA1EfPPNN7XnT82ZM8ekmqq7SkODD0VFRebzQT/z9POl7u3NN98023333XcNjqd///4N2vzprjSAEg793NDAyG233SZHHXWUCbCsWLEi4pRpsI4/wBeqdk3d++oHA5tr5syZJq2kTmJAeLhO4joJ9sd1UvNwnQQg2bBSw8LOh96aO1sSQHh8Xp94Crfa5nS527YSh/OvGcBNpTN//WlotIhvKDpzWFOuPPLII2bVRlNpUVMNDujz6axq/bnuTGi/M844w6Rx0dnZmvZHBwo1dcqnn34adL8XXHCBScmiwRhNQ6O0gLAWzl26dKnJ5x8unfF9xx13mACDXrzr4zWXvQ5gfvvttwE1RZp6nKHoQKXOktc83Tqr/eqrrw64X8/5xx9/bM5/9+7dm7RvoDGaXq6xtBP6eRAsoNfU59AARN1VB01RWFhoBl/XrFlj6kMceuih5vNCg61fffWVSb2k771Y0sDF888/bwKSffr0MW36WaDHpMHfuseuli9fbm6hBJutH2x2vttdc2kd7vWgBmA+++wzsyJEA9aaxktpsOrKK6+U8847L6z9wHp9+/Y1XzWQrcHqYJ/tGmBXWmDeSvrvld40/VSkqRi5TgqO6ySuk5BYuE6KDNdJABIBQY046nwACJ8GNL4sCH8gvKX1X3GhpORHXnBYi4KrQw45pNHtNG2TporRAr86g7Sps7j9QQwNauj3wfLXaw54HRzUFC6af9+fJ/+aa66pHQSqS+sAaEBDZ3BrMMH/Gan71nQxWkRY08UEm4kejA76Pfvss6Zgst+pp55qjkmDG2PHjo3oOLd3XnRgVNPLaGqv+oOdmuJGCyvrICQin+kfqcbS9Gh9luYUCm9p/vdLqPPzxx9/NGjzF8DWlUqhOv91aQDCXzuj/iqwcPz73/82AY2bbrpJrr322oD7dAWCBjViTdPwtWvXTp555hm5/fbbzfFpKi9djbLDDjs0CEwcd9xxpiB6S9DPDl21poFrrdGhNZL0c1GvK7UQ/EknndQix5XsNJitwToNpGvgWv/tqEv/nvTfWU0XdeSRR0q84TopOK6TuE6yK66TguM6KTJcJwFIBKSfAgAb+N///me+hhOk8G8TTnHfSOjMZ6Uzi+sO+uos7wsvvLDB9hog8Qcx6gZ9dbBOi+mqYGmoGkvXUjeg4V+RoXTwKdLj3B49Xk33Uz8NjdYh0CCSpvyKh0Fwu9IB6EhvwfLs+mkgKtL9ZmZGHoi0in+Vga4Equ/XX38NmhpH/1aV/l3Wpyub6ttnn33MVx1Mj4SmvFNaT6K+YMcdC7piQgOceg50hdVTTz1VW1y9Lg22amBDZ9xXVVVF5Vh0dUg4qzc0GKVBWA2SajBGzZs3LyrHhPD4V+VpcK5uQFtXb/hX0WitFSY0tTyuk/7CdVJi4jopOK6TIsN1EoBEQFADANAk/hz1dYsW+2nqmVCDqHVTWfn563doippwhZvHvqnHGY7dd99dfvrpp9rBSR3M1XRW+nuccMIJEe0TaIz+/WraGy1wrTPD/XSAXgdcgw2U+/Pw1w8W6kqEDz/8sMH25557rhl411UWGiipS59ne/UwNNin6h6f0tnt/nRKLcFfO0NXbOlNg1Raf6d+p/7vf/+7+b0vu+yyoIENTWvXnBmyWgtJBQtAacqrYKtt/G110+khchqQ0JWB/ttrr71m2jWdYN32+pMBRo8ebdInakFwvX/EiBFmZaHWZ9KUh/pvia5QAuriOonrJMQO10mR4zoJgN2RfgoAbEDTpegKAR0U04H1xvgHziLNj789mmZPZxTrDPj6gtX78G+vM8yCba+5/HWbcIWbx76pxxkOPfdaOFjzq+uglhYn1hQ/mioGiAb9G37wwQdNehutVaGrlDTF3Pvvv28GYPfaay+TsqguXTHRo0cPE9TQzwNNt6ZpuPQxup/6gYbevXvL//3f/5nB2549e5qBXA1U6MxnTR+nBaz1/sY6xZri6fzzzzerIvSxOqinKeCOPfZYefHFFy05F7qaIlhKPP/gf/30bxrc0fesBlc0WKHHGWz1jRYI10FvfR/rYLfOctYaJrrKw19sXFPnhaprsj377befWU2k51CLkvs/CzWI9M4778jll19uBsd32203ycvLk59//tms0NDfSVNQofn034PPP/+8QfvatWvNzS9Y7Ret+aSvj9bO01SQ+rek7y/9e7v44oslNTXV8peIWn1Nx3XSX7hOQjLhOukvXCcBSDYENQDYkhbe1joVdjre5th///3lgw8+MIOEOrAZigY+dFa15sX3p6Fqan79cDrLmvt948aNDQIVwWYc+7ffsGFDg0FBnf2sM8GDdcCbq6nHGQ4ddFTff/+9/Pjjj2b2vKYe6dWrlyXHDASj73l97+sg+Jw5c8wAudbX0e+1nkx9ev+7775rBlz1cVqIWmeZa4BC/2aDrZ7w/x3/85//lDfeeMPMTNf367777isnnnhioy+MrpTSFSCaNkmfVz9rtHCyprPSoIpVQY0vv/zS3ILR9D/BatpoIMNf56N+6ik/rYmgv7PWBnn88cflP//5jxnc1uBnQUGBWcmigZ/mrNTQVTIakHnooYdk27Ztpl2Pa/jw4abQu742ep70vOvntwav9Hzq86P5dKVgpLV1lL4Htvc+iLdafVwnBcd10l+4TkKi4DqpBtdJAJKOLwzdu3f3/eMf/whn06RXXFysPSbzFQCs8t133/mcTqcvLy/Pt379+pDbjR8/3nwGXXfddbVt8+bNM2033HBDg+2nTJli7tOvfh999JFpu/baa4M+x2mnnWbunzt3boP7pk2bZu6bMGFCbdsZZ5xh2p577rkG2z/zzDPmPt3G75dffmmwDzV//vwGx9rYY5p6nOF49913zeNuvfVW32677ebLz8/3FRYWNmkfAJAo16f0EaKLfkX4uE7iOgkAACTX9WlYNTV0BpnOsAUAtAxNoaLFrbU46ciRIxvk/dYVCZrXW4tja1oMzQ1ftwaFpnh69tlnpby8vLZdVxpoWo2m5H9XJ598svl644031s44VpqqJtj+JkyYUJvipW6aKV0lom11t7FSU48zHP7UX5pq54cffpBbbrmltigzACQb+giIF1wnNR3XSQAAwM5IPwUANnHHHXeYQMAjjzwiu+66q8lzrwEMDRRomhcNUmi7ppapm85J8++fdNJJJq+8BjiOOOIIk/Zp7ty55ntNtVLXHnvsYR6jQRBNy6KpZTQoovnyNQ2GLvEeN26c2Z+mZNH8+5qq5fnnnzepal555ZXalFdK89PrY++77z6T3ua4444zaUD0eTWXuebx122s1tTjDIemhdGc/Po6aHqds846y/LjBgAATcd1UtNwnQQAAOyMoIaN+Dxe8Wz+a7ZxNLhbZ4jD3bRBPgCxocWwNee7Bii0cPCCBQtMYEIH2ffcc0+T9/3vf/+7yadf38MPP2wKZj/33HOmAKnOaNR9aPCiflDD5XKZ3O5XXHGFPPPMM1JaWlqbj96f23v27NnmOTXAosEKDXxo0WzN86/Bgvo1MrQArxYrvv/++83zKi1IrKsoTj/99Kids6Ye5/ZocEcDR1999ZX5nZoaFAEAYHsoFB4ZrpOajuskAAASj8/rkerKptdPDYenvGZ8KB44NAfV9jbSQZvTTjvNDAqhcf6CfjqL18rCtxvmfCurr3pLqksqovoSuHLSpNu04dLuBIreAmg6DZ6cffbZMmvWLBNgScTj7N69u1RVVZlVJgCQzNen9BHs+bqh5XCdBAAAoqnkl7nyv8U3SLGnOir737K1Wg4+67u4uD4Ne6XGli1bZM2aNRE9SZcuXSJ6HP5aoRGLgIbS59Dnyh9TwIoNACFpXYoOHTqYlQt+69atk5tvvtms9Dj66KMT8jg3b95scshrXRMAAH0EIBbXH9HCdRIAAIm1QuOZJS/IfWmXSll6wwweVvA6t4rIaRIPwg5qaHqS+ilKwqEXch6Pp8mPw1805VQsAhp++lz6nCn5mbwMAIK67bbb5LXXXpMhQ4ZI+/btTdD71VdfNamqbrjhBuncuXNCHqemnVKaSgsAQB8BiMX1R7RwnQQAQOKoKC+S+1KGS5kjOgGNeBN2UCOMLFWWPg4AEL+0wPiKFStMh72oqEjS09Nlr732kvPOO88U507U4ySoAQCB6CMA0b/+iBaukwAASBzFHk/SBDSaVFPj+OOPlzvvvDOiJ+nataski2jkvq3aWCZfFkwPaOuzYKK421rzh+op3CbLBtcU7vXrv+JCVmoAAAAkgGjW1KCPEN1C4T/88ENc5CwGAABAfPuj5L8y6MMFUX0O79atsmbsaXFxfRr2So2srKykCk7EOw1okB4KAAAALYk+gvUmTZpkbv5gFAAAABCJN/bbV9pld7Ds5JWWlEj3OHkpwg5qAAAAAAAAAACA+NcmNUXy0tIs21+KhftqLmdLHwAAAAAAAAAAAEA4CGoAAAAAAAAAAIDECWp06dJF8vPzo380AAAAAGyBPgIAAACAuK2psXr16ugfCQAAAADboI8AAAAAwDaFwj/++GOZN2+eLF68WDZs2GDa2rVrJ/3795dRo0bJ0KFDJdlVbSqTqkqXJfvyFG6zZD8AAABAtNBHsMbMmTPNrbq62qI9AgAAAEkc1FizZo2ccsopsmDBAvOzz+cLuP+jjz6Se+65R/bff3954oknpFu3bpKsvhp4v2Q601v6MAAAAICooo9grUmTJplbSUmJ5ObmWrx3AAAAIImCGt99950MGTJECgsLTTCjV69eMnDgQOnQoYP5ef369fLFF1/I8uXL5ZNPPpEBAwaY2Vp77rlndH8DAAAAAC2CPgIAAAAQPxwer2SWeaREWsnGjU5xVgTe7/NWis9TGtG+S0sje1yLBTU8Ho8cc8wxsmnTJrMKY8aMGbL33nsH3XbJkiVy/vnny6effiqjR482QQ63O6IsVwjBlZMm7tYZnB8AAAC0GPoIAAAAQPw4YNmvcvEOj0tOq1LZ99zF0qs0r8E2++y5RJ689qSI9r9lq9eCo7RGWNGGRx99VH788Uc54ogj5OWXX5aUlJSQ2/br108++OADGTlypLzzzjvmsWeffbaVxyzJHtDoNm24ONzOqD5PNOp4aCAm2scNAACA2KCPAAAAAMSHqkqPCWhktiqTzY5McWRXitNRb5mGiHgzq839ab5KyZCqoPsqkQzxOhqO4W5xxE/NN4evfmGMIEaMGCHvv/++rF69Wjp27BjWjtetWyfdu3eXgw8+WN58801JFv7ctxt//l1ysnNsERio2lgmXxZMl1gFZNqd0CvqzwUAAIDA69Pi4mLJybHu+pQ+gj1fNwAAACSe5d9/Jx8tu1pmpo+WMsf2M/yMr3hHTq18J+h9Z7e6RH517dCg3bt1q6wZe1pcXJ+GtVJj2bJlMmjQoLADGmqnnXYyqar0sXbw4osvyt13323yAmt+MD1+TZ913XXXSZs2bZq8v5S8TEnJyYzKsdpVdUmFrL7qLckfU8CKDQAAAJtLhj4CAAAAYAfVPl/YAY1EEFZQQ4uDd+7cuck7107LZ599Jnagv+OwYcPk8ssvNzOivvnmG5k6darpcL333nuSyHT1h66i0KBDtOlzeDZvk5R8Aj4AAAB2lgx9BAAAAMAOtlRXNymgkdb1bMnZcVrQ+5wrPhcpLxPbBzWys7NNp6WpioqKzGPt4Kyzzgr4WQMc6enpMnHiRFmzZo106dJFEpWms9K0ULqKIhaBDQAAANhfMvQRWsLMmTPNrbo6fnIWAwAAILFk5bSSDjs1LCSu3D+4JN6FFdTYZZdd5JNPPpHy8nIz0B+Obdu2mccUFBSIXbVt29Z8raoKXjQlkWidC00LpasorC44vmzwg5buEwAAAC0vWfsI0TZp0iRz89fUAAAAACJxf9ddZeDuewa9L8MVOnDx/AEHmXRW9ZWWlEj3OHkpnOEWAdQ6E9dee23YO9Ztt2zZIkceeWTEB/f999/LfffdJ6eddpr07t1b3G63OBwOufnmm8N6/Jw5c8yKC62JkZmZKX369JE77rij0SCFzojSjtnixYtN+ik9/h49ekg88Hm8pqi33qrLKkNu5ynaVrtdU24a0NBUVJoayqqbu21y5HEDAABINi3VRwAAAACwfTkut+SlpQW9tXKHXuvQOjU16GPapqWJrVZqTJ482RTRvueee0xQ4ZZbbpHU1NSg21ZWVspVV11lttUq6DrLKFL333+/TJ8+PaLHXnTRReaxGgg5+OCDJSsrS95//3254oor5JVXXpG3335bMjIaDrjn5eWZCu7q8MMPl+eff17iwYY53wakh9rpssHS+R9Dg267fNQTsu37jRE9j9bW0FRUunIDseHzeqS6suZvLhpcqbnicIb1VgcAAAhbS/URAAAAACQ3d7hpmB555BE58cQTTcfliSeeMN/vs88+0qFDB7PNH3/8IZ9//rlZHbFhwwbTsfn3v/9dm8IpEr169ZLLLrtM+vbtK/369ZNbb73VPPf2vPTSSyagoYGMDz/80DxWbdy40QQ4FixYINddd53cddddDR77wQcfyNatW02hcF0RMnLkSHnnnXfE1ciSnFis0IhVvQt9Dn0uTUWltTYQXSW/zJX/Lb5Bij3Ry5mc63bJDgNukJzuY6L2HAAAIPm0VB8BAAAAQD0OkVzvlgZtiSrs6dvHHnus6YycccYZsn79+toCdvX5fD4z+0o7K8cdd5ylxbudzvAG2TX4oa688sragIbKz8+XWbNmyZAhQ2TGjBkmsFE/T+3ee+9tvu6///7m+0GDBsncuXPl+OOPl5aiaaHqBzQ8m7Za/jwdTv/rXHnLq8SVZd2SIo/PIaW+mpUxGzaKpDRMyxbX2rQRaWRVVsQrNJ5Z8oLcl3aplKVHL01Xpm+bTFr0hJy9wwEiDmuDc6wCAQAgubVEHwEAAABAoFyXW+aU3RjQVul6QxJVk4Zpx4wZI0OHDjUBgZdfflm+/vpr8Xq9tQEHrXtxzDHHmKXoGkBoCevWrZNFixaZ78eNG9fg/sGDB0vnzp3lt99+k9dff11OOumkkPvSgIjOJvvpp58kGWTsli87nDnA8v2+Wd5T/rlluGzx/VlAMnh9mrimsa8ZM0TGj7dunxXlRXJfynApc0S37ojuf2b6aDlo7n7ikpr3q1WcKdnSbsBUVoEAAJDE7NBHAAAAAJA4mjz3XGtOTJkyxdw8Ho8UFhaadl1CrvUrWtrSpUtrj6d79+D12AcMGGCCGrptY0GNTz75xMwq23nnnSXedJw0KOR9PeedIr5qawevI+XxSGBAw6a0zMrkySJjx1q3YqPY44l6QMNPn2edM19yfGWW7je7qkw2LJ4i2V1HUrcDAIAkFu99BAAAAACJo1k9DO2gtG/fXuLJL7/8Yr526dIl5Da6UqPutmr48OFyyCGHSM+ePSUtLc0EPO68807Za6+9ZPTo0SH3VVFRYW5+JSUlEguuVikh73O3ic1AeTiKNovtAxp1AxtFRSLt2oktnZV5WXRSW5W/JGdXFos7Pc/y/QMAAPuJxz4CAAAAkAw81S4pKaspt1BZ6JINGxrfPjW1JkNNqLHQysq/fi4tFfsFNXTFwuzZs+X555+X1atXm4F/rTmhy8j79+8v8aL0z7ObmZkZchstIF4/AKEFDZ988snaQEe3bt3kvPPOk0suuURS9dUNYdq0aTJ16lQLfwMkszf221faZdcU1myOosoKOeyDtyTa/KmtTvd6mxchBQAAtmSXPgIAAACQ6F5eMFpunD1VSrfmhP0YLSM9Z07w+7Tc9QsvSFwKexzyxBNPlBdffLG286I0X+5TTz1lggF6v53ddNNN5tZUV111lQl8+GmgxL8SBMEt+2SrdNy1Vdyfno0bRQoKAts85YXiKbemyrmvYnODtjapKZKX1vwC7bkpKZLtTpFST5XEIrChqbQSYz0OAABoikTvIwAAAAB24PFIkwMadhZWUOOJJ56Q//znP+b7Aw880My60sH7t99+W9asWSMTJ06UI444QnJyWv6kZWdnm69lZaFrB2zZssV8teJ4dTaa3hC+/LY+26Zw+ub1Y6RNTpEl+ypxZIpEISWUcjudMrV3X5nyzdKYBDYAAEDysVMfwU5mzpxpbtXV1S19KAAAALCJjaWZSRPQaFJQw+FwyKxZs+Scc86pbd+2bZuMGjVK3n//fZk3b56MHz9eWpqmjVJaCDwU/33+bZOdp7hcvp8QuJZo99nHizs3uefe+7yeBm8RrUvhyqqTTC6OjenUVUbu2FmKq6wNamwo/UNGfPq5pfsEAAD2Y6c+gp1MmjTJ3DRAlBsqwTEAAABQR7k4JZmEFdT46quvTAHtup0VlZGRIbfddpsMHDhQli1bFhcdlr59+5qvmzZtMvUxunfv3mCbxYsXm6/9+vWL+fHFI19VtZQuXNOgLdlVlGt6qPyYPqcrJcfyFRtWpLOqy1MRukg9AABIHnbqIwAAAADJ5qnX/yuHDejY6DaNlJKWhx8WmTXrr5+1lHWPHmKfoEZRUZEceuihQe/r1auX+bp5c8P6AC2hU6dOpgO1aNEiefrpp+Waa64JuH/BggVmpYamjDryyCOjtky8alOZVFW6mrwfV2aqODMYNI4HJTFe8p/tFGmdlhHT5wQAAIiUnfoIAAAAQCJzu32S1mt9QFteu+pmlQCov2g4niowhBXU0IH69PTgqYj89STiKefr1VdfLWPGjDEzxEaMGFG7IkNXb5x33nnm+8mTJ1u6nLv+MvGvBt4vmc6mp2/qNu1w2eHMAdLSNm0ScVlQD3tjoUMSSXVJdN69ua1FpvbZ26ysAAAAsAO79REAAACARJWd45OOt35Yr22QJKqwghotZcmSJbVBCLVq1Srz9V//+pe8+uqrte1z586Vjh3/WkozevRoueCCC+Tee++VQYMGySGHHCKZmZny3nvvmdliBxxwgNx0001iJxrsWHvXx+LZtC0mz7fnniKbLQhqiLRq0OLZXC5VG8Vy7tYZ4nBHNyjw+6QjorLfklyflM1wiJCdAQAAAAAAAACaH9TQtE1nnHFGk+/X4oH//ve/JRK66uHzzxsWJF67dq25+VVUVDTYZvr06SZ4oSmhFi5cKFVVVdKjRw+58sor5eKLL5bUxhKGxZmU/EyzekODGsqVk2YG8K3iCTKBLte5TcQb2FYlLinzBZ+Nl+kolxRpfCZeqS9DqsUpy49+Qn53bhWr6XnpNm24tDuhJt2BnRQXO2TyZJGxY3W5WEsfDQAAQPz2EQAAAAAkt7CHT3WVxE8//RTyfr2v7v3aUfH5fM3qsAwbNszsI1InnniiuSUS/8C9lSsSioOkOn627YMN2t6v2EOuKTk26D6uzn5dDk77rtHnKfWmycyygyTbEZ3VJtUlFbL6qrckf0yBJeendWuvODIrxVcWmwBYcbHmppZm5boDAACIpZboIwAAAACop6o4RFtnSdqgxoQJE6J/JAlm70V/l5zsnIgKhYfSZ8E54s5Nj3qKpWjJdlbIpVlvi9thSV6rkIENz+ZtZnVLc+mKibyJS2XTg31jFtiwK1/FZvGUW3+OXKm54nCydAUAgHhEHwEAAABASwhrtPDRRx+N/pEkmJS8TEnJybR4nw3rU1jBmZNhVlFo0KExI0eKnH1P8Pv+d7FI2dvbf64UR72cVnEu66A1kjn0N/FuSTE/v7H/IGmf3cGSfW/cKFJQIAlh+XunSY6vzPL95rpdssOAGySn+xjL9w0AAJqHPgIAAACAlsAUaIto7Q69VVc3XlciHunKj39uGS6XZr3VaGAjLS10aqSiNJFwh7T3WnC2pLS1JkDjKdwmywY3TJVlJYfLJ67cSvN9fr5X2jV9AU7COyvzsqjsN9O3Tc5f8oJM7DqSFRsAAAAAAABAEGVlTtn0QN/Atik145mJiKCGRSZNmmRuWtw8NzdX7Oatil7ybkVBbb2LlStF8vICt3GkukI+fud7jpTutw8PK+igAQ0r0kOhZbhSYhfVKXNkyH0pw2VCeZGkt6LYCAAAAAAAAFBfZYVDSl/fJbDtypWSqAhqoFa1OGWzrybY4GorkpLfhD+knHTOZJJonZYh2U4t/B67wEaxxyP8hQEAAAAAAAAgqAG0MJfTIzmZxeZ7b6WIp1xXQ2SLw9Ww8LbP55XqiqIWLbbtdjplap99ZMo3S6XUU2XZfgEAAAAAAABgewhqAC1o1AFz5foJUyQns9T8XPKhSImI7HTIM9Kqw6AG22tA45cXBzTpOZwp2dJuwFRLi22P6dRVRu7YWYqrrA9qbCj9Q0Z8+rnl+wUAALADO9fqAwAAAGKBoAaiypHikuz9u4jH65CSqpqVBxuLXeL2ibRpI+IO8hfo8YgUhbkYoWqTSJE3sOh4ZaVISpBtvV6RTZvCP/aNpU6pLq45ZmdWlSkYbiWf12MCGpmZZbLZEVhjJKOqWlzV1ZLmCl7HpP72jcmuKpMNi6dItsXFtnXFRp5Wj7eYpyLYqwcAAJAc7F6rDwAAAPHBW1IpVRvLLNtfVal1+2oughqI7h9YbrosPX68TJ4sUlyTYUnkz5o1334r0rNnw8d8/71Ir17hPoMO7l8U0PLOom1y6DENt9SARvv2TTn6DiJSsyNHZqXkTVwqcqBYxucpli9yd5GZ6aNN3YgAS3+XW7f8LofmdQ5o1vRU6sSsKWE/T6Zvm0wqf0nOriwWd3pg9XdPeROiPPU43ZnidFPpAgAAAAAAAGhJOUFmjm89d758WfGaZc9R5i2XeEFQwyIsEw9OV10EBDRsyleWKpse7CueayMPAtTn8XmDBzT+dNZZIls/CWxrky3y+QNNex7dvz7P6V5vgzd8U1NZ1aUprVrvdmrEjwcAAAAAAADQfD6PN6lOo7OlDyBR6BLxFStWyKJFi1r6UOKKppGye0CjbmBj82br3jKlHk/IgEYom7e0kX3PXdzk59LnKSr3BL2v2NHKpLNq6q3QI+LRnF4AAAAAAAAAWoxvi/V1b+NZVFdq/PHHH1JRUSFdunSJ5tMAUZXWc4PkHPWT+T47u5tl+83NafpjfD6nFJXmSSTZlUvL20rHIO1ntbpMip1ZTd/hKpHsX+fJ1N59TeFwAACAcNBHAAAAABC3QY3Ro0eblQsezUEE/GnFCpH8/JpC4cHsvrvI+vXhna6qTWWybPBDAW37DTw76LZ5eeHvV60v/UNGLPxMnD6vtM7ZbNpSJFc85TXFw7fHlZobtDC3FgivriwWR3XNPusqvXxfKfqv1vIQ8W4N/fZcM35U48+dUyE7zXqr9ufK37JF+ovlSj1VMuWbpTJyx86mcDgAAMD20EcAAAAAoq/d3UOl/0G7W7a/ktISkZ1vkqSoqeHz+aL9FLAZDWi0axf6fq1r09j9dVU5RNo4twa0pYaIOeiYe7j7Vd40rxze6jM5t3ye+LY6TNvad0XWhvn4PYa/INlt92jQXl68Sr598zgpcWSKZF4WcN+CN1MkLzMtjL03vs0fG1LkqGUp4syqWXpW+tou0uaEho/pfuxicX7wsUhV05aotUlJkVO6dq8N2lRqvQ6CGgAAIEz0EQAAAIDocmWlSkp+pmX7S0mtlnhBoXBEVfWWigYD8KatXTgD9y1LV1T08vwsp2Vd0eTaF2p2yVYZ2rZh++aqajkxa0rQx7RpK9IugrRUDTlNYfO8iUtrAxvBuNPzxOGoCdg0RVFVlbRNz5QJ3Xdp5nECAAAAAAAAaA6PIy2stkQRVlDj1ltvjWjn69ati+hxSBzeCk09lrbdNisVVlaKu6L58bpNZYXycPpREQU0IuVKsSSiYZR90FXKPupsghq+8tDn451hRwjrqQAAQFPRRwAAAADiw1ZxhdWWKMIa+b322msjms2ty8ojeRzQHId98KaUZjc/qJHt3SJlkRTQjvT5nCKt0ywOoHid4i1pPIDUNi1xo7YAACB66CMAAAAAaAlhjfy6XC7xer0yfvx4cTYhb/5rr70mmzZtas7xAY3yeKO3xmCrI71Zj0/J7Bi8PburiCwPaMt2p8jU3n1tUZeiurxQfn3tsIC2rke9I670ILm2AABAwqKPAAAAAMQHl1MkpXNxg7akDmrsueeesnz5crnmmmtkt912C3vn++23X9IENWbOnGlu1dXxUzClOTZujOxxeXk1Bbkb49lcLlVB9u9wOcXdJvhKheqySvFua1gbouiPQomWypJW8tspxwS0vfvp/6RTpzbbfWxmlkj7nJSg93m3tJI3+44KaOvaPkXSU+3xSeMTn1RXFDZoAwAAyYU+AgAAABAfcnK9stPMt+u19ZWkDmr079/fBDWWLFnSpKBGMpk0aZK5lZSUSG5urthdQUFkj1u/XqRdu4btB6V+J/Mr9zDfLz/6CfndubXBNhm750ufjycG3e/vMz+TdXctCOsYsku9GjqR5vJsaZh37tD9dgjrsTNm6N9E8Pt6Fjhk48bAlE/6J6OPGT8+smMFAACINfoIAAAAAOI6qDF79mxZunSpjB07tkk1NYBLst6SHq4NtUGNaPvndb9asp8ibys5UmKjuFhk8mQRfXu5m18OJKo2V1XJ2a0uCWh7oapK8puXratRvorN4ilPtXSfrtRccTjj/GQDABDH6CMAAAAAaAlhjegdfvjhcuGFF8ruu+/epJ3ff//9ZuUCklfHXTJkbIdvZdHGDubnLEe5ZDu2iR3ocerxbvFFcbS+XmCjqCj4Spd4Uu3zya+uHRq0RdPy906THF+ZpfvMdbtkhwE3SE73MZbuFwCAZEEfIbgXX3xR7r77bvnuu++ktLRUdtppJxk9erRcd9110qbN9tOYAgAAAE3mramn4az2SebWP8sjpGyQqo1/1fx1ZqSIKzP4pGFP0TbxVWv2m9CqSq0dm4t6UENTTt1zzz1N3nnfvombtwvhcbid0m3acPnyouWSVVIul2a9JW6HPVbw6HHq8f5zy/CYBTbsKthKCqc7Q5zuVkG3r67YLD5f8Poz3ooiyfVuMd+XOjLE63DJWZmXWX7Mmb5tcv6SF2Ri15Gs2AAAIAL0EYIrLCyUYcOGyeWXX27S0n7zzTcydepUWbZsmbz33nv8rQEAAMB6PpHBn5bIaU9tkMxt/uDEL/KlzK/dZKfLBkvnfwwN+vDlo56Qbd83XmS5zFsu8YLcKwhqxQqR/PzICoXX1+6EXnL6UQUyoWSbuN2HamWKoI/VQuGh7DhpkOxwRv8G7f9bs0bWHTFXosLhkxF5i+Wwtkuk1FsT1Oj91vmSmp+13YdmNbLJypWamq2mGHuktUviTbCVFG32mChtCs6RNJdTstyBRdPXvnuiVBb/KFskXTyOhrVLHvrzq8PnkwfSR8l7Kf0sP+YyR4bclzJcJpQXSXqrOF8eAwAAbOOss84K+FkDHOnp6TJx4kRZs2aNdOnSpcWODQAAAAmq2lsvoJHYCGogKA1oWJkGKa2VU6RVZsSP16VRwZZHuUobrqDY6c0xsoMFncWy/62TRd+eWvM8f7bl5pwsWe22H9RoTCTBongXdCXFWr3Nk/HdeshNvYMHJW7ImCBfu3s0uprirPLXZL67j1mxEY3ARrHHI6zDAQAA0dS2bVvztaqqihMNAAAAy23b6JXnNh4Q0HZyq88kw5GY158ENZBwXG3SJSU/8gCK39Yyt0zMvDSg7ROPR5oX0rA/V0pOzJ5Lgw4Ppx8lWb5tUuJI9jMPAAAi9f3338vbb78tX375pbmtXLlSqqur5aabbpJrr712u4+fM2eOzJw506SQqqyslF122UVOPvlkufjiiyUlJXBFqp/uX4MY3377rUk/deSRR0qPHqEncwAAAACRKq9wyr+3DgloOy7jS4Ia6uOPP5YnnnhCfvvtN+nYsaMcd9xxctRRR4U8mbfffru89dZb8v777/MXCSSI1mkZku0UKfXGLrDx1v77Sl52TbH55thQ+oeM+PRzS44LAADYp49w//33y/Tp0yN67EUXXWQe63a75eCDD5asrCxz7FdccYW88sorJliSkZHR4HF5eXlSXFxcW1T9+eefb/bvAQAAAITLM20f6T+mT0Ch8FB6zjtlu4XCS0pLRHa+SWy1UuPWW2+V6667znzv8/nE4XDI7Nmz5YgjjpDHH3/cXLTX991338mHH35o7RHDclrbIViblemnosYhUpJVLy2Ro6UOJjm4nU6Z2mcfmfLNUin1RLaErdOhz5tC4emLl4gUbd7u9rmpKZKXlibN5akI/eENAACazi59hF69eslll10mffv2lX79+pnj1kDM9rz00ksmoKGBDD1mfazauHGjCXAsWLDA/P533XVXg8d+8MEHsnXrVlMo/Oabb5aRI0fKO++8Iy6X9Sk1AQAAYA8+j1c8m7dZvl9vWZAxuuyUsLPZuNs0nKRTX0pqtcSLsIIaCxcuNBfr2lE55JBDTGfgxx9/lNdee03efPNN2W+//cxspU6dOkmy0uXoetNl5ogdV9t0OWf6zgFtn7WlQkK0jenUVUbu2FmKw8gLrYXC63OltTZfH9r3QKny+gLuYzUFAAD2YKc+Qv3i3U5nw+uTYDT4oa688sragIbKz8+XWbNmyZAhQ2TGjBnmPOTm5gY8du+99zZf999/f/P9oEGDZO7cuXL88cdb8BsBAADAbjbM+VZWX/WWVJdUWL7vwtYavNhfkkVYQY377rvPfL377rvN8ms/nXU0btw4Wb58uRx44IEyf/586WJBgWY7mjRpkrmVlJQ06NAAkSos1HzM1qy+icaKjeaunshJaVj8ndUUAADYQ6L3EdatWyeLFi0y3+vvU9/gwYOlc+fOJu3W66+/LieddFLIfWlARFex/PTTT1E9ZgAAAMTvCo1oBTSSUVhTlD755BNTDK9uZ0X17t1bPvvsMxk+fLj88ssvptOyevXqaB0rkHSGDBFp377pt4ICsS2nKzWsNgAA0LISvY+wdOlS87Vt27bSvXv3oNsMGDAgYNvGzpWuaNl558AVxgAAAEgOmnIqmgGNjG2BmVBUVmbzU7nbeqXGH3/8Icccc0zQ+zIzM02BvL/97W9mOfVBBx1kZmN169bN6mNNeh6PSFFRdFYDIPZatRKZMqVhW7JzurPCagMAAC0r0fsIGpBRja0y0ZUadbdVGszRdFw9e/aUtLQ0E/C48847Za+99pLRo0eH3FdFRYW5+ekKcAAAACAczoYxDXG6w0u5mrBBDb0Y9+iIeqiduN3y/PPPm2XZc+bMMZ0WzZ8L6zz5pMjkySLFxZzVRJGZKXLDDbF7vmikpGrTRt//1u8XAADEv0TvI5SWltYGaELRAuL1AxD77LOPPPnkk7WBDg3knHfeeXLJJZdIamro1afTpk2TqVOnWvgbAAAAIN54fA4p9dUU5e756inibm1NbeANn/woElhGTsQhCSus4UhdJv3VV181uo3L5ZJnnnnGFN177rnnTKeF5dXW0L4iAQ00VzRSUmn5mBkzRMaPt26fKU6njOjYqUEbAACIL/QRgrvpppvMramuuuoqE/jw00CJfyUIAAAA7O/N8p7yzy3DZYvvz0DGftbtOzez4epiZ26Sp5/SInj333+/fP3112bZdCga0HjqqafMVw1waNE8NJ+mnIr1Co3WrcUWvOUeOez9zYFt+3pEciQhfPxx5IXCY1FXQ/8uNeA2dqx1KzZyUlJk1gALP9UBAEBUJHofITs723wtKysLuc2WLVvM15ycHEtWvugNAAAAiTlpPSCggWYJa/rziBEjTGG7++67b/s7dDrNcutTTjnFPAb2ZJeUQr4yj5zx1IaAm7YlirZtRdq1a/pt111rVlHEggY2olHrBQAAxLdE7yP46380FoTx32dlrZCZM2dKQUGBDBw40LJ9AgAAoGUVbZaYBzRysr2SqMIauj744IPloYcekpSUlLB26nA45LHHHpP+/ftLEaOdUbFihUh+vjX7itWs/ljZXFUlaXWKLIajTWqqOB2OhApKaVoo0pYBAIBoSfQ+Qt++fc3XTZs2mfoY3bt3b7DN4sWLzdd+/fpZ9ryTJk0yN00/lRurWSoAAACwtQpfw9ptPnd41+kJG9TIyMiQM888s0k71k7LBRdcEOlxYTs0oKEz8tHQ2MVfSun3y5p0ahYfPkryEmi5/+bNIg8/LNKnT83yNjV7tjWrN6IdBKuuLJH/fjQxoK3j0AfFlZogOcUAAEgQid5H6NSpk1ktsWjRInn66aflmmuuCbh/wYIFZqWGpow68sgjW+w4AQAAYE/LPtkqHXdtZcm+vlhVLEfvlxXQtlUaBjoShU2SDAHBeSxKX+CpKBTPnxFNd3pebfvgqq9lQUroHNHxqqpK5MMPA9s0oGGHQJjPWyXb1n/eoA0AACDWrr76ahkzZozcdtttJt2Wf0WGrt4477zzzPeTJ09mRQUAAACaLL+tz7Kxujab7JHi1SoENWBrXrHmDbvmtcOkxFdTBHLXcb+Yr/kZbeSweeWy4LiabVpVVEnrdFIAAAAA2M2SJUtqgxBq1apV5uu//vUvefXVV2vb586dKx07dqz9efTo0WZlyb333iuDBg2SQw45RDIzM+W9996TzZs3ywEHHCA33XRTjH8bAAAAoJ5Kj6RnbGvQlqgsCWq8/PLLsmzZMrn++uslWWlBP71VV1e39KEklVRHw1r32aVaBCfwTVuaHfxP3V3llYxyr/jK0sTrq3ntqjbWBDc8mz3i+76jZJd6TOjk1Gc3Scqw2Bb0SUalVR65KX18QNv0Ko+04dQDAGAr8dRH0PoUn38euBJUrV271tz8KoLUZZs+fboJXui1/sKFC6Wqqkp69OghV155pVx88cWSmmrtsn76FQAAAGiq1umVMj/rnoC2nPTjE/ZEOny+5ufvOf300+Xxxx9nQP/PDpMW9CsuLpacHGtqAGzYINK+fWDb+vXWpRKK9v6j6fdffpE1+z6z3e1c058O2u5b2lm8jw3Z7uP1TaJlxPuvuFBS8jMl3kXzNY3238sfJf+VQR8uCGj7dFAvyc+u96T6mjhTQtba0Noc9dNWbSj9Q0YsrBnQKHVkiNfhks8OHCwdcv6akQkAQKKJxvVpOOgj2PN1AwAAgPV+/65MdtozU1zilWxHzYqKrxdulR12+aumhis7TZxpwSdm+ydhh/LDqp+ldOQrAW05C46Xgt12k0S8PiX9FCQrS2TGjIZtiaT1n6ml6quQCtkSxuM1oKF8Hl0Fglj77d0TpDTIa5jVeYR0HDIr6GPWf36lbPntjQbtc/78ukXSZWb6aK2cYvnxAgAAAAAAwJ50/M+zuV4qp2bybC6X4Wm/yKVZb0m2s2Z18LpRIuvqbLPrw2Mkb9SeQR//ZcF0S4/H7ghqQDIyRCZNsueJcOamSlmGUzK3NR5s6H7s4qDthamrZMtj74b9fJ6SckndIbvJx4nmKXEEXx1T5U2RzKpKyUkJnvZhq6RJpSP4x1y2b5tMKn9JfN6/8msDAAAAAAAgeW2Y862svuotqS5pmJa0OYq8GXJplrc2oBELvqpwpnLbE0EN2JrD7ZTHTm4npz21odHAhjs9L2i7K3V9FI8OkXClNFy+dlbmZcE3LhHZd9FCeXb/YUHv/nfaCHkldf+g92X+GdQYXVXKCwUAAAAAAJDkdIVGNAIa/iwwsQxolGU4JTu7YS3iREFQA7bmrdwsF/S+R3y3OES21czW3/HAf0uHtruG9fg2w3c1dTKC2baqUFaMfMLS48X2OZyx+Vgqc2SY9FNHN7+sEAAAgGUoFA4AANAyNOVUNAIasVaWUTMJ/Co3QY1aN954Y4MT9dVXX5mvN910k9SvO+5wOOS6666L/quFpFRUWSUnZk2p+SG35strWU7pFGYxby2+E7IAT+HWBm3VReXbLcwTCXfrDLPqBCK5KSmS7U6RUk9gke+mar/vbZKz/FuRtXWzEzYMbJR6qjntAAA0E30E60yaNMnc/IUYAQAAkJg6z5so7XfJCCgUHkqoSdl+y1avlGP+rJlckeoUX6HIxdv8VYITT5OnRN9www0mUFE/eKGmTPlzcLkOghpIJMujtHLDlZMm3aYNl3Yn9JJk53Y6ZWrvvjLlm6XNCmy4UnPE4U7f7na+ylLxlG+K+HlCP39uzFadAADQ0ugjAAAAIBH1WTBR3G3/CjxE6n8/bZV1ox4Sj88hpb6a/WX5MiTVVzMxOydHJCVETGPDBv1/4xO4/1uWLb/P3j2gbeuk5ZKomjzi9uijjzZoe/jhh2XhwoXyyCOPWHVcQFLRpW2asy9/TAErNkRkTKeuMnLHzlJctf2gRoozdNT5ij17y0W79az9+Yc/Vsi4ZT8FbPPTp1fJVikUq+W6XbLDgBskp/sYy/cNAEC8oY8AAACARKQBjZQwM8I0JmWTyJvlPeWfW4bLFt+fk3DrlIF9/nmRE04I/tj27cN5ht0lmTQ5qDFhwoQGbR988IEJagS7D/Fv40aRPfcMbFu5UiQ/X5Jaere24sxKFe+WypgFNjR3nxUflImyYiMvLfSyu3BkuVMkyx0YaKjvulanS6kzS6ymhcjPX/KCTOw6khUbAICERx8BAAAACM3jkcCABpqFJP4QzSSmgY26N2onizhTXdL99iNMaigkBpfb+uBFY/U67ksZLhXlRTF7TgAAkBiFwgsKCmTgwIEtfSgAAACwyOYSiWlAw5FZKTm5iVtHloTvQCO0xoWmhNIVFFbzFG6TZYMf5PzHUE56w6BGtaPh6g0rAxvFHo8QgwcAAOGiUDgAAACaG9DIm7hU3O7m1wKJVwQ1gO1wuJ22SwmVmipy/PEN21RxsUhlhBm1UlLE1lLTchu0bXUk7gc8AAAAAAAA4tOHr22VPQe2qi0UHsr69dvf17oN38mPCy4y32dnlorLVS3Z7n9LoiKoYVOaIioYl0ukbdvg95WViWzdGv6+YF+5uSJz5gS/76yzRF54IbL9Hnhg6P3a1TvDhkubVGtSjG0o/UNGfPq5JfsCAAAAAABAYnDm1AQv6srvmiHt2m3/seFs4xGvZGZ9/1eDV8TtcEiisiSocdZZZ8mwYcOs2BXCVFAQun358uD33XmnyNSpnGJYL1qBsTZtRNwWhl5dDofsmhUY+s5PS5fW/mUszeSpsPlSFgAALEQfAQAAAKjhcDrCakN4LBkuPOCAA8wN0eHxcGZbgreyWkoXrQ1oyx7YyRQQR3hBNitWnMyYITJ+vDX70+DF2wcNt2ZnAACgUfQRAAAAEA0+jzdq9W9hD6SfssjMmTPNrbra+qrymzdLTOlAss6QT3bVJeWycsxTAW39V1woTpvV17Azrf8xebLI2LHWrtgAAAAAAACA/WyY862svuotqS6psFVApdqM7zKmaBVLhgkrKytl06ZNkpaWJm1DFXRIcJMmTTK3kpISydWogE35Z8YzgJy4Hn5YZNasyAuFZ2XV/J1owCEW9HmKisLLHwgAAOIHfYT4mywFAABgZxpQaMmAhtr20yb5euhDTX5ckVdratQU8kYLBzWefPJJuffee2Xp0qXi9XplwoQJ8sgjj5j75s6dK3PmzJFbbrlFunfvbsGhoq4FC0R22y14ofBQLr9cgy+xrWGA+NPcmFtpqciAASIff6yDFWIr3qotsvGr2wPa8ve+QpwpWS12TAAAJBr6CM2TKJOlAAAArKYrJGIZ0HDlpIm7dYbYQbUzRR5NPTyg7Txn4tZ+dTen8N+jjz4qPp9PsrKyZMuWLQH377bbbvLss89Kv3795LLLLrPiWFGHLohp6sz1zMyaG9Ac5eUi770X2LZihUh+vnVFx6NVo8NbXSHFPz4Z0Na290UENQAAsAh9BAAAACQCZ2aKtBm+mwmkpNggFf0WX5o8k3ZoQNupvjRJVBEFNZ566imzIqN3797mqwYuXPWWCPTs2VM6deokb7zxBkENRI3DlRZWG6JLAxqkhwIAILnRRwAAAECs9VkwUdxtrVlNUVW4Vb4eXJNaKv+4XrL+8aXSderBluw717FVXs/7P/lH8XHyraezaUvSKg4tF9R48MEHzeqMV199VTp3rnkRgtGgx8qVK5tzfECjWqVmhtUGqK3V1fJ46mEBJ+Py6mrJ4fQAANBs9BEAAAAQaxrQiMZKCg1oBJOxS570X3Fhk/e3aZPInnvqior02jans1mHmNQiCmosW7ZM9t1330YDGkqLhv/xxx+RHhv+lP7X33qjbckoPUgRkWBtgNpWXS1PpgUGNSYT1AAAwBL0EQAAAJBoNBjh8tVt0UhE04MoRV6RzQH7QcyDGhUVFWEVrduwYUODtFRouqys8NoAAACAlkIfAQAAAIlGV1cQjIg/ES1y2WmnnbabVkoLiK9YsUK6d+8e6bEBAAAAsAn6CAAAALAzT3VLHwGiGtQ45JBD5LvvvpOXX3455DZPPPGErF27Vg47LDDVCwAAAIDEQx/BGjNnzpSCggIZOHCgRXsEAABAOIo3x+48aRKkNm2s25/PsyWstqQOalx22WWSlpYm48aNk//7v/+T33//vfa+wsJCeeCBB+S8886TzMxMueCCC6w8XgAAAABxiD6CNSZNmmRWvC9atMiiPQIAAMSez+OVqo1llt48hdsS4qXMzNRrPhGv17p9+ryesNqSuqbGrrvuKrNnz5ZTTz1VLr30UnNzOBymTW8qJSVFnnrqKenSpYvVxwwb8ni9UlxVZfl+i8o2yYNl/wxo81XuJSIdLX8uAAAAhEYfAQAAAGrDnG9l9VVvSXVJhe1PyIJPRNrv0vz9bNwoUlBQ831Zmcitt4pcdJFIu3bN33cyiiiooU444QTZc8895eabb5Y333xTSkpKTHtGRoZJOTVlyhTp27evlccKm5q79leZ8s1SKfVYH9TI9m4RZ8Y5AW3PVFbIDhK7qLNnc2RR4qrCrZYfD5rOV1kcMgjm9WwVryf819dbUSS53pqlfaWODPE6XLwkAICkQh8BAAAguelYWaIENFReWwIPCRXUUL169ZJnn33WFAXftGmTeL1eyc/PF6czoqxWCKG4OHibHSJ5ukIjWgENv2JnVsDPvig8R/sJfWX97KUN2rf9tEm+HvpQFJ4RsbLywwsl5eh54hCRtmlpAfcVrXhQCr+dLhXilm2OwPtC8f81OHw+eSB9lIgMjsJRAwAQv+gjAAAAJC+d/BurgIYrJ03crTNi8lxIoKCGn6ae0mAGoiNY1qYoZHKKCk05Fc2ARjDZbkv+rAPscOYAabWHDaJIaLIzUs8SeXuetE1NlS+HHxN0m7dSBsqM9DFN2m+mb5ucVf5aQucvBACgMfQRAAAAEC3O7FTpfPWwiDOouNu2EodTp7jCjiwd/a2qqpLNmzebAId2YoCW4Lbob08jvRrx9UeXNbABe3Ol5MTsucocGfJQ+tFy6OZfxeG0NtDWtlWepLhTLd0nAADRQh8BAAAgufVZMFHcba1dUVH88a/y0zkvyeor34ro8f1XXCgp+ZmWHhNiJ+yRtoqKCpk+fbp8+umnJmhx9tlnyz777GPu+/rrr+XCCy+UBQsWmBRU2dnZ8re//U1uu+02adOmTTSPHzb0zrDh0iY1vFQ+2/PHpu/lqC+/l2hwuJ3SbdpwkwcQiaF1WoZkO0VKvbF5vq2OdBn5zX9FRG/WyfSVy9WdW8m4vsdZul8AAJqKPgIAAAC2RwMaVgcQHK7oTKh/v2J3OTgtOmONiHFQQ2dXHXzwwfLZZ5+Z+hnq0UcflXnz5pli4XpfYWFh7fZaNPzhhx+WL774wjwmrV6eeiQ3DWjkWfQ3UZmSItHU7oRekj+mIOT9GbvkmchupIXCvx5sv3ocLpdIQUHDNjtwO50ytc8+Ydd5aVMwUXJ3O0Xyflsr8t0PEi/KHOly629b5YTelazYAAC0GPoIAAAASCSutpnywrYBtUGNUm+aOHOo2WHboMYDDzxgVmjstNNOct5555m2+++/36zOOPTQQ6WoqEjOOeccGTdunOTm5pptr7/+erOCY9asWXLxxRdH+/cAokZXbDR2X7ItVWvbVmT5crGtMZ26ysgdO5t6L3UFi+873a3MbezOrWVklz22u+/127bIkR+/L7EKbBRu3SQdcjrG5PkAAKiPPgIAAAASlQY0/rlluDzRyLhgPMlyOeXOrQ/Ua5suSR3UeO655yQ1NVU+/vhj6datm2nT9FK6SuORRx6Riy66SP75z3/Wbr/XXnvJvvvuKwMHDpQXXniBoAYQhM/rC6vNDsrKRLZujeyxWgIlP19ivmKjKauF0l0uc9se3ectnZxmFYUGHQAASGT0EQAAAOzL5/FGXGS7MZ5C6/cZTJvhu0acPcVfKDyYb6o6yYiNF0qpL0OqxR4BDZXidEqf6p+lfltSBzWWL18uBxxwQG1AQ+28884yePBg+eCDD2pXb9S19957m8CGPhZAQ8H+4dC21PZZtjtdd94pMnVqZI/VgMaGDZIwtM6FpoXSVRRWKizbJEcuXmnpPgEAaA76CNExc+ZMc6uuro7SMwAAgGS3Yc63poZsdUmF2JUzzW1uVvOISzb7/srKsnFj+I/V0tLuIIfk8TRtP9i+sF75srIy6dChQ4N2f5umpQqmU6dOpq4GACSTFHcqaaEAAAmPPkJ0TJo0ydy0TqGm9gUAALB6hYbdAxqxVL+ubGO+/VakZ8+G7d9/L9Krl6WHlfTCCmroxfS6desatPvbfv75ZykI8gr/8ssvkpOTkxQnmRlVsEJ1UblUbSyz9GS6W2c0Whck3mzbFl5bPPJ6yqXk5+cD2nJ2PlGcblJRAQASD30EAAAA+9EsIbEMaLhy0szYlB3oigokUFCjT58+8uGHH8q3334rvf4MK2kR8E8++UQyMzPljjvukMceeyzgMbr9okWLZMiQIZIMmFEFKywf+URU/vHoNm24tDuhl23qc4TTFo+8njLZsHhKQFtWl6MIagAAEhJ9BAAAAIQzJmXVZFudCPxlQWDxa62rkZL/V7qo5ti8WWJGF+RquipEMahx+umny/vvvy9Dhw6Vk08+2bQ9/fTT4vP55IEHHpDx48dLYWGhjB071qzM+Pzzz+Wee+4Rh8MhJ5xwQoSHBsAKGn3XZYX5YwqitmLj8ss1sBd5oXAAAGA/9BEAAAASQ58FE8Xd1vrVFHbLHhLLgMaMGcHrb0TK53DLG+4BAW3HO6yvORIvwvrNNJDxyiuvyPPPPy+zZs0ywQx17bXXyrhx4+Tdd981KzVee+212sfoNvvss4+ce+650Tt6wMbcuRkxDWzo8kKrItf1ZWbW3KKlsND6YuKhijc1R4XXKx+5ewe07ej1hvdBCwCAzdBHAAAASAwa0LB6zEhrd+hYVAMOh6TktQr6GO+2Kqkuqwy5T09hdPOTB6uisGyZSMeO4T0+1MqL3XcXWb8+umNSJZIu92ScGNB2uKTLjpKYwj59zz77rFmJoSs20tPTZcSIEXLQQQeZ+x588EHp0aOHzJ49W9asWWMKhx9//PFy3XXXidvqVwiow+FMDastHjlcLFEI1+DB0YuKjx9v3T63eDxyc8YpAW1HezwSxXgPAAAtij4CAABA9IQMDDRDtAMDasOcb0MWI3fnZciAlRcHfdz6p5fJ6qvelpaSGmRIUQMa7do1b786PN7cfSBQkyIOo0ePNrf6NHBxzTXXmBsQS63Ss2V8xTv12g607Yuw14KzJaVt8Gh1U/+BWjb4QUuOKVEVF4tMniwydqz10XEAAJIJfQQAAIDYBgbiPRBjx+OGvTCUZwPBooTB2pJRK5dLTq2sF9RwTRO70oBGtFJE2UXr1rENbBQVES0HAAAAAADxw86BAV1ZEqvj1kLkWrcDyYeghg0Ey+cWrA1IBKyaAAAAAAAAyYzAwPY5s9Mk7+rhsrHIukLkGzdativEU1BDC4V/+umnkp+fL6eccop06dLFtK9bt84UDdeC4YWFhdK9e3dTOPDSSy+VVJYUAGimFStE8vOt+cepoICXAwAAK9FHAAAAsCdd6dBt2nBxuK0LDATTZ8FEU4zccISuMdt+XB/JO2bPRvc15wWRq64UWfdzhlSfGd3jhs2DGj6fzxT+fumll2p/vu222+S9994zAYwhQ4bIr7/+atrVihUrTJBj/vz58tZbb4mjkT9WANgeDWhQUAkAgPhCHwEAACB2AgIDFtHUTdEOaJjnaZsRVrp1Z0aKuYXi8Yicd2VNOvFY8XrFFnyesrDakiqo8cQTT8jcuXMlOztbxmpVXRF59tln5ZxzzpFDDz1UVq9eLcOHD5dx48ZJbm6uWc0xffp0E/R45JFH5Mwzz4z27wEAAAAghugjAAAAxE64gYFEpnVRYxnQsFVQw1sVVltSBTUef/xxcTqdZuVFv379TNvEiRNln332kZ9++smkmtJOjd+oUaNMsOOwww6Tp556iqAGAhRVVkiK0yE5KcGrnW/xVElFdXifGJVbCmWzo+YDvbWvJvpYXVkq7vQ8zjoAAEAU0UcAAADJTgt6a/0Lq3kKrd8nIkPtVxsHNZYtWyb77bdfbUBD9e/fX/bff39ZuHChXHXVVQ0ec8ghh8iAAQPkm2++sfaIYXuHffCW7JvXTp7df1jQ+29f+Y08uXpV+DvMmmK+dK3+n/n6XGW5dLDmUAEAABACfYTomDlzprlVV1fztwcAQBzbMOdbWX3VW1JdUiF2Vr2lQrzlnoge63A5xd3G2pRYLVWHVVGLNcGCGsXFxdK5c+cG7f62nXfeOejjtP2rr75q7jEmvZKS4G12qDHgieEarV9dO5iv3j9ru8Q7V3aa7PrwmAZtSCxFlVXSzucT55+1hbzVFeKt2mK+r/R6pVQTQoZh05YNku3dIqWOViIOCmEBAFoefYTomDRpkrmVlJSY1L4AACA+V2gkQkBDrblpvvzx6JKIHpuxe770+XhiyHRZsVhxQh3W5BRWUCMrK0s2bNjQoH39+vXm67p166RHjx4N7tf2zMzkzvVmhcrK8NriUakntrnbMn3bJCclrD/rFudMc0veqD1b+jAQZSM+/VwWH95B8tJqAlZl696V/y2YbL5f5tpZLm91bvg7c2ZF6zABAGgy+ggAACBZacqpWAY0XDlppqi3XXSbdrhUbdoq6+5a0NKHggQV1nTfgoICWbBggQlS+P3222+mLSUlRR544IEGj9G0U5999pnsvvvu1h4x0EhAY1L5S+L+c0Y8kOg8NlmVBABITPQRAAAAYhPQ6DZtuDjc9sjaoMXMdzhzgG0DMrCHsKa0jxs3ztTOGDp0qJx33nmmTfO8VlVVyZ133imXX365VFRUyNixYyUnJ0c+//xzue6668Tr9coxxxwT7d8BNjNn/4Nkt5yckPdfsWdvuWi3nmHtq7LkZ1n77gnm+2zfNnFJ7NJdITo0rZpdx+rbtsqTTF+5lDnSY/J8JWWbpMOfK0Cs5ErNFYfTHiueAAAthz4CAADAX/osmGhSLllNAwJ2CWjYPSAD+whr1Oqcc86R5557Tj7++GP5xz/+Ydp8Pp9MmDBBLrnkEnnvvfdkxowZJtDhp/drSqoLLrggekcPW2qdmio5Kakh789yp0hWmOOpFakpssVXZt3BAc2Q4k6Vqzu3klt/2xqTwMb3H50vW3wbLd9vrtslOwy4QXK6B9Z8AQCgLvoIAAAAf9GAhq5SsJsu1x0knS4fEnGh8FB2nDRIOl0ymIAGoiKsoWOXyyXvvPOOCVrMnz9f0tPTZcSIEXLaaaeZ+5999lkT3HjyySfNio20tDQZNWqU3HPPPdTUAJBUxvU9Tk7oXSkl1X8tN2mT+lcQL3OnQ6X7sYvN9zt5vTIkzELh60vXy0mLl0mZI622UPjFmZMsP35zjL5tcv6SF2Ri15Gs2AAAhEQfAQAAwP5cWWnmZvl+M0NPaIb1Ml1OuXbbE/Xabk3YUx12fpHU1FS5+OKLza2+7Oxseeihh+Rf//qXKR6el5dnam0AQLKu2MgL8enqdKWZm9JNWoW5T1dKjpQ5f5BYKHNkyH0pw2VCeZGkt2oXk+cEANgTfQQAABDvfB6vKextJU+htfsL59gdqS5x5wTPCuEpKRdfZXWT92/HlSUILtXplKGebxq0JSpLk6Y7nU7ZYYcdrNwlkLCqNpbJlwXTA9r6r7iQf1AQVOu0DMl2ipTGqGyMBjaKPR6JTXUQAEAio48AAABayoY538rqq96S6pIK2x9725F7yG7/Pjbotj9f/LoUvvJdk58je/8u5uvus48Xdy4jALAPKsEi5jwVm8WTUmXJvrwVmy3ZDxDvXD6P3NU1RR79+SfZWl2TsmqFq6t4HHyMAwAAAAAQbJWDXQMasTr20oVrap6vqumrPICWxGgYYm7dO8eLy7eBM4+gKipE5s0LbBs1SiTN+vSOtlJdVSrdv75YbqzT1vroheJMa2vJ/jeU/iEjPv3ckn0BAAAAANDSNG1TrAIarpw0cbfOiOqxV23aKnY49ljbuDHyx7Yj47ZtRS2oUVBQIN9//704HA7xhFkIF4nH5+W1tyonoxZYcmYEr1Vj/mHz/VWYuqowOv/QxUJJiciJJwa2rV/PPzTBaAFyt0XRHk8FdZAAANFHHwEAACQaDQp0mzZcHG771S+w87H7FRRE/tg6Q2kBhg4V+eijyPcLGwc1vF6v+EL9ZSBpVFdtiflzulKyxa6WDX4w5H3dph0uO5w5IMTj/iWeTdtiXsRKI/mx+IcvnKh7Xp7m7G7YXlkpUlwc/n7ilcfrldXODgFtnb1eltsBAGyFPgIAAGjJYt59FkwUd9sMW46N9Lj7yJD37XzPkdL99uFxe+x2ct99Ih062C+o4XC6ZZlr54C2wc7ETdIUtd/siSeekK1b7TtbHNZIcToatLklynn6EvgNG62ASXMj+u1O6CUtHXUPtZpj4UKRgw4S29Oi3RMzLw1o+4xC3gAAm6GPAAAAWrKYtwY0UvIzWyQY40x3iysreLYFT3F5QF2LYAEZHYMJxZ1DkW8r6LjS5Mkic+bU/JybK9KmjdjCZl+6XN7q3IC2N3zpsoMkpqiN/g4cODBau4aNZLkb/ontfuiTkp/d3pL9e6u2yIYlN5nvHc4Uceh/Tnuk0dFouP6DZMeCVX567HrhkT+mwLaRfbLjAQAQO/QRAABAohTzbmowpsPp/aT77UcEve/7CS/UFu1OFDreUlRk7T5jmYFDAxozZogEGdpEHOBl+dMLL7wgTz31lHz55ZeyceNG6d69u5xxxhlywQUXSEqKPQbJ7cKR1lrc6XnW7Cw9T3Y68GGxIw0C6CoHu/7j7afHrrMSrJrpoBFw/YfDnzIq2jZvFunYMTbPBQAAEh/9CgAAEr+Yt52DMbHw5JM1Kx5iMbazYoVIfr61+xw1SmTMmOgENDS9eHFVleX73RyFfcYzghp/uuuuu6Rbt25yxx13SIcOHWThwoVy7bXXytdffy2zZ89u0RcpWEyFOEti0LRNusohnKWKWig8lD4LzgmobqTLFKORbioW9B8MjYTH6h+/wkKRDRus368GZ4jmAwCQfOK5XwEAQLKyuiB2LIMxVgdkYrFCI1ZjOkoDGsHSkTdHWuhMX80yd+2vMuWbpVLqSa4AhO2CGm+88YZs2LBBTj31VIl3r7zyirSr8w446KCDTKHz6667rrZD0lJ01no4bbAn/Qe1uascUvJabXebvRacLSltt7/d9sQiYDJ+vMjYsU1bpqiFwoPZf/+aehvqhx9EBg8OvL/+z1YvU9TfBQAA2LOPkGj9CgAA7MDOxbztEJCJNh3LiVVAw041L3SFBgENmwQ1brzxRvniiy9s0WGp2/Hw69+/v/n6+++/0/mA7WlAw8piWNGmqxysiLSnpv61n1jmXtR/wHVmggZnWLEBAIA9+wiRoF8BAEhETSmI3RTBCmJbXcw7XoIxWig8lN1nHx9QKDxRAjLR5HCIeL01acWtTj8VDZpyKtYrNHLcLklUcZ1+6vvvv5e3337b1LnQ28qVK6W6ulpuuukms4R7e+bMmSMzZ86UZcuWSWVlpeyyyy5y8skny8UXXxxWnYyPPvpIUlNTpUePHhb9RgBaUuvWsX0+DWzoDAWrl0ECAICmoV8BAEDsCmInq+YEY9y56ZLIrKp7oZNVCwpqvtcs7KWlAdnYk1q6r1zKHYF/R87qcklUcR3UuP/++2X69OkRPfaiiy4yj3W73XLwwQdLVlaWvP/++3LFFVeYJeEaLMnICB09XbFihXn8xIkTJScnpxm/RXLboon0grSx6B4tgRUTAAAkJ/oVAABEhoLYwTlcTsnYPb9BG2JX9yIRvDNsuLRJtaaAxx+bvpejvvw+oM3nrZREFVZQ4/DDD49o57qyojl69eoll112mfTt21f69esnt956qzzxxBPbfdxLL71kAhIayPjwww/NY9XGjRtNgGPBggUmp60W8QtGtxs9erRZ2XHbbbc163dIdlVeX1htkaquLJH1n18Z0NZ+39vElUogCrGdLVB/xgAAAImupfoIkaBfAQBAZCiIHZy7TYb0+Xgif1ZoFg1o5FlUlbwyjKxESRfUePfdd8XhcJgCd02lj4vUWWedFfCz0xlexFODH+rKK6+sDWio/Px8mTVrlgwZMkRmzJhhAhu59Spul5aWyogRI0y6qg8++EAyM+2Xwy+Z+LxVsuW3NwLa2g28SZKdMyNFdrpscIM2NMRsAQAAItNSfYRI0K8AACD+xbogdtWmrRHnLtIxFldmquXHBMDCoIamaSovL5cHHnhA0poQPdLaF7/88ovE0rp162TRokXm+3HjxjW4f/DgwdK5c2f57bff5PXXX5eTTjqp9r6Kigo55phjZPXq1WY1x4477ijxYMuW4G0s20Io+g9r538M5QQBAICosVMfIRKJ2K8AACAWBbEjFeuC2MsG/0s8myIrfq4TSRl3AeI8qLH33nvLZ599JgMGDAhY+bA92sGJdYdl6dKl5mvbtm2le/fuQbfR30M7H7qtv/OhBcjHjh1rOi5ae2P33XeXeFFeHl4bAAAAECt26iNEIhH7FQCAxK9/oemirOQp3GZpQWwAiFlQo3///qbDsmTJkiZ1WFqCv4PUpUuXkNvojKq626pJkyaZWhw6c0w7Ivr7+hUUFIQsFq6zsPTmV1JSYsnvAcB6bdqIfPttwzY7cKXkBG3zeT1SXVncjP1mi8PFklkAQNPZqY8QCfoVAAA72TDnW1l91VtSXfLXGBUASLIHNTRXrnZYmkIfE0mO3ebQmhiqsVoYWkC8fgDizTffNF+1zobe6po/f74MGzYs6L6mTZsmU6dOteTYAUSX2y3Ss6c9z7LD6Q7aVlnys6x5fXjE+93pkGekVYdBzTw6AEAyslMfIRL0KwAAdlqhYfeARv1VJq7sNHGmBR+2rNpYFtY+veUeWf/0MvN9Sl4r87X9uD7UHAWSJagxcuRImTt3rnTo0KFJO6+72iHeab7bSFx11VVyySWX1P6sgRL/ShAAiAWvOKTEUXOB1lQZVdXiqq62/JgAAIkvGfoIkaBfAQCINQ0GxCqgocW8tfZFtFeZ7PrwGMkbtWfQ7b8smB7xc+Uds2dtUKPPgnOaVSgcQJwHNTSPrBa6s4Ps7GzztawsdNR2y5+Vt0OllGoKLYrYlMKIABCJ7JQUeWa/Axu0+baJCWicmDUlshO79HeZ4fxdBmQ1/OfAV7FZPOXWpqZypeYGXXUCALAfO/URIkG/AgBgh5oXoepeRCug0W3acEuLebfkKhP/6g1E38aN4W/rcul1ZvD7GhnuTXqtXC6ZXD434Dy0cvVJ2POScCNL3bp1M1+1YF8o/vv82wKJxlO0TZaPeiKgree8U8TdxtrZFIidVKdTBuW3b9Bu1WWfz+eVXG9NwNdv+bsTJEe2ipVy3S7ZYcANktN9jKX7BQDAavQrAAB2rnnRZ8FEU9DbSrpCw8qARiKsMkF4Cgqatu3y5cHvu/POxD3jWz0e2RZhJg2HlmJwOWVU1acB7ekua9+v8SThghp9+/Y1Xzdt2mSK+3Xv3r3BNosXLzZfE7GgIaB81V7Z9v3GBm1IPKk5O0uXo94R+XBBs/bjqyyWOWU3BrSdkHm9FDtrahBZJdO3Tc5f8oJM7DqSFRsAgLjWUv2KmTNnmls16SEBIGG0xGoEDWik5IeuN5tsorHKxO48HpGiIuv3+7//Wb/PZPDgqu9l+g8rInps29RUWTjIpkVkI5RwQY1OnTrJwIEDZdGiRfL000/LNddcE3D/ggULzEoNTRl15JFHWva8dD7C563UlDbh/8PqdKWJMyX4wKq38q9i70A4/2B//31g2+671xQQtytN5eROC7EuswlcKTWp+6KtzJEh96UMlwnlRZLeql1MnhMAADv1KyZNmmRuWqsvNzfXsv0CAFpOLFcjJMKKBF1lkta1dcj7+6+4MC5WmdjZk0+KTJ4sUlwsttKu3jCCXiq1adNSR4OWZOOhvNCuvvpqGTNmjNx2220yYsSI2plTOsvqvPPOM99PnjzZ0k4CnY/wlX04Tn7xhZ8EL3fX8dJ+4E1B7/vvx+c04ZmR7HQGQq9egW3r1zf8R9Fu2qSmyuLDR0X8+CyN6lQUSqyuZTSwUezxSHqMng8AADv1KwAAiVf3IlY1L6K5IqGp58WVky7OVFfD/Xh94inc2ui50VUmzrTQQ5asQGn+hE87BjTq08uvGTPsPVEVkYvrl33JkiW1nQW1atUq8/Vf//qXvPrqq7Xtc+fOlY4dO9b+PHr0aLngggvk3nvvlUGDBskhhxwimZmZ8t5778nmzZvlgAMOkJtuCj5IDmv5vB5OKRBlTodD8tLSmrWPPzweOTz7joC27Ho1NgAAsCv6FQCAeKt7EY2aF9FakRDJedlz7smSe0DXBu0a0PiyYLqlx4emT/iMZUAjO7sma0a4wQctFB7K5ZfrxPKa73WFhp0CGsVVlUHbmjuek6zi+qXXJdeff/55g/a1a9eam19FRcMP1enTp5vghaaFWrhwoVRVVUmPHj3kyiuvlIsvvlhSU1OjfvwQkerozkZw1Uu740zJFlcqM+WCCTb7wZnuFldW8A9PT3G5+KoaFiiqqjOjAonthQMOkbzsDs3ez4bSP2TEpw0/ywEAiBU79StIawsAyVH3wi41L1qiHggSh381RZ256M2SmVlzsyOvz9do28Qeu8sp3XaJuFC4VKwLckfiplyL66DGsGHDxBfkBQ/XiSeeaG5oOSlpObXf53mLZSfvRnH7Gg6UW0EDGu0GTKX4cAjLBj/YoK3D6f2k++1HBN3++wkvSOnCNda+SEloY2C9dkvEajZCbmqKJTMGPBUplhwPAADJ0K8grS0AJH7dCzvVvKAeSHJYsUIkP9/6/dptNUVLauV2m1ukPL6Gk7wTeeI3f1aIquw6b0aPuORXZwfZ4bD/SLsmzP7WQuGhdBz6oPi8VbVvVC2ajJaZuZFoQQedTRBs4qXXq3m0w99XQUEzD7CRmQ7jx1u/bwAAAACA/Wpe+Hkrq6W6pDzix7dkQe1onxuEpgENu9cbRXJhBDhKdHAzyOr1iBQWSkIodmaZr860NuJOz7Nkn67Uv1aCIPAiRC8GYjXLxFNSLqk7ZNvyJQgVdJg/X2d1NmzXgEb79tKiNPelFvUaO5YZDwAAAACSSzQKeYdK2RyNuhfRDhqULlorK8c8FfHj9/robGm1R8PR7fYT+sr62UvDPi9aKDwYd9tW0n/FhXEXUAGQZEGNdevWmVt5eego8NChQyXR1c9926NHdJ+vsaI5gF4E6OwG8l4mLg1saHEvZlIAAOIRfQQAgN0Ledup7kW0dZt2uOQc0LU2qNGc8+JwOjinAFouqPHyyy+b4ng//PBDo9s5HA7xeDyS6GKd+1Zz0gGNaXdCL8kfU9DoDBYtFB7K7rOPD1oofNuqQlkx8glbnnx93+jbUwMCAADAevQRmo9C4QAQHAWrW4YGL3Y4c4Bs/W6D7eqBoGVs3iwyenRg20svibRuzSuCFg5qvPHGG3LccceJ1+s1A/g777yz5OSQBihWdFCWoAbCXbER6ewJd27wpaJVhVtte/K1xIvWotDUTbEKbFhVbEtT2kWjPgcAAFahj2ANCoUDQHAUrG551LxAOKqqRD78sGEb0OJBjVtuucUENG644QazWiM1WDVdRIW/QHCd+ttxzefZJqdUvF2vrX+LHQ+gxbW1FoWmbmpMqAVXeXki69eHH3ig2BYAIFnQRwAARLPuRbCaF9Fi58H77IGdQtasCEeoVRgZu+TJgO8utuU5AZKB17MtrLZEEdHQ+FdffSV77723XH/99dYfUYJYtUokOwp1k3WFhl0CGmpLZZlsdmQ1aANakr6HIq1F4XRSxwIAgGDoIwAAYl33IhqFvKNZsLpusCdUVgVvhUeqSyM/d7pfZxTqgBDMaBma0X97kzKbSidkIvH4qsvDaksUEQ2Pu1wu2WOPPaw/mgSis7PJyCVS6fXJK6n7B5ybc72+Fntd0HzOlIZV6r1bqqRqY5ltLiQBAID16CMAAGJd98JOhbzrB3sGrb866HZFb/0oP541N+KC3lr/AonhySdjmz4bSPigxl577SVr1661/mgAxD1XdlqDtm+PeCyqS3616DkAAIhv9BGsQaFwAHZND+VPERWrgIadClbHItiz06WDJe+YPWsnHLrbthKH0xG150P0V2gQ0AAsDmpcdNFFcuKJJ8rixYtlwAAiwNHufJSVidx5Z2Db5ZeLZNpjMgIQMb3g0wu//DEFtlixoauznn++YZsdON2ZYbUBABAKfQRrUCgcQCKlh4oWu9W8CFbkXIMPVq4yWffPBebmPz9a/0IIatiWppyK1QoNTZ+vQZQNG0Jvo+WUQ9Ue1eOsrPzrZ9JbIW6DGscdd5xcd911Mnz4cLnpppvk6KOPli5dukgyi2bnY+tWkalT6z8fQQ20DJ0JoxdIsboA1ufRC0A7LClOSxM54QSxJacrLaw2AABCoY8AAPEv1umholX3IpqpihtdxeJwSEpeq6B3ebdVSXVZnZHdOihyjnhWWiqy446Nb3P88SJz5gS/76yzRF54ISqHBlhfU8Pv/PPPN7dQHA6HeDTcByAh6IWjzoix+8weAABgLfoIAGDPFQPRpBPi0ndua5sVFdtbxeLOy5ABKy8Oet/6p5fJ6qvebvYxtBm+q/RfcWHEj6c2ZeJasaKmhm9z6TCtlkouKbHiqAAbBTV8Pl9UtgVgD1rjQlNCRSsH67LBD1q+XzQu0+2Wqb36NmiLlsKyTVHZb9tWeZLiTo3KvgEAjaOPAACwc4qolljFEowzzW1uQH0a0GjXrvnnRdNMxTKgoQlt2rSJ3fPFq1SnK6w2hCeiT0mv1xvJwwAkEL0wtUNKKIQn3eWSU7vvYr73lP8ZcKjaLOvLKqUpoWmnq5U43enm+wyXS1rVCYzkeMtkiyNdvA6XHLl4ZVRemkxfuVzduZWM63tcVPYPAAiNPgIA2FM00kPZccVALFex2KnIOdDcgMaMGSJRnDNpG8EmjkZzMmmi48wBaBJPSbn8fPHrAW0733OkuHNqBrIRO9EqvrX5nQG135+Qeb0UO7Mi2s+FuxXIRbv3rP354a13idtXLTPTR8t7Kf0kGsoc6XLNWq8M6/6buJzW/hPHKhAAAACEXXvBRoEBDWgwYS127LaCBclhe6mttFB4KA8/LDJrVvD7dIUG4/aIBoIaAJrEV1ktha98F9DW/fbhnMUWUFAQnf3+8JRYHgzQFRQqS8plUvlLMt/dx6zYiJYDPv7M8n2yCgQAEAszZ840t+rqak44YOPaC1bqeuOhkn/8X5OFmiOWBavjLZjkcDnF3Sb46ggt8B3s3DRYxeJwhNx/+3F9JO+YPRNuBQuSQ3NSW+lqDCDWCGoAgEU0L2X79oFt69dbk/PSzhyeUvm/zCXi2OKrDWxk+7ZJsSOyFSAtRVeB3PrbVjmhdyV1OwAAUTNp0iRzKykpkVxGCYC4FOvaC79e/665oXnBpIzd86XPxxOD3vf7zM9k3V0LmrWKxZmRYm5AvEtJETnwwIZtQMIFNXbeeWdxOBzy7rvvSvfu3c3P4dLHrVq1qjnHCABJT5ds6rhGcbE9T0XXP14K+PmN/fcVZ5o1lcKqvZ6orMwIFdgo3LpJOuR0jMnzAUA8o48AIFnFsvYC4q+QN2B3rVuLfPBBSx8FEIOgxurVq01woqqqqvbncOnjkgHLxAFEUvciK0skIyP0Y311qnTfeqvIlVeKlJZG91zve+5i83XlSpG3s5tXKFxtrqqSs1tdErDdC+ltJT97B8uO+ZZOX5hVFBp0AADEBn0EAMla9yIRUjjZsWB1rINJdjo3AJBswgpq/PLLL+brTjvtFPAz/sIycQCR1L2YMUM/P4Lft+eewYMiOTki06aJnHCCdedcn8d/rEWleearM1WkXU7z913t88mvrh0atFlpXN/jTFooXUVhpcKyTXLk4pWW7hMAEgV9BADxXmx74wvLY5a2qUHtBRscu90KVjvT3dLh9H7m+z8eXRLV57LbuQEQ/0r/XCxQvy0vLa1Fjicpghpdu3Zt9GcgpGArdZJk9Q4QLSUlIldfLTJxooibyki1UtyppIUCgBiijwDATsW2o60ptRfC0fHcfWSHswZELeDTEgWrPSXl4qusjuixjhSXuHPTpfvtR5ifO10+pOn7cIX+XXecNEh2OKN/7c8U80a4PB6RoqLYZ32A/Xh83rDaIucIsy0xMBwWJfrhUxHBdVljqWjsyJ2aG1YbkAhiWfdCn0MvnJK9CDkAAADsKZHqI0QrTZEGHKwMlLS0ny9+XQpf+S6ix2bv30V6vjS+9merz4srM9XcgKZ48kmRyZNbvvZlYaFIdWTxQsYUEogrrXVYbYmCoEaU9OgR2eMaS0VjR7kpKWG1AYlAV03oezgeLmoAAACAeJYoxbbtmqbIn/ZLUzq5soKnPvEUl4uvKsKVFakucedQ7w6JvUIjXvr+Q4aIrFjR9Mfdd1/N7wDYEUENm9APmqlTWX4GxLvx40XGjg1/+amuzgpFC3X7S0/UrXkBAAAS18yZM82tOtIplwCC6nrjoZJ/fE/Lz44d0xTVTfulNSr8KZ3q+37CC1K6cE1Ez9F25B6y27+PbeaRAvFL+/yxDGho2QXNDmElHXPwT6y+7TaR7Gxr9w9EE0ENG9D0Mho51aCG0vQ2Vn+QAbB2xYYVaaHy8604GgAAYCeTJk0yt5KSEsnVC38gQYt5ewq3Rb3Ytp0DD9GSSGm/gGSiSU+sTkE9a1bNV73cmD7duv0CsUBQw2b0g0bT21AcGABaRmHZJtud+rat8kwhdQAAgHgu5m11sW1sP+3XH48uMUW3Y3Hed77nSOl++/CIC4UD8U5TQFk1ObF+toYtWyQqGGeEXRHUiJJVqyJbtrW9VDStWxPQAICWdOTilbZ7ATJ95XJ151Yyru9xLX0oAADAJispzH6rfbJq0jzL94vkRI0NJDoNaFi5kiJcH38ceaFwzQTDxGnYEUGNKH6Q5eRYv0+78VVXyMjKhfXaBrbY8QBAMipzpMutv22VE3pXsmIDAIAEE8uVFNEuuK1pohA/dp99fLMKhQOIjbZtOdNW83i9UlxVZek+N1dWSjR5q8vDaksUBDUsQkG/4LZWbJFcX1mDNiSu6i0V4i33RPRYh8sZdr7d5iKvLsJN26SrHDQoYHf6OxRu3SQdcjq29KEAAACLJEp9BA1odJs23HZ1L5qzQsaVmSrOjJSg91Vt2iri87V4v8Wda/9rYABoqrlrf5Up3yyVUo+1QY1o83m2hdWWKJod1FixYoUsXLhQNmzYID179pRRo0aZdq/XKx6PR1JTkyOHNwX9giv3euXJtMMC2k7yemPymiA6NJdp9v5dGrT5rblpvsnLGomM3fOlYO7JDdqXDX5QotVxandCL8v3nSg0h6cVigLjmraidSg0bZOuckiEwAYAxAp9BKBl6iPEQr9vLhCHyyHJPuGouStkuk07XHY4c0DQ+5YN/pd4NtUMRNFvAYDYrtCwY0AjGUUc1Pjtt9/k9NNPl/nz59e2TZgwoTao8dBDD8l5550nb7/9thxyyCHWHC2AFqezdXq+NF7sTjsf2gnJH1Ngiw5Uq1YiU6Y0bIumukXJmqNVu3Rp/+/ANqfLPgECrUOhaZt0lYPdCprXr//hq9gsnnLrJxu4UnPF4WTxJwD6CECs615EY0VzKP7B9dQOjRSCTBKxXCGjz6F1TXKHdms0mKSrPnT1RzCeom3iq/bG/G8GiBcej0hRUXxOAkR80ZRTsQxoZLuDr9jD9kU0AlFYWCgHHnigrF69Wnr16iVDhw6VWbNmBWxz4oknyuTJk2XevHkENQA0aZaWdphi1UHQjmVKfqbEu8xMkRtuEFsqr2gYffFKlCMyUVixkQhpm3579wQprZcS0ArOlGxpN2Cq5HQfY/m+AdgHfQTYuSB2tFcNxLLuRZ8FE8Xd1vraFHZcTWHXFTL+VRp1Lel9b6OP2emywdL5H0OD3rd81BOy7XtGYJGcnnxSZPJkkeLilj4SoCG3k39XYxrUuP32201A47LLLjPfOxyOBkGNNm3aSO/evWXBggURHxyA5KMdJZ0Blgi5ge2kTRuR3NzYXegVbSyWPFdN2rKSqiqp+jNncDicrlRxumtmCKY4nZKTwsyGcJU4ohPAy64qkw2Lp0h215Gs2ACSGH0ERFssAwNdbzxU8o/vacm+fNU+M9M+VjSgYYdJO3am53fQ+qvN9//792JZfdXbLX1IAEKs0CCggeZ6Z9hwaZOa1uz9FFVWyGEfvMUL0pJBjZdfflm6desmt912mwlohLLzzjvLJ5980pzjA2AzXa47SDpdPqRZhcK1zoWmhYrG8vxo1OdIBG63yIwZ0bng81U5peS1HgFtVd7T5ZeyFeb7yzLOka/dgfeHa0THTjJrwH6WHGeicaXkNGg7K/OyqDxXpm+bTCp/Sc6uLBZ3el5UngNA/KOPgEQqiP3r9e+am93oimddUYHG+bw+8RRujfw8Z6eJM61mOCXvmD3Nrcn7CJEqSvX79gJZ0qvxlRlW4W8GiUxTTsVq4p5OEtTJgkg8GtDIS2t+UANxENT49ddf5aijjhLndpbIaJFwXYYOIHm4stLMLVLVZZXy+8zPAtp2nDSo0Yv+5ohWTlk7Ls8fP15k7Nho5BpNkYKCfgFtrUZUSU1WX0RLLGtclDkyZGb6aDnd6428WBcA26OPYI2ZM2eaW3V1tUV7TAwtURDbbvw1L+x2DdoSNKDxZcH0iB+/68NjJG9UTSAjGqtiUttnSY+Zo6IeyONvBrAuoKGTBHWyIBCKZprQiZn12xCZiN5u6enpUlpaut3t1qxZI7n6zgaAMHm3Vcm6uwLT1u1wRv+oBTWitXLD30HQVSdW27Ahsselp4tkZwe/b/Nmkao/a2Hp7BI7XYxVV5bIfz+aaL4vLi8Vj7ikw6C7xJEa4petw+FMEVdKzXYpTofkpKQG7NfnrTkpWzweyUxvY2pr2EVuSoopOharImca2Cj2eMQ+JeABWI0+gjUmTZpkbiUlJfSlEli/by5otOhzskyqqV8nJdTv0NxaKnZMx9XU1etaKDyUnvNOqS0Ungh/M0BzrFghkp9v7Tm0Wx8aLUNTZ5NpwjoRveX22GMPWbJkiZSVlUmmVq8NYuPGjbJs2TLZd999m3uMAGA7OqNKZ1ZpR8TqjsJzz4mcf37TH3feeTr7M/h9o0eLfPhh4CwTXblhBxp42Lb+c/P97enj5eOUvUQ+Xdbk/eyb106e3X9Y7c/rP79Stvz2hvn+vrTR8n5KP7m6cysZ1/c4sUvBsam9+8qUb5bGLLABILnRR0CsWV0Qe+MLy6Oecso/8SW1Q019sGRXv07KXh+dLa32aNdgu20/bZKvhz4U0XN0m3a47HDmALEj7UdYEZBxtyElGeCnAY12DT9mWnwSosrKEsng7QpEL6hx/PHHy+WXXy6XXHKJ3H///UHTUOn9W7dulb/97W+RPAUAWE5nImlHMlapC/R5dGaVFR0RzeQ3JLJSJU2mOUe1toamoorWbJOsgc9LXtuatBqPNrNQuFSXSCyUOdLl1t+2ygm9K22zYmNMp64ycsfOUuxfhmOhDaV/yIhPa4JJAKDoI8CqWfXhpgy1uiB2x3P3kR3OGmD5sdfFzPjY1klpe/TukrFHOyn+5Ffzc/bATuJMdUXt+QCgffvIz4FOLpw0qeZ7LWFcf0VJI2WNgaQT0XCVLoeePXu2PPzww/Lll1/Ksccea9pXrVold999t8yZM0e++OIL2XvvveW0006z+pgBIOKZTjozLpZFJq2SkyOybl30ipzVn02iz6O1NaI1g6WwuLU466yQb+paFv/ieX0Vy725Iu5sEc/20yI21WZHpnzo7hMQ2Cjcukk65HQUu9AVG9EoauapaJjioLBsk+XP07ZVnm2CSECyo4+AYDPvk3VmPCKrk1K1KfLi3cEUvvq9uSmd3DTgu4vN9+62raT/igubVSgcAKJJAxrNWfUBJLqIa2q89dZbcsIJJ8jChQtl6dKlpn3BggXm5vP5ZODAgfLSSy9JSkrovI4AEO+5aZs6gzBaNTp0xYTO2tAVFNEKbMRSQYGVe3PLqAOmyvUTpkg0CjpoAWyE58jFKy0/VZm+clul/QKSGX2E5F5JYfZb7ZNVk+ZZvl9Y95qGCth4KzxSXRp5IEqDBA5nwynE3spqqS4pD3v1TawKYuuxErwC4ovHUzOxzkobN1q7PwDxI+LEIh07djQBDA1uvPbaa/Lzzz+L1+uVzp07y4gRI+SYY44RRxKti5o5c6a5VVfXpFMBEL/sOgNPa1xoSqhIL/S0UHgoL70ksttuYlvzPhkjr306UnLyN0lOG698ulDEGca/cPULhdfVft/bxLHHOpHPvo3WYSMMujrmmrVeGdb9N3GF86I2EStBAGvRR4h/dl9JUXeQWlM5oWmv6aD1VwdtL3rrR/nxrLkRn05d9RDs+rp00VpZOeapsPeTsUteyPbmrKwg7RcQ3558MnEm8AGIjWaPDgwfPtzckp0ut9dbSUmJ5GqVXQCI0oqNaKSEat1aoqZNm5ri49G+QK32uqVofQcpWi/irhZp17Z5+3Ol5ogjrcyqw0s4GgzQVRQadIiFAz7+LCr7ZSUIEB30EZK3hkFLzLpPZonymvo5XI6EmpQEILwVGokU0Fi/vnmFwpG4Sqqq5MpliwPabuszQHLIchS7oMaNN95o6mWMGjWq0e1eeeUVk5rq+uuvj+zoAAC2l2ips1BD61xoWigtnh6rwIbdVoKwCgTJhj6CPWsYRFu/by4IOVAdKWbdt+xrGi2svgGSk2YiiFU/MVtLMXpEKitFUoOU7fN6RTaFWSawokJk3p8ZF/0TD3WYNFp1KdFyiipr/p1Nczklyx28zEJJVaVUeX3b3c8b/10b0HZT734WHmlyiaj3fsMNN5gC4NsLasybN08eeeQRghpJzJXWOqw2AImtuamztpcn1doaHQiX1rk4oXelKZ5upWqvJ2orM0KJxvOxCgTJhj5CdFRtKpOqSpcl+2qJGgapHZh2ivD/Xlh9AyCaSktFdtxRZP58kWHDGt6vAY327Zu3SoOgRuI57IO3zNfx3XqEDEJMXLRQPt/UspXdXWltwmpLFNYnp65Da2wkU10NNNQ6yBKqYG0AEl+0Umeh5VdsdMjpaPl+b+n0RUKsAtHfQQM/ep4A1KCP0DRfDbxfMp3R+yzss2CiuNtaX5uiJVZTeErKxVcZWY1DR4pL3Ln2/Tenua9pm+G7Nq9mRdtWQduzB3YKa7+svgFQ14oVIvn5zT8nuipjjz1ESko4vwjzb0aX68AWohrU+O233ySLhHAAgBjT1RtWKKKkRsKtAon1ShANbOjvEI3AD2BX9BHiiw5+J0qtgp8vfl0KX/kuosdm799Fer40XqKtuqxSvNuqInuwwyEpecGDB819TZ1pbnOzmjPVJc4E+fsCEDsa0LBiQtyGDbELaGgdSa0nCXsr9UT4b3QEst0pksvE74iFfdXy+OOPB/z8008/NWjz83g8snz5cpk/f77st99+kR8dAISgnUHtFEaK2WCJzap0VG13FMl5wJp9IX5WgSTKShAgHtBHsDdqGDSuekuFeMs9EZ1bh8sp7jYNV0v8PvMzWXfXgoj26c7LkAErLw56X/queVL+o/UTAQAA26cBDa0jqdkJgHADGlN79xW3M7arWhNJ2G83raFRN5XUJ598Ym6h+Hw+cTqdctlllzX/KAGgnvVPL5PVV73d7Ly97U7oxblFk3gjG9uISHl1tZTpmukI5aWlWXo8iSRaK0EKyzbJkYtXWrpPIJ7RR7Avu9Uw0NRSuhKjrp3vOVLcOdELTq+5ab788eiSiB6bsXu+9Pl4osRCt2mHm6/NuTYGgGRKbdWjR/D78vJq6mI0la7QIKCRuObsf5B0z8o2hcJDeXDg/tstFF6XrtAgoBGjoMapp55aG9SYPXu29OjRQw444ICg26ampkqnTp1k9OjR0rt372YeIoBkpbPROl02JCr7ri6pkNVXvSX5Ywps05lH6AtInRlTXBybM1RcItKxbc333qot4q2uMN9vra6WbdXh5/F2OFziSs2t+V5XhQQJQDy/5heZ8u3SiI/1l5EnRPzYZBDNlSBAsqCPYL2ZM2eaW/Wf/6bsvejvkpOdY/nz2G3VqtbKqJ9aqvvtwyXZaZqpHc4cIP/792LzM6tvAGD7qa1SQ5S700nz1IFEfa1TU7c7YTAnhRqKcRvUeOyxx2q/16DG4MGD5ZFHHonWcSFB+KorZUjV1/Xa9mmx40H80w62dsY06KC0k2b1TDar95kMNGBQGWG2L00R2bq1RI3OiNGlvpMnWx/Y8FSnNGx0/NW28avbpfjHJ833j6ceJk+mHRbR87RNTZUvhx9jvvd6torXs+3P760r6uH1lDdrf+70vOD7ra4wARqHk7XWQDKij2C9SZMmmVtJSYnk5uZKSl6mpORQkyAcunIj0kCHFgq3O7utvgEAANaOwYbTligiGoH45ZdfKACOsJRXlkqf6lUN2oBQtBOmnTFdRREN/mX5BDYC6UyV449v2OZ31lkiL7wQ2Tk/8ECRDz6QqBo/XmTsWJGiImv3u+qPbDnpl8A2Z0q2RFPRigel8Nvp5vtNKfuJpI+xZL8lPz8vGxZPifjxu46rdyL+VLbuXVn/+VXSbsBUyeluzbECsCf6CGhp0UxFZZUdJw2SHc7oH9mD66SDrq/9uD7SYUI/AhoAokaz4lrd31IbN1q/TyAZeYNMYrRyomRCBDW6du1q/ZEgIW2t9sqMegNyI6q9LXY8sAetc6FpoTzF5Y123PKO2TOmx5XINH3TnDn/3959gEdVZg0cP5NMGqmEgNJBLAuCLghWULChqAirICqs6GL5xIoNLIssrmBZd1EQe0V3V3HBhhQVVMRCWyxgRaToSgmQEEKSSeZ7zhsnZjIzyWRyp9yZ/+95hiTvzNx7czPM3Peee84RW9OMDatThV3uFKn6PEWSsirMz+Ubc6T50fSpqKuqotgETLI7nkXGBpDAmCMg3nS4Y4C0u6lfyI3C/UnOTDU3qyVl+MkuBQCLzJoVnsx4AAhVk2tFlJSUyHfffWfSo7U5uD/HH398U1cDIAEzNlJaNKt34sbkDeHmdCTJjsd6SovLVtcENmpfSVRaXSWqyaqqqq98qttcbmDFcjne5V3Crz7JqXnS8cx3fMZ3lJXJbpfILkfjy5fkuPdKkvh+vu/du03+98M8Sc5oIZWSJFJRLJXluwOWqQKQWJgjxDa3q0pcu4L7ENPjrUAn4V07S8Ud4gVLSelOSc7yf6GAXtjirvDuU+UqtOhDtxF0+wJtIwAkCp2nRDqg0djsjUCNunXbAcSnkIMa69evl2uvvVbmz58vVXo2JgBtLu7iXQQAYFMlSzpKyfvtq4MaVQ7ptue3+zLTb5HUlOuqf0irFEdq8I3Cq6qSpWhvdaPwjW6RgqTq3iCnH/bbY9LEJWnu4I/EkyXNbwOzN37aJHd+nyGS1fjyUy/tmSR5bt+U1dW7dsvI9Rp4LJXMrIkydt9cubTRSwcQb5gjxL5tL39hynx6+pc1pO2NfaX9zf4vUvty8PNS+nVodUP2u7iXdL7nNL/3fX3RbCletjGk5QIArKUlpyKdodGtW+Me/8UXIoce6jv+9deWbRKAeAhq/Pzzz3LMMcfItm3bpE2bNiZosXXrVjP27bffyvbt200wQ39O0Q6xAABbe+IJkYcfDu25cfExUJUkVUW+wYKSfVnmZjSxXZDOE/QKqK3/u0xyDx4V0jIc8lut7bLKSnn7l5/M9wVpaXJk83z5dGdho5fZ4YxF0qJ2gxU/ShwZMiN9iFxcVdX0FFA0yF3lMlkx4ZScmkspMTQacwR7ZGg0JqABAAAAxKKQzj1MnTrVBDRuvfVWueuuu+Tiiy+W5557Tj788ENz/4IFC+T//u//JCMjQ9566y2rtxkAQlJV5pKdC771Gms+8CBJSuM0bDA9NxKRpjHr7x6pK5N0PbuLm0nLloFLrwUr2eGQCWtWSrGrumxWqJxp+eL0k/1RWFHhE9jY7XJJ7LdotbeiH+bI/1bcKbtdwWcFhSLXmSz7976T5u9oFOYIsU9LTsVLQCM5J02ceRnR3gwASEhr14oUFFhXaqqxmRnBqttzUed2OscDAklyOIIaQ/SFdCZPgxZt27aVSZMm+b1/4MCBJphx2GGHyd/+9je55ZZbJN7NmDHD3Corw3uSAUDoKovL5Nsxc7zGjlh7LUGNMCsuFhk/3nts6lSR7GyJeVqXVUtC2bEpnjMpSSb16CkTP1/d5MAGYidD45+rZstDaTdISXp4T+Rlukvl6lWz5TKav6MRmCOER8WOEqkoT27087QPRrz2H9OARqcpA00PNgBA5GlAo27AIFQaaFi8uPp7nXu98oo1y/W3Hl2+v94bQM3rJCU1qDFEX0j/lTdu3CgnnXSSJCdXH1wnJVUfTGoZKuev7w6HHHKI9OvXT1588cWECGqMHTvW3LRhem6iXtIM2FAwTSed+c3EkeQbma8qr5TKon01P1cU7rV8++LBvn2+pavuvNMeQQ01cqTIiBHVtWSt5u+qpMY2xatP37SOsuCI9pKUWRHywXvzAKWnevr5rCss2eG3eXleapoJstTmriyXsrLdJrujPvnNWkiKk4NIVbZvpzyUMtBkxYSbrkPXddG+nZLezKIZK+Iec4Tw+G+fmZKZ1Pg8uE5TTpX9/9S7wccdvvQyceYHfl+pLzBy6GujmtQoPJBDnj3Xp1F4bZqhQUADAOKDTjf696/+XvtizJzZ+GUEyr445BCRrVt/ewwBDSB+hHSKQ/tkZGZm1vzs+V57aey///41461atZJPPvnEiu0EgLBY0/exBh+j2RwpBb+953kUL98s64a+wF8mAejBr1VXIjXE+tTrJMnNTTNXJWmAxiopfgJ9g1as8/vYBf1PlYOzvYMgpdtXyYeLr5PLMm+odz2Z7n1ya/tmckHPcyTRaQAoEgEND0qKobGYI9iDBjs23/+BuHZUX9ihAQ1/xznBcDYPz3uSM5dihgCQiKyec0VyHgcgskLK19Xm4Js2bar5uXPnzubrihUrvB735ZdfSrNmTa8LDgB2bsgJRJuWztISWg0kRcSkEke63L1pr1S4yqO9KQAawBwh9mnwonb2Bn0pACC+6PH+tm3W3qzMJAeAqGZqHHHEETJv3ryaclNaisrtdsv48eNNgKNDhw7y0EMPyeeffy4nn3yyZRsLAE2hpQp08h7JBpmuon2Sur9N6ixFUKADY61qmJ/v/76SEpG9DVT4sltKcSQbkes6tISWVVcqaVkozaLQoEO46Tq+2/aNtMzrLDlpGZJat5RVlUsqynbJzjrNy4Nh9/JWbx1zlLTM3s+SZW0r/kVO/4gMW4SOOYK90JcCAOLLrFn27AUIAKEI6dTPaaedZnplzJ8/X84880zTEHzIkCEyd+5c872H9tqYOHFiSBsGAFbT2svaVHLDhAURDWwg+BJLOv7ll/7vu+8+kUmTgmv+ZmWZpXCycyNyDQRoWSjNoohEYKO6tNU6+ecxJ8jRBa287isvWi+fvfUHGZ7V+GOOSJS38tdrxKrlNE9NkRZpaZYs31UWnw2FETnMEcLj98v/T3Kyc0JqFB7I4UsvNyWe6EsBAPGToWHHOQUARDSoMWLECBkwYIBXQ+xZs2aZTI2XX35ZCgsLpWvXriagcdxxx4W8cQBgtZbDukvB0G7i2tVwg/DajcL9ye7TzvTb8Cj9vlDWnvW8JduJppVZ0sbedsnYCFcjcn9NyK2mgYBhPcqlcG/gk/aeRuF1ZRT0kn6DX5eP/dTE0pP3gfpzhKu8lf4enowNt7tKKst2yo7yxpe82rFnmzjdLnE5fnsBRup3AaKNOUJ4pLTIlJScTIuXSYlgAIgnOpeIVEBDTwUGaswdiqoqkR11phMtWuiF0tatAwhWqZ/5qRmz6EIyWCekUz5acqpt27ZeY9o748EHHzQ3AIhlelViqA0xa0tKTZakWsupKGygNlKCimSJpXCUWYoEOzew00DAfjmtG/08R3KqpDdrKekBS1utjkgGSA/XevnceYAJzHh+Dw1o/PCf3nJq9r2hLbRWQANIJMwRqn333Xdy//33y6effmrK8eq8acOGDVH+6wAA0HSezHgrLyDTgEYr70Rs2brVvvMj2Nu+qsqgxhB9YZ91L1q0SE455ZRwrwYAEKPsXGIJ8V/a6uLf9ZHtFZWS7MwSu9HSWRoAAuwonucIX375pbzxxhty5JFHmr6DO61OxQMAIAhr14oUFFi7q+zWwxDxy1VVJbtD6KnYkF0hZOsjOsL2VrR48WJTfmrZsmWmoTgSkyMlJ6gxAPEt2BJL2ig8kJtuEhk7NjpllhB5/kpbJafkmEbhdaXmHCCHD1kiHwd5UFvpdstx739Y/dzcg+TSNu0t3PJft8ldIeWO8PWo8PQCsXOTcySmRJgjnHXWWXL22Web76+44grThxAAgEjTgIaV2Q76sV3ffC7QusrKRIqKAj9P53NAY8zZ/KNM/Hy1FLusD2rYWVJqblBjCRnUKCsrk48++kh++eUX2W+//eSYY46RtDo1xT788EO544475L333jNXJqWnh790BGJXvp+ac/7GgHhVuXOfVGwvsXSZzrwMWzb2bGqJpczM6hsSR7ClrRxJTknNKJD9fOMdAT3Q80hzIBwu4w/tJYNahu8AUjM0CGggVjBH8JZEEXAAQJyZNavhzHu32//4a6+JDB8etk1DAmZoENDwz+FICmos4YIac+fOlcsvv1y21wqhtmrVSp5++mk57bTTZNeuXeZKJG0UrsEMPZgfNWqU/OUvfwnXtgNAzPsyDI3Dk3PSpNOUgabpOYDQDG3XUc5q095kbfj8H0trLp3/sEI+DjH1OMmZKdlpmZJeX+oRECfsMkf4+uuvZeHChbJy5UpzW7dunVRWVsrkyZPl9ttvb/D5uv0zZsyQNWvWSHl5uRx44IFy4YUXyvXXXy8pKeHLygIAINo0Q4NSwogVWnIq0hka2U6O9Wwb1Pjiiy9k+PDhPinimrFx7rnnyieffCLDhg0zkwWdrAwePFjuvvtu6UY9EACwXGVRmWyYsEAKhnazZcYG4ktDaeixXLfXmZTk90BIr2ZxpreQ/Ug2lZ3lFeLUmgEWyk1JMfse9menOcLMmTNl2rRpIT33uuuuM8/VRugnnniiZGVlybvvviu33HKLvP766yZYkpHRiFQxAABsRI/1I9kbUZuR6xwAiBXMXWJTUKcJ/vGPf5jJyrHHHiv33XefHHbYYVJUVGQa4N18883m4H7btm3Spk0bee6558zPAJBo0js0l6TMFKkqqYhIYMO1q1RSCqjH5HD4NsDTMcRGGroVkxptNK99WRB5p3/0SViudJrUo6fJloG92WmO0L17d7nxxhulZ8+e0qtXLxNcef7554PKRNGAhgYytLyuPldpZor+PkuXLjWld++///4I/BYAAMQ3z7E/zcjRGIv6D5TmqdaUut9ZXianLFnAHyBeghrvv/++NG/e3FyJpF9VZmamXHrppSaFXL/qlUt6xdLBBx8c7m0GgJiUlO6UzveebrIoNOiAyNCAxrZt7O14TUPX5et6tNG8HSY3rn075If/9PYa01JWmvmBapournVwtfwXVz3Zm53mCGPGjAmp74UGP9T48eNrAhqqoKBAHn74YenXr59Mnz7dBDZy9UwMAABRyHKOdLPttWt9LywLZPBgka1bo5+ljfilAY0W9O9NOEG9VWzZskWOP/74mslKbWeeeab52rdv36hPVhB73FUVcpjr+zpjR0Vte4Bw0z4XWhZKsyis5CoslTV9H7N0mYBd0tB1Pbq+pjSaj5TC8nIZlvlnr7GF5eXSygalrHKdTsl0l0qJIyMigQ2th8vkw97ifY6gv9/y5cvN9xdccIHP/fq7tW/fXjZt2iTz5s2T888/PwpbCQCwi0hkOUeKBjSCPTbXc812OI4H4uEcbDBjCRXUKC0tldatW/u9b7/99jNf9YAeqKusrEgGVyyrM1Y9yQXilfa5oCwUkJi07fjupCyfMTvQrImx++bKjPQhEQlsuKu0D4M1aeKIjnifI6xevdp8zc/Pl86dO/t9TO/evU1QQx9LUAMAEAjNtgGEW1XFnqDG4oVlSV3JyclWLQpxpKSySu7KGOU1dkxlVdS2BwASmZVp6f6W1Zg09IaWHYU+wgkvOTVXTnV8JwP2TJJii4MaRY5MGZN5o9eYa89GcTlaheX3cCRRtyBW2HmO8MMPP5ivHTp0CPgYT9DG81i1d+9ek7mh1q9fb36ePXu2+blPnz7SsaP/fjJlZWXm5qH9SQAA8YFm2wBgraBnfHv27JGNGzeGdH99EwEAABAZ4Q4UNCYNHbFHAwEte0+SbSsmSl5FcdjXt+ntYVLsLrF8uUkp2eb3yOk81PJlI7HmCMXFxTV9QgLRBuJ1AxBbt26VYcOGeT3O8/PTTz8to0eP9rusKVOmyKRJkyzZdgBA4qLZNoBEEHRQ45VXXjE3fxwOR8D79T6X5tkBQJxzu6qk9LsdXmMZB7Yw5agQGaE2DA90Il4vmG3KhbItWmgzWt/x8nLfWro0xUMs0EBAdsezpLLc2mLP24u3inz8hU/2RjhkV5SYwIz+HmRshB9zBF+dOnUSt7vxhecmTJgg48aNq/lZAyV2Lt8FAHYVjmbe4cxyrot5BYBEEHRQI5QD86Y8DwDsRpuDf3b8415jR6y9Nmz9NbR5eDg48zJsFYgpLRV56qnq76dPF/nqq8YvI9BH1WuviQwfHvq2bd3qP2CybJnIgAH+r6gaOVIsm8zoMiPViFDX5adXMGxIAwHO9BaWLtPp1k7p3kGNuuWorKLNzrU3yKXluy3/PZBYc4Ts7GzztaSkpN5MFJWTk9Pk9aWlpZkbACAxmnlHIstZP8L27g3tuQ5H9TZqUqLOU2r7NVERAGI7qFG7RiwAIDas6ftYWJabnJMmnaYMlJbDuosd6PkknXjYnU6c9PcYMULEaUE7AF2GTj4iMSkjxR0NiWTGhDY5vzfjfDmraKukaFqUhfKbtZAUZ6qly7SzeJ8jaMaF0kbggXju8zwWAGBf8djM+777REKtbKgBDc2Ez8gQGTvW6i0DYpNDj/lTU33GEHuCmmEGamaH38yYMcPcKisr2S0AbK2yqEw2TFggBUO72SJjI9IZCeGkv4Omult1xZZmfWiQxOr0+bpIcUdDclNSJNuZIsWuiojtrH6feGeGWCHTvU9ubd9MLuh5juXLtqN4nyP07NnTfN2xY4cJ4HTu3NnnMStWrDBfe/XqZdl6mVcAQPw38ybLGYhN+WlpsnLg2dHeDAQhcpfNxbmxY8eam9a+zdVPJwCwuCSUZlBowCESdD1aTitcpbOsFMmMBDvS/UPzbkSbMylJJvXoKRM/Xx3RwIbVShzpcvemvTKsRzkZGwmgXbt20qdPH1m+fLm8+OKLctttt3ndv3TpUpOpoSWjBg0aZNl6mVcAQHwjyxkIrx3aHDNEmU6npCcnW7o9CA+CGgBgA5oxoSWhNIMiUoENOwlXRsLgwdV9MZrSKNyfY4+tXq42DOzWLfTlA3YytF1HOatNe9ldYX1Qw1VZIUe/85ZEKrBRuHeH7JfTOiLrQ3TdeuutMnToUJk6daqcfvrpNRkZmr1x5ZVXmu+vuuoqLmoCgDgVjmbeZDkD4dV74WshP3dS957yx84HWro9CA+CGgBgE9rjQktCaQZFOJqOh6tHh50zErRfaziyHLREJ9kTSNSMjRZhaYScJn9tl2SyKDToANS1atWqmiCE+v77783XRx99VN54442a8Tlz5kjr1r8FrIYMGSLXXHONPPjgg3L00UfLSSedJJmZmfLOO+/Irl275LjjjpPJkyezwwEgTkWimXc43XRT6P0wtFE4AMQqghoAYLOMDTuUhAKASNM+F1oWSrMorFRYskMGrVhn6TIReVoi9pNPPvEZ37x5s7l5lPkpVzBt2jQTvNBeF8uWLZOKigrp0qWLjB8/Xq6//npJrdNMsqnoqQEA8d2MvG52eUqKSF6e/8cXF4vs29fwcgsLRfr1q/7eE4T54AOR/HyRTKaPiCPlVZVBjSH+EdQAAACwEXeVS3aWbJcKt7vRz01KTpW01BzJ0dlzHZXlRVJUVirl7irJb9bClj0jdJspCwV/+vfvL+4Q/s94DB8+3NwigZ4aABCfZs3y3wfwhBNElizx/5zx40Uefrhx69m2rfprJed5EYdKNDIYxBjiH0ENAAAAmyj6YY5sWzFRxjkvkM+cXUJaxumt28nDvY/xGf/5/cvk1qKD5IOUwyTTvU9ubd/MZD8AAACgafScq7+ABgDrrTh1cJMahcMe+EsBQBhpr4rknHRJSk32uc9d5RZX4d5GL9OZl2HKUAGIPUnJzYIaCzVDQwMaVRXFYT+C074U2p9CyznZMWMDAAAglmjJqUgGNHJzqxuSA4koPD38EGtCmhJv3LhRsrKyJF+L89Vj586dUlxcLB06dAh1+wDA1rT5dtc5F0rucR197tOAxspu0xq9zOScNOk0ZaBpHA4gtmSmZcq1B3fzGavcVyg7K8qlMqSSUemSkZYlGZUl4my2v4jsL46qDLHajn17TZZG7cCG9qegnBOCxRwBAIDo04DG9OkiXHAOIJ6FFNTo3LmzjB49Wp588sl6H3fzzTfL008/LS5qmyUshzMrqDEAwassKpMNExZIwdBuZGwAFjdqbDqnXJh/qPlOr47zTCbXv3qKXJI8Wn5M1qBE443s1EUm9+glHc9YWL2Wt/8lUmrdVgNWYI5gDRqFA0A0juFEtm8Pbqy21NTqIII/mplRXh54OWvXihQUVDcKD2TqVJE775RGqX0MCiBxJKVkBzUWL0J6m9Mme8E22mtKQz7YX15aelBjQDzQslCaRaFBh3DTdbh2lUpKQWbY1wUkUqPGcFwlN3Kk9ct+7Kj+TWoU7s9+R98v8tEaC7YOiYo5gjVoFA4A0T2Gq62bdwKuj3PPFXn5Zf/3jRkjMnt24OdqQKNly/qXn51dfQOAhjiSnEGNxYuw/mZaeipVw9ZIWEkOR1BjQDzQPhdaFkqzKCIR2ID96VVUX3zhO9bUq8/0ZDofv9Fv1KjL1/WMGGH9svOzQ8v4qI8jlRkzIoM5AgAgFDTbBgCENahRVVUlX375pbz77rv00wCQULTPhZaF0iwKD20U7o8zv5kcsfbaoJZbVV4pO+d/a75PKahuOpycTfMru9O08EOrKxV5+fJLke5NaJmyeLFI//5N2rS4FslGjbqecJRHiJSd5RXiLPstSJuS5JCcFP8XrOxxVUhZZVWDy8xNSRFnUpKl2wl7YI4AALBTs+1wopE3AEQoqJGcnOz187PPPmtuDfnTn/4U2pYBgI0zNoIpC+VIcjSqfNT+lxwhkeQqLA1LiS7dP0Ci6XjGIpndxEbh0XD6R594/XxUi5byr2P9R8zuWfe5zNrwfYPLzHamyKQePWVou46WbSeihzkCAACNQyNvAIhgUKN2bwyHw1Fvr4yUlBRp166dnHPOOTJp0qSmbyUAIOLW9H3M8mVqzxEt0aUZLUAs8TRqbCptAumv9nJyer4UxGFLqcryInFXVZjv3a59QT2n2FUhEz9fLWe1aU/GRhxgjmA9GoUDQOSP4QIdxzW0/PpKvj7xhMjDD/uO08gbACIY1NB0cY+kpCQZPXq0PPXUUxZsAuKZu8olHSv/5zMGIDFprxHtOaIlusjYQGMnmeFcVjCNGuNdrtMpme5SKXFkBP2crZ+Mlz2b3jLfF6UNEUk9NujAxu6KCmmRRhk9u2OOYD0ahQOIB03tERcrx3BNWb5mZABApLj9nG+N53OwIfXUmDhxovTs2dP6rUHcKS/bLVeVza0zNkBE2kdtmwD4LwulWRSRaHCu69CeI40pvZVoDjlEZOvW0J+vEyi9FmHHDu/xFi30wgSxJX/ZD7CW9rkYu2+uzEgf0qjARqiqD7AJasQT5ggAADVrlshVV9mv/0VKisgJJ/iOAQiNq6rKXMhkpV3l5fw5AqiqKA4wtl9c7rOQgxpAMPZUVslNza7wGnsziCaiACJLsya0LJRmUUQisIGGG4g39YqzbdtEWrXyHtNAidVXsulVeHqcmpER+Iq6xraRsDIrA8FLTs2VUx3fyYA9k6S4VlAjs81Jst/R99Y0Cg/kT2VvyajyRX7vK3JkypjMG73GKiuKRDIIbsYT5ggAkNiZFJ7ljholtpSXJ7JkSbS3AogPczb/aErOaoY2EDNBDQBA/NE+F1oWSrMorG44Ho7+HIidq/D++lctl+L/MV27xn6QQjNbtLZxonMkOaVl70mybcVEyat1lU9WUnBloppJmTRzExQFACDW2TWToi6O4YDYzdAgoIGYDWps3LhRpkyZIm+//bZs2bJFysr8T2K1qbhLQ/UAgJBVbC+Rld2meY0dsfZay0s4acYGZaEQDP1oD/dkWM+jBzi8sHQyPH16dXYMRHI6D5XsjmdJZflvf1hHUuC6C62Omiot+0xucNdt37ND5KM1XmP1LTdUFa5yKdz7W921Fr9273SIwzRr9yirrJQ9vx6fVrn2SVXl3oDL3LFnm2RX7THf73FkiNuRbPl2xxPmCAAQ2yJxDBcJHMMBsUtLTkUyQyPbSZ24RBTSFP6rr76S4447Tnbt2iXuBmpKNHQ/AACwHy1XUHsyrIGB886ztrzVzTeLXH21hJVmaBDQ8M3YcKa3CGr/JafmBPW49KRsOSjrB6+x1CCfG6wXV78id2/aKyWO9JqxhcU3V29nWr4ccM7KmvG3f/lJrlr5cfALT8oyX5q5S6WT6xcR6WvlpscN5ggAYL9juEj46Sfrj7c4hgOQmeyUW7r2kJbpvx3/I3GE9LFy2223yc6dO2XgwIEyadIk6dq1q2RnZ1u/dQAAIOZpQOOrr6qDGlbSpuZW9wBBdOSlpsrCAQPDtnzN0Kgb0AiHvY4M2ZC8n1RUUhvYH+YI1pgxY4a5VVZWWrREAIhuNkXr1vwFgES3qP9AaZ7acEnbxshNSRGnThqRkEIKarz33nvSoUMHefXVVyX117R+AAAQ2/z1tsjJqS7zFKjZeDDL0oBGIOvWNb5RuEezZqE9D4lHS06FO6BRO7BRVLpLpHmHiKzPTpgjWGPs2LHmVlRUJLl6RhAAwmztWpGCAuuXG65sirpNzvWYMTNAVd7CQpFQYsRcWANYSwMawfTpA4IV0sfL3r175cQTTySgAQCAjXTr5jv20ksiw4b5f3yrVk1fZzgmyABiE3MEALAnPV6zy0l8f03OJ04UufNO/4/v1686aNNYV15Z/XXqVBEKkwBAnAQ1DjjgACkpKbF+awAAAAALzOvdVTo3X1HTKLy2k/drIytOHRxUo/Bthd/L/z6+wXyf664+/s11/pu/kR/MEQAA8dLk/OGHq79qsISgBgDESVBj1KhRctddd8m2bdukpV3C+QAAJBBN99eqJZFqBKnr0nUCDXHt29HoneRwJEtyWp7f+6pce8VdtstnPD+zRcCG52nJyeZW/YOmwQcu8VNVtlPSqrZ6jSU5vIMkqMYcAQAQT03OOb4FgDgLatxwww3yzjvvyOmnny7PPPOMdO/e3fotAwAAIdP6xdqYMRJXs3maQFpVM1lrH2upgNo++EAkP9+a5SPyqir2yPb/3mO+3/3trEY/PzX3IOl4xkK/9+1c+5hs+vIJkayJTd5ONA1zBACwt6oqkR2Nv/YgqF5tdmP18S0Aa5RXVcmqQu9mkb3yCySVhuEJJ6S351NPPVUqKipk1apV8vvf/940Dddbkp8XkMPhMAGQWPfdd9/J/fffL59++ql8/vnn0rZtW9mwYUO0NwsAgJCNHCkyYoR3I0V/k89AtnpfnB6xJpDazLFu7eNQGjwiduwp3ysP/fiL+X532hDzdVj5e5Iu5Q0+1yFuCZQXvK+yUnZWJkmRI0B3UAskpTWXU7Pv9Rr7OI20pESZIwBAItGARlN6qtXXqy1c9JixQ4fA9+uFMaEcR4aryTmApimuqJDzP3rPa0zLytKEPPGE9Ba9ZMmSmu+rqqrMyf9AAQCdsNjBl19+KW+88YYceeSR4na7ZWd9Z4AAIAa4CkslOTNVkjJS/N5fsWOviNsd0rJ1mbpsv+vdWSruyqqgl1VRGLhWPcJPJ2OhVoqkwiSsUp6UKbPSTvEaez312KCem1u1R16Vf/q976WNP8jEza1FMm/0uS85pZ6IXQyqcJVL4d4mXB5bj+KiYomEeJwjAABiv8l5Zj3XNpDpCwDxKaSgxuLFiyXenHXWWXL22Web76+44gqZP39+tDcJAOq1pu9j0mnKqbL/n3oHuP9Rce0oDWkvtr2xr7S/+Xi/9305+Hkp/do73RMA6uNIcibEOkP14upX5O5Ne6XEkR6W5VftjUxwOR7nCNEwY8YMc6skRQ0AAADwK6TZ3gknnCDxxl9aPAAgPCq2loRluc68DHE4eT8HYk1uSopkO1Ok2FURUvmndgNeatRzdF26TitUaIHxIMZCXr6rPKwBjUiKxzlCNIwdO9bcioqKJFeLugOAhcrLgxsDACvtLC/zGdPjdaef87GuqirZXVER9HKQmGL6Eravv/5aFi5cKCtXrjS3devWmSuWJk+eLLfffnuDz3/55ZfNVU5r1qyR8vJyOfDAA+XCCy+U66+/XlIsmuiifg5nZlBjABo+WZ+ckyaVRfHxAf5Z/yfCslzdR52mDJSWw7pbuly3q0pcu0LLegkWARnEM52sTOrRUyZ+vrrRgQ0tU5SclteogIauy98EKRR7XJVBjYVKS07FQ0ADAGAPRUX+x9q2FWnRIvieasH0atu2rfHLyMoSycjwf992ksUB2zplyQKfsQX9T5WDs30v4FhfUiwDlyyM0JbFj6SUrKDG4kWTghrae+Ktt96SZcuWybZt2+Soo46SSy65xNynP2tfii5dukhycnJIy585c6ZMmzYtpOded9115rlOp1NOPPFEycrKknfffVduueUWef31102wJCPQJyUsk5OWEdQYgPpp9oGerN8wYUHcBDbCQfeN7qOCod0sy9jY9vIXEdnv4QrIALFiaLuOclab9gGvugqkvs4Lwzt0ljPatA/qii9ETrjnCACA8NCPz6b2VNNARlOajU+frhlr/u/r1i305QKIHM20QOQ5klKCGpNED2po9sN5550n3377rZm46FV0FRUVNROWRYsWyahRo2Tu3LmmX0UounfvLjfeeKP07NlTevXqJXfffbc8//zzDT5P16kBDQ1kvPfee+a5avv27SbAsXTpUrnjjjvk/vvvD2m7EDynnyaQ/sYANExPduvJ+toZA4GaeavDl17epEbhgRz62qhGNQp3V7rlv8c8IlV7IpPXrsEH3UcpBZmWZGhEKpAUjoAMEGs02NAiLc2y5aUnJ5tbOLmryoMas9K83l0lP7OFpY3CD5LIiMQcAQAAALErlJKzobKy7CwSIKixefNmOfnkk2XHjh0yaNAg6d+/v9x8881ejxkyZIgp8fTqq6+GPGEZM2ZMSH0vNPihxo8fXxPQUAUFBfLwww9Lv379ZPr06SawQZ1aAHaiJ7uDPVmf0qJZWLbB2bzx2Vad7znNllkmGhyJ5DZbGZABYA23y7fJ9u7in+SXdGv+nxaW7PAZ04DGfjmtxSoZEpn3lEjNEQAAsat5cxFtB7R7t/XLLijwLkGl69H1AUhMVpedRQIENTRooJOVf/zjH3LNNdeYsboTlmbNmsnhhx8uy5cvl0jasmVLzTovuOACn/v79u0r7du3l02bNsm8efPk/PPPj+j2AUAi8pdlYhVXYams6fuY5csFgEAu++J7KU76hR1kozkCANiRyyWyc6e1yywslLByOqtLSF11VXgCG7UDGroeXR+A2PfysQOkc1a211igDIsDMrNlxamDG1wmZWcTW0hv//Pnz5ff/e53NZOVQDp16iSLFy+WSFq9erX5mp+fL507d/b7mN69e5ughj6WoAYAxF6WSSw7fOll4sy3pjcQARnEygmOuvSqR04SIJ7mCABgN7NmhT8wEC4jR4qMGBHa8Yo2Cg9k3brfqutyrALYS15qatBlaK0uWYv4FFJQ46effpKzzz67wcdpDd2ioiKJpB9++MF87dChQ8DHaKZG7ceqvXv3mswNtX79evPz7Nmzzc99+vSRjh07+l1WWVmZuXlE+veNdW53leRW7fEZAwC70oBGPARn4F9JiR4ThLZ3ItEyKlInODxXP+pJiUSXl54X0fVluvdJfjPr+mlEUizPEQDAThca6HJHjRJb04sjmtp03F/5KQCAf/7Ot8bzOdiQghqZmZmybdu2Bh+nQQPNmIik4uLimm0MRBuIq9qTqa1bt8qwYcO8Huf5+emnn5bRo0f7XdaUKVNk0qRJlmx7PKoo2yX3lT5aZ+xIEWkbtW0CEFmu3fvk64uqg8Qehzx7rjhz0/lTIObcd59IqB/rOtFeu1bCRk9wROqKTV2Hrkuvskz0jI1kZ0pEAxq3tm8mKc5UsaNYniMAgNXsnElRV15k4/cAgDCoKt/tfyzD4ghzjAhpmtqjRw9ZuXKlbN++3TTf9ufHH3+UNWvWyCmnnCJ2oGnwbk8eYyNMmDBBxo0bV/OzBko8mSAQKXZVymWZN3jtijddlewaIIG4KyqleNlGnzEAjaNXgkbyxImuS9dp9VWW8eBffY6QFlnW7xjN0LBrQCNe5wgAEO0LDSIh0S9gABKVq6pKdldUWL7cXeXlli8TqCukj66RI0fK+++/L2PGjJEXX3zRNPyrrby8XK688kqpqKgwj42k7OzqpjMlWj8igD17qssh5eTkNHl9aWlp5gYAiB3aqyKWlhNNbldVWBq01+bMyzA9U4BEoQGN/XJaR3szYk4szxHsZMaMGeZWWckFAECsivSFBuqnn6wJPmzfLtKtmxVbBMDO5mz+USZ+vlqKXdYHNYBICOkj8eKLL5YXXnhBXnvtNdMM8LTTTjPjetWVNgbU8Y0bN8rJJ58s5513ntXb3GDGhdJG4IF47vM8FgAQX9b0fSzamxATtr38hWyYsEAqi37r/RQOyTlp0mnKQGk5rLsly0tPF7nySt8x+NJyV1bVl+YkB5oqlucIdjJ27Fhz0wzwXG1wAyChefpctSaWDsDCDI1IBzSyIljSFYkhpKBGcnKyvP7663L55ZfLv/71L3niiSfM+OrVq81NnXPOOaYXRaT17NnTfN2xY4ep19u5c2efx6xYscJ87dWrV8S3DwCASGVoRCKgoXQduq6Cod0sydjQpMsZMyRsCgtF+vXzHvvgAxEt8X/TTXpCMfRG4SFUsmwSDWhQHgqxIpbnCABgpwsNamvenPJQAKylJaciGdDIdqZIAVVuYLGQkxe12bZeiXXHHXfIvHnzZP369VJVVWX6SZx++uny+9//XqKhXbt20qdPH1m+fLlJe7/tttu87l+6dKnJ1NCSUYMGDbJsvaSJA0B0aOkjzRSIxMl7XY+uzw605FQk9omHrkvXmVKQKbFOK7rUbejtqfKSmVl9C9VG7/YxRqn9q5gBtp8jAEjs/hdaLspKmt1YFxcaAID/gMakHj3FmUS5YliryRUZNbVcb7Hk1ltvlaFDh8rUqVPN5MmTkaHZG1rHV1111VWWpnOTJg4A0aGZAVr6KNxZCZ4SS/SOQH38tfSqp80XELdicY4AIPHMmhVfDb0BIFwW9R8ozVOt7xmcm5JCQAOxE9TQtPIzzjhDksIcZVu1alVNEEJ9//335uujjz4qb7zxRs34nDlzpHWtApNDhgwxdXsffPBBOfroo+Wkk06SzMxMeeedd2TXrl1y3HHHyeTJk8O67QCAyNFeDlr6KJwNseOhGfbhSy8TZ36GZU3U6V0CIBpzBAAINkODgAYABEcDGi0oEYV4D2qcffbZJogwcuRIGT16tHTt2tX6LRMxzfE++eQTn/HNmzebm0dZme+VudOmTTPBCy0LtWzZMqmoqJAuXbrI+PHj5frrr5fU1NSwbDMAIDo04GCH0kfRpAEN9hHQOLlOpzxW8rc6Y/3ZjVGcIwBAMLTkVKQyNLQIhPa+sAPdzi++8B0DACDugxpazkmzKO677z65//775aijjpKLL75YzjvvPMnJybFs4/r37y/uJnTcHD58uLkBAAAAodD6v52qfvEZQ/TmCAAQSzSgMX26fZp563Yeemi0twJAPKtyu2VnebnXWPPUVElyOKK2TYg/IX3srlixQr744gt56qmnTCPAjz/+2GRUXHfddXLOOeeYK7NOPPFE67cWAADEvV27tJSk99jcuSJ5eWJLhYUi27aFpykpEEuYIwCIdWvXVjf0tpJmOdgloAEAkaABjd4LX/MaW3HqYMpbwVIhf/R2795dHnjgAbn33ntNf4unn35a3nrrLZk1a5YJdHTo0MFcmXXRRRdJx44drd1qAAAQtyoqRN57z3fMrvr2jfYWoCmS05pL5z+s8BmDf8wRAMQyDWi0bBntrQAAAE3V5Nx5p9NpGnO/+uqrsmXLFpNq3q1bN/nxxx9l0qRJcuCBB0oi0N4d+nv36dMn2psCAAAAizgcSeJMb+F10zHUjzkCgERpRq7ZmA3dAtH2oA09V9cBAAC8WToja9mypYwbN04+/fRTufbaa00/jKqqKkkEY8eOlbVr18ry5cujvSkAACBKIlkiy05NSZHYEnmOACB+zZpVnfnRqlXDt0Bee63h5+o6dF0AAOA3llZ+1N4aWobqpZdekqKiIjOWn59v5SoAAABiVqRqamdni9x9t8jOncE/R/s0p6X5v0+vBKVnh3+uqipZX1LsNXZAZjbNwhuBOQKAeKPZE1ddJbJ7d/jXpevQdY0YYc1xhm771197jx1yCH1BAAD20uSPxJ9//lmee+45eeaZZ+Sbb74xV14lJSXJqaeeanpqaGkqJC6Hs1lQYwDilyM1WfLP+p3PGJAorGxK+vLLIhMmiOi1I2PHVt+C9dJLIsOG+b+vvqtIE93uigoZuGSh1xiNDhvGHAGIL3oivDGB9Hhvtq37IhIBDQ9d17ffVh9PtGghkuSn5kZ5eXDbpBcxdO/uPbZ1K71GAMDukpyZQY3Fi5AOG8rLy2Xu3LkmkLFo0SKTPq7BjC5dusjo0aPNrW3bttZvLWwnOzUjqDEA8cuZky4HP/mHsK/H7aoS167Seh/jSE4SZ3P/70GVJeVSVRq4G7UzL0McTuroI3pNSfWE0q23Vgc0IoU63mgM5gjW9erTW2VlJS9AxAQtfRSJrIQHHhAZOdK65cVbBmK3bvUHIJYtExkwIOKbBQCIEY7k1KDGEjqo0bp1a9m1a5cJZDRr1kzOPfdcueSSS+T444+3fgthayl+LiHxNwYATbHt5S9kw4QFUllUVu/jMg4pkMM/uMzvfT/N+Fi23L+03ud3/MvJUnDuod6DDoektPCfgaZBEg2WBFJRuLfe9QHRvCpU7dqlx32J/XdwV5YHGAtQyyuBMUewrlef3rScb642zwESpMzSuHHVt0TKzBw8uDpI4S8g4wliAEAk7Cyvfy7t0SJAPduyykrZ8+sVUcEuC4h4UGPnzp1yzDHHmEDGeeedJ1lZWU3aCAAAmpKhEUxAwwo//vltc6vN2SJDeq+73u/jt764RjZM8C5bA9hJYWF1v41ELjFS6doTYCw7KtsTy5gjAPEnGgH1RMrM1HOD/p6jn5Ua04zEvtf16PoAJLZTliwI6nE/nOW/nu3bv/wkV6382OKtAgILaUq5bt06OUQ7SaEGaeIAEB1acioSAY1IBmkQXunpIlde6TsW67SGtudqTk+gIVBd7UCNwgPR5X7zjUjfvt7jdX+26uTJ9OnWlhhBbGCOACCW6eegXkQcSrDe4bCuP1YwNPivn5XhzpLxfCbb6WIDING4qqpMjzcrbd9Xf9lmwA5C+ugioOGLNHEAaFjF9pKQdpMjJVmcuf7POlfuCVzeyY5cRfskdX+uAA+n7Gy9GEFsR4MXnqs5rejRUZsuL1K1x/XkjJ6kGTGCkyjxhjkCkBhCKbNUX7+OSJSc0pP3J54o0qZNaM/X39fqzMWGaPBfPyvrNmjXCxr8OfZY/6Ws4il7Ekg0czb/KBM/Xy3FLmuDGpGW7UyR3JSUaG8G4kxQH1/PPfecHHjggXKsfkrWobVeU1NTJd3PJY7//Oc/Zfny5fKAdvwCACS8Ha+uC6kcU/axHeTQuf4v695412KfscOXXibO/Ay/jcIDaTP2aNn/kiN8xrfP/tKn5BRQX3DA7bbn/snLi9y6NLChJ2msDs4gspgjAIkplDJLgVx/vcjVV/ueuLeanry/6y6ROXOsWZ5W4NYMh7pjVtOAQ7D7OjWVz1Ug3jI04iWgMalHT3HSXxfRCGqMHj3a3PwFNZo3b27ue/LJJ33uW7hwoZnsENRIXK59hfLSnkl1xv4tkpPgXUeBBKKZB+uvnxfRdWpAI6Ugs1HPSc5MNbe6Wl9xpOw/prcpcxWwHkEArS44XFqc3TXg/aXfF8ras56XSGlKY3LdN0kZsXV1jZ4YLw8xUUcvFIrkSXw74EpNNBZzBABWff7YLcidkaHVGqK9FQDimZacimRA463jT5GW6b4XBgbr5P3ayIpTB/uMa4YGAY3IqCzb6XfMmR4gxc/mmpxo6Ha7zQ3wZ7erUoZnTfQae9NVKW3ZXUDCSG6WKrvf+yFsfS9SWjTzXl9OmjjzQj8Y88fhTGp0kERpEKC+QEBTggyh+Kzv4yE/t9OUU2X/P/WWWDJmjMjs2aE994QTRJYssXqL4o9VJUa0tFW3blZsEeyCOQIAAEDsS0tKkjPatJdOWdmSnpwc+nKSk80NiBSqJwIAwkoDAp2mDJQNExaEvaG3BjR0XbpOxIdzz60OQMD+JUYiQRvAWl3CZGdorYAAADHmpptCz66oJzEXACJmUf+B0jw1zdJlkkkBuyKoAQAIu5bDukvB0G6BSzgF0Sg8kA53DJB2N/Uz32uGhp0CGin5zYIai0WunaV+x0LJaPFX91obemp5KaVNpVFdamvZMu89oZVBtYY2qpvN6mvF87qxSn4bkZxH2MMAYHeZmdU3ALArDWi0SLM2qAHYFUENAEBEhFrCqSHJWWnmhsjyV3rSqnKUWltbm28SzPCmJ+sHDPAe27rVXpkU4czQCEdAI5AqV2TWAwAAAADwRVADAIAEcdjSS0POBPHXRD2cRo4UGTFCpKSe0j9PPCHy8MOhNwoPh7Iykdde8x4bPFiEC6rCS0tORSqgoXYXibTOj9z6AACNV1go0q86mbfGBx+I5PP+DQCA7RHUsMiMGTPMrbKy0qpFAgBgKQ1ohCNbJlw0Y0PLUAVS333RUlQkMny4PbMpsrKqM2TqjgEAYEc6NV+71ncMAAAkUFDju+++k+eee65R9+l4ohg7dqy5FRUVSW4snmUBACSUqnJXUGOAR0ZG6A1UY5GeyNJG5031/WaR8zf7v6/K7Zad2uxEy69VuaSyoqhRy85yOiUtqboPUHJKtjiS7dcghTkCAAAAgJgNanz44YfmVpfD4Qh4n9bW1vsBAEBkVe4pD2oMiFca0LAiQ6Zsn1Pu+8a7U3hWcn/zVQMavRfWqTfWCLeXPi/Huz4337c96Z/SbL+jxW6YIwAAANhLYVmZnLJkvtfYov6nST41cxFvQY0OHToQnAAAwGJkUwCxLyUpSQ6vXF/z84tvXyj9+lZnVyQ65gj1Z7Bcc8018v7770t6eroMHz5c7rvvPsnMtE8JQCCQ7dsb3jepqYHLRGoPpF+T3Go0b15ddhIAEH5uDWzUeSPWMcBOgjps2LBhQ/i3BFHnqqqS3RUVli6zqIJSJwAQCNkUSGTBnBSLxrLqcjhzpagkW3Iyi83Psxb+Ua68p0X4VmgjzBH82717t5x44onSpk0befnll6WwsFDGjRsnv/zyi7zyyisR/isB1uvWreHHnHuuyMsv+79vzBiR2bN9xx94QGTkyMDLTEkRycvzf19xsci+fZH7bACAaNhZXlbzfbLDIXkaQfZjr8slpfU0Eaq9HMCuuBYCxpzNP8rEz1dLscvaoEZ21R6RJLqMAgCAxp8UiwWOJKf85dlJ8ueLJtYENoD6PProo7Jt2zZZsWKFtGrVyoxlZGTIOeecIytXrpQjjjiCHQjbcEXwGrVx46pvgZxwgsiSJf7vGz9e5OGHw7ZpABATTlmyoOb7g7JyZOGAgX4f99j3X8u0b9ZGcMuAyCOoAZOhEY6ABgAAQDx47cOh8uZHZ0lO5m4pKvmtnkrz1FRZcergJjQK7+/VKBzxYd68eSZTwxPQUIMHD5asrCx54403CGrAVnbtivYWAEDinqsDEBhBDZiSU5EMaGRTLBUAgJijZTq6dvUeW7euuuF2U2mtdK2trnXUI0HXpeu0UmWVU3YWe5edSnI4pEVNQ8U0kYzG90vYUVbm02xcAyW/LRdW+Prrr2XhwoUmU0Jv69atk8rKSpk8ebLcfvvtDT5fy0jNmDFD1qxZI+Xl5XLggQfKhRdeKNdff72kaE2cWtauXSt//OMfvcacTqccfPDBZr0AoiMcnw0AEC6RPU+XIrl1jmeAWEdQA5F/0Tkc7HUAAGKM2+1bf1zHrKDXM0yfLnLVVeEPbOhJK12Xna+h2Fb8i7jK6p9YZiYnS3pysvk+KSVLkpJ/C4IUlpXVNHt0lRVKcRFls2bOnCnTpk0L6e9x3XXXmedqYEIzMDTj4t1335VbbrlFXn/9dRMs0fJSHjt37pQ8P4X/mzdvbvprAHa3dKnIwQfX/5gAZd6NJ574rVTUrFn1l5yySjx8NgBAuAIak3r0FOev2cOAXfCRDr8W9R8ozVObfoXg1t0bZdAn//Uaczh/m/QBAIDEoM1fR4zQE77hXY9ehWunk1Zut29pgdM/+qTB5121b44MrvjIfL9/3+mS3eGMmvtOWTJfCsvLa36u2rtXEl337t3lxhtvlJ49e0qvXr3k7rvvlueff77B582dO9cENDSQ8d5775nnqu3bt5sAx9KlS+WOO+6Q+++/PwK/BRB5/i7c3W8/kZYtmxZg8Lj+epGrrw7us6G+i4inThW58874+WwAAH9ePnaAdM7KrmkUHshlXQ6RUZ0ODGonaoYGAY344PBzvjWez8HysW4RTUfXm6axxwMNaFhR9iA9K09uL/WeMGan9W/ycgEAQPjVzdyorVkzkcwA1Zb0YvRAh0ScWPJWWU7B+kgYM2aM189JQV6NqMEPNX78+JqAhiooKJCHH35Y+vXrJ9OnTzeBjdxfz9RqRsYuP40INIPjoIMOauJvAkRW7QBEfWNNocGGpgRJVHZ29Q0A4lleampQ5+qaOZ3mhsSSlJwe1Fi84BVukbFjx5pbUVFRzYQGYppfHu/63GtXeBpiAgB8Ve7cJxXbSyxZDtBU3boFvm/ixMBXxfbrp30F6i8BopkbEMlv1kIy3fukxBG/Ew672rJliyxfvtx8f8EFF/jc37dvX2nfvr1s2rTJNAc///zzzXjXrl19emfohU/ffPONaRgOAAAAoGkIagAAEEO+PKvhciixICk9JagxoC7tqaG9NbQUFReQiaQ4U+XW9s3k7k17CWzEmNWrV5uv+fn50rlzZ7+P6d27twlq6GM9QY1BgwbJpEmTZNu2bdLy18vPtffGnj175IwzfisTBgAAACA0BDUAAECjJTdLCWoM1tGyTV984Ttm5fI1iyLcjbyVrkPrpze13Ei8uKDnOTKsR7kU7t0R9HMyk0/wahRe26L+p/k0CqfoUeP98MMP5muHDh0CPkYzNWo/Vl1++eXy0EMPydlnn23KUmnZqXHjxpmfNQgSSFlZmbl5aAY4AAAAAF8ENQAAiBJnbkZcrw/etG9zUwIGGnQ49NDw7VXNmtCyUJpFEYnABnwzNvbLaW3JbsmvXWs5rbVkSIDmJ6hXcXGx+ZoZqHmMiGkgXjcAkZeXJ++++65cc801cu6550p6eroMGzaswWbiU6ZMMRkeQChcruCabVvZWwkAACBaCGoAABAljmRHXK8vEbVoIbJ1q++YWrZMZMCA0JetWRrhDGoo7XOhZaGCOTGmjcID+eAD70bhelKsvv4cQLw5+OCDZf78+Y16zoQJE0xGh4cGSjyZIEB9Zs0iIA0AABILQQ2EVWXZLr9jzvRfz/AAALwctvRSScmv52xxkCoK98pnfR9n70ZYUpL9SyppxkZTf4f8/IYfoxfBB1rPrl0iFRWhZ7TQqwNWyM7ONl9LSkoCPkb7ZKicnJwmry8tLc3cgMZmaEQ6w05f9nb/rAOAWJealBzUGJCo52AJaiCsCsvL5dTse73GlpWXizXFFQAg/mhAI6Wg6aVinPnN5Ii11/qMAbFi/HiRl17yf9+QISLvvRfacrUviJbR0qwToCk6depkvmoj8EA893keC0SaZtZFumRgenpk1wcAiSjTz1U6/saA33i66jU0Fh+Sor0BAADAeo4khwmO1L7pGBDv9OSeXrWsVy8DTdGzZ0/zdceOHV6NwGtbsWKF+dqrVy/LdvaMGTOkW7du0qdPH8uWCViJc2oAACDaCPEBABAlds6mcO3a53fMiiyTeHXssb79NhpbVsmudNs1g6L21cThKF1y7rm/fa8Vg3SdQKjatWtnAgvLly+XF198UW677Tav+5cuXWoyNbRk1KBBgyzb0WPHjjU37amRy4sYIVi7VqSgwJpdR08kAAAQiwhqAAAQ5WwKO3JXVQU1ht+kpiZuDXK9qldLQoW77vsJJ1SvA7DKrbfeKkOHDpWpU6fK6aefXpORodkbV155pfn+qquuIviAmKIBjUT9vAEAAImBoAYAAADCTntcjBhRXf+9oZrsc+eG3igc8GfVqlU1QQj1/fffm6+PPvqovPHGGzXjc+bMkdatf+v+NmTIELnmmmvkwQcflKOPPlpOOukkyczMlHfeeUd27dolxx13nEyePJmdDgAAAEQQQQ0La9/qrbKy0qpFAgAAxF3GRjBXD+flRWJrkEi0lNMnn3ziM75582Zz8ygrK/N5zLRp00zwQo/1ly1bJhUVFdKlSxcZP368XH/99ZKqaVgWYl4BAAAA1I+ghkWofQsAiCVV5ZVSvPy3E3Uqu087SUpNjto2AUC09O/fX9xud8jPHz58uLlFAvMKAADsw1VVJbvDkGK8qWSPz1hxRYW0SEuzfF2AHRHUgF87y32vUqvNISL5Ad5I91VWSonLVb0cF5krABANlUX7ZN3QF7zGtCl5kk17eAAAgOCbewejWTORzACHBYWFIlqEINhlAUAimrP5R5n4+WopdkWmbqrLTQ9DwIOgBvw6ZcmCevdMfmqqrBx4tt/7Xtr4g0z8YjV7FgAaQDYFAACwWrduwT1u4kSRO+/0f1+/fiJr11q6WQAQdxkakQxoAPBGUAPmjRgAEHlkUwDW2L1bZMwY77EnnhDJzWUPA4hvvybIAwAiTEtORTqgke1Miej6gFhGUAMRfRPOdJdKTgovOwAAYJ3ycpHZs73HHn6YPQx7olE4GmPXrsjuLw0WN28e2XUCAKo5k5LYFcCvOLuMiAY0xu6bK07Hsex1AAAQVg3VgU9JEcnL839fcbHIvn3BLQewGo3CEas0oDF9uoiTswgA4NfLxw6QvNRUv/elOJIkSw9A/dhTUSEVdfpl7Covl2HLFrOngQA4HEHAN+LOWdn1NgoPZHiHznJGm/bm+/Ki9bL57WHm+2x3qSQLpa4AoD6uwtKA9znzMsTh9L06x+2qEteu0qCXAySChmrKn3CCyJIl/u8bP55MDwD24PAzMVu6VOTgg4NrFB7IBx9UNwqvTTM0CGgAQGD1BSFOb91OHu59jN/77vh8lbz182Z2LdAIBDXgl0aWW6SlhbR30pOTzU2VpabIHncJexkAgrSm72MB7zvs/Uul2e9a+oyXfrdDPjv+cfYxECHUsAcQK1q08B3TgEZL38OFRsnPb9rzASDe0Z8WiC6KsUHSk6oDEA2NhcKRnB7UGAAAQKj06uFINgWPdA17AAAAxJZoNAnPDVC+CkjEc7BkakAy/OQQ+xsLRZIzI6gxAEhEWk4qOSdNKovKwr4uXY+uD4hHetiidd6vukpk9+7wr6+wUGTbNuuXS2kXKBqFAwCAugGNST160igc9UpKsHOwBDUAAIgS7Y/RacpA2TBhQVgDGxrQ0PX468cBxIuRI0VGjBDZuTO4x9d3odvUqSJ33ln9/TffiPTt631/3Z+tbsKrvwsSF43CAQCIv/60KUmB52JTD+8tk3v0Cni/Zmg463k+kIgIagAAEEUth3WXgqHdfBp9+xMo0yLjwBZyxNpr632e1QGNpDRnUGNApDM2mlpHXmVnV9/U9u0SMZplotkmGpyhGS8Qn/14gg28BiuS71EAgPD0p82hrBTQaJx9AAAgyjTgkFKQGbXnhyI5MzWoMcDu8vIiuz4NbOhJTyuCMwBix6xZkSuRBwAAEO/IXQIAAAACIGMCgBUZGpEMaJQ2nPwJAGgipyMpqDEA4UGmBgAAANAIa9eKFBRYVzqmWzd2PxDPNPsqkhkaVDEBAG+uqirZXVFh6W5xuat8xrJ5AwYihqCGRWbMmGFulZWVYje7K8r9joVSB7CuyvLdfsec6S2avGwAAIBo0IAG5aEAxCoyzADgN3M2/ygTP18txS5rgxpArKlMsHOwBDUsMnbsWHMrKiqS3NxcsZMqtzuosZD4iVz7HQMAAABg64ul7Npsu67mzcMfGLAq44tsLwCoP0ODgAYShjuxzsES1AAAAAACSE72LQ+lY0C42PliqXhptq27ffp0kZEjw7cOMr4AIPy05FSkMjSynSmSS/kpIGIIagAAgEZzFZX5HUspyGRvIq7k54t8+WW0twJAJJtt6zp0XSNGUMoJABBcQGNSj57iTKJROBApBDUAAECjuV2VQY0BAGDHZtu6Ll0n/XMAIL4s6j9Qmqc2vYdsbZqhQUADiCyCGgAAAAAAAADingY0WqQ1Paixx1Uh96z73Gvslq49JMuZ0uRlA2gYQQ0AAAAAQMyXnwq22faTT4pMmBCRzQIAJKiyyiqZteF7r7HrDj5UsjjTCkQE/9UAAEBMcruqxLWrNKzrcOZliMNJ7VsAiHW7dvkf91ceKjs77JsDAACAKCKoAQAAYs62l7+QDRMWSKWfhuRWSs5Jk05TBkrLYd3Duh4AgP1s3x5bywEAAEA1ghoAACDmMjQiEdBQug5dV8HQbmRswK+SEpH77vMeu+kmkcxMdhjCY8aMGeZWWVnJLg7RJZeIDB/e+MBDt27eY3V/BgAAQGwgqAEAAGKKlpyKREDDQ9e1b32hOPMzLF0upa3iw969IpMmeY+NHUtQA+EzduxYcysqKpLc3Fx2dQgyMqpvAAAAiE8ENQAAQMJb0/cxy/cBpa0AwD6aNxfRGNLu3eFfl65H1wcAAIDQENQAAAAx7/Cll1mWSeEqLA1LEKMuSlsBgH04nSLTp4tcdVV4Axsa0ND16PoAAAAQGg6lAABAzNOARkpBpmVloTSLIlI9O7ScllXbDgAIj7IykbQ0kUceqe6lowYOrB6zkmZoENAAAABoGoIaAAAgoTicSdJpysCINSMHAMS+oiLf5uJbt4q0bCkxTbfP7Y72VgAAAEQWQQ1IalJyUGOhcCSlBjUGAEAktRzWXQqGdjNZFFaKVGkrAAAAAAAS9RwsQQ1Ipp/8Z39joUhKyQxqDACAaGRsUBYKAAAAAGB3SQl2DjYp2hsAAAAAAAAAAAAQDIIaAACg0ZJSkoMaAwAAAAAAsBJBDQAA0GjJ2WlBjQEAAAAAAFiJnhoAAAAAECNmzJhhbpWVldHelJiSkRHcWKIpKxN57TXvscGDRdK4zgAAAiosKxN3iPsnIzlZmjmdkuxwyEFZOV736RiAyCCoAQAAAAAxYuzYseZWVFQkubm50d6cmJGZGdxYoikqEhk+3Hts61aRli2jtUUAEPtOWTJfCsvLQ3rutQd3k+sOOVTyUlNl4YCBlm8bgOBQfsoiejVVt27dpE+fPmI3xRUVQY2ForK8OKgxAAAAAAAAAADnYBtCpoZF7HxFlctdFdRYSNyu4MYAAIhTrsJSy5fpzMsQh5NrUwAAABAZrqoq2W3RBbCB5KakiDOJY1wgJO7EOgdLUAMAACCM1vR9zPJlJuekSacpA6XlsO6WLxvetDRyQYHvGAAAQKKYs/lHmfj5ail2hTeoke1MkUk9esrQdh3Duh4A9kdQAwAANFplcZnfsZQCCpxHQmVRmWyYsEAKhnYjYyPMNKCxbVu41wLEF5dLZOdOa5e5fbu1ywMABJ+hEYmAhtJ16LrOatM+rBkbi/qf1qRG4QCij6AGAABotKqKyqDGEo2WhdIsCg06hJuuw7WrlEASgJgya5bIVVeJ7N4d7S0BAFhBS05FIqDhoevSdbZIS2vysvZVVvoda9usWZOXDSC6CGoAAICE565yi6twb8j7ITk7TZLSnCZrQstCaRZFJAIbABBrGRqRDGhoNkjLlpFZV3l5036v5s1FnMy+ASCiSitdQY0BsB8OqwAAQMLTgMbKbtNC3g8HPTFUWgzuar7XPhdaFkqzKKxuOB6O/hwAYGWQIZIZGtnZkVvXsmUiAwaE/vwvvhA59FArtwgAomdR/4HSPLXpmRRqZ3mZnLJkgSXLApA4CGoAAABYTDM26C8CAOFlZeZDixYiW7f6jgEAfGlAw4ryUAAQKoIaAAAAQBBCbRgeqDxOWZn/5sdWN0QuLrZ2eUBjrF0rUlDQ9H2m/y+6dQvfvtd+tJEqZQUAAICmIagBAAAABFBaKvLUU9XfT58u8tVXjd9Vbrf/8ddeExk+3Hc8nCdugUjTgAbBAgAAAFiJoAYAAEh4zvxmcsTaa5vUKFxVbC/x6c2hy6UUlX3t2VPd+BhAYjv2WN/yVI1tFN6UjC+VmyuSmhr68wEAAOIFQQ0AAJBQqsorpXj5Zq+x7D7tCDwg4IlIPZEYyebHAGKPBhOsyDj5979Frr46tOcuXizSv3/TtwEAYt0Pe4pNA/FAMp1OSU1K9ntf7ef9WLInLNsHIPoIagAAgIRSWbRP1g19wSebIqkgM2rbhNhuRKxlpzRbg8AGImHGjBnmVllZyQ6PEy6XyNdfV38/YIDIFVeIPPKIdcv/859F/vIX65YHANE2bNniaG8CgBhHUAMAAACox8iRIiNGiOzcae1uGjy4uoly3R4aVjVWrt0ovEsX65aH8Bo7dqy5FRUVSa6mCSEuHHdceAKjmj2iQVdPUENfMp5SVwBgB66qqmhvAgAbIqgBAAAANHTQ7LS+2XFamv/ghdWNlXU9sK/t20XKAlfgCJme+NbXNeIn40sDGroe/q4AEFi7jGbsHiAOcBgLSXEkBTUWCkdSSlBjAAAAAHyFK8vGcwJcM5Fgj4yvQIk7LVpUNzEnUAXAjpxJ1px/CsYFHQ+QdCK/iFOOBDsHS1ADkpWSEtRYKJJSsoIaAwAAABA5mjGgmQN6op3zO/bN+FJ6PjAcywWAaHn52AGSl5ra5EbhdTM0CGggniUl2DlYghoAAAAAkKCBDc0c4IQ4ACCWdM7KlhYh1s8M9XkA7IWgBgAAaDSHMzmoMQBAYtOeIKHQxPG8PKu3BgAAAPGAoAYAAGj8AUROWlBjVqko3BvU45x5GeJw+tbldbuqxLWr1HzvKqz+CgB28P33ItnZ1gUYunXzHbOKv2XVXV+wTjhBZMmSJm8SACDGNU9NlRWnDvYZA4D6ENQAAAAx77O+jwf1uMPev1Sa/c63sHjpdzvks+ODWwYAxJKCApGcnPAtP9SgQ6Slp4tceaXvGADA3pIcDkpGAWg0ghoAACCmaFYFAAC1abbKjBnsEwAAAIj41mdAwtlTURHUWCiqKvYENQYAgIeraF9Ed0ZyTpopWwUA8a55c5Hc3Mitz8kldAAAABFRlWDnYDnMhFS4q4IaC4W7qiKoMQCA/VnVq6Jy576IBjQ6TRnotw8HEAktWohs3eo7BoQryDB9ushVV4ns3h3efazBk3vvFRk6NPRG4QAAAAiOO8HOwRLUAAAAlljT97Gw7clur4+SjC75DT4uUMZFxoEt5Ii11/p9PAENRFNSkkhL3zYwgFfz7bKyxu+QrCyRDD9viSNHipx8sojbHd5MCs0KIVMDAAAA4UBQAwAANFplSXlE91pa+1xJKcgM+fkauGjK84OVnJkqnaac6jMGAKHq0iW052lGxtix/u/r0UNEq83qYzTIAQBAtJRXVcmqwu1eY73yCyRVr/wAgAAIagAAgEZLSk+JaImo1FZZYgdJGSmy/596R3szAKBBWn5Ky1CNGGFdRoUuc8wY77EnnohsHw8AgL0UV1TI+R+95zW24tTB0iItLWrbBCD2Efas5bvvvpNBgwZJVlaWFBQUyJVXXiklJSXR++sAABCjHMmOiKyHnhcA7DinuOKKK6RXr16SkpIinTp1klixbVt1dkbtIMTOndYtv7xcZPZs75uOAQAAAFYiU+NXu3fvlhNPPFHatGkjL7/8shQWFsq4cePkl19+kVdeecXSnQ4AQDw6bOmlkpLfzNJl0vMCgN18+eWX8sYbb8iRRx4pbrdbdloZNbDA1VdHewsAAACApiGo8atHH31Utm3bJitWrJBWrVqZsYyMDDnnnHNk5cqVcsQRRzRxVwMAEN80oBGJvhX4jauwNCy7g2BS5OhV7MuWeY8de6xIKq1YbOuss86Ss88+23yvGRvz589v0vK+/14kOzu0RuEAAITDzvIyv+O5KSni9NMLw1VVJbu1mVMjlgUA9SGo8at58+aZTA1PQEMNHjzYlKLSK60IagAAgFizpu9jYS371XJY97AsH97lfwYM8N4jW7eKtGzJXrKrJIsbmxYUiOTkWLpIAACa5JQlC/yOL+h/qhyc7dtIaX1JsQxcspC9DiAxemp8/fXX8tBDD8no0aOlR48e4nQ6xeFwyF133RXU87WMVP/+/aV58+aSmZkphx9+uNx7771S4Sc6vHbtWunatavXmK7v4IMPlnXr1ln2OwEAgPq5q9xSsb3E66ZjiJzKojLZMGGBuF1V7HYk9BwBAJB4NKtgR1lZ2G66fDux2/YCSAwxnakxc+ZMmTZtWkjPve6668xzdZKjGRiacfHuu+/KLbfcIq+//rosXLjQlJfy0Fq3eXl5PsvRyY721wAAAJHhKtwrK7t5f/4fsfZaW5S2qtixV9b0fdRr7PCll0tKi2aWlITSDAoNOESCrse1q9QW+x2JJZJzBABAYpmz+Uf582erZE+lK2zryEp2yl8O6yVD23UUOyh2RTbon+1MMWWsAMC2mRrdu3eXG2+8UV544QWTLTFq1Kignjd37lwzWdFJyieffCILFiwwzb6//fZbczXX0qVL5Y477gj79gMAgATjdotrR6nXTces4HAmmZJQGtgAElkk5wjPPPOMyQJp6DZ79uww/bYAgEhmJNy6ZmVYAxpKl6/rIQPCf0BjUo+efvtyAIBtMjXGjBkTUn3au+++23wdP3689OrVq2a8oKBAHn74YenXr59Mnz7dTFpyc3NrMjJ27drlsyzN4DjooIOa+JsAAAA0nfa4KBjazWRQhKPpeLh6dAB2nSMMHTpUjj766AaX3bZt20b+FgCAWKOlofZVVUZkXboeXd9+Ns0OfPnYAdI5K9tnPFCGxQGZ2bLi1MENLjdQo3EAsFVQIxRbtmyR5cuXm+8vuOACn/v79u0r7du3l02bNpnm4Oeff74Z134adXtnVFZWyjfffGMahgMAAMQCzdigJBQQmTmCBjc8AQ4AQHyLdJklXd9+Ys+gRl5qqrRICz57WAMVjXk8ADQk7sKfq1evNl/z8/Olc+fOfh/Tu3dvr8eqQYMGyeLFi2Xbtm01Y1pXd8+ePXLGGWeEfbsBAAAAxNYcAQCAYJy0X2uTieDvpvcBAKwVd5kaP/zwg/naoUOHgI/Rq7BqP1Zdfvnl8tBDD8nZZ59tUs617NS4cePMz54Jjj9lZWXm5rF7927ztaioSOyidM8eqdq713useI8UWVACvKy4VPbsrfIaKyoulTSHffYPAMBXRXGJlFTt8xorKi6SlNTKmF52uLHtaKziYv9jVl7M6DkudVvU3yWR5gih2Lt3r8n2UOvXrzc/e3pu9OnTRzp27Bi1eUW4X2+ReD0DQCTPjcw66gRpn5kZVCZCSq338Nru7NJVRrZqKxd98r7XeHFRkSXnXcKtuLjIZ7/YZduBRFIWgXOwsTSviLugRvGvR9KZ9XzoaHPAuhOEvLw8effdd+Waa66Rc889V9LT02XYsGFy//3317u+KVOmyKRJkwJOiuzqMBsvHQAQJQdMtueyw41tRyN16RKeXbZjx46ELaUU6hwhFFu3bjXziNo8Pz/99NMyevTomJpXhOv1FqnlA0A4HR/GZf/W3cl+7LztQGI5LG7nFXEX1GiKgw8+WObPn9+o50yYMMFkdHhos3G9+mrjxo1R/+Mi9ugk2VOvOScnJ9qbgxjD6wO8PsD7B8JBr/jXDAUtvYTw69SpU0hXrzGvCD+OtdindsDrlH1qB7xO2ad2wOs0vucVcRfUyM7ONl9LSkoCPkb7ZCgrTiqnpaWZW10a0OCkNQLR1wavD/D6QCh4/wCvD4QqKSnu2unF7BwhFMwrIofPUvapHfA6ZZ/aAa9T9qkd8DqNz3lF9LcgDFdGKb0SPhDPfZ7HAgAAAIhfzBEAAACA+BF3QY2ePXvW1PYK1ORvxYoV5muvXlQBBAAAAOIdcwQAAAAgfsRdUKNdu3bSp08f8/2LL77oc//SpUtNpoamdw8aNMjy9etyJ06c6LckFcDrA7x/gM8XhAOfL+D1EdtzhFDw/5p9age8TtmndsDrlH1qB7xO2ad2kBZD570d7lC62EXJ6NGj5dlnn5XJkyfL7bffHvBxc+fOlaFDh0pWVpa89957NRkZmr0xYMAA+fzzz+WGG26Q+++/P4JbDwAAAMBqzBEAAACAxBLTQY1Vq1bJlVdeWfPz999/L9u3bzdXWrVt27ZmfM6cOdK6dWuv51577bXy4IMPSkpKipx00kmSmZkp77zzjuzatUuOO+44WbRokWRkZET09wEAAADQNMwRAAAAgMQW00GNJUuWmMyKhmjvDH9Nv1966SWZMWOG/Pe//5WKigrp0qWLjBw5Uq6//npJTU0N01YDAAAACBfmCAAAAEBii+meGv379xeNuTR08xfQUMOHDzflp3bv3i179+41ZaduueWWsAQ0Xn75ZbO9zZs3N1khhx9+uNx7770mmILE9fXXX8tDDz1kyiL06NFDnE6nOBwOueuuu6K9aYgB+v6gGWQ33XSTqfOdl5dnssv2339/GTx4sLz55pvR3kRE2QsvvCB//OMfzWdKq1atzOsjNzdXjjzySJkyZYrs2bMn2puIGHLzzTebzxg+Z6D02MPzegh027dvny13lp3mCB7z5s2TO++8U8466yxp06ZNzd9g8+bNTVpueXm53HPPPeZzQucgOhfR/TN79uyEmL8UFxfLrbfeKocccojJwi8oKJAzzjhD3n333ZCCZQ39n/HcNm7cGLf/36zcp0pfY/XtFz3urc/bb79t+tzoduj2/O53v5PbbrvNVsdAVu5Tfc9644035KqrrjL/Z7Ozs817V/v27WXEiBHy4YcfBnyu3V6nVr9HrVy5UoYNGyb77befpKenS+fOneXqq6+WrVu31vu8X375xexvfbzWkNfn63I0a9BurNqnq1evNnMRrYqi+0PnKLrMfv36mQuLAy0vmPfZRx55RBJxnz7zzDMN7pv58+cHfD6vU196HBjMZ/pf/vKXuH2dfh2mc5KhfjZ/9913Zlu0ApO+n+pX/Xn9+vUhbYczxO1HLdddd51MmzbNvDhOPPFE08tDD1B0cvT666/LwoULKXWVoGbOnGleG4A/ekLllFNOMd/rhK5v377mQGjt2rXmvUNvl112mfnA1A8eJOZ7yLJly6Rr166mP1R+fr45YP3oo49k+fLl8tRTT5nXkZ4gQ2LT18nf/vY3814Rw0m4iAItu3rggQf6vS85OTni25OoLrjgAhNEsZKe3NTjCP3/rxdGnHbaaWYyqfMQ/Wyor4dgPMxf9ESknkD75ptvTCliDRjpZ+Rbb71lAGWbIgAAJHJJREFUbvr76QnLYOmx2EUXXRTw/k8//VTWrVtnsv/1BHI8/n+zep/WNnDgQL8BDL1YI5C///3vMm7cOPPZptulJ08/+OADufvuu+WVV16RpUuXmhMqibRPX3zxRbn00kvN9x07djQnlfX/8Zo1a+Tf//63qVahPUj15FIgdnidWv0epYHe888/X1wul7mYTAMUK1askOnTp5uT0vpa8rdP9O+mfz/9Ox5wwAEyZMgQUylEl6e9XHV/az9XO7Bqn+o+9PSt1WXo/tT/mxqk1zmK7svnnntOFixYYD6b/NHH62eWPxr8s4twfJbqZ4yeF/Cndhn+2nid+nfuueeaFgb+FBYWmr+RClQhKB5epzPDcE4y1M9mDbqfeuqp5vj10EMPNa/zL774wvTO1vdUDZQcffTRjdsYLT+F0M2ZM0fPHLizsrLcK1eurBnftm2bu0ePHua+G264gV2coB5//HH3jTfe6H7hhRfc69atc48aNcq8JiZPnhztTUMMeOedd9znnHOO+/333/e571//+pc7OTnZvF6effbZqGwfou/jjz9279ixw2d8+/bt7r59+5rXx4gRI6KybYgdJSUl7oMOOsjdtm1b95AhQ/icgXHRRReZ18LTTz/NHokBF198sfvuu+92z58/371161bzt9Hbpk2bQl7mtddea5ahcw6de3isWLHCzE30vtdffz1u5y9nn3222daTTjrJvA96vPnmm+YYKikpyb1mzRrL1te1a1ezvr/+9a9x+/8tHPv0hBNOMMtcvHhxo563atUqt8PhMOudN29ezbhul26fLlOPoxNtnz7zzDPuSy65xOyf2qqqqtx/+9vfat5blixZYtvXqdXvUVu2bHE3a9bMPO/RRx+tGXe5XO6RI0ea8T59+ph9WJv+3LNnT3O/zuP18R66HM82/vzzz+5YZ+U+raiocB9xxBHul156yb1v3z6v+z777DN369atzfL0c68ufR/Q+/R9we6sfp3q/0t9jv4/bQxep6G55557zP4++OCD4/p1+rjF5yRD/WzW+9u0aWPunzBhgtd9+rOOt2/f3r13795GbQ9BjSbSDz/d+XfddZfPfR988IG5Ly0tzb1r166mrgpxwHMgSVADwfjTn/5UMwkC6tJgmL4+8vPz2TkJ7pprrjGvBT1BwucM7HbyKlE1NahRWFjoTk1NNctYunSpz/16rKn3HX300XE5f/nyyy/NduqkesOGDQGPoawK/C9btqxmfXqCNB7/v4Vrn4Ya1Bg2bJh53pgxY3zu0+3TYIDerydpYlWkX6fKc1JJl23X16nV71E33XSTec7JJ5/sc19xcbE7NzfX3K9B59r0uErH8/LyzOMC7evx48e7Y10k3/eff/55s7yMjAx3eXl53J4stnqfhhrU4HUamkMOOcTs76lTp/rcF0+v07qaOlcM9bN5xowZNUGkyspKr/v0Zx3X+x955JFGbU9M99SIdVu2bDHlPzwp5XVpKo2mJpeVlZk6ugDQGD179jRfN23axI6DD01zVlqLEolLa75qnVTtvaJ1TQEkBp1baD+NDh06mFIydXnmJh9//LH89NNPcTd/mTNnjvmqv7uW4KnL87tpaQkreoRouUelZSjiteRjpPdpffS17ekt5+91qtvned17tjsWRWOf2n3+EI73KM/fwd/ytFyQ9jJU//nPf/w+T+/Xx9XlWV7d58WaSL/ve16DpaWlAUv/2F0sfZbyOm08LYOkvSZ0Pl1f2UlY99ns+Vl7PyUleYci9OfzzjsvpPdTemo0gTZHUlrjXGsy+tO7d29zQKGP1RqOABCsb7/91nzV+rtA3YaT2nBWeSZiSDxaO/+SSy4xdUz/8Y9/RHtzEKMWL15sGmHr+0aLFi3kyCOPNAEwAqLxMQ/RuYY/Wvtd5yhaM/q///1vzYn4eJm/NPT7e8ZLSkrM8VS3bt1CXpfWftZeBepPf/pT3P5/C/c+1RMa2oNAT3Tq59axxx5ramvXPbnhqQ+v+72h7dEa3p7tTvTXaWPmD7H8OrX6PUp/R21M63leoOU9//zzPq+lYP9+us/1b6i9EWNRpN/3Pa9BbWCv6/RH+8poc2YNDmjTdm0yfMYZZ5hAvR2Ec5/q6/X22283fVw0mNa9e3cz3wvUP4jXaegXKuj7nr9eT/HyOrVaUz6bg32dNvYznaBGE2iDKFXfC9rTRM7zWAAIxv/+9z955plnzPfnnHMOOy3BaZM5bQxZVVVV0yhcJ2l6xeg999wT7c1DlNx4443m+EJPFDVv3py/A/zSZp116ckundAFan6I+JiHtGvXzgQ1as9D4mX+0tDvkZOTY25FRUXmsU05WaxNhPUzt1WrVnLmmWfG7f+3cO/TBx980Gfs4IMPllmzZplGw/62RZsMZ2dn+10er1NfGqjwXEVb3/whll+nVr9Hbdiwoeb7QMsMtLyGtsXzPK0oqOvRxrexKJLv+7ov7r33XvO9vl8GCpR99dVXMnHiRK8xvWr+6quvNs/3ZKTHqnDuU80i0FttekJdL2jTBuSN3RZep940APnSSy8FdaGC3V+nVgv1s1mPoXbs2BHU63Tbtm2NChJTfqoJ9A+j6tvZnjRFPfgDgGC4XC4ZOXKk7N69W3r06CGXX345Oy7BrV27Vp599llzFZkGOPTzR1M+NfCVm5sb7c1DFOjr4NFHHzUpvEOGDOFvAB+HH364TJs2Tb744gtzHKoBUX3d6NXRP//8s7nqT8uXIbHmIfEyf4nk7+G5olPL/KWkpMTt/7dw7dN+/frJ448/bkp96ImKzZs3m2C8ngDWqz5PPvlkWbduXUS2JdIi+Xto9qYeG+o8YuDAgXLWWWfZ8nVq9T7zLK++ZQZaXkPbUrskFa/DapMmTTIXX+m+mTp1qs8+03nLddddJ++99555zel7wmeffSbXX3+9OBwO+fvf/y5XXnmlxLpw/N/WjIHbbrtNPvnkE3NiV5+nJa70s0fLWI0fP17uvvvuRm8Lr1NvGtDQ90vd34FK98bL6zTWjj3D8TpNrLASANjAFVdcIe+8845JB589e7ZJ3UVi04MqvWm95Y0bN8qrr74qd911l8yfP9+cGDj++OOjvYmIIA146pVFLVu2NP00AH904lWbXlF1yimnmBOIQ4cONe8j+r6ipYkQ2M033yyvvfZao3fRE088YWpqw977VMuAvP/+++Z7LfcXq//fYnmfTp482evnZs2aSdu2beX00083AQ89aTdhwgRTmiqWxPI+rUuPD4cNG2aCFVp6Ti+CicXXKeKbZgBpqR4tKafB4IMOOshvvw1Pzw0PvYjvgQceMP9vNMNIg6B6wvj3v/+9JBLNkqqbKaUlefTCNg1I3nDDDWb/6hxAS/ghNE8++aT5qsGiQJkWvE7tg6BGE3jSbTRqF4hGAJWm6gJAQ6699lrzQaulZBYtWmTS8gEPvUK0S5cuMm7cONOE65hjjjFZPXr1Y0ZGBjsqQegJB73SVWu8B6qvCwSiV5jplZR68mrNmjWm3rMn5Ru+tMm2vsc2lmcOEGvzkFiYv1ixTyP1e3iyNPTztmvXrjH7/81O+9RDy9LoVcmabagXaeiJeU8mDK/T4GlmhmZt6j7UJq3vvvuuuejBrp8LVv/ta5dI0WX6y3AOtDx9rpbwC7Qttf//xPL5nkj8f9IyfZ7ArwYlNMjWWH/4wx9MIEODaq+//npMBzUi/R6l5wimTJliGq9rdtWoUaO8toXXaXA0O9BT2qu+CxXi5XUaa8ee9T031PdTyk81QadOncxX/dAPxHOf57EAEIhefaH1hrVGoR6s1L2KBajtqKOOMvWs9XNmxYoV7JwEotk5emXRww8/LP379/e66UkNpcFR/VlPdAB11T45qwEyBKb1/rVGeGNv4a5L75lbaPZeIJ6/be15SCzMX6zYpw39/lq6wFO+INTfo7Kysqb3QEN1t6P9/80u+zTQvtHSKnqyru627Nq1y6tsRW28TqtfoxdeeKH85z//MUEIbQCugY2m/C2i/blg9XtU7f0R6LUdaHkN/Z/wPE+DQqHu90gI9/u+vv609Jn2/tPSqKGeLK79Ooz1Y5NIf5YmJyfXZL7U3Te8Tht/oYJmBR1yyCFx/zq1WqifzRrUyM/PD+r9VC/YC7afhiKo0QSeE47a8CRQ8x/PiaZevXo1ZVUA4pymuGvarV49pAENTTUFGuL5wN+6dSs7K8HolZla57XuTetjK21YqT9//PHH0d5UxCBPsz4VqNEfYptnbhEoqL1+/Xpz5aaqfZFEvMxfGvr9PeP6ORlq1uuCBQtky5Ytps7zeeedF/f/3yKxT4PdN3qySctUBbM9ifo61YCGZutqfXhPQKNz5862f51a/R6lV/weeOCBXs8LdnnB/v30ZHPtevCxJpzv+1o2Ti+g0dfjzJkz5dJLL23Stnpeh7H8Xhmtz9JA+4bXaWQvVKjvbxHvDmnCZ3Owr9PG/n8hqNEE7dq1kz59+pjvX3zxRZ/7ly5daqJNmlobqAENAGjTr/vuu88ENLTklOd9BaiPXtGoJQIUZcoSi14dE+iq24suuqimhrn+rMENoK5//etfNSd7mnKlGqJH5xbac0uvePOUUqjNMzc5+uijpU2bNnE3f9GSRUp/d39X/Xl+N22WHKi5d7B1t4cPH96kE5Z2+f8WiX0aaN/oVa+197G+ts844wyv9db2448/yrJly8z32gsi0fapXhGv9eB1/3kCGlqetCli5XUajvcoz2vE3/K05ImWkPGUlfH3PO2t4q9kimd5dZ8Xa8L1vq/7Td8f9UIbDWhcfvnlTdpODSJ/8MEH5vsjjzxSYlmkP0tXrVplSif52ze8ToMzb9480/RbAxGhlEez4+vUak35bPb8rJ81+hlWm/6sZZVDej91o0nmzJnj1t2YlZXlXrlyZc349u3b3T169DD33XDDDexlGBdddJF5TUyePJk9AuO2224zr4m8vDz3p59+yl5BjS+//NI9a9Ysd2lpqc9e+frrr939+/c3r52jjz6avYYafM5ArV692v3qq6+6KyoqvHZIZWWl+4knnnCnp6eb94/bb7+dHRYluv/1tmnTpnofd+KJJ7oPOeQQ93/+8x+f+6699lqzjMMOO8zMPTx0TqJzE73v9ddfj9v5y9lnn2229eSTT3bv3bu3ZnzevHnu5ORkd1JSknvNmjU+zxs1apTZpw899FDAZW/bts2dkpJilv/hhx8mzP83q/fpu+++6168eLG7qqrKa7ysrMw9ZcoUt8PhMOvT/VSXvjb1fl3vW2+9VTNeUlLiPumkk8zzzjnnHHei7VN9Xf3xj380y2zfvr37u+++C2o77PQ6DeU9St8jdX/pe2ZdW7ZscTdr1sw877HHHqsZd7lcZj/reJ8+fXxep/pzz549zf26z/XxHo8++mjNNv7888/uWGf1Pn3zzTfdqamp5v+o7otg/eMf/zDvr3Xp/wHPvu7SpYt737597kTap/q+Nn36dHdRUZHPet577z13p06dzPL69u3rcz+v08Cv09qGDBli9uGll16aUK/TUOaK+rmj+1TfH636bNb727RpY+6/9dZbve7Tn3W8Xbt2Xp+TwSCoYYFrrrnG/AH0wPe0004zf0A9Qaljxx13XKP/KIgf+h/+qKOOqrkVFBTU/GetPf7TTz9Fe1MRBTqx8JzU6N27t/mA8Xezw4kFWE9PAuhrIzMz0xzAjhgxwv2HP/zBvFZ0Aqz3de3a1f3jjz+y+1GDoAZqT7SbN29uJhgXXHCBe9CgQe4OHTrUfO6cf/75Pie3ED5/+ctfvI79PH8HnRx7xv7v//7P53kdO3Y0j3v66af9ThCPOeaYmr+1zkF0LuI5GT9u3Li4nr/88ssv7oMOOshsc+vWrd3Dhw83AX/PifJp06b5fd4JJ5xg7p84cWLAZT/wwAPmMb/73e8S6v+b1fv073//uxnfb7/93AMHDjT75pRTTjE/e/bNjTfe2ODfQdev26Hbo9ulY3rCxd9Jp3jfp/p4z77T5QSaP2jQyM6v08a+R+l7pN6n75n+vPTSS+YknD5G32/PO+889wEHHFDz+vz222/9Pu+rr75yt2zZ0jxOH6/PO/LII83PTqfTb8A5Vlm1T/U1nZaWVnNeI9BrUG91/4/m5uaav8MRRxzhPvfcc83/B/3eM7fR1+PatWvdibZPd+7cacZ1v+oFa7pfdN7XvXv3mv+fGigJdN6I12ng//ue16zn2Ojjjz9u8O8aT6/TlSGck9TPHX2Mfg5Z+dm8dOnSmgCzvrb1/IbnNa7nPD766KNG/34ENSzy73//23388ce7c3Jy3BkZGeYPM3XqVHMVChKX56RkQ7cffvgh2puKKPAc1DR0q+8DGvFr69at7r/+9a/mAFmvztEPer0iav/99zcnBGbOnGnLq0MQXgQ1oNavX+++7rrrTEC0bdu25gpcnSjrJEwnZ3qFJaLzf7O+m7/JY31BjdpXvOvcQ+cgOhHXOYmewEuE+cvu3bvd48ePNyeN9TWen59vPjfffvvtgM8JJqjhucr23nvvTbj/b1bu01WrVplgnZ4E1hMeujx9rekVrnrle0NZMGrRokVm/bod+nzdrgkTJvi9ojkR9qnnZFNj30/s+DptzHtUQ0ENtWLFCnOiWIMUekytjx07dqz7f//7X73boZkY+jh9vD5Pn6/LqX11vl1YsU/13EUwr0F/5zn0PVWzlw488EDzeaWBIf3/oK/L++67z1b/r63cp/rYO+64w3366ae7O3fu7M7Ozjb7Rl9rmuWl2TANfTbzOg38f//+++83+/3QQw8N6m8aT6/TxSGck2woqNGUz2YNIOvnv2ZtaKBJv+rPwWYd1uXQfxpXsAoAAAAAAAAAACDyaBQOAAAAAAAAAABsgaAGAAAAAAAAAACwBYIaAAAAAAAAAADAFghqAAAAAAAAAAAAWyCoAQAAAAAAAAAAbIGgBgAAAAAAAAAAsAWCGgAAAAAAAAAAwBYIagAAAAAAAAAAAFsgqAEAAAAAAAAAAGyBoAYARFGnTp3E4XA0eHvmmWf4OwVhw4YNPvvurrvuCvj40tJSmTlzppx11lnSvn17adasmWRkZEi7du1k4MCBMnXqVFm/fn2T9/33338vSUlJZnu++uqrBh9fUVEhLVu2NI9/6aWXzNj//vc/n9/tzjvvbPK2AQAAAAieHs9fcsklZv6Qnp5u5nS33HKL7Nu3j90IABHijNSKAACBHXfccXLggQcGvL++++ArMzNTzj33XPP94Ycf7ncXLVq0SEaNGiW//PKLCTj8/ve/lyOPPFJSU1NNAOHDDz+UhQsXyu233y733nuvjBs3LuRd3aVLFznhhBNkyZIl8tRTT5nl1ee1116T7du3S4sWLWTIkCFmTIMtF110kfn+v//9r6xZs4Y/PQAAABBBjz/+uIwdO1acTqc5vs/KypJ3333XHN9//vnnMm/ePP4eABABBDUAIAaMGTNGRo8eHe3NiBsFBQX1Zre88cYbJlhQWVkpF198scnmaNOmjU+2hAYX7r77bvnmm2+avE1/+tOfTFDj+eefN8vUiVAgGvhQI0eONEEWlZubW/M7aYYGQQ0AAAAgcv75z3/KZZddZi5I02xqz/xh69atcsQRR8hbb70lb7/9tpx88sn8WQAgzCg/BQBIKDt27DDBAg1oXH/99SaAUDegoVJSUuScc86RTz/9VC699NImr1eXlZeXZ7JAdMITyM8//ywLFiww32taOwAAAIDo2rJliwlodOzYUd58802v+UOrVq1qLlDTi6cAAOFHUAMAbMjTU0G98sor0rdvX8nJyTFll/TKofrSnl0ulzzxxBPSv39/yc/Pl7S0NOncubP83//9n2zatMnn8ZpdoOvSx+/du1f+/Oc/S9euXU3/Ca0f6+F2u02AoHfv3uY+LZ10+umny7Jly7yW4fH000+bMe1dEchPP/1kggtaekmDEVZ46KGHZPfu3bL//vubnhkNSU5ONlde+bNz506ZOHGiKV2VnZ1tfu8ePXqYzA/dV7Xp73DBBRd4ZWL48+yzz5qAi+7Hww47rNG/HwAAAGA3euz8j3/8w8xrmjdvbuYoGkDQ3ncvvviiz+M3b94sV199tRx00EGmr4VmNes86NFHHzXH0nV9++235oIhnffosrVslC7/jDPOMPOShkyaNEn27NljMq51XXXtt99+5usPP/wQ8j4AAASPoAYA2JieUB82bJj5ftCgQeagXoMIZ555psyZM8fn8cXFxXLKKaeYzIOVK1eak+aDBw82B/aPPPKI9OzZU1avXu13Xdr4ToMSDzzwgJkM6PN0fR5aW1ZLLOnztTfFqaeeaoIkxx9/vN8rlvQEvzbD1t4Wgco76aREgzDnn3++CZJY4dVXXzVfhw8fXlPaKRRr1641/Tr+8pe/mJRznYBpqvm2bdvkjjvuMJMqDZ7UpvtH6dVd+hx/PJMqz2MBAACAeKZzhj59+pgsap1L6Pd/+MMfTNDhgw8+kFtvvdXr8cuXLzfH4dOnT5fy8nJTVvbYY4+VVatWyRVXXGECFTru8cUXX5gLhvQ4W+c9OlfSuVPbtm3l/fffl2nTptW7fXpMP2vWLJOdcd555/l9TGlpac2FXgCA8KOnBgDY2IMPPigfffSRHHXUUTVj2m9BryQaP368DB061OvxepCvWRN6IP/kk0+aVGkPvTJKJxJ6oL5u3TqToVDbJ598YoIg3333nclyqE17T8ycOdNc8aSlk3RS4aFBkBtuuMFn23VCoSncf/3rX2XGjBk+kwntafHYY4+Z76+66iqxggZIPvvsM/O9TpZCpZMWDeroBEwbiWsQwxMg0avMtEeK1tz1lLfy6NWrl8nq0EbfOjGq23xcm5NrgEezOjSQAwAAAMSzqqoqE8DQC4b0oig9RtYLn2pfWKWNuD3KysrMRV2FhYVmbqPzIc3sVuvXr5eTTjrJzEd0PqTzDM98pKioyGRT33bbbT7H9Rokqc/cuXPN4zQbI9CFR54Lw6y6EAsA0AA3ACBqOnbsqJfyNHjbuXOn1/M84w8++KDPMvft2+fOzc0192/cuLFmfO3atW6Hw+Fu06aNu6ioyO/2DBo0yDzv9ddfrxlbvHhxzfref/99v8878cQTzf0TJkzwe3+fPn3M/SeccILX+JYtW9wpKSlme/fs2eN13z//+U/znGOOOcYdrB9++ME8R/erP7/88kvN7zJ//ny/j5k+fbr7oosu8rnVNnPmTLOMM8880+8yiouL3a1atXI7nU53YWGh130PPfSQeW737t19nnfJJZeY+0aOHFnv7zlx4kTzOP0KAAAA2NXcuXPNcW3r1q3NMXRDnn/+efN4ndPovKeu2bNnm/uzs7PdpaWlXnOcVatWhbSNemwezJxNb1OmTAlpHQCAxqH8FADEAC1VdNFFFwW8BSqTpDVm/WVAHHDAATUN7Ty0z4bGQ7TPhfZ/8MfT80JLWNWlWR39+vXzm/3gefyFF17od7meXhJ1aQr3ueeea1K6n3/+ea/7NHvDyiyNYC1evNj0tah7q03LR6lA6eeasaIp7rpv6l75pU3Kte6vpsFrE3KPkpISeemll8z3lJ4CAABAIpg/f37NfEGPoRuiWedqxIgRZt5Tl2Z9aE8OLbur5XaVlsZV2kNQszg0+6MxPMfzmk2i86m6N83U9myLZ10AgPCi/BQAxAAtVzR69OhGP69Dhw5+x7VpuKp9wK7p2ErLTumtPtoXoq7aTcFr2759e816Aj0m0Li65pprTKkmDWJoCrnSElFLly41Kd4a9LCKNkbX5uQ6+fD3O6rZs2d7NSBs3769z2M8+3LUqFHmVp+668nLyzOTLW14qKWpPBMfDWho88EuXbrICSecENLvBwAAANjJjz/+aL7+7ne/C+rxnou2tMefP3qsr/ft3Lmz5rE33XSTmVu8/fbbctppp5lyVdqTQ3v/aXCkvrK0epHS999/b75v166d38doXw4ti6UlZPViNQBA+BHUAAAbS0pKalS9WqU9HfQgvj61e3R46EF6qHRyEcjRRx9tTuxr1sJ7771nTuh7sjS050ZTmnnX5XQ6TV+QNWvWyIoVK0zWRCg8+1InRRp4qY82OKxLMzE0qPGvf/1L/v73v5t962kQfskll9S7vwAAAAAEr1mzZrJo0SKTcaGZIZplrjedD2i/jSuvvLJm/lGXZnxoYEMFyiR5+eWXzVe9cMlf9ggAwHoENQAgQXgyDvTqoenTp1u2XG2GpwfvenWSXmnVrVs3n8ds2LCh3mVotoYGGHS7NODywgsvmACEJ3PDStrgW4Mamhlx33331TQWbOy+/Oqrr0xwIpRMkgEDBpgSYZrx8Z///McEkT744APTnF3LjQEAAACJwJN5rsfWwWjbtq1X5rQ/P/zwg9djPTQjw5OVoYEKbQD+xz/+UR5++GFzTK/H6HXVvtiovLzcJ2ixY8cOk3UejbK5AJDI6KkBAAlCe2mo1157rdF1ZOujQYFjjjnGfK/ZB/54DvQDGT58uLRu3dpMLP7617+a/hJDhw41PTespgEULc/1888/y2233dakfenpgdFYOjnSjAylJaj0pgYOHOgz+QIAAADilWY+e+YLOgdoiKcH4L///W+/c5o5c+aY0lPaQ/CII44IuBy9gEoDGXr8rf773//6fZyWjtWbp0RuXePHjzc9NXRZmoEOAIgMghoAkCB69uwp55xzjmzatMmkRvvLntCJhGZJ/PLLL40OFKgHH3xQPv74Y6/7pk2bJp988kmDgRFt3KdXTN1///1hvdKpoKBAnnvuOVO6SzM1Lr30UhPgqEv7bnz44Yd+l6FlsbSslKaa33LLLSYtva7//e9/8vjjjwfcDu2hopkZ2pj8scceM2M0CAcAAEAi0Sxqnaf89NNPMmzYMJP5UJsGLt56662an/Uxmt2hjx83blxNaShPhsYNN9xgvr/66qslPT3dfK+ZGF9//bXf43UtQRWoZKzHGWecYb5Onjy5pgytzhX0YqwnnnjCbM8jjzzSxD0BAGgMh1vfiQEAUaENtLVkk5aEOvDAAwM+7tRTT5ULLrjAJw060Fu4XsGk/Sn0hLnnaialJ981A+Kdd94xvSq01JM20tPlaJBDyzJpWvW6detqmvUtWbLEpGJrrwv9PpDLL7/cnJzXE/X9+vUzmReff/65WZYGPbR3xCmnnCILFy70+/ytW7eaCYGWsfL0vWgs/R3099FJSUMlr7SerqabayNv3WbtNaJ/D+1voZOp1atXm4mOBj+0NNazzz7r9fwvv/xSzjzzTLMevXpLt1mbB+qVWt988435vVu1amWWUd8Ead68eeb7li1bmmaGwZTDuvPOO2XSpEkyceJE8z0AAABgVzof0owJDTxo/4u+ffuaErd6bKxzAj3Wrn1sr70xNMOjsLDQHPdrhoTOc959910TBNFlaXa6pzefHufrcnSe0L17d5O1rXMALf9aWloqJ554oixYsMBkb/jz3XffmcDLnj17zBxJ51A6V9Bj/oMPPtjMKwI1LgcAhAc9NQAgBmhGQKCsAKUH8rWDGqHSNGwNKmi69qxZs2TlypUm1VoP7DUIceGFF5qrpbp06dLoZevVSVqjdubMmSZbQ6+M0gbgemWUZxKiWRKBaABAJxya1TF27FgJN50I6dVczzzzjAks6ERHAxUa4NFJlE54dDt0v2v/i7oOPfRQk4Kuv7emuev3H330kfkdNbhx4403mgBSfTQzwxPUGDVqVEj9PQAAAAA708CEZkzovGH27NnmmFovtNp///3NhVV150E659A5zD333GOyOPRYXHtdaOBBL1oaM2aMV4BCMyrefPNNM0fR2+7du83cQ/vaXXzxxXL++ecHDGgovfhMG4vfeuutsnTpUtm4caMJZkydOlWuvfbamowQAEDkkKkBAAg77R/x9NNPy9/+9jeTJu6PXumkVz7l5uaaq7L0Kq1wZmrYGZkaAAAAAAAgUZGpAQCwhGY5aPmmzMzMmjGtOfvkk0+abAi9gkmvggrkz3/+s8mS0N4aoQQ0atu+fbvpWaG0j8hZZ50ldqdXlOmVYPU1MgQAAAAAAIh3BDUAAJbQptsvvfSSSftu27ataTq+du1akzGhPSs0nVxLXNWmtW5fffVVExDRslOaYn7zzTc3eVt03Z4eGJouHg9BDa33W7evBwAAAAAAQKIhqAEAsMR5550nRUVFNX06XC6XqVWr49ddd51p4FfXqlWr5KmnnjK9Pk4++WR54IEHTP+QUGmmSKDm6XanAZ94/d0AAAAAAACCRU8NAAAAAAAAAABgC0nR3gAAAAAAAAAAAIBgENQAAAAAAAAAAAC2QFADAAAAAAAAAADYAkENAAAAAAAAAABgCwQ1AAAAAAAAAACALRDUAAAAAAAAAAAAtkBQAwAAAAAAAAAA2AJBDQAAAAAAAAAAYAsENQAAAAAAAAAAgNjB/wNMocrc+OttRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe+ElEQVR4nO3dB3xTVfsH8CerM90t3WUPGbJ9VRARBPcWt4JbRFEBca9XBVT0ryL6ul6cuLe4QAQUAVHZsndpge7dZv4/z/FNLdDntlyStEl+Xz+xpU+Se3OTtDn3nPM7Brfb7SYAAAAAAIBGGBv7IQAAAAAAABoMAAAAAACgCT0MAAAAAAAgQoMBAAAAAABEaDAAAAAAAIAIDQYAAAAAABChwQAAAAAAACI0GAAAAAAAQIQGAwAAAAAAiEKmwbBr1y665ZZbqGvXrhQZGUkRERHUvn17Gj16NK1ataqldw8AAAAAoFUyuN1uNwW5ZcuW0YgRI6iiooIyMzOpf//+ZDKZaOXKlbR9+3Yym800e/ZsGjVqVEvvKgAAAABAqxISDYbevXvT6tWr6YYbbqAXXniBLBaL+rnL5aKHHnqIHnvsMYqPj6f8/HzV8wAAAAAAACHSYCgqKqLk5GT1/f79+yklJeWAutPppJiYGKqpqaE///yT+vbt20J7CgAAAADQ+gT9HIbw8PBmX9fTsAAAAAAAgBBpMFitVjrhhBPU9/fffz/Z7fb6Gg9Jevjhh1XvwmmnnUbZ2dktuKcAAAAAAK1P0A9JYhs3bqTTTz+dtm3bpiY9DxgwQE16XrFiBe3Zs4cuvvhiNbchNja20dvX1dWpS8OGRnFxMSUlJZHBYPDjIwEAAAA4PPxRj4NfMjIyyGhs+XPFtbW1ZLPZfLqNsLAwzEv1IjOFAI5SXbJkCV155ZX0ww8/qEaCR/fu3Wno0KFiY4FNnTqVHnnkET/tLQAAAID37d69m7Kyslq8sRAfGU919M+JWF9IS0tTSZgIs/GOkOhhWLx4MZ1//vkqPnX69Ok0bNgw1fLkn0+YMIE2b95M11xzDb3++uvN6mEoKyujnJwc9cbTamgAAAAAtLTy8nI17Lq0tJTi4uJafF94H06mYWT20XlrBzloHs1Xn9fwOc07gr7BwG+OLl26UGFhoepl+Ne//nVAnYcp9erVi6qrq2n+/Pl00kknNfvFjhciAAAAtHat6XOLZ19Op1PJQn/H3Hubnez0DX3XKh5vsGj5gWw+NmfOHCooKKAOHToc0lhgDX8+b968FthDAAAAAIDWK+jnMOzatUt91WpherrneCIzAAAAAPiWgf/zUXCMwY1AGm8L+gYDpyKxDRs2qK6pg8fuccwqL9jG2rdv75eF5D777DM1/ImHSTWcGwEAvscJabyyOy/SOGrUKOrWrRsOOwAAQCg3GHh9hejoaKqqqqLrr7+e/vvf/6q1GRhHevGkZ+6FsFgsdOGFF/psP3hb1113Hc2ePVvFm/EwKG7MYPY+gH85HA7Vm/jUU0/Rgw8+SH369KFPPvlEDU8EAAD/MP7vP1/dN3hX0DcYUlJS6D//+Q9dffXV9NFHH9GCBQto4MCBqoHw+++/q4hVziR+/vnnffaBgRsLvNbDN998o1KaLr30UkpNTfXJtgCg+dF+33//PU2aNEmFHfz0009oNAAAADQiJJpgV1xxhWocjBkzhmJiYujHH3+kb7/9VsWsXn755So96aabbvLZ9p9++mk1+frTTz+l22+/HY0FgFaAe/fOOecc1VDgEwj8uwAAAPzDaDD49ALeFfQ9DB69e/emWbNmtci233//fTXc6YwzzmiR7QOAjBcxevTRR+myyy6jHTt2ULt27XC4AAAAQq2HoSVt3LiRVq9erSZXAkDrdOaZZ1J4eDh9/PHHLb0rAAAhwUBGn17Au3BEfWzNmjXq65AhQ3y9KQDQiYcq9u/fv/79CgAAACE4JKklV5pmCQkJLb0rAKCB36Oe9ysAAPiWL+cacB8DuX1y1yELPQw+5nK51MIknMQEAK0XhyDw+xUAAAAOhE+xrQBPtORGBV/4ey08IZOv98Ybb/ht/+BQnLjVmp8HHgLH+3f33Xc36/q33Xabuv7pp5/u830DAADAHIbAggYDtEqeBpSE19Pg+tChQ/26X4Hi2muvVV/feustcjqdTa4T8u677x5wu1BtaAEAAMCh0GAA0GHq1Km0fv16Ou+881rl8eNUrtjYWMrPz1drjmj54osvqKioSC1yePbZZ/ttHwEAIHRhHYbAggYDgA7p6enUrVs3iouLa5XHLyoqii655BL1fVPrj3jqvMAhL2AGAAAA0BAaDEGCh+bwUA8eqrNw4UIaOXIkJSYmqg+OxxxzDL399tuN3q6uro6eeuopFSnJ0ZJhYWGUlpZGAwcOpMmTJ1NxcfEht6murqZnn32WBg8erJJlOL++bdu2dNZZZ9Hs2bMPuO7OnTvpiSeeoGHDhlFOTo66bnx8vLrtyy+/fMgk04cffviAoUieoUkN53jwYz3ppJNUnR9rw3pji27xyt7nn3+++pDPj69NmzaqZ4BX+G5qOBR/mD7uuONUw6DhHBNpaI1n//lrQUEBjRs3jrKzs9V2+eutt94qJvG43W7673//SwMGDFDPW1JSEp122mn066+/6hqCdd1116mvX331FRUWFjZ6nT179tAPP/zQ6HAkbx83/vrmm2+q+tVXX33A88bHq6Gamhq1Qvqxxx6rXi+8KnPXrl3Va5J7QxritRP4PriHJDc395D9+v7778lkMql92bx5c7OPHwAA+HYOg6/+wzoM3odY1SDz2Wef0QsvvKDOfp9yyimUl5dHv/zyC1111VW0cuVK9SHMgz+s8+rT/MGQh6+ccMIJ6sMZf9DlD1bckODVb7nh4bF792469dRT6a+//lIfagcNGqQ+2PIHz59//lnl2PNtPLih8sADD1D79u2pS5cu6vo8TIY/dC5evFh9WPV84GN9+vSh0aNH13+w5O8bslqtavv8AZI/CKampqp/eyQnJx9w/UmTJqnHzClV/EGcH+OuXbvUMBz+IP3qq6+qD6+N4Q/3L774Ih1//PHqOG3btk1zXkVDfJz69etHdrtdPeba2lr1ePm5WbZsmfr+4LP53Lh46aWX1L7yfvIHdT6ePIH59ttvp8PFjb5evXqp++Dn4Y477jjkOnyceY7Dv/71L+rRo4dPjxs/l/xa3Lp1qzomnTp1qr8NP+8e/Jrl55T3m197/Di4Mfvnn3+q1+RHH32kGlDcSGW8ijpvc8aMGXTppZfSTz/9pBKPGL8ur7zySvVa533u3LnzYR9HAAAITPz3g08Y8d9XvsARcMNhKysr43Rf9bUpL7/8sttgMGheZ/v27er++MLfa2nbtq263qxZsw74+Yknnlh/H1OmTDmgtmDBAndkZKSqfffdd/U/X7hwofpZ37593eXl5Ydsa/ny5e7CwsL6fzudTveAAQPUbUaOHOnev3//Adevqalxz5kz54Cf/fbbb+41a9Ycct979uxx9+7dW93Xhx9+eEjd81gkP/30k6rz45a88sor6jqdOnVyr1q16oAaP/aYmBh3WFiYe9OmTY1uOzY21r1kyZJG73v06NGNPg8PPfRQ/e3HjBnjrq2tra/t2rXLnZmZqWqzZ88+4HZffPGF+rnVanUvXrz4gNrTTz9df59aj7cxzz77rLpdr169Gq137txZ1flYteRx83C5XO5Bgwap61x77bUHvC7tdrt74sSJqnbSSScdcLu6ujr3Mccco2p33XVX/fUHDx6sfjZu3Lgmj9U555zjPvPMM5u8HgBAMH9u8de+XGwe5b7ScplPLnzfreXxBgsMSQoyffv2pXvuueeAn5144ol08803q+8b9jDs27dPfeWzx3wG92B8Zpl7Dzz4zPLvv/+uznx/8sknaghIQ3zW/+BYTm7d9+zZ85D7zsjIoCeffFJ9z2eMvY3PKHuGubz//vt09NFHH1Dns/bc88EJQTw0qjF8lp2HxOiRlZVFM2fOVEOwPDxDkti8efMOuP5zzz2nvnKdz8w3NGHCBHUc9eB5CbwPfLaen7uGuEeIe5Iazndo6ePGvUbc+8I9Dv/5z38OeF1yrwG/Zvj1xL0Ia9eura/xkKkPPvhADZHj63zzzTd03333qR4NHm7X8HUPAAAAhwdDkoIMDz1qDA8H4Q9N/AGKh6BwFx0PmeGvPG6ehwt5xqtLvvvuO/WVhxzx0KDm4nkSPPRo+fLltH//fvVvPiFdUVGh6hs3biRvW7FihRra0rFjR/WBsTGe+QA8R6AxPNRFr+HDh6sP4gc76qij6ofKeDgcjvp9uPzyyxu9Pz7mfPwOFzf4zj33XPVh2jM/woP/7UlU8nwwb+njNmfOHPX1ggsuqB9W1BAPkeJGCzcWePsNG6M8f4XnlPDj5aFJ/PrieQsffvjhAQ03AABoeX/PNDD6bqVn8Co0GFqBhuPi/x7ZIfPUpbH0PFdA6+c8mZQnjfIEVv5Q+H//939055130i233KIuPC6cJ6ueeeaZ6oMkn7ltOIGZ8fyI5lq6dCldfPHFavy7pLy8nLyNx80zHi/f1LwDnrPRmMYmUDcXT/BuDM8VYTynwYMnJHv+LW3zSPaFJzNzg+G9996jZ555RvUEVVZW1vfsNJzs3NLHzbN97sXgy+Fun2NhebI3z1dgr7zyCnXo0EH3/gAAAAAaDK1CdHR0/fdVVVWa1+UPeuxwzvAfrGGjhIfAXHTRRfTll1+q3ge+8FAUvjz00ENq2IpWr4MWTlPis7089IknyI4dO1ZNdOUPzdyzsWnTJpV801QjSQ9P+hInPvHkby0HT5T2iIyM1L19PhPuTc2dbC31dnBDkBt8PCmez77zWXd+rXHPEg9Jay3HzbN9TtHiBq2WhpO0Pbgx3HDdCW6w8usbAABa5zoMPrlv9DB4HXoYWgFOguEGADcGtmzZ0uiYf8YRp56YU+kM9vbt2xv9uScOlM8uN5yXwDhp6Prrr1cXtmHDBrrmmmtUktHdd99dn1jk2SbXm2PRokWqscBDnzzDXxryZcQlzxdg/Fhb+6rCvI88ZIaHavGH+u7du4vPn97GCzfYeG4CPw/cYPA8HwcnHbX0cfNs/5xzzlFzIQ4HNzw5EYmjVbmhyq8/7kHjIVRYkA4AAEA/THpuBfgDHU9MZjyZWMLxo4wndjaMoWzonXfeafTnb731Vv2Z28bGhjfEQ47uuusu9T1HsXp44kt5aEtTPSGsqcaNtK/MEznK4/sb4xkqJdV5kjCfAef413Xr1lFrxo+Vh4Gxg9ex8OBjfiS4YcCvs/nz59PcuXPVxGLu5Tk4ttbXx62p543XnWA8XOpwe56mTZumehd4ngi/trihyz0zvGaGZzgdAAC0DjyDwZcX8C4c0VaCF6TiDzfvvvsuvf7664fU+Wz/vffeq76fOHGiuCLvH3/8UZ8+5MHDjDixhzXM4ucPj5wmw2sFNMQf1L7++mv1vSfrnvFZWk5h4kmxPL/h4AW0eBx+w+Egngm+vM4DfwBtiMeW87h6rZQhJn1o9dS5l+Lg/Wd8fHhIFT8WXmyMj8HBePI3HwMettLSxo8fr74+//zzh+wPJyjx2g1HghttI0aMUEN+PBOrOdHq4OFmvj5uTT2v3LPAjZbffvtNNXIam6dQUlKiEpQaNjq4N4HnPPBEc25s8DA/nofD7xW+Pg9Laux1AgAAAE3DkKRWgpNfePVkjtDkSZtTpkxRQ3m4N4CHKXFDgD/EcfwlDxPS+uDJsarco8CRmPzhnuch8AfF22677YDY09WrV6sGBM8p4G1x1ClPiuYFsviMLCfM/Pvf/66/Pp+h5jHwPLadGwb8IZR7LDwLt61atUot/OYZPsONC/4AyIt98fc8NISHX3GvBScjcQPo8ccfb/RxcErO9OnT6eSTT1arRHtSfHjVaN4eb5sTfzgqlBcn4+95uBWfHeczzYwncfNka17si8fp85h3nkPBY+z37t2r9oNXXebF0vTGgHoLfzi/4YYbVEOKj2nDhdvWr1+vniceXtNwEvrh4snNHFvq+RB+8MrOHr48bjxU6JFHHlENI0464iFI/Lrixihf+PvPP/9cLfjGPQTcq9a7d2/1fHOUK0+K5mPCjRbuOeD3Bz8eHmbFP+OGccO5Dfw+4kYPN264Uc7HEAAAWp7RYFQXn9w3zod7HRoMrQh/2OeGA68GzGdM+ew/n0Xl9Q74gzefcW1qLDZ/8OTr8gclvj1/yOLGAH8IPHj4yVlnnUVlZWX1efz8oYo/FPKHOG6U8KqInjPCHtzjwB/SeSVf/jDHPR+8DZ4ky8OqGq7yzPhsL58h5wYMf3DjD/X84Z4/MPKqu1KD4dFHH1UfHj/99FP1AZK3we6///76ORg8fIsbR5zJz70VfKx4/zwNBsa9LfwhlfeXt8/RsPyhmz+McwOGz0JznGxrwGfN+ew6fxDn54KP1THHHKP23dMIkyYaNwe/Lvj2nMrE81b4Q7nEV8eNG7H8vHFjkHtNuPeJG8L8OvO8trnhyo+f51Dw88oNW+5x4MYm12666SZ1XT4+3BDmtSa4Ycyvb25EHNxjwvfBDVZukPNrlB8XAAAANJ9agvgwrg//iwHls+/8YdsTkynhM8b8AceT/uIr/CFu4cKF6sOzJycfggdPQp81a5ZaS4N7ocD7uCHBvRS8QCEAQKh+bvHXvowOu4LCDPp7zbXY3DZ60/ZOq3i8wQJzGABaCR7Xf/Bkcm5o8poCfLadz6jz0BsAAAAAf8KQJB/jiczcicOXI8nSh+DHcwZ4fQQePpOZmakaDzxZnIcjcaIRDw/SuyYGNI0bZ3iPAgD4B+YwBBY0GHzMM1m3oqIC3WKgiVfE5q5anuDOE4t5TgavyM0/v/3221t8Ynaw465rzzoQAAAA8A80GHysQ4cO6uuKFSvq11rwhQULFvjsvsE/eA0CzzoE4F8cucqpTRw6AAAAvudZMcFX9w3ehTkMPsaJQJwAw2lBANA68boSvNBga0nMAgAAaE3QYPD1ATYa1SJnvIIvrz0AAK0LLzjIUbwdO3YUV1AHAADvwkrPgQUNBj+466671GTVk046Sa1bgCRbgNaBFxzktUt43YeXX34Zk54BAAAagTkMfsCLZPGQh+HDh9Pxxx+v5jXwwlO8CBUvlAYA/p2vUFJSotYs4UXp+D349ddfq/cnAAD4h9FgUBef3DfmMHgdGgx+bDTwxGeenMzzGb788ksqKipSwyEAwH84ojYhIUHF17755puq8R4fH4+nAAAAQIAGgx9ZLBYaMWKEugAAAACE8hwG/s9X9w3ehSMKAAAAAAAi9DAAAAAAgF8ZDAafBU0YMIfB69DDAAAAAAAAIvQwAAAAAIBf/T2DwTfnrX11v6EMRxQAAAAAANBgAAAAAIDWwWj4Zy0G71/+3sbAgQOpe/fuNHPmzJZ+uAEPQ5IAAAAAIOgsX76cYmNjW3o3ggIaDAAAAADgV7xWgq/WS8A6DN6HBgMAAAAA+JVn+JBP7huxql6HSc8AAAAAACBCDwMAgBesyy0Va0vW7BVrbdNjxFpGcrTmNjumy2NzI0w4HwQArReGJAUW/EUBAAAAAAARehgAAAAAwK+MBqO6+OS+cT7c69DDAAAAAAAAIvQwAAAAAIBf/R2qipSkQBFSPQw2m42ef/55Gjx4MCUmJlJERARlZWXRaaedRh988EFL7x4AAAAAQKsTMj0Mubm5dMopp9Bff/1FycnJNGjQIIqOjqbdu3fTokWL1PcXX3xxS+8mAAAAQNAzGIzq4pP7Dq3z4X4REg2GmpoaGjFiBG3YsIEefvhhuvfee8lisdTXq6uradOmTS26jwBw+HGl3z39i1hzF9WINWduhVir+H2jWIs59iixVvf7NrFmTo0Xa3vyi8Way+0iLWFtEsSabX+JWIvokC7WDBH//G48HObubcTaaY8ME2s9suRjAwAArUNINBimTp2qGgs33HADPfTQQ4fUo6KiqE+fPi2ybwAAAAChBnMYAkvQ99nY7XZ66aWX1Pd33nlnS+8OAAAAAEBACfoehj///JMKCwspIyODOnXqRGvWrKFPP/2U8vLyKCEhgU444QQ16dloDPq2EwAAAECrYPDhOgyYw+B9Qd9gWL16tfrKaUh33303Pfnkk+R2u+vrTzzxBPXt25c+//xzysnJafQ+6urq1MWjvLzcD3sOAAAAANDygv60elFRkfq6YsUK1Ti4+eabaePGjVRWVkZz586lLl26qNoZZ5yhhi9JcyDi4uLqL9nZ2X5+FAAAAADBw+Dj/8C7gr6HwdObwI2BSy+9lF544YX62sknn6waDV27dqW1a9fS+++/T1deeeUh93HPPffQhAkTDuhhQKMB4FBzV+4RD8vKJ+REo7rFW3UdztLifWLN4XaKtaQYOdEnKiddVxKSlvLcPLEWHR0r1kwm7XM67rrGT3KwiM6ZYq1s43bSI7ZtllirWyQ/h5+dsFmsfRkfJdbCjmu815dlXtpLrF1yQgexBgAAhy/oexhiYmLqv7/xxhsPqfMwJO5dYPPmzWv0PsLDwyk2NvaACwAAAADoZDT49gJeFfQNhg4dOjT6fWPXyc/P99t+AQAAAAAEgqBvMPTr148Mhr9bmpyW1BjPz61Wq1/3DQAAACAk8WczX17Aq4K+wZCWlkaDBw8Whxzx3IaFCxeq74855hi/7x8AAAAAQGsW9A0G5lndmdOOli5dWv9zh8NBEydOpG3btqm5DldffXUL7iUAAABAaODRHwajjy7oYfC6oE9JYsOHD6dHH32UHnjgAbVQG/ckcM8DL+q2Y8cOioyMpPfee49SU1NbelcBAAAAAFqVkGgwsPvvv181FJ599llatmwZLV++XDUaxowZQ3fddRd169atpXcRoNV4+okFYq3meTkedWeRHDuaEyNHZJJGfKijplasxUUmkB5VVfLii+Ea26t1yTVrdLxci0sRa7l7t8jbc8rbY51Susq33SxH3FoTEuU7NZnEUvnOXLEWZZHjUY1x0WKtaLP8+CO2ytvb9cYPYm3nsf3FWvgVPcXa7ddgWCqA3/A0A1/1BGAKg9eFTIOBjRw5Ul0AAAAAAKB5QqrBAAAAAACtgE/XS0AXg7eFxKRnAAAAAADQBz0MAAAAAOBf6GEIKOhhAAAAAAAAEXoYAILYa99uEGvFM34Ta7ZVu8Sa2+YQa4kWOSnIGC8n5ZTvzRdrMbFyok9lealYi46QV263xmrsZ4J8u9Jtm+X7FCtE5HSKpayU9mItr2CH1r1q7mu4Rs1VVSfWDGb5PFJMmhw9vXHnSrGWbpdvF6+RIGWvrBZrKcmZYq3i941izbZGfm0/MuFLsRb3zNliDelKADrXYfBRShLWYfA+9DAAAAAAAIAIPQwAAAAA4F+YwxBQ0MMAAAAAAAAi9DAAAAAAgH/x/AWfrfSMdRi8DT0MAAAAABB0Bg4cSN27d6eZM2e29K4EPPQwALRyc1fuEWvLL/1A87bVe/aJteguOWKtsHSvWIszx4o1g8Y5CFdplVizRsj3WVtRIdaiLFHyvoTJv94MUeFirW73frGWGJYg36dJfuz2skqxZg4LE2vpcVmkxZFXLNaMkWG6kq7yK+Xn3mqWj3fHKDntqdpZrSvpymwwiTWLSa5F5aSLNXtuoXyf6XIi1+Zx/xVrU576RaydM/ca0tIjS07sAghqfpjDsHz5coqNlf++QPOhhwEAAAAAAEToYQAAAAAA/zIY/7746r7Bq3BEAQAAAABAhB4GAAAAAPArg9GgLj657//NYQDvQQ8DAAAAAACI0MMAAAAAAP6FlZ4DChoMAK3A0zd/IdbqFm0Xa84SOa6ThZnl+FD7tn26olNNJvnXhsMpR6ca46PF2uadq8Vap5SuuuJR3Q6XfLtwi1jLq5NjRRMtcgSm1SYflzJHuXyfJjnKs6lOdXOqvD+u8mpdkbMWo1yLiZX3VYulwi7W9tkKxFpOjBz9666pE2vOyhqxVmKXY1xtO+RI3ViN94Tb4RRrX5z6Bmn5bogcRzvxxXM0bwsA4C9oMAAAAACAn/lwpWfMYfA6zGEAAAAAAAARehgAAAAAIHjmMLiRksRqampo06ZNlJWVRUlJSXQk0MMAAAAAABCAfv75Z5owYQKtWrXqgJ/Pnj2b2rRpQ/369aP09HT697//fUTbQYMBAAAAAPzKYDD49BIqXnnlFXrhhRcoMzOz/me7d++ma665hqqqqiguLo4cDgc98sgjtHDhQt3bwZAkAD956oLZYq3uz91irbJQTpGpddVqbjM5Pk2suWpsYs2SGCfWjNFyMlHl1nyxlmg2ibWOiZ3FWkV5sVizVMhpRxajXLMXl4m1nPh2utKFCgr3kB4Gk3zexu2Uk55Y9R456So8Sk6lctscul4zxtgoXfsSlZkq1rLy5eepqLpQrLXJ6aArPUwrAcwSZxVrtaXya6Z8r/y6T+jZhbRUf3rgWcGGpi7ZJdbuWXGr5v0CQGhYtmwZ9e7dm5KTk+t/9vbbb5PNZqOHH36YHnzwQdULMXToUHrxxRfpxBNP1LUdNBgAAAAAwL8wh8ErCgsLqUePHgf8bP78+RQWFqaGKrETTjiBjj32WFqxYoXu7WBIEgAAAABAAKqsrKTIyMj6f7vdblq+fDkNGDCArNZ/ek3btWtHeXl5ureDHgYAAAAA8C+eZ+CruQYhNIchMTGRduzYUf9v7kWoqKig448//oDr2e121eugF3oYAAAAAAAC0MCBA+m3336jJUuWqH8/99xzatL3sGHDDrje5s2bVVqSXmgwAAAAAEDLzGHw1SVE3HbbbWoY0uDBg1VvwzvvvEMdOnSgkSNHHjDPYc2aNdS3b1/d20GDAQAAAAAgAJ188sn03//+l9q2bauSkTgF6auvviKj0XhAapLL5dKdkMQMbm6WwGEpLy9XubZlZWUUGytH9EFwmrtSjs/8c/JcsVa9bJOuGFN3TR3pVVSxX6wlhieKNaM1QqxVlsgxpw63XawlpGfJtyuQIyst6fJ+7t+1TawlJ2XoihV11MhRtU63U6xF5ejr6t26eaVYa5+qHcn5R+4ysdavTX9dj7+4rlhX5KohSo7bdVXUiDVjzD+T9Q5WkLdT1744q+Tn0NDgj+ght3M6dL1HKwrlSFlDE+flapzysYkxyzGv0V1yxNody8aKtQiNGF8IXq3pc4tnXx7o+QRFmOS/NUei1llLj669q1U83tay4jM3JngStMkkR5xrwW8OAAAAAIAAtGjRItq0ST4hyThFaf/+/bR48WLd20GDAQAAAABaICTJVys9h86TOXToUHriiSeavN6TTz5JJ510ku7toMEAAAAAABCg3H6YXYB1GAAAAADAv7DSs1+VlJRQRIT+OSNoMAAAAAAABIhdu3YdstrzwT/zcDgctG7dOvrhhx+oY8eOureJBgNAI2qdLvG4/H71p2LNuV9O+wnPSBZr5bnycu3W5BSxZjA3MaqwgnQlwhQVyklQqR06izVjYrRYc+woEGvmFDmBxlVeLdYSLPHyvsRGibXynblizRor32dtuZwgtGfrBrGWGtlGrHXscLRYczvkVCbWP+tfutKsyh3lYi09Tk6zctXYxJqtQn6xRSTJSVfOIvl2Npe8PdKZ9mOMlFc6tbSR32uO/BKxFm2x6nqfNZWSFB4uJ0jVbpbfo9Nzpoi1SbvuFWtIUAK/wkrPurVr107N1fD45JNP1KWpYUtXXHGF7m2iwQAAAAAAECBycnLqGwzcsxAVFUXJyY2flAwLC6OsrCy64IILaOxYOXK5KWgwAAAAAIB/YQ6Dbjt27Kj/nhdoGzVqlFq8zZfQYAAAAAAACECzZs2iTp06+Xw7aDAAAAAAgF951kzw1X2HitGjR/tlO2gwAAAAAAAEOKfTSUVFRVRbW6s5/0EPNBggZK3LLRVrX577rlgzRFjEWkFJvlhLa9NNVxIS2exiyVEi/1JgSTFyOo+lS7pYM6+XE1j2bdss1lLKM3WlFpXtbDwOjlkM8vEutMtJQOlyEBLFdW2vK+lKa1/cJCdr7aySH19WnpyiU+vSfn6dbu0UJUmiJUGslVUWiTWHxvbizLFirbZIfp7Co+RkrQxrO7FmCJefixqnfNyibfKfvY3rfhNrESY5v9xqkl/bie3k1xpLT5TrJSvWy/tjjND1Xvu/ATPF2oBZ54u1EX3k9zaALtwLwPMYfMEVOj0MbPny5fTggw/SwoULqa6ujrR6XjhmVQ80GAAAAAAAAtDSpUtp2LBh9b0KCQkJFBsrn8DRCw0GAAAAAAielCRf3W8r9NBDD6nGwjXXXEOPP/44paam+mQ7aDAAAAAAAASgZcuWUdeuXenVV1/16WRvNBgAAAAAwL+w0rNX8JyEPn36+DwZykghaPLkyfVxXo899lhL7w4AAAAAwGHr1q0bFRYWkq+FXIPh119/paeffjqkMnoBAAAAWuUcBl9dQsQNN9xAP//8M23dutWn2wmpIUnV1dU0ZswYSk9Pp4EDB9Lnn3/e0rsELWjOzV/rut2OlX+ItawUOSLRkSvHVe6t3CvW0uIyxJopWo5WVPV0OT6zZtV2sRbRQY5cjdlaI9bcNjmurXynnHOa0LOLWCtdu0WsZVr1RT3WbpZjY+tcNrFW4agUaxlpHcWau6ZO1zGLsSaSltKyArFW6awWa/FxcoxvuC1SrFmOko+3Y7ccnWrRiAZ2O+U42o35a8VaZoT8vojNkmtkks+TdTR1lm+WYBVrdXny2b3iHfL7jMXtk9+jMcny5EV7sRz/69gnR0Zb2srP/bIzZom1EXvuF2sA0LINhiVLltCIESPohRdeoFNOOYVMJpPXtxNSDYZ77rmHNm/eTHPmzKEPP/ywpXcHAAAAICRhpWfv6NChg/q6Y8cOOuuss8hsNqsT40ajsdFjrrcnImQaDAsWLKAZM2bQVVddRaeffjoaDAAAAAAQ0Hbs2FH/vdvtJrvdTrt2Nb5Y6JEMxw+JBkNlZaXKp+Vs2meffbaldwcAAAAgtGEdBq/Yvl172KO3hESDYdKkSeqAfvbZZ2oFvMPFy2w3XGq7vLzcy3sIAAAAAHB42rZtS/4Q9ClJP/zwA7388st0ySWX0LnnnqvrPqZOnUpxcXH1l+zsbK/vJwAAAEDIrcPgqwt4VVD3MJSVldG1115LKSkpav7CkUyWnjBhwgE9DGg0BIann18s1qoW/iXXnFViLSNSThBy18gJO1osRvmt6KipFWt5dXK6Eksql1N2YttmibWizXIyUbQpWqy5auXHH24ME2uOPXLCjpvkFB2DNVJXiozFGiXWInNyxJp1b5muJCRDmPz8FpbvE2sxDjmZh1U75cSqzDj5xIZL43VqjJOfX4NZTt7Ymb9RrNW55GNj1Xg9dc3qLdaMERZdqUW5tXlirV1sO7Fmz5dfo5Hd5deMaaO8vaZeG1qvYaNBPt9nc8jH21harSux6+k75FS5if93plgDAP/gz6bvvPOOWj6goKCAhg8frtYdY5s2bVJzHYYMGUIREdrpiiHZYLj99tspNzeXPvjgA0pOTtZ9P+Hh4eoCAAAAAF6AOQxeHU1z2WWXUUlJiZr4zJObMzP/icHeuHGjGmXz3nvv0UUXXaRrG0HdYOA5Cxwv9eKLL6pLQxs2bFBfX3/9dZo3bx6lpaXR+++/30J7CgAAAABweNavX0/nnXce2Ww2Gjt2LJ144ol08cUXH3AdXpshKiqKvvjiCzQYJA6HgxYuXCjWuYuGL/6aNAIAAAAQ8niaga+mGoTQFIYpU6ZQbW0tffTRR3T++eernx3cYAgLC6M+ffrQqlWrdG8nqCc9l5aWqq6Zxi6jR49W13n00UfVvxvm2AIAAAAAtHY//fQT9e7du76xIMnKyqL8/Hzd2wnqBgMAAAAAhGZK0sCBA6l79+40c+ZMClYFBQXUpUuXZo24qaqSA11Ceg4DAAAAAISm5cuXU2xsLAWzuLg42rNnT5PX27ZtG7Vp00b3dtBggID37H9/E2v5934o1hxup1hLsMTr2pfKWnlRvzqXHGWZFCWneLnsctRh26QOmvtjzpHv16YR95iQLkeu2vaXiDVjhBydajLp69C0RsvPhcFs1BWNm9RGjsZ1acROlhbIxyzOmiTfZ6UcjZuSnClvr1iOXGVhGlG1WvJq5G7pdFeqrvuMMsoRt6lhKWLN2qO9WNu9cqVYS0/J0fVeaxst384YL0e8ar16NfczTX58TcXx7rMV6DqmWr/bKgq1X1MS16ylYu3pOnl7E188R9f2IPgZjAZ18dV9h4p+/frRokWLaNeuXZQjxIKvXbtWzV/gydF6heyQpDfeeEPNXbj//vtbelcAAAAAAA7bddddpyY9X3rppbR376FrMxUWFqrr8Gde/qoXehgAAAAAwL+QkuQVF154IY0aNUqlJHXs2JEGDRqkfr548WI6++yzacGCBVRZWUmXX365ilfVK2R7GAAAAAAAAt3s2bPpnnvuUd/z2mJs8+bN9PXXX6v1GSZOnKhG1hwJ9DAAAAAAgJ/9k2bkk/sOISaTiR5//HGaNGmSilnlCc4ul4uys7Np+PDhRzTZ2QMNBgAAAACAAJeQkNDkegx6ocEAAaHW6RJrNTOWibWUY3qLtbqV8mJ9YT2zxVrJivViLdpiFWtRLvkx1NXViDWL0SLW8op3kZYMjZo5VU4fKsvNFWsRxgixZkqw6rpPa4Qce2fS2M/crX+JtZQwOSGqaqu8L+FRclJOXGSCWDPGyClBpnT5MexavlysZSTKiT6ssrxUrBk0UqnizDFizWiR/ywYo8PFWrwljvTYuuI3XSlg+QXya79NuPzcF9cVi7WIvXJClhatxCZXmXbuuaWtnHYk52cR1VXL92s2mMRaRHyirlQuc4r8/NpXyKlbc1fKcY8j+mg9Qgh6nGTkqzSjEEpJmjFjBl1xxRWqseBLmMMAAAAAABCAbrvtNsrIyKCLL76YvvvuO5WG5AtoMAAAAABAy6Qk+eoSIs4//3zVSOCUpDPOOEPNW7jvvvvUpGdvQoMBAAAAAPyLJzz78hIiPv74Y8rLy6Nnn32Wjj76aPX9tGnTqFu3bjRkyBCaNWsWVVVpD41sDjQYAAAAAAACVGJiIo0fP55WrFihLrfccgslJSXRL7/8ohZrS0tLo2uuuUatCK0XGgwAAAAA4F9GH19CVO/evem5555TPQ3c+3D66adTXV2dWodh2LBhuu83hA8pAAAAAEDwMZvNan7DSy+9RDfeeKP62ZFMiEasKgSEF274XKz9ufonsdY7519izeaoE2vVKzaKtfhO7cVa7TY5XtBijRJr5ig5snD/Ho34V2MYaTFqxJwaLHL0Yp3LJtZqnfJxSy6RI1ctBjke1pQsx6qac+QYyMRdcoxclVMes5nYrr2uqNZEi7w9x95KsWZ1uHRFpxpj5dcMi6qRnydnVa1Yi2urEQNaJT+/pgw5Hta5S37txxx7lLwvv2qMrdWIhs3s2E2sFe/YLtaS49PEWmlZgVhLzG4r1lzlchyr0+kgLcb9Zbqiemsri8RanDVJ3qBGRLVmZHKyHMVbsnaTWFulEXs94nXf5MVDgFCTk3001yB0pjA0insUPvvsMzV/Yf78+WoRN9ajRw/SCw0GAAAAAIAAt2zZMjX06IMPPqCysjLVoxAXF0eXXHIJXX311XTMMcfovm80GAAAAADArwwGg7r46r5DRX5+Pr399tv05ptv0oYNG1QjgR//SSedpBoJF1xwAUVEyL2HzYUGAwAAAABAAMrJyVFDjrih0LZtWxo9erRqKPD33oQGAwAAAAD4ly8XWDOE3uTma665hoYPH+677fjsngEAAAAAwGf27t2r5in4GhoM0Go8/cQCsVb1yZ9i7ejEo8VaReE+sWaNjteVQLJvk5ygZNNIF0qskBN2wjTSbio10n5yIrNIiyOvWKztq9kv1ors8uPvGt1ZrLltciJMRLz8C80QISco1S7dItaiO8qP36pxn3Xrc8VaWqScomPQSO2x2DXScGx2uaZxn2W58n6ymFg5QYrC5Me/Z+sGsZZgidP1OCJi5BSdiqXrdSX65BfsEmtpNfLz5HA7db1GtZTn5om1cI20skKb/B5kabYwXc9hXKT8+6SoQn5vJydl6Ho/ab1ntH6X1ny5Wqy9/3MfsXbJCR3EGgQJo+Hvi6/uO0TE+aGxwLAOAwAAAABAAPj3v/9NX375ZaO11atXU65womnGjBlq6JJeaDAAAAAAgH9xkpEvL0Hq4Ycfps8/b3xtqr59+9JDDz3UaO3PP/+kL774Qvd20WAAAAAAAAhwbrf7iFZz1oI5DAAAAADgX0hJCijoYQAAAAAAABF6GKDVqHpivlgrtpWItTYp7cRaXLic3uHcVyrW4uNSxFpluXy7pJg2utJZimrlVKIYs1WshR+lnZJk37JXrCWHJeqqmcPkVBe30yXWnOXVYq22tEysWYxyUkzuhnW6HkOpXd5ehClcrMUmpYs1Q51GEpLGcTFGyytwRpVHkV6lBXn6nt9IeX8qyuXEH2tErHw7R6VYi4iU96VNbbJYM4TJf76SrdlirbKwQKwlpMvvJ3d1nVhzaaScpSdqv0e13jNGjaQv+VZEEbXyc1hZIj+HsRqvRbtLfn1XlMu/n1OSM8Xa9ju+FWv0+zi5BsEBKUkBBT0MAAAAAAAgQg8DAAAAAPgX5jAEFDQYAAAAAAACxMqVK9V6DIdT458fCTQYAAAAAMC/fLleQhCvw8BWrVqlLodT47hVwxEcFzQYAAAAAAACwJAhQ47og79eaDAAAAAAgF/xh14DJyX56L6D1YIFC1pku2gwgF9Nv+ojsWYwyaFdSRFJYq0kP1dXTKIxPlqsuUqrxFq5o1ysWU1yjKu5Q6pYS9yiFa0ox5g6dhWSlqJquZ4YLsdZmpJidB2barscnepwy7GMNc46XRGgqZFyjO2+mv1iLSOro1hzFlWQHoVFcoxpgkV+XZDG696SLj925tKIqo1PyRBr7soasVZVJb++I4wacZ218u2SY+XXPjmdYslglI9NbYX8PIWHR4q16Gg5/tW2X44HLbTJcaRp1jSx5qyqJS1Gi/xn2FlSqet5MhtMuo5N8e6dYi0xu61Yq9xVpSsyOUIjUvbpu74TaxOfOFWsAYBvoMEAAAAAAP6FlKSAgnUYAAAAAABAhB4GAAAAAPAvpCQFFPQwAAAAAACACD0MAAAAAOBfnJDko5Qkn91vCEODAfyqdsFmXWkxRquc7GEqlJNE8nK3ijWb2ybW4sxySlCsWU5ZcdXI91m6YZNYi0+UU2TcNoeu7bHkJDkpxxBuEWtGq5yGU5AnJ6nYXPL+ZLXrJu9LdLhYK9u4XayV2+QUqIyUdmLN7ZDTWbTU7JO3F6fxujCnxOlKnaork1/bzGKNEmtGjWPq1EhJ0kqzssbJqU3Gcvn9W1ZZJNZiw+RjYwiT/0RFaiR5aT1PWilBRoP8GLJ69BJrznw5Xcmo8XuNuWrl94xR4090dISV9KiqlV9T8XEpYs3tkNOsrCY5cc7hlm9XWLpXrKX+KP/uBgD/Q4MBAAAAAPwLKUkBBXMYAAAAAABAhB4GAAAAAPAvpCQFFDQYAAAAAAACgMkkr+TeFIPBQA6HPC9SCxoMAAAAAOD/QfG+GhgfxAPu3W53i9w2iA8pAAAAAEDwcLlch1wmTJhAERERdNttt9Gff/5JJSUl6rJixQq6/fbbKTIyUl2Hr6sXehjA69bllspFja60qqpisRbtlCMEI4xyBGjCwKPEmm3tbrEW1lWOI81ftUas7anNE2tds3qLtYrCfWLNqRFLqBWD2FR0qlbNub9MrCXHp8kbDJPvs3j3Tl3Ri1rPb0Zijlgzt5OPze7lf4i19LT2Ys2uEeFrMcqP3bZfjt0stWsc61g5bpdtL9wi1hLK5LhSs0He16RuXcTavvXrxVpym2yxFk9yBKqrTI6VzS/LFWv2UrlbvcNRfcWas6hCrJk0YlyNsXIcq7uqTqy5yqtJS1h7+Tl2VdbqijfWes9EWaJ0vX+1hEfJsaoV5fLvtpSEdPlOnfIHmxc/WCXWbr5Y/j0LrQzmMHjFrFmz6Nlnn6W5c+fSSSeddECtd+/e9Mwzz9DZZ59NJ598Mh111FF07bXX6toOehgAAAAAAALQiy++SIMGDTqksdDQ0KFDafDgwfTSSy/p3g4aDAAAAADgVzwB15eXULFhwwbKzpZ7eD0yMzNp48aNurcT9A0Gu91OP/74I9155500cOBAio+PJ4vFQmlpaaqLZs6cOS29iwAAAAAAh81sNtOaNfJQaY+1a9eq6+oV9A2GhQsXqnFb06dPp9zcXNUlc/7551NKSgp99dVXdOaZZ9KNN954RDPHAQAAAEBHSpKvLiHi2GOPVY2B559/XrzOjBkzVKPiuOOO072doJ/0bDQa6YILLlAzx0844YQDah988AFdfvnl9Morr6jxX1dddVWL7ScAAAAAwOF48MEHad68eXTHHXfQhx9+SJdddhm1b/93eMeOHTvo3XffpSVLlqjehfvvv5/0CvoGw7Bhw9SlMRdffLGaVf7666/TW2+9hQaDl3w3Y6lYsxfLiTDW2HixZozVSPYokZNr/lq6QKxFmeT7TF8vJ3S0yWwn1hILEsQa2exiKSY2UazlF8tJMfIR+1v53nyxZo2Wb+2okdNZtJhM8q+U+EQ5DSavYIdYizPHijVXjU2uFchpOKmRbcSaKV5+XRTnywlgcVlZYq16j76kGLdNe4GdGLOcHhZtitb1PNVu3kO6OOWkK6dGUlCJXT6mYcYwsZYRLydk2bbLx7vCUaErrSvpL/l3QlHFfrEWrvEY1P4U7xJrGWkdxZpWr3hT2xTvs7JGrNltNl2vpzq3fDt7pfy6MCbIr+3qH7aKNUJKUuBASpJXcK/B7Nmz6brrrqNff/1VNQ4O/l1htVrp1VdfpeOPP173doK+wdCUvn3/jt/bvVuO2AQAAAAAaI1GjRpFQ4YModdee00Nxech+J6JzieeeKKKUk1P14gxboaQbzBs3rxZHYgjPZAAAAAA0EzoYfCq1NRUuu+++9TFF0K6wbB3715644031Pc8z0FSV1enLh7l5eV+2T8AAAAAgJYWQvPID+RwOOiKK66gsrIy6tWrl0pKkkydOpXi4uLqL83JuwUAAAAAAVKSvIpPZvMibvzZ9pRTTqEnn3yyvrZp0yb64YcfqLZW3/zEkO5huOmmm9T6DElJSfTxxx9TWJg8Seyee+6hCRMmHPCkoNEAAAAAAC2NGwOcjlRSUqImOfPCdTx/wYMXbDv33HPpvffeo4suukjXNkKywcARq5yMlJCQoFKSunTponn98PBwdYHmsS+SE2/qXHJihtkZId9nfrGuw98x6u9oscNOZ+kkz2mp2iSnmmjZVSinHSVY4nQl+pSWFWhuUyspx1UrPxdOjbSY6C5yOk3pRjm9xFpj1JX2U+Wskm9niBFrdXmFYi2sjZxmZd8pH9PsKDkJyVUrp2CFh0eSHuasJM16kvySIodGqo0xUj5BUq2RaKSVzFNavE/X6zA5KUOsuSrls2F5GulCiRb5+a10yo8vzhyj6/1i1Xh8YWbtvx0GjY7+2iL5915qWzlBqex/Ex4bE9tG/t3mqpBTkowGeT+NVvl3d5xdPqYRHeR9qd0mJ7yRU06sggCCOQxesX79ejrvvPPIZrPR2LFj1SRnTgFtiHscoqKi6IsvvkCDobkmTpyoFrfgFZ+5ReZJSQIAAAAACCRTpkxRQ40++ugjtTAxO7jBwKNo+vTpQ6tWrdK9nZCawzB58mR65pln1DwEbiwMGDCgpXcJAAAAIAQZ/ull8PaF7ztE/PTTT9S7d+/6xoIkKyuL8vM1eu6aEDINhrvvvpueeuop1VjgYUgDBw5s6V0CAAAAANCtoKCgyaH1nrCfqip5iG9TQmIOAy+F/cQTT9QPQ0JjAQAAAKAVpCT56r5DRFxcHO3Zs6fJ623bto3atJHnRFKoNxi+/PJLevzxx9X3nTp1opkzZzZ6veTkZJo+fbqf9w4AAAAAQJ9+/frRokWLaNeuXZST03goydq1a9X8BZ4crVfQNxiKi/9Jmfj999/VpTFt27ZFgwEAAADAH5CS5BXXXXedGj1z6aWX0ieffEJpaWkH1AsLC9V1OOWOv+oV9A2GMWPGqAt419yVcveXq1SOLaxwVIo1a1iifJ81cryixRol1uyV8r60yekg1mo379EVkZlfmacrOjQ2TI5VLbeViTWHRvwpC89I1hVVq3W/WsdGi0EjytNSZxFr1ohYsVZZK6+6XumQn/tMs3xcquzyazTCKMdHlhfIz32cVY5HNSbIrwvnfvm5Z5vLNou1TtaOut4X1th4sRbtlJ8Lc7q+qFotBpM8riDKJL8PozvK8bfWmE5izVVQIdaq98ixsZGp8uvJXSfH7TYVnRpnjtUV46v1Ot2/R469Tkn+J7f9YPvK5KjWlLJkXe9frddF1L/kMdklS9aKNYBQc+GFF9KoUaNUSlLHjh1p0KBB6ueLFy+ms88+mxYsWECVlZV0+eWXq3hVvYK+wQAAAAAArQx6GLxm9uzZatj9s88+S/PmzVM/27x5s7pwpCovKTBt2rQj2gYaDAAAAAAAAcpkMqn5upMmTVIxqzzB2eVyUXZ2Ng0fPvyIJjt7oMEAAAAAAP6FlCSvS0hIaHI9Br1CKHgKAAAAACB4DBs2jJ588skmr8dJoHxdvdDDAAAAAAD+hTkMXsGTmtu1a9fk9TZu3EgLFy7UvR00GECXVc/8Ktb27dwq1jI7dhNrjjw5LWSfTU7TiCuP0ZUWopV6YjHKqT2kkdziIrdYS44/MOqsIbfNIdZizPLjC2ufSlp2b1gj1hItcqpNXNf28n2uWyXWMhIbz4BmhnD5mEblpIs1V1WdWItLlRN9rPtKxdrWbavFWoecHroeg1lje4bIcLFWvGO7WKtxyo+ddesir1jvKpHTnoxh0WKtslB+rznccjJPQqWcWmTUSMgqKJRTtwz8gUKQGC6nqpVt2anrMWgxGUxiLaxITlcyJcnvX9amvZzalLv1L7EWUygnx2lJ695drDlyi+TbRcq/v4xW+fesMTZK12s/bvUusWbWeC6efn6xWJs4/u/0GIBQZLfbyWjUP7AIDQYAAAAA8C8+H6BxUuCI7xsOsGbNGkpKkiO+m4IGAwAAAABAgLjmmmsO+Pcvv/xyyM88HA4H/fXXX7Ry5Uq1LoNeaDAAAAAAgH8hJUm3N95444Chm1u2bFEXLRkZGSp6VS80GAAAAAAAAsSsWbPUV7fbrXoWBg8eTNdee22j1+WF27KysujYY48li0VjfmYT0GAAAAAAAP8K8ZSkLVu2qKjT3377Tc0vyMzMpB07djTrtqNHj67//uGHH1aNgYY/8wU0GAAAAAAA/GjdunX09ddf0zHHHKN6CkpKSnTdT3MbGUcKDQbQxVVYI9ZSEuSIzLrd+8WaySS/HHM6ylGXxhg50q9y3XZ90aka6qqrxFpmXLZYc1bJMYjVzmqxFtdWjip15Gv/grEY5McYESPHPdZulqMu060ZYs1VYxNrBo3oWING7KaWTZv+EGsdrHI0bIzZKtZK8nPFWmxYnFgza0S82vOLdd1nYoYcHaruN7dQrLncLrHmdDvFmpvk2yVmt5W3p/H6tlfKr++UVPn1bS8u0xXVatWI+cwvkOM6EyzycxGRJD8X7ho5/rYgT454ZUlRybpiirXiSstz88SabUu+WLOky4/RqRHTm1sg/57NIvl9GGfVl9gSmSofM/fv8mOH1piS5MP7buXOOussOuecc9T3N910E3333XfUmqHBAAAAAADgR8YjWBOhMXV1dfTTTz+pBdrKy8tVr8XBeIL0Aw88oOv+0WAAAAAAAP8yGv6++Oq+deAP2z/88AP98ccf6rJ+/XpyOp306KOP0v3339/k7T/66COaOXMmrVq1imw2G3Xq1Ikuv/xyuuOOO45ownFTPvvsM7rxxhupqEhefJEbEGgwAAAAAAAcgZdeeomee+45Xbe9/fbb1W3NZjMNGzaMrFYrzZ8/n+666y766quvVEMkMjLS68/P77//ThdffLH6/pJLLlFzI3gS9d13302bN2+muXPnqh4HTlHitCS9vNsfAgAAAADQ3JQkX1106NmzJ02aNIneffdd1btw5ZVXNut2n3/+uWoscCNh2bJl9P3339Mnn3yiPrD36tVLLaymdyhQUzhpiXtBPv74Y7Xfffv2VT/nNRc+/PBD2rRpE40cOZK+/fZbuvnmm3VvBw0GAAAAAAh51113HT311FN02WWXUbdu3Zo9z2DKlCnqK5/V79evX/3Pk5OT6cUXX1Tfv/DCC1RWJgc56LV48WLq3r27uIpzSkoKvf/++1RVVUWPPPKI7u1gDgPo4qqUU0HIJL/B9tkKxFp6eKqudKUCm5wUkxImp2nsr5Nvl5HVUayZquXHbkyQ03doX6lYinBH6ErCMUZopwslhiWItZ1F23Ql7GSRnJJkSZRTZmqL5KQgR62cwGI2mMRap5Su8vYqKsRacpL8GAzh8jjTmn3yc2GJkG8X1l5+bTtL5QSh4h1y+gxL6tZFrO396y+xltqhs7w/heVizRgvJ/M4NF7fdS45Pcup8brQSjLTSl4Kz5Df9+lOfV3ylYXy7y6H267rtcbcGulhWslqWolksVnyNvfvkt/3SSXy75OqKvl1kWyR05UqSuT3TJzG8Ait/Qyvkvcz5keNv00QcilJPBSnofDwcHXxpj179tDy5cvV99zQOBgvqpadnU27d++mb775hi699FKvbr+goECtw+DBQ6JYbW0tRUT8/dkiLi6OTjzxRLV9vdDDAAAAAABBhz+o84dlz2Xq1Kle38aKFSvU18TERGrfvvEY4QEDBhxwXW+KiYkhh+OfEw/8OFle3oERwzzpeu/evbq3gx4GAAAAAPAvgw9Tkv43h4HP6sfGxtb/2Nu9C2z79r97gnNycjQbLg2vy6qrq+vP+G/btk39m+chsIEDB1LbtvK6Nw3xRGZ+nB48lIpxxGqHDh3U93a7nZYuXUqpqXJvd1PQYAAAAACAoMONhYYNBl+o+N/w1+joaPE6PBn64CFS+/fvp1GjRh1wPc+/Z82aRWPGjGnW9nnI02uvvabmR3DvwhlnnKGGJU2YMEENS+KGzCuvvKJ6HDjiVS80GAAAAADAv44gzahZ993KtWvXrtHF1Q7Xueeeq1aJXrhwoZr4nJ6eTvfee6+a4Dx+/Hh1Hd5OQkICPfbYY7q3gwYDAAAAAIDOOQSMU4gklZV/B3v4ordj+PDhKr61oYceekjFufJCcsXFxXTUUUepdSK0hk01BQ0G0MWZLyeikElOtcm0Zoq1/MoDJ+g0FGOW04cy0uREI1eZ/Aa2muXEF7fDpStdKMcmvxmLquW0kNQuctqPbfs+seaokVNUWJlDTjZp376nWHOVV+tKdXHXyAkl4VFyd21xWa5Yy+rYXayRU36eKkryxVpUbLqulKCIeDkFylVZq+v1ZC+WY/bMBu2VQas27RJrDrdT1/O7t0x+H6ZphDa5XfJjtCYk6vp9oZVMVGSX05U6pjQ+8ZAZouUxzEUbNom1xHbtdaVZab0u1G3r5MeRFCWnPRVWyccmpVxOEdpds0esWU3yezQmTR777KqoEWu1lfLKs5Y+8t+DVI3Usd0b1oi1uAT9H4gg+FKS/NVTwBrOIziYp+a5rj+cf/756uItSEkCAAAAANCh7/8WSisqKjpgUvPBqzGzhms0eAuvKn3VVVeRr6HBAAAAAAD+xQlJvrz4SVZWlko1YrNnzz6kzqs8cw8DJzSdfvrpXt/+r7/+SjabvC6LtzRrSNKiRYu8tsEhQ4Z47b4AAAAAAFrSvffeS+eddx5NmzaNTjvttPqeBO51uPnmm9X3t9xyS/0aCd5usNTV1bWOBsPQoUPJ4IUZ53wfDReXAAAAAIAQ1ApTkv7888/6D/hs69at6uvLL79MX3/9df3PP/vsM5VG1DCpiBOJnn/+ebXqMk9E5pjVH3/8kUpLS2nQoEH06KOPki+ceeaZ9M4776hJ11rRrkeq2ZOe27RpU78YhB4bNmxQmbMAAAAAAK0Nr5OwbNmyQ36em5urLh6NndF/7rnnVMNg5syZapgQL5bWsWNHuvvuu+mOO+6gsDA5jOBIcCLSV199pSY483oLzV3wzWcNBu5i+e9//6t7Q1dffTW99dZbum8PAAAAAEGiFaYk8YiaI1kb4aKLLlIXf5o4cSL16NFD9YB07dpVTcLmNKbIyMhGR/q8/vrruraDWFXQxVUqx5UawuSXlTFe7i7LsHbUFdfpLKmQt2eR9yXCGSHW8vb+3Q3ZmNSwFLFmzkoSaymV8mMv27JTVySlUSPilNnK5ChXMmlkHoTJkYauKjkm0uA06oqPzMzqrLG9Ol2xmynJcmTjrq3rxFqWRiSnMVp+zbhq7aRHZG95e7RKI8eUX/sa0alp1jSxVlosR/Wmp8ixlGvzVoi1rtHycxjRSd6XupU7dEV5VuT+nWveGMeOAl0xp1oxtq4SeXsx5r9z2BtTbZcjbFmb9p3EmnNfqa6o6dIy+fEPHHy6rrjs8r1yTLE1IlZXHG3dogOz45v7+ynRkqDreQIIRm+88Ub9tAGe/Mw9JI31kvilwfDee+9R+/Yaf9SaYezYsXTqqace0X0AAAAAQBDwZZqRH1OSWtqsWbP8sp1mNRguvvjiI97QMcccoy4AAAAAAL7Gcacmk4nGjRunLsFo9OjRftkOhiQBAAAAQNClJC1fvpxiY+Uhc9B8aDAAAAAAAAS4v/76SyU0FRQUqInQZ599tvq5y+VSyxocSVLTETUYlixZojJm8/LyqLa21usTLAAAAAAgCPG8dqMP7zuE7N69W6WR/vTTTwcMVfI0GF599VW1vsQPP/yg1ojwW4OhurpaxUZ9++236t9aEVRoMAQnh8Yy5FovKkNUuFwzy+9wZ628vS1V28Ral/guYs0cKSfepIdl6Ep6cu4v05X6Ed9TTkqxb9kr1qpqtRNBMhLlxJs9WzeItcx28nFzGeXHYYyUz14kR8pJOQV5ckqU3SUnQbUJTxZrW/auF2sdrHKIg1sjecrllBNvKsrlFKgIo/xac1fW6EpBUvcbr7FqqMkkluKth8bteVQUyglKbSOzSQ+tJCS3yyXWnEVyAlpWtx5izb5TTgmytJVTzqLzS8RaYan8PkwMl5PMrNHxpGXfNjkpqNolvzY69Owv1sI1Hn/lyi1iLSrnn4WoDhaTLCdWkVN+nZbv/Ce7/mAOt11XYlVslvz7eeu21WINIBgVFxfTiSeeSDt27KCePXvSkCFD6MUXXzzgOvyZnVea/vLLL/3bYOAlsL/55htKSEigK664gjp37kwxMXKsHAAAAABAa17pORA98cQTqrEwadIk9T2fqD+4wcCf13v16kW//PKL7u3oajB89NFHFB8fr5bQ9tWKcgAAAAAAIPviiy/UQm3Tpk2rX4+hMR06dKDFixeTX0d5lZSU0AknnIDGAgAAAADo72Hw1SVE7Ny5k/r160dGjeHCjCc88/Alv/YwcK9CUzsGAAAAANAoTHr2ioiICKqokOd7eezatYvi4jTmvTVB16f+yy67jBYsWEClpfIy8gAAAAAA4DvdunVTUwSqqqrE6xQWFtKqVavo6KOP9m+D4a677lIzsU877TRav15OIgEAAAAAOASGJHnFhRdeSEVFRTRhwgS13kJj7rzzTpVwevHFF/t3SBKPg/r+++/puOOOU7Ouc3Jy1KWxYUo8AYPXaoDA8/7P23RFklratxFre1ev1RU9WeOU4wWTwuRIQ4NGfGRtkTyWLzxcvt2O3XIjuW16V7HmKpNb/45dhbriWK3JckQkc5bI3ZTJGseteLcccxoXmSDWKsvlXsdwoxy5mnZ0T7Hmqmh8jRdWvStfV3SqMU6OxnXX1Im10rICXfGvWvGoZo3IYK1j1lR0qtbrrdwmx//Ghsld1qYkOQ2vYq8cxxrXIV1XdKoxWv6dULtNfu4tiXG6oo8NWu81U7SuqFatx8dSUnP0Re5qRMCW1WjEw9rk33tx27RjmiXJ0fLjd5NLV3SqNVaOo3XVynGs7ZPliOp1ufLvpx5Z2vG3AK3VuHHj6M0336TXXnuN/vjjDzr//PPVz7du3UrPPPOMCir67bffqE+fPjRmzBj/Nhh40vOIESNo7dq1ag0GjnPiS2O0ZmwDAAAAQAhCrKrX5jDwSfxRo0apVZ5XrFihfs4Rqnzhz+kDBw6kzz//nCwWuZHus3UYeLwUr78wduxY9dVqtVJrx62smTNnqnFcNpuNOnXqRJdffjndcccdR3QQAQAAAABaQnp6umoccMNhzpw5tG3bNjU8KTs7W00fOOecc474BL5Zb+ZramoqLV26VC0GEQhuv/12eu6558hsNtOwYcNUA2f+/PlqPsZXX32llsuOjJSHoQAAAACAl/DnV18Fbv7vszGfWTeZTGrYDl+C3SmnnKIuvqCrwVBWVkannnpqwDQWuBuGGwvcSFi4cKHKq/XMGufGA7fKHnjgAZo+fXpL7yoAAAAAeMHy5cspNjYWx7KlGgw8lKe2Vp6I2NpMmTJFfb377rvrGwssOTlZLZ/Ni9C98MILqtFwJBm1AAAAANAMmMPgdU6nUyUmaX1G55AivzUYrr32WjWPITc3l7Kysqg127Nnj2phetaPONjgwYPVGK/du3fTN998Q5deemkL7GXrVJwnp3vsLcsTa5bV+3UlyUQY9aVwmFI10i2cckJHRJJGupJZ3pno6iiN7clpOJYOqbqSWxyV1WKttkp7LZQok7yv4dlymlXVju3ynWokyURHyHOZXHaHrpQoc0f5uFly5blH2yrlx9ApTk5lMiXLZ6Piw+RfmW6b/PiqqsrFWqRJTgIyxWq81ppIQrI55LSn+LgUXUlXkQXy+8nhlpNrHLlFpIe8tSaSpzTShbRev1q/L8LM4boSm7TeZ8yRJ6cWVds13vvV+k7adW4r57C7KuTjVlQh/153axy32DQ5IctRIP/e05K/V35vp1nTxFrHdJxphuC0fPlyevDBB9Uomro6+Xc/z2NwOOS/VV5vMNx66620bNkyNZxnxowZKjGpta787JktnpiYSO3bNx6zOGDAANVg4OuiwQAAAADgY+hh8AqeT8yfxz29CjxdwBfDsHQ1GDp27Ki+cpTq6aefriYS8wxtaR0GzoJtKdu3b2+yC4Z7GBpe92DcWmvYYisvl88WAgAAAAD4w0MPPaQaC9dccw09/vjjKpTIF3Q1GBquucD5rna7nXbt2tUq12GoqPh7WE10tLzojicSVmoITJ06lR555BEf7SEAAABAiOFzzL4anNI6B734BI/46dq1K7366qs+/cytq8EgnYkPVvfcc49actuDGxaeXgkAAAAAgJbAcxJ4FWdfn6DX1WBo27YtBYqYmBj1tapKnhxYWVmpvkpjvsLDw9UFAAAAAI4cf8D11Yfclh7d4k/dunVTywT4WtB32rRr10595UnNEk/Nc10AAAAAgNbuhhtuoJ9//tnn84V19TAEkr59+6qvnEvLQ6kaS0r6/fff1deGazQAUeeuyeJhKIyUowJNSX/36jTGaJUjJO07C8SaITJMrG3a9IdY65TSVVcUYGllka5o2NpSOSawtnifrvtM7dBZX/wpPxfR8vF2FsqT92uccixbdI0c51hqlx+/xSj/ujGVy/GR1k0uXY+vo+XvcIbDjb/Virl0Oh26Yj7DjfLr15Iux/u6qvSvdxMeHqnrta8Vjxp5vBzJad4sv7537F4v1jLC5RjMiKwksVZYIL/2s5I6iTVjhBzFq2X79rViLckiP4e5m1dq3m+7hA5iLa5De7mmcZ/2bfJzUbNPPhMZmSr/zreXOfTFv2q8n+LMcpKLocYm1hIs8qM3aEQf/7xGjr8d0SdTrIGPICXJaw2GJUuWqMRSXlOMV3rm1a1bpIdh5MiR9PTTTx/RhngVZb4ff+N1InhpcDZ79uxD6rzKM/cw8JAjTnwCAAAAAAgEHTp0UOsvcCDRWWedRVFRUWrEDP/84Isn5dRnPQzz5s074gXa1q1bRz/++CO1BF5k7rzzzqNp06bRaaedVt+TwL0ON998s/r+lltuwSrPAAAAAH6ADgbv8FdyabOHJPHEYGkHmnv7lnLuuefS+PHj6fnnn6djjz2Whg8frmJWuQFTWlpKgwYNokcffbTF9g8AAAAAoLUmlza7wfDJJ5+oS6B67rnnVMNg5syZ9Ouvv6oWGHfN3H333XTHHXdQWJg8xhgAAAAAvN3D4KuUJAoZbf2UXNqsBgOvkhwMEVUXXXSRugAAAAAAgBcbDA3HR0Ho0EqN+N4mp+HEVcgvK0O4nFCyr2a/WLPUyffZMVFOEaIweXuVhXKSSFxkglhzVMspI7UuOdUmPjFV13ExZcSLtSSLnAbDHLly2pPDJqeQpKfJ6Szuyhqxlta5u6590Uo2qSyRU1bcJKf9xCTIiS+kkSBhMMlZEGaT3BNptMspMsW2ErEWmSs/D7FtteeOuW3yNkkjCSm/LFesZbXrJtZsq3bp2peceDmy2tJeTlxz7JV/z2REpou1ykI5cS3KEqUrxS0rIkO+ncWsa3tNvd5qN+8Ra5Y4q1hzu+TnXou7uk5Xypk1QU6JkvdS+zVTWC7/fo7XSEkyJshbPKGX/JqBFoCVnr2KFxV+55131CiagoICNfx+8uTJqrZp0yb1WX7IkCEUESH/ngvpWFUAAAAACD2ckskRo+PGjVOXYPXDDz/QZZddRiUlJWriM48Kysz856Tvxo0b1Xze9957T/dIGzQYAAAAACDoVnpevnw5xcbK630Eg/Xr16skUJvNRmPHjqUTTzyRLr744gOuw2szcNzqF198gQYDAAAAAEAomTJlCtXW1tJHH31E559/vvrZwQ0GDvbp06cPrVq1yrcLtwEAAAAAeH0hBl9dQsRPP/1EvXv3rm8sSHg9tfx8ebXzpqDBAAAAAAAQgAoKCqhLly5NXs/hcFBVVZXu7WAOA3hdXbX8grTvLNWVzGMvltNSDJHhYs0ULyeUWCtjdSUIpR3dU6yVrt2iKwnJYJZTeyqWrhdrEUlyOgkrq5HTebREy8FEZEmM05fqYo3SlehjjZVTomorKsSaMVojCUIjmWbPXnkRnPSUHLFWopGeldZVTh4q2iy/Zqp3aZ8N0nz+nU6xlE5y4k9dnvw4IjrIKTNVW+XkpTCz/B6tXCcf75gBXcWa7S850Sc2VX58hgj5fejcX6Yr6SolWj4uZWVyYhNrM3igWDNuk58LR57Gm1RDzLFHiTVXgfx+iqus1pVkpiXcGKYrlUnrd4m7zi7WIjTe9+B/WOnZO+Li4mjPHvlvr8e2bduoTRs5la4pePcAAAAAAASgfv360R9//EG7dsmx12vXrlXzF/71r3/p3g4aDAAAAADgX5jD4BXXXXedmvR86aWX0t69ew+pFxYWqutw3Cp/9WuD4bvvvtO9QQAAAAAAOHIXXnghjRo1ipYsWUIdO3akkSNHqp8vXryYzj77bOrQoQP99ttvap0Gjlf1a4Ph9NNPp65du9Jzzz2nVpYDAAAAAGj+J1ADGXx04fsOJbNnz6Z77rlHfT9v3jz1dfPmzfT111+r9RkmTpxIb7zxxhFtQ9ek56OOOkotFDFhwgS6//776YorrlAr6PXsKU8GBQAAAAAA7+LVrB9//HGaNGmSilnlCc4ul4uys7Np+PDhRzTZ+YgaDOvWraMFCxbQCy+8QF9++SW9/PLL9Morr9CQIUPolltuUSvOGY2YHgEAAAAAgtDqCPC5hISEJtdj8Hus6tChQ9WFo5z+85//0GuvvUYLFy6kRYsWUUZGBt100010/fXXe6VVA61PyjG9xZp9y6GTbjwqi/LEmqWoWFcso6tMjnF1lsgxgdVOOSawziXHqpo1Hl9cp7ZizVVZK9aKd++U7zMyQay5a+RoSRZhlKNFHW45djM8W37f7tu2WVcUYrzJKtZqS+U4S4tRjsGMTE0Wa8aUGLFmW7tbrKXFZeiKxk1uky3WHPn64m0rHJXaVyiSS5VO+X2RHJ8m1swa0ZPOIvn9tM8mx4e2TZLjUcPkp57qVu4Qa4Yw+bW2bstvYs2oMRK3S5Icf5scnSLWTG3kqOE4jchgtmPuIrGWGi6/D80p8jbN2Um6Ypq1mAxy9LOWWletrsjkiAr595Pb5hBrxliN+GYAaLl1GDIzM+nRRx+lBx98kD7++GPV68ATL/jf/HOeiMG9DkcS5QQAAAAAwcNgMKiLr+47FP3666+0ZUvja/sMGDCAunfv3vILt1ksFhXpxA0EbixMmzZNTbR499131WSM448/nqZPn46GAwAAAACATv3796dNmzap+QrcEPB49dVX6a233mr0NkcffTStWLGi5RsM+/btU/MY+JKX9/ewk759+6p4p/fee0/FOw0ePJg++eQTFfMEAAAAAKEJKz3r8+OPP6oP/tdee+0BjQUPXm+BJzo3lJubS6tXr6b58+fTsGHDWqbBwN0fPAzp008/JbvdriY784SL2267TTUQGM/c5onR48ePp4cffhgNBgAAAACAw/T555+rIVd33HFHo3WuzZ0794Cf7dixQ63RwCft/dpg4BXleKjRzJkz1VLT3Jrhmdk8yZnjVTnGqSFuRIwdO5a++eab+nxYAAAAAAhR6GLQhRdha9u27WHNR2jXrh316tVL3VYvs96JzqWlpaqh0KNHD9VzwGsxREZGat4uNTVVzWuAwGeIMOtKvNFKZ3HV2HQlomjZXSqnrCRa5ISOBI2aQ+M1vHfDOrHWJlxO9IlPTNWVrmSrqyEtWklIWgklpJHsEmGSE6tqnXJqU6FGQlZqFzlFx7Z9n1hzFJTpSjSydJCPt2Nnga7t2V12sRYRH6crfYaztbVo3TY5SU57MkbL6Vn7d20Ta0kxcmpPh6P6irVcjfdFamQbXe/7qip50dCj2shrAtkr5XQ0Y4z8N8ztkN8TZVvklLPo6FjSktVR/qNft3u/rtdizb5CeX86Zul6HCV2eXvZffqINcde+Xa1Gsl4UZnyezR3xwax1rZvO7EGEAy2bt2q5gU3hj+XSzp37qzmPOila7EEbiyceeaZqstjzZo1qmehqcYCmzx5sho/BQAAAAChy5OS5KsLGzhwoDoTzyNigkV5eTnFxTV+EooXVOb10RrDn9MrKuRo7KboOm3Ly0136NDhsG/XpUsXdQEAAAAA8KXly5dTbKx2L1+gsVqtVFZWJiYh8UU62R8VFeXfBoOexgIAAAAAQP0YF13jXJrBV/fbCqSnp9PKlSsP+3Z8G76tXkF8SAEAAAAAgsfxxx9Pe/bsoUWL5FXiD8bX5WjVQYMG6d4uGgwAAAAAEHRzGILRFVdcoSY333zzzWo+Q1N43gJfl4/JZZddpnu7aDAAAAAAAASAE088kUaMGEF//fWXWrhtzpw54nV5OQOe+L1+/Xq1mNtJJ53U8is9Q2gxxGlEa7rkGFBTpVaEpPxyrKuuEmsWo0VX1KNWhKAxIkysmSLlxx5ZIO+n0WLWFZ1abpNjCeOsSaRF3lN+IPL5AkO0fMuY2ESxZtFIYNCKAK3amivW7G45rjQ2TR6PWb0rX1/MaaocN7t36wZd8aD2skqxZjHIr9+ImBjSFCbflmzycXPsKxVraf17izX7+j264m/T4jJ0vbcjk+THH6MRgWrbXyJvzyXHIpflyb8T4szyxEk3uXTFvzKrxvvQYpUnKLptDvk+O8nRqZXrtsu3S04Ra+Yi+f3rtsvxzYX7d4u1CKMc7+sql+NvY8xWsWZMajqxEVoJrMOg2+zZs9Xwok2bNqnFkHkttH79+lFKyt/v4YKCAvrzzz+ppKRE9UZ06tRJ3eZIoMEAAAAAABAgkpKSaNmyZXTLLbfQe++9R8XFxWphZM9QLM96DLxw8iWXXKJiZePjNdZeagY0GAAAAADAr9DBcGR4LYa3336bHnnkEfr666/pjz/+oMLCvxdtTE5OVj0OvGZax44dyRvQYAAAAAAACEAdOnSg8ePH+3w7aDAAAAAAgF/5Ms0omFOSWgpSkgAAAAAAQIQeBtDFeJycwhH3U5KuxJDoMDmZqKJWTplJSc7UlYQUm5WhK0HIkVcs1hLbtRdrTo1kGpujTqxFm6LFmkFjP1U9Sk47qtgrp9qYS8t0pRYlDuwp1mr/3CbW9tkKxJrVJCfFuCpqxFpUZqpYK8uVU5nik+TnMD0xS9exNpTKSUBkk1N7nFVyehazJMhpMaSRdFVaJiflmFfI6TRmjaSrnTVyGk6SXU7WSsloK9aMVjlFx5GvLwlJK8UtKSpZ1++EeI3VU7UShNTdZsgTEUuWrNX1XBj2FOt6/BEayVqVTvk1HLZN/l3SJqeDWCvPzRNr+cXyezTnuGPEWsJVcsoXtDJY6TmgoIcBAAAAAABE6GEAAAAAAL/CHIbAgh4GAAAAAAAQocEAAAAAAC2zEIOvLkFq0aJFaoVnf0ODAQAAAAAgAAwdOpSmTZtW/+9hw4bRk08+6fPtYg4D6DJx/CCxNuWV5WItslZOLwnr206spayTX6qGcItYCzfKyUsurQQak5xAUmWXE5viSE6DMbdNEWt1m3Zp7Ir82AtK8klLYlWCWIuOsOpKhLFoPIfO/XIKlsEo32emVU660mIIk49N8W45ISvOKid52XfKiU3lNjk9qqyoQqy173S0WDNUyQlZlvbya4btXLJUrEWZIsVaUrcuYs2tsT/GeDmxqnttlq5Eo9258pmyrLROYq2yqlRXSlJyfJpYM6XL7xdnkfy+d+QWiTVjvJxyxiqWrhdr1mSN598ppy/lFewQa+1PHyrWcr9drCuNbtPedWKts6kz6aGV5lTw2yqx1i/9FF3bA//DSs/6ud3u+u8XLFhA7drJn5+8BT0MAAAAAAABICYmhvLztU8W+gJ6GAAAAADAv9DFoMvRRx9N8+fPpwcffJA6dfq7F3bLli301ltvNev2V111la7tosEAAAAAABAAJk+eTBdeeCE9/vjj9T9bvHixujQHGgwAAAAAEBAMRoO6+Oq+g9VZZ51Fv/32G33++ee0c+dOeuONN6hjx440aJA8t9Qb0MMAAAAAAEFn4MCBZDKZaNy4ceoSLHr37q0ujBsMgwcPpv/+978+3SYaDAAAAADgV9wH4KvlEjx3u3z5coqNjaVg9tBDD1Hfvn19vh00GMDrDBY5krTaWS3WTBvyxFpluRyhWF4sR3lmZsmRfk6NGEyt+MxokxyT6CqXH5+70CHWIuLjSA+LTfstbIyQY2XJ6RJLBo1YVS25W/8Sa2mRcpxl+MAOYs22Xk6DsBfLz5PZIMftmpJjdR2XRIoXazH5xWLNECHvC5XIcZ21f26Tb8f7Y5FjQMPM4WLNvm2fWLM55FjVmPSuYs1VKr/2tSRb5ChiZ4n8Ho2JlW9ntcnvNQqTn4t96+WI0zY58mvUWSMfM1dplbwv/NoPl+Nv3Rr3a4iUn990a4ZYq10kx9gaND69rc9fLdayIuTtVdXKr+/YLPl20SXye9SlEe08oo++iGaAQG4w+AMaDAAAAADgX0hJ8iqHw0Eff/wx/fTTT7Rnzx71s8zMTDrppJPUJGmz+cg+8gd1g2H//v303XffqQt3S+3evZuMRiPl5OTQyJEjacKECX5Z7AIAAAAAwBdWrlypGgXbt28/YFE39tprr9EDDzxAH330EfXp00f3NoK6wcANgnfffVc1Enr27Elnn302VVVVqcbDjBkz1ASRzz77jEaMGNHSuwoAAAAQMngInNYwuCO971CRl5enToIXFhZSamoqXXLJJSo1iW3bto3ef/992rp1K51yyimqYZGenq5rO0HdYEhMTKRHHnmErr32WtUt41FZWUnXX3+9Ooh8YHnBi4QEeSwwAAAAAEBr88QTT6jGwnXXXUfPPfccRUYeOC9qypQpNH78eNXT8OSTT9L//d//6dqOvpmNAeL5559XK+E1bCwwq9VKr7/+ulpeu7i4mObMmdNi+wgAAAAQmjFJPryEiG+//VYNtX/ppZcOaSywiIgIevHFF9V1juTzblD3MGiJioqirl270u+//67mNoD3hF3SS6zF/Edfkkp0hFWsRTmjxJqrokZXElBCepaudKVNe9eJtY5R7cWaKUx+K9aWyklA1U758bF4jSQVrQQassspM0aLvK8p7mT5dnFyulTdcjkNyKWxL+bICLEWFiP3Gtbt3i/WwjPkx+AsLNeVSLV73SqxZtA4b9MmXN6XI0nXctfIKTO1tlp5e1v2ijVXpXw7g8brOyJJTjtylckJQ26NNCstWslD4cYwXQloWslaWglgrHbpFl2/o0oL5FS5pM6ddD1PCRrvNZtLfs1EGOX3odEgP4a6vEJd7+3IId3EGkCo2b17N5133nlqvQkJT3g+7rjj1GJveoVsg8Fut9OOHTvU93rHcwEAAADA4cNKz94RHh5O5eXyySyPiooKdV29QrbBwEOSeMwXd9+cdtppmtetq6tTF4/mPDEAAAAAAL7UvXt3FaXKPQ3Z2dmNXmfXrl3qOkeSkhTUcxgka9asoTvvvFN9z1FTPKtcy9SpUykuLq7+Ij0hAAAAANA0TGHwjquuuopqamro5JNPpm+++eaQ+tdff63SQGtra9V1g66HYfLkyfTll18e9u14FvjgwYPFem5uLp111lkqKYljVu++++4m7/Oee+5REa0NexjQaAAAAACAlsSpn5988gn9+OOP6vMtJ4S2b//3nElel4HDfXhtBm5Q8HWDrsHAubIbN2487NtxQ0Cyd+9eGj58OO3cuVPl0X744YfNyurlMV9HMu4LAAAAAA5e6NlX6zCEzpE2mUwq/YhTQTkNqaioSF0aJoOOGzdOLTPA65IFXYPhnXfeURdvrvo8bNgw2rRpk2pl8UxxNAIAAAAAIJCFhYXRtGnTVKOA0z/37Nmjfs7LCgwYMMArn3dbbYPBmwoKClRjYf369aqHgYc6cS4t+MbRp3QWa7+9tlys2faXiDVLohwfWVdULNYcdjkKMTYrQ1+Eoob2kW3FmkGjZa8VdagVO2nPL9Dcn535ci9dRniaWHO6nfL+WGPEWphZjk6t2SdHKO6zyY8jynhorrRHIsnRqUUVcnRqm/Zy7OTSdfPEWpfov1fPbExsmPwaTbTI+xmVI6e02XPlY6bqZXKPaq1Lfk3FxMqvqZpKOXY0zubQFQFqSrB6/b3mqJEfX2RvOcLYXSHfzporx6O6NKJobQ75mLl+3URaKhxyvLHZbhFr8Sny7y9Hvvy71FUrPw5TgvzeTimWj02VU46/jU+U5wiatKJxw+TH3vffJ8m3gwDrYfDdfYei8PBwGjRokE/uO+gnPXMSEjcW1q1bpxoLX331VaMLWwAAAAAAQIj1MPBED24krF27Vg1D4p4FNBYAAAAAWhZ6GAJLUDcYrrvuOlq9erWaVMOzxseOHdvo9c4991x1AQAAAACAEOthYBwnxYlIknbt2qHBAAAAAOAnhv/956v7Bu8K6gbDggULWnoXAAAAAAACWlA3GKBljOiTKdb+SJZTODZu/02s9YjsJdbCzHJcmMkpp7qU5+aJtbhOctpRxZbtYi3aIqfBWNqmiLWizVvk+yyWH0OSRU67YZEmOQ0srJOczuPYKacWGcxyVoIxLkqsWQrk1JO2beTUIr0pQVqcheVibWDyALFmSo3XdZ9RGrer2y2nOeXWyq9Rlh4uJ9CUaaTvRNfIr9P0xCyxZoyVn9/qPfvEWpRJfvx5xbvEWqw5VqztrZO3F7Fcfv1mZ3URa26N1B6tFKgwkn8HmTWeexZXKP8ZNljlgI7SAvm1kZitkdZWJadE1WokzoWHy/sSHym/nipLNO7TGKYr6UrrbwwEEB+mJKGDwfuCPiUJAAAAACAY7dq1i3bv3u3z7aDBAAAAAAAtkpLkq0uoaNeuHV1yySU+3w4aDAAAAAAAASg2Npbat5eH8HkL5jAAAAAAgF9x5D1ffHXfoaJ79+4YkgQAAAAAAI27/vrrafHixbR8+XLyJQxJAgAAAAC/Mvj4Eiquvvpquvnmm2nkyJE0ZcoU2rhxI9XV1Xl9OxiSBH6V/OBQsdb1EjlesapKjqyMjpajF8OT5dhRY26hWLNrxYpqtLONkXJMoCFCjhWNDYsTa9X2arFW65IjEpuKVdWKTtVi0ojGLV0rx8NaY+V4SWO0vJ91efLzFJ7dRqwl5sm/3vaUyYkSWWlyxKsjT46INFrlx2DPl29njpRvl2OQI06ZSeO4ZdrkGMy6uhqxFu4063ocWrGbWsctJSxZrJnD5PcTacSqZiXKsaLbdq0Ta+2T5efeVWMTazaH/MfZovG+byrK1agRYRxnTRJrLo3oVHOm/DsxSiM217mvVN5eZa2u6NSIznI8avI9J4g1gOYaOHAgmUwmGjdunLoEI5PJVP/9Aw88oC5aQ7UcDjmqXQsaDAAAAAAQdHMYeJgOTwoOZm632yfXPRgaDAAAAADgV76MPw2hOc/kcsm9lN6EOQwAAAAAACBCDwMAAAAA+JUvJyeHUAeD36CHAQAAAAAggG3dupUmT55MgwcPpq5du6rvPZYtW0avvPIKlZWV6b5/9DCAX113Wjex9kR/OaEkPL9UV4pO1U45XanCUSnW0hPldJrYDDllpHjHdrEW/ZecdmRJlFOSomvkt6nVJCcPNZXsYrDKqTaF++UUobi/5PusccrpO1E1cgJLZbn8/MZ1khNvdm9YI9bSItPEWrxZPt7OkgqxFtYpXazVbt4j36fbKdYstfpSkNQ2K+R9NRn+Sc44WJg5XKytKVgt1rpEd5Tv06kvPaxc4w9YtPxSo7TwVLFWWiYngLXPOEqs5e+V37/ZffqINds6+XZlW3aS3iQzV4X8fqqskt8zMZHysbFv3y/WTMny5FBTqsbvGo2kp6rcXLEWXmvX9bcCggMWbvOeN998k2666ab6OFU+toWF/3w2qq6uprFjx1JYWBiNGTNG1zbQwwAAAAAAEICWLl1K1113nWoMPPnkk6o34eA0pBNPPJHi4uLoq6++0r0d9DAAAAAAgF8hJck7uJHADYQ5c+ao4UiNMRqN1KdPH/rrr790bwc9DAAAAAAAAWjx4sV0zDHHiI0Fj7S0NMrPz9e9HfQwAAAAAIBfYQ6Dd5SWllJOTk6T16upqSGbTWNiWBPQwwAAAAAAEICSkpJo507tcAW2ZcsW1cugF3oYoNUwn9tVrNn/7xexZrHK6TsWk1WsxWikrBTkyW++1DbyfmrR2s+Kwn267jO+U3vNuqFSjuBZs/03sXZ0t0FizVUip0u1iUoQa5t3yuk7yWFy8pRzf5muJKRym3y7OGuSWKurrhJrpvwSXc9veIL8OtTiqvo78UJPElKpXX78MW55f/p0OV7en3I56auwdK9YSyT5+Y0NkxOrqu3y9qIjrF5P9NF6Hboq5PdSrUuu7bfJKW6sS4qc2qQlyiS/3mqLinUlZFXvkocrhIfLqWqGMLOu/Wzz1KliDYIf1mHwjmOPPVZNZl63bh316NFDHLbE9SuuuEL3dtDDAAAAAAAQgMaNG0dOp5MuuOACWrly5SH19evX0zXXXKOGgN188826t4MGAwAAAAC0SEqSry6hYvjw4TRhwgTatGkT9e/fn7p06aIaB99//z0dffTR1KtXL9q8eTPdeeedqjdCLzQYAAAAAAAC1PTp0+nll19WcxR4rgLHrHIi0tq1aykxMZFmzJhB06ZNO6JtYA4DAAAAAPiVgf/zUVcA33eouf7669UCbitWrKBt27aRy+Wi7OxsGjhwIJnNR/5xHw0GAAAAAIAAZzAYqF+/furibWgwAAAAAIBfISXJN3g4UlFRkfrKkau8yrM3oMEArcbE8XKU59S3Dp353xy2LXJMoCUrWaxZTdFirWprrlgzGyzyzpjkN61F43YRMTFirWjzFu3Y1UQ5OrZnam+xVrxju3yfcSmkR9vIbF2RpM4qObLSlCAfm4giOZI0v0x+DhMtCbr2Rev15Cws1xXjqhVlySK7y4v1mDbmyfvjdIg1x75SXfGZEcYI+XYar/3CqgKxVu2qEWtukuNRY0rk/XRrxKqaIyN0vSeSOncSa/H7td8vO4u2ibVES7yu472rVn5950RkibWoTPn3hT1fjmo1ajy/dpddrF13WjexBgCHZ+7cufT000/TL7/8ohZpYxEREXTCCSfQHXfcQaeccgodCUx6BgAAAAC/QkqS93AC0qmnnko//PADVVdXq94FvnDDgX92+umn08SJE49oG2gwAAAAAAAEoHfeeUf1LHBvAjcKVq9eTRUVFeqyZs0amjRpEkVGRtKzzz6rrqsXGgwAAAAA4PcJur68hIoZM2aQyWSi7777jp566inq2bMnRUdHqwuv/Pzkk0+qGh+TF154Qfd20GAAAAAAAAhAa9eupcGDB6u5ChJPna+rFyY9AwAAAIBf+XJF5hDqYCAeipSRkdHk9fg6YWFhureDBgMEhDuWjRVr//evl3QldFTv3KUrgcRk0kiKiZTfjK5KOWEnIilR3l68nCBkKpeTS1hhUZ6ux6iV+uIsrRZreblbxVpmRzkRZd+2zWItOVpOmakslBN2Ik3y4wszys9TZKqcdqTFkSc/F9X2an33WVupWa9ZtUaspXborOsXv6tKTpdy18i16AirfKcaKTqpbTvK+1Jr17UvWtvTSmwik0ksRdfIyWn2nfLrMKyr9h/y1IoKsVbprNL1/tVK+ooZ0FWs7VyyVKxlpLQTa8ZoeV/u33O/WAOAI9e/f381b6EpfJ0BAwbo3g6GJAEAAACA/1d69uF/oeK+++6j9evXq7kKEp7bwNe59957dW8HPQwAAAAAAAFg0aJFB/ybJzPfcsstdM8999BHH31EV155JbVv317Vtm/frpKR/vjjDxo/fvwRLeKGBgMAAAAA+BXmMOgzdOjQRlOgeN0Fbhj8+eefh/ycPf/88ypRyeGQF+7UggYDAAAAAEAAGDJkSIvExqLBAAAAAAD+5cOUpGCewrBgwYIW2S4mPQMAAAAAgAg9DBAQIjSiEMOGy7GMzv1lYi26TZxYc5XJMZhuh4v0sGnEJ4bJu0mF+3eLtT21cmwq650pR6gZwi2kh7NEfhxmgxxLaUyUYyktOzR+FWk89w63HLtpTkkVawlyCibV7CsUayV2+YnK7tNHrLnX54q1sPbyfuZuWEdaYsxylKm7TiOStFojklSDKTlWrNlzNY5bdalYS9LYnqvWJtaMEXI0rtumMUbXKb9/3Ro1p9sp1kpr5ddF0kbSZDHK70Mrye+ZiA7pYq1sU7lYy1924Pjm5r6etI5b+Jh+un53Q2gzkkFdfHXf4F1oMAAAAAAABLDa2lr6/fffKS8vT30vueqqq3TdPxoMAAAAAOBXSEnyHl5nYcqUKVReLvcueqDBAAAAAAAQQl544QW666671Pe9evWizp07U0xMjNe3gx4GAAAAAAi6HoaBAweSyWSicePGqUuwNhjMZjN98skndNZZZ/lsO2gwAAAAAEDQWb58OcXGymENwWDHjh1qbQZfNhYYGgwQ8CY+capYm14opx1Vf7ZSrBnj5HSSgn27dKWMxA7uIdbqlm8Ta0lRyWLN5pJTZJirUp74ZKiRb+soKNOV6mPZLCcola6Q42Li41LEmr1Sfg4jjBG6koDsLjlByK6RvJRgkZO1StZuEmsWg5yEU7JJPi5twuXnnplio8Saq7RKrBkiw3S9Zlw1xXLNrZE+9L+VRhuTXyYnSKVbM8SaOT1BrDnyS3Q9doNGEpClSq45NBKUbA7tRKqIePk1xWdG9TxPWr8zzFlJuu7T0ll+30+8a6hYA5Dw4mO+WoCsJRY2aylt2rShlBT5b6i3hFzeWWVlJXXo0KH+hZqbK/+xAgAAAABorU477TRasmQJuVz6It+bK+QaDHfeeafqvgEAAACAlmHw8SVUPPTQQ2Sz2Wj8+PHqq6+E1JCkuXPn0n/+8x+65ZZb1CQRAAAAAIBAlZGRQb/88gudffbZ1LVrVzrppJMoJyeHjMZD+wR4ZM0DDzygazsh02DgbNprr72W2rdvT9OmTUODAQAAAKCFYA6Dd/Acseeee442bNighiW98cYbjR5rvh4aDM1w++23q/kK8+bNo+hoeUIrAAAAAECgLNo2Y8YMFa165plnqnUYrFY5gEWvkOhhmDNnDs2aNYtuuOEGGjZsWEvvDvjRLa+cK9ae/Wu/WNux8g+xlh4up4UYLfJbqvjn1WLNGhsv1mor5OShWLN2XJwpKUZXio45RU5ucZbqSy0qscvJS1aSH78lUd4Xi01ONDLnyEkxtWsKxFqZQz7eiRZ5P60R8nNhsEaKtQhbjK6EKKW8ibrApJEUVFRbJNZSkjPFmq1Ufn7bZLYTayX5cvCEy+7Ql+ZUK4/jNcfIz4XbIU8aDNd4PaVulKcDGsK0/8zWahy3iKREXSlgptR4Xe/fsKPSxdrkb64SawB6YKVn73jttdcoKiqKfv75Z+rbty/5StA3GEpKSuj666+n7Oxs1QrTo66uTl08mrP0NgAAAACAL+3evZuGDh3q08ZCSKQk8QTn/Px8euWVV3Qv3jF16lSKi4urv3DjAwAAAACOrIfBV5dQkZaWRjExck910PcwTJ48mb788ktdXTODBw9W33/66ac0e/Zsuvrqq+nUU+XFvZpyzz330IQJEw7oYUCjAQAAAABa0nnnnUfvvfce1dbWUkSEPCw4aBsMeXl5tHGjvAKq1sJsrLCwkMaOHavipp555pkj2pfw8HB1AQAAAIAjZ/jff77gq/ttjR5++GH6/vvv6dJLL6VXX32VkpPl+VZB2WB455131EUvzqTdv38/ZWVl0bnnyhNfR40apRoDY8aMURcAAAAAgEBJAe3atSt9/vnnNH/+fOrfv7/mOgyvv/56cDUYvIWjVPkiWbp0qfrKE0YAAAAAwPeQkuQdvO4CNwRYRUUFLViwQLwuGgyN4F4FXqRC66B5ZpdzLwQEpwiTPK//9l9uEGvT20/TFVWau2GdWEuwyPGgbqcc5+hwO3XFsTYVnerQWEI+XCOu1RgXJda0Rk9mZ3cSa65ieT9J49jUFcuRlLSnmPRom9RBrLlq5GO2t3KvWGtjT9YVxWs0aOdSmGLl56KipFCsGUrkSNKkiCSxll+wS6ylxWWINXedRvytwaIr3levgrydum5nLsjT9RisVjkaldmr5GNj0nh9W6zyc+/Ik1/74QPk1zeiUwECz6xZs/yynaDvYQAAAACA1gUrPXvH6NGjyR+CPlYVAAAAAAD0Qw8DAAAAAPgV5jAElpBtMGjNbwAAAAAAaO2uueaaZl8Xk54BAAAAIGBgDoP3UpK0eEJ++EQ5GgwAXk5QmrT9brE2PWeKWEtPzNKVsFNWWaQrgcVtc5AWgzVSrNUV/r3IYWMsVXKKDtXKqS6uMjntyF5Tp+txGMLkjtAyR7lYC9dIAiq0ySky8WFy2g9pPIdOktOswo9uK9bcFfJ+OosqSJPJJJasEXLSld7XTLo1R6yZM+U0IMcuObEpOlreT1dFja73TJlDPm5xZjnlLDZMTmWyOeTXr7VHe7HmKq0Wa+q2NjnpbE/ZbrFmLJYXpkqPk38P3fbtVZr7AwDBkZLkcrlo586d9M0339Dvv/+u1mvo3bu37u2E7JAkAAAAAGgZ3OT11XrMobPOMzWZksQrQU+ePFmtAv3nn3/q3g5SkgAAAAAAgtSUKVMoJiaGHnzwQd33gR4GAAAAAPArpCT5j9lspn79+tG8efN03wd6GAAAAAAAglhNTQ2VlJTovj16GAAAAADAr5CS5D/r16+nX375hbKzs3XfBxoMAAAAAAAB6K233hJrFRUVqrHw9ttvU21tLV122WW6t4MGA8DhRq7uuleszbjofbHm2Cl3BZo3ytGLMWmpYs1glmM12f5d28RauDFMrBljo8Ra2c5dYs3plqNF48KSdEVWyntJlJIhx5VW7N0n1tLC5WNasE9+fEkR8mPIzuoi1upW7xRrJo1jXVEix5Gy+E5ynKfT6dQVx2ovLhNr4RnJYs2xR46qtXSVo2ptf+XqituNNkWLtfhE+fk1RkeINVe5/D50aNTcGlHDzhI5vrip2OBkixxVGzOgq1g7863zdf1uA/C3/y0RAEdgzJgx9WstaC1UfM4559D999+veztoMAAAAAAABKCrrrpKbDCEhYVRZmYmnXzyyXT88ccf0XbQYAAAAAAAvzL87z9f3XeoeKOJlZ69BX2TAAAAAAAgQg8DAAAAAPgV1mEILGgwAAAAAAAEeCpSc+c86GFwe6ZPQ7OVl5dTXFwclZWVUWxsLI4cNMuTp8tvcttaOSnGqZHOYnfJ6SwszBwu1ixtU+T92S4nDNU4a8VakV1OysmJyRFrDptNrJnD5JwkQ6RcM7eTH5+ruEqs7dq6TqzFmWPEmsVgEWvh4ZG6HrvJpH1ORytdqtYlP09aTAY5QckaEavrcVQ55eMdF5kg1oqq5ZSoBEu8WCu26VucqE1mO12327ZLfs1EGOVUJpaR1VGsmbPlVK675l/TzL0DaF2fWzz7smDldrLGyL9Tj0RlRQUN7dO+VTxebzMajZqpSE3RTNDTgB4GAAAAAIAAMGzYsMNuMCxZsoSqq6uPqKGBBgMAAAAA+BXmMOgzb968Zl/3559/psmTJ1NNTY36d69evXRuFSlJAAAAAABBY+3atXTWWWfR0KFDadmyZZSdna3iV1esWKH7PtHDAAAAAAB+hR4G79u9ezc98MAD9O6776q5CklJSXTvvffSuHHj1CJuRwINBgAAAACAAFVSUkKPP/44vfjii1RbW0tRUVF022230V133eW1Sd9oMAAAAACAX/H0W9+t9Bwaamtr6f/+7//oySefVOlTJpOJbrjhBnr44YcpLS3Nq9tCgwHATyZ/I2cfP/3QXLFm+3KDWCveKNeYVmCdcX8Z6RFpkmMi28Z2kG9okheWNzldYs1glSNJnSUVYq1ixXpdEajZWV3k+9wrx80WakTKZpjTxZo5Ujt2U8vOii1irWtWb/mGNjmON7d4p1hz1shxfAnpWWJtX26BWLNXOcRaUoQcK7qvZr9Yy+rWQ6y5KuW4WVfF3xMDG2NOl+Nfk8MSxVqUKYq0JDw2UqzdfLHGcwgAIcvlctFrr71G//73vyk/P594hYTzzz+fpkyZQl26yH/DjgQaDAAAAADgV5jDoM+nn35K9913H23atEk1FE488UR64okn6JhjjiFfQoMBAAAAACAAXHjhhWo9Bc88hdNPP50cDgf9+uuvzbr98ccfr2u7aDAAAAAAgF/xh94jWUisqfsOdtXV1TR16lR1OZzjwo0LPdBgAAAAAAAIADk5OS3SIEKDAQAAAAD8CnMY9NmxYwe1BDQYAFqBiY+MEGvrrh8o1ubc8KXm/Zb/sk7X/hgj5AVedpXKv6wSnfFiLcIopwHVuuTkmsq9chpOjNkq1upcNrEWZZGTawry5JSg5DbZYi02Wk4JsucWijVbdZVYCzOHkxatJCSDWU6lMkTIjz/TlinWqmordSUMZaW0F2v2Mvk+bY46sZYWlyHWqrbm6jqm5oxEXfeZOLCnWOv3zCmkZUQf+XgDALQWaDAAAAAAgF/xGgy+W4ch+Ocw+Jt8CgoAAAAAAEIeGgwAAAAA0CJzGHx1YQMHDqTu3bvTzJkz8eweIQxJAgAAAICgs3z5coqNjW3p3QgKaDAAAAAAgF8ZDQZ18dV9g3ehwQDQyvXIkpOHenxzleZtn35+sVizzfpT1/4kVpWKNYvBItYKbcViLTlMTqeJzUoXaxV794k1m0ZKUkS/DnJt+V9izRQf5fVkHrvTLu9LZAxpKdy/W6wlRSWLNVOq/JoyWCPFmqOmRKyZ0xPEWtHmLbrSs2IGdBVrbodTrNH6PaSHpZf8Wku4so9Ym3jXUF3bAwAIFGgwAAAAAIBfYR2GwIJJzwAAAAAAIEIPAwAAAAD4FXoYAgt6GAAAAAAAQIQeBgAAAADwK6z0HFjQwwAAAAAAACL0MAAEsYnjB8lFjdrTTywQazEzK8RabWmZWIs0ydGi5kg5WrN8b768L8mpYs1qk6ND7dsLxFpcp7ZizV0rR6BqqbJXirUokxzVWlAiP3bWJrOdWKvZVyjWwuU0WjIly4scxYbF6To2dpdDrCWky/Gv1X/IcawFNvnxtT3uWLFmPkWO1EU8KoD/YA5DYEEPAwAAAAAAiNDDAAAAAAD+ZTCQwVcrMmOlZ69DgwEAAAAA/ApDkgILhiQBAAAAAIAIPQwAAAAA4FcGHw5J8tlQpxAWMg2G7du30zPPPEPff/895ebmktlspoyMDDruuOPogQceoA4d5OQMgFCjmRajUZu7co9YWzVjmVgr+PAXXSlCzhI5sclglDtQi0v3irVkZ4auFKjojllizb5TTmUyRobJ+2JJIS379+wQaympOWLNFC8fUy2Wtim6HqPmvqTLaVbWozPF2lG3y0lIl5yA3+cAAN4UEkOS3nvvPerevTu98MILFBERQWeddRYNHTqUTCYTvfHGG/TXX3+19C4CAAAAhAyDjy/gXUHfw/Djjz/SFVdcQW3atKEPP/yQTjjhhAPqO3bsoPBwOR8eAAAAACCUBXWDwel00nXXXUcul4s++eQTOv744w+5Trt28sJHAAAAAOB9mMMQWIJ6SNJXX32lehAGDx7caGMBAAAAAABCuIeBJzizIUOGkMPhoC+++IIWL15MNTU1qmfhnHPOoW7durX0bgIAAACEFKzDEFiCusGwevVq9ZUTkY455hhasWLFAfV7772Xbr/9dpo+fbpmBFddXZ26eJSXl/twrwEAAAAAWo+gbjAUFRWpr1OnTqXY2Fh655136JRTTqHa2lp6//336b777lNRq8nJyXTPPfeI98O3f+SRR/y45wCBaUQfOQZzxOvnyzfUqL3/8zaxtudTOeHMsa5QrGV36i/War5YI9YiU5NJD5vjnxMOB4vpKs+jcu5v4uTENjnK1F1ZI9aM7eV4VGd+qVgzZSeKtehLeumL6QWAkOTLNCOkJIVQg2Hy5Mn05ZdfHvbtXnvtNTVngbndbvXVbrfT7NmzaeTIkfXXmzRpkpoMfdddd6kGwfjx4yk6OrrR++TGxIQJEw7oYcjOztbxqAAAAAAAAkurbTDk5eXRxo0bD/t2lZWV9d/HxMSorzxfoWFjwWPs2LGqwVBRUUG//fYbnXTSSY3eJ8euInoVAAAAwFsMf09k8An0MYRMShIPH+IegsO9nHrqqfX34Vm9WVrFmRsUKSl/d83n5+f76ZEBAAAAAASOVttg8Ib+/f8ep1xYWCiu01Ba+vd4XavV6td9AwAAAAhVWOk5sAR1g+GCCy5Q6UcbNmyg3NzcQ+oLFixQ8xv4OgMGDGiRfQQAAAAAaM1a7RwGb+jUqRNdccUV9Pbbb9P111+vkpHi4uJUbefOnXTrrbeq7y+88ELKyMho4b0FgMZcckLjQwoVrZpeL57j9bucu3KPWCuqkBOUKittmvc7MH2UrsQqAICWhnUYAktQNxjYjBkzaN26dfTdd9+pBsSxxx6rYlWXLl2qJkj37t2b/vOf/7T0bgIAAAAAtEpBPSSJcY8Cr+48ZcoU1Yswf/58+vXXX6lz5840bdo0WrJkCSUmytniAAAAAOBdmMMQWIK+h4FFRESotRS0FmcDAAAAAIAQbTAAAAAAQCuCSQwBJeiHJAEAAAAAgH7oYQAA8DEkFgEAND6HwRewzrP3oYcBAAAAAABE6GEAAAAAAL/CFIbAgh4GAAAAAAAQoYcBAAAAAPwMsxgCCXoYAAAAAABAhB4GAAAAAPArzGEILOhhAAAAAAAAEXoYAAAAAMCvMIMhsKCHAQAAAAAAROhhAAAAAAC/whyGwIIeBgAAAAAAEKGHAQAAAAD8DLMYAgl6GAAAAAAAQIQeBgAAAADwK8xhCCzoYQAAAAAAABF6GAAAAADArzCDIbCghwEAAAAAAEToYQAAAAAA/0IXQ0BBDwMAAAAAAIjQwwAAAAAAfmX433++um/wLvQwAAAAAACACD0MAAAAAOBfhr/XYvDVfYN3oYcBAAAAAABE6GEAAAAAAL9CSFJgQQ8DAAAAAACI0MMAAAAAAP5l8OEkBp9Njghd6GEAAAAAAAARehgAAAAAwK8whyGwoIcBAAAAAABE6GEAAAAAAL/CFIbAgh4GAAAAAAAQoYcBAAAAAPwKcxgCC3oYAAAAAABAhB4GAAAAAPAvTGIIKOhhAAAAAAAAEXoYAAAAAMCvMIchsKCHAQAAAAAAROhhAAAAAAC/whSGwIIeBgAAAAAAEKGHAQAAAAD8DLMYAgl6GAAAAAAAQIQGAwAAAAC0yBwGX10CwZYtW+j0008nq9VKycnJdPPNN1NVVRW1RhiSBAAAAADgR2VlZTRs2DDKyMigjz76iIqLi2nChAm0b98++uSTT1rdc4EGAwAAAAD4VajPYHj55ZepoKCAfv/9d2rTpo36WWRkJF1wwQX0xx9/UP/+/ak1CYkhSd988w2dddZZlJaWRhaLhWJiYtQT8dhjj1FFRUVL7x4AAAAAhJBvvvlG9TB4Ggvs7LPPVsOTvv76a2ptgr7BcNddd9EZZ5yhDn52drZquR133HG0YcMGeuCBB1TDgbt/AAAAACB05zBs3LiRZsyYQWPGjKFevXqR2Wwmg8GgTjA3Bw8tGjp0KCUkJFB0dDT17t2bnnzySbLb7Ydc96+//qKjjjrqgJ/x9rp06ULr16+n1iaohyStWLFCPVHcqzBnzhwaMWJEfY27gfjfq1atooceeoj+85//tOi+AgAAAEDLeemll+i5557Tddvbb79d3ZY/9HPPAfcUzJ8/X524/uqrr+iHH35QQ448SkpKKD4+/pD74cYGz2dobYK6h4GfKMYNg4aNBZaSkkKTJ09W3y9ZsqRF9g8AAAAgtGcx+Opy+Hr27EmTJk2id999V53lv/LKK5t1u88//1w1FriRsGzZMvr+++/VxOXNmzernopffvlFjWoJZEHdwxAREdGs63GUFQAAAACEruuuu+6AfxuNzTuvPmXKFPX17rvvpn79+h3w+fLFF1+kE044gV544QXVaIiLi6vvSSgtLT3kvrjnoXPnztTaBHUPw8knn6y6hubOnUvz5s07oMZDkni4ErvxxhtbaA8BAAAAQk9rnMOgx549e2j58uXq+8suu+yQ+uDBg9Uc2rq6OjXR2YPnLxw8V8HpdNKmTZsOmdvQGgR1D0PXrl3V5JVbb71VDUkaOHAgdejQQbXeuHuIW3mvvvoqXXTRRZr3w08yXxpm57Ly8nKfPwYAAACAI+H5vOJ2u1vNgfTlZyjPfR+8jfDwcHXx9nxZlpiYSO3bt6fGDBgwgHbv3q2ue+mll6qf8YJtjzzyiDqBzcPkGc91qKysVGE9rY47BHz//ffuNm3a8LvkgMtFF13kXrFiRZO3f+ihhw65LS44BngN4DWA1wBeA3gN4DUQSK+BrVu3ultaTU2NOy0tzeeP1Wq1HvIz/jx3OEaPHq1u9+ijj4rXef7559V1+vTpI15n/Pjx6joXXnhh/c9KSkrcmZmZ7uOOO879zTffuN999113amqq+5xzznG3Rq22h4EnJH/55ZeHfbvXXntNdf943H///fT444/TqaeeSo8++qjq5tm/f7+a0ML/5tYcT1YZOXKkeJ/33HOPWn3Pg8ectW3blnbt2lU/Fg3+bslztxu3omNjY3FIcExEeK3guBwOvF5wTPBaOTI8MiInJ0edBW8N80u3b99ONpvNp9vh3hSORG3I270LzLOeF8eoSngy9ME9HpyQxOE848ePpwsvvFAdl1GjRtH06dOpNWq1DYa8vDyVh3u4uCvHgxsF3Fg4+uijVcOA5zMw7jLihgT/mxsDN910k5rJbjKZGr1PqQuLGwv4YHwoPiY4LjgmzYHXCo7L4cDrBccEr5Uj09xJvL7GH46bG0wTzLp06ULfffcdBYLW8cppxDvvvKNah4d74Z4EjzfeeEN95Rabp7HQkGdyCrd0t23b5sdHBwAAAACBLiYmRn2tqqpq8mR2IJ9MbbUNBm/gIUNaT1DD4UStcZEMAAAAAGi92rVrp77ycGyJp+a5biAK6gZDZmam+sqLaDRm6dKl9d8fzpPIw5N4dWhfjIULZDguOCZ4reA9hN8t+H3bkvB3CMfF3/r27au+FhUVqRErjfn999/V14ZrNAQaA898piDFi2WMGzdOTXqZPXs2XXLJJfU1HoLEkVY8T2L48OGHrNMAAAAAAKFrzJgx9Oabb6qQHJ77KjnmmGPUWgyPPfYY3XfffQfUOMafF27jxuy+ffsCNiwnqHsYbrjhBjrzzDPV3AbOveXluXnNhZNOOol69OihGgtZWVn0yiuvtPSuAgAAAEAAuvfee9XXadOm0Z9//ln/c+51uPnmm9X3t9xyS8A2FoK+h4Hxw3v77bfVZeXKlSoSlWfmd+rUic466yy644471PLcAAAAABC6+MO+5wM+27p1KxUWFqqTy55h7uyzzz6j9PT0A25722230fPPP08Wi0WNXOGY1R9//FF97hw0aBDNnTuXIiMjKVAFfYMBAAAAAKApCxYsUKNQmrJ9+/ZG575++OGHNHPmTHWC2m63U8eOHemKK65QJ6fDwsIC+gkI6iFJ/vbNN9+oXou0tDTVwuSorf79+6sxbZ6FPUIVv7luvfVWlTkcFRWlkqu6detGV199dchH2nLcWocOHdRcG77k5uZSqOHFFN966y0Vddy5c2fVC8ivE36N8KI2O3bsoGD20Ucf0dChQ1VvJ5+V6t27Nz355JPqD06o4cfMZ+XuvPNOGjhwoFrciH+f8u/Vs88+m+bMmdPSu9iqFjj1/N7gvzOhjhcC4zO8vHgrL1DGv0f4zPBpp51GH3zwAYUaTorkYTBdu3ZVZ7b5ePA6VKNHj6ZVq1a19O61Svx7uDkR/u2EoBwe9r5w4UK1UF51dTWtWbOG7rrrroBvLCgtvdR0sJg8eXL90uMDBgxwX3zxxe4RI0a4o6Ki1M86d+7s3rt3rzsUzZ492x0REaGOQ69evdwXXXSR+6yzznJ3795d/eyrr75yh7KbbrrJbTAY6l8/u3fvdoeayy+/XD12o9HoPvroo92jRo1yn3766e6UlBT18+joaPcPP/zgDka33Xabeoxms9k9cuRI9/nnn++Oj49XPxs8eLC7urraHUrmzp1b/15IS0tzn3HGGep3Rs+ePet/fsMNN7hdLpc7lC1evFi9Xzy/Ox599FF3KOPfm56/KcnJye4zzzxT/R0+/vjj1d/hCy64wB1Kli5d6o6JiVHHIzMz03322We7zzvvPHf79u3rf998+OGHLb2bEEDQYPCCP//8U70BLRbLIR9q9u/f7+7du7eq33jjje5QM2/ePPVHjf/wL1q06JD69u3b3Xl5ee5Qxa8Xfm3ccsstId1guPXWW92PPPKIOzc394CfV1RUuC+55BJ1XBITE93FxcXuYPLZZ5+px2a1Wt1//PFH/c8LCgpU45prEydOdIeSH3/8UX24a+z3xfvvv+82mUzquLz55pvuUFVVVaVOQvEHwXPPPTfkGwzcqO7WrZs6Dg8//LDbZrMdcrxWrFjhDiV84sXTuG54PJxOp/v+++9XNT4xUVNT06L7CYEDDQYvmD59unrz8RnRxrz77ruqzm/gUOJwONzt2rVTj53PhsGBysrK3NnZ2eqMT2VlZUg3GLTwH3vPmbK3337bHUwGDhyoHtdjjz12SO3nn39WtfDwcHdpaWmL7F9rdO2116rjMnz4cHeoGj9+vDoGc+bMcY8ePTrkGwwPPPBA/YdjcLsLCwvr/57wScvG/jZHRkaqOp/wBGgOzGHwAh4X2BzJyckUSr766is19pzHkx5//PEtvTutzu23367mK7z22mtq3Do0jucy8BjcplbSDDR79uxRud2M524cjN832dnZVFdXp+ZHwYGLJAXTa+FwJ2XOmDGDrrrqKrWWUKjjOS8vvfSS+p7nvcDfi9c1V6h9LgH90GDwgpNPPpnMZrOKzDp4AbiCggI1eZHdeOONFEq+//579XXIkCHkcDjok08+oQkTJtDYsWPpiSeeoA0bNlCo4ombs2bNouuvv56GDRvW0rvT6j8QeCY9HxxjF8hWrFihvvLkTJ6I2JgBAwYccF0g2rx5c9C9Fg4nIOGaa66h1NRUevbZZ1t6d1pNDCbHXmZkZKi4dJ5k+sgjj6i/t3fffbf6XetyuSiUWK1WtVAY48XGGoYn8LF4+OGHqaamRk0G55MSAM1hbta1QBOf/eQzPpwCNGLECJXswak3JSUlaoU/Xqjj1VdfVbPnQ8nq1avVV25M8SqIB3/o4YVO+Cz79OnTVcpHqODXBTcU+Bf1U0891dK70+q9/vrr6gMBp3zwH7hgSg5jOTk54nU8f8w91w11e/fupTfeeEN9f8EFF1ComTRpknotcAY81g868O8MpyFxA4FP0DVMi+eTU9wr9fnnn2u+14INf+bgHihemJYbTXzywWQyqb/D3Lt55ZVX0gsvvNDSuwkBBD0MXnLTTTepN2WbNm3UMAOOcPvhhx9UrBa39D1nCkMJr3DIpk6dquLd3nnnHdXjwkMJ+IMyNySeeeYZtTJiKOGYu/z8fPWLnONlQcZnCz3DDB544AF1ZjVYeKKWtYaj8ZlCVl5eTqGOeyk5z5zjCnv16hVyPbb89+Tll1+mSy65hM4999yW3p1W93eGPwhz44AX3dq4caN6nXCvP0d5c+2MM84IqZhiPpG5ZMkSGjlypGogfPHFF/Tpp5+qBif3xHB8KP7+wOEI+R4GzrH+8ssv6XDxuHMeY+zB3X6PP/44nXrqqfToo4/SUUcdpbLl3333XfVvHs/PZzj4zRsqx8Vzlod/Sc+ePfuAx85nyrhrlPOJuUHBWfutfRy/N44J/8LmY8HrT/BrJRh46z10MJ7fweua8DAMzt/ns4cQ2idleH2GpKQk+vjjj4Mj17yZ+MPvtddeSykpKao3G/7R8O/MpZdeesBZcx4uzI0G/vC8du1aev/999WZ9VCwePFiOv/889WJOf6bw0Nf+T3DP+ehwfx64u+5BxegWdwhzpP/friXb7/9tv4+3nnnnfoUJLvdfsg2pk6dquqchsPpBKFyXPr3769+xklJjSkvL6+/3fz5893Bfkw4KrNNmzbujIwMd0lJySH3H6gpSd54rRwsPz/f3aVLF3W9U045xV1bW+sONs8//7x6fH369GkyDefCCy90hzLPcUhISAjJVJcxY8aox//BBx8cUgv1lKQZM2bU/05ZsGBBo9fhmF6uX3XVVe5QwH9feA0bXqOD12M42NatW+vXiAqEv73QOoT8kCQeJtOcVf0OvjQ8O+wZUztq1CjVmj+YJwGFuwK3bdtGoXJceB5Hw68H45Ww+YwZ4yE6wX5MeD4L9zoZjUY1pIC7hBtePPh1xP/2vK5C4bXSEB8jPhu2adMmdYaQe+YOJ/UjUHhWCtVK+/HUpFVFQ8HEiRPV6r284jMPy/GkJIUSnrPAf1tefPHFQ35vfPfdd+o6fKaY/81DlkJJw78v0t8az88D4e+MN/DwaB7+y4/7X//61yH1hj8/OKgFQBLyQ5K8gcfnM2k8IE969iguLqZQ0b9/f/roo4/UhNXGOJ1OKi0tPWCsdijgoTZ8kSxdulR9bdiICBX8R44bC+vXr6fhw4eroU7NjS0ONJ4PvjwGm08mNJaU9Pvvv6uv/fr1o1DEw914nhP/DuXGQijOBWs4h2PhwoVinZPE+NK2bVsKJfze4NAMPgnBf2saS/3x/A0Klb8zTX0mafi5JJQ+k8CRCfkeBm/IzMxUX5ctW6b5ATDUzhRyign/Iuf41MY+IHOeOI875euEwgcB7lXQOuPe8Kwy/5uj70IJ/1HnxsK6detUY4Hn/XAyUrDiVBdOVGM8xvhg3CPFrwXuXQnFvH2es8LhCPzBhsehe45VKOITK9LvjdGjR6vr8Fw5/rcngjhUpKWl1c+FauxsOf+N8TS0OK0vlD6T8N9env/S2DHhOFomRToDHKKlx0QFg5kzZ6qxgDxe8L333jtkrGDXrl1DdmXSK6+8Uj32U0899YDVanfs2OE+6qijVG3UqFEtuo+tRaDOYfCGoqIiNQeIH//JJ5/srq6udoeCzz77TD1mq9Xq/uOPPw5YqbVXr16qNnHiRHeoue+++9Rjj4+Pd//2228tvTutWqjPYWDz5s2rn+OyZMmS+p/znMJbb71V1Xi1+L1797pDAa/uHB0dXf/3taKior5WV1fnHjdunKpZLBb1GQWgOQz8v0ObEXC4XcXnnXceff311+rfPXv2VClJPLyCexdqa2vV2UQ+yyGNsQxWfHaDzxrz2QxeUfLYY49Vx4OPC6ff9O7dm+bPn68Wrwp1nrUo+Kwyv15CCad58DhtPgY8h0PqWeBemmCLlLztttvUGH2LxaJ6VjgtjNOA+KzyoEGD1Nn1YO5pORgPQzvnnHPU99zz2KNHj0avx79PeA2XUDdmzBh68803VQ8Dp/WFqscee0xFL3vW/eGeB/67wz0u/P7h4bEcrRoqeG4Zp/Hx5xOeK8g9dPw7hoc5cswqz6WbOXOmSh8DaJZmNSugSS6Xy/3mm2+qs6PJyclus9mszhpyAsoDDzzgLi4uDtmjWFNT454yZYo6g8zJDHzp27eve9q0aSFzJrk5QrmH4cQTT2xWstJDDz3kDkacfjNkyBB3bGysOzIy0t2zZ0/1/uCzgaFm1qxZzXottG3btqV3tVVAD8M/vv/+e/dpp53mTkxMVGfPs7OzVcLU+vXr3aFo5cqV6vF36NDBHR4e7g4LC1PvG062W7ZsWUvvHgQY9DAAAAAAAIAIk54BAAAAAECEBgMAAAAAAIjQYAAAAAAAABEaDAAAAAAAIEKDAQAAAAAARGgwAAAAAACACA0GAAAAAAAQocEAAAAAAAAiNBgAAAAAAECEBgMAgB+1a9eODAZD/eXkk0/2y3bff//9A7bLlwULFvhl2wAAENjMLb0DAACh6IILLiCr1Uo9evTwy/bat29Po0ePVt9/9913tG/fPr9sFwAAAh8aDAAALWD69Omqt8Ff/vWvf6kLGzp0KBoMAADQbBiSBAAAAAAAIjQYAAAEt956qxrrf8IJJ5DD4Tikft9996l6v379qLa21ivHcceOHeo+uffB5XLR888/T0cffTRFRUVReno63XTTTVRcXKyuW1dXR48++ih169aNIiMjKSMjg2677TaqqqrCcwoAAF6DBgMAgODpp5+mAQMG0C+//EL333//ATWeBzB16lSKjY2lDz/8kCIiIrx+HK+44gq6++67KTMzk0455RTVgHj55ZfVRGluFPBXHtrUtWtX9X11dbVqYIwaNQrPKQAAeA3mMAAACMLCwlRjgHsQnnzySTrxxBPptNNOo9zcXLryyivJ7XbTa6+9Rp06dfL6Mdy5cyeZzWZav349tW3bVv2sqKiIjjvuOFqxYoX6yr0K27Zto6SkJFXfvn079e/fn7799ltavHgxDRo0CM8tAAAcMfQwAAA0kS70xhtvqMYBNxL4Q/kll1xChYWFdMstt/j0bD73FngaC4wbBmPHjlXfr127ll5//fX6xoJnX7lXgv344494XgEAwCvQYAAAaMI555xDEyZMUGf4+/btq87e81AlHrLkK9y7MHLkyEN+3rlzZ/U1JyeHevbsKdbz8vJ8tm8AABBa0GAAAGiGJ554grp3705lZWUUHR2thirxkCVf4QnO3Gg4GK/d4GkwNCYmJkZ99dYkbAAAADQYAACaYdmyZbRp0yb1PU84XrNmjU+Pm9FoPKI6AACAt+AvDgBAE3i+As9b4GjVq6++WsWejhkzRk1MBgAACHZoMAAAaPBMduZkpKuuuor++9//0sSJE6mkpIQuvvhistvtOH4AABDU0GAAANDAay3wmgs8f+HFF1+s/xnHmvIwpcmTJ+P4AQBAUEODAQBAsGjRInrwwQfVKssfffSRmuzMeDLy+++/T4mJifTss8/SF198gWMIAABBCw0GAIBGFBQU0KWXXkpOp5Nmzpypehga4pQiXp+B5zPwvIYdO3bgOAIAQFAyuHmALgAA+EW7du3UZGleAI6/bwlDhw6lhQsX0k8//aS+BwAA0HJoyDcAAPjcpEmT1JoKPXr0oDvvvNPn2+P5Fi+99JL6fsOGDT7fHgAABA80GAAAWsAnn3yivg4fPtwvDQbu0XjzzTd9vh0AAAg+GJIEAAAAAAAiTHoGAAAAAAARGgwAAAAAACBCgwEAAAAAAERoMAAAAAAAgAgNBgAAAAAAEKHBAAAAAAAAIjQYAAAAAABAhAYDAAAAAACI0GAAAAAAAACS/D+niMcIEnoSBAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbcklEQVR4nO3dB3xUVfr/8WdmMuk9EEIJvVkQUHBVUBHsa1fsBXtvYO/+Xeuqa0PXtnZsa1fWggoqIqIiitKkl9DSe5v5v87xF6TkuYFLZpLJfN77mg3mmXLnzp3JnHvO+R5PMBgMCgAAAAA0wtvYLwEAAACABgMAAAAAR/QwAAAAAFDRYAAAAACgosEAAAAAQEWDAQAAAICKBgMAAAAAFQ0GAAAAACoaDAAAAABUUdNgWLZsmVxyySXSr18/SUhIkPj4eOnRo4ecccYZMmvWrJbePAAAAKBV8gSDwaC0cdOnT5cDDjhASktLpXPnzrLbbruJz+eTn3/+WRYvXiwxMTEyYcIEGT16dEtvKgAAANCqREWDYeDAgfLLL7/IeeedJ4899pj4/X77+0AgILfeeqv84x//kPT0dMnLy7M9DwAAAACipMGQn58v7dq1s/9eu3attG/ffpN6fX29pKSkSGVlpfz0008yePDgFtpSAAAAoPVp83MY4uLitvq6DQ0LAAAAAFHSYEhOTpa9997b/vumm26S2traDTUzJOm2226zvQuHHHKI5ObmtuCWAgAAAK1Pmx+SZMybN08OPfRQWbRokZ30PGTIEDvpeebMmbJy5Uo54YQT7NyG1NTURm9fXV1tLxs3NAoKCiQrK0s8Hk8YnwkAAMC2MV/1TPBLp06dxOtt+XPFVVVVUlNTE9LHiI2NZV5qM4qRKGCiVKdNmyannXaafPrpp7aR0GDHHXeUESNGqI0F4+6775bbb789TFsLAADQ/JYvXy5dunRp8cZCekK6VMtfJ2JDIScnxyZhEmbTPKKih2Hq1KlyzDHH2PjU+++/X0aOHGlbnub3Y8eOlQULFshZZ50lzz777Fb1MBQXF0vXrl3tG8+poQEAANDSSkpK7LDroqIiSUtLa/FtMduwv4yUmBCdt66TOpkkX9jva3xPax5tvsFg3hx9+/aV9evX216Gv/3tb5vUzTClAQMGSEVFhXzxxRey3377bfXBzoEIAABau9b0vaVhWw6Vg8Uvf8bcN7daqZWJ8nGreL5tRcsPZAuxjz76SNatWyc9e/bcorFgbPz7SZMmtcAWAgAAAK1Xm28wLFu2zP50amE2dM+ZicwAAAAILY/5nydEF/kzkGbo0KF2rur48eN5ObdTm5/0bFKRjLlz59quqc3H7pmYVbNgm9GjR4+wLCT3zjvv2OFPZpjUxnMjgO1l0r/MquVmAcLRo0dL//792akAgKg0Y8YMhiQ1kzbfYDDrKyQlJUl5ebmce+658p///MeuzWCYSC8z6dn0Qvj9fjnuuONCth3msc455xyZMGGCjTczw6BMY4bZ+2hOdXV1tqfsn//8p9xyyy0yaNAgeeutt+zQOwAAWgvv//0vVPeN5tXmGwzt27eXf//733LmmWfKm2++KZMnT7ZdVKaB8MMPP9iIVZNJ/Mgjj4TsS5VpLJi1HiZOnGhTmk466STp0KFDSB4LaIit++STT+Sqq66yE/m//PJLGg0AAMCVqGiCnXrqqbZxMGbMGElJSZHPP/9c/ve//9mY1VNOOcWmJ11wwQUhe/wHHnjATr5+++235YorrqCxgJAzPVdHHnmkbSiYxrE5zgEAaC28Hk9IL2hebb6HocHAgQPlueeea5HHfu211+xwp7///e8t8viIXmaBnjvuuENOPvlkWbJkiXTv3r2lNwkAAESYqOhhaEnz5s2TX375xU5ABVrCYYcdJnFxcfLf//6XFwAA0Cp4xBvSC5oXezTEfv31V/tzn332CfVDAY0yw/B22223DcciAADAtoiaIUktudK0kZGR0dKbgihmjr+GYxEAgJYWyrkGpo9BgiG566hFD0OIBQIBu4iISWICWoqZ4G+ORQAAgG3Ft9hWwkxG3XiVQtPAMENJzKRVE4tp4jG///77lt7MVsEM7zL76Lrrrtuq619++eX2+oceemjItw0AADSNOQyRhQZDKzNs2DA544wz5PTTT7dfcPv16yezZs2y0axmsbcRI0bIokWLJJqdffbZ9ueLL74o9fX1Ta6B8corr2xyu1Axsb2mYfL888+H9HEAAADCiQZDK2NWgzZfOM3l9ddft2tG5Ofn23Uc+vTpI1OmTJG99tpLFi9eLNHKJE6lpqZKXl6eXU/DyXvvvWf3n1nA74gjjgjbNgIAAB3rMEQWGgwRoGE4jRmSZBoNa9assQ2LaJWYmCgnnnii/XdTa2s01M3ifWYBMwAAAGwbGgwRJD09XR566CH77y+++EJ+/PHHLa5TV1cnzzzzjB26lJmZafP3e/ToIRdeeKEsX75cve+VK1fK1VdfLQMGDLBzJ5KSkqRv3752mM233367yXVNw+Waa66R3XffXXJyciQ2NtauXn344YfLpEmTtrjvW2+91TZ6zj//fPXxzX2a63Tu3Nk+h6Y0NJg++OADWb9+vfqcPv3000aHI5mem2OOOUY6duxotz87O1uOPvpou+p3YxrmljQ0Qvbcc09JS0uzvzMLopmfL7zwgq2feeaZm8xHue222za5r8rKSjvEbI899rCvqVmV2Qw9M/vU9IZszKydYO7D9JCsWLFii+365JNPxOfz2W1ZsGBBk/sNAIDWMochVP9jHYbmR4MhwhxyyCG2IWB89tlnm9RKS0vlgAMOkHPPPdc2JnbZZRc7DMc0Gv7973/L4MGDZebMmVvcp/nyvPPOO8v9998va9eulVGjRtlVqc2X2QkTJshTTz21yfVvuOEG+4W3qqrK5vsfddRRdnL2hx9+aB//4Ycf3uT6prFivpSbuQRatOf48ePtT9OoMIk+TRk6dKht3NTW1spLL73U6HXMF3gzx8HM/dhpp502/N5MIN9///3tcKWuXbva7e/Zs6f977333tux1+LSSy+1jRWzjWYfmfs2X+jNvJNevXptMg+l4TJo0KANt1+1apW9jdkG8wXfPA/Te1RdXS3//Oc/ZciQIbJ06dIN1zcrhJvHNI2ik046aZPGlGkQnXbaaTb96Omnn7a9TwAAAM0uiG1WXFxs0n3tz6Y8+eSTQY/H0+T1unXrZu/zueeea/K6+++/v73uqaeeusnvTz75ZPv7ww47LLhmzZpNav/6179srU+fPsG6uroNv1+2bFkwLS3N1q677rpgdXX1Jrcz9/P1119v8ruJEycGV61atcV2ffvtt8HU1NSg3+8PrlixYpPaKaecYh/jwQcf3OJ269atC8bFxdnb5eXlBbfWQw89ZO9zwIABjdbNczX1p556asPvzL/N73r37h2cNWvWJtefMmVKMCUlJRgbGxucP3/+JjVzG3Mxz2/atGmNPt4ZZ5zh+BoGAoHgsGHD7HXOPvvsYElJyYZabW1tcNy4cba23377bXI785rsvvvutnbttdduuP7w4cPt7y6++OIm99WRRx5pjwsAQPTZlu8t4dqWE2JGB0/znxySi7nv1vJ82wp6GCJQu3bt7M+Nh6/MmTNHXn31VenUqZPtFTBDbDZ2xRVX2DPZ5qz2xhOFH3zwQSkuLrbDie6++27bE7Axcz/Dhw/fopfDDOXZnBmmc/HFF9uz/uZs/ebRpsYTTzxhGqmb1MwQKnOG3ZxNN0OctpaZl2B6T8wKxj/88MMmta+//to+143nO5gz8Q3Dg1577TXbA7N5XOvNN99sk5WefPLJRh/T9AyYoURumOFDU6dOtT0OpsfHDP1qYHos7rvvPtvT8+WXX8rs2bM31MxrYibAm8XXzHUmTpwoN954o3zzzTe2h8f09gAAAIQKDYYI1LAAV8OYesN8iTRfxM2X+Y2/iG7MzGswNp6T8PHHH9uf55133jZtg2msmFhTM+7eDIEycx3MxaQ4GfPmzdvk+mbojWlQmC/x5ovzxs/FfHk2Lrnkkm3ahqysLDucyPjPf/6zSa3hv02iUsP+MMOxzJAgM3TIfNHe2n20MdOoccskXRnHHntso8OuzNobptHS2OObdToa4lrN0CQzfMnMW3jjjTdsowkAgEjiDfEsBjSvpgeLo9VpmOTbMJfBaFib4dlnn7UXJ+vWrdvw74bx8v3799/qxzfj5a+88kopLy9Xr1NSUrLF7y677DI7qfixxx6Tgw8+2P7OzHsw22DmV5i42G1lJjObs++md8X0lpgJxGVlZfLmm29uqG++jxYuXLhJY6upfbT5F3e3Gh7f9GKYy7Y+vpmPYuZPmP1vmLklZu4FAABAKNFgiDCmF6Fh4rKZ9Lt5r4MZ7jJw4EDH+zCTbt0yk6nNxGSTzHPvvffaoUxm4rAZ+mO+hJsvsaa++bCjhrPzZkiPGRJl1pEw6U0Nk523tXehgZmg3a1bN9voeOedd+zZd3PW3TRmTMqTmcS8+T4yw54OOuigrRr2tbmEhARX27nx45shXg0TpDUbT9LeuFdn4+Fk3333nRx//PGutwcAgJZehyEk900PQ7OjwRBhzNCjwsJC++8DDzxww+9zc3M3JPSYM/hby3zZN8OH5s6dK717927y+ubMvWkMmOQeMxxpc07RnmYYjklMuummm+Txxx+3Q5lM0pPpKTFf9N0ww3hMjKmZm2CGIZn7aRiOZH6/sYZ9ZIYytcRqzA2Pf+SRR9qG07Yw+9wkIploVTMM66uvvpJ//etfdggVC9IBAIBQYg5DBDGTk81QIMPEl24c12nmLhjvv/++jTvdWg1DgxqGuTSloKDA/jRn9TdnHvett95yvL3pfTDDhsyXejNZ13wRNsOGtufMvWkYmIaDWZvCNEDMxGLTA2IiTTefR2F6Dn7//Xf57bffpLk1TBjX1pFoeI0aGl3b4p577rG9CzvssIO8/PLLNjLW9OiYeSMbx7ACABAJzAyGUF4a/u7vuOOOG0YzwD0aDBHAfLk0XxbNQmnmDL5JKNr8C76ZA2Am05rF2cyCZGYxsc2ZYTpmLQSzUnSDsWPH2knBpqFhzvybhKONmXUZTBpPA/OF1TBfWM26Dxs3Fi666CI71MiJ+cJ+8skn24aHGb5kvuib220P00tiGlBmyM8pp5xif2cSoTZPcjIrPZtF5Mz+NIu0bfy8Gph1G0zDwwz32VZmLQpDa4yYngXz4WUWqTONnMbmKZjeIzMJfONGh+lNMHMezLAv09gwi+oddthhMm7cOHt9Myxp89cNAIBoN2PGDHuS0CQ4YvvYBQK28z6ijpnQaxJqzBn/1NRUx+uaL8UXXHDBhvHrGjOZ1pwpNkOKGoYGmahRM8H5p59+2nBm3wxBMWfnzfj/zZkv8OaLsFmIzZztNnMZzPXMS2waELNmzbKRoSaCdeNJzmY1ZDO/wNzerNhs0ozMl2uzPWa+hPmC3zCExyy8Zno2TM0M7TFzBMzZfBNjalYwPuuss+zCbebsvjbsx2xHQ++ImQNhGivby3yR3ng8/7vvvmu/oDfGDKUyKUMNcwXM/jY9HKtXr5aff/7ZPkcT/2petwYNk6Sd3i6//PKLbbgZI0eOtEOQTIPIDBlqGDZkUprMgm/mccwXf/MamQaPeV3MpGgTEWsaLWZfmp4Y06gw+8rcziwoZ3oUGphGgklVMo0bE5trhihpzDAmc79mZWwAQHTZlu8t4dqW02NPkVjPplHuzaUmWCMv1rzSKp5vW8EchlbGDKcxF8N8oTRvKjO52awAfMIJJ9gz1BrTU2C+/JvUIDNsxUxQNl9MzZvFnG03Z9/NF9fNJ9yauRAm99+kDJmYVXMx8w3Mmg5m3LyZa9DArP5s1jwwZ+pNPKrp+TANB3Mf5neNnbXfnPmSbCYemy/obic7b840DkzvhWlgmUaP+VKuMWsZmC/QZh6F2V7zfE0Dy+wj0yAzZ+9NL822Mus6mCFZZsXs6dOn24abaWCYnoeGBoPZp+YLvmlMmdfJNDJMj4OZx2FqppFirmsaC6aRadaaMI0F0wDbuLFgmEaduQ/TSHnooYdk33333RAzCwAA0FzoYWglPQzRZNKkSXYIUb9+/WxvR1MRp9h+9DAAQPRqjT0MZ8SeGtIehhdqXm4Vz7etYA4DwsoMizE9EQ3zJ2gsAAAAtG4MSQox84XYDEsxl2j+cmzG35vJu2Y4kxn+ZIZZmfkOCA/TwxXNxx8AoHXxerz2EpL75nx4s6OHIcTMvAJj40ShaDRlyhQ7bt+sI2AmZpsVns08CYQH3bIAAMAtGgwh1rNnT/uzYXXmaGUaC6aXxcSAvv322zYZCOFh0pRMr05jyVoAALSE0K7CQI96c6PBEGIm3cik5JjYT6AlmHUlTCyvm+QnAAAAGgwhZnL4R48eLRMmTJB58+ZxxCGszIJ6ZpVoE6W78crgAAC09ZWe0XzYo2Fw7bXX2oz//fbbT6ZNm+a4+BfQXFauXGnni5h1H5588kkmPQMAAFeYdRoGZiExMyxk1KhRstdee9l5DWZxLrNQl1lhGGjO+QpmnsiXX35pF6Uzx5eZYG6OPQAAWguvx2MvIblv5jA0OxoMYWw0mInPkydPtvMZ3n//fcnPz7dDRoDm4vP5JCMjw67+/MILL9iGqVmdGwAAwC0aDGHk9/vtCsfmAgAAEK3MPINQrZfAHIbmxxwGAAAAACp6GAAAABBWHo8nZGEcHuYwNDt6GAAAAACo6GEAAABAWP05gyE0561Ddb/RjD0KAAAAQEUPAwAAAMLK6/lzLYaQ3HdI7jW6sU8BAAAAqOhhAAAAQFiZtRJCtV4C6zA0PxoMAAAACCszHCl0Q5JCc7/RjCFJAAAAAFT0MABAM5izslitfTt7tVrrlpPs+jH3H9jZ9W0BoCUxJCmy0MMAAAAAQEUPAwAAAMLK6/HaS0jum/PhzY4eBgAAALQ5Q4cOlR133FHGjx/f0psS8ehhAAAAQFj9Gaoa2pSkGTNmSGpqakgeI9pEVQ9DTU2NPPLIIzJ8+HDJzMyU+Ph46dKlixxyyCHy+uuvt/TmAQAAAK1O1PQwrFixQg466CD5/fffpV27djJs2DBJSkqS5cuXy1dffWX/fcIJJ7T0ZgIAALR5Ho/XXkJy39F1PjwsoqLBUFlZKQcccIDMnTtXbrvtNrnhhhvE7/dvqFdUVMj8+fNbdBsBbHtc6cTHv1NrwWUlai1QXK3Wqr9fpNbidu+p1mp+XqbWvCkJai2vqFytid+n10Rkul//CA843G9Mlyy15kmJV2ve5Di15svVu/0PvWU/tbZD5zS1BgBoHaKiwXD33XfbxsJ5550nt9566xb1xMREGTRoUItsGwAAQLQJxxwGNJ8232dTW1srTzzxhP331Vdf3dKbAwAAAESUNt/D8NNPP8n69eulU6dO0rt3b/n111/l7bffllWrVklGRobsvffedtKz19vm204AAACtgieE6zAwh6H5tfkGwy+//GJ/mjSk6667Tu677z4JBoMb6vfee68MHjxY3n33XenatWuj91FdXW0vDUpK9LHRAAAAQFvS5k+r5+fn258zZ860jYOLLrpI5s2bJ8XFxfLZZ59J3759be3vf/+7Hb6kzYFIS0vbcMnNzQ3zswAAAGg7PCH+H5pXm+9haOhNMI2Bk046SR577LENtf333982Gvr16yezZ8+W1157TU477bQt7uP666+XsWPHbtLDQKMB2LZEo49unqTWqr/Wk4mcVK5Zr9Z8Hj1hyJ+Rot8uO81VgpLHp59/qcsrVGveZD2VqCnB6sZPchgxPbLVWv3KArVW+sditZbeu4d+n3n6a//2iKfUmq+d/lr4h3TSt+Wwfmrt7IP0GgBg27X5HoaUlL/+GJ1//vlb1M0wJNO7YEya1PgXmri4OLtS4MYXAAAAuOT1hPaCZtXmGww9e/Zs9N+NXScvLy9s2wUAAABEgjbfYNh1113F4/mzpWnSkhrT8Pvk5OSwbhsAAEBUMt/NQnlBs2rzDYacnBwZPny4OuTIzG2YMmWK/ffuu+8e9u0DAAAAWrM232AwGlZ3NmlH33333Ybf19XVybhx42TRokV2rsOZZ57ZglsJAAAQHczoD483RBd6GJpdm09JMkaNGiV33HGH3HzzzXahNtOTYHoezKJuS5YskYSEBHn11VelQ4cOLb2pAAAAQKsSFQ0G46abbrINhYceekimT58uM2bMsI2GMWPGyLXXXiv9+/dv6U0EWo3H35yl1gqunqjWlq3+Q63lpndTa96UBLUWrPhr0cTNJXRop9YCpZV6rahCf7xy/fGC9QG15knVn0NMeoZaW79EjzEtqy8XJ9177azW6patd7W/UxM76ve54s91bbZ13zhF1Zb8pkfVxs9ZqdZW/keP6f3nQXuotdgj+qq1y8cMUWsAmpmZZhCqngCmMDS7qGkwGAceeKC9AAAAANg6UdVgAAAAQCsQ0vUS6GJoblEx6RkAAACAO/QwAAAAILzoYYgo9DAAAAAAUNHDALRhz34yT63lPzxdrdUuWqfWPH79Y6NLYmdXSTllS/Q0nMRMPWGofl2JWvM6pBZ54v0Ot0t0tZ1J/hRxI6tTrlqLX6O/DoYnNsbV/haHRKNgTZ1+nx3116Jw0RK1FrdKT55KznVIZcordLXfqr6er9aqp+upTP+45VO1lnDdfmpt3EV7qjUADuswhCgliXUYmh89DAAAAABU9DAAAAAgvJjDEFHoYQAAAACgoocBAAAA4WXmL4RspWfWYWhu9DAAAAAAUNHDALRyc1YWq7V3DvyP423r80vVmr9HtlorWrFCraXEJOuPF6xXa16HbXFKQgqW6wk73nQ90ciXkewqCSjgsJ1JHdqrNfHp51/qVhaoNW9SnP54nTq4fn296UlqLVBUrtZqyyrUWkxCvFpLTdZfw7rKKldJSE48CbFqzedQc3ruTqvOrrz6VbV299M/qLWjPjxdfzwR2aGzQ5oV0JYxhyGi0MMAAAAAQEUPAwAAAMLL4/3zEqr7RrNijwIAAABQ0cMAAACAsPJ4PfYSkvsWUpKaGz0MAAAAAFQ0GAAAANAyKUmhuojI0KFDZccdd5Tx48fz6m4nhiQBrcAD4yaqterPFriLiGxC7eK1riIyneI6Za0eAetJSVBr+cuXqrWsTrlqzdcxXa0Fq2r1bfH71Frx0mVqLU2yXMWqltaVqbXUer9aCzrEphoxXfTtCVTWqDVftrsoT6fX0BOr/zmpW6rHqq6rWqfWOrTTX/ugw/MLVuuvfXGB/nheh8WeEn36c3fy7tGvONYn/q2LWhv36BGuHhPAn2bMmCGpqansjmZAgwEAAABhFsKVnpnD0OwYkgQAAABARQ8DAAAA2s5Kz0FSkozKykqZP3++dOnSRbKyHIbUbgV6GAAAAIAI9PXXX8vYsWNl1qxZm/x+woQJkp2dLbvuuqt07NhR/t//+3/b9Tg0GAAAABBWHo8npJdo8dRTT8ljjz0mnTt33vC75cuXy1lnnSXl5eWSlpYmdXV1cvvtt8uUKVNcPw5DkoAw+ecxE9Ra7bw1aq16hZ7qUh+sd3zMhE7Zai3gkMDj66inJHkc0oBKavU0oLRYvTs0MyvHVeJN3UJ9v60vWi1uJPuSmv0+/R49CamuUk8Qqg3WOd5v0dxVai3Tr7+GAQmqtXhvnFrzOaQk1TskZCX+ra9ai5m5RK3VFuvHU3zPjvq21Or7LSU2Ra3F9uuk1kp+W6TWqhblqbWEHbuKk8oPflNr9/ygv75XfHOeWot3eI8CaFumT58uAwcOlHbt2m343UsvvSQ1NTVy2223yS233GJ7IUaMGCGPP/647Lvvvq4ehwYDAAAAwos5DM1i/fr1stNOO23yuy+++EJiY2PtUCVj7733lj322ENmzpzp+nE4DQEAAABEoLKyMklI+Kv3NxgM2vUnhgwZIsnJyRt+3717d1m1Su+1bAo9DAAAAAgvM88gVHMNomgOQ2ZmpixZ8tfQTtOLUFpaKnvttdcm16utrbW9Dm7RwwAAAABEoKFDh8r3338v06ZNs//98MMP20nfI0eO3OR6CxYssGlJbtFgAAAAQMvMYQjVJUpcfvnldhjS8OHDbW/Dyy+/LD179pQDDzxwk3kOv/76qwwePNj149BgAAAAACLQ/vvvL//5z3+kW7duNhnJpCB98MEH4vV6N0lNCgQCrhOSDE/QNEuwTUpKSmyubXFxsaSmprL3osykWSvV2sy7vlZrlZ/9rtZ82WlqLVhVo29MrXOsakVpiVpLSPxrMtTmYhxiVZ0iJGMcxkd6s/Q4y5q8fLXm8/jUWkFtoVpr36mbWguUVqq1YJUe47quZr1a69i7v1rz5eiv79Kvv1Vrndp3FyeL18xXax3isl1Fpzo9x+ykDmrNE6tPiQtU6sewz+G4qFyjb0tidz0CNVBUrtakPqDfrrxarfnapzb78dRUNLJTLWVIP7V2+Wdj1BqRq9GpNX1vadiWm3e+V+J98SF5jKr6Krlj9rWt4vm2lhWfTWPCTIL2+fS/qU7oYQAAAAAi0FdffSXz5+snjwyTorR27VqZOnWq68ehwQAAAIAWCEkK1UrP0fNijhgxQu69994mr3fffffJfvvt5/pxaDAAAAAAESoYhtkFrMMAAACA8GKl57AqLCyU+Hj3c0ZoMAAAAAARYtmyZVus9rz57xrU1dXJb7/9Jp9++qn06tXL9WPSYAAaUeWQpDLj3PfUWqBQT2fx985Ra7XzHZKHurbTXyOH7TS8paVqzRPvd5WEFNsxS635svU0ivq1emKTPzlRrYlPHzmZVelzdbvKijK1lpiiP4fE+gS1tmLBb2qtU35Xtda5Sx+15k12PhvUw9vPVYKWU2pRdmpHV8dMbWGpq/Ss8jXr1Nqa6rVqreNfC5tuIT49zVVal7+fnrxUv6bYVULU9qQkxafo21r9s74DHuj/gFobN3ec/ngO7xmg2bHSs2vdu3e3czUavPXWW/bS1LClU0891fVj0mAAAAAAIkTXrl03NBhMz0JiYqK0a9f4ycXY2Fjp0qWLHHvssXLhhRe6fkwaDAAAAAgv5jC4tmTJXz2MZoG20aNH28XbQokGAwAAABCBnnvuOendu3fIH4cGAwAAAMKqYc2EUN13tDjjjDPC8jg0GAAAAIAIV19fL/n5+VJVVeU4/8ENGgyIWnNW6qkn75/mnDbgJvElxSHxxikJKVhTp9cqqh23xyktJnbHzvr9/qQnsKxaukCtdSztom+MX080qnJIc4pLTFJra8vXqLVsfUskMTPDVapNclK6fqd6QJasKmg87s7oWK/vs/xVy/U7NclEQX1bM/36c6wN6seUt04/M+dzSqVyEHRIbEpITFZrPRxeJwnoCxWtWqcfv528PdTa2oX6sZ3o05O8/B79T2l8P4f3hHkfOiRP1fyyzFVilSdBT6X6157/VmtHvXOKWtuhs/5ZArhiegHMPIZQCERPD4MxY8YMueWWW2TKlClSXV3t2PNiYlbdoMEAAAAARKDvvvtORo4cuaFXISMjQ1JT9Xhwt2gwAAAAoO2kJIXqfluhW2+91TYWzjrrLLnzzjulQ4cOIXkcGgwAAABABJo+fbr069dPnn766ZBO9qbBAAAAgPBipedmYeYkDBo0KOTJUFG5Dvw111yzIc7rH//4R0tvDgAAALDN+vfvL+vXr5dQi7oGw7fffisPPPBAVGX0AgAAtMo5DKG6RInzzjtPvv76a1m4cGFIHyeqhiRVVFTImDFjpGPHjjJ06FB59913W3qT0II+uPADtRas02MgS+fqkY1JHdqrtfrCMv0+8x3iWFMz1Zo3K0Wt2Xq6HgVZ9a0eIRnTWX/MjIo0d9GpBUWuolOlPqCW2sfqcbTi87rblrgEtVZWVaLWUjvrMbUppZVqLVCuR+Bltu8oTgrW5am19TUFaq1Ttz5qrX61vm/8PbJdxf8GyvVM8KDD81+UN0etdU/optY6dejhKo412acfhwmd9OceKNIzdWvn66+R4Wuvp5nE7qAfUzXzVunbU1KhP55Pj7F9e9Qzau3GuePUGoCWbTBMmzZNDjjgAHnsscfkoIMOEp/PXQS2k6hqMFx//fWyYMEC+eijj+SNN95o6c0BAACISqz03Dx69uxpfy5ZskQOP/xwiYmJsSfGvV5vo/vcbU9E1DQYJk+eLI8++qicfvrpcuihh9JgAAAAQERbsuSvUQ/BYFBqa2tl2bLGF33cnuH4UdFgKCsrs/m0Jpv2oYceaunNAQAAiG6sw9AsFi9eLOEQFQ2Gq666yu7Qd955x66At63MMtsbL7VdUqKPYwYAAADCoVs3fT5Xc2rzKUmffvqpPPnkk3LiiSfKUUcd5eo+7r77bklLS9twyc3NbfbtBAAAiLp1GEJ1QbNq0z0MxcXFcvbZZ0v79u3t/IXtmSw9duzYTXoYaDREhsffnKXWqr9fpNZKygrVWmqCnhIUrNATXzyJcWrN54lxlTy0eL7+/IxAUE8Y6p7x50Spxqxdok+Kykp0SCaq1dOl4tMd0pUcIvBqC0vVWkxsrFrzxPv1bYlP1++zo94LmVqop1IFHZKQnNKs1hetVmtphfr+NOJ98WotI6WdqyQkb6qeEhV0SKxauWiefp8Of7zjvfpz6NlxB/0+U/UEsOqla9RaXrVey/Drx2jF8qVqrf1O/dVaoEQ/Lpra37V/6MeGNyHWVfKU4xHlkCD1wI2fqLVxdx7kdK8AwsB8N3355Zft8gHr1q2TUaNG2XXHjPnz59u5Dvvss4/Ex+ufuVHbYLjiiitkxYoV8vrrr0u7dg5fcpoQFxdnLwAAAGgGzGFo1tE0J598shQWFtqJz2Zyc+eNor7nzZtnR9m8+uqrcvzxx7t6jDbdYDBzFky81OOPP24vG5s7d679+eyzz8qkSZMkJydHXnvttRbaUgAAAGDbzJkzR44++mipqamRCy+8UPbdd1854YQTNrmOWZshMTFR3nvvPRoMmrq6OpkyZYpaN1005hKuSSMAAABRz4xUDNVUgyiawnDXXXdJVVWVvPnmm3LMMcfY323eYIiNjZVBgwbJrFnOw5ijdtJzUVGR7Zpp7HLGGWfY69xxxx32vzfOsQUAAABauy+//FIGDhy4obGg6dKli+TlOa88H7UNBgAAALRCpCQ1CzPBuW/fvls14qa8vNz149BgAAAAACJQWlqarFy5ssnrLVq0SLKzs10/Tpue9Izo8MD9+hyVkjv0KMCKej3uMDVZj9b0pugxiOtW6dGLaWWp+uPtpEeclvymx792TekqTpziPJ2iNdu1/ytdYZtiImvqxA2n7YxJ0CPgYrrq6WerZv+q1jrtPECt1a0sUGu1xWVqLa5Le7UWyNejYbO799JvV+R8Nqi0aK1aS6jXY0eLaovVWkaNHkcrDrGqyTGJrmKDUwf1UWuFM+eotRTR97c/LVmtdYvT39vB6lpX0b9/zPperfXsoR9rTb2fSir11ymxRv8c8nn0KOagw+N5fPo5xIqnpqm1B9br9znuSXfrH6Ht83g99hKq+44Wu+66q3z11VeybNky6dq18e8Es2fPtvMXzORot6K2h+H555+3cxduuummlt4UAAAAYJudc845dtLzSSedJKtXb7l2y/r16+11zHde89MtehgAAAAQXqQkNYvjjjtORo8ebVOSevXqJcOGDbO/nzp1qhxxxBEyefJkKSsrk1NOOcXGq7oVtT0MAAAAQKSbMGGCXH/99fbfZm0xY8GCBfLhhx/a9RnGjRtnR9ZsD3oYAAAAEGaeP5OSQnXfIjJ06FDx+Xxy8cUX20tb5fP55M4775SrrrrKxqyaCc6BQEByc3Nl1KhR2zXZuQENBgAAALQ5M2bMkNRUPXCkrcnIyGhyPQa3aDAgIlQ5pLPUvPKLWkv8m55N7J+f5yp9p+TnBWqtXVYnteaJ09NnaubokWjxMXpK0NryNeIkxyF9yJeTrm9PXr6r1CJfdppaq1uR7ypFKKaHfmakaM4faq19vJ6iU7dsvVrzpieptdoiPVkq1uEY9ffTj4tl0/SEnZw0/XZGepz+GtbV1Ki1zHR3Z5s8SXFqLcmvJxN5YvU/NSt/+EmtdcjQ07oK1unv33S/fhwW1W45KbBBvE8/tr0OS8c6JSGVNBF3mJrTUa1l9unp6v0UdDoWu+nvi4IFi9xty2L9ffHG1MVq7fhhPdQaooBJMgpVmlEUpSQ9+uijcuqpp9rGQigxhwEAAACIQJdffrl06tRJTjjhBPn4449tGlIo0GAAAABAy6QkheoSJY455hjbSDApSX//+9/tvIUbb7zRTnpuTjQYAAAAEF5mwnMoL1Hiv//9r6xatUoeeugh2WWXXey/77nnHunfv7/ss88+8txzz0l5ufMioFuDBgMAAAAQoTIzM+Wyyy6TmTNn2ssll1wiWVlZ8s0339jF2nJycuSss86yK0K7RYMBAAAA4eUN8SVKDRw4UB5++GHb02B6Hw499FCprq626zCMHDnS9f1G8S4FAAAA2p6YmBg7v+GJJ56Q888/3/5ueyZEE6uKiDD+ovfV2uzZU9XazoP3UWtVBXoUYFx5tVpL6d/dXVxnSoJa8/h9rqJT4716DGRTnKIuS+vK1FpiRb1ai8vT4xwloH9Q+TrqMZi+HD1D2zdXfw41dfprGJ8Qq9bKV61xFXFbuWqtWkt02Nede/Zz9RoZ9YX66+St1V8nj8OxGKzS41i9yQ6xow771CmmuP28OrUmDu+L9jv1V2urZv+q1nK69lZr9av1z4SYzplqLVBepdZSUvXb2cdcV+Kq5on3u3otAmX6tqYm67GM3gw9brj0uzlqbflrDs+fWNXoZicnh2iuQfRMYWiU6VF455137PyFL774wi7iZuy0007iFg0GAAAAIMJNnz7dDj16/fXXpbi42PYopKWlyYknnihnnnmm7L777q7vmwYDAAAAwsrj8dhLqO47WuTl5clLL70kL7zwgsydO9c2Eszz32+//Wwj4dhjj5X4ePejERrQYAAAAAAiUNeuXe2QI9NQ6Natm5xxxhm2oWD+3ZxoMAAAACC8QrnAmif6JjefddZZMmrUqNA9TsjuGQAAAEDIrF692s5TCDUaDGg1HrjxE7VW8fbPam2Hjruotdr5eWotoYOe3FKyWr9d0nw9faYqoCfzSEWZq/Sd4jo9KSU7rYP+eCbxprRSrVWWlqq1snp9VciUmGS1VlejJ+zEZusJLMF6PV2p5udlai11UB+1FsjX93fAYb/4PfrHojdVTxeSAofX3uH5BYr0fV1aUqDfpzkW/cmuEo2cEp18Hj2ZSBY5bIxPT+kunD1fraVk6O/D9etWqrXMogq11j5Wv89Avn7clzsc90l5HldpVoWlenKakZmeLW4Ea+pcJSH5EuNcpVlV/7RYrSV00p9D5du/qLVnD9MTws4+SK+hjfB6/ryE6r6jRFoYGgsG6zAAAAAAEeD//b//J++/33jU/C+//CIrVqxotPboo4/aoUtu0WAAAABAeJkko1Be2qjbbrtN3n333UZrgwcPlltvvbXR2k8//STvvfee68elwQAAAABEuGAwuF2rOTthDgMAAADCi5SkiEIPAwAAAAAVPQxoNSpf+lGvVeuJKElZKWrN71CrL9RTdNK65rpK2Kkv1FNW4r16ak1BtZ6G0zW+i1qL6ZIlTuryCtVarDdWrbWL1e/Xn6HvU6nVE6Rq1urb4vPpH0Ueh/SdlT/8pNY6ZHRWaxWlevJUfVBPn4mN1/dLYm6Ofp8OyTwxHfX0qKRKPXWqqdvWrdSPqfj0NFfpOxUF+muYmJ6u1nwOyVM+h/doWnGqWvOmJ4obTs8hJau9q2M74PA6ZeV2c51k5nFINKpySDmLS0xSa/Wri1ylgHni/WqtZKWeZpWa01GtrbvzK7UmpCS1faQkRRR6GAAAAACo6GEAAABAeDGHIaLQYAAAAAAixM8//2zXY9iWmvn99qDBAAAAgPAK5XoJbXgdBmPWrFn2si01E7fq2Y79QoMBAAAAiAD77LPPdn3xd4sGAwAAAMLKfOn1mKSkEN13WzV58uQWeVwaDAirfx4zQS86fHAkZurxkTV5+Wotrosek+iJj3UVLbk+f5Vay0rJVmv+vnq8oH/JOrXmTdcjEmuX6rezAkFX+zt1h576Yy5eq9aqKxxiZVP0+MyCIv0+/V79Yyo7qYNaW1OoRz3mdO2t1qQ+4KpWtmqNWouPiXcVuRrbr5O+LSY6ddl6tebL0WNOA0X661RZUebqfVi8Xn8N0zLbu3qvOcXtBqtq1ZonVr9dQmKyfp/l1WqtulqPP03o0E6tlTscF4bXzvxsXKLDe7+wtlitxTlEtbbr3kOtVc1bodbie+qfX76FZa5iqIO1+mv/wB2fq7VxN49SawBCgwYDAAAAwouUpIjCOgwAAAAAVPQwAAAAILxISYoo9DAAAAAAUNHDAAAAgPAywRshSkkK2f1GMRoMCKvaP5pI9VF4/O4O1bqVBWqtvN4h0cerp9o4cUp8Wfvjr2otMyvHVRKOJ97vuD3elAT9tgl6SpT4fa5SdOqD+vNPyk5Ta+07Z6q18rlL9W2prlBrHdrlqjWPz+sqtchpn8V749Sav5ueElRfqO/Pst8WqzX7mJl6EpIvQ0/YCTok1/g9Ma7ehykxevpQoKzKVc2bqh+/TgJFFa7So+pXF6m15EF6slZ9XpGr/WlUBfTnX5dXqNZy0pwTtNzcZ1y3Dq6OU6ekJ6f3Wmm+/vfA98E8tSakJAFhR4MBAAAA4UVKUkRhDgMAAAAAFT0MAAAACC9SkiIKDQYAAAAgAvh8+hzDpng8Hqmr0+caOqHBAAAAgPAPig/VwPg2POA+GAy2yG3b8C4FAAAA2o5AILDFZezYsRIfHy+XX365/PTTT1JYWGgvM2fOlCuuuEISEhLsdcx13aKHAc1uzspivVivH6wVBXrcX0KiHtnoT9NrMQ5xnb71enxmsLpWrdWu06Na11SuVWsdErL1+yzWIwuL60rUWpa/nTjxxLp7i9fOWanWElNSXcXKli5c7iqO1ecQS5mYmaHW4nbtptbyPvlOrWV10uNYK9foEbexXj1ytW5FvlorrNCPp/Q4PQLUWLVGj13NLNCjPmuD+vGd1kPfb/UOkZzeJD1W1puV4uo+16/Tj0Ovw/mudt17qLWAQ6SsNz1RrXli9GEAXocI27gm3oPxDvstWFXrKm65tE7/PEn06VG1Tlvqy9A/ZxMc4nZXr1yk1rJTO6o1b7Iebf3sJ3rk6tkH9VNraGWYw9AsnnvuOXnooYfks88+k/3222+T2sCBA+XBBx+UI444Qvbff3/ZYYcd5Oyzz3b1OPQwAAAAABHo8ccfl2HDhm3RWNjYiBEjZPjw4fLEE0+4fhwaDAAAAAgrMwE3lJdoMXfuXMnN1XvGG3Tu3FnmzXNYEDHaGwy1tbXy+eefy9VXXy1Dhw6V9PR08fv9kpOTY7toPvroo5beRAAAAGCbxcTEyK+//trk9WbPnm2v61abbzBMmTLFjtu6//77ZcWKFbZL5phjjpH27dvLBx98IIcddpicf/752zVzHAAAAC5SkkJ1iRJ77LGHbQw88sgj6nUeffRR26jYc889XT9Om5/07PV65dhjj7Uzx/fee+9Naq+//rqccsop8tRTT9nxX6effnqLbScAAACwLW655RaZNGmSXHnllfLGG2/IySefLD16/Bn8sGTJEnnllVdk2rRptnfhpptuErfafINh5MiR9tKYE044wc4qf/bZZ+XFF1+kwdBMPv1sgVorXLpMraV37OQqMaO+UE8EWTRzhlrLjtUThsrqy9Va5z47qLXqpWtcPQdfnF+t+fP0VBePQ8KKUbF8tVqLS9STXcSnn54JOiRdOaUyJWfriSjrl+hpP36fvm8koPcM1i3Od5WE5JR4U+yQ+NIhu6ur7cyM1dOzApU1+n2a94xfT1GKT9GTiWId7rdiySp36Uod9XSlsiUrXSVkOcls39HdcR+npwSVVOoJb2m19a7SwSqrK8TJuho97ahbTh+1tqZ6nVrLSdM/Sysr9M/LBIfPE6dUJifx3nhXqXlBh2O08PXZ+n2SkhQ5SElqFqbXYMKECXLOOefIt99+axsHGzMjaJKTk+Xpp5+Wvfbay/XjtPkGQ1MGDx5sfy5frkc+AgAAAK3R6NGjZZ999pFnnnnGDsU3Q/AbJjrvu+++Nkq1Y0f9JMvWiPoGw4IFf54N394dCQAAgK1ED0Oz6tChg9x44432EgpR3WBYvXq1PP/88/bfZp6Dprq62l4alJToC2kBAAAAbUkUzSPfVF1dnZx66qlSXFwsAwYMsElJmrvvvlvS0tI2XLYm7xYAAAAKUpKalTmZbRZxM99tDzroILnvvvs21ObPny+ffvqpVFVVub7/qO1huOCCC+z6DFlZWfLf//5XYmNj1etef/31Mnbs2E1eFBoNAAAAaGmmMWDSkQoLC+0kZ7NwnZm/0MAs2HbUUUfJq6++Kscff7yrx4jKBoOJWDXJSBkZGTYlqW/fvo7Xj4uLsxdsnaoXf1FrKbF6ckuwVk8aqV28Vq35cvSkmG7dd1Rr+cuXqrX2uX9Gkm1rWojP41Nri9bMVWud4vQ5NGmZ7dVaoERPUGpqezwOSUi1ZXqyS3xPfVuL/tDTjpLK/xrWt7mUmGS1VhXQz4jEOSSp1C7VU2R82WlqrX5lgVrL9GeoNY/f4ePUYV8H8kvVmr+b/trbu3V4/pWr1rpKCvLV+1wdT07pSgmJ+uvrTddTqepXF6m1qgK95qSsSh9S6nVYHbagSN+fGYmZai2pUwfH7fHn6cdN0OE9kztokFqr/UNPiUrM1I/hkt/0FLCkDvqxGKyudfXejumS5eoz3ympDRGEOQzNYs6cOXL00UdLTU2NXHjhhXaSs0kB3ZjpcUhMTJT33nuPBsPWGjdunF3cwqz4bFpkDSlJAAAAQCS566677FCjN9980y5MbGzeYDCjaAYNGiSzZs1y/ThRNYfhmmuukQcffNDOQzCNhSFDhrT0JgEAAEQhz1+9DM19MfcdJb788ksZOHDghsaCpkuXLpKXl+f6caKmwXDdddfJP//5T9tYMMOQhg4d2tKbBAAAALi2bt26JofWN4T9lJfri9I2JSrmMJilsO+9994Nw5BoLAAAALSClKRQ3XeUSEtLk5UrVzZ5vUWLFkl2drbrx2nzDYb3339f7rzzTvvv3r17y/jx4xu9Xrt27eT+++8P89YBAAAA7uy6667y1VdfybJly6Rr166NXmf27Nl2/oKZHO1Wm28wFBT8lXjyww8/2EtjunXrRoMBAAAgHEhJahbnnHOOHT1z0kknyVtvvSU5OTmb1NevX2+vY+JWzU+32nyDYcyYMfaC5jVnZbFaCzpEPZbW6BGSGUl63J/U1qslT6xDLGGNHtWa2b6jq8hVp5jAino95jQnbtM38cYSOrTTt2XVclcxl0ZGz+5qrW5FvlqLcViXpC6vUK0l+fSITG+SHk3scYhJTPElqrWqUv14Wlujx992j9XjHGscImVjEuLVWuUa/fHi0/UYV1/HDNfxkfMW/aTW+qT1cRXz6s9IcRXjG9elg6vI1SSn55+uv/bFa/X93bF3f1fHYbCq1tVx7xQNG6zQo1GN0roytZYY1ONvPQ7b43TcrF27TH88n/549ev0OFpPvF+teR1eQ6fo4/jh+pjsqm/mqzUg2hx33HEyevRom5LUq1cvGTZsmP391KlT5YgjjpDJkydLWVmZnHLKKTZe1a0232AAAABAK0MPQ7OZMGGCHXb/0EMPyaRJk+zvFixYYC8mUtUsKXDPPfds12PQYAAAAAAilM/ns/N1r7rqKhuzaiY4BwIByc3NlVGjRm3XZOcGNBgAAAAQXqQkNbuMjIwm12NwK4qCpwAAAIC2Y+TIkXLfffc1eT2TBGqu6xY9DAAAAAgv5jA0CzOpuXt3PeCkwbx582TKlCmuH4cGA1yZ+OBUtbb2l99dJRMFivQVCCtK9YSO2mI97SclVk98WVe1zlVaiFNSTq3DdqZ36qLW6lcXqbWMFD1BKcYhYcZYN3+Bq/v1Zen7bf2SxWotPS5drfl30p9/oEhPJqpf+Vc08uYSu3dSa90q9eeX98dctZbTuada8ybrr70n3+Hj1OtRS8WL9USueK/+eMYOO+2h1uoL9fQdjz/GVdpTXJz+vnASn6IfT2vmz1NraTGpaq1DRme1Vr10jbhRH9TT2OIS9SSk+rV6apwvW0/IMtrn6IlOi3/5Ua11KdHTnoqq9c+TzkN2VWuFM+eoNV97/bVw4s3Q91tVgb6d3l/0dDiPQ8rXA49PU2vjLtpTrQFtXW1trXi97gcW0WAAAABAeHn+r5chVPeNTfz666+SlaVHijeFBgMAAAAQIc4666xN/vubb77Z4ncN6urq5Pfff5eff/7ZrsvgFg0GAAAAhBcpSa49//zzG/7t8Xjkjz/+sBcnnTp1stGrbtFgAAAAACLEc889Z38Gg0HbszB8+HA5++yzG72uWbitS5cusscee4jfr6/K3hQaDAAAAAgvUpJcO+OMMzb8+7bbbrONgY1/Fwo0GAAAAIAItGTJkrA8Dg0GuBJYrMfhZeV2cxWd6onVD8eU/t1dRewVzp6v1rKTOqi16upKtRasqlVr7XN7qLXyVXrUY0JcolrzxPtdRWca1YEateZN1+MO6/IK1VpmVo5aC5RVqbXa+Xmu9qnT81+5QI+B7JCQ7SqutGS1vp0pWe3VmidRj7kMlurHU2pnPR40WKW/fkbVIn1b/WnJaq1+XYmr6NSYLnrCRu1SPaa4vr5OrbXv5PB54bDfnPZ3rEPN6fVN8iW5Og69Kfo+K1qxQpykJuixq12ze7mKPk5ZpO/vRd9/p9a699pZrQXKq1zFoyYmxOq13BxXj+dJ0l9fmeUuUhctlZIUwvtGs6LBAAAAAESw6upq+fLLL+0CbSUlJXZ+w+bMBOmbb77Z1f3TYAAAAEB4mQUtHRa13O77buX++OMPuf/+++X777+3ayR07tzZ9fCid955R84//3zJz9cXsjUNCBoMAAAAQIT47bff5MMPP5Tdd9/dfpkvLNSHAjv54Ycf5IQTTrD/PvHEE+39mgbIddddJwsWLJDPPvvM9jiYFCWTluSW+zWiAQAAgO1JSQrVpZU7/PDDZcWKFfL222/L3/72N9f3Y3op6uvr5b///a+88sorMnjwYPt7s+bCG2+8IfPnz5cDDzxQ/ve//8lFF13k+nFoMAAAAABh5PU2z1fwqVOnyo477qiu4ty+fXt57bXXpLy8XG6//XbXj8McBrhSv15PO3JSUqZ3uaVl6gk0dYvXuko0ckq1WZSnJ+z06jHQVdKTk8TMDL1YW+8uQcghIcro1EVPWVmy5Df9fh0iJrom93KVdBUoqhA36ir1tJSOHbq5Sm7J6KmnbgUr9WSi+vxStRbbUX99g6kJrl7f+tX6czASBuqpXIUz9eM7vXcPV8lbwfqAqwSl+qV6ck2wolqtVVfo77XYGj0JyN9Nf98nx6fq2+LwPnR6j65bt1Ktdfzbrvp9mrv9Y7VaC5Ton21O4rrozz9tqX6f9WuL1VpZlZ6slZLRTq3VrdDHVHsd3he1hfp7LSZWT16q+mKBWkMr0wpTksyE4U8//VR+/PFHe5kzZ449e3/HHXfITTfd1OTt33zzTRk/frzMmjVLampqpHfv3nLKKafIlVdeuV2LpjlZt26dXYehQUzMn3+Hq6qqJD7+z0TAtLQ02XfffWXixImuH4cGAwAAAKLeE088IQ8//LCr/XDFFVfY25ov7CNHjpTk5GT54osv5Nprr5UPPvjANkQSEvRGslspKSlSV/fXCRTTODBWrVolPXv23PB702BZvVo/QdEUhiQBAAAgvMw8A2+ILi7nMOy8885y1VVX2bkApnfhtNNO26rbvfvuu7axYBoJ06dPl08++UTeeustO+l4wIAB8s0337iOM22Kmci8fPnyDf/dv39/+9NErDaora2V7777Tjp00Nefago9DAAAAIh655xzjqt5BnfddZf9aZKJdt31r2GI7dq1k8cff1z23ntveeyxx2yjoaEHoLkMHz5cnnnmGSkuLrb3/fe//932cowdO9YOS+ratas89dRTtsfBDI9yix4GAAAAhFcbSUlauXKlzJgxw/775JNPbvQLfW5url1YbXvmEGiOOuoo28swZcoU+98dO3aUG264QUpLS+Wyyy6z9Y8++kjS09PlH//4h+vHoYcBAAAAbY5Zf2BjcXFx9tKcZs6caX9mZmZKjx6NB0oMGTLEDhsy1z3ppJOa9fFHjRplhz5t7NZbb7VDocwk7IKCAtlhhx3sHAvT2+AWDQa445Qm4iA1Qe+KKy5Yp9ZSYpLVWkKnbLVWslJPL+kU19FVcsvq4lVqrWO8ntqz3iFJJbt7L1epTIFyfTuNgiJ9glPPHf7Mat7WpBwJbLnc/NakJDnV1qz/a/zl5jr121HcCBToiVxBh4SdYLWeWuTLSnH1Wjg9XvkqPUEo3uv8h612jn5MOXFKwyktKVBrKbWZrp6jPzlRrXlSHJJyHLal2CG1p0v7vyb6bcsfvVqHNDZftv7ZlVyqJ/pU/7TY4RFFSuvKXCXHOSUoBcr0ZLHlVSvUWq5aEUn06a9TTGf9uCicPV+ttR+pp9F5f9C3c+1CPQkpp3eOWkP0pSSZM/ubf5G+7bbbmvWhFi/+8z3u9GW8YTsarmtUVFRs6HFYtGiR/W+zloIxdOhQ6dZN/z6xNY455hh7aS40GAAAANDmmLP6qal/RSk3d++CYYb+GElJSaIxk6E37/FYu3atjB49epPrNfz3c889J2PGjJGtYRKZzJCkF198UUKJBgMAAADCqyHRKFT3bUY1pKZu0mBoTbp37y7BoN5jv7W+/fZbO08h1LaqwfDVV1812wPus88+zXZfAAAAQEtJSflzqKpZSVlTVvbn0MNQNF5M74KZUN0qGgwjRowQTzPMODf3sfHiEgAAAIhCoUwzCmNKUvfu3e3PjddC2FxDreG6zemwww6Tl19+2TZYnIZFhW1IUnZ29obFINyYO3euHa8FAAAAtAWDB/8ZIJKfn28nNTeWlPTDDz/Ynxuv0dBczERus5K0meBs1lvY3snS291gOOSQQ+Q///mP6wc688wzQz4hAwAAABEgDClJ4dClSxebamTWYpgwYYLceOONm9TNKs+mh8FMuD700EOb/fHHjRsnO+20k3z44YfSr18/24AxPRkJCQmNjvR59tlnXT0Ok57hSt1KPe7QE+d3FU2Y4ctQa4GSCnGjOlCj1vw+v6uYzw4JeoyrL0OPf20nndVa2fI8tZbSSw879DjEJ1qrCl1FLzq9TnUO0ZOehFi1VpCvR7zmdNZjMIP1AbVWvHipWkvtrO/vdcv1qMv2uY3naDcVDetW6qA+aq1uoR652mQEakY7tVZVpMeqpuboccNLls9Ra13T9a52/05d1FrNzCVqLX2H3mqt7Ndf1Fr96mJXMcX1QT0u2rMiX63FxsS5PmbS07u4ir91mixaU6ePZx68zyFqrXbeKlfHmn/ZerWWuecuaq1q0jxXEcaZfv1vRV2e/pkHhMoNN9wgRx99tNxzzz32BHtDT4Lpdbjooovsvy+55JJmX+XZeP755zdMG6ipqZHp06fbS2NC3mB49dVX1cUottaFF14oBx988HbdBwAAANqAMKQkbauffvppwxd8Y+HChfbnk08+ac/gN3jnnXfsisoNTEqRWVX5kUcekT322MMupmbmE3z++edSVFQkw4YNkzvuuENCwUSwhsNWNRhOOOGE7X6g3Xff3V4AAACA1sask9DY2fkVK1bYS4PGUokefvhh2zAYP368jTqtra2VXr16yXXXXSdXXnmlxMbqPfDb44wzzpBwYEgSAAAAJNpTkkwq6PasjXD88cfbS1tEgwEAAACIcL///rvt3Vi3bp2dCH3EEUfY3wcCAbuswfb0cmxXg2HatGl2fNaqVaukqqqq2SdYAAAAoA3y/t8lVPcdRZYvX27TSL/88stNhio1NBiefvppOzfj008/tfMrwtZgqKiosF0u//vf/+x/O3Xf0GBom4KVNe4mG/n0d7HXIU3EE6+3ivOX60k5XodPjbhEfYGTDvHp+rb49e2sc0hS8TqkfiR16uAqzcgp8cVol56j1vJX6UlQ7WLdhRwESir1++zVS61VLNHTWQKif76kpGaqtVVLF6i1jh30nOpgRbWr/V1X2URilSLG4T6DVbWOt03rmuvqvRbvcJ+Va/TEm1iPu7NTNb8sU2vB2npXiVy5gwaptVqH2/n76ilQwfn6wqL5pWtdvc/E79NrIrJ0ye9qLdmnf0a130lfF8nrkGK3ZvrPai0rV39fpKboqWNOKqbPV2s+n/5ZWlFUpNaSc/XXcOUiPXkJ0cfEnfp8Prn44ovtpS0qKCiQfffdV5YsWSI777yz7LPPPvL4449vch3znd2kNL3//vvhbTCY+KiJEydKRkaGnHrqqdKnT58NS2MDAAAALT2HwayNkJqa2qZfiHvvvdc2Fq666ir7b3OifvMGg/m+PmDAALsmhFuuGgxvvvmmpKen2/ipUK0oBwAAAED33nvv2YXazBoQDesxNKZnz54ydepUCesor8LCQtl7771pLAAAAMB9D0OoLlFi6dKldqE4r9f5K72Z8GyGL4W1h8H0KjS1YQAAAECjmPTcLOLj46W0tLTJ6y1btmy7Vpp29a3/5JNPlsmTJ9vV6wAAAACEX//+/e0UgfJyPUBj/fr1MmvWLNlll13C22C49tpr7UzsQw45RObMmeP6wQEAABCFGJLULI477jjJz8+XsWPH2vUWGnP11VfbhNMTTjghvEOSzDioTz75RPbcc08767pr16720tgwJTMBw6zVgMjz7Cd6PF1Mlyy15knRQxtrZutRnvUBPT6zJqDHuAak8TdIU3GHtWUVas3vEEm5ZLUe19k1vbta8zjcZ7Befw6BUj2q1OMQRdtUpGO6X++arFi+2lUcrdNzDOTrXaYJnbLVWrBKf+1rC/X7zEnr5Coa13F/Ozy/ivpKV7UOPv25e5qI5Kx32KdOKivK1Fp8jP7+7dSpj74ta4vVmr9be1exwd4M/Vir/F2PavWnJau1uoVr1Jo4vA/bd9IDPnwd9Rjm+rUl+uOZiYiDh6q1st8Wq7VAoX42saBoravPy3XL9cdbVaV/JuySu5tai3FYKMrpc88patrpdk6RyVUOt4t3eG8DrZmJi33hhRfkmWeekR9//FGOOeYY+/uFCxfKgw8+aIOKvv/+exk0aJCMGTMmvA0GM+n5gAMOkNmzZ9s1GEyck7k0xmnGNgAAAKJQGGJVo2UOwyeffCKjR4+2qzzPnDnT/t5EqJqL+Z5u1qN49913xe/3u34c1+swmPFSZv2FCy+80P5MTtbP6LQWppU1fvx4O46rpqZGevfuLaeccopceeWV27UTAQAAgJbQsWNH2zgwDYePPvpIFi1aZIcn5ebm2ukDRx555HafwI9xm/naoUMH+e677+xiEJHgiiuukIcfflhiYmJk5MiRtoHzxRdf2PkYH3zwgV0uOyEhoaU3EwAAoO0z319DNRIsejoYNnHQQQfZSyi4eqmKi4tlr732ipjGgumGMY0F00iYPn26bYG99dZbsmDBgg0r3918880tvZkAAABAq+Oqh8EM5amq0ieqtTZ33XWX/XndddfZxS0atGvXzi6fbRahe+yxx2yjYXsyagEAALAVmMPQ7Orr621iktN3dBNSFLYGw9lnn23nMaxYsUK6dOkirdnKlStlxowZG9aP2Nzw4cPtGK/ly5fLxIkT5aSTTmqBrWydqkv0A65gwSK1Vh+sV2u1wVq11j5eT1JJ6qEfZ8nx+vyTmjkr1VpsRz3pyUn70nZqzZuiD2vzZunzfOrzilwl2nib6HeN9eoJJTGdM9VajUNKUrCmTt+eBP3xApV62pEvMU6txXTV97c4JGutWa8ncuWk9NS3JdvhpIFDyorTqQZvSYGrfeZN11OCmkp0qi3Wj5vk3I5qrW5lgaukq5q6arXmdbid0/EUrK1z9Tnjd3idxCENx5OkH4clq/PUWvzaQtefM/Xr9X0TG6NvT6BIT0ly0i6rk6vjO7E0Ua154h2O4dREV8dTsEI/ngry9c+nzCw9GQ9oq2bMmCG33HKLTJkyRaqr9feOmcdQV6d/rjZ7g+HSSy+1Q3vMXIBHH33UJia11pWfG2aLZ2ZmSo8ePRq9zpAhQ2yDwVyXBgMAAEDk9zCYdCCfz2ejR82lLfruu+/s9/GGXgUzXSA1NbXZH8dVg6FXr172p4lSPfTQQ+1EYjNDW1uHwWTBtpTFixc32QVjehg2vu7mTGtt4xZbSYlzrjYAAABa/sx7KL48tya33nqrbSycddZZcuedd9pQolBw1WDYeM0Fk+9aW1sry5Yta5XrMJSW/tnlmZSkd+03RMJqDYG7775bbr/99hBtIQAAQJQx55hDNTildQ56CQkz4qdfv37y9NNPh/Q7t6sGg3Ymvq26/vrr7ZLbDUzDoqFXAgAAAGgJZk6CWcU51CfoXTUYunXTl15vbVJSUuzP8nJ9glhZ2Z+TA7Vuq7i4OHsBAADA9jNfcEP1JbelR7eEU//+/WX9+vUhf5w232nTvXt3+9NMatY01BquCwAAALR25513nnz99dchny/sqochkgwePNj+NLm0ZihVY0lJP/zwg/258RoNEOnbV4+zLGiX7SpGz+MQaVjvELEnfp9aWv7zz2qtY3t9snuwSo/5rCjQYxKd5K/SG6biUEuJ0SNXU3rpw99ql65z3B7HiFCX6uv1SLaiIj0eNt2f5iqyMsUhWjNQoseKdsjo7Cqus8YhItOfrB/btWUVai3Jr7++Hoco3kC583o3TpGkMQnxrt5rVQE9ki91hz5qzbtWD4PIX77U1bGf0FePf61Ypx8ziU7RoQ6CTtG/Hv3PZVVAf53qV611fMz4zHS15u+d4+qzNGt9kqvPqKxO+mdNUYH+3q5fqR+H8V79OPT5YlzFDafH6fvM4xDR/M1s/ZjZf6D+eYEQYR2GZmswTJs2zSaWmjXFzErPJhmqRXoYDjzwQHnggQe264Huv/9+ez/hZtaJMLFaxoQJE7aom1WeTQ+DGXJkEp8AAACASNCzZ0+7/oIJJDr88MMlMTHRjpgxv9/80pByGrIehkmTJm33Am2//fabfP7559ISzCJzRx99tNxzzz1yyCGHbOhJML0OF110kf33JZdcwirPAAAAYUAHQ/MIV3LpVg9JMhODtQ3Y2tu3lKOOOkouu+wyeeSRR2SPPfaQUaNG2ZhV04AxQyiGDRsmd9xxR4ttHwAAANBak0u3usHw1ltv2Uukevjhh23DYPz48fLtt9/aFpjpmrnuuuvkyiuvlNhYfbwkAAAAmruHIVQpSRI1uoUpuXSrGgxmleS2EFF1/PHH2wsAAACAZmwwbDw+CtGjczs9vSRQpCfCSCColnxZf66L0ZgKh4Sd+DI9haRzz35qrW5lgVorr9fX5kjyJbm6XaJPT7yJT09zlYYSrKt3dTuj3uH5V/7fKuiNSeigJ2QFK/QUnfad9blOwXL9dinlDulDhfp21gf1fRPv8Fo4HaP+DP0YDVbVqrW4Lu3VWuFSfThnar6ePRHTJUucOKVkOaXo5Ffomd3ZvfQkpLpl610lVmVm5bj6TAjk60NZM1L0Y7R66Rq15k/TP9fEq58YS0h0SLqK97v7rDS39et/hmvn66k+zvepJ6RkJGa6Sg9zSjvKHLqzWqtbpaeOBYrKXaWO+Tz68/NlJLn6m4YWwErPzcosKvzyyy/bUTTr1q2zw++vueYaW5s/f779Lr/PPvtIfLz+Xo7qWFUAAACgrfr000/l5JNPlsLCQjvx2YwK6tz5r6jgefPm2fm8r776quuRNm1+4TYAAAC0zpWeQ3WJFnPmzLFJoMXFxXLhhRfK66+/bhsNGzNrM5i41ffee8/149DDAAAAAESgu+66S6qqquTNN9+UY445xv7uhBNO2OQ6Jthn0KBBMmvWLNePQw8DAAAAWmYhhlBdosSXX34pAwcO3NBY0Jj11PLy3M2LMmgwAAAAoM0ZOnSo7LjjjjZSv61at26d9O3bt8nr1dXVSXm5HjTQFIYkQbVDZz3VpyqgJ97El+kt+9piPfUkObejq7QjT1KcWvP3yNYfL09P75D6gFrK2muQWqv+aYmrBBanJJH61Xp6lNfhuRsFRWtdJToFSvXEm5iOGa5SXXztU9Wa1OppR3HdOqi1wkX6/k7urKfBOCmcPV+tpebox+jKRfNcJXkVL1uu1pLznM/pOL0WgXI9WSxL9ISheof3hVNqk1OClFOCktP7wt+zg6vnF+eQvOT0eeH0Xqus0D+7klL0hKyCWofPGRHp1EdPpfI6JP44JVY5JWTFdHV47dfriWS1Qf31rfnVYVFXh21x2s7aoJ7YFJud4epYc/qbhra50vOMGTMkNdXhb08bkJaWJitXrmzyeosWLZLsbP07UVPoYQAAAAAi0K677io//vijLFumN9xnz55t5y/87W9/c/04NBgAAAAQXsxhaBbnnHOOnfR80kknyerVq7eor1+/3l7HJCeZn2FtMHz88ceuHxAAAADA9jvuuONk9OjRMm3aNOnVq5cceOCB9vdTp06VI444Qnr27Cnff/+9XafBxKuGtcFw6KGHSr9+/eThhx+2K8sBAAAAW/8N1COeEF2c5ka1RRMmTJDrr7/e/nvSpEn254IFC+TDDz+UmpoaGTdunDz//PPb9RiuJj3vsMMOdqGIsWPHyk033SSnnnqqXHzxxbLzzvry8AAAAACal8/nkzvvvFOuuuoqG7NqJjgHAgHJzc2VUaNGbddk5+1qMPz2228yefJkeeyxx+T999+XJ598Up566inZZ5995JJLLrErznm9TI8AAACAIro6AkIuIyOjyfUYwh6rOmLECHsxUU7//ve/5ZlnnpEpU6bIV199JZ06dZILLrhAzj333GZp1aD1SdtjR1fRmjUFemxh9Yp1ai0mNlatBQr1XOHVKxeptbQYPWrN5/GpNe+CNa5iXJ1iECsL9PjThA56DGKwWo86NNLj0tVaTZ0ejetN1+McyxeuEDfia/WYxKpSPc4xIUWPf03v0kV/QL/P1TGanKTvM0+Cfhx26b+TWqvP15+fz6N/DBeW6seMkRkb4ype0pejP8dghX5c1Bfq0aLLivSI227ZvdWaBIJqqXbRGlcxrotXL1BrVfV6HGu/zgPUWnxMvKvo0PadujlnqH81U62lZepxrV6H94V/Bz3+t+qb+a4+EwLBoKv3RWmhfgyn9dD3jdfhMyHo8FniTXZ4nQC03DoMnTt3ljvuuENuueUW+e9//2t7HczEC/Pf5vdmIobpddieKCcAAAC0HR6Px15Cdd/R6Ntvv5U//vij0dqQIUPsInYtvnCb3++3kU6mgWAaC/fcc4+daPHKK6/YyRh77bWX3H///TQcAAAAAJd22203mT9/vp2vYBoCDZ5++ml58cUXG73NLrvsIjNn6j2aYWswrFmzxs5jMJdVq1bZ3w0ePNjGO7366qs23mn48OHy1ltv2ZgnAAAARKdwrPTcFn3++ef2i//ZZ5+9SWOhgVlvwUx03tiKFSvkl19+kS+++EJGjhzZMg0G0/1hhiG9/fbbUltbayc7mwkXl19+uW0gGGbmtpkYfdlll8ltt91GgwEAAADYRu+++64dcnXllVc2Wje1zz77bJPfLVmyxK7RYE7ah7XBYFaUM0ONxo8fb5eaNq0ZMzPbTHI28aomxmljphFx4YUXysSJEzfkwwIAACBK0cXgilmErVu3bts0H6F79+4yYMAAe1u3YtxOdC4qKrINhZ122sn2HJi1GBIS9NQGo0OHDnZeAyKfN9khtaioQq3Fp6fptyvT00t82WmuEkqqAnrqR2JQT1mpdajJ2kJXtdI6PWGmXa9ertKVPA5JQLbusG/ikx32qYPqgP4e9jr0A8c6HBeOSVAOqT1SH1BLAYfn7u+rp8jULdHTuupW5Lva107HqN8hJUl8zokvFUV66lhybkdX21O+Sk8mSkzX05V6Dd5drVX+vsxVIllTx7eme+4Oro4nb5K+v72pie6OC4ckKyOjW1dX6VpOr73f4XPIn6w/DynV902aP9VV6laaQ+Ja9VL9WEsepCdr5f/0u1prv2NntQa0BQsXLrTzghtjvpdr+vTpY+c8hLXBYBoLhx12mG0obD5Oysk111wjp512mpuHBAAAQBtBSpI7JSUlkpbW+Ak/s6CyCR9qjDmpX+oQVxySBoNZbrpnz57bfLu+ffvaCwAAAIBtk5ycLMXFxWoSkrloJ/sTEx16GEPRYHDTWAAAAAAsMzLSYSTndgnV/bYCHTt2lJ9//nmbb2duY27rVhvepQAAAEDbsddee8nKlSvlq6++2urbmOuaaNVhw4a5flwaDAAAAGiROQyhuhhDhw61aUIm1bOtOPXUU+3k5osuusjOZ2iKmbdgrmv2ycknn+z6cWkwAAAAoM2ZMWOG/P777zbyv63Yd9995YADDrDPyyzc9tFHH6nXNcsZmEbTnDlzbEjRfvvt1/IrPSO6eJL8aq0+WK/frlKP5PRlpai1suV5ai2pQ3tX8Yo1DtGDMQnxrrazeoUeyZmR0s5VLKM3NcFVFG1T2xoorXR1u7RMfX87CTq89k6vRUV9pattqctziJZ0irp0iGqtqdNjJ+Nik1xFrvp8+rbEZmWoNXu/Ds8jUK4fG8Fy/Xmk9MrV79PhNXSKTvVn6MdTsEqPMPam6Md+sLZOrQWKytVafoUeU5xZmalvS0Ksq9e3rFyPPzVS4v2u7jchMdlVDHXZkpVqzSt6LHJtwOF1StY/L6vn65/dTurXlrj6G+PNco53RyvCOgyuTZgwwQ4vmj9/vl0M2ayFtuuuu0r79n/+TVy3bp389NNPUlhYaHsjevfubW+zPWgwAAAAABEiKytLpk+fLpdccom8+uqrUlBQYBdGbhiK1bAeg1k4+cQTT7RDstId1tHZGjQYAAAAEFZ0MGwfsxbDSy+9JLfffrt8+OGH8uOPP8r69X/2oLZr1872OJg103o5LAy7LWgwAAAAABGoZ8+ediHlUKPBAAAAgLBipefIQkoSAAAAABU9DHDFs2cXteb/+g+1FiiqUGvBaj2FIz5GT+Fw4pQE5E/Wl0j3JMaptfq1jS/JbiQM7OEq9SOQX6rWKor0lJXElFRx4pRe4pRMJA4JQ3WVVa6ef80vy1wlIfm9flevk98h6anoj8VqLXPozmot8PMSfVuckpe8evpMfZme9lOzRk/0MZJ66e/DmFQ9Yalw9ny1lpzndfXaL69aodZyC/XtjOvWQZpbaZWeVuaW07HmdTjW0n1Zjvfrbe+QuvbDIlfv7WBNnaskpFivngQVkKBeK9RTqXzt9c+oeofPoPzlS9Vax8P2Umv+UfpnEFoZVnqOKPQwAAAAAFDRwwAAAICwYg5DZKGHAQAAAICKBgMAAABaZiGGUF3aqK+++squ8BxuNBgAAACACDBixAi55557Nvz3yJEj5b777gv54zKHAa6Mu2hPtXb38zPVWrC8Wq3FDemu1qp/WuoqnSamY4arpJzkGj3Zo6xKTztKr8pWa75sh7SQ1UWuEqKqSvV0JSOuPqBvj8en39Dl7YJVetKVN0lPmUmp9Lh6fYNVNWqtaOVK/fGy2qu1aockpKo6PSVIivRaSq9ctebx68/P38c5QWjVlO/VWrIvSa1lDN7BVZpXQt+Oaq1PlZ6EVLdMT3tau3CBWmvXvrOrxLV4r/6eSclop9ZiuuvHRd0SPXkpWKF/ronP+bxcvUNCmtPnV6BcP95KHI79jJ37qrUFP32n1voO20etrfhuhlrL6dxTrfl8+rFfXaO/twv/95NaG3TZ39QaWhdWenYvGPwrtWzy5MnSvbv+/am50MMAAAAARICUlBTJy8sL++PSwwAAAIDwoovBlV122UW++OILueWWW6R37972d3/88Ye8+OKLW3X7008/3dXj0mAAAAAAIsA111wjxx13nNx5550bfjd16lR72Ro0GAAAABARPF6PvYTqvtuqww8/XL7//nt59913ZenSpfL8889Lr169ZNiwYSF9XHoYAAAAgAgxcOBAezFMg2H48OHyn//8J6SPSYMBAAAAYWX6AEK1XELb7V/Y0q233iqDBw+WUKPBgGbncYgRrHOIyqudt8ZVHGvh+rVqLbNPT1fRi8tLl6u13PRuaq12vp5c4E1N0GvpiQ6302tFCxeKE1+lHoEa102P7Aw4RD06WfPb72ot069HRMbv00+t1S3U4yzr1xartSR/slrzxMeqNZ9DLTk2y9W2OAlW61G05VPnOt7WaZ96/PprX7fQ4b1WU6fW/D312NEah9hRT7xfrWVWZbiKTnV8P6kVEU+cvi2Vsxa7er/UrcjXHzDwV/zhtr5OAYd4Y0+iHlOcHK9HONf+sVqttYvNVGtLp+mRq+1j9ajaYK1+PPmy09Rax6oEV38Pjh/WQ60BbbXBEA40GAAAANDmUpKGDh0qPp9PLr74Yntpy+rq6uS///2vfPnll7Ly/9Zi6dy5s+y33352knRMzPZ95W/TDYa1a9fKxx9/bC8zZsyQ5cuXi9frla5du8qBBx4oY8eODctiFwAAAAgv890vNVXvcWsrfv75Z9soWLx48SaLuhnPPPOM3HzzzfLmm2/KoEGDXD9Gm24wmAbBK6+8YhsJO++8sxxxxBFSXl5uD6BHH33UThB555135IADDmjpTQUAAIgaHo/HXkJ139Fi1apV9iT4+vXrpUOHDnLiiSfa1CRj0aJF8tprr8nChQvloIMOsg2Ljh07unqcNt1gyMzMlNtvv13OPvts2y3ToKysTM4991y7E82ONQteZGTo42gBAACA1ubee++1jYVzzjlHHn74YUlI2HT+z1133SWXXXaZ7Wm477775F//+perx3GaGxbxHnnkEbsS3saNBSM5OVmeffZZu7x2QUGBfPTRRy22jQAAANEZkxTCS5T43//+Z4faP/HEE1s0Foz4+Hh5/PHH7XW25/tum+5hcJKYmCj9+vWTH374wc5tQPNJOH+IWgs+rCfC1BeWqTVPrH6opiVlixv+jBS11lVSXCV0LKlcqtZyAjlqLTlX7yIsXqzfZ7xPT3oyYhL0evVSPSnH59P3tzdBTxFqF6s/x5iuepJK+RQ9XSk2O8PVceF1SJGpydNTbRIG9nCVguWkdKH+GVMfrHOV9NRUyozTvnFK9amv17fH8/tKveawv8Uh7ccp7cjpdk6PF6zQ36P1Dglg/uREV+lRTs8hblc9Vc2o+vYP/TEdnn+wtFKteRzeo7XF+udsclK6WvNX+F19zjh9XjqlYMV01hOb/H8jCQloYL7DHn300XZyt8ZMeN5zzz3tYm9uRW2Doba2VpYsWWL/7XY8FwAAALYdKz03j7i4OCkpKWnyeqWlpfa6bkVtg8EMSTJjvkz3zSGHHOJ43erqantpsDUvDAAAABBKO+64o41SNT0Nubm5jV5n2bJl9jrbk5LUpucwaH799Ve5+uqr7b9N1JSZVe7k7rvvlrS0tA0X7QUBAABA05jC0DxOP/10qayslP33318mTpy4Rf3DDz+0aaBVVVX2um2uh+Gaa66R999/f5tvZ2aBDx8+XK2vWLFCDj/8cJuUZGJWr7vuuibv8/rrr7cRrRv3MNBoAAAAQEsyqZ9vvfWWfP755/b7rUkI7dHjz3k+Zl0GE+5j1mYwDQpz3TbXYDC5svPmzdvm25mGgGb16tUyatQoWbp0qc2jfeONN7Yqq9eM+dqecV8AAADYfKHnUK3DED172ufz2fQjkwpq0pDy8/PtZeNkULPKtVlmwKxL1uYaDC+//LK9NOeqzyNHjpT58+fbVpaZKU4jAAAAAJEsNjZW7rnnHtsoMOmfK1f+mWhnlhUYMmRIs3zfbbUNhua0bt0621iYM2eO7WEwQ51MLi1Co2OfLLW2oKzKVfyeU0xgoKTS1X3GDuiq1mp+XabWyqr0Se892/VVa4HKGr1Wru+XlFQ9XrCgaK04KSouUms5CXoEqsenn4Xwpie5eh6Vv+v7dF3NerWWk69/TNXU6a+vlOrxmYndO6m1X6d9rtb6JfVRax6/Hmnn9+jPITEzw9Xxa9SvLVZrVXX6a5GYrsdnFuWvVmsZ5fr7UGrr1ZI3S48pduRwHNav1o/t2B02XXtnaz8vKpbrzz3W6fMpXo8crZw8V5w4vU5Okjq0V2vla9aptfgY/W+fv69DYuAcPVK3uqJcrSV0coi9doqNdYixHXzD3vp9IsJ6GEJ339EoLi5Ohg0bFpL7bvOTnk0Skmks/Pbbb7ax8MEHHzS6sAUAAACAKOthMBM9TCNh9uzZdhiS6VmgsQAAANCy6GGILG26wXDOOefIL7/8YifVmFnjF154YaPXO+qoo+wFAAAAQJT1MBgmTsokImm6d+9OgwEAACBMPP/3v1DdN5pXm24wTJ48uaU3AQAAAIhobbrBgJZx/LA/FwxpzD0d9XSWeUt/Vmv90vXlzD0OaRpOKRzVPy1Wa/4eerKHf6GeslJbVqHW4nvqCSRFf+jbkuTTU4n8Xue3cEaingbky05Ta/X5pa6Sa7xJegJLrF/f1o6l8a5SmeIcttMpzcopXah/en9XaT/BKj0FK8Ehtady1mJX6VFGp0w96Wt9vp5q06VEj9jLTM929fyd9qlT4k3J6jy15vfo6UMFtYVqzTfLIXWrc0+1Fp+iPz9PYpyr90tMRz0Fy0hw2G9O+7t81RpXKVji1c+81i1c4yqpLt4pxa5IT1By4pTYtP9A/f2ECBLClCQ6GJpfm09JAgAAANqiZcuWyfLly0P+ODQYAAAA0CIpSaG6RIvu3bvLiSeeGPLHocEAAAAARKDU1FTp0UMfCt5cmMMAAACAsDKR9+YSqvuOFjvuuCNDkgAAAAA07txzz5WpU6fKjBkzJJQYkgQAAICw8oT4Ei3OPPNMueiii+TAAw+Uu+66S+bNmyfV1dXN/jgMSUJYJZw1WK31ma/HKwZK9ShTT6x+GMd0b6/Wah0eL+gQx1obrFVrsV6HeMFKPXYzJUvfzqqCIrXm8zi/hZ1iGd3uU296oquIUCdxXfTnX5dX6CoaNml1vVorLNVjN9v37eMuOtTpmJmjR5zGJOiRsh1j9Vhcy+9TS7kpuWqtulp/7eN9CWot4BS368ApWtMpNtgpArSqukqt9WzXV63lr9LTRNp118cB1638cyHQxtQH9WPNn6THsdr7rdE/F/wOUb2OHI5Ff2/9mAoU6q9TfWFZs29LTJcstdbz7v3dPR4QZXy+v/4O3HzzzfbiNFSrrs4hit4BDQYAAACEFXMYmkcwGAzJdTdHgwEAAABhFcr40yia8yyBgN6L15yYwwAAAIA2Z+jQoTZFaPz48S29KRGPHgYAAACEVSgnJzfcr0kOMusUYPvRwwAAAABEsIULF8o111wjw4cPl379+tl/N5g+fbo89dRTUlysB3c0hR4GhNXlY4aotfvenqvW6pbku0qucUrtqQroKSsp+XpbOmPwDmqt7Oc/1Fq8QyqRE59HT8JJyM5wvK1Tqo03XU+nqVmrJxOtmrFErbWPbafWYmL1BKmy5XpiVXL3zmqtePFStZbkT1ZrKTF6rW6FfqzFDuiq1ip+/MNVEtL2qC3UX1+fT/94j0/R07OWrtWfR6Y/Xa2lZOivfdAhIcyJx6e/D7P8esJOsEZPAcls31GtFS/TE5TSd+it1urnrdBrDulKRmmdnj6UXqS/9+uD+nOM6aq/FrV/rFZrvpx0V4lkTpzS6JwcPyz0K9eiZTHpufm88MILcsEFF2yIUzX7dv36v9IAKyoq5MILL5TY2FgZM2aMq8eghwEAAACIQN99952cc845tjFw33332d6EzdOQ9t13X0lLS5MPPvjA9ePQwwAAAICwIiWpeZhGgmkgfPTRR3Y4UmO8Xq8MGjRIfv/9d9ePQw8DAAAAEIGmTp0qu+++u9pYaJCTkyN5ee6GCBr0MAAAACCsmMPQPIqKiqRrV31+XYPKykqpcVhZvin0MAAAAAARKCsrS5Yu1QNAGvzxxx+2l8EtehjQavgO7qXWav+ld6N5YvXDOC67g16r11dHrHNINgmW6ulKsV49CWhVwTK15nFou7eLzVRr3gw96cjWk/V0ntmzp6q1nXceptY6FeoJO74MPX1oxdzf1FqHuPZqLVBUrtaSk9JdJeX40/TtFKfjYnm+q/v0Zen7LOCQIOSUEmQ5JISVVOq1lIC+rd1z9RQwcdie+tVFas2bnqjWgiV6elidw9mw1OQMV4k+gZIKtZbkc3g/1darpfqgXvtj7Wz9PkWkX0pftVZVp3/WpOboaU91y/5KR9mW19Dpdk6fs068qQlqbejzx7i6T7QN4ViHIRrssccedjLzb7/9JjvttJM6bMnUTz31VNePQw8DAAAAEIEuvvhiqa+vl2OPPVZ+/vnnLepz5syRs846yw4Bu+iii1w/Dg0GAAAAtEhKUqgu0WLUqFEyduxYmT9/vuy2227St29f2zj45JNPZJdddpEBAwbIggUL5Oqrr7a9EW7RYAAAAAAi1P333y9PPvmknaNg5iqYmFWTiDR79mzJzMyURx99VO65557tegzmMAAAACCsPOZ/IeoKMPcdbc4991y7gNvMmTNl0aJFEggEJDc3V4YOHSoxMdv/dZ8GAwAAABDhPB6P7LrrrvbS3GgwAAAAIKxISQoNMxwpPz/f/jSRq2aV5+ZAgwGtxriL9lRr9/53jqv7rJ23ylX0olMUYF1eoX67pDi11qVr43FnRvXSNWrNn6xHUtb+sVqcxHTJUms77aDv74IFi9RaWpp+n4EyPQYyJ62TWqur1G/ndYg5jemoR2uWL1yh1tauXanWOsbpUbxSpkdyxvfs6OqYcdJUrGrsAH2xnrQmjg1NoFSPOfXE+93dZ5G+34pq9fjX6oAeq5oR1N+/cWvFVTyo0/NzOp6SenVRa/3znKOPlxUtUWsdYvW4YSfri/TXPjMu09X7yfFzz+HzMlherdb2H9hZrQHYNp999pk88MAD8s0339hF2oz4+HjZe++95corr5SDDjpItgeTngEAABBWpCQ1H5OAdPDBB8unn34qFRUVtnfBXEzDwfzu0EMPlXHjxm3XY9BgAAAAACLQyy+/bHsWTG+CaRT88ssvUlpaai+//vqrXHXVVZKQkCAPPfSQva5bNBgAAAAQ9gm6obxEi0cffVR8Pp98/PHH8s9//lN23nlnSUpKshez8vN9991na2afPPbYY64fhwYDAAAAEIFmz54tw4cPt3MVNA11c123mPQMAACAsArlisxR1MEgZihSp056qEgDc53Y2FjXj0ODARHhiJeOVWvvHv2KWgvW1LlKPYmN0dOOvAn6G86blaLW6h1SRpySkJzuM7hWT5gxViz4Ta11TNOTXdLaZas1j1//2ChZnafWUjvriSi1FWVqLcbhNXRKbomL05NbsqWdWovv18VV4kvtYj2ap8Yh7Sc+XU/7qSpyfn2Lv/9VrWUN6KfWgg7JU/VOx1Qg6CphyCmZqEPvHvq2rC/VN6WoXK35HN4z4vfp91mo32dsVa2rzxKn19fIjXdICvLq33rq8/V94/for0XcoO5qrfiHuWotqYOe2OTrmK7WrvjybLUGYPvttttudt5CU8x1hgwZ4vpxGJIEAACA8K/0HML/RYsbb7xR5syZY+cqaMzcBnOdG264wfXj0MMAAAAARICvvvpqk/82k5kvueQSuf766+XNN9+U0047TXr0+LPndvHixTYZ6ccff5TLLrtsuxZxo8EAAACAsGIOgzsjRoxoNAXKrLtgGgY//fTTFr83HnnkEZuoVFenD/N1QoMBAAAAiAD77LNPi8TG0mAAAABAeIUwJaktT2GYPHlyizwuk54BAAAAqOhhQETYobMeTTjxgF5qLfCGHpOY3FGPMww6RCgGSir121Xq8ZmepDhXcZXrFy5Ua39ULHLeb8l93UVPOnCK3awN6GMjY7pm6fe5cqWrbSkrL1JryfGprmJzy+cuVWsFtXqMa27/AWrNV1al1rzJ8WqtumCdOPF79fjMeoeI0GBVjatj0ZuepNaql65Ra+uLC9Rapzj9OdSs1fd3bEf9eCpYoL8v4rzucsgr6vX3fXqcHitaW6xHBhv+tGS96BB/6++n5657ftdjXtc7RPF6XZ7u9R+hf87E+zgvCeV4E4+9hEKo7jea0WAAAAAAIlhVVZX88MMPsmrVKvtvzemnn+7q/mkwAAAAIKxISWo+Zp2Fu+66S0pKSpq8Lg0GAAAAIIo89thjcu2119p/DxgwQPr06SMpKe6GHDuhhwEAAABhRQ9D8zUYYmJi5K233pLDDz9cQoXZSAAAAEAEWrJkiV2bIZSNBYMeBkS8cXcepNYeWK8nm1S894ta82XrqUz5y5e6SktJOGBHtVY1Zb5aa9dLT4ESPUDJivfqCTzFy5a7ul1sdoZaS6zW93fpd3PUWmpnPbHKm6Cn2iQt1VNkYrroKTp1K/LVWlysngSUXqEnCNUuXqvWPH6fWitZnafWUhP049DwOiRdBUv118KT6JDY5ZBqU5+npxbVBvWErDS/nli1csUCtda5Wz9Xx0WiL8FVKlGwRn8Ovkr9NVxTqb/2HTO7iBOn5CmP02uxptjVfWb1yFZrgfJqtebv3V6tjbtqX7UGaMziY6FagKzhfocOHSo+n08uvvhie2mLsrOzpX17/f3ZXKKuwVBWVia77LKLLF682P738uXLpUsX5w90AAAARJYZM2ZIaqp+wqItOOSQQ+STTz6RQCAgXm/oBg5F3ZCkq6++2nbfAAAAoGV4QnyJFrfeeqvU1NTIZZddZn+GSlT1MHz22Wfy73//Wy655BI7SQQAAACIVJ06dZJvvvlGjjjiCOnXr5/st99+0rVr10Z7G8xQrZtvvtnV40RNg8Fk05599tnSo0cPueeee2gwAAAAtOE5DNEgGAzKww8/LHPnzrXDkp5//vlG94e5Hg2GrXDFFVfIihUrZNKkSZKUpE8IAwAAACJl0bZHH33URqsedthhdh2G5GQ93MGtqOhh+Oijj+S5556T8847T0aOHNnSm4MwGvfkUWrt7pmr1Nqa335Xa5lxma6SW4r/N1OtJfXSJ97XOSTTpPudU3T8DokoVX/8OfF/WwUr9CSV2Bg9fWdd1Tq1Fl/qkPbjkBTjVrVDmlNBrb6/cxJy1Jo3WU+WEq9+tisloZ1aC5To22nUry7SHzI9UdyoXKUn/iR00Lc1Qd8Ux9Qx/wr9z1BNnp5m5c/Qj5mKen2/pSfq6VmBsiq1lrBjV7XWMc/9IkmBonJpbk4pSU7HVEwvPWnl0jdP3O7tAjbGOgzN45lnnpHExET5+uuvZfDgwRIqbb7BUFhYKOeee67k5ubaVpgb1dXV9tJga5beBgAAAELJpH2OGDEipI2FqEhJMhOc8/Ly5KmnnnIdrXX33XdLWlrahotpfAAAAGD7ehhCdYkWOTk5kpLivpcz4nsYrrnmGnn//fdddc0MHz7c/vvtt9+WCRMmyJlnnikHH3yw6225/vrrZezYsZv0MNBoAAAAQEs6+uij5dVXX5WqqiqJj3cYGttWGwyrVq2SefPmuVqYzVi/fr1ceOGFNm7qwQcf3K5tiYuLsxcAAABsP8///S8UQnW/rdFtt91mF2476aST5Omnn5Z27fS5Zm2ywfDyyy/bi1smk3bt2rV2FeejjtInvo4ePdo2BsaMGWMvAAAAQKSkgPbr10/effdd+eKLL2S33XZzXIfh2WefbVsNhuZiolTNRfPdd9/Zn2bCCAAAAEKPlKTmYdZdaFh3orS0VCZPnqxelwZDI0yvglmkwmmnNcwuN70QiD5XTrtArT3Q/wG1FpOrxzLmTf9JrWX6M1xFpwaratWar73zRP76wj+H6DUmNaejq+hUp8hGcYhA7TJoqFqrW+Xw/Gvq9McLBF0999qgvk87te+uP159QC2VFq5Xa0l+d5nY3tQEx7onUR8qWbJypavHDDh8bgbW6NG4iZkOx/fKAlfbEput36fHIcLYX+B3tV+SfPqxXTNvlas4Zcf3i0nhW6HvU58vxlWMb/3aYrUWt3tPtXbN+6eqNQCtk1k2IBzafA8DAAAAWhdWem4eZ5xxhoRDm49VBQAAAOAePQwAAAAIK+YwRJaobTA4zW8AAAAAWruzzjprq6/LpGcAAABEDOYwNF9KkpOGkB9zopwGA+BCvEOiz40LrlZr/+h6l1rL2WVnVykrTklANYEateacoSPi79lBrVX/vESt+bL0ZeYDpZV6rUSvrf/+V7WWmpCm1oIOyURO+6Z6vZ6SVFCrpzKleNurNfH6HO6zSK2l79BbrXkcjsPK35c5v75efXGi5KR0V8k9Tgk7sTvnqrVgaZVaCxRVqDV/cqJaK8rT3zPFdSVqLc6rpxZlJ+nvCU9SnKtjO6ar+4WS/GnJrpK3avP1461dr15q7bJ3Tt6GrQMQqSlJgUBAli5dKhMnTpQffvjBrtcwcOBA148TtUOSAAAA0DLM6Y5QrcccPes8S5MpSWYl6GuuucauAv3TT3r0e1NISQIAAADaqLvuuktSUlLklltucX0f9DAAAAAgrEhJCp+YmBjZddddZdKkSa7vgx4GAAAAoA2rrKyUwkJ9/l5T6GEAAABAWJGSFD5z5syRb775RnJz9eCKptBgAAAAACLQiy++qNZKS0ttY+Gll16SqqoqOflk9ylpNBiAbXTV4uvU2mNj3tJv6NcjOWt+0eMzEzplqzVPrPNbuPqnxeKGr50eq1q7eK1aqwpUq7XMPj3V2oLfZ6i1nLgccaM2WKvWOsbp0Zp5a5aqtQ5xeuRqtyz9+dXOz1Nrnni/WouJ1eNBrUDQXTRuuR6B6qi2Xi0VLFik1jJ6dldrdSvy1Vp6x05qLa0iy1VsrDjE2AaKyl3F3zqpW1ngWPem6OHI/iL92Mgatata637tMFdx0kC4/d8SAdgOY8aM2bDWgtNCxUceeaTcdNNNrh+HBgMAAAAQgU4//XS1wRAbGyudO3eW/fffX/baa6/tehwaDAAAAAgrz//9L1T3HS2eb2Kl5+ZC3yQAAAAAFT0MAAAACCvWYYgsNBgAAACACE9F2to5D254gg3Tp7HVSkpKJC0tTYqLiyU1NZU9h63yz2MmqLWa3/NcJbdIfcDxMT1JcWrN37ejWqv9bYVaC9bUqbWSymJXKUn1+aWuEm+cEoYCJZVqLViq15bm62k/mf50tVYb0PdLVUBPJeqYrCcBBR1SiYwVVavUWpxXT1iqD+r3mxKTLG74PPr5p4S4RLXmSWgiCcqF0sL1ai3Jrz+/mC5ZrlKSls/9Va2lOxwzRnKu/j70dc5Qa9d+OsbxfoHW+r2lYVsm/7xYklP0NLftUVZaKiMG9WgVz7e5eb1ex1SkptTXO/9d0dDDAAAAAESAkSNHbnODYdq0aVJRUbFdDQ0aDAAAAAgr5jC4M2nSpK2+7tdffy3XXHONVFb+2as+YMAAl49KShIAAADQZsyePVsOP/xwGTFihEyfPl1yc3Nt/OrMmTNd3yc9DAAAAAgrehia3/Lly+Xmm2+WV155xc5VyMrKkhtuuEEuvvhiu4jb9qDBAAAAAESowsJCufPOO+Xxxx+XqqoqSUxMlMsvv1yuvfbaZpv0TYMBAAAAYWWm34ZupefoUFVVJf/617/kvvvus+lTPp9PzjvvPLntttskJyenWR+LBgMQJle/fbJae+COz9Va7cQFam3tL787PmaGZOr3O1+Pcg06xLU6RX2mtctWa4EyPVrUE6fHo3odomFrF691Ff/qy9Kj/Hp13V2t1czTY0zLa8vUWlanPmotWKtvp6eJWNUuokeyxnRt52rf5C9fqtbS4/SIUG9qglorzV+n1pLqk13dZ0VBoVrLHLqzq+OwzuF48nXUI04z/XotvonYyPTbRqq1i0YPdLwtgOgUCATkmWeekf/3//6f5OXliVkh4ZhjjpG77rpL+vbtG5LHpMEAAACAsGIOgztvv/223HjjjTJ//nzbUNh3333l3nvvld131092NQcaDAAAAEAEOO644+x6Cg3zFA499FCpq6uTb7/9dqtuv9dee7l6XBoMAAAACCvzpXd7FhJr6r7buoqKCrn77rvtZVv2i2lcuEGDAQAAAIgAXbt2bZEGEQ0GAAAAhBVzGNxZsmSJtAQaDEArMO7mUWqt6ob91Nqjo19zvN/KL+aoNV9SvH7D1ES1tHKBfp8ZBWlqLS4uwVXyUlGenkyUEpviKrUoVfTb1cxZqdZ8OXpKUGan7mqt+qfFrpKAPCl6zW6PQ92brr+G9WtL1FpmukPSVWWN/ngOx1NaUq6+Lfml+uOVVKq1xPR0V/vbE+93lYQUKKlQayl77KDWety6rzg5flgPxzoAtAY0GAAAABBWZg2G0K3D0PbnMISbN+yPCAAAACBi0MMAAACAsGIOQ2ShhwEAAACAigYDAAAAwsrr8YT0YgwdOlR23HFHGT9+PK/udmJIEtDKxfv0dv3Vb5/seNsH7p+i1mre+E2/oUNqUU5aJ7UWrNEXhCmsKHCVzJOZrddql64TN2J6tFdrgVI9mcebEKvWan5foT9e13ZqrW7Zev3xvM4T9yoKCtVaYpVDopFDCpYnS0+QqliiJ0ilJMWptfK5S9VabIx+u7hBevKUJ17/81UzW38txGGfxu3rkFiUqm/nuDsP0m8HoMXMmDFDUlNTeQWaAQ0GAAAAhBVzGCILQ5IAAAAAqOhhAAAAQFjRwxBZ6GEAAAAAoKKHAQAAAGHFSs+RhR4GAAAAACp6GIA2bNxV++pFh5pTHGv9Y9/q91kfUEt+r/5x40lJUGulC5erteTcjmottUaPB61fXazWfA6xok6cImWdolM9fp9aK813jo1N69FNf8wV+a5ic32dM9VaYmaGWguWV6u1gATVWkyXLLVW/fMStVZQrcf0dtp3d7XmG9nN3fsFQLNiDkNkoYcBAAAAgIoeBgAAAISXxyOe/1uRORT3jeZFgwEAAABhxZCkyMKQJAAAAAAqehgAAAAQVp4QDkkK2VCnKBY1DYbFixfLgw8+KJ988omsWLFCYmJipFOnTrLnnnvKzTffLD179mzpTQQiPl1p0qyVam3WMz+qtfwXvlFrCXGJai1QWukqtagkb5Vay+jZ3VXyUGy/Tu5SkhwSolJKnT+iy5bo+zsxPV2t+XvnqLVgnUOCUnaaWqtbvNZVmpWvnZ5K5e/dXq0ddqt+HO4/sLNaAwBsu6gYkvTqq6/KjjvuKI899pjEx8fL4YcfLiNGjBCfzyfPP/+8/P777y29iQAAAFHDE+ILmleb72H4/PPP5dRTT5Xs7Gx54403ZO+9996kvmTJEomLi2ux7QMAAABaszbdYKivr5dzzjlHAoGAvPXWW7LXXnttcZ3u3fXhBwAAAGh+zGGILG16SNIHH3xgexCGDx/eaGMBAAAAQBT3MJgJzsY+++wjdXV18t5778nUqVOlsrLS9iwceeSR0r9//5beTAAAgKjCOgyRpU03GH755Rf70yQi7b777jJz5sxN6jfccINcccUVcv/99ztGcFVXV9tLg5KSkhBuNQAAANB6tOkGQ37+nxGId999t6SmpsrLL78sBx10kFRVVclrr70mN954o41abdeunVx//fXq/Zjb33777WHcciAyOcVZ7v+oQ9Tlo0e4i2p9cZZaq5+jR5nm7DBErVW+NctVrGig/K+TCpurKi1VaykOcayBMj1y1ZrrcPKiPqDXYvTRqIE1xWrN1zlDrSVeu5+7mF4AUSmUaUakJEVRg+Gaa66R999/f5tv98wzz9g5C0YwGLQ/a2trZcKECXLggQduuN5VV11lJ0Nfe+21tkFw2WWXSVJSUqP3aRoTY8eO3aSHITc318WzAgAAACJLq20wrFq1SubNm7fNtysrK9vw75SUPxcEMvMVNm4sNLjwwgttg6G0tFS+//572W+/xs+QmdhVolcBAACai+fPiQwhQR9D1KQkmeFDpodgWy8HH3zwhvtoWL1ZW8XZNCjat/9zJdG8vLwwPTMAAAAgcrTaBkNz2G233ezP9evXq+s0FBUV2X8nJyeHddsAAACiFSs9R5Y23WA49thjbfrR3LlzZcWKFVvUJ0+ebOc3mOsMGaJPggQAAACiVaudw9AcevfuLaeeeqq89NJLcu6559pkpLS0P1NOli5dKpdeeqn993HHHSedOulJJQBaafLSAw7JS249cGiz3+WclXrykJNvZ692rA/NSXa13wCgpbEOQ2Rp0w0G49FHH5XffvtNPv74Y9uA2GOPPWys6nfffWcnSA8cOFD+/e9/t/RmAgAAAK1Smx6SZJgeBbO681133WV7Eb744gv59ttvpU+fPnLPPffItGnTJDMzs6U3EwAAIGowhyGytPkeBiM+Pt6upeC0OBsAAACAKG0wAAAAoBVhEkNEafNDkgAAAAC4Rw8DAITYDp3Twno7AIiUOQyhum80L3oYAAAAAKjoYQAAAEBYMYUhstDDAAAAAEBFDwMAAADCjFkMkYQeBgAAAAAqehgAAAAQVsxhiCz0MAAAAABQ0cMAAACAsGIGQ2ShhwEAAACAih4GAAAAhBVzGCILPQwAAAAAVPQwAAAAIMyYxRBJ6GEAAAAAoKKHAQAAAGHFHIbIQg8DAAAAABU9DAAAAAgrZjBEFnoYAAAAAKjoYQAAAEB40cUQUehhAAAAAKCihwEAAABh5fm//4XqvtG86GEAAAAAoKKHAQAAAOHl+XMthlDdN5oXPQwAAAAAVPQwAAAAIKwISYos9DAAAAAAUNHDAAAAgPDyhHASQ8gmR0QvehgAAAAAqOhhAAAAQFgxhyGy0MMAAAAAQEUPAwAAAMKKKQyRhR4GAAAAACp6GAAAABBWzGGILPQwAAAAAFDRwwAAAIDwYhJDRKGHAQAAAICKHgYAAACEFXMYIgs9DAAAAABU9DAAAAAgrJjCEFnoYQAAAACgoocBAAAAYcYshkhCDwMAAAAAFQ0GAAAAtMgchlBdIsEff/whhx56qCQnJ0u7du3koosukvLycmmNGJIEAAAAhFFxcbGMHDlSOnXqJG+++aYUFBTI2LFjZc2aNfLWW2+1uteCBgMAAADCKtpnMDz55JOybt06+eGHHyQ7O9v+LiEhQY499lj58ccfZbfddpPWJCqGJE2cOFEOP/xwycnJEb/fLykpKfaF+Mc//iGlpaUtvXkAAACIIhMnTrQ9DA2NBeOII46ww5M+/PBDaW3afIPh2muvlb///e925+fm5tqW25577ilz586Vm2++2TYcTPcPAAAAoncOw7x58+TRRx+VMWPGyIABAyQmJkY8Ho89wbw1zNCiESNGSEZGhiQlJcnAgQPlvvvuk9ra2i2u+/vvv8sOO+ywye/M4/Xt21fmzJkjrU2bHpI0c+ZM+0KZXoWPPvpIDjjggA010w1k/nvWrFly6623yr///e8W3VYAAAC0nCeeeEIefvhhV7e94oor7G3Nl37Tc2B6Cr744gt74vqDDz6QTz/91A45alBYWCjp6elb3I9pbJj5DK1Nm+5hMC+UYRoGGzcWjPbt28s111xj/z1t2rQW2T4AAIDonsUQqsu223nnneWqq66SV155xZ7lP+2007bqdu+++65tLJhGwvTp0+WTTz6xE5cXLFhgeyq++eYbO6olkrXpHob4+Pitup6JsgIAAED0Ouecczb5b693686r33XXXfbnddddJ7vuuusm3y8ff/xx2XvvveWxxx6zjYa0tLQNPQlFRUVb3JfpeejTp4+0Nm26h2H//fe3XUOfffaZTJo0aZOaGZJkhisZ559/fgttIQAAQPRpjXMY3Fi5cqXMmDHD/vvkk0/eoj58+HA7h7a6utpOdG5g5i9sPlehvr5e5s+fv8XchtagTfcw9OvXz05eufTSS+2QpKFDh0rPnj1t6810D5lW3tNPPy3HH3+84/2YF9lcNs7ONUpKSkL+HAAAALZHw/eVYDDYanZkKL9DNdz35o8RFxdnL809X9bIzMyUHj16SGOGDBkiy5cvt9c96aST7O/Mgm233367PYFthskbZq5DWVmZDetpdYJR4JNPPglmZ2ebd8kml+OPPz44c+bMJm9/6623bnFbLuwDjgGOAY4BjgGOAY6BSDoGFi5cGGxplZWVwZycnJA/1+Tk5C1+Z77PbYszzjjD3u6OO+5Qr/PII4/Y6wwaNEi9zmWXXWavc9xxx234XWFhYbBz587BPffcMzhx4sTgK6+8EuzQoUPwyCOPDLZGrbaHwUxIfv/997f5ds8884zt/mlw0003yZ133ikHH3yw3HHHHbabZ+3atXZCi/lv05ozk1UOPPBA9T6vv/56u/peAzPmrFu3brJs2bINY9HwZ0vedLuZVnRqaiq7hH2i4lhhv2wLjhf2CcfK9jEjI7p27WrPgreG+aWLFy+WmpqakD6O6U0xkagba+7eBaNhPS8To6oxk6E37/EwCUkmnOeyyy6T4447zu6X0aNHy/333y+tUattMKxatcrm4W4r05XTwDQKTGNhl112sQ0DM5/BMF1GpiFh/ts0Bi644AI7k93n8zV6n1oXlmks8MV4S2afsF/YJ1uDY4X9si04XtgnHCvbZ2sn8Yaa+XK8tcE0bVnfvn3l448/lkjQOo6cRrz88su2dbitF9OT0OD555+3P02LraGxsLGGySmmpbto0aIwPjsAAABEupSUFPuzvLy8yZPZkXwytdU2GJqDGTLk9AJtPJyoNS6SAQAAgNare/fu9qcZjq1pqDVcNxK16QZD586d7U+ziEZjvvvuuw3/3pYX0QxPMqtDh2IsXCRjv7BPOFZ4D/HZwudtS+LvEPsl3AYPHmx/5ufn2xErjfnhhx/sz43XaIg0HjPzWdoos1jGxRdfbCe9TJgwQU488cQNNTMEyURamXkSo0aN2mKdBgAAAESvMWPGyAsvvGBDcszcV83uu+9u12L4xz/+ITfeeOMmNRPjbxZuM43ZNWvWRGxYTpvuYTjvvPPksMMOs3MbTO6tWZ7brLmw3377yU477WQbC126dJGnnnqqpTcVAAAAEeiGG26wP++55x756aefNvze9DpcdNFF9t+XXHJJxDYW2nwPg2Ge3ksvvWQvP//8s41ENTPze/fuLYcffrhceeWVdnluAAAARC/zZb/hC76xcOFCWb9+vT253DDM3XjnnXekY8eOm9z28ssvl0ceeUT8fr8duWJiVj///HP7vXPYsGHy2WefSUJCgkSqNt9gAAAAAJoyefJkOwqlKYsXL2507usbb7wh48ePtyeoa2trpVevXnLqqafak9OxsbER/QK06SFJ4TZx4kTba5GTk2NbmCZqa7fddrNj2hoW9ohW5s116aWX2szhxMREm1zVv39/OfPMM6M+0tbErfXs2dPOtTGXFStWSLQxiym++OKLNuq4T58+thfQHCfmGDGL2ixZskTasjfffFNGjBhhezvNWamBAwfKfffdZ//gRBvznM1ZuauvvlqGDh1qFzcyn6fmc/WII46Qjz76qKU3sVUtcNrwuWH+zkQ7sxCYOcNrFm81C5SZzxFzZviQQw6R119/XaKNSYo0w2D69etnz2yb/WHWoTrjjDNk1qxZLb15rZL5HN6aCP/uSlCOGfY+ZcoUu1BeRUWF/Prrr3LttddGfGPBaumlptuKa665ZsPS40OGDAmecMIJwQMOOCCYmJhof9enT5/g6tWrg9FowoQJwfj4eLsfBgwYEDz++OODhx9+eHDHHXe0v/vggw+C0eyCCy4IejyeDcfP8uXLg9HmlFNOsc/d6/UGd9lll+Do0aODhx56aLB9+/b290lJScFPP/002BZdfvnl9jnGxMQEDzzwwOAxxxwTTE9Pt78bPnx4sKKiIhhNPvvssw3vhZycnODf//53+5mx8847b/j9eeedFwwEAsFoNnXqVPt+afjsuOOOO4LRzHxuNvxNadeuXfCwww6zf4f32msv+3f42GOPDUaT7777LpiSkmL3R+fOnYNHHHFE8Oijjw726NFjw+fNG2+80dKbiQhCg6EZ/PTTT/YN6Pf7t/hSs3bt2uDAgQNt/fzzzw9Gm0mTJtk/auYP/1dffbVFffHixcFVq1YFo5U5Xsyxcckll0R1g+HSSy8N3n777cEVK1Zs8vvS0tLgiSeeaPdLZmZmsKCgINiWvPPOO/a5JScnB3/88ccNv1+3bp1tXJvauHHjgtHk888/t1/uGvu8eO2114I+n8/ulxdeeCEYrcrLy+1JKPNF8Kijjor6BoNpVPfv39/uh9tuuy1YU1Ozxf6aOXNmMJqYEy8NjeuN90d9fX3wpptusjVzYqKysrJFtxORgwZDM7j//vvtm8+cEW3MK6+8YuvmDRxN6urqgt27d7fP3ZwNw6aKi4uDubm59oxPWVlZVDcYnJg/9g1nyl566aVgWzJ06FD7vP7xj39sUfv6669tLS4uLlhUVNQi29canX322Xa/jBo1KhitLrvsMrsPPvroo+AZZ5wR9Q2Gm2++ecOXYwSD69ev3/D3xJy0bOxvc0JCgq2bE57A1mAOQzMw4wK3Rrt27SSafPDBB3bsuRlPutdee7X05rQ6V1xxhZ2v8Mwzz9hx62icmctgxuA2tZJmpFm5cqXN7TbM3I3NmfdNbm6uVFdX2/lR2HSRpLZ0LGzrpMxHH31UTj/9dLuWULQzc16eeOIJ+28z7wV/Ll63taLtewnco8HQDPbff3+JiYmxkVmbLwC3bt06O3nROP/88yWafPLJJ/bnPvvsI3V1dfLWW2/J2LFj5cILL5R7771X5s6dK9HKTNx87rnn5Nxzz5WRI0e29Oa0+i8EDZOeN4+xi2QzZ860P83kTDMRsTFDhgzZ5LoQWbBgQZs7FrYlIOGss86SDh06yEMPPdTSm9NqYjBN7GWnTp1sXLqZZHr77bfbv7fXXXed/awNBAISTZKTk+1CYYZZbGzj8ASzL2677TaprKy0k8HNSQlga8Rs1bXgyJz9NGd8TArQAQccYJM9TOpNYWGhXeHPLNTx9NNP29nz0eSXX36xP01jyqyCuPmXHrPQiTnLfv/999uUj2hhjgvTUDAf1P/85z9benNavWeffdZ+ITApH+YPXFtKDjO6du2qXqfhj3nDdaPd6tWr5fnnn7f/PvbYYyXaXHXVVfZYMBnwrB+06d8Zk4ZkGgjmBN3GafHm5JTplXr33Xcd32ttjfnOYXqgzMK0ptFkTj74fD77d9j0bp522mny2GOPtfRmIoLQw9BMLrjgAvumzM7OtsMMTITbp59+amO1TEu/4UxhNDErHBp33323jXd7+eWXbY+LGUpgviibhsSDDz5oV0aMJibmLi8vz36Qm3hZ6MzZwoZhBjfffLM9s9pWNEQtOw1HM2cKjZKSEol2ppfS5JmbuMIBAwZEXY+t+Xvy5JNPyoknnihHHXVUS29Oq/s7Y74Im8aBWXRr3rx59jgxvf4mytvU/v73v0dVTLE5kTlt2jQ58MADbQPhvffek7fffts2OE1PjIkP5e8PtkXU9zCYHOv3339ftpUZd27GGDcw3X533nmnHHzwwXLHHXfIDjvsYLPlX3nlFfvfZjy/OcNh3rzRsl8azvKYD+kJEyZs8tzNmTLTNWryiU2DwmTtt/Zx/M2xT8wHttkXZv0Jc6y0Bc31Htqcmd9h1jUxwzBM/r45e4joPilj1mfIysqS//73v20j13wrmS+/Z599trRv3972ZuMvG/+dOemkkzY5a26GC5tGg/nyPHv2bHnttdfsmfVoMHXqVDnmmGPsiTnzN8cMfTXvGfN7MzTYHE/m36YHF9gqwSjXkP++rZf//e9/G+7j5Zdf3pCCVFtbu8Vj3H333bZu0nBMOkG07JfddtvN/s4kJTWmpKRkw+2++OKLYFvfJyYqMzs7O9ipU6dgYWHhFvcfqSlJzXGsbC4vLy/Yt29fe72DDjooWFVVFWxrHnnkEfv8Bg0a1GQaznHHHReMZg37ISMjIypTXcaMGWOf/+uvv75FLdpTkh599NENnymTJ09u9DomptfUTz/99GA0MH9fzBo2Zo0Osx7D5hYuXLhhjahI+NuL1iHqhySZYTJbs6rf5peNzw43jKkdPXq0bc1vriEBxXQFLlq0SKJlv5h5HBv/3JxZCducMTPMEJ22vk/MfBbT6+T1eu2QAtMlvPGlgTmOzH83HFfRcKxszOwjczZs/vz59gyh6ZnbltSPSNGwUqhT2k9DTVtVNBqMGzfOrt5rVnw2w3IaUpKiiZmzYP62PP7441t8bnz88cf2OuZMsflvM2Qpmmz890X7W9Pw+0j4O9MczPBoM/zXPO+//e1vW9Q3/v3mQS2AJuqHJDUHMz7f0MYDmknPDQoKCiRa7LbbbvLmm2/aCauNqa+vl6Kiok3GakcDM9TGXDTfffed/blxIyJamD9yprEwZ84cGTVqlB3qtLWxxZGm4YuvGYNtTiY0lpT0ww8/2J+77rqrRCMz3M3MczKfoaaxEI1zwTaewzFlyhS1bpLEzKVbt24STcx7w4RmmJMQ5m9NY6k/DX+DouXvTFPfSTb+XhJN30mwfaK+h6E5dO7c2f6cPn264xfAaDtTaFJMzAe5iU9t7AuyyRM3407NdaLhi4DpVXA6477xWWXz3yb6LpqYP+qmsfDbb7/ZxoKZ92OSkdoqk+piEtUMM8Z4c6ZHyhwLpnclGvP2zZwVE45gvtiYcegN+yoamRMr2ufGGWecYa9j5sqZ/26III4WOTk5G+ZCNXa23PyNaWhombS+aPpOYv72mvkvje0TE0draJHOwBZaekxUWzB+/Hg7FtCMF3z11Ve3GCvYr1+/qF2Z9LTTTrPP/eCDD95ktdolS5YEd9hhB1sbPXp0i25jaxGpcxiaQ35+vp0DZJ7//vvvH6yoqAhGg3feecc+5+Tk5OCPP/64yUqtAwYMsLVx48YFo82NN95on3t6enrw+++/b+nNadWifQ6DMWnSpA1zXKZNm7bh92ZO4aWXXmprZrX41atXB6OBWd05KSlpw9/X0tLSDbXq6urgxRdfbGt+v99+RwG2hsf835bNCGxrV/HRRx8tH374of3vnXfe2aYkmeEVpnehqqrKnk00Zzm0MZZtlTm7Yc4am7MZZkXJPfbYw+4Ps19M+s3AgQPliy++sItXRbuGtSjMWWVzvEQTk+ZhxmmbfWDmcGg9C6aXpq1FSl5++eV2jL7f77c9KyYtzKQBmbPKw4YNs2fX23JPy+bMMLQjjzzS/tv0PO60006NXs98npg1XKLdmDFj5IUXXrA9DCatL1r94x//sNHLDev+mJ4H83fH9LiY948ZHmuiVaOFmVtm0vjM9xMzV9D00JnPGDPM0cSsmrl048ePt+ljwFbZqmYFmhQIBIIvvPCCPTvarl27YExMjD1raBJQbr755mBBQUHU7sXKysrgXXfdZc8gm2QGcxk8eHDwnnvuiZozyVsjmnsY9t13361KVrr11luDbZFJv9lnn32CqampwYSEhODOO+9s3x/mbGC0ee6557bqWOjWrVtLb2qrQA/DXz755JPgIYccEszMzLRnz3Nzc23C1Jw5c4LR6Oeff7bPv2fPnsG4uLhgbGysfd+YZLvp06e39OYhwtDDAAAAAEDFpGcAAAAAKhoMAAAAAFQ0GAAAAACoaDAAAAAAUNFgAAAAAKCiwQAAAABARYMBAAAAgIoGAwAAAAAVDQYAAAAAKhoMABBG3bt3F4/Hs+Gy//77h+VxX3vttU0e11wmT54clscGAES2mJbeAACIRscee6wkJyfLTjvtFJbH69Gjh5xxxhn23x9//LGsWbMmLI8LAIh8NBgAoAXcf//9trchXP72t7/ZizFixAgaDACArcaQJAAAAAAqGgwAoLj00kvtWP+9995b6urqtqjfeOONtr7rrrtKVVVVs+zHJUuW2Ps0vQ+BQEAeeeQR2WWXXSQxMVE6duwoF1xwgRQUFNjrVldXyx133CH9+/eXhIQE6dSpk1x++eVSXl7OawoAaDY0GABA8cADD8iQIUPkm2++kZtuummTmpkHcPfdd0tqaqq88cYbEh8f3+z78dRTT5XrrrtOOnfuLAcddJBtQDz55JN2orRpFJifZmhTv3797L8rKipsA2P06NG8pgCAZsMcBgBQxMbG2saA6UG47777ZN9995VDDjlEVqxYIaeddpoEg0F55plnpHfv3s2+D5cuXSoxMTEyZ84c6datm/1dfn6+7LnnnjJz5kz70/QqLFq0SLKysmx98eLFsttuu8n//vc/mTp1qgwbNozXFgCw3ehhAIAm0oWef/552zgwjQTzpfzEE0+U9evXyyWXXBLSs/mmt6ChsWCYhsGFF15o/z179mx59tlnNzQWGrbV9EoYn3/+Oa8rAKBZ0GAAgCYceeSRMnbsWHuGf/DgwfbsvRmqZIYshYrpXTjwwAO3+H2fPn3sz65du8rOO++s1letWhWybQMARBcaDACwFe69917Zcccdpbi4WJKSkuxQJTNkKVTMBGfTaNicWbuhocHQmJSUFPuzuSZhAwBAgwEAtsL06dNl/vz59t9mwvGvv/4a0v3m9Xq3qw4AQHPhLw4ANMHMVzDzFky06plnnmljT8eMGWMnJgMA0NbRYAAABw2TnU0y0umnny7/+c9/ZNy4cVJYWCgnnHCC1NbWsv8AAG0aDQYAcGDWWjBrLpj5C48//viG35lYUzNM6ZprrmH/AQDaNBoMAKD46quv5JZbbrGrLL/55pt2srNhJiO/9tprkpmZKQ899JC899577EMAQJtFgwEAGrFu3To56aSTpL6+XsaPH297GDZmUorM+gxmPoOZ17BkyRL2IwCgTfIEzQBdAEBYdO/e3U6WNgvAmX+3hBEjRsiUKVPkyy+/tP8GAMDJliHfAICQu+qqq+yaCjvttJNcffXVIX88M9/iiSeesP+eO3duyB8PANB20GAAgBbw1ltv2Z+jRo0KS4PB9Gi88MILIX8cAEDbw5AkAAAAAComPQMAAABQ0WAAAAAAoKLBAAAAAEBFgwEAAACAigYDAAAAABUNBgAAAAAqGgwAAAAAVDQYAAAAAKhoMAAAAAAQzf8HuGe+7zzJgRcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPr0lEQVR4nO3dB3xUZfbw8TPpJCSh99CbCFIEG6gI9t6w945dUOztr2JZdW3o2lZdFdu6FtS1oIKKiKhYQJoU6R2SQEif93Me38kGyLmBS2aSmfl9/VwnzJm5986dmeSe+zzPeQLBYDAoAAAAAFCFhKruBAAAAAASBgAAAACeaGEAAAAAYCJhAAAAAGAiYQAAAABgImEAAAAAYCJhAAAAAGAiYQAAAABgImEAAAAAYIqbhGHRokVy+eWXS7du3aRevXqSlpYmHTp0kLPPPlt++eWX2t49AAAAoE4KBIPBoMS4KVOmyEEHHST5+fnSunVr2X333SUxMVF+/vlnWbBggSQlJcnYsWNl2LBhtb2rAAAAQJ0SFwlD79695ddff5WLLrpInnjiCUlOTnb3l5eXy+233y533323NGjQQJYvX+5aHgAAAADEScKwdu1aadKkift51apV0rRp0y3iZWVlkpmZKZs3b5affvpJ+vbtW0t7CgAAANQ9MT+GITU1dbsfG0osAAAAAMRJwlC/fn3Zd9993c+33HKLlJSUVMS0S9Idd9zhWhcOO+wwycnJqcU9BQAAAOqemO+SpGbPni2HH364zJ8/3w167t+/vxv0PG3aNFm6dKmcfPLJbmxDVlZWlc8vKipyS+VEY926ddK4cWMJBAIRfCUAAAA7Rk/1tPBLq1atJCGh9q8VFxYWSnFxcVi3kZKSwrjUGpQkcUBLqU6ePFnOPPNM+fTTT12SENKjRw8ZPHiwmSyoe++9V+68884I7S0AAEDNW7x4sbRp06bWk4UG9RpIkfzvQmw4tGjRwlXCpJhNzYiLFoZJkybJ8ccf78qnPvjggzJkyBCXeer9I0aMkLlz58p5550nzz///Ha1MOTm5krbtm3dF88r0QAAAKhteXl5rtv1hg0bJDs7u9b3RffhQBkiSWG6bl0qpTJevnDna5yn1YyYTxj0y9G1a1dZs2aNa2XYc889t4hrN6VevXpJQUGBfPHFF3LAAQds94edDyIAAKjr6tJ5S2hfDpdDJVn+KnNf00qkRD6Sj+vE640Vtd+RLcw+/PBDWb16tXTs2HGbZEFVvn/8+PG1sIcAAABA3RXzYxgWLVrkbr0yzFDznA5kBgAAQHgF9L8wFY4JBClIU9NiPmHQqkhq1qxZrmlq6757WmZVJ2xTHTp0iMhEcu+8847r/qTdpCqPjQAQf7T0s46JOuaYY2To0KEVM9EDAFBXxHzCoPMrZGRkyKZNm+TCCy+Uf/7zn+4PtNKSXjroWVsh9I/0iSeeGLb90G1dcMEFMnbsWFfeTLtBaTLD6H0gfunvgo0bN7rukP/4xz+kYcOGrjCDFmEAgFiW8P//C9e6UbNiPmFo2rSp+0N87rnnyltvvSUTJkyQAQMGuAThhx9+cCVWtSbxY4895sYzhCtZ0LkePvroI3cycOqpp0rz5s3Dsi0A0Zk4/Prrr+73w/nnn+/metELDAAA//R8T+fduuyyy9wC/2I+YVBnnHGGq4T0yCOPyFdffSWff/65+wPdsmVLOf300+XKK6+UPfbYI2zbf+ihh9zga+2KdMQRR4RtOwCik/bj7d27t/zrX/+SzMxM1xo6cOBA2WWXXWp71wAgLBICAbeEZd0SEAmKTJ06lSpJNSTmy6rWhfJkeiKw6667uu5IAFDdpEbNmjWTkSNHyu23387BAhCTZVWPCRwpyYEwlVUNlsh7wQ/qxOuNFXTyCrPZs2e7rgbDhg0L96YAxAAd13T00Ue7LpQAEKsCrh0gfAtqFkc0zH777Td3u99++4V7UwBixP777y8zZsyQsrKy2t4VAADiYwxDbc80rbT6CQBsj9DvC22653cHgFgUiTEMqDm0MISZVjvRAY1aiQkAtkdSUlLF7w8AAGobZ7F1RPv27V1iEVo0wdBqKW3atJEDDjhArr32Wvn+++9rezfrBO3epcfohhtu2K7HX3XVVe7xhx9+eNj3Ldocd9xxUq9ePVmyZMkW9w8ePHiLz2NVy9VXX+0ee84557h/v/jiizu0bX28Pk+fX9vfu4ULF9bI+kLHpjLtVtS9e3dp166dbN68uUa2AwDRjjEM0YUuSXWMllLs3Lmz+1lPLnQ26GnTprn5I7Q8q/Zt1snnwjVnRDTQOvVff/21K0F5zz33uBrLXnNgvPrqqxXPCyc98X3ppZfkhRdeqNWT4O2lk4W9++67LhnVxNSq8NWnT58qY+EsRRxL9PN59913u8IHDzzwAJWPAABRh4ShjtHJmrY+2dTKt//973/dFd2JEyfKPvvsI5MnT5YOHTpIPNITL507Y/ny5e64HHnkkeZj33vvPVm7dq2bwE8rz+B/rrnmGleRx6ul5thjj5U77rjD87Dde++9bh06r0m00TlZSkpK3Kzr4aSzyOtcMPfff79cfPHF0qJFi7BuDwAk3scwoEbRJSkKhLrTaJekLl26yMqVK+N6Ftj09HQ55ZRT3M96Nd9LKK6T9+ns3vjLZ599JtOnT3cJQePGjXfqsGiioF1utK52tOnUqZPb90h8Ns477zzXavjMM8+EfVsAANQkEoYo0qBBAzdbtfriiy/kxx9/3OYxpaWl8txzz7k+6I0aNZLU1FTXEjF8+HBZvHixue6lS5fKdddd566C6tiJjIwM6dq1q2vt+Pbbb7d4rCYuo0aNcl1S9EppSkqKNG/eXI466ijXzWVrOvmUJj16ZdWi69TH6JVefQ3VCSVM48aNc922rNf06aefVtkdSa8sH3/88e5kV/dfJ8rS/vzaclNd33RNQvbee293ghzq/6632h1JnXvuuVv09d/6Cr2eNGr3sr322su9p3qVv1u3bu6YamtIZf/+97/dOrSFZOtxBuqTTz5xXV50X+bOnSvb64knnnC3NdF1ymsMg76X+pnVz5W+Tn0dJ5xwQkW54aro8arquIVo9zyN62d8Zz/L1hiGP//807UGDBkyRNq2beu+R/peDRo0SJ5++mlfg5F1VnkdzKzP357POADE+hiGcP3HPAw1j4Qhyhx22GEuEQhdJa4sPz9fDjroILnwwgtdMrHbbru5bjh6svOPf/xD+vbt68ZDbE1Pnnv27CkPPvigrFq1SoYOHSpHHHGEO0HS2am3viJ60003uRNenZF29913d1eptQ/8Bx984Lb/6KOPbvF4TVb0pFzHEoTKzG5tzJgx7laTilCFGC8DBgxwJ4TaneTll1+u8jF6Aq8DTvfcc08303aI9tk/8MADXXclPRnU/dcxIfrvfffd17PV4oorrnDJiu6jHiNdt55wnn322e5qdWgciv47tFQeA7Bs2TL3HN0HPcHX16GtR0VFRfK3v/1N+vfv705WK3dl0W1qUnTqqaducaKpJ8ZnnnmmO3l99tlnXevT9tD3TRMNvaoezvlBdL+0+5h2fZozZ44bf6OfrZ9++sklm1OnTq3xbe7oZ9minyntZqWJhCYbmlzq+6j7fMkll7jXpV0Fd4QmS7oO/QyE47UDABA2Qeyw3NxcPVNwt9V5+umng4FAoNrHtWvXzq3zhRdeqPaxBx54oHvsGWecscX9p512mrv/yCOPDK5cuXKL2N///ncX69KlS7C0tLTi/kWLFgWzs7Nd7IYbbggWFRVt8Txdz9dff73FfR999FFw2bJl2+zXt99+G8zKygomJycHlyxZskXs9NNPd9t4+OGHt3ne6tWrg6mpqe55y5cvD26vRx55xK2zV69eVcb1tWr8mWeeqbhPf9b7OnfuHPzll1+2ePzEiRODmZmZwZSUlOCcOXO2iOlzdNHXN3ny5Cq3d/bZZ3u+h+Xl5cGBAwe6x5x//vnBvLy8ilhJSUlw5MiRLnbAAQds8Tx9T/bYYw8Xu/766yseP2jQIHffZZddFtwR48ePd88bMGCA+Zj999/fPeb222+vdn3W637iiSfc/c2bNw/+/vvvW7zW4cOHVxxTfX5luk2vbX/55ZcurvtYmZ/Pcuh7t2DBgi3u//7774O//fbbNtteunRpsHfv3u45b7755jbx0GuyXHnllS5+1113Bb2888477nFr1qzxfBwA1PR5S6T25eSkYcEzk08Ly6LrriuvN1bQwhCFmjRp4m4rd1+ZOXOmvPbaa9KqVSt3JVW72FSmA6b1SrZe1daBwiEPP/yw5Obmuu5EOnhVWwIq0/VoN4ytWzmqGuCq3XQuu+wyd9Vfr9ZvXdpUPfXUU9tcmdUuVHqFXa+m78hgUB2XoK0n2r3lhx9+2CKmVZT0tVYe76BXvEPdXF5//XXXAlOZXm2/9dZbXWUl7TZSFW0Z0K5EfuhV/UmTJrmrzNrio91lQrTFQivo6NXxL7/80o0vCNH35I033nATeOljPvroI7n55pvlm2++cS082tqzI0KtTLvssku1j73zzjurLKmqXXmqE+o+p8e88rb0ternrqYH/vr5LFu05Uffi63p90vfA/XWW2/t8D6GWrq0lQUAgGhBlaQoFOo/Xbneu55E6om4nsxXPhGtTPt86+O0H3eostDHH3/sbi+66KId2gdNVj788EN3Yrt+/XqXJKhQP/rZs2dvcwKmCYWOEdAT50MPPbTitejJs7r88st3aB90sK52J9KTaS01q915QvTfSruOhI6HnihrdxDtOqQn2lUJ9Yvfuq97iCY1funxUtqHv6puVzr3hiYtekx1+5VPWPUEXccI6OvVrkna/UzHLbz55psuadoROmhebc9gZ6usaihptWh3qT/++KMisduajmc46aST5LHHHpOa4vezbNEkVsfAaPch7d6k/9bvmB77qj7j2yN0zEPvAQDEq79GGoTnujVVkmoeCUMUCg3yDY1lUPPnz3e3zz//vFu8rF69uuLnUH95rRSzvbS/vPZL37Rpk/mYvLy8be7TUqiaMOiA21DCoOMedB90fIWWi91ROphZEwZtXdErzHoiunHjxoqrv5UHO4eO0bx587aZXMvrGFW2PVfWLaHtayuGLju6fR2PouMn9Pgr7Y/vZz4OvQqvsrKyqn3s9pRVrUpogLYmFvXr16/yMTVdFtjPZ9ny3XffycknnyyLFi3aoc94dULHXJNsAACiBQlDlNErnKEuJTrod+tWB70arFeFveigW790MLUOTNbKPFpFRrt/6MBh7fqjJ+F6EqvxqgaE6tV57dKjXaIWLFjgThhDg513tHUhRAe16gy6erL4zjvvuKvvetVdkxkdrKqDmLc+RtoV5pBDDvFcr3UFXWdF9iu0fe0WExogbak8SLtyq07l7mR6UqtX6XeUDgD2e8JbF/ipULQjCgoKXKKkrQBa8UoH7etkinqyr597HcCtVa12dNBz5WRNu5cBQDxjHoboQsIQZbRLUejq5MEHH1xxf05OTkWFnlDJzO2hJ/vatWLWrFkVM0x70Sv3eqKklXu0DOjWvEp7ajccPfm65ZZb5Mknn3TVnLTSk7aU6Im+H9qNR0/q9Cq4dkPS9YS6I+n9lYWOkXYLqaoEaLiFtn/MMce4xGlH6DHXikh65V5PZr/66iv5+9//7rpQ7eiEdKHxLVuXcK1JoYnQtDVMW3yqamXYupRpSGjsQajrz9YqV5Hamc+yRY+tJgv9+vWr+CxVtiPla7cWOuZahhgAgGjBoOcoolcntSuQ0vKllfuW69gF9f7777uymdsr1DUo1M2lOuvWrXO3elV/a7rdt99+2/P52vqg3Yb0REwH6+qJsHYb2pkr95oYaOKgc1NoAqIDi/VKsJY03XochbYc/P777zJjxgypaaETXavGfug9CiVdO+K+++5zrQs6ePiVV15xJWO1RUfnFrBOoC16Iqz0OISLltkNdZfSQfhb0/EA1qDhULKhA/m9xoLs7Ge5us+4JiBV0ePvV2gwuzWGBgDihY5gCOeCmsURjQJ6cqkni1q7Xq9uaoWirU+KdAyADqbVydm0ZnxVV2+1m47OhVB5wOWIESPcoGBNNPTKf2jwcogO9tRqPCGhajd6wlr5CrAmC5deeqnrauRFT9hPO+00d1Km3Zf0RF+ftzP0xE4TKO2qopNjKa0ItXUlJ513QCeR0+Opk7RVfl0hOm+DJh7a3cfPSbKykhFtWdCkRSep0ySnqnEK2nqkg8ArJx16xVvHPGi3Lz3J1onIdND6yJEj3eO1W9LW75sXHSuiA6V/+eUXN4lcuGhlLqWtP3rVv/Ix1hYWHYBeFZ0sTT8XOjh+4sSJFffr+6aDpK2kdEc/y5bQZ1zndNg6qdLPrI6Z8Ss0mF5fIwAA0YKEoY7REqN61VgX7V6jJ8J6kq0nwNp3Wrug6BX0qq7w64Rj2qdfkwvtY60Jhg7c1BNK/Vm7/mjFmsoDLvVkW2cT1hOte+65x3Wb0ZNpfY6OddCTYN2nED3R1W3rOAodg6CP1bEJep+uJ1Q+1YsOfg7RSbV2ZiBxSGhwc+gkfOuZnUN0rITOAqyJl45v0EpEocpDBxxwgDvWegx//vnnHd4HXY+e6OpJrb5v5513nhukrCewSmPvvvuuaxnShEuPn3Yh021rsqdJn07upd22QgmDvh6N60m2jveoPLZh9OjRrsRraObt7aUtPDqGQ0+oddbkcNESuzrGZfny5W5cjbYA6GvRCeb0M6Wvsyr6GdQub5oA6nuh74seH32eJho6oVpVdvSzbNH3QZM7TYj1Zz1Wut+aSOikbTpxoR/6Xv7666+uNKsmjgAQzxICCWFdULM4onWMJgN6MqnLuHHj3BVOHdysV5P1xFBr9FvVZfRESctAahcQnclYK7zoQGC9Yq5XkvXqu/576wG3OhZCu0royb4OiNXylJp06KzM2m9eT5JCNK5zHmirgP6sj9PKR7oOrS1fVQnOrenJY6gGv9/BzlvTE7zQQGXtH66JiEXr6Otx1uOh/ev19Wo3F73irQmZnlRqorWjdF4Hvfqt5WOnTJnixkloxarKNff1ZFFbL7QVQZM47XOvJ7mhK996rPXKup7U6wmzJni6X9q9SpPIrVtM9Gq3JoI654EmI9srdNzDOZZDE6T//Oc/ruuZjinQ5ES7jOlx0mOgr9+i4zP0eTpwXa/K63N79Ojhnuc1YH1HPstetCVHZ97WxFvfG/1eaUKi740mgX5oVyZNBLd3NnMAAOoKNwVxbe9EtNHqMloDX8cUVFeaUrsw6ElKuCu7RJPx48e7K/B6Mqb91KsrcYqap197PXHXlhYdSF3dvArY+eOtibLOTaHldaubtE6TP20d0UHj2zNfBgDU1HlLpPbl7JQzJCWw5QSbNaU4WCwvFb9SJ15vrKCFARGlXWt0HEGozznJQu3Q467zVujgYx1QjfDSViSdkfz666+v8RmuAQAINxKGCJyY6dXFeG/I0fEVOv5BuyxpFxPtZqV9/FF7tJVHx13o2IjQRGsIT5Ksg9a1S9P2jjWpajZ3AIgljGGILnSkDTMdV6B0AGU8N4tptRsdl6H9yrWrhfa5px937dMxLQgvLfFbuUrUjkzwFvr9AQBAbaKFIcxCtehDszPHKx1cq60sWqFJB8JaNe4B/PX7Qqs66cB2AIhF4Z2FgdbZmkbCEGb9+/d3f/itSaoAYOvuSFptS+dTAQCgLiBhCPcBTkiQYcOGuVKnWkITALzopIxaSld/bwBArIrETM86542W5Naxetg5jGGIAK2MovXbdQIqvXKok20xmBFAZTpbuiYLOoeEztWgM3IDAPybOnVqXI8frUkkDBGgE4np5Gk6a62eBOi4hqOPPtpN4lWvXr1I7AKAOkjH9WhBBJ2gUWcE15913ha9GqatkwAQqxICAbeEZd2MYahxJAwRTBp0IKPOWKvjGfTkYO3ate6qIoD4pZWQcnJy5Nprr3XdkHbZZZfa3iUAALZAwhBBWvFEa9/rAgAAEK90nIH+F651o2ZxRAEAAACYaGEAAABARGnxl3AVgAkwhqHG0cIAAAAAwEQLAwAAACLqrxEM4bluHa71xjOOKAAAAAATLQwAAACIqITAX3MxhGXdYVlrfOOYAgAAADDRwgAAAICI0rkSwjVfAvMw1DwSBgAAAESUdkcKX5ek8Kw3ntElCQAAAICJFgYAAABEFF2SogstDAAAAABMtDAAAAAgohICCW4Jy7q5Hl7jaGEAAAAAYKKFAQAAABH1V1FVqiRFi7hqYSguLpbHHntMBg0aJI0aNZK0tDRp06aNHHbYYfLGG2/U9u4BAAAAdU7ctDAsWbJEDjnkEPn999+lSZMmMnDgQMnIyJDFixfLV1995X4++eSTa3s3AQAAYl4gkOCWsKw7vq6HR0RcJAybN2+Wgw46SGbNmiV33HGH3HTTTZKcnFwRLygokDlz5tTqPgIAAAB1UVwkDPfee69LFi666CK5/fbbt4mnp6dLnz59amXfAAAA4g1jGKJLzLfZlJSUyFNPPeV+vu6662p7dwAAAICoEvMtDD/99JOsWbNGWrVqJZ07d5bffvtN/vOf/8iyZcukYcOGsu+++7pBzwkJMZ87AQAA1AmBMM7DwBiGmhfzCcOvv/7qbrUa0g033CAPPPCABIPBivj9998vffv2lXfffVfatm1b5TqKiorcEpKXlxeBPQcAAABqX8xfVl+7dq27nTZtmksOLr30Upk9e7bk5ubKZ599Jl27dnWxI444wnVfssZAZGdnVyw5OTkRfhUAAACxIxDm/1CzYj5hCLUmaDJw6qmnyhNPPOGShKysLDnwwANd0qDzMUyfPl1ef/31Ktdx4403ugQjtGgpVgAAACAexHzCkJmZWfHzxRdfvE1cuyFp64IaP358letITU11CUblBQAAAD4lBMK7oEbFfMLQsWPHKn+u6jHLly+P2H4BAAAA0SDmE4Z+/fpJIPBXpqnVkqoSur9+/foR3TcAAIC4pOdm4VxQo2I+YWjRooUMGjTI7HKkYxsmTpzoft5jjz0ivn8AAABAXRbzCYMKze6s1Y6+++67ivtLS0tl5MiRMn/+fDfW4dxzz63FvQQAAIgP2vsjkBCmhRaGGhfz8zCooUOHyl133SW33nqrm6hNWxK05UEndVu4cKHUq1dPXnvtNWnevHlt7yoAAABQp8RFC4O65ZZb5JNPPpGDDjpIZs2aJePGjZOysjI555xzXOIQqpQEAACAMNNhBmEbw8C7V9PiooUh5OCDD3YLAAAAgO0TNy0MAAAAiJ95GAYMGCA9evSQMWPG1ParjXpx1cIAAACA+DB16lQm260hJAwAAACIrLDOyMwghppGlyQAAAAAJloYAAAAEPl5GMI0XwLzMNQ8WhgAAAAAmGhhAAAAQGQxhiGq0MIAAAAAwEQLAwAAACIrNCtzuNaNGkULAwAAAAATLQwAAACILMYwRBVaGAAAAACYaGEAAABAZAUS/lrCtW7UKI4oAAAAABMtDAAAAIioQELALWFZt1AlqabRwgAAAADARAsDAAAAIosqSVGFhAEAttP0xRvM2LI1m8zYb1/ON2OpLeqbsaIfl3vuT9YB7c3YhUf28HwuAADbi4QBAAAAERbGmZ4Zw1DjGMMAAAAAwEQLAwAAAGJnDEOQKklq8+bNMmfOHGnTpo00btxYdgYtDAAAAEAU+vrrr2XEiBHyyy+/bHH/2LFjpVmzZtKvXz9p2bKl/N///d9ObYeEAQAAABEVCATCusSLZ555Rp544glp3bp1xX2LFy+W8847TzZt2iTZ2dlSWloqd955p0ycONH3duiSBCBqPfvB72Zsw6u/mbHghkIzVrrUroQU3FxsxspW55mxQHqKGStqkmU/L9H7ms7qz+aasdHXfWzGyjfZrz+lT1szlphj72vLk3c1Y6ft18mMAQD8mzJlivTu3VuaNGlScd/LL78sxcXFcscdd8htt93mWiEGDx4sTz75pOy///6+tkPCAAAAgMhiDEONWLNmjey665YXbL744gtJSUlxXZXUvvvuK3vttZdMmzbN93bokgQAAABEoY0bN0q9evUq/h0MBmXq1KnSv39/qV//f/P8tG/fXpYtW+Z7O7QwAAAAILJ0nEG4xhrE0RiGRo0aycKFCyv+ra0I+fn5ss8++2zxuJKSEtfq4BctDAAAAEAUGjBggHz//fcyefJk9+9HH33UDfoeMmTIFo+bO3euq5bkFwkDAAAAamcMQ7iWOHHVVVe5bkiDBg1yrQ2vvPKKdOzYUQ4++OAtxjn89ttv0rdvX9/bIWEAAAAAotCBBx4o//znP6Vdu3auMpJWQRo3bpwkJCRsUTWpvLzcd4UkFQhqWoIdkpeX5+ra5ubmSlaWXWYQwP88/MwU83CUvGWXRw0WeJQyXWWXMk3exW56DebaZUWL5y43Y1JaboZSd29vxhLaZJqxgv9sOdlOZWkDu9j7IiLrvvzZjDXYzX5usKTMjJWtsMvKJjTIMGPJXZra2ysoMWOJPeznpe5uv4eXn+b/ShkQb+rSeUtoX27teb+kJaaFZRuFZYVy1/Tr68TrrSszPmsyoYOgExMTfa2DFgYAAAAgCn311VcyZ84cz8doFaVVq1bJpEmTfG+HhAEAAAC1UCQpXDM9x8+bOXjwYLn//vurfdwDDzwgBxxwgO/tkDAAAAAAUSoYgdEFzMMAAACAyGKm54hav369pKX5HzNCwgAAAABEiUWLFm0z2/PW94WUlpbKjBkz5NNPP5VOnTr53iYJA4AdMvareWZs+RszzFjZYruiUdmS9WYsqUszM1aeb1c7Kl+7yYxtnv6nGUtt1cSM5S1ZZsaC3883Y0kLs+1YMzsW3GxXF1LZu3Q0Y8Wz7H1NbtvEVyWkhEz76lTpYru6UrDQfh3FM5aasU3P/zURUVXuf/pHM3bEKyeasZ45DcwYgAhipmff2rdv78ZqhLz99ttuqa7b0hlnnOF7myQMAAAAQJRo27ZtRcKgLQvp6enSpEnVF4JSUlKkTZs2csIJJ8jw4cN9b5OEAQAAAJHFGAbfFi5cWPGzTtA2bNgwN3lbOJEwAAAAAFHohRdekM6dO4d9OyQMAAAAiKjQnAnhWne8OPvssyOyHRIGAAAAIMqVlZXJ2rVrpbCw0HP8gx8kDECcKiwrN2NjrvzAft6ns81YcmePikZ59i8wSU40Q8Fc+3mlS9eZscRG9c1YarvmviovZbVp5auCUtJSe52p9e39LF1uV49SBWWb7fUmpNhPXLDKDJUFy8xYUmqqGQt6fJ683ovEFnbVoqScxmasfHOxGXtnz8fN2H/372rGDnvgEDNGdSWghmkrgI5jCIfy+GlhUFOnTpXbbrtNJk6cKEVFReLV8qJlVv0gYQAAAACi0HfffSdDhgypaFVo2LChZGVl1fh2SBgAAAAQO1WSwrXeOuj22293ycJ5550n99xzjzRvbreg7wwSBgAAACAKTZkyRbp16ybPPvtsWAd7kzAAAAAgspjpuUbomIQ+ffqEvTJUgsShUaNGVZTzuvvuu2t7dwAAAIAd1r17d1mzZo2EW9wlDN9++6089NBDcVWjFwAAoE6OYQjXEicuuugi+frrr2XevHlh3U5cdUkqKCiQc845R1q2bCkDBgyQd999t7Z3CQirsV/Zv0CWPvWDGQtuKjFjCQ0z7OcV2M8rnrXMV9nNEo8ypwkZHmU+i+x9yV+x0oxldcgxY2UrNpixhv26m7ESjzKm5Xl2adTEpt6VLjJy7V/hwWK7dF5y15ZmLMnjeCc2s/cnWGqXYw0W2CVQSxeuNmOrNq4wYy3bdTFjSc3tUq3ly/LN2PsH/9OMTf7boWbswiN7mDEACHfCMHnyZDnooIPkiSeekEMOOUQSE+1S5X7FVcJw4403yty5c+XDDz+UN998s7Z3BwAAIC4x03PN6Nixo7tduHChHHXUUZKUlOQujCckJFR5zP22RMRNwjBhwgR5/PHH5ayzzpLDDz+chAEAACCGaW8Svdp+2WWXuSUWLVy4sOLnYDAoJSUlsmjRoiofuzPd8eMiYdi4caOrT6u1aR955JHa3h0AAID4FoF5GHQG5HBMYlaXLFiwICLbiYuE4dprr3UH9J133nEz4O0onWa78lTbeXl5NbyHAAAAwI5p166dRELMV0n69NNP5emnn5ZTTjlFjj32WF/ruPfeeyU7O7tiycmxB0UCAABgO+dhCNeCGhXTLQy5ubly/vnnS9OmTd34hZ0ZLD1ixIgtWhhIGlAXPHTPF57xTQ9PNGPJnezp48tW25VkUrq3MGNFvyyq8e0FN9lVe7wkZKf7qoQUSEs2Yym7tDZjBT/PN2NpHe2qRIUbcu3trfZuzQyk2L/CExrW91WZyOu4BdLtY1P8y3IzVrRxoxlLSUgxY6169jJjCfVSfFWlKl26zowFy8rN2MorxpmxJ/L+1wK9tctP62vGAKCm6LnpK6+84qYPWL16tQwdOtTNO6bmzJnjxjrst99+kpaW5mv9MZ0wXH311bJkyRJ54403pEmTJr7Xk5qa6hYAAABExxiGeKG9aU477TRZv369G/isg5tbt/7fBa7Zs2e7XjavvfaanHTSSb62EdMJg45Z0PJSTz75pFsqmzVrlrt9/vnnZfz48dKiRQt5/fXXa2lPAQAAgB0zc+ZMOe6446S4uFiGDx8u+++/v5x88slbPEbnZkhPT5f33nuPhMFSWloqEyfa3TK0iUaXSA0aAQAAiHvaCBCuhoA4amAYPXq0FBYWyltvvSXHH3+8u2/rhCElJUX69Okjv/zyi+/txPSg5w0bNrimmaqWs88+2z3mrrvucv+uXMcWAAAAqOu+/PJL6d27d0WyYGnTpo0sX26PNYvrhAEAAAB1EFWSaoQOcO7atet29bjZtGmT7+2QMAAAAABRKDs7W5YuXVrt4+bPny/NmjXzvZ2YHvQMxIKHLnvfjJX87N28mNrTLh9aPNP+BZPYONOMFf1od98LZNjl2oKFJfb2mtrbKy0qNmNJbRqbsU2z/jRj9Xt1NGNlq/J8rbNec7sSW9lau2xsevtW9vPWeJdVzc1bY8YapNllbHML7NKi2Un2daTSpRvMWF6evc7EQKIZy9q7sxkrnPyHGUvuYP/hC6Qm+3pe2Xr76lt5vl3ed/3V9nf0oRl2iVc18p5DPONArAokBNwSrnXHi379+slXX30lixYtkrZt21b5mOnTp7vxCzo42q+4bWF48cUX3diFW265pbZ3BQAAANhhF1xwgRv0fOqpp8qKFSu2ia9Zs8Y9Rs959dYvWhgAAAAQWVRJqhEnnniiDBs2zFVJ6tSpkwwcONDdP2nSJDn66KNlwoQJsnHjRjn99NNdeVW/4raFAQAAAIh2Y8eOlRtvvNH9rHOLqblz58oHH3zg5mcYOXKk61mzM2hhAAAAQIQF/qqUFK51x5HExES555575Nprr3VlVnWAc3l5ueTk5MjQoUN3arBzCAkDAAAAEOUaNmxY7XwMfpEwAHW8ElLhp7PNWLC03HO9Kd1b2LFdWpux4rl29aVgmb3NxEy7SlLpUruKjpe0gV3M2LovfzZjGfXsykslc7cdGLY9lZ5SElLMWGKzLHudSXaVoNU//mbGGjSyKx2pjMQMM5a7brUZS0uwX6N4fKaSWjcwY5lL7dfvZf6Eb8xY2y49zdiy2b+bsRat7SpYC76fYsZaN6y6wkh172FKb/t5pd8vEy8PjfzIjI186HDP5wJRTSsZhauaURxVSXr88cfljDPOcMlCODGGAQAAAIhCV111lbRq1UpOPvlk+fjjj101pHAgYQAAAEDtVEkK1xInjj/+eJckaJWkI444wo1buPnmm92g55pEwgAAAIDI0gHP4VzixL///W9ZtmyZPPLII7Lbbru5n++77z7p3r277LfffvLCCy/Ipk32pJTbi4QBAAAAiFKNGjWSK6+8UqZNm+aWyy+/XBo3bizffPONm6ytRYsWct5557kZof0iYQAAAEBkJYR5iVO9e/eWRx991LU0aOvD4YcfLkVFRW4ehiFDhvhebxwfUgAAACD2JCUlufENTz31lFx88cXuvp0ZEE1ZVSBCnv3ALgNZPHWJGStbned7m+V5hXYs347l5dklUDOT6tsbLCmzYx7lWFN2bWPGEpqnm7FUjzKnkpTgq0RmeV6Bvc5Ee50bf5tvxtLbt/JVOjWxsV0aVgVL7ePdqI19TMtW50tNS2rdyIwF0pLNWOsl/v4MtRm4hxkrmmq/Fx0G7WPGimfY38OUXe0yxGVr7f7BCfU8PqO6r5/ZAxMfvPA/ZuzaZ8NTax2IGDc4OUxjDeJnCEOVtEXhnXfeceMXvvjiCzeJm9p1113FLxIGAAAAIMpNmTLFdT164403JDc317UoZGdnyymnnCLnnnuu7LGHfaGlOiQMAAAAiKhAIOCWcK07Xixfvlxefvlleemll2TWrFkuSdDXf8ABB7gk4YQTTpC0NI/JOrcTCQMAAAAQhdq2beu6HGmi0K5dOzn77LNdoqA/1yQSBgAAAERWOCdYC8Tf4ObzzjtPhg4dGr7thG3NAAAAAMJmxYoVbpxCuJEwABGqhLTub9/6qi5UXF5sxjI62ZVwqquEFNxsrzcxkOirUlBZrke1mKx6vvZz84czzFi9nnaTa9DjmJYuXG3GCort15CekmHGUjwqNnkda0m0j3XpUrtaVXWVoEqXrDVjRRs3mrHUNLsqVfGsFWYsuMl+D0uLisxYcrZddWvdfLvaUfYKuyqTl+JfFvk6nmUr7GplgXT7vS9dtt5zfxIa2p+p4LpCX79rLjyyh+c2gTohIfDXEq51x4nsCCQLinkYAAAAgCjwf//3f/L+++9XGfv1119lyZKqy0M//vjjruuSXyQMAAAAiCytZBTOJUbdcccd8u6771YZ69u3r9x+++1Vxn766Sd57733fG+XhAEAAACIcsFgcKdmc/bCGAYAAABEFlWSogotDAAAAABMtDAAO+jTaUvN2IqL3jZjgdQUXxVmvKrWeFVnUSWzlpmxstISe5seFX+8BItKfb3+goXLfFUfWvzTNDPWPL25GVtXaFcQqp9oV61Jat3IVyWkYFGJrypJRYUF9vO0SlTzJmZs88o1/io6lZXbGyyyX2MgI83XH5rExplmLCtvs729tGR7nS0amLGyNXa1o8QmWf4qVnlUV0pq01g8eVTzKluRb8bW3vu1GSs8rLsZS/OocgZEFFWSogq/OQAAAACYaGEAAABAZDGGIaqQMAAAAABR4ueff3bzMexITO/fGSQMAAAAiKxwzpcQw/MwqF9++cUtOxLTcquBnTguJAwAAABAFNhvv/126sTfLxIGAAAARJSe9Aa0UlKY1h2rJkyYUCvbJWEAdtAvD3xjxhKzPUpytrfLKxbPWOqr7GaxR9nU6kqnJmfXN2NJOfa+li7bYMbK12+0Y3l2idDCcrusbFG5XcqzeWpTMzY/f74Z69ZnbzO2adafvkpgrl5mPy8twS45mtWmlRnL6NTG+/1da5fdTG/d3NfzNm22Y/Wz7OOdu3qFGctMqu+vNLDPEqBepVMTPMq/epZO9Sg3m9y+pb3OhavtdVZTjrbePu3s9U5fZcYeP+MtM3bdayd77g8AVIWEAQAAAJFFlaSowjwMAAAAAEy0MAAAACCyqJIUVWhhAAAAAGCihQEAAACRpRWSwlQlKWzrjWMkDEAVnhg7zTwuJT97VDRKtisaFX5vV+1Japbta53VSW6aacbKVuf7qlxTuHadr2pHjTt0tmPJzX1VLfLaz24d9hA/UtPSzVh5oV11qnGGXUEoqXUjMxb0qL6zbq79mVFZWfZ6vXhtMzXBPqaJDexjk7m+vq9qR16VvhIyUj1idnWhYKldzSpYWu6rElLa3vbnt3ThWnt7xaXizf7OFLw1zddnKpBtH5tnP/jdjF14ZA8zBiC+kTAAAAAgsqiSFFUYwwAAAADARAsDAAAAIosqSVGFhAEAAACIAomJ/sc1BgIBKS2tblxV1UgYAAAAEPlO8eHqGB/DHe6DwWCtPDeGDykAAAAQO8rLy7dZRowYIWlpaXLVVVfJTz/9JOvXr3fLtGnT5Oqrr5Z69eq5x+hj/aKFAahCwcu/mselLHeTfcw8SjZ6lUEsXWqXKs0vyjNj2Y3sUp7VlU5NyLRLL5b8scpX2dFUsWOF85dLTQsk2U2ziTkNzdjcT78wY+2a2eUzN65ZbcbSE+v5eu1riu33vkVmS/GyNnelGUvKs49NRmKGGUvr1sZXidv09q3MmJSU+fo+5a6zj7fYh00atGzlqzRsIMm+hhYssEvqJvdo4bsscsCj5GxSx8ZmrGjqQjNWtqHAjK1/xmNnKKuKSGIMQ4144YUX5JFHHpHPPvtMDjjggC1ivXv3locffliOPvpoOfDAA2WXXXaR888/39d2aGEAAAAAotCTTz4pAwcO3CZZqGzw4MEyaNAgeeqpp3xvh4QBAAAAEaUDcMO5xItZs2ZJTk5OtY9r3bq1zJ492/d2Yj5hKCkpkc8//1yuu+46GTBggDRo0ECSk5OlRYsWronmww8/rO1dBAAAAHZYUlKS/Pbbb9U+bvr06e6xfsV8wjBx4kTXb+vBBx+UJUuWuCaZ448/Xpo2bSrjxo2TI488Ui6++OKdGjkOAAAAH1WSwrXEib322sslA4899pj5mMcff9wlFXvvvbfv7cT8oOeEhAQ54YQT3Mjxfffdd4vYG2+8Iaeffro888wzrv/XWWedVWv7CQAAAOyI2267TcaPHy/XXHONvPnmm3LaaadJhw4dXGzhwoXy6quvyuTJk13rwi233CJ+xXzCMGTIELdU5eSTT3ajyp9//nn517/+RcIQZz6dttSMlS7dYMaS2tiVS8pW2M/zktQs24ylLi00YwkN7Go3quhPu4pOYl6Br8ot4llJptiMpTSzqxatXmZX38lOyrK3V1jiqzJP20Z//TKtSlKO/f7mr15kxrI62H1IAx6fi+ZJze3npSWLl6QCuwJPlsdx81I4e4kZKw2W+TreRcvWmLHcUrsKmJemrdqZsfwV9ue+fhO7slju6hVmrKFHRa7iuct9VU5T8zb8Yca6pw8yYyW5G81YWke7ulbpwrVmbPpi+3PaM6eBGQN8oUpSjdBWg7Fjx8oFF1wg3377rUsOKtMeNPXr15dnn31W9tlnH9/bifmEoTp9+/Z1t4sXL67tXQEAAAB2yLBhw2S//faT5557znXF1y74oYHO+++/vyul2rKld5nu6sR9wjB37lx3IHb2QAIAAGA70cJQo5o3by4333yzW8IhrhOGFStWyIsvvuh+1nEOlqKiIreE5OX5a0IHAAAAok0cjSPfUmlpqZxxxhmSm5srvXr1cpWSLPfee69kZ2dXLNtT7xYAAAAGqiTVKL2YrZO46bntIYccIg888EBFbM6cOfLpp59KYaE9JrI6cdvCcMkll7j5GRo3biz//ve/JSUlxXzsjTfeKCNGjNjiTSFpAAAAQG3TZECrI61fv94NctaJ63T8QohO2HbsscfKa6+9JieddJKvbcRlwqAlVrUyUsOGDV2VpK5du3o+PjU11S2ILdNGfWrGkrvYlVSKf7WrK0miXUll0dzpZqxNU7tqj5fSpes84+tK1puxFs06mrGydXYFlpQuLczY2l9mmbEGYlftSUtI8/UamqXa+1L040Lxo3jWMjPWPNX+XJSt8dlVsazcdxWs7NImZqx002Z7kx7VjrwqIaUm2BdWCpbalYlSPJ7XpJndYluyLtdXZa1GyXZFrg2rl/mqLLXeozBGZqr9vISsdPHSscz+HpYutisa1T+wpxkrW5FvxhKz7O/aRxe9Z8Z6/vdsMwb4whiGGjFz5kw57rjjpLi4WIYPH+4GOWsV0Mq0xSE9PV3ee+89EobtNXLkSDe5hc74rBlZqEoSAAAAEE1Gjx7tuhq99dZbbmJitXXCoL1o+vTpI7/88ovv7cTVGIZRo0bJww8/7MYhaLLQv3//2t4lAACAOBT4XytDTS+67jjx5ZdfSu/evSuSBUubNm1k+XKPOWOqETcJww033CB/+9vfXLKg3ZAGDBhQ27sEAAAA+LZ69epqu9aHiv1s2rTJ93biYgyDToV9//33V3RDIlkAAACoA1WSwrXuOJGdnS1Ll3qMrfz/5s+fL82aNfO9nZhPGN5//32555573M+dO3eWMWPGVPm4Jk2ayIMPPhjhvQMAAAD86devn3z11VeyaNEiadu2bZWPmT59uhu/oIOj/Yr5hGHduv9Vkfnhhx/cUpV27dqRMAAAAEQCVZJqxAUXXOB6z5x66qny9ttvS4sWW1YPXLNmjXuMllvVW79iPmE455xz3AJsLZBkt1kWTp5nxjbl26Ue01PsMpitPEqAJrZoYMZSC0vM2NpNq8VLy87dzVh5vj2BS3GJHSubbpezTE+sZ8aCRSW+nle/YSMztnG9XVb2z812GcxeXfY0Y0XL1pixxKRkMyaldnnUYHGpGUtqaZcADW4utrcnIkvXLzJjzVPsErBeMls091VuN7W1/bzlf9jldlum2a8/pZkdK1xif/ZTe7czY429jmmJXVI2a6n95zKQYZcq3RnBUnt/yvOKzFjZKrvEb9DjNZav99+/GUDtOPHEE2XYsGGuSlKnTp1k4MCB7v5JkybJ0UcfLRMmTJCNGzfK6aef7sqr+hXzCQMAAADqGFoYaszYsWNdt/tHHnlExo8f7+6bO3euW7Skqk4pcN999+3UNkgYAAAAgCiVmJjoxutee+21rsyqDnAuLy+XnJwcGTp06E4Ndg4hYQAAAEBkUSWpxjVs2LDa+Rj8iqPCUwAAAEDt++OPP+SSSy5xVY6Sk5Olffv2vtYzZMgQeeCBB6p9nFYC1cf6RQsDAAAAIivOxzDMmDFDPvjgA9ljjz1cBaP169f7Wo8Oat6eZGP27NkyceJE8YuEATHt4WemmLHiWSvMWCAp0YzVb2JXnylZZ1dQSm3XvMark7Ts38czvvrH38xYVqpdmSmjUxsztmneEjOWWr++GUvKaezreJcsWOWrgtKuHu/TggXTzVj7nF3MWHJnux9o4eQ/fFVCWrVovr29gEdVJt3Xfv19Vcopzy2wn7fafl5Cll3NKpBm72vLdl3M2NKFc+ztefzRb92w6nrjav1PdlWm1IQUf1WwPATKynxVQHPxBulmbMmsGWas+U925a2EjFQ7Vs9+/YFk+3s4ffEGM9Yzx/s1AtjWUUcdJcccc4z7WVsaPv74YwmnkpISSUjw37GIhAEAAACRpdcDwtbCIHVewk6cvPvx22+/SePG9oW76pAwAAAAIO5ptx2dBO3HH390y8yZM6WsrEzuuusuueWWW6o9PjoXwpgxY9ysysXFxa7Uqc5/cM0117hxCjXlvPPO2+Lf33zzzTb3hZSWlsrvv/8uP//8s5uXwS8SBgAAAEi8V0l66qmn5NFHH/X13Kuvvto9NykpyQ0url+/vnzxxRdy/fXXy7hx41wiUq+e3a1zR7z44osVPwcCATeAWhcvrVq1cqVX/SJhAAAAQNzr2bOnm8ugb9++rnrR6NGj5eWXX672uLz77rsuWdAkQQcW63PVmjVrXPKgLQC33nqrq1RUE1544QV3q4OltWVh0KBBcv7551f5WJ24rU2bNrLXXnvtVCsHCQMAAAAk3qskXXDBBb7GGYwePdrd3nDDDRXJgmrSpIk8+eSTsu+++8oTTzzhkobs7GzZWWeffXbFz3fccYdLBirfFw4kDAAAAIAPS5culalTp7qfTzvttG3ievVfZ1xevHixfPTRR3LqqafW6HFeuHChRAIJA2Ja2SfzzFiwqNiMBVLt0oPBTYVmLK2bRznSWX+asfTWdsnVpPZ2edCyasqxBjw6cnqVXvQqZZoYsEsvBovsUo+ly+yyjOJRllIS7e0tX7HAjDVPtY9bq9QWZmzFUrvMafOiEjMWSLc/M3lLlpmxJs1y/B0XEdnw61wzlp6S4bHecl+vw+u9KFthv7/BQvu4tWzRwYyV5xX4K33sUW43d91qM2YXOBVJbmRfFQwk2d+z3Jn250llZNrrbdWmkxlLbJZlxjZPt3/XbPhxpRlrurddpvm/oz4xYz1fO9mMAd5VksJ0fP7/evPytiwTnZqa6paaNG3aNHfbqFEj6dCh6t9n/fv3dwmDPramE4ZIIWEAAABAzNEr+5XdfvvtrgtPTVqw4K8LV23btq12P0KPVQUFBa7FQc2fP9/9+9///rf794ABA6Rdu3Y7tB9FRUXy5ZdfukpPmijp+Iat6QBp7RblBwkDAAAAIish8NcSrnWLuKv6WVn/a42r6dYFlZ+f724zMuxWXR0MvXWLx6pVq2TYsGFbPC70bx3UfM4558j2euedd+Tiiy+WtWvXmo/RBIKEAQAAAKhEk4XKCUNd0r59+ypbAXbUDz/8ICef/Fe3wFNOOUVmzJjhJmnTAdhz586Vzz77zCUqWkVJqyX5RQsDAAAAJN6rJPmRmZnpbjdtsscUbty40d2GI3nRUq06uZy2MujEbOeee65LGEJzLqxevVrOOuss+e9//1sx3sKPyM5LDQAAAMSI9u3bV3R/soRiocfWpEmTJkmPHj3MWZybNm0qr7/+ukto7rzzTt/boYUBMS2QYU9SsjbXo1pIK4/BRmkeE5+U2FVt0hrblVvKPSovBXO9KyF5ycqyt7lg5Rwzlp5oz0bZqmcvM1a60K5AU7Iu14wVlG32tS8tMluasaJCu8JOWgO7Mk3rnHa+qhI12K2LGcta51GxKNmu9pO3wP4DpLJ36WjGSuYsN2NJLRuasdLl681YYhP76lh5vv0ZLiq03/sUj4pNZaV2daWyXDuW1tH+XGTm2Z81SUzwVbFqw+oVZqxRF/s9cqvdYH9Oy1ZvWeGlsmCpfdzS97A/i8l/2BXQylbm+YoBdbVKUiT07dvX3er4AR3UXFWlJO02pCrP0VBTtAVB52EI0ZmmVWFhoaSlpbmfde6H/fffv2KQtR+0MAAAAAA+tGnTxlU1UmPHjt0mrrM8awuDDrg+/PDDw9IlqrT0fyXNQxPDLVu2ZTlvneV5xQr74kZ1SBgAAAAQWTrOICFMSwTHMKibbrrJ3d53333y008/SYi2Olx66aXu58svv7xGZnmuKmGp3B2qe/fu7lZLrIaUlJTId999J82b23M+VYcuSQAAAIh7erIfOsFX8+b9Nfnr008/LR988EHF/TrAuGXL/3V9PPbYY+XKK6+Uxx57zHUPGjp0qCuz+vnnn8uGDRtk4MCBctddd4Xl+OpM0s8995zk5ua6hOSII45w3ZJGjBjhuiXp/BDPPPOMa3E4/fTTfW+HhAEAAAAS71WStPzolClTtrl/yZIlbqk8SdrWHn30UZcYjBkzRr799lt3Vb9Tp06uvOk111wjKSkpEg6arHz88ccyceJEN/BZExlt8dABzprEKC3f2rBhQ7n77rt9b4eEAQAAAHFv8ODBOzU3wkknneSWSNLWDJ1vYesZrXv16iVvvfWWrFu3TnbZZRe5+uqrPWejrg4JA2JaySy7ak+Txq3MWKCefSVg/fL/XWXYWqOMvyoSVGXNKrviTfNde5ix0iUeMzcW/W+gU1XyijaYsU7d/qrssKO8KiFJkj0sKinJrnZUkmtXYKnX86/+mDtamWfjPHs/0zPsfpwlc+1BYZktmvval2CpXWGneNkaM5YUsCsoqcLZ9mdxTfE6M9bcLqAkq4vt/Wm2wv6TEfCoHpaSbH8vEhv9NQNqVfKXbzlor7INpXblpU7pdqWrtL07m7HVX/9sxhq2tsshpuf+VWO9Kpvm2e+RKiy3PzeNu3T2t16Pik5e1dFaptqf7/T29u9LIJ6rJNVVxx9/vFtqCoOeAQAAgCg0ZMgQNzFbuJEwAAAAILLCVSEptIi4cqc6qZmOK4hV3377rRQXF4d9O9vVJemrr76qsQ3ut99+NbYuAAAAoCpTp06VrCx7wslY0KZNmyoHYddKwqCDQAI1MJJd11F5cgkAAADEoTpYJSkaHXnkkfLKK6/Ipk2bXCnXcNnuQc/NmjWrmAzCj1mzZsmqVfaU9AAAAAC2n1ZEGjdunBvgrPMttGtnF32ISMJw2GGHyT//+U/fGzr33HPlX//6l+/nAwAAIEZQJalGjBw5UnbddVc3sVy3bt2kb9++0r59e6lXr16VPX2ef/55X9uhrCqiXmFZua+SpInZdtNd0Z8rzVh2eiN7Z5LtMpgt+vQyYxt/m2/G0hrb20ts4t03c+NcuyxlA48yoAmZab5Kp3pZtcHel5adPUqnrttkxoo8SpI269TFjC2Y84sZ69ChpxkLeB2XEruUpVdV73o92/kq8aqKCgvMWPN0u0RmWWmJ/bzmdvnQBctmmrE2RXbZzYx9upmxTd/ONmONunQ0Y/mzfjVjwQJ7AGDJKruEb1aW/V0rXeRR/jY11Ywle5Sbra7Er5fU+nY52vJNdn/m7scfZsZKZ9m9ABJbZPn6HZyWSG0VIJxefPHFimEDOvhZJ56ravK5iCQMr732mnTo0EF2xvDhw+XQQw/dqXUAAAAgBlSqZhSWdceJF154ISLb2a6E4eSTT97pDe2xxx5uAQAAALDzzj77bIkEuiQBAAAgsqiSFFVIGAAAAIAo9/vvv7uJ3FavXu0GQh999NHu/vLycjetQUpKSu0kDJMnT5bPP/9cli1bJoWFhTU+wAIAAAAxSMfDh2tMfJyNtV+8eLGrRvrll19u0VUplDA8++yzcumll8qnn34qQ4cOjVzCUFBQICeddJL897//df8OBu0aICQMCLevfl1e4+tMzrYrkCR3aGbGShbYVUYCHtVS6jVvYsYS6tuVeQrne7/2nDZdzdiyJfPMWOvMXcxYIMmuBBUstSsFteppV4la9/tcM1YStCv6NM5u7qsSUqvUFuJH6cLVZiyvYIMZS0/ctrxdSOK6jWYsv8iu6KOym9qvI+BRzSrZ4zO1bq5dsSsh4O+vsFclpNxS+zUmrbSPW4c99jRjxTOXmrGU3m3NWMls+/u0tmS9GWvSMMeMBYvsik1q3ny72lPTFPv3QsN+dmWx4rn269j4kf29yNi/hxkLZNi/v8bcN8GMjbx5iBkDsPPWrVsn+++/vyxcuFB69uwp++23nzz55JNbPEbP2S+//HJ5//33I5sw3HTTTfLRRx9Jw4YN5YwzzpAuXbpIZmamrx0AAABAnGEMQ424//77XbJw7bXXup/1Qv3WCYOer/fq1Uu++eYb39vxlTC89dZb0qBBA/npp5/CNqMcAAAAANt7773nJmq77777KuZjqErHjh1l0qRJ4pev9uX169fLvvvuS7IAAAAA/y0M4VrixJ9//in9+vWThATvU3od8KzdlyKaMGirQnU7BgAAAJhnoOFcRGTAgAHSo0cPGTNmTMy+CWlpaZKfn1/t4xYtWiTZ2dmR7ZJ02mmnycMPPywbNmxwXZMAAACAumTq1KmSlZUlsax79+5uiMCmTZskIyOjysesWbNGfvnlF9lzT7tYRHV8NRNcf/31biT2YYcdJjNnzvS9cQAAAMQhuiTViBNPPFHWrl0rI0aMcPMtVOW6665zFU5PPvnkyLYwaD+oTz75RPbee2836rpt27Zuqaqbkg7A0LkagHD57d/TzVhq/w5mrGyxXSYxIdkuHbro+x/MWMumdsnGYH7Vc5VUx6t0akqzhp7PDRbZJUkzk+zSsaWL1pixhIYez8u1S4QG5600Yw07tjdjZSvscqXBArtkZdssuyBDQna6GSvfZL9PRYUF9r5I1b+o1TqPkpyNxH4PUxO8J9kJeuxreZm9P5tX2u9vZmqWr/cpb8FiM5bd2X4vkpam2rHmdgt20XR7e4mNPD6jC+3XHki1S4c2SmtsxpLb2rHyvM3ipVOTvvb+JNrX9MrWb/L1vUhKtY938W92OdoNq5eZsYNHjTJjAMLrsssuk5deekmee+45+fHHH+X4449398+bN8/1BtJCRd9//7306dNHzjnnnMgmDDro+aCDDpLp06e7ORi0nJMuVfEasQ0AAIA4RFnVGhvDoBfxhw0b5mZ5njZtmrtfS6jqoufpOpbj3XffleRk+6JI2OZh0P5SOv/C8OHD3W39+vYVnbpCsywd+KL9uIqLi6Vz585y+umnyzXXXLNTBxEAAACoDS1btnTJgSYOH374ocyfP991T8rJyXHDB4455pidvoCf5Lfma/PmzeW7775zk0FEg6uvvloeffRRSUpKkiFDhrgE54svvnDjMcaNG+emy65Xz55VFAAAADVEz1/DVXAzTju3HHLIIW4JB19vVW5uruyzzz5RkyxoM4wmC5okTJkyxWVgb7/9tsydO7di5rtbb721tncTAAAAqHN8tTBoV57CQn8DOGvD6NGj3e0NN9zgJrcIadKkiZs+Wyehe+KJJ1zSsDM1agEAALAdGMNQ48rKylzFJK9zdC1SFLGE4fzzz3fjGJYsWSJt2rSRumzp0qWuDm9o/oitDRo0yPXxWrx4sXz00Udy6qmn1sJeYmek7trMjG2cUPVgfBVI96hA41FlpEXD1vbzEu3qSknt7UoqxbNW2KtMssfXbFhuVy6prhJSZovmvtabXWZ33UsM2K/fS/kGu+JLSm/7l1vJbLuC1JLVC8xYTnZXM5bQoOo61io9I82MpazKNWN5RXalJy9pjRuJX8E8u6JTWgP7wkiJR6UrWepvltCSBav8Vd3y2F5ZqV0BLJBrv3ZJ8mhYL7UrS3kpnmt/DgOp3pWuEptmmrGSOfZ6E7Ls72EgJclXhbDEZnaFrMYe+wmgdul57m233SYTJ06UoqIi83E6jqG0tDRyCcMVV1zhuvboWIDHH3/cVUyqqzM/h0aLN2rUSDp0qLrEZv/+/V3CoI8lYQAAAAgzWhhqhI4n1vPxUKuCDhcIx2R1vhKGTp06uVstpXr44Ye7gcQ6Qtuah0FrwdaWBQsWVNsEoy0MlR+7Nc3WKmdseXl5Nb6fAAAAwI64/fbbXbJw3nnnyT333OOKEoWDr4Sh8pwLWt+1pKREFi1aVCfnYcjPz3e31nTZKlQS1koE7r33XrnzzjvDtIcAAABxRq8xh6tzSt3s9BIW2uOnW7du8uyzz4b1nNtXwmBdiY9VN954o5tyO0QTi1CrBAAAAFAbdEyCzuIc7gv0vhKGdu3aSbTIzPxroNamTfagyo0b/xrkZ/X5Sk1NdQsAAAB2np7ghuskt7Z7t0RS9+7dZc2aNWHfTsw32rRv397d6qBmSygWeiwAAABQ11100UXy9ddfh328sK8WhmjSt29fd6t1abUrVVWVkn744Qd3W3mOBkSPzePmmLGgR3nUxBZ2FYGSVXm+1pmX51F2crVdOjUz1d6X5LZNzFjqPO/5ULxKxybUT/O1P4Ub7PKhKQkpvkqLlhaWmbHGM8p8lcFsld5K/ChdtMZXKUuv15edbpdHDXiUag14lQDVMVorVpqxVI/3IlBor3ddyXoz1rpnHzOWsHitGVu5xr5gk7jK3l6LPr3M2KppP5ux5o3siz8JmfbxDm62v9vrly8xY1ll9vdlba79HqlmaR3NWMqubXx9t71+RxXPsF9HQkN7rF/5eruVfk1+9MzLhDqEKkk1ljBMnjzZVSzVOcV0pudEjxLvYW1hOPjgg+Whhx7aqQ09+OCDbj2RpvNEDBgwwP08duzYbeI6y7O2MGiXI634BAAAgOin5389evSQMWPGSKzq2LGjm39BCxIdddRRkp6e7nrM6P1bL6Eqp2FrYRg/fvxOT9A2Y8YM+fzzz6U26CRzxx13nNx3331y2GGHVbQkaKvDpZde6n6+/PLLmeUZAAAgRhoYdEKzcMxJUJdEqnLpdndJ0oHB1g5s7/Nry7HHHitXXnmlPPbYY7LXXnvJ0KFDXZlVTWA2bNggAwcOlLvuuqvW9g8AAACoq5VLtzthePvtt90SrR599FGXGGiz1LfffusyMG2aueGGG+Saa66RlBS7PygAAABquoUhXFWSJG60i1Dl0u1KGHSW5FgoUXXSSSe5BQAAAEANJgyV+0cBdU29o7qasbyfl5qxoh/9fa4DKfbXJjurqf1Ej6oFafvalVLKltvd+dLLvCsBla2wK/cUzl9uxlKaNTRjqZvs15/UprEZy17irxWvyKM748Yyu3JLozR7X4Ie1ZW8BFKTzVjDlm18VthpYMaSmmV77k9SwP5MJWXYFZ2Wrre7l+a0sb9PJQtWiR8t23UxYwGPqkVlHtXKmjWwP/trVtlVmZqIx6SbZXZFrqxU+30KpNrfiUYF9ndJBUvLfFU0kkS7Zklio/pmLLlDM/EjkGR/1nbrYH/XABMzPdconVT4lVdecb1oVq9e7brfjxo1ysXmzJnjzuX3228/SUuzf+fGdVlVAAAAIFZ9+umnctppp8n69evdwGftFdS6deuK+OzZs9143tdee813T5uYn7gNAAAAdXOm53At8WLmzJmuEmhubq4MHz5c3njjDZc0VKZzM2i51ffee8/3dmhhAAAAAKLQ6NGjpbCwUN566y05/vjj3X0nn3zyFo/Rwj59+vSRX375xfd2aGEAAABA7UzEEK4lTnz55ZfSu3fvimTBovOpLV9uj12sDgkDAAAAEIVWr14tXbvaxSpCSktLZdMmu1BIdeiShKh3+Wl9zdjfxs0xY+Xf2VWSktv6q/pRsmitGUtskG7Giibb+7J55RozllrfroaiVm1cYcYyEjPMWHJRiRlLam5XiymZt9JX5ZbyTYVmrF7zJmZs4zL7l19S60ZmLMGjMs+a1cvMWIMiu/LQmrX285p1sqsErZo314xlL7PfB5Xe3q4UVL7BPjZtmnYwY2Xr7KpUKd3t7ZXMtT9rBUvtz4WX+r3s6mHBxfaxadrKrkseqJfi65itLLBfQ+vWu5ix5X/MEi85u3QzY4nN7Blqy9dt8lV5KiHb/gyX526215lmVwjrmWP/TgBqc6bneJCdnS1Ll9oVIUPmz58vzZr5q5KmaGEAAAAAolC/fv3kxx9/lEWL7HLZ06dPd+MX9txzT9/bIWEAAABAZDGGoUZccMEFbtDzqaeeKitWbNvSu2bNGvcYrZyktxFNGD7++GPfGwQAAACw80488UQZNmyYTJ48WTp16iQHH3ywu3/SpEly9NFHS8eOHeX777938zRoedWIJgyHH364dOvWTR599FE3sxwAAACw/WegAQmEadF1x5OxY8fKjTfe6H4eP368u507d6588MEHUlxcLCNHjpQXX3xxp7bha9DzLrvs4iaKGDFihNxyyy1yxhlnyGWXXSY9e/bcqZ0BAAAAsP0SExPlnnvukWuvvdaVWdUBzuXl5ZKTkyNDhw7dqcHOO5UwzJgxQyZMmCBPPPGEvP/++/L000/LM888I/vtt59cfvnlbsa5hASGRwAAAMAQXw0BYdewYcNq52OIeFnVwYMHu0VLOf3jH/+Q5557TiZOnChfffWVtGrVSi655BK58MILaySrAfwq8iidKmVl9vN++dOMJbVs6Kt0qhev0qnprZubsWCp/RpUs9IWdjDJTuoTMuyyjJvmLTFjiYFEe52l5WYsWFBsxgJN7NKSTZrl2NvzKC1ZPMujdGqj5r6OSxOxS44GN9uvz8uSQns/VYcNdqnawg25ZiytsV1yNpBq/1koWbDKjC3Ntz8XbdvbZUfL1uabsdJlG+x9yd3o67iVBe3vTOcW9n42TM42Y4FE+7vUvHl78bLuy5/NWEamvc2ULi3NWGJX+/0t/MQu81q+qchXWWQAsW+n52Fo3bq13HXXXXLbbbfJv//9b9fqoAMv9N96vw7E0FaHnSnlBAAAgNgRCATcEq51x6Nvv/1W/vjjjypj/fv3lx49etT+xG3JycmupJMmCJos3HfffW6gxauvvuoGY+yzzz7y4IMPkjgAAAAg7AYMGOD69+s4W11ixe677y5z5sxx4xU0EQh59tln5V//+leVz9ltt91k2rRptZ8wrFy50o1j0GXZsr+ag/v27evKO7322muuvNOgQYPk7bffdmWeAAAAEJ8iMdPz1KlTJSvL7tYajT7//HN34n/++edvkSyE6HwLOtC5siVLlsivv/4qX3zxhQwZMqR2EgZt/tBuSP/5z3+kpKTEDXbWARdXXXWVSxCUjtzWgdFXXnml3HHHHSQMAAAAwA569913XZera665psq4xj777LMt7lu4cKGbo0Ev2kc0YdAZ5bSr0ZgxY9xU05rN6MhsHeSsTT5axqkyTSKGDx8uH330UUV9WAAAAMSpSDQxxKDvv/9e2rVrt0PjEdq3by+9evVyz/Urye9A5w0bNrhEYdddd3UtBzoXQ7169Tyf17x5czeuAYiU1H52FZ3NE2absYSGdkWQstxNZixQmGLGlq9YYMZatelkxkqXr7e3l+L9FS4qLDBjKQn2vgY9qgEVlheasaRAshkrW7vOjNVr3sSMFf250owlJnlsz6MKVGo/u3JN0dT5ZixYWGLGSovsCjPJjexqN42S7apbyR7HU21cbx/TzBZ2tScvJes2m7Gk1FQz1q5XXzO2csbvvl5/sNiuhOSlU8fdzFi5x3uY3Nmu6pdU0NhX9ahAqv09Uw37dTdjxXOX+4oFpy82YwlZ6b5iSa3s9wlA5MybN8+NC66KnpdbunTp4sY8RDRh0GThyCOPdInC1v2kvIwaNUrOPPNMP5sEAABAjKBKkj95eXmSnV31RSidUFmLD1VFL+rn59tlrMOSMOh00x07dtzh53Xt2tUtAAAAAHZM/fr1JTc316yEpIt1sT893d9cUb4TBj/JAgAAAOBor1G75+jOCdd664CWLVvKzz/bEz5a9Dn6XL9i+JACAAAAsWOfffaRpUuXyldffbXdz9HHamnVgQMH+t4uCQMAAABqZQxDuJZYdcYZZ7jBzZdeeqkbz1AdHbegj9Vjctppp/neLgkDAAAAEAX2339/Oeigg+T33393E7d9+OGH5mN1OgOd7XrmzJmuSNEBBxxQ+zM9A3VR4iF2udKkuavNWPkGu3RqSpeWvsortmza1owFi+xSj5Jo5/WJLRrYzxORjMRGZqx8o10eNaG+XVY1K8nnrJker2PzyjVmrKjcLsWclVHP1zq9CkAnNrVf3/rlS8xYdrp9rIOb7GPtJTPV+1gntba3KSVlZqjcY39S29nlWMvz7ecVzraPTZNmOb6OTSDNLiub1CDDjJUust/7gjK7bGx6nl2GOCHDLinrpXy9d2nYskz7u5aYneGrvHPawC5mrPi3pWYsweN4J7azSwMDvjAPg29jx4513YvmzJnjJkPWudD69esnTZs2dfHVq1fLTz/9JOvXr3etEZ07d3bP2RkkDAAAAECUaNy4sUyZMkUuv/xyee2112TdunVuYuRQV6zQfAw6cfIpp5ziJlpu0MD7AmN1SBgAAAAQUTQw7Bydi+Hll1+WO++8Uz744AP58ccfZc2av1pXmzRp4locdM60Tp3snhY7goQBAAAAiEIdO3Z0EymHGwkDAAAAIoqZnqMLVZIAAAAAmGhhQExLqZ9ixoo9qpMkeMTK8+wqK2mD7eokhV/P91inXZ2luMSuIpPkUQlH/TXsqWr5K1aasYx6meJHyq5tzNjm6X+ascJyj9cY8Kjc0sSuIpTR3B7gtWmeXdEno5P9Gho0sisIBVLt/QyWlpsxEfu1FxXanwuVuNmuIBWoZ3/216xdZsaaSCszVr6pyIz9uXmxGWuwyq4V3rRVOzOW0DDDVxWoQIr9py0/f6Ovz73X+5uU09iMBav5jibl2J/Twq/n2s9r/1c1lKqUzrWrtSV3bmbGylba71PaoZ3NGOALMz1HFVoYAAAAAJhoYQAAAEBEMYYhutDCAAAAAMBEwgAAAIDamYghXEuM+uqrr9wMz5FGwgAAAABEgcGDB8t9991X8e8hQ4bIAw88EPbtMoYBMe3y0/qasftf+NlXtZDSpevMWGILu2pPclu7kkrJIjMkpWs2mbFVi+zKS6pxhl1JpSxoV28JFpeKH4GkRDOWlFHPjGWXptr7UuZRYcijAs26+QvNWGaq/T6VLFjl65itK1lvxlr17GWv04yIZO7S2iMqsvwH+zPcKLmhGWvRx96f8nX25y25W0sz1i3XriBVvt5e5/xFM8xY+9wOZmzT5nxf71PrLrv4qo5WumyDvT2PKlDBohIz5uL5hb4qIQUL7fWWrbWPTVJ7+/dQ+YZNvn6XAnV1pucBAwZIYmKiXHbZZW6JFcHg/2ogTpgwQdq3bx/2bZIwAAAAIOZMnTpVsrLsC0TRKDMzU5YvXx7x7ZIwAAAAIPaaGGLQbrvtJl988YXcdttt0rnzX/Oj/PHHH/Kvf/1ru55/1lln+douCQMAAAAQBUaNGiUnnnii3HPPPRX3TZo0yS3bg4QBAAAAUSGQEHBLuNYdq4466ij5/vvv5d1335U///xTXnzxRenUqZMMHDgwrNulhQEAAACIEr1793aL0oRh0KBB8s9//jOs2yRhAAAAQERpG0DYhjBI/Lj99tulb9/wVzEjYUDcSmxZ34yV/GGX1kxu28SMFc9Yam+vcaa9M2V2GcjsXTqasdLfZ9vrrKb0ZMOO7X2Vjg2k2r82Fn3/gxlrnmqXiKw31C51WfL7CjNWutwuZerF6z0s21BgxpLSks1Y01V2LKFeir0zTe3PRcHP3mVzkwJ2GduEhvbnu3jWMvEjsY1dqrV0yVr7iaV2adyWqc19lffN7tzOX8nRNXYJ1KI/V5qxtI4tfX1mSnI3ipfUjDRfr8OrpHBiiwZmrHiW/X1KG9zF3h6AOpswRAIJAwAAACKLKkk1qrS0VP7973/Ll19+KUuX/nXxsnXr1nLAAQe4QdJJSTt3yh/TCcOqVavk448/dovW4l28eLEkJCRI27Zt5eCDD5YRI0ZEZLILAAAAIBx+/vlnlxQsWLBgi0nd1HPPPSe33nqrvPXWW9KnTx/f24jphEETgldffdUlCT179pSjjz5aNm3a5JKHxx9/3A0Qeeedd+Sggw6q7V0FAACIG4FAwC3hWne8WLZsmbsIvmbNGmnevLmccsoprmqSmj9/vrz++usyb948OeSQQ1xi0bKl3b0ybhOGRo0ayZ133innn3++a5YJ2bhxo1x44YXuIOqB1QkvGja0++YCAAAAdc3999/vkoULLrhAHn30UalXr94W8dGjR8uVV17pWhoeeOAB+fvf/+5rOwkSwx577DE3E17lZEHVr19fnn/+eTe99rp16+TDDz+stX0EAACIzzJJYVzixH//+1/X1f6pp57aJllQaWlp8uSTT7rH7Mz5bky3MHhJT0+Xbt26yQ8//ODGNiD+XP7CCWbssePGmrFgbqEZ+3PWr2asdWlbM5bU3K5qkjvTrpSTlZQlXrwq5ZQuWmPGAul2VZ8Ej6ouLWTL5LyypDaNzdjmz2f6eg1esYaZdiWkTfOWmLGMTm1qvHpU/rS5Ziy31K7a06x+C/HSuLXdtFy6coMZCyTa14pKi4rMWNkSf1WpvKr2pCwt97Wf5Rvt72HAoypVsMiuvJSYlOxrewke1bOyzthLvBR+alc68zrnKfeooJTosT9e+3roPXTPBaLN4sWL5bjjjpPERLtqng543nvvvd1kb37FbcJQUlIiCxcudD/77c8FAACAHcdMzzUjNTVV8vLsC08h+fn57rF+xW3CoF2StM+XNt8cdthhno8tKipyS8j2vDEAAABAOPXo0cOVUtWWhpycnCofs2jRIveYnamSFNNjGCy//fabXHfdde5nLTWlo8q93HvvvZKdnV2xWG8IAAAAqscQhppx1llnyebNm+XAAw+Ujz76aJv4Bx984KqBFhYWusfGXAvDqFGj5P3339/h5+ko8EGDBpnxJUuWyFFHHeUqJWmZ1RtuuKHadd54442uRGvlFgaSBgAAANQmrfr59ttvy+eff+7Ob7VCaIcOHVxM52XQ4j46N4MmFPrYmEsYtK7s7Nn2YDCLJgKWFStWyNChQ+XPP/909WjffPPN7arVq32+dqbfFwAAALae6Dlc8zDEz5FOTEx01Y+0KqhWQ1q7dq1bKlcGveyyy9w0AzovWcwlDK+88opbanLW5yFDhsicOXNclqUjxUkCAAAAEM1SUlLkvvvuc0mBVv9cunSpu1+nFejfv3+NnO/W2YShJq1evdolCzNnznQtDNrVSevSIr6leZRsTOzV1IwVvPC9Gctp09WMBYtKfJUxzWxhj7FZsdQuuaqy1xabsZRk+zuwKT/XjNVPSvRVcnXt73aL4cayAjPWYE22GUsK2PtSuNoug9kop50Zm/zzJ2Zst8xdzVhaA3s/S4NlZqx58/ZmrHCtXcZVBRfYJUKLy+33PjUtXfwo32QfUy8Bj1KeSa0b2dvLt7e3YfkyM9Zkd/t98uJVarg81/6MSpL9u6To6wWe2yxbZ7eKJ2TYf+QTGmSYsaBHydXU4+1j0zPHLn8LhKeFITzHNZ5aGCrTxGDgwIESDjE/6FkrIWmyMGPGDJcsjBs3rsqJLQAAAADEWQuDDvTQJGH69OmuG5K2LJAsAAAA1C5aGKJLTCcMF1xwgfz6669uUI2OGh8+fHiVjzv22GPdAgAAACDOWhiUlpPSikiW9u3bkzAAAABESOD//xeudaNmxXTCMGHChNreBQAAACCqxXTCAPjV8pDOZmzhf2b4qgaTuEtLM1b03Tx7nR6Vh5rVb2HGqntuYgO7Uk62NLGf1yLLjJXn2VVtMlbZVV0aNG0lfpTn2ZVrEkvtCkpe+jfa3YwlNbMrIXlp2KG7GcufNteMrSnxrpLUumFbM7ZkzUIz1kZa+aqg5FUFy6uCUvn6Tb4qfWUn2Z+1kqBdCWj1j7+ZsQaN7KpjCVn1fL320lV2VbHEhvbnvrpKUIlNM81Y2ep8M5bS3f69cMgle3ruDxAxYaySRANDzYv5KkkAAABALFq0aJEsXrw47NshYQAAAECtVEkK1xIv2rdvL6ecckrYt0PCAAAAgJgzYMAA6dGjh4wZM0ZiVVZWlnTo0CHs22EMAwAAACJKS97rEq51q6lTp7oT6ljWo0cPuiQBAAAAqNqFF14okyZNcslRONElCQAAABEVCPMSL84991y59NJL5eCDD5bRo0fL7NmzpaioqMa3Q5ckoAqn7dfJPC4PDbFLrpb8vNyMBTfbZSATWzTwVXaxtJpfCmntm9r7U2jvT/kGuwymJNvlSnNn2iUyy4JlZqxBUkN7X3Lt0qmp/dqbsYLv7XKlixbONGNt2+9ixoKl9msI1EsxY0XTF/sqY9qmcSPxkuBRxrdjgX1s8ks32vuTVN9X+dCEjFRfJVebpjTxVeZ03jK7bGyPRj089qXIV9ncco/vS1mpHZMUf+V9qytHm9Sqga/vaM8cj+cBiDqJif/7vt96661u8eqqVVpa6ms7JAwAAACIuTEM8SAYDIblsVsjYQAAAEBEhbP8aRzlC1JeXh6R7TCGAQAAAICJFgYAAABEVDgHJ8dRA0PE0MIAAAAARLF58+bJqFGjZNCgQdKtWzf3c8iUKVPkmWeekdxcu3BFdWhhAHbQyDFHm7G/nTDWjAULPKqsrMnz9T6ktmvuGS9dstaMJWSkmbGSXLuKTuGGXF+VkLKy7Io/+StWmrHsXTqasfXfzTBjGZl2xZvMMrsSUFmuXZkmuUMzM1Y8a5kZCyTa12aCxXbFimCx/T6oEo/jnRiwK+VkN21hxv5cPtuM5aS1Fj+CRR5VObyOjUdlotZp9msIeHy2Ez0qS3m992l725XTCj9bZ69zyXrxEvSoIJXUxeM1pttVuUa9f4bnNoG6gEHPNeell16SSy65pKKcqh7bNWvWVMQLCgpk+PDhkpKSIuecc46vbdDCAAAAAESh7777Ti644AKXDDzwwAOuNWHrakj777+/ZGdny7hx43xvhxYGAAAARBRVkmqGJgmaIHz44YeuO1JVEhISpE+fPvL777/73g4tDAAAAEAUmjRpkuyxxx5mshDSokULWb7cnly2OrQwAAAAIKIYw1AzNmzYIG3btq32cZs3b5bi4mLf26GFAQAAAIhCjRs3lj///LPax/3xxx+ulcEvWhiAGtT6qj3N2B/H/cvXOgOp9tc04FHxRSU2yTJj6+bPN2NNevcwY2Wr7IpO6fXsyi0FC+0qQl7K19uVa9JTMsxYXp5duaZx7+5mrGTuCjNWutij6lRWuhlLbJDuqxJQsNSuguSss6solZV6VOVaZ1e66tChp6/PW+F8u6k7pVlDe19W25+nYJk9g2l2VhNfx1uS7epReYsXm7GUvDZmLK2xXQFs1SL7e6aaNMvx9V1r9vcjPNcL1HXMw1Az9tprLzeYecaMGbLrrrua3ZY0fsYZ/iuo0cIAAAAARKHLLrtMysrK5IQTTpCff/55m/jMmTPlvPPOc13ALr30Ut/bIWEAAABArVRJCtcSL4YOHSojRoyQOXPmyO677y5du3Z1ycEnn3wiu+22m/Tq1Uvmzp0r1113nWuN8IuEAQAAAIhSDz74oDz99NNujIKOVdAyq1oRafr06dKoUSN5/PHH5b777tupbTCGAQAAABEV0P/C1BSg6443F154oZvAbdq0aTJ//nwpLy+XnJwcGTBggCQl7fzpPgkDAAAAEOUCgYD069fPLTWNhAEAAAARRZWk8NDuSGvXrnW3WnJVZ3muCSQMQA06bb9OZuzhew83Y0XP/WjGEjxKlUqKXSJSlXmU7Gy6ey8ztubHGWYsK8suIZnU0C5zmlq/vh0zI1pa1C6tmdTa3pf0P+3XvvinaWasRcPWvsqcBhLt96JsQ4EZkzJ7neV5m+3n6XHr3c6MFc9casYCGWn2Nj0+M+IRS0yyS66W53q8fg8FZfbrT9poT0AUSLLfi0CqvZ8Nc+wSp/lTZpmxjO72+9AsraN4Kd9UaMbSrtjHjF14pF36GED8+eyzz+Shhx6Sb775xk3SptLS0mTfffeVa665Rg455JCdWj+DngEAABBRVEmqOVoB6dBDD5VPP/1UCgoKXOuCLpo46H2HH364jBw5cqe2QcIAAAAARKFXXnnFtSxoa4ImBb/++qvk5+e75bfffpNrr71W6tWrJ4888oh7rF8kDAAAAIj4AN1wLvHi8ccfl8TERPn444/lb3/7m/Ts2VMyMjLcojM/P/DAAy6mx+SJJ57wvR0SBgAAACAKTZ8+XQYNGuTGKlhCcX2sXwx6BgAAQESFc0bmOGpgEO2K1KpVq2ofp49JSfEoolINEgYgQkZctKcZe+iXlWasbHGeGQtuLvGuMrNwmRnLSLMru2Q3bWHGklo1MGObp/9pPy+jnhkr2rjRjKVnNzdjpUvX2dtLtWsvpZfZ+5LYJEv8KN+wyYwVbsg1Y2kNsu2VJno3AntVs2qy+65mrGy9va+eSjyqRCXZVbACHpW+Epvbxzs517tKlLnOFvY6E7vYlbVKvltsxlJW2ZWlylZssLfXOFO8pPaxq3KNHGFfMQQAtfvuu7txC9XRx/Tv31/8oksSAAAAIj/Tcxj/ixc333yzzJw5041VsOjYBn3MTTfd5Hs7tDAAAAAAUeCrr77a4t86mPnyyy+XG2+8Ud566y0588wzpUOHDi62YMECVxnpxx9/lCuvvHKnJnEjYQAAAEBEMYbBn8GDB1dZBUrnXdDE4KefftrmfvXYY4+5ikqlpaW+tkvCAAAAAESB/fbbr1bKxpIwAAAAILLCWCUplocwTJgwoVa2y6BnAAAAACZaGIA6YOSYo83YQ5e9b8byXvnOc731mjcxYwnZ9XyVzyzPLxQ/Urq0NGPB6XY5y/JN9vaKS+xYWoZdrjQ7wy4bW/SnXeJ2ZfFqM9Zx8CAzlrDQLskZSEu2t7fGPi4qLcGj1OeqPF/HNCHDXqeX8twCM1a0co0Zq59pby9YaJcNTvB4Xt6E38xYylf+6pCXBe3vRGqHHDOW2NUu46quffZ4X/sDRLsECbglXOtGzSJhAAAAQMwZMGCAJCYmymWXXeaWWFZYWCg//PCDLFu2zP1sOeuss3ytn4QBAAAAMVclaerUqZKV5W8yzmjyt7/9TUaPHi15eXbLcggJAwAAABBHnnjiCbn++uvdz7169ZIuXbpIZqb3DPN+0MIAAACAiGIehppLGJKSkuTtt9+Wo446SsKFKkkAAABAFFq4cKGbmyGcyYKihQGI5gpK1Ty38NPZZqzop4VmLJBq/2pI2bWNGUv1qK5U8PN8M5bep6O9L+l2FSGZYYcSG9tNsiWL7Ko9SRl29ahWSa3MWOH39uvzUlC8yYw1a2BvTyU2sfvmlm+w15vYooH4UbY634yVFhWZsbTGdqWgjb/Zxy1rcC/xIzUt3Yyl7NLajJWtt49Zskc1q6SezXx9f4F4ppOPhWsCstqY2Ky2NGvWTJo2bRr27cRdC8PGjRulY8eOFR/UJUuW1PYuAQAAADvssMMOk8mTJ0t5ebmEU9wlDNddd51rvgEAAEDtCIR5iRe33367FBcXy5VXXuluwyWuuiR99tln8o9//EMuv/xyN0gEAAAAiFatWrWSb775Ro4++mjp1q2bHHDAAdK2bVtJSNi2TUB71tx6662+thM3CYPWpj3//POlQ4cOct9995EwAAAA1BLGMNSMYDAojz76qMyaNct1S3rxxRerPNb6OBKG7XD11Ve78Qrjx4+XjIyMGnqbAAAAgNqbtO3xxx93pVWPPPJINw9D/fr1a3w7cdHC8OGHH8oLL7wgF110kQwZMqS2dweoMdVVYHn2g9/N2PpnfjJjpXNXmbGyJevFj8RAohkrmr7YjKV0tysFBQtLzFggPcWMFZcUmrHSYrvSU0ZmthmTUnvAWUK2XbUnu34Te5VL14lfXlWivKodFa61t5nRvZ0ZCxbZfWeT2zYWP4p+WGDGUrq09FWxKSXF/hwmtbarRzW8bIAZu/DIHmYMQNWYh6FmPPfcc5Keni5ff/219O3bV8Il5hOG9evXy4UXXig5OTkuC/OjqKjILSHbM/U2AAAAEE6LFy+WwYMHhzVZiIsqSTrAefny5fLMM89IVpZds9zLvffeK9nZ2RWLJh8AAADYuRaGcC3xokWLFpKZabcox3wLw6hRo+T999/31TQzaNAg9/N//vMfGTt2rJx77rly6KGH+t6XG2+8UUaMGLFFCwNJAwAAAGrTcccdJ6+99poUFhZKWlpa/CUMy5Ytk9mz7VlqvSZmU2vWrJHhw4e7clMPP/zwTu1LamqqWwAAALDzAv//v3AI13rrojvuuEM++eQTOfXUU+XZZ5+VJk3scXExmTC88sorbvFLa9KuWrVK2rRpI8cee6z5uGHDhrlk4JxzznELAAAAEC1VQLt16ybvvvuufPHFF7L77rt7zsPw/PPPx1bCUFO0lKoulu+++87d6oARAAAAhB9VkmqGzrugiYDKz8+XCRMmmI8lYaiCtiroJBVeBy00ulxbIYBY5FXusfCw7mZszJUfmLFgvl2ysvjnZWas3mE97XVussujlq2wq5IltW4kNV3itV5zf8255ZvsUq3luQW+npfYwi7z6eIN7Tll8qfNFT9S0+wSsCVzlpuxpJYNzVjxXPt5gdQUX6VTE5rY+5narrm9vXrJZmzU+2eYMQCoi3TagEiI+RYGAAAA1C3M9Fwzzj77bImEmC+rCgAAAMA/WhgAAAAQUYxhiC5xmzB4jW8AAAAA6rrzzjtvux/LoGcAAABEDcYw1FyVJC+hIj96oZyEAcAOS0u0hzCNHHO0Gft02lIz9svdE83Y5k9/N2OBVLuxM7FJlhkrW7FB/FhZvNqMtU2yqyQF0uwKO/krVpqxRgf0sdeZYa8z98OfxEv9zI5mLL21XSkoWFpmxpJa2dWOAun2vpbn2dWevCQ2s9/f0mXrzVhytj2jadPRB/mqHAYAsVIlqby8XP7880/56KOP5IcffnDzNfTu3dv3duK2SxIAAABqh173Dtd8zPEzz7NUWyVJZ4IeNWqUmwX6p5+8L0J5oUoSAAAAEKNGjx4tmZmZctttt/leBy0MAAAAiCiqJEVOUlKS9OvXT8aPH+97HbQwAAAAADFs8+bNsn69PS6sOrQwAAAAIKKokhQ5M2fOlG+++UZycnJ8r4OEAQAAAIhC//rXv8xYfn6+SxZefvllKSwslNNOO833dkgYAOyQg/u2tmNv+/tldN/Ap81YsMQuASpJdq/KQGqKGcvJ7mrGSlflmrHktnbJ1cwWdhnTshV5Zqx8/SYzlpqWLl68jk1yH/t9Kl9TYK+02F5noIFdyrTsj1VmLKV/W1/bO+aVE81Yz5wG9joBRIX/P0UAdsI555xTMdeC10TFxxxzjNxyyy2+t0PCAAAAAEShs846y0wYUlJSpHXr1nLggQfKPvvss1PbIWEAAABARAX+/3/hWne8eLGamZ5rClWSAAAAAJhoYQAAAEBEMQ9DdCFhAAAAAKK8KtL2jnnwIxAMDZ/GdsvLy5Ps7GzJzc2VrKwsjhxQS8Z+Nc+MLX9jhhkrX7HRjBX/utSMJTazv+/BgmIzVrp0nRlL3auTr+pK1VVY8trX8vxCM5a8awszltConr0zreqboZE3D7GfByCuzltC+zLh5wVSPzMzLNvYmJ8vg/t0qBOvt6YlJCR4VkWqTlmZR+VBD7QwAAAAAFFgyJAhO5wwTJ48WQoKCnYq0SBhAAAAQEQxhsGf8ePHb/djv/76axk1apRs3rzZ/btXr14+t0qVJAAAACBmTJ8+XY466igZPHiwTJkyRXJyclz51WnTpvleJy0MAAAAiChaGGre4sWL5dZbb5VXX33VjVVo3Lix3HTTTXLZZZe5Sdx2BgkDAAAAEKXWr18v99xzjzz55JNSWFgo6enpctVVV8n1119fY4O+SRgAAAAQUTr8NnwzPceHwsJC+fvf/y4PPPCAqz6VmJgoF110kdxxxx3SooVd8c4PEgYAUeu0/eySpOIVC4PpizeYscm/LDNjeXPWmrE2/Vt5brNJZpoZ22+3lmYsLTHBc70AgLqrvLxcnnvuOfm///s/Wb58uegMCccff7yMHj1aunbtGpZtkjAAAAAgohjD4M9//vMfufnmm2XOnDkuUdh///3l/vvvlz322EPCiYQBAAAAiAInnniim08hNE7h8MMPl9LSUvn222+36/n77LOPr+2SMAAAACCi9KR3ZyYSq27dsa6goEDuvfdet+zIcdHkwg8SBgAAACAKtG3btlYSIhIGAAAARBRjGPxZuHCh1AYSBgCoAT1zGviKAQBQ11FbDwAAABEVCPN/asCAAdKjRw8ZM2YM7+5OooUBAAAAMWfq1Kk1NtNxvCNhAAAAQEQxhiG60CUJAAAAgIkWBgAAAERUQiDglnCtGzWLFgYAAAAAJloYAAAAEFGMYYgutDAAAAAAMNHCAAAAgIiihSG60MIAAAAAwEQLAwAAACKq8ozM4Vg3ahYtDAAAAABMtDAAAAAgohjDEF1oYQAAAABgooUBAAAAkRUISCBcMzIz03ONI2EAAABARNElKbrQJQkAAACAiRYGAAAARFQgjF2SwtbVKY7FTQvDggUL5IorrpCuXbtKenq6ZGVlSffu3eXcc8+V+fPn1/buAQAAAHVSXCQMr732mvTo0UOeeOIJSUtLk6OOOkoGDx4siYmJ8uKLL8rvv/9e27sIAAAQNwJhXlCzYr5L0ueffy5nnHGGNGvWTN58803Zd999t4gvXLhQUlNTa23/AAAAgLosphOGsrIyueCCC6S8vFzefvtt2WeffbZ5TPv27Wtl3wAAAOIVYxiiS0x3SRo3bpxrQRg0aFCVyQIAAACAOG5h+OSTT9ztfvvtJ6WlpfLee+/JpEmTZPPmza5l4ZhjjnEDnwEAABA5zMMQXWI6Yfj111/dbVJSkuyxxx4ybdq0LeI33XSTXH311fLggw96luAqKipyS0heXl4Y9xoAAACoO2K6S9LatWvd7b333iuLFi2SV155RVavXi2LFy+Wv/3tby6RePjhh+W+++7zXI8+Pzs7u2LJycmJ0CsAAACIPVRJii6BYDAYlDpo1KhR8v777+/w85577jk3ZkF169ZN5syZU9E96eCDD97isQ888IBcf/31kpmZKcuXL5eMjIztbmHQpCE3N9fN5wAAAFBX6XmLXvCsC+ctoX2ZvmCZZGaGZ1/y8/OkZ4dWdeL1xoo62yVp2bJlMnv27B1+3saNGyt+1kRA6XiFrZMFNXz4cJcw5Ofny/fffy8HHHBAlevUsquUXgUAAKgpgb8GMoQFMzHETZck7T6kjR87uhx66KEV6+jYseMWt1vThKJp06buZ21hAAAAABAlCUNN2H333d3tmjVrzHkaNmzY4H6uX79+RPcNAAAgXjGGIbrEdMJwwgknuOpHs2bNkiVLlmwTnzBhgpSUlLjH9O/fv1b2EQAAAKjLYjph6Ny5s5xxxhlSXFwsF154oRv8EvLnn3/KFVdc4X4+8cQTpVWrVrW4pwAAAPE3D0O4FsTJoOea8vjjj8uMGTPk448/dgnEXnvtJYWFhfLdd9+5AdK9e/eWf/zjH7W9mwAAAECdFNMtDEpLd+nszqNHj3atCF988YV8++230qVLFzf/wuTJk6VRo0a1vZsAAABxgzEM0SXmWxhUWlqa3HjjjW4BAAAAsP3iImEAAABAHRLOwQYMYqhxMd8lCQAAAIB/tDAAAACgVsYwhGvdqFm0MAAAAAAw0cIAAACAiGIIQ3ShhQEAAACAiRYGAAAARBijGKIJLQwAAAAATLQwAAAAIKIYwxBdaGEAAAAAYKKFAQAAABHFCIboQgsDAAAAABMtDAAAAIgoxjBEF1oYAAAAAJhoYQAAAECEMYohmtDCAAAAAMBECwMAAAAiijEM0YUWBgAAAAAmWhgAAAAQUYxgiC60MAAAAAAw0cIAAACAyKKJIarQwgAAAADARAsDAAAAIirw//8L17pRs2hhAAAAAGCihQEAAACRFfhrLoZwrRs1ixYGAAAAACZaGAAAABBRFEmKLrQwAAAAADDRwgAAAIDICoRxEEPYBkfEL1oYAAAAAJhoYQAAAEBEMYYhutDCAAAAAMBECwMAAAAiiiEM0YUWBgAAAAAmWhgAAAAQUYxhiC60MAAAAAAw0cIAAACAyGIQQ1ShhQEAAACAiRYGAAAARBRjGKILLQwAAAAATLQwAAAAIKIYwhBdaGEAAAAAYKKFAQAAABHGKIZoQgsDAAAAABMJAwAAAGplDEO4lmjwxx9/yOGHHy7169eXJk2ayKWXXiqbNm2SuoguSQAAAEAE5ebmypAhQ6RVq1by1ltvybp162TEiBGycuVKefvtt+vce0HCAAAAgIiK9xEMTz/9tKxevVp++OEHadasmbuvXr16csIJJ8iPP/4ou+++u9QlcdEl6aOPPpKjjjpKWrRoIcnJyZKZmeneiLvvvlvy8/Nre/cAAAAQRz766CPXwhBKFtTRRx/tuid98MEHUtfEfMJw/fXXyxFHHOEOfk5Ojsvc9t57b5k1a5bceuutLnHQ5h8AAADE7xiG2bNny+OPPy7nnHOO9OrVS5KSkiQQCLgLzNtDuxYNHjxYGjZsKBkZGdK7d2954IEHpKSkZJvH/v7777LLLrtscZ9ur2vXrjJz5kypa2K6S9K0adPcG6WtCh9++KEcdNBBFTFtBtJ///LLL3L77bfLP/7xj1rdVwAAANSep556Sh599FFfz7366qvdc/WkX1sOtKXgiy++cBeux40bJ59++qnrchSyfv16adCgwTbr0WRDxzPUNTHdwqBvlNLEoHKyoJo2bSqjRo1yP0+ePLlW9g8AACC+RzGEa9lxPXv2lGuvvVZeffVVd5X/zDPP3K7nvfvuuy5Z0CRhypQp8sknn7iBy3PnznUtFd98843r1RLNYrqFIS0tbbsep6WsAAAAEL8uuOCCLf6dkLB919VHjx7tbm+44Qbp16/fFueXTz75pOy7777yxBNPuKQhOzu7oiVhw4YN26xLWx66dOkidU1MtzAceOCBrmnos88+k/Hjx28R0y5J2l1JXXzxxbW0hwAAAPGnLo5h8GPp0qUydepU9/Npp522TXzQoEFuDG1RUZEb6Byi4xe2HqtQVlYmc+bM2WZsQ10Q0y0M3bp1c4NXrrjiCtclacCAAdKxY0eXvWnzkGZ5zz77rJx00kme69E3WZfKtXNVXl5e2F8DAADAzgidrwSDwTpzIMN5DhVa99bbSE1NdUtNj5dVjRo1kg4dOkhV+vfvL4sXL3aPPfXUU919OmHbnXfe6S5gazd5pWMdNm7c6Ir11DnBOPDJJ58EmzVrpt+SLZaTTjopOG3atGqff/vtt2/zXBaOAZ8BPgN8BvgM8BngMxBNn4F58+YFa9vmzZuDLVq0CPtrrV+//jb36fncjjj77LPd8+666y7zMY899ph7TJ8+fczHXHnlle4xJ554YsV969evD7Zu3Tq49957Bz/66KPgq6++GmzevHnwmGOOCdZFdbaFQQckv//++zv8vOeee841/4Tccsstcs8998ihhx4qd911l2vmWbVqlRvQov/WbE4Hqxx88MHmOm+88UY3+16I9jlr166dLFq0qKIvGv7K5LXZTbPorKwsDgnHxMRnheOyI/i8cEz4rOwc7RnRtm1bdxW8LowvXbBggRQXF4d1O9qaoiVRK6vp1gUVms9Ly6hadDD01i0eWiFJi/NceeWVcuKJJ7rjMmzYMHnwwQelLqqzCcOyZctcPdwdpU05IZoUaLKw2267ucRAxzMobTLSREL/rcnAJZdc4kayJyYmVrlOqwlLkwVOjLelx4TjwjHZHnxWOC47gs8Lx4TPys7Z3kG84aYnx9tbmCaWde3aVT7++GOJBnXjk1OFV155xWWHO7poS0LIiy++6G41YwslC5WFBqdopjt//vwIvjoAAABEu8zMTHe7adOmai9mR/PF1DqbMNQE7TLk9QZV7k5UFyfJAAAAQN3Vvn17d6vdsS2hWOix0SimE4bWrVu7W51Eoyrfffddxc878iZq9ySdHTocfeGiGceFY8Jnhe8Qv1v4fVub+DvEcYm0vn37utu1a9e6HitV+eGHH9xt5Tkaok1ARz5LjNLJMi677DI36GXs2LFyyimnVMS0C5KWtNJxEkOHDt1mngYAAADEr3POOUdeeuklVyRHx75a9thjDzcXw9133y0333zzFjEt468Tt2kyu3LlyqgtlhPTLQwXXXSRHHnkkW5sg9a91em5dc6FAw44QHbddVeXLLRp00aeeeaZ2t5VAAAARKGbbrrJ3d53333y008/VdyvrQ6XXnqp+/nyyy+P2mQh5lsYlL68l19+2S0///yzK4mqI/M7d+4sRx11lFxzzTVuem4AAADELz3ZD53gq3nz5smaNWvcxeVQN3f1zjvvSMuWLbd47lVXXSWPPfaYJCcnu54rWmb1888/d+edAwcOlM8++0zq1asn0SrmEwYAAACgOhMmTHC9UKqzYMGCKse+vvnmmzJmzBh3gbqkpEQ6deokZ5xxhrs4nZKSEtVvQEx3SYq0jz76yLVatGjRwmWYWmpr9913d33aQhN7xCv9cl1xxRWu5nB6erqrXNW9e3c599xz476krZZb69ixoxtro8uSJUsk3uhkiv/6179cqeMuXbq4VkD9nOhnRCe1WbhwocSyt956SwYPHuxaO/WqVO/eveWBBx5wf3Dijb5mvSp33XXXyYABA9zkRvr7VH+vHn300fLhhx/W9i7WqQlOQ7839O9MvNOJwPQKr07eqhOU6e8RvTJ82GGHyRtvvCHxRitFajeYbt26uSvbejx0Hqqzzz5bfvnll9revTpJfw9vTwn/9kahHO32PnHiRDdRXkFBgfz2229y/fXXR32y4NT2VNOxYtSoURVTj/fv3z948sknBw866KBgenq6u69Lly7BFStWBOPR2LFjg2lpae449OrVK3jSSScFjzrqqGCPHj3cfePGjQvGs0suuSQYCAQqPj+LFy8OxpvTTz/dvfaEhITgbrvtFhw2bFjw8MMPDzZt2tTdn5GREfz000+Dseiqq65yrzEpKSl48MEHB48//vhggwYN3H2DBg0KFhQUBOPJZ599VvFdaNGiRfCII45wvzN69uxZcf9FF10ULC8vD8azSZMmue9L6HfHXXfdFYxn+nsz9DelSZMmwSOPPNL9Hd5nn33c3+ETTjghGE++++67YGZmpjserVu3Dh599NHB4447LtihQ4eK3zdvvvlmbe8moggJQw346aef3BcwOTl5m5OaVatWBXv37u3iF198cTDejB8/3v1R0z/8X3311TbxBQsWBJctWxaMV/p50c/G5ZdfHtcJwxVXXBG88847g0uWLNni/vz8/OApp5zijkujRo2C69atC8aSd955x722+vXrB3/88ceK+1evXu2Sa42NHDkyGE8+//xzd3JX1e+L119/PZiYmOiOy0svvRSMV5s2bXIXofRE8Nhjj437hEGT6u7du7vjcMcddwSLi4u3OV7Tpk0LxhO98BJKrisfj7KysuAtt9ziYnphYvPmzbW6n4geJAw14MEHH3RfPr0iWpVXX33VxfULHE9KS0uD7du3d69dr4ZhS7m5ucGcnBx3xWfjxo1xnTB40T/2oStlL7/8cjCWDBgwwL2uu+++e5vY119/7WKpqanBDRs21Mr+1UXnn3++Oy5Dhw4Nxqsrr7zSHYMPP/wwePbZZ8d9wnDrrbdWnBwjGFyzZk3F3xO9aFnV3+Z69eq5uF7wBLYHYxhqgPYL3B5NmjSReDJu3DjX91z7k+6zzz61vTt1ztVXX+3GKzz33HOu3zqqpmMZtA9udTNpRpulS5e6ut1Kx25sTb83OTk5UlRU5MZHYctJkmLps7CjgzIff/xxOeuss9xcQvFOx7w89dRT7mcd94K/Jq/bXvF2XgL/SBhqwIEHHihJSUmuZNbWE8CtXr3aDV5UF198scSTTz75xN3ut99+UlpaKm+//baMGDFChg8fLvfff7/MmjVL4pUO3HzhhRfkwgsvlCFDhtT27tT5E4LQoOety9hFs2nTprlbHZypAxGr0r9//y0eC5G5c+fG3GdhRwoknHfeedK8eXN55JFHant36kwZTC172apVK1cuXQeZ3nnnne7v7Q033OB+15aXl0s8qV+/vpsoTOlkY5WLJ+ixuOOOO2Tz5s1uMLhelAC2R9J2PQqe9OqnXvHRKkAHHXSQq+yhVW/Wr1/vZvjTiTqeffZZN3o+nvz666/uVpMpnQVx65MenehEr7I/+OCDrspHvNDPhSYK+ov6b3/7W23vTp33/PPPuxMCrfKhf+BiqXKYatu2rfmY0B/z0GPj3YoVK+TFF190P59wwgkSb6699lr3WdAa8MwftOXfGa2GpAmCXqCrXC1eL05pq9S7777r+V2LNXrOoS1QOjGtJk168SExMdH9HdbWzTPPPFOeeOKJ2t5NRBFaGGrIJZdc4r6UzZo1c90MtITbp59+6spqaaYfulIYT3SGQ3Xvvfe68m6vvPKKa3HRrgR6oqyJxMMPP+xmRownWuZu+fLl7he5lpeFTa8WhroZ3Hrrre7KaqwIlVr26o6mVwpVXl6exDttpdR65lqusFevXnHXYqt/T55++mk55ZRT5Nhjj63t3alzf2f0RFiTA510a/bs2e5zoq3+WspbY0cccURclSnWC5mTJ0+Wgw8+2CUI7733nvznP/9xCae2xGj5UP7+YEfEfQuD1rF+//33ZUdpv3PtYxyizX733HOPHHrooXLXXXfJLrvs4mrLv/rqq+7f2p9fr3DolzdejkvoKo/+kh47duwWr12vlGnTqNYn1oRCa+3X9X78NXFM9Be2Hgudf0I/K7Ggpr5DW9PxHTqviXbD0Pr7evUQ8X1RRudnaNy4sfz73/+Ojbrm20lPfs8//3xp2rSpa83G/1T+O3PqqaducdVcuwtr0qAnz9OnT5fXX3/dXVmPB5MmTZLjjz/eXZjTvzna9VW/M3q/dg3Wz5P+rC24wHYJxrlQ/fcdXf773/9WrOOVV16pqIJUUlKyzTbuvfdeF9dqOFqdIF6Oy+677+7u00pJVcnLy6t43hdffBGM9WOipTKbNWsWbNWqVXD9+vXbrD9aqyTVxGdla8uXLw927drVPe6QQw4JFhYWBmPNY4895l5fnz59qq2Gc+KJJwbjWeg4NGzYMC6rupxzzjnu9b/xxhvbxOK9StLjjz9e8TtlwoQJVT5Gy/Rq/KyzzgrGA/37onPY6BwdOh/D1ubNm1cxR1Q0/O1F3RD3XZK0m8z2zOq39VL56nCoT+2wYcNcNr+1UAUUbQqcP3++xMtx0XEclW+3pjNh6xUzpV10Yv2Y6HgWbXVKSEhwXQq0SbjyEqKfI/136HMVD5+VyvQY6dWwOXPmuCuE2jK3I1U/okVoplCvaj+hmDWraDwYOXKkm71XZ3zWbjmhKknxRMcs6N+WJ598cpvfGx9//LF7jF4p1n9rl6V4Uvnvi/W3JnR/NPydqQnaPVq7/+rr3nPPPbeJV75/60ItgCXuuyTVBO2fr6z+gDroOWTdunUSL3bffXd566233IDVqpSVlcmGDRu26KsdD7SrjS6W7777zt1WTiLihf6R02Rh5syZMnToUNfVaXvLFkeb0Imv9sHWiwlVVUr64Ycf3G2/fv0kHml3Nx3npL9DNVmIx7FglcdwTJw40YxrJTFd2rVrJ/FEvxtaNEMvQujfmqqq/oT+BsXL35nqzkkqn5fE0zkJdk7ctzDUhNatW7vbKVOmeJ4AxtuVQq1ior/ItXxqVSfIWk9c+53qY+LhREBbFbyuuFe+qqz/1tJ38UT/qGuyMGPGDJcs6LgfrYwUq7Sqi1ZUU9rHeGvaIqWfBW1dicd6+zpmRYsj6ImN9kMPHat4pBdWrN8bZ599tnuMjpXTf4dKEMeLFi1aVIyFqupquf6NCSVaWq0vns5J9G+vjn+p6phoOVpllXQGtlHbfaJiwZgxY1xfQO0v+Nprr23TV7Bbt25xOzPpmWee6V77oYceusVstQsXLgzusssuLjZs2LBa3ce6IlrHMNSEtWvXujFA+voPPPDAYEFBQTAevPPOO+41169fP/jjjz9uMVNrr169XGzkyJHBeHPzzTe7196gQYPg999/X9u7U6fF+xgGNX78+IoxLpMnT664X8cUXnHFFS6ms8WvWLEiGA90dueMjIyKv6/5+fkVsaKiouBll13mYsnJye4cBdgeAf3ftmkEdrSp+LjjjpMPPvjA/btnz56uSpJ2r9DWhcLCQnc1Ua9yWH0sY5Ve3dCrxno1Q2eU3Guvvdzx0OOi1W969+4tX3zxhZu8Kt6F5qLQq8r6eYknWs1D+2nrMdAxHFbLgrbSxFpJyauuusr10U9OTnYtK1otTKsB6VXlgQMHuqvrsdzSsjXthnbMMce4n7Xlcdddd63ycfr7ROdwiXfnnHOOvPTSS66FQav1xau7777blV4OzfujLQ/6d0dbXPT7o91jtbRqvNCxZVqNT89PdKygttDp7xjt5qhlVnUs3ZgxY1z1MWC7bFdagWqVl5cHX3rpJXd1tEmTJsGkpCR31VAroNx6663BdevWxe1R3Lx5c3D06NHuCrJWZtClb9++wfvuuy9uriRvj3huYdh///23q7LS7bffHoxFWv1mv/32C2ZlZQXr1asX7Nmzp/t+6NXAePPCCy9s12ehXbt2tb2rdQItDP/zySefBA877LBgo0aN3NXznJwcV2Fq5syZwXj0888/u9ffsWPHYGpqajAlJcV9b7Sy3ZQpU2p79xBlaGEAAAAAYGLQMwAAAAATCQMAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAEwkDAAAAABMJAwBEUPv27SUQCFQsBx54YES2+/rrr2+xXV0mTJgQkW0DAKJbUm3vAADEoxNOOEHq168vu+66a0S216FDBzn77LPdzx9//LGsXLkyItsFAEQ/EgYAqAUPPviga22IlD333NMtavDgwSQMAIDtRpckAAAAACYSBgAwXHHFFa6v/7777iulpaXbxG+++WYX79evnxQWFtbIcVy4cKFbp7Y+lJeXy2OPPSa77babpKenS8uWLeWSSy6RdevWuccWFRXJXXfdJd27d5d69epJq1at5KqrrpJNmzbxngIAagwJAwAYHnroIenfv7988803csstt2wR03EA9957r2RlZcmbb74paWlpNX4czzjjDLnhhhukdevWcsghh7gE4umnn3YDpTUp0Fvt2tStWzf3c0FBgUswhg0bxnsKAKgxjGEAAENKSopLBrQF4YEHHpD9999fDjvsMFmyZImceeaZEgwG5bnnnpPOnTvX+DH8888/JSkpSWbOnCnt2rVz961du1b23ntvmTZtmrvVVoX58+dL48aNXXzBggWy++67y3//+1+ZNGmSDBw4kPcWALDTaGEAgGqqC7344osuOdAkQU/KTznlFFmzZo1cfvnlYb2ar60FoWRBaWIwfPhw9/P06dPl+eefr0gWQvuqrRLq888/530FANQIEgYAqMYxxxwjI0aMcFf4+/bt667ea1cl7bIULtq6cPDBB29zf5cuXdxt27ZtpWfPnmZ82bJlYds3AEB8IWEAgO1w//33S48ePSQ3N1cyMjJcVyXtshQuOsBZk4at6dwNoYShKpmZme62pgZhAwBAwgAA22HKlCkyZ84c97MOOP7tt9/CetwSEhJ2Kg4AQE3hLw4AVEPHK+i4BS2teu6557qyp+ecc44bmAwAQKwjYQAAD6HBzloZ6ayzzpJ//vOfMnLkSFm/fr2cfPLJUlJSwvEDAMQ0EgYA8KBzLeicCzp+4cknn6y4T8uaajelUaNGcfwAADGNhAEADF999ZXcdtttbpblt956yw12VjoY+fXXX5dGjRrJI488Iu+99x7HEAAQs0gYAKAKq1evllNPPVXKyspkzJgxroWhMq1SpPMz6HgGHdewcOFCjiMAICYFgtpBFwAQEe3bt3eDpXUCOP25NgwePFgmTpwoX375pfsZAAAv2xb5BgCE3bXXXuvmVNh1113luuuuC/v2dLzFU0895X6eNWtW2LcHAIgdJAwAUAvefvttdzt06NCIJAzaovHSSy+FfTsAgNhDlyQAAAAAJgY9AwAAADCRMAAAAAAwkTAAAAAAMJEwAAAAADCRMAAAAAAwkTAAAAAAMJEwAAAAADCRMAAAAAAwkTAAAAAAEMv/A58P4G704EgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjm0lEQVR4nO3dB3hUVdoH8HdKeiUJSQgkhCIgRUDKiqBSxI4du2JvuBZUrFhWxbK4n4ro2taOvYtrQYqKiCiI9B5aAqT3Sabc73kPOzFA3hO4mZlkZv6/fWaDeWfm3rlzZzJnzjn/YzEMwyAAAAAAAIAmWJv6JQAAAAAAABoMAAAAAACghR4GAAAAAAAQocEAAAAAAAAiNBgAAAAAAECEBgMAAAAAAIjQYAAAAAAAABEaDAAAAAAAIEKDAQAAAAAARGHTYNi6dSvdcMMN1LNnT4qJiaHo6Gjq0qULTZgwgZYtW9bauwcAAAAA0CZZDMMwKMQtWrSIxo4dS5WVldSxY0caNGgQ2Ww2+uOPP2jz5s1kt9tp5syZNH78+NbeVQAAAACANiUsGgz9+/enP//8k66++mp69tlnKSIiQv3e4/HQ/fffTw8//DAlJydTQUGB6nkAAAAAAIAwaTAUFxdTWlqa+vfu3bupffv2e9XdbjclJCRQbW0tLVmyhAYOHNhKewoAAAAA0PaE/ByGqKioA76ut2EBAAAAAABh0mCIj4+no446Sv373nvvJafT2VDjIUkPPPCA6l048cQTKTs7uxX3FAAAAACg7Qn5IUls7dq1dNJJJ9GmTZvUpOfBgwerSc9Lly6lHTt20LnnnqvmNiQmJjZ5+7q6OnVp3NAoKSmh1NRUslgsAXwkAAAAAAeHP+px8EtWVhZZra3/XbHD4aD6+nq/biMyMhLzUn3ITmGAo1QXLlxIF198MX377beqkeDVu3dvGjlypNhYYI8++ig9+OCDAdpbAAAAAN/btm0bderUqdUbC8kxyVRHf30R6w+ZmZkqCRNhNr4RFj0MCxYsoDPPPFPFp06bNo1Gjx6tWp78+0mTJtH69evp8ssvp1deeeWAehjKy8spJydHvfB0DQ0AAACA1lZRUaGGXZeVlVFSUlKr7wvvw7E0mux++t7aRS6aTXPU5zV8TvONkG8w8IujR48eVFRUpHoZ/va3v+1V52FK/fr1o5qaGpozZw6NGjXqgE92nIgAAADQ1rWlzy3efTmJTqAI2hNz72tOctJX9HWbeLyhovUHsvnZrFmzqLCwkLp27bpfY4E1/v3s2bNbYQ8BAAAAANqukJ/DsHXrVvVT18L0ds/xRGYAAAAA8C8L/89PwTEWA4E0vhbyDQZORWJr1qxRXVP7jt3jmFVesI116dIlIAvJffLJJ2r4Ew+Tajw3AgD8jxPSeGV3XqRx/Pjx1KtXLxx2AIAQNGTIEPWeP3HiRHUB80K+wcDrK8TFxVF1dTVdddVV9J///EetzcA40osnPXMvREREBJ199tl+2w/e1pVXXkkzZ85U8WY8DIobM5i9DxBYLpdL9Sb+85//pPvuu48GDBhAH330kRqeCAAAgWH93//8dd9s8eLFmMPgIyHfYGjfvj39+9//pssuu4w++OADmjdvnmpxcgPht99+UxGrnEn8zDPP+O0DAzcWeK2Hr776SqU0nX/++ZSRkeGXbQHAgUf7ffPNN3TbbbepsIO5c+ei0QAAABCOk57ZRRddpBoHl156KSUkJND3339P//3vf1XM6oUXXqjSk6699lq/bf/JJ59Uk68//vhjuvnmm9FYAGgDuHfvtNNOUw0F/gKB3wsAACAwrBaLXy/gWyHfw+DVv39/evXVV1tl2++++64a7nTyySe3yvYBQMaLGD300EN0wQUXUF5eHuXm5uJwAQAAhFsPQ2tau3Yt/fnnn2pyJQC0TaeccgpFRUXRhx9+2Nq7AgAQFixk9esFfAtH1M+WL1+ufh599NH+3hQAmMRDFQcNGtTwegUAAIAwHJLUmitNs3bt2rX2rgCABr9Gva9XAADwL3/ONeA+BjL8ctdhCz0MfubxeNTCJJzEBABtF4cg8OsVAAAA9oZPsW0AT7TkRgVf+N86PCGTr/faa68FbP9gf5y41ZafBx4Cx/t35513HtD1b7rpJnX9k046ye/7BgAAgDkMwQUNBmiTvA0oCa+nwfWRI0cGdL+CxRVXXKF+vvHGG+R2u5tdJ+Ttt9/e63bh2tACAACA/aHBAGDCo48+SqtXr6YzzjijTR4/TuVKTEykgoICteaIzmeffUbFxcVqkcNTTz01YPsIAADhC+swBBc0GABM6NChA/Xq1YuSkpLa5PGLjY2l8847T/27ufVHvHVe4JAXMAMAAABoDA2GEMFDc3ioBw/VmT9/Ph133HGUkpKiPjgOHTqU3nzzzSZvV1dXR//85z9VpCRHS0ZGRlJmZiYNGTKEJk+eTCUlJfvdpqamhp566ikaMWKESpbh/PrOnTvTuHHjaObMmXtdd8uWLfT444/T6NGjKScnR103OTlZ3faFF17Yb5LpAw88sNdQJO/QpMZzPPixjho1StX5sTauN7XoFq/sfeaZZ6oP+fz40tPTVc8Ar/Dd3HAo/jA9bNgw1TBoPMdEGlrj3X/+WVhYSBMnTqTs7Gy1Xf7597//XUziMQyD/vOf/9DgwYPV85aamkonnngi/fzzz6aGYF155ZXq5xdffEFFRUVNXmfHjh307bffNjkcydfHjX++/vrrqn7ZZZft9bzx8WqstrZWrZB+xBFHqPOFV2Xu2bOnOie5N6QxXjuB74N7SLZv377ffn3zzTdks9nUvqxfv/6Ajx8AAPh3DoO//od1GHwPsaoh5pNPPqFnn31Wfft9/PHHU35+Pv300090ySWX0B9//KE+hHnxh3VefZo/GPLwlaOOOkp9OOMPuvzBihsSvPotNzy8tm3bRieccAKtWrVKfagdPny4+mDLHzx//PFHlWPPt/HihsqUKVOoS5cu1KNHD3V9HibDHzoXLFigPqx6P/CxAQMG0IQJExo+WPK/G4uPj1fb5w+Q/EEwIyND/bdXWlraXte/7bbb1GPmlCr+IM6PcevWrWoYDn+Qfumll9SH16bwh/vnnnuOjjzySHWcNm3apJ1X0Rgfp8MPP5ycTqd6zA6HQz1efm4WLVqk/r3vt/ncuHj++efVvvJ+8gd1Pp48gfnmm2+mg8WNvn79+qn74Ofhlltu2e86fJx5jsPf/vY36tOnj1+PGz+XfC5u3LhRHZPu3bs33Iafdy8+Z/k55f3mc48fBzdmlyxZos7JDz74QDWguJHKeBV13ub06dPp/PPPp7lz56rEI8bn5cUXX6zOdd7nQw455KCPIwAAQNgz4KCVl5dzuq/62ZwXXnjBsFgs2uts3rxZ3R9f+N86nTt3Vtd79dVX9/r9Mccc03AfU6dO3as2b948IyYmRtW+/vrrht/Pnz9f/W7gwIFGRUXFfttavHixUVRU1PDfbrfbGDx4sLrNcccdZ+zevXuv69fW1hqzZs3a63e//vqrsXz58v3ue8eOHUb//v3Vfb3//vv71b2PRTJ37lxV58ctefHFF9V1unfvbixbtmyvGj/2hIQEIzIy0li3bl2T205MTDQWLlzY5H1PmDChyefh/vvvb7j9pZdeajgcjoba1q1bjY4dO6razJkz97rdZ599pn4fHx9vLFiwYK/ak08+2XCfusfblKeeekrdrl+/fk3WDznkEFXnY9Wax83L4/EYw4cPV9e54oor9jovnU6nceutt6raqFGj9rpdXV2dMXToUFW74447Gq4/YsQI9buJEyc2e6xOO+0045RTTmn2egAAofy5JVD7cq59vHFxxAV+ufB9t5XHGyowJCnEDBw4kO666669fnfMMcfQ9ddfr/7duIdh165d6id/e8zf4O6Lv1nm3gMv/mb5t99+U998f/TRR2oISGP8rf++sZz87XDfvn33u++srCx64okn1L/5G2Nf42+UvcNc3n33XTrssMP2qvO39tzzwQlBPDSqKfwtOw+JMaNTp040Y8YMNQTLyzskic2ePXuv6z/99NPqJ9f5m/nGJk2apI6jGTwvgfeBv63n564x7hHinqTG8x1a+7hxrxH3vnCPw7///e+9zkvuNeBzhs8n7kVYsWJFQ42HTL333ntqiBxf56uvvqJ77rlH9WjwcLvG5z0AAAAcHAxJCjE89KgpPByEPzTxBygegsJjunnIDP/kcfM8XMg7Xl3y9ddfq5885IiHBh0onifBQ48WL15Mu3fvVv/NX0hXVlaq+tq1a8nXli5dqoa2dOvWTX1gbIp3PgDPEWgKD3Uxa8yYMeqD+L4OPfTQhqEyXi6Xq2EfLrzwwibvj485H7+DxQ2+008/XX2Y9s6P8OL/9iYqeT+Yt/ZxmzVrlvp51llnNQwraoyHSHGjhRsLvP3GjVGev8JzSvjx8tAkPr943sL777+/V8MNAABa356ZBlb/rfQMPoUehjag8bj4PSM7ZN66NJae5wrofs+TSb2TRvlD4f/93/+pcfY33HCD+tafP3Txhy3O5edvkfedwMx4fsSB+uWXX1RjhOM6H3roIfWtNH+o47HzH3/8sbpORUUF+RqPm2c8Xn7fidPeC08GZzxnoylNTaA+UDzBuyk8V4TxnAYvnpDs/W9pmy3ZF+9k5nfeeadhO1VVVQ09O40nO7f2cfNun3sxpO3z/Ahp+3ye8WRvPqf4tfLiiy9S165dTe8PAAAEL+6d7927t+rxh5ZBD0MbEBcX1/Dv6upq7XX5gx47mG/499W4UcJDYM455xz6/PPPVe8DX3goCl/uv/9+NWxF1+ugw2lK/G0vD33iCbLXXXedmujKH5q5Z2PdunUq+aa5RpIZ3vQlTnziyd86+06U9oqJiTG9ff4m3JcOdLK11NvBE4S5wceT4rlByN+687nGjTkektZWjpt3+5yixQ1ancaTtL24Mdx43QlusPL5DQAAbXMdBn/2MHDPvPeLOmgZNBjaAE6C4QYANwY2bNjQ5Jh/xhGn3phT6RvszZs3N/l7bxwozzNoPC+BcdLQVVddpS5szZo1dPnll6skozvvvLMhsci7Ta4fiB9++EE1Fnjok3f4S2P+jLjk+QKMH2tbX1WY95GHzPBQLf5Qz9+GSM+f2cYLN9h4bgI/D9xg8D4f+yYdtfZx827/tNNOU3MhDgY3PDkRiaNVuaHK5x/3oPEQKixIBwAAYB6GJLUB/IGOJyYznkws4fhRxhM7G8dQNvbWW281+fs33nij4ZvbpsaGN8ZDju644w71b45i9fLGl/LQluZ6QlhzjRtpX5k3cpTH9zeFJ7nq6twNyd+Ac/zrypUrqS3jx8prFrB917Hw4mPeEtww4PNszpw59N1336mJxdzLs29srb+PW3PPG687wXi41MH2PD322GOqd4HnifC5xQ1d7pnhNTO8w+kAAKBt4BkM/ryAb+GIthG8IBV/uOG5A6+88sp+df62/+6771b/vvXWW8UVeX///feG9CEvHmbkHb/XOIufPzxymgzPYWiMP6h9+eWX6t/erHvG39JyChNPiuWJsvsuoMXj4xsPB/FO8OV1HvgDaGM8tpwn4upShpj0odVb516Kffef8fHhIVX8WHixMT4G++LJ33wMeNhKa7vxxhvVz2eeeWa//eEEJV67oSW40TZ27Fg15Mc7sZoTrfYdbubv49bc88o9C9xo+fXXX1Ujp6l5CqWlpSpBqXGjg3sTeN4DTzTnxgYP8zvllFPUa4Wvz8OSmjpPAAAAoHkYktRGcPILr57MEZo8aXPq1KlqKA/3BvAwJW4I8Ic4jr/kYUK6D54cq8o9ChyJyR/ueR4Cf1C86aab9oo9/fPPP1UDgsf38bZ40jNPiuYFsvgbWU6Y+cc//tFwff6GmsfA89h2bhjwh1DusfAu3LZs2TK18Jt3+Aw3LvgDIC/2xf/moSE8/Ip7LTgZiRtAjzzySJOPg1Nypk2bRscee6xaJdqb4sOrRvP2eNuc+MNRobw4Gf+bh1vxt+P8TTPjidy82Bgv9sXj9HnMO8+h4DH2O3fuVPvBqy7zYmlmY0B9hT+cX3311aohxce08cJtq1evVs8TD6/xfkNvBk9u5thS74fwfVd29vLnceOhQg8++KBqGHHSEQ9B4vOKG6N84X9/+umnasE37iHgXrX+/fur55sn4fOkaD4m3GjhngN+ffDj4WFW/DtuGDee28CvI270cOOGG+V8DAEAoPVZLVZ18ct94/twn0ODoQ3hD/vccODVgPkbU/72n79F5fUO+IM3f+Pa3Fhs/uDJ1+UPSnx7/pDFjQH+ELjv8JNx48ZReXl5Qx4/f6jiD4X8IY4bJbzysPcbYS/uceAP6ZxUwx/muOeDt8GTZHlYVeNVnhl/28vfkHMDhj+48Yd6/nDPHxh51V2pwcCJSvzhkZOU+AOkN7Hp3nvvbZiDwcO3uHHEmfzcW8HHivfP22Bg3NvCH1J5f3n7HA3LH7r5wzg3YPhbaI6TbQv4W3P+dp0/iPNzwceKE4l4372NMGmi8YHg84Jvz6lMPG+FP5RL/HXcuBHLzxs3BrnXhHufuCHM55n33OaGKz9+nkPBzys3bLnHgRubXLv22mvVdfn4cEOY15rghjGf39yI2LfHhO+DG6zcIOdzlB8XAAAAHDi1BPFBXB/+FwPK377zh+3mZt/zN8b8Aceb/uIv/CFu/vz56sOzNycfQgdPQn/11VfVWhrcCwW+xw0J7qXgBQoBAML1c0ug9mVC5EUUaTHfa65Tb9TT6/VvtYnHGyowhwGgjeBx/ftOJueG5ksvvaS+bedv1HnoDQAAAEAgYUiSn/FEZu7E4UtLsvQh9PGcAV4fgYfPdOzYUTUeeLI4D0fiRCMeHmR2TQxoHjfO8BoFAAgMzGEILmgw+Jl3sm5lZSW6xUDr3HPPVV21PMGdJxbznIz09HT1+5tvvrnVJ2aHOu669q4DAQAAAH9Bg8HPunbtqn4uXbq0Ya0Ff5g3b57f7hsCg9cg8K5DAIHFkauc2sShAwAA4H/eFRP8dd/gW5jD4GecCMQJMJwWBABtE68rwQsNtpXELAAAgLYEDQZ/H2CrVS1yxiv48toDANC28IKDHMXbrVs3cQV1AADwLaz0HFzQYAiAO+64Q01WHTVqlFq3AEm2AG0DLzjIa5fwug8vvPACJj0DAAA0AXMYAoAXyeIhD2PGjKEjjzxSzWvghad4ESpeKA0AAjtfobS0VK1ZwovS8Wvwyy+/VK9PAAAIDKvFoi5+uW/MYfA5NBgC2Gjgic88OZnnM3z++edUXFyshkMAQOBwRG27du1UfO3rr7+uGu/Jycl4CgAAAARoMARQREQEjR07Vl0AAAAAwnkOA//PX/cNvoUjCgAAAAAAIvQwAAAAAEBAWSwWvwVNWDCHwefQwwAAAAAAACL0MAAAAABAQO2ZweCf7639db/hDEcUAAAAAELOkCFDqHfv3jRjxozW3pWghx4GAAAAAAgoq2XPWgx+ue///Vy8eDElJib6ZRvhBj0MAAAAAAAgQg8DAAAAAAQUr5Xgr/USsA6D76HBAAAAAAABxcOR/DckyT/3G84wJAkAAAAAAEToYQDRmvxysdYrKynoj5zD7RFr0TZr0G8vVPjjuAX6udC9lnIzEgK6L+D78yLU3yuDCd5ngweGJAUX/DUCAAAAAAARehgAAAAAIKCsFqu6+OW+8X24z6GHAQAAAAAAROhhAAAAAICA2hOqipSkYBFWPQz19fX0zDPP0IgRIyglJYWio6OpU6dOdOKJJ9J7773X2rsHAAAAANDmhE0Pw/bt2+n444+nVatWUVpaGg0fPpzi4uJo27Zt9MMPP6h/n3vuua29mwAAAAAhz2Kxqotf7ju8vg8PiLBoMNTW1tLYsWNpzZo19MADD9Ddd99NERERDfWamhpat24dBSt/RTYWFNeY2p+Fq3eLtfqqOrE24ZTeYm3Wr1vFWkWNU6zlpseLtSWfrBJrE+8ZJdbydlWaOt7vzNto6rhExkeZenzNWbep2NTt0jTbPHloTkCfw2G9M8TawlW7xNqS/2pe7zvk59dTpHlNOFxyzS6/1izR8tuw888CfRdxmnxsLFHy/dqO6yrWUvqki7WSlfJrO3dIRzKjaHeVqXMtRfO6yNPcp05ibISp7f3xi3xu514+hMzSncMrNOdGVtcUsdancztT791mj43uNfr6l6tMPfe6x6CDiFsA88KiwfDoo4+qxsLVV19N999//3712NhYGjBgQKvsGwAAAEC4wRyG4BLyfTZOp5Oef/559e/bb7+9tXcHAAAAACCohHwPw5IlS6ioqIiysrKoe/futHz5cvr4448pPz+f2rVrR0cddZSa9Gy1hnzbCQAAAKBNsPhxHQbMYfC9kG8w/Pnnn+onpyHdeeed9MQTT5BhGA31xx9/nAYOHEiffvop5eQ0Pf66rq5OXbwqKioCsOcAAAAAAK0v5L9WLy7eM7Fz6dKlqnFw/fXX09q1a6m8vJy+++476tGjh6qdfPLJaviSNAciKSmp4ZKdnR3gRwEAAAAQOix+/h/4lsVo/HV7COIP+5yKxM4//3yaOXPmXvWtW7dSz549yeFw0BtvvEEXX3zxAfUwcKOBGx2JiYnUln20ME+snTUsN+CpTWYTLOYulxNBOqTGmtqeLgVKd58rt5SaSgsp0SQh6dKFWkKX6GT2udCdU2bTjnSpNmWbSsSaZ0WhWHP9KSfMeMrk595dJPcgeiodYq3eUy/WnIZ8XMpd5p4j1rGdfN54auTzzZYcJ9bsGclizV0iP0/RVw0Va6RJgrLGyLXrNAlDugShUf06kBkOt8dUqpzudv56/epeo2bfg3V0CXBmk+OaS+rz9fE2u71QwJ9b+AvPtvC5xbsvdyXeTtEW+W9mSziMOnq04p9t4vGGipB/9SQk/PVmdc011+xX52FI3LvAZs+e3eR9REVFqROu8QUAAAAATLJa/HsBnwr5BkPXrl2b/HdT1yko0GeeAwAAAACEm5BvMBx++OFksexpaXJaUlO8v4+PN78IFgAAAAAcIP5s5s8L+FTINxgyMzNpxIgR4pAjnug8f/589e+hQzVjcAEAAAAAwlDINxiYd3VnngD9yy+/NPze5XLRrbfeSps2bVJzHS677LJW3EsAAACA8MCjPyxWP13Qw+BzIb8OAxszZgw99NBDNGXKFLVQG/ckcM8DL+qWl5dHMTEx9M4771BGRkZr7yoAAAAAQJsS8rGqjX377bf01FNP0aJFi6iyslI1Grgxcccdd1CvXr2CMp7Mn5F+/ogR1N3nq9+vF2vDDk0PaNyf2cegizPUbU8XETmsd4ap2/krXnLWr1vFWpEmHrX81T9M7YunpFas1f8p74s/2DumiLW8jSvEWrsIOQJzuyNfrPVK1r8vba2UH392dEdTEbA2i02sRbSTz2FrohxFbM+Rj5unVI64tWVqtvc3+fGdfNEAn8eRmo1T1r1+W/La170OdTHNuu3pop/7dG5HZuiOm+4+dbHX6zbtWV+pKdec1vcg9i58tKXPLd59uTv1Toq2RvtlGw6Pg6YWP6bW2rLZbDRx4kR1AfPCoofB67jjjlMXAAAAAAhtixcvbvUGUqgIqwYDAAAAALQBfl0vASlJvhYWk54BAAAAAMAc9DAAAAAAQGChhyGooIcBAAAAAABE6GEIY7q0n+aScnRJG7pkHl0Kyfkju5EZurQQXXqJzsLVu03tp9kEFrPHrEOqnEzTHN39zvpQTvyhbfLt3Kvl9BJPhUOsGZVyzRIpv03Zc9Lk7Wnus6ZY3s8Ii7y9Zat/EGudorPEWnxcsljL8LjEWrVDTp1iCTZ5dXprgpw+EhMtTwL0VDtMHVN3WbVYI817iSUmUt5ehZzaY1lZKNZmPTxPrM0/Xn799uiaairRx+zrvrnXsC7lTbc/Zt+fde/5zf298HWKne646Gr+eAzgx3UY/LReAtZh8D28egAAAAAAQIQeBgAAAAAILMxhCCroYQAAAAAAABF6GAAAAAAgsHj+gp/mMPjtfsMYehgAAAAAAECEHoYQ0BrJD8N6Z5hKBdGliejMXV4g1k4emkO+pttPXQqH2eQlf3nhMzntqGqZnKRibCwVa64NcsKQUecylZTjLquR77OqlnwtOiJGrO2skc+1/u0OE2vbq7eLteJK+bkvccrHOskupxmxOFucWCsrlbeZlCinS7mq5eMdkZJk6nny1NTL95kuP0ZDczvdeejaWiTW3JvKxNqSnnJKEnWTU4kKRnU19V7ZErokJN02zb5/mX1f1/19Kiiu8flxQxJSEMEchqCCHgYAAAAAABChhwEAAAAAAsti3XPx132DT+GIAgAAAACACD0MAAAAABBQFqtFXfxy34SUJF9DDwMAAAAAAIjQwwAAAAAAgYWUpKCCBgOYiqczG7Gni/TL21Up1jqkxpIZuvs0u5+646K73fkju5m6T2006q87xNqeKzjFUt3s9WItcnC2WHMXV4k1i+ZxWCLlt5uaYjkiM2lQT7HmWLpZrNnby8+vNUk+n2LXyLGb1fXy+eQy5GNd6XLL+6Lp6I2yRpKO3WITaxWuCrEWWSU/jnyHHCvb3UgQa5a4KLHmKZXPGU9qvKkoXleBHEdr7yBHoFpSY0zFuLo/WSPWlmhiiIf96yQy+x6lo4sd1d1nbkaCqfch3e10fw90txvVr4PP71MXwa3bHgDoocEAAAAAAAHmx5WeMYfB5zCHAQAAAAAAROhhAAAAAIDQmcNgICWJ1dbW0rp166hTp06UmqpZyf4AoIcBAAAAACAI/fjjjzRp0iRatmzZXr+fOXMmpaen0+GHH04dOnSgf/zjHy3aDhoMAAAAABBQFovFr5dw8eKLL9Kzzz5LHTt2bPjdtm3b6PLLL6fq6mpKSkoil8tFDz74IM2fP9/0djAkKcSZTftpji6lwmwSku4+dXSPwx+JTToFxTWmEjo+Wpgn1qp+2irWjN3y9pinuFas2dITxVr90h2mkpB096lLoIm2ygk77t1y2o81Wk4R2rljk1ir2Sofl5yYTmKt0iWfFwk2+fytM+THnmSVj1lzHB6HWOuQJD+O4srdYq1bkpzmZVTXiTVLvJw+RJpzxqh3iTW3JgnJli6/tm0dk8WaU5Oio0vysiZEmzq3Z0z6Sqyp++3bXqydeHKvgL7vmU0m0r3vmd0X3fZ078+69CiAULRo0SLq378/paWlNfzuzTffpPr6enrggQfovvvuU70QI0eOpOeee46OOeYYU9tBgwEAAAAAAgtzGHyiqKiI+vTps9fv5syZQ5GRkWqoEjvqqKPoiCOOoKVLl5reDoYkAQAAAAAEoaqqKoqJ+auH1zAMWrx4MQ0ePJji4/9a5yY3N5fy8/NNbwc9DAAAAAAQWDzPwF9zDcJoDkNKSgrl5f01rJl7ESorK+nII4/c63pOp1P1OpiFHgYAAAAAgCA0ZMgQ+vXXX2nhwoXqv59++mk16Xv06NF7XW/9+vUqLcksNBgAAAAAoHXmMPjrEiZuuukmNQxpxIgRqrfhrbfeoq5du9Jxxx231zyH5cuX08CBA01vBw0GAAAAAIAgdOyxx9J//vMf6ty5s0pG4hSkL774gqxW616pSR6Px3RCErMY3CyBg1JRUaFybcvLyykx0XwkYqgyG+Wqu51Zuu3N1cQr6iJQdXSP4aV3/xBrdd/KEaCGQ46dbI57uxyTqKU5brqYU8Mhx0saDqdYK6rYJdZSItuJtTqPvL24DDmu0lPtMBUbu6t4u1iLsspjQ20Wm1jLd+wUaykR8mNvLq7VY8jnYnZCtljbXS0/F+0j/4rt25fbcIs1e4wcSapjiZCPm71LulhzbS2Sb9cxxVR0qkcTnWpNkSNlLVHmpwpaU+X7vfW506it0L2Xmo05NRttrYtjbUmUeLBrS59bvPsype/jFG0z997QHIfbQQ+tuKNNPN62suIzNyZ4ErTNJr+v6oTvqwcAAAAAIIj98MMPtG7dOu11OEVp9+7dtGDBAtPbQYMBAAAAAFohJMlfKz3/NSG4d+/eNGPGjJB9dkeOHEmPP/54s9d74oknaNSoUaa3g1hVAAAAAAg5vB5BOAxJMgIwuwANBgAAAAAILKz0HFClpaUUHW1+zggaDAAAAAAAQWLr1q37rfa87++8XC4XrVy5kr799lvq1q2b6W2iwRAC1uSbS8LplZXkl23q7leXIrRw1S5TqUW6+9TVdOkdZlM/ZszYs3BKUzwLtok1cplMiIrWv4R1qS9GnctUEpKW5nhbk+PEWvuYHLFmsctTrWxOzWMolB9DtbtarFW6qkylFkVYIzT3KSe+RGrSlSKs+uc3xS7vz3ZHvlgrqJJrHeKzyIxdVXLaU5Zdvk/DLacrkRxmRcY6+TUa0UOTcqY573Vs7eXz19Cc95ZmXqPufPncsA6X06yevOcbsXbrI8eTGWbfn3XviYFOqjP7twlaAVZ6Ni03N1fN1fD66KOP1KW5YUsXXXSR6W2iwQAAAAAAECRycnIaGgzcsxAbG0tpaU3HXkdGRlKnTp3orLPOouuuu870NtFgAAAAAIDAwhwG0/Ly8hr+zQu0jR8/Xi3e5k9oMAAAAAAABKFXX32Vunfv7vftoMEAAAAAAAHlXTPBX/cdLiZMmBCQ7aDBAAAAAAAQ5NxuNxUXF5PD4dDOfzADDYYQkJuR4Jf71SVYdEiN9fn2/JFapKNL79AmId35tXyn1U6xZEmU03AsyXKakesPOZ3Es6WU/MFTUy/WInKbnljFnJt3izWjWn4DMxzycdtetUOsZcXK6Tv1HvkxJKS2F2v5OzRpP5lyJN32nRvEWlpEirwvdjklyGVoEoSIqKi+WKxlRLY3db/VDjklqswlJ9DkdO0t1rZvWm3qmBpVtWLNEmETa1V/yM9FTFa6WHNuKxJrEd0z5X2Jkv+UujXvCc2llWmT1TSefGK+WJt461Gm7lP3njjr16bjHNlZw3JN3adZBcU1Yg0pSW0M9wLwPAZ/8IRPD4N3gbr77ruP5s+fT3V1daTreeGYVTPQYAAAAAAACEK//PILjR49uqFXoV27dn5Z3RoNBgAAAAAInZQkf91vG3T//ferxsLll19OjzzyCGVk+L7njqHBAAAAAAAQhBYtWkQ9e/akl156ya+TvdFgAAAAAIDAwkrPPsFzEgYMGOD3ZCh51mcImzx5ckOc18MPP9zauwMAAAAAcNB69epFRUVyYIOvhF2D4eeff6Ynn3wyrDJ6AQAAANrkHAZ/XcLE1VdfTT/++CNt3LjRr9sJqyFJNTU1dOmll1KHDh1oyJAh9Omnn7b2LrVpZiPv1uSXm4qA1cWcjurXwefbc7g9Yu31L1eJtcgBcrxi/apCseaa99dS7vuyRMovRaNejkBz7yojHXtOmqlt6tSvzZeLHsNUdKo1QY6VzU7tJdbcO8tMRYdWFctxpF1j5RhId2mlWIu2Rok1pyE/dodHjsCzkv6PXrRVPm5RsXFiLVLzXNS45SjTDlHye4JrR4lYy+7VT6wVrlsv1tL7HipvL1/eXnRKslizxsvHjDTvCZ4yOa7TXSDHG9s7y/G2qt5TrlvsVlNRzJ5FchTxjBkLxdrJZ/c1FUl68tAcU++zuvd8Hd17vj+iWgHaeoNh4cKFNHbsWHr22Wfp+OOPJ5tNjp02K6waDHfddRetX7+eZs2aRe+//35r7w4AAABAWMJKz77RtWtX9TMvL4/GjRtHdrtdfTFutVqbPOZmeyLCpsEwb948mj59Ol1yySV00kknocEAAAAAAEEtL++v0QuGYZDT6aStW5teTLElw/HDosFQVVWl8mk5m/app55q7d0BAAAACG9Yh8EnNm/eTIEQFg2G2267TR3QTz75RK2Ad7B4me3GS21XVFT4eA8BAAAAAA5O586dKRBCPiXp22+/pRdeeIHOO+88Ov30003dx6OPPkpJSUkNl+zsbJ/vJwAAAEDYrcPgrwv4VEj3MJSXl9MVV1xB7du3V/MXWjJZetKkSXv1MLSlRoPZpInm5O2qNJU+pKuZvU+zj1F3u+lvLxFrdd9uEmuGQ5NalCenpZAm8cTQJImQS67ZMuQ0GOapdGhumyjW6jcUiLWIjqlirWbbTrEW162TWHNu3i3W7ImxYq3aXS3WYm3y7Sya9KHiejl9Rzf+U5dYtLNul1hLiZB7PfPr5OeBHRrfU6zV1cjHxkNymlWMTZMipOHWpFJVrN8g1pIjkswlcmle2/aOKWLNU+Uwl6CkYUtPMpUApupJcrqWe6vcm617R/SUyElX1l1VYm3WhyvEWq8bh5MZZt+7delKOrq/MbqkJ4BgV1FRQW+99ZZaPqCwsJDGjBmj1h1j69atU3Mdjj76aIqONvc+F9INhptvvpm2b99O7733HqWlyfGSzYmKilIXAAAAAPABzGHw6WiaCy64gEpLS9XEZ/5yq2PHjg31tWvXqlE277zzDp1zzjmmthHSDQaes8DxUs8995y6NLZmzRr185VXXqHZs2dTZmYmvfvuu620pwAAAAAAB2f16tV0xhlnUH19PV133XV0zDHH0LnnnrvXdXhthtjYWPrss8/QYJC4XC6aP3++WOcuGr4EatIIAAAAQNjjEZ7+mmoQRlMYpk6dSg6Hgz744AM688wz1e/2bTBERkbSgAEDaNmyZaa3E9KTnsvKylTXTFOXCRMmqOs89NBD6r8b59gCAAAAALR1c+fOpf79+zc0FiSdOnWiggL9vLiwbTAAAAAAQBuElCSf4AnOPXr0OKARN9XVchhGc9BgAAAAAAAIQklJSbRjx45mr7dp0yZKT083vZ2QnvQM+mi65uLudBF0c5fL3VrDemcE9HHo9nNNfrl8n5+vE2vW7nLUpZEn36e9V3ux5tpQLG8vURNzZtcMxnTIUZbMmVck1ty7KkzFjrp2lom1yAj5cRj1chytJTpCrG3cII+5jLJGmoo5dRryvnhIPtciSN5PnVhbjGZfnGKtd1Jv7f06nHJ8ZnSEvM28qs2mYl4T7HL0cblLPp+S7HKEb4271lTEq00Tt1u+eYtYS0jTvD/pYlVNxnw6N8hRw83FLVsT5XQ+12Y5wjniFM23jYXyN4zG7wU+/1tiNh5Vd5/+iOCGwLNYLerir/sOF4cffjj98MMPtHXrVsrJyWnyOitWrFDzF3hytFlh+8p67bXX1NyFe++9t7V3BQAAAADgoF155ZVq0vP5559PO3fu/wVFUVGRug5/5uWfZqGHAQAAAAACCylJPnH22WfT+PHjVUpSt27daPjwPYssLliwgE499VSaN28eVVVV0YUXXqjiVc0K2x4GAAAAAIBgN3PmTLrrrrvUv3ltMbZ+/Xr68ssv1foMt956qxpZ0xLoYQAAAACAALPsSUry132HEZvNRo888gjddtttKmaVJzh7PB7Kzs6mMWPGtGiysxcaDAAAAAAAQa5du3bNrsdgFhoMIc5fiRG6JKS8XZU+T7fQpR0VFNeItSX/NZeE5F62W6zZ+sstddfP28WaJVJ+uRl1cmoPVcspI+7iKvl2vK9JcpKMc0uhWLMmy7eztYsXa54qB5lRWyM/jvaRaWKtxCknxVgt8vkUbY8xdZ/tY+Tn3u1ymkoe2lCzyVS6kNqmJu1pU6V8v9Ga9CFdapEueUrHZrGJtbjoeFPpWUZdvVhL7t5FrLkK5OfXXSS/1izRciKXRfPeFdE9U6ypbebLqWO2rGyxZtWlDznk88K9Wk5rs3WTz9MZj8wVaxPvGUVmmH3P1/0d8UcqE/gJJxn5K80ojFKSpk+fThdddJFqLPgTXiEAAAAAAEHopptuoqysLDr33HPp66+/VmlI/oAGAwAAAAC0TkqSvy5h4swzz1SNBE5JOvnkk9W8hXvuuUdNevYlNBgAAAAAILB4wrM/L2Hiww8/pPz8fHrqqafosMMOU/9+7LHHqFevXnT00UfTq6++StXV8oKNBwoNBgAAAACAIJWSkkI33ngjLV26VF1uuOEGSk1NpZ9++kkt1paZmUmXX365WhHaLDQYAAAAACCwrH6+hKn+/fvT008/rXoauPfhpJNOorq6OrUOw+jRo03fbxgfUgAAAACA0GO329X8hueff56uueYa9buWTIhGrCqYirXrlZVkKvJOxx/RqRStOcXlzZFRLUc2etbIsYTW9Dhz0aku+UVcv367qahH5tRESHqcmv1xyI/flqaJ+tREE1Zs3SHW4lNT5fvUxKPGG5rbaXgq5fjXDlFyZHB1faWpOFJdrGiftH5irbxKPtdYUrz8+IvqS0w9xkqX/Bg9JJ+n7bM6i7X63fJ5aLfJ0an2rBSxRlHya7vqjw1iLSZLE4u8U7OfmfrXmplzrTmuNXL0saGNVXWLJUtSlHy7SPm1ZmyUj8078zaKtfNHdvP53xgdf9wn+ImanOynuQbhM4WhSdyj8Mknn6j5C3PmzFGLuLE+ffqQWWgwAAAAAAAEuUWLFqmhR++99x6Vl5erHoWkpCQ677zz6LLLLqOhQ4eavm80GAAAAAAgoCwWi7r4677DRUFBAb355pv0+uuv05o1a1QjgR//qFGjVCPhrLPOouhoc4tuNoYGAwAAAABAEMrJyVFDjrih0LlzZ5owYYJqKPC/fQkNBgAAAAAILH8usGYJv8nNl19+OY0ZM8Z/2/HbPQMAAAAAtJIhQ4aQzWajiRMnqkso2rlzp5qn4G9oMICpRIm5ywvEWofUWFNH1Wy6EuWVmbqZO19Og3EXV5mq2bOS5Q3a5QSS+hVyEpI1UT6etoxEfUqSJpnJZsgpK56yGlOP36iSk4JchpPMyN8pJ7B0iM8Sa5Y4OQ1me7V8vBPt8WKtzlNvKgkp2iqPH62urjCVvMTaJcupXEmViaYeR1JMO7FmeOSUpOL8bWIt1hYj1jYVrxFrCeXbTd1nol1+7O6d8vuFrZ38HmRLkl+HniqHqRqLyE0jUzTvJ+4d8mO01smPw5IoJ0FZ0uXblSzYKtYWpsf7/G+FQ5MQpfs7ortdtCbhDfzEatlz8dd9E9HixYspMVH/dzLYJQWgscDwCgEAAAAACAL/+Mc/6PPPP2+y9ueff9L27U1/0TJ9+nQ1dMksNBgAAAAAILA4yciflxD1wAMP0KefftpkbeDAgXT//fc3WVuyZAl99tlnpreLBgMAAAAAQJAzDKNFqznrYA4DAAAAAAQWUpKCCnoYAAAAAABAhB4GMJUo4Y8kJF1KxX9nyUkq8cd3E2vlLy0Va9ZUOWUlcmBHseZaUyjWKFpOyqlftkOsWaLldBJ711Sx5lwpp1UxW7ImESVBTu6pL5NTTyyadBbSJBORLvDHIt9npFU+NqQ5Z3btlh+D23CLNZem5jRcplKS6jWpRA6Pw9T22M6tG8RalOa4FdUXi7XOWRlizbWzVKwlR8hJHWur14u1lAg5lal9TLqp9DDdOeqprDX1ejE074fOHfLxtMZqXhNcz5CTrihSfhzO3+T3E1tn+Zha4jSvp3pNctomTfLS3+T3y3Wb5GMzrLd8rpmFtKMgEoCUJPAd9DAAAAAAAIAIPQwAAAAAEFiYwxBU0GAAAAAAAAgSf/zxh1qP4WBq/PuWQIMBAAAAAALLn+slhPA6DGzZsmXqcjA1jlu1tOC4oMEAAAAAABAEjj766BZ98DcLDQYAAAAACCj+0GvxU5pRa3ygDpR58+ZRa0CDAUzF05mNR9VFta7JLxdrsely9GDF+6vEmq2/HMvo2SBHRLo2ylGAnio5BpOi7KaiHq3xmojT37eINXtOGmlpngvnOjmS1aqLXN0tHzd7nBxVm2CXz5mqIjmqNiVajpV11TpMRad26dBTrOXv2izWkjSPISFZ3s+VBX+KtXi7JlazGQ5PnVhLT+wg1hIc8uNwF1aItVq3w1Q8rMMt72dUVKSp6NSS3XKsaGpWtnyfyXGmooY9xVVizZYgn/fN8ZTLx81TUmtqXy2a171rrfxas3VKMhfHmidHrtZ3lM+1d+ZtFGvDDk039fdH9zcGkasA5qHBAAAAAACBhZSkoIJ1GAAAAAAAQIQeBgAAAAAILKQkBRX0MAAAAAAAgAg9DAAAAAAQWJyQ5KeUJL/dbxhDgwFMMZs2sXDVLrG25BM57YiK5bQQcrjkWpVTLFkS5dQPe+d2Ys21SU5QsrXXJLBoEpQ8pTVijeya21VqEpuaYUuXE1FcO0rEWuzh3eTbFchpKTq1ZXLyUoxbToOpdleLtUir/PzWlMjbq9LcZ7RV3pcthRtNJSFlx8mJPjtr5CSr5vZ1W9kWUwlS3XsPEmvFq7eJtc7t5fMiqSJRrEW0kxNvKot2mXp+i/Pl/UzL7WIqCcldKtcisjVpZZp0NGZUy+9RnjL5fcHeNdXUfVrbxZrbF01ikzVJTjSq+3aTWIu/pD+Zkber0lSCEgCYhwYDAAAAAAQWUpKCCuYwAAAAAACACD0MAAAAABBYSEkKKmgwAAAAAAAEAZvNZvq2FouFXC7NvE8NNBgAAAAAIPCD4v01MD6EB9wbhtEqtw3hQwoAAAAAEDo8Hs9+l0mTJlF0dDTddNNNtGTJEiotLVWXpUuX0s0330wxMTHqOnxds9DDAKasyS83dbsOqXKkX8rwHLFW/O5ysWbNkCMrKVJuExvb5UhST0WdvL1k+TG4t8vHxRIbaapm5NeLNXufLNKpX7aVzIjs00msubbLkaueMjnmU8dD8puYNUJ+m4r0RIm1pCj5eSqtkR+DVfM9ii6ONCOyvan40+p6OSIyI0qOq2SlVevFWlqE/LpwGnJ8ZvH6DWIt2iofb9JELVstmtehQ96X5O5yBOr6VYvFWnqkfNyqtslRtfHZHcjXmos+1n1rZ89KFmvONXLkrC01Xq7lypHR5JJfh0adPIzBU655v8yV45tLVu4WaytjI8RaH03sNQQRzGHwiVdffZWeeuop+u6772jUqFF71fr370//+te/6NRTT6Vjjz2WDj30ULriiitMbQc9DAAAAAAAQei5556j4cOH79dYaGzkyJE0YsQIev75501vBw0GAAAAAAgonoDrz0u4WLNmDWVnywuAenXs2JHWrl1rejsh32BwOp30/fff0+23305Dhgyh5ORkioiIoMzMTNVFM2vWrNbeRQAAAACAg2a322n5cnnYtteKFSvUdc0K+QbD/Pnz1bitadOm0fbt21WXzJlnnknt27enL774gk455RS65pprWjRzHAAAAABMpCT56xImjjjiCNUYeOaZZ8TrTJ8+XTUqhg0bZno7IT/p2Wq10llnnaVmjh911FF71d577z268MIL6cUXX1Tjvy655JJW208AAAAAgINx33330ezZs+mWW26h999/ny644ALq0mVPYEReXh69/fbbtHDhQtW7cO+995JZFiPMv1q/8sor6ZVXXqExY8aoA34gKioqKCkpicrLyykxMZFC1dzlBabSjnIzEsTa61+uEmtVP2kSfbLlpA33t5vIFLs8xtFTUGkq0UiXIGRNko+ZUa9JICmtEmvUTPei7rb2jimm9kenfnepWCtzyglS7dPlVCa3JnlJl6C0rXKbWGsXIZ9PDrec+JIaKR+zwvoisRZhiTCVWFTnkROyWLxNTkKyasbwujRpT7okKIdHPjYJNjmZp12SnCBVXSmfF3EJ8vNUWyW/RiMs8nlRrUmsSuvTS6y5y2vEGrk16UKa5CFVr9M8x075uYj6WzfNfWreT4o07wldU+X7rJbPU0tSlKl9sfWRzwudif8YK9aiNWld4awtfW7x7svDV8yk6Ej572JLOOpr6N5XLmgTjzcQPvjgA/V5trKycr/5G/wxPz4+nl566SU699xzTW8j5HsYmjNw4ED1c9s2+cMFAAAAAEBbNH78eDr66KPp5ZdfVkPxeQi+d6LzMccco6JUO3RoWWx02DcY1q/fk2Pe0gMJAAAAAAcI6zD4VEZGBt1zzz3q4g9h3WDYuXMnvfbaa+rfPM9BUldXpy6Nu9MAAAAAAMJB2A72c7lcdNFFF6nxbf369VNJSZJHH31UjbfzXg4k7xYAAAAABEhJ8in+MpsXcePPtscffzw98cQTDbV169bRt99+Sw6HfuV5nbDtYbj22mvV+gypqan04YcfUmSkPJH1rrvuokmTJu31pKDRAAAAAACtjRsDnI5UWlqqJjnzxGeev+DFC7adfvrp9M4779A555xjahth2WDgiFVORmrXrh1999131KNHD+31o6Ki1KWtcmgSOlqSGKFLQuqVJaeX6NTslhNKKEFzjDfK6TvWDnJSjKdAsz2XuYAwo0ZONbF1SBZr9Sv3TEJqSkROmrw9zfNraxdNOmWF+WItcpuceBMTn2AuuaWTnHpiy5PTWfJ3bZZvZ7GJtQRPgqm0nw3V8vZ6xh8i1rY5doi1nORcsbajXA5VSLYnmXoMLClCTv/Y7pCf+07RWaaSmVIs7cSazS4nQZWWF8r3mZIh1qrK5Nd9rC1GrJHmfS8pTn6tObfJSVfWOPm15i6Uh6lG9pSPtWKX99WaIG/TU2Hum0JPlcNcElKqfLytPeV0JfcSOW1PJ/eUnmJt4apdYm1UP8xHDBqYw+ATq1evpjPOOIPq6+vpuuuuU5Oc901D4h6H2NhY+uyzz9BgOFC33nqrWtyCV3zmFpk3JQkAAAAAIJhMnTpVDTXiaFVemJjt22DgUTQDBgygZcuWmd5OWM1hmDx5Mv3rX/9S8xC4sTB48ODW3iUAAACAMGT5q5fB1xe+7zAxd+5c6t+/f0NjQdKpUycqKDDX4xdWDYY777yT/vnPf6rGAg9DGjJkSGvvEgAAAACAaYWFhc0OrfeG/VRXa4ZpNyMs5jDwUtiPP/54wzAkNBYAAAAA2kBKkr/uO0wkJSXRjh3y/DqvTZs2UXp6uunthHyD4fPPP6dHHnlE/bt79+40Y8aMJq+XlpZG06ZNC/DeAQAAAACYc/jhh9MPP/xAW7dupZycnCavs2LFCjV/gSdHmxXyDYaSkpKGf//222/q0pTOnTujwQAAAAAQCEhJ8okrr7xSjZ45//zz6aOPPqLMzMy96kVFReo6HLfKP80K+QbDpZdeqi6hrCXRqTpmo1M/Wpgn1uyxcvRircn4PU9JrViz6I6NJs6QouSXhi1bPi4uTdyfNTbSVNShLU2OziRN5CpLPaS7WHNtL5Zv6JEjZy1xcvytp1p+HMkR8nGzRMtRlx6HHPNZ65a31yVdjkfdsGuNWCtzlom1OJscNbytbItYcxlyXKWOq5lY1S21W8VaSoQcgWqNls/FiFr9OSWxtZfP06Sd8uNwV8qv3/hUOa7TqHeJNUuU/Pgsmte97vx1l8ixwBbNa7t+w06xtueO5eNtTZbPN1u7ePkuy2rk+9TsqzVDjqi2JGtiZTXv3bbRXciMvMXyEIuUUV3F2pr8cp//TQNoy84++2waP368Sknq1q0bDR8+XP1+wYIFdOqpp9K8efOoqqqKLrzwQhWvalbINxgAAAAAoI1BD4PPzJw5Uw27f+qpp2j27Nnqd+vXr1cXjlTlJQUee+yxFm0DDQYAAAAAgCBls9nUfN3bbrtNxazyBGePx0PZ2dk0ZsyYFk129kKDAQAAAAACCylJPteuXbtm12MwK4yCpwAAAAAAQsfo0aPpiSeeaPZ6nATK1zULPQwAAAAAEFiYw+ATPKk5Nze32eutXbuW5s+fb3o7aDCEAIcmZcNfCUq6JIqUeDlFJ29HpVizHZltal/qn/9FrNmzU8SaNU5OCzHq5AQWo1pO7XEXVcj7kiMnAdWv3C7WrAlyOolFk3bDnDvkJKTogXJ6iUeTslK8foNYS4qXU210rMlyOoux02kqfchT6TCVINQuqb2p1K3Nu9eLtUS7nCDk8Mj7mWiXk3BYQd0uUwlLhkM+btVueSXQcpf8+s3eaRNr9kz5eO/eukmsZSTKz0XF5m1irbC4SKx1jpHfZyL7dDL1GrVnJIs1d6mcrtRcCpq1nZyS5NpWYuo9w5Yhb8+1QX6/MGrqTd2nZ76cHmbtKh83SpD/jvzxi5wO1uHkXvJ9AoQxp9NJVqv5z4RoMAAAAABAYFn+18vgr/uGvSxfvpxSNVHVzUGDAQAAAAAgSFx++eV7/fdPP/203++8XC4XrVq1iv744w+1LoNZaDAAAAAAQGAhJcm01157reHfFouFNmzYoC46WVlZKnrVLDQYAAAAAACCxKuvvqp+GoahehZGjBhBV1xxRZPX5YXbOnXqREcccQRFRESY3iYaDAAAAAAQWEhJMm3ChAkN/37ggQdUY6Dx7/wBDQYAAAAAgCCUl5cXkO2gwQCm4lpzMxLE2ndzN8p3WihHNno2lcm3s8tRYDGn9hFr7rVyTCC55MdnjZXjSj2ax6BTvybfVOTq7o1yXGfmgH7abdpS5FhO13Y5ltFTJj/G5LRMeYOac8bj0MTRFspxtJYIOa4z0ZZsal/KXfL2kuvkCNA6pxyBGm+To2GjrPL55NbEn0Za5WhJFqfZZrRVjtYsrC8ytT+pEXJMsUGGWKvcUSDW0uLam3oOrRb5PSE3Uc4kr6urFWvGSjmq1Rqh+XOpidu1JsrRqOqmnZLEWv2yHfLtkuX7teiimDX76tHESUcM7ijWjAr5tW1NjZG3ly9HzkafJL/PZHWVz0MItpQkP943+BQaDAAAAAAAQayuro7mzp2rFmirqKhQ8xv2xROkp0yZYur+0WAAAAAAgMCyWvZc/HXfYeSTTz6ha665hoqLNYsvGgYaDAAAAAAA4ea3336jc889V/37vPPOo5UrV6pF2u68805av349fffdd6rHgVOUOC3JLPQwAAAAAEBgISXJJ6ZNm0Zut1v1MvDCbJdddplqMHjXXCgsLKRLLrmE/vvf/9LSpUtNb0ee/QQAAAAAAG3WggULqHfv3uIqzu3bt6d3332Xqqur6cEHHzS9HfQwhIBoTeqFLulId7uW3K8uwSJvVaFYs2bIiS+kScrxFNWINVvPVLHmXCont3jK5Pu0xsiJN5Y4OZ0kqruc+lG3VI5FS+92iFirX7mddGyZcopQ/e5SsRaRqHkuNM892eW3lMjuHcSac/NusVZQJadLRVjkRWhSIuW0o1ibnNxSXV9JZlS55WQpm8VmKrFJl1jEEuxyCpZOmbNcrMVojk2MTT6/C+p2ibWcQ/qKte3rV4q17M6aBCUNj1NO+4lOkV8TVZrxv3GxSaZeE0a9vC/MuUY+buSSb2vLSBRrnho5tcjQJCHZMuX7NGrk27nz5PeSxAvk57781T/EWr3mbwVp/sboEvygjUFKkk9wDwKvw+Bl/9/fYYfDQdHRe96zk5KS6JhjjqGvvvrK9HbQwwAAAAAAEIQSEhLI1ejLBW4csPz8vb9s41Wed+7caXo7aDAAAAAAQODnMFj9dOH7DhOdOnWibdv+WkOmV69e6idHrHo5nU765ZdfKCMjw/R2MCQJAAAAACAIjRgxgl5++WUqLy9XvQsnn3yyGpY0adIkNSwpJyeHXnzxRdXjcOGFF5reDnoYAAAAAKB1UpL8dQkTp59+uuplmD9/vvrvDh060N13302VlZV04403qvqsWbMoOTmZHn74YdPbQQ8DAAAAAEAQGjNmjFpvobH777+f+vXrRx988AGVlJTQoYceSjfffLPqbTALDYYQ11wSklmvf7lKrFX9ukO+YZVTrsXJiTfGbjm1yKiWE0Fc+XLija1DgqnUE9eOErFmz0mTb1dQJtasybGm9kW3PXW/CXKqja1QTucxnG5T+1NaIye+JJfKKTMVmqSgDvFZYq28Vk5nKXfK99k+Jl2sGW75sZc65eewU7S8n5trt4i1eo98/sbZNGlVRFTpqjKVBJUSISdI1Rny/mx3yIlV3Y86Sr7PxZvEWmaUPKbWtV1OLdJxeuT3GXu0nHKWmNNRrLl3y8lSrl2a17YmOY3Z0uVkIkqNN5WEZI2VH6OW3WLqfdaSKD/Gyi/XiTXbIXLaEdXLr8OtK+T3mXdq5Of+sjFy4hy0AqQk+dWZZ56pLr6CIUkAAAAAAAG0YcMGuvbaa+nwww9XCUa5ubmm7mf06NFqYTZ/Q4MBAAAAAALLXwlJ3ksbt3LlSvryyy9VQ6FvX3m9kub8/PPPVF8v9wD6ygENSfrhhx98tsGjjz7aZ/cFAAAAABBsxo0bR6eddpr6N/c0fP3116buhyc819XVUZtoMIwcOZIsPphxzvfReHEJAAAAAAhD/kwzCoKUJKvVN4N8TjnlFHrrrbeourqa4uL0895a4oAnPaenpzcsBmHGmjVraPfu3aZvDwAAAADgL2vXrqVvv/2Wfv/9d3VZvXo1ud1ueuihh+jee+9t9vacSjRjxgxatmyZGibUvXt3tfbBLbfcouYp+AMnIn3xxRdqgjOvt9C5c+fWbTCceOKJ9J///Mf0hi677DJ64403TN8eAAAAAEJEG0xJev755+npp582ddubb75Z3ZYXTeOJyPHx8TRnzhy644471Ad6bojExMjpdWbdeuut1KdPHzUfomfPnjRw4EA1L6KpbfFIn1deecXUdhCr2oY4NHGVZuNRW3Kfa/LlGMEeXVPF2ooqefJN/UY5BjOymxz1WPvOSlNRgDqudYVizZomxxkaDjm2z1Mmx7/qWBNjzcW4Zibr79glP/8VdXIUZFKE/Py6NJOrUlLkiEx3Za1Ys1siTEW82iw2sdaukxyR6SmrFmtlDvkctWu2Z4+Uoyyj6qLE2iFpcs+tq1o+Zs09/mq3/BjTEuXnqbZGjmp1uB1irf4POTrWIIPMsEbL50VcsuYx5Mu92YZDPn89mtd2ZN9ssVa3NE+s2XvKcbusfq0cVRupua0uptmI10S5av4m2DrL78GeEvlctETJHyWMEvmc0bEky4/Bs06O2y3TBtab2hUIIzz5+LbbblMfujm9aOrUqfTmm282e7tPP/1UNRa4kcALqPFtWVFRkWo8/PTTTzRlyhSaNm2az/f5tddea5g2wL0aixYtUpem+L3B8M4771CXLl2oJa677jo64YQTWnQfAAAAABAC/JlmZPJ+r7zySlPzDKZOnap+3nnnnQ2NBZaWlkbPPfccHXXUUfTss8+qRkNSkrwmkRmvvvoqBcIBNRjOPffcFm9o6NCh6gIAAAAAEAp27NhBixcvVv++4IIL9quPGDGCsrOzadu2bfTVV1/R+eef79PtT5gwgQIB6zAAAAAAQOukJPnrwkNvKyr2uvgjfnTp0qXqZ0pKijgaZ/DgwXtdNxhhDgMAAAAAhBz+Zn/fRKEHHnjAp9vYvHmz+pmTk9Psfnivy2pqalSPA9u0aZP67w8//FD995AhQ0ylHa1atUot5FZYWKgmQp966qnq9x6PRy1rEKmZa+fXBsPChQvp+++/p/z8fHI4HD6fYAEAAAAAIcjqx3Eu/7tfHgaUmJjY8OuoKDmAwqzKykr1U7cGAk+GZtzL4cVLDYwfP36v63n/m+clXHrppQe8D/w4OY107ty5ew1V8jYYXnrpJbr++utVUtOYMWMC12DgVtA555xD//3vf9V/G4acgIEGw4Ezm4SkSzPqlWV+co3utgXFchqQ4/N1Ys2aKacP1e+U01lsOX+94PflWl2kuZ38GNzF8vY8pfLjsybIsWj2LDm1qO7PrfJ9xsmJIJHdM8Wau0R+DGqba3eItZTOuWLNUy0nm0RokmvcmvQhe3v5uYgttJhK+6lxy8ktcTvlvJSddbvEWlZmN7G2pWCtWKurltN3nB6nqSSkTTVy+k5zKUlpkSlirahCfvzpOV3FmlWXPqRJs7LGyn+ki8p2irW0+ihTaWUxGWmmzm3da1uXhGTRvSZ2//UBoSn2rBRTqWu2VPm91FPpMHU7o1o+plQnL7pq7ZAg1izRmgSlGt1CrvJjsGTL7yU5feX0LAg/3Fho3GBoS3Jzc7Wfnw9USUkJHXPMMZSXl6dSno4++mg10box/sx+ww030Oeffx7YBsPdd9+tulHatWtHF110ER1yyCGUkCC/YQAAAAAAhNpKzwn/+/zLKy1Lqqr2fLnnj8bL448/rhoLHAfL/+Yv6vdtMPDn9X79+ql4V7NMNRh4Jbvk5GRasmSJ31aUAwAAAABoy3JzcxuGBUm8Ne91femzzz5T9/vYY481rMfQlK5du9KCBQtMb8fUGJjS0lKVKYvGAgAAAAC0xZSkQBg4cKD6WVxcvNek5sZ+++039bPxGg2+smXLFnW/za0ZwROeefhSQBsM3FA40MUsAAAAAAD2+wTqz0uAdOrUSaUasZkzZ+5X52FA3MPAE65POukkn28/Ojq6YeK1ztatW1u0aJypQ8oLU8ybN4/KyrSLsAMAAAAAhLS7775b/eRhQTxc34t7HTidiPGkY1+v8sx69eqltqmbQ1FUVETLli2jww47LLANhjvuuEPNxD7xxBNp9erVpjcOAAAAAGGoDQ5J4g/eRxxxRMNl1qxZ6vcvvPDCXr8vKCjY63ann3463XjjjWpyM9f58/HZZ59N3bt3p+XLl9Pw4cPpoYceIn/g7XDDZNKkSWq9habcfvvtKuH03HPPDeykZx4H9c0339CwYcPUrGterIIvTQ1T4gkYvFYD+E9LolN1HO6mTzyWt1uO87Qf2/RKh8yzotDUvrjz5e42+2FyjJ57Y6l8uxxNnGGhJuK1gxydWr8mX6xF9swSa0aNHMnpLpejFQ2X/BwxC1lMxUs6SuTeQw/JMXDREXIs5e4dcixlcoR8DsdFyglsie07ijXXTvm5T4loJ9Y8pfJzH2eLFWvRVjkat32kHPOZV7vF1O1Yft3ef7Qa82ji+tqndxJrpdvl+N86j3yepid2kPelRl5dNdomR6dWVcrPYUJyqlgrLdgu1uJsclZ6RJS8qJGhOe9JE/Hq0sT7Mnum/H7i0bwv2BPk882aLJ+nhuZ93ZYuHxu3Zl9cG4vFWsRA+bywdpNfh6SJY9XJ36QZoz3M9xNOIbTwOgmLFi3a7/fbt29XF6+mVox++umnVcNgxowZavE0p9NJ3bp1ozvvvJNuueWWFi2apjNx4kR6/fXX6eWXX6bff/+dzjzzTPX7jRs30r/+9S8VVPTrr7/SgAEDDmpth33ZzU56Hjt2LK1YsUJlyHKcE1+aopuxDQAAAABhqA3Gqo4cObJFayOcc8456hJIPIeBv8TnRd+4obJ06dKGuRN84cfDcyw+/fRTioiQ14zx2zoM3G3D6y9cd9116qd3Fbu2jFtZ3PLjcVz19fWqq+jCCy9ULb+WHEQAAAAAgNbQoUMH1TjghgMPo9q0aZManpSdna2GR5122mkt/gLfbjbzNSMjg3755Re1GEQwuPnmm1V3kd1up9GjR6sGzpw5c9R8jC+++EItlx0TIw+nAAAAAAAfsfgxzeh/n435m3WbzaaG7fAl1B1//PHq4g+mGgzl5eV0wgknBE1jgbthuLHAjYT58+c35ODyrHFuPHCrbMqUKTRt2rTW3lUAAAAA8IHFixf7ZXXlcGSqwcBDeRwOecJkWzN16lT1kyeeNF40Iy0tTS2fzYvQPfvss6rR4I/IKwAAAABo23MYgp3b7VaJSbrP6BxSFLAGwxVXXKHmMfCMcV6woi3bsWOHamF614/Y14gRI9QYL15U46uvvqLzzz+/FfaybcrbJScT5abLc1aWfL5WrBll8klsiZPnkViTok3dp61/ulhzfLRCrEXkpplKLon6m5wQ5ZizRqxZk+V0Ekuk/DI1DH1Kko5RLSfXxGTJx81is5pKXopzyo/RabjEGmlKds2xKaqXk1sqXXISUrRNPteiLHLKRb0mQShGc59ZUXKKTIlTTglifdLlTO2tJU2vOMoqd64XazVuOZUrO1p+v6+qltOA8h07xVr3uK5izaM5v62JchJQQqWcrBXZRU5Vc27eLdbsmXKPul2TnOYuls+1PVcw9xp2764w9f5lzZaPjWut/Johzevelil/g2uJlV8znmW7xJq1f4apBCVXjZxYBRCqFi9eTPfdd58aRdNUgpMXz2NwuTR/VH3dYPj73/+uYqd4OM/06dNVYlJbXfnZO1s8JSWFunRp+sPc4MGDVYOBr4sGAwAAAICfoYfBJ3g+MX8e9/Yq8HQBfwzDMtVg4FxZxlGqvMw1TyTmGdrSOgycBdtaNm/e3GwXDPcwNL7uvri11rjFxjm9AAAAAACt6f7771eNhcsvv5weeeQRFUrkD6YaDI3XXOB8V16cYuvWrW1yHYbKyj3DauLi5OEQ3khYqSHw6KOP0oMPPuinPQQAAAAIM/wds78Gp7TNQS9+wSN+evbsSS+99JJfP3ObajBI38SHqrvuukstue3FDQtvrwQAAAAAQGvgOQm8irO/v6A31WDo3LkzBYuEhD0TvKqrq8XrVFXtmZQmjfmKiopSFwAAAABoOf6A668Pua09uiWQevXqpZYJ8LeQ77TJzc1VP3lSs8Rb814XAAAAAKCtu/rqq+nHH3/0+3xhUz0MwWTgwIHqJ+fS8lCqppKSfvvtN/Wz8RoNQJSbIcfvrdyiiXvsJscPWnZpIgZL5UhOwyHHgBnlcoSYa+kOU9GD7qIqUzGJ2qjDrvJEpPoNO03FR9pz5MfAXCR/6+Auk3vdyrc3PSeJRVvliFCbxSbWYlNTxZpRJ0eSktNtKpIyyS6nRKRFyvuyoXqTWIuP0jwXFjkWeGONPIwz3ibPr6px15LO+qI1puJaHR75tZYd3dFUdKxTE4HaPjLNVIyrjr1Yjn2OyGkv1uo37zIVnao71xxL5efXlhAj36d6b5NjQO2d5cdh1JuLRnTnlYu1iL/Jz73rtwKxZk2VH6OnSPP82uXvLI2N8t8YyyD53M7p658Jn+AHSEnyWYNh4cKFKrGU1xTjlZ55detW6WE47rjj6Mknn2zRhngVZb6fQON1InhpcDZz5sz96rzKM/cw8JAjTnwCAAAAAAgGXbt2VesvcCDRuHHjKDY2Vo2Y4d/ve/GmnPqth2H27NktXqBt5cqV9P3331Nr4EXmzjjjDHrsscfoxBNPbOhJ4F6H66+/Xv37hhtuwCrPAAAAAAGADgbfCFRy6QEPSeKJwdIOHOjtW8vpp59ON954Iz3zzDN0xBFH0JgxY1TMKjdgysrKaPjw4fTQQw+12v4BAAAAALTV5NIDbjB89NFH6hKsnn76adUwmDFjBv3888+qBcZdM3feeSfdcsstFBkpL18PAAAAAL7uYfBXStKenzwkncfzT5w4UV1CUecAJZceUIOBV0kOhYiqc845R10AAAAAILQtXrxYjMwHPzQYGo+PgvARbZPnxOdvKvH9BuPklBlrhDzj310np4VEjZIn+Bg1cuKLa1uJqXQl3X16quRkGntmsqk0FNfm3aRjy0g2lb7k2VhhKmEn9ZDuYs1dJN+nTnmtnJaSuENOUIrNzhRrmzcuF2uHJB4i1vKq5K7f9Mh0sVbtkpNi0iLkxKZddYWkkxqZItbiEpLEmr1Kfj1ZNK+1CKf8Go1pL78uivPlWGsdp0c+9z0O+bWmyweJ6Jhq6rW2ZZucSNU5u5d8ny45XWnPDnlM7Y81QU4r07EmymsKefLlocP2UXLsuGdloakkJGt3TSpVlObjiSY1T/u3aRii09sUrPTsU7yo8FtvvaVG0RQWFqrh95MnT1a1devWqc/yRx99NEVHm3vvCPlYVQAAAACAUPXtt9/SBRdcQKWlpWriM48K6tjxr5jktWvXqvm877zzjumRNiG/cBsAAAAAtM2Vnv11CRerV69WSaDl5eV03XXX0XvvvacaDY3x2gwct/rZZ5+Z3g56GAAAAAAAgtDUqVPJ4XDQBx98QGeeeab63bnnnrvXdTjYZ8CAAbRs2TLT20EPAwAAAAC0zkIM/rqEiblz51L//v0bGgsSXk+toEBesb05aDAAAAAAAAShwsJC6tGjR7PXc7lcVF1dbXo7GJIU4hxuj6kUJLYmv1ysxWcmiLX6eHlNi6o1RWLNvanMVNKGp1CzKKBDTtGx9ZTTUiJ6Zcj3GS2/bDy75Rej7mhr01CSNWlGZXL6TnPJTO6d8vFO73uoqfSS0qWrxVpCsny8qyrlJCSbRZOQZcjPb83WHfK+2OLFWomjWLMv8mOvdsvP/aHx8pv5xpo8U7djVZptlpbLyTWxthixVlCVL9baR8pJSJU7d4m1aJucyuFwO0ztpzVafp9xbZXfZ2yaRDJbB7nWNWWwWDM077PODTtJJ3pkT7Hm2qQ5F3M1CUMa7m3y+7qtg/y+bmyUX6OkS4LSvXdvkO8z+lT53K8vrhVrYzXJeC35ewi+h5WefSMpKYl27JD/3nlt2rSJ0tPlNL/m4BUCAAAAABCEDj/8cPr9999p69at4nVWrFih5i/87W9/M70dNBgAAAAAILAwh8EnrrzySjXp+fzzz6edO/fv0SwqKlLX4eQk/hnQBsPXX39teoMAAAAAANByZ599No0fP54WLlxI3bp1o+OOO079fsGCBXTqqadS165d6ddff1XrNHC8akAbDCeddBL17NmTnn76abWyHAAAAADAgX8CtZDFTxe+73Ayc+ZMuuuuu9S/Z8+erX6uX7+evvzyS6qvr6dbb72VXnvttRZtw9Sk50MPPVQtFDFp0iS699576aKLLqKJEydS3759W7QzAAAAAABw4Gw2Gz3yyCN02223qZhVnuDs8XgoOzubxowZ06LJzi1qMKxcuZLmzZtHzz77LH3++ef0wgsv0IsvvkhHH3003XDDDWrFOasV0yMAAAAAQBBeHQF+165du2bXYwh4rOrIkSPVhaOc/v3vf9PLL79M8+fPpx9++IGysrLo2muvpauuusonrRowryVRcb2yksRaboYcvzdj0lfynUbIEZmWVDlCkRxy7Ki9V3ux5tHE77n+3GUqCtDYWSnfTnO8XbvkGFNHiVyLPzRXrHlq6uV94d3RRLJWaCI5rbsrTN1nfJwcS1lZJkdExkXK59P26u1irUOUHNcZF5co1hJT5e1VaOJYq91yjG1GaiextqVwo1hLi0wRa0XOEjIrLUK+3w01m8Raol0+bmVOOZIzRhOBGpskv5fUlMjH1EOGWCuu3C3WUhPkvztGnfxe4lwtP/dWzTnj2inHg0b17Eg69cvkbdpS5fhfT36lqfcva6wmjnajJsY1Uz4vPBVyNK4tO8nUftZrYlxThueY+tuE6FQAar11GDp27EgPPfQQ3XffffThhx+qXgeeeMH/zb/niRjc69CSKCcAAAAACB0Wi0Vd/HXfbMiQIWq4Dg+b50uo+/nnn2nDhg1N1gYPHky9e/du/YXbIiIiVKQTNxC4sfDYY4+piRZvv/22moxx5JFH0rRp09BwAAAAAAC/W7x4MSUmyr1jwWrQoEG0bt06NV+BGwJeL730Er3xxhtN3uawww6jpUuXtn6DYdeuXWoeA1/y8/esFDpw4EAV7/TOO++oeKcRI0bQRx99pGKeAAAAACA8YaVnc77//nv1wf+KK67Yq7Hgxest8ETnxrZv305//vknzZkzh0aPHt06DQbu/uBhSB9//DE5nU412ZknXNx0002qgcB45jZPjL7xxhvpgQceQIMBAAAAAOAgffrpp2rI1S233NJknWvffffdXr/Ly8tTazTwl/YBbTDwinI81GjGjBlqqWluzfDMbJ7kzGPEOMapMW5EXHfddfTVV1815MMCAAAAQJhCF4MpvAhb586dD2o+Qm5uLvXr10/d1iy72YnOZWVlqqHQp08f1XPAazHExGhSbjhFJCNDzWuAg+dwe0wlP5i9XXN0t005tadYK/l8rViz5sppGp48OZ3FqJLPKUtchKmac0WBvL16OWXFcMj7Yu8iJ7fEZ8jpQu6SKrFm0aSMME+tvD9JXTrLt6uoMXWfrlo5LcWiWSfS4ZTTrNIiU8XaltptYi3JqRm3WiEnZEVY5bfFlAj5eVq3a5VY6xQtJ+UU1Rebeuxsu0NO2HHZ5ddTn3Z95P2pLhRryRHyfZY45VQbV6lTrKUmZYg1Wzs5JShWc47q0srIkN8T7Z3k4+0ukpPD7JntTL1fqNumJ5p6rXkq5deau1h+z4gaKr/uLaXyMbUkRYk10qQkad+jIjW1nfJjKFkpJ2TlHZpuKvkPIFhs3LhRzQtuCn8ulxxyyCFqzkNAGwzcWDjllFNUQ2HfcVI6kydPposvvtjMJgEAAAAgRAQiJSkUVVRUUJIQVc0LKnP4UFP4S/3KSk0csz8aDLzcdNeuXQ/6dj169FAXAAAAAAA4OPHx8VReXi4mIfFF+rI/NlZeR8kvDQYzjQUAAAAAAIVHpJkfGa3nr/ttAzp06EB//PHHQd+Ob8O3NSuEDykAAAAAQOg48sgjaceOHfTDDz8c8G34uhytOnz4cNPbRYMBAAAAAFplDoO/LqHqoosuUpObr7/+ejWfoTk8b4Gvy8fkggsuML1dNBgAAAAAAILAMcccQ2PHjqVVq1aphdtmzZolXpeXMxgyZAitXr1ahRSNGjWq9Vd6Bv8yG4Gat6sy4BFzVTs1s/CdbrmWlCCWrH+T4xU9i+RoSXLIkYauLXIMpL1LmlgzqjUxrlHyS8q1rUSsWZPliUiRmhhE3b4w93Y5jta5YadYc3jqxFpsqj7qU1Lvkfc1wS4/v5UuOV4xK9rceEy3IZ8XdZr9rNDsS4coOR7Uo4ny7Kh5DCX18jnKemTIOdz5RVvkG8opmNpv5nTRqboI2Fq3w9x7gsn3PaNaPn8Nj2EqqtQSYZM3qIlTLt8hRzSz+LT2Ys2WqnnfK5cjUO1ZmpjmAvn92VMlP36b5r3U3kWOlXVtls+ZiGPNzYeM7yz/7Soolo8LYlXbGKzDYNrMmTPV8KJ169apxZB5LbTDDz+c2rff835SWFhIS5YsodLSUtUb0b17d3WblkCDAQAAAAAgSKSmptKiRYvohhtuoHfeeYdKSkrUwsjeL3y86zHwwsnnnXeeWmg5OVn+IuFAoMEAAAAAAAGFDoaW4bUY3nzzTXrwwQfpyy+/pN9//52KiopULS0tTfU48Jpp3bp1I19AgwEAAAAAIAh17dpVLaTsb2gwAAAAAEBAYaXn4IKUJAAAAAAAEKGHIcT5KxViTb6cvhMZHynW6jPl1A/aIad3GDX6NCDxdm45ncbeU04n8eRrkp7sVnM1TeKLu1hO36lfk28qlam5BBpLrPw8JR/WXazV/bHFVKKRh+TnQifWFiPWIiOixVq9U058qXbLKTo2i5yGkx4pp2fVuGvFWoRVfp52OOQUnURNelRzSUjRVvnYJOZ0FGvJmsQu3bkY2StLrBUtlVcljfXEibWqPDkBLTpCPi9I87o3SE5JsiXI92lLS5Tvs15OEEpMzCYdXUKa7n3PcMmP0bV1zzjmpkQN7SLWbO3jTKXKRfSRE8KsmvcZY5v8d8SSLJ+/aeny62JYb3lfIPxWeuZIUZvNRhMnTlQXMA8NBgAAAAAIOYsXL6bERLmxDwcODQYAAAAACCjMYQgumMMAAAAAAAAiNBgAAAAAoHUWYvDXJUT98MMPaoXnQEODAQAAAAAgCIwcOZIee+yxhv8ePXo0PfHEE37fLuYwBAmHJvVDJ1qTzNOSberSl3JPSRBrL1XJqR/10fLpaNEkKFnS5WQPz5pisWZUy/tizZIfg1EuJ+xY4iLkfSmVE4RsGfKS7dYYOWXEuXm3WFO3badP2ZG4d1XI96lJkmlnlZOnrHFy6onhlFNmrGXVppKQomLl8yK/VE4myozKNJWgZNV8o+U25LQqnR2Ondp6uwj5deg0nGKtapv8+GNKE0ylcunOxYzUTmLNUyk/h25DPi9q6uXzIiFTTsopzJeTpdrHtRNrjk3yMYtoJx8zsujfg3dtkL8p7DB4gGab6WLNuUF+Liwp8uvQs01+n7W2izX1vmfNiDOVhBQ5QH4dnjw0R6xB8MBKz+YZxl9pb/PmzaPc3FzyN/QwAAAAAAAEgYSEBCookL/A8Bf0MAAAAABAYKGLwZTDDjuM5syZQ/fddx91775nzaQNGzbQG2+8cUC3v+SSS0xtFw0GAAAAAIAgMHnyZDr77LPpkUceafjdggUL1OVAoMEAAAAAAEHBYrWoi7/uO1SNGzeOfv31V/r0009py5Yt9Nprr1G3bt1o+PDhft0uehgAAAAAAIJE//791YVxg2HEiBH0n//8x6/bRIMBAAAAAAKK+wD8tVxC6PYv7O/++++ngQMHkr+hwRAkzMajmo1jbYmFq3aJNVeNHPVIDjlCUavUYSpCkCrkWFXnHztM7Yo1Xt5eRHc5JtC9WxNjmipHoxr0V7TawbLGynGtbk0ErC4etW6XfLvIGvl4r6paI9a6x3aV79MqPwZXrXxe2CzyW1+lS46WTLInirUad61YS9TczqWJP+0S25l0NtVsFms94w4Ra9VuOZLUXWnudRgfLT9Gi+acsdrl5yKiWD5nIiM08aCV8nORltJBrBl18mOP6ZUtb69W3k9PRQ3p6KJTSbM/lhQ53jjmxF5izbW+RL5P3d8Zl/y3xHDKscGG5n09ShOdmtU1RazN+nWrWOvTuZ2pOHCAYG4wBAIaDAAAAAAQWEhJ8imXy0UffvghzZ07l3bs2POlZ8eOHWnUqFFqkrRd8+UMhXuDYffu3fT111+ry+LFi2nbtm1ktVopJyeHjjvuOJo0aVJAFrsAAAAAAPCHP/74QzUKNm/evNeibuzll1+mKVOm0AcffEADBmh6NMO5wcANgrfffls1Evr27UunnnoqVVdXq8bD9OnT1QSRTz75hMaOHdvauwoAAAAQNiwWi7r4677DRX5+vvoSvKioiDIyMui8885TqUls06ZN9O6779LGjRvp+OOPVw2LDh3kYZlh22BISUmhBx98kK644grVLeNVVVVFV111lTqIfGB5wYt27eRxjwAAAAAAbc3jjz+uGgtXXnklPf300xQTs/f8pqlTp9KNN96oehqeeOIJ+r//+z9T2zE3kzZIPPPMM2olvMaNBRYfH0+vvPKKWl67pKSEZs2a1Wr7CAAAABCeMUl+vISJ//73v2qo/fPPP79fY4FFR0fTc889p67Tks+7Id3DoBMbG0s9e/ak3377Tc1tCFVm05X8lb404IgcsbbkjaVizbO9wlQSkmebnHhj6B6D5rjZNKlFljg5tccSZRNrzs27Te1LZJcM+Xa8TU0SkqFJLfLslBOGrImxYi02W049ce4oFmtdY7uINYdH3pcip5z4khIh9xom2OTnsF1CmlgrrSwSa+0j5dvVeeRjnR6ZLtairVGk0zteTsNZWvGnqbQnXa19apa8M5oJda7CcrFW45ZThOLjksVaeZV8PkU65eMWm5oq1qwJ0aaSkNxF8vtTRBf5+VXbTIw2ldrkKZGToOr/kP+mRQ2Sk7ec6wvFmr2rfNyMGk2aU7R8XtSvkreXL1aIrjpvgM//bvnrbyWAv/Fn2DPOOINsNvkzBk94HjZsmFrszaywbTA4nU7Ky8tT/zY7ngsAAAAADh5WevaNqKgoqqiQv7TwqqysVNc1K2wbDDwkicd8cffNiSeeqL1uXV2dungdyBMDAAAAAOBPvXv3VlGq3NOQnd30ejFbt25V12lJSlJY9sEtX76cbr/9dvVvjpriWeU6jz76KCUlJTVcpCcEAAAAANrGFIYhQ4aoD9QzZswI2afkkksuodraWjr22GPpq6++2q/+5ZdfqjRQh8OhrhtyPQyTJ0+mzz///KBvx7PAR4wYIda3b99O48aNU0lJHLN65513Nnufd911l4pobdzDgEYDAAAAQNvFMfqJifK8rFBw1VVX0UcffUTff/+9+nzLCaFduuyZF8jrMnC4D6/NwA0Kvm7INRg4V3bt2rUHfTtuCEh27txJY8aMoS1btqg82vfff/+Asnp5zFdLxn0BAAAAwL4LPftrHYbwOdI2m02lH3EqKKchFRcXq0vjZNCJEyeqZQZ4XbKQazC89dZb6uLLVZ9Hjx5N69atU60snimORgAAAAAABLPIyEh67LHHVKOA0z937Nihfs/LCgwePNgnn3fbbIPBlwoLC1VjYfXq1aqHgYc6cS5tODAbf9qSmLlhveU5ITNmLJRvGGkzFZ2qiw619Wsv1jz5cm+UjqdUjoF0a+JRY07rJ9Zsm+JNxao2x7muQKxZ4uQ3EHumHGfpqZAfv1FdJ99n+ySxVrJjT2LZwfIY8vldWC9HoEZYNG99mteMLuI1wiPfZ1G9HP8aa9s/N9urzCXHkTanS4wcn5kcLUfOVtfLUcQrC+So1t7pfcVaqbNMrMXaYk09F8lpcoSvJVp+T7DGyDXXdjmqlSI070+a16guGpU5N+w29fjtuXKMrz1HrlniI009Dm0tVj73Lf00cwTL5NdTVtcUU3+bEJ0abD0M/rvvcBQVFUXDhw/3y32H/KRnTkLixsLKlStVY+GLL75ocmELAAAAAAAIsx4GnujBjYQVK1aoYUjcs4DGAgAAAEDrQg9DcAnpBsOVV15Jf/75p5pUw7PGr7vuuiavd/rpp6sLAAAAAACEWQ8D4zgpTkSS5ObmosEAAAAAECCW//3PX/cNvhXSDYZ58+a19i4AAAAAAAS1kG4wgPmkI3+lTUycOEysvfTuH2KtvlRO0zA0SRue4lqxZkmSU4KsKTEm00I0CSx/7jJ1O3v3VLFW9/Nm0rEmx8nbjLSbq7nlfSWLfGzqd5eKtfbpneT71JyHNeXlppKQbBY58abKUSHWnIaceLOrrlCsZUV30NxOk5LTjCS7vCBRpFV+nrZUbRFrnWPklexjbPJrprpSfi4cHjk9q332ngWGmlK5Q075itOkFjlK5FSm6NQUU0lIuseX1FN+DEZtvby9ZlKbdK9Dd778GC2a+zSq5P2xZcjnk1HnFmtUoXmMv8vPoW2EfK6dNSzXL+l/0Ib4MSUJHQy+F/IpSQAAAAAAoWjr1q20bds2v28HDQYAAAAAaJWUJH9dwkVubi6dd955ft8OGgwAAAAAAEEoMTGRunSRh0X6CuYwAAAAAEBAceQ9X/x13+Gid+/eGJIEAAAAAABNu+qqq2jBggW0ePFi8icMSQIAAACAgLL4+RIuLrvsMrr++uvpuOOOo6lTp9LatWuprk5OpjMLQ5IgoHRxrFld5bjDPF086poiueaQYzAtsfLp71pbLNZs7TVRpXWa7cXJUYeeSjkatn7pDs3t5OPCrAlyPCxpngvnZjnq09Zejl60auJhbRUR8u3iosWau7hSrMVExYq10po9CzcebORouUveXkpEslhzeuTn3uF2mIoxLayXz23mITleMkrzGHMT5cjK2roasZZslx9/rE0+12Js8vO7e+smsZaWmCHWXNXyuR+bnWnqfIrsJz8X1m3yuebKl881e1aK/jmsks8N0kSyWuPlY2ptJ+8r2a2marYc+XWvFSe/7k88uZdYW5Mvx9j2ykoyty8AIchm+ysOesqUKeqiG6rlcsl/q3TQYAAAAACAgMIcBt8wDMMv190XGgwAAAAAEFD+jD8NoznP5PEEZiFDzGEAAAAAAAARehgAAAAAIKD8OTk5jDoYAgY9DAAAAAAAQWzjxo00efJkGjFiBPXs2VP922vRokX04osvUnm5HCbQHPQwgKlEIx2H29x4upOH5oi151fsEmseTQqHsalMrlU75ZomtcitSULSpZN4SuX0GcNkGoqhS0Hi9ISUeLHm2iUfG3tOmny7rfrkHonDI8e8xbk1CSxW+buiuppaUwlCxU451SY7uqO8K8ny87suf4VYS4loJ9ZWVK4Wa8kR+jSYGKt8bujsrpZfT0l2+blwG26xZk2INpUCpktCKq+S08qS22eZSgCzxESJNaNC3s/afDk5LDpJPmau7fJjYBHd5Mdv6N5rNMfbonn8Rrn8OrSkat5PesnvCbSxVK5pUuUKiuX3xGG9M3z+N8bs3zTwD0x69p3XX3+drr322oY4VT62RUV//a2uqamh6667jiIjI+nSSy81tQ28egAAAAAAgtAvv/xCV155pWoMPPHEE6o3Yd80pGOOOYaSkpLoiy++ML0d9DAAAAAAQEAhJck3uJHADYRZs2ap4UhNsVqtNGDAAFq1apXp7aCHAQAAAABCzpAhQ6h37940Y8YMClULFiygoUOHio0Fr8zMTCooKDC9HfQwAAAAAEDIzWFYvHgxJSaaXKU8SJSVlVFOjjwH1Ku2tpbq6+X5ks1BDwMAAAAAQBBKTU2lLVu2NHu9DRs2qF4Gs9DDAKasyZejuXplJfk83cIeKych1WfL27NpkpA8xXLCjiU20lQSkiXKJtaMoipT6Tvu3RXyfbr0x9O5TU40sibGmkq1sURrUqkc8vGOiZK3Z++QLNacDvkbkcgIOSkmlvae9HWgiU26JKC1O5aJtSirfM7UuOVzrUdcN7G2q76QdHTfzhXWy899gl1Oz3J45Oc+JVJOezJMvrZ150ykVU40cpbI70H2unpT571OdGqKvL1sueYpll/3zb3XRByZLdacP8gfEKxZCWLNqDb5DWOZfF5Y+7YXa7HpckpSh9RYU4lGZv+OQNuCdRh844gjjlCTmVeuXEl9+vQRhy1x/aKLLjK9HfQwAAAAAAAEoYkTJ5Lb7aazzjqL/vjjj/3qq1evpssvv1x9wXT99deb3g4aDAAAAADQKilJ/rqEizFjxtCkSZNo3bp1NGjQIOrRo4dqHHzzzTd02GGHUb9+/Wj9+vV0++23q94Is9BgAAAAAAAIUtOmTaMXXnhBzVHguQocs8qJSCtWrKCUlBSaPn06PfbYYy3aBuYwAAAAAEBAWciPKUlqhkR4ueqqq9QCbkuXLqVNmzaRx+Oh7OxsFS1rt7f84z4aDAAAAAAAQc5isdDhhx+uLr6GBgMAAAAABBRSkvyDhyMVFxernxy5yqs8+wIaDBAUxo6SoydnvfybWDOcckQmaSJJ7b3lmEB3nhznaOufLu/Lejki094t1VysqiY+klki5Zd4RG6aWKtfk6+9X3F7EXKsLGlqjqWb5ZvlaJ6Lsmr5dhb5scfbNBGvkZpI3Rr5jTfaKke8JtrlhYO2OrbL+2LRHE8iKnGWirWUiHamYl5jbTFirdYtR2vWlsn7YtM8Dl2MbUb3HmKtKm+HWKNq+fFFpcnPhUvzWosa2lmsOVfvEmvWePm8YEaFfExdf8j3q+PepnmP6iBHrlpiNR8JKuUoYuogx/Rec1pfsTZ3eYGpeG5ErgLs77vvvqMnn3ySfvrpJ7VIG4uOjqajjjqKbrnlFjr++OOpJTDpGQAAAAACCilJvsMJSCeccAJ9++23VFNTo3oX+MINB/7dSSedRLfeemuLtoEGAwAAAABAEHrrrbdUzwL3JnCj4M8//6TKykp1Wb58Od12220UExNDTz31lLquWWgwAAAAAEDAJ+j68xIupk+fTjabjb7++mv65z//SX379qW4uDh14ZWfn3jiCVXjY/Lss8+a3g4aDAAAAAAAQWjFihU0YsQINVdB4q3zdc3CpGcAAAAACCh/rsgcRh0MxEORsrKymr0eXydSE+rRHDQYwJTcjARTyRcdUmNNpWLoaivHyglKeV+uFWuWfhlizbNgm1izpsgpMsb2Svl2yfJjr18mJ754NElA9k5yuhJzbS8Wa5a4CLFmTZT31Zoj16jOZSqBhmrqTCU9WSPkmsVjiDW7R37sVQ55P6Nt+sQbSbVbfg67xXYRa1tqt2rvN8IiP44oq/yHISFVTp4qKpTPxdQEOQUsqlaTLmWRO7OtsVFizVNaJdbisuTXr0755i1iLSknW6zV/bzR1OvFua1Iuz+68zuqu/ze5ta81iL6ys+TZ5d8Llqy5ffZlOE5Ym3YofL2dIb1NvccOtxywh1AuBk0aJCat9Acvs7gwYNNbwdDkgAAAAAg8Cs9+/F/4eKee+6h1atXq7kKEp7bwNe5++67TW8HPQwAAAAAAEHghx9+2Ou/eTLzDTfcQHfddRd98MEHdPHFF1OXLnt6rjdv3qySkX7//Xe68cYbW7SIGxoMAAAAABBQmMNgzsiRI5tMgeJ1F7hhsGTJkv1+z5555hmVqORyycMZddBgAAAAAAAIAkcffXSrxMaiwQAAAAAAgeXHlKRQnsIwb968VtkuJj0DAAAAAIAIPQwhwGzEXLTNfHsxb1elqag83e3MPo6Th8pxf+/UOMVayZxNYs06qINY8/wux8ZakqNNxbG6C8rEWtTw7mLNqJYfH4vURLnW/bpZvl/Nc2HPSRFr9Su2yztj8vnduWqVWEtLzpRvqImd1CmqLxFrSfZEsValiU61WWxibVfdbs3t9G/RKRHJYs3hlqNq46vlmlXzPZIlRo5AtTrqTT3GTJv8WpODcYksDvnc9zjl5z65pxxVqhORLj/35b/L8c0J3eSoVmbvIUfcevLl90t7l3ZizXC6xZq1k/w4qLhWLCXGRpiK2da9r8/6VY4NTomXz7VR/eRzBpGrwcNKFnXx132Db6HBAAAAAAAQxBwOB/3222+Un5+v/i255JJLTN0/GgwAAAAAEFBISfIdXmdh6tSpVFGhWSD1f9BgAAAAAAAII88++yzdcccd6t/9+vWjQw45hBIS5GGCZqGHAQAAAAACCj0Mvmsw2O12+uijj2jcuHHkL0hJAgAAAAAIQnl5eWptBn82Fhh6GEJAS9KOzOqVlWQqpUJ3O525ywtMJWZcNuYQsfakJiWJ8uTUIrLLx9sokycaubeXi7XIoZ3l+6yW02c8RVWkY4mUX+K2DDlhx1MlPw7XVjlFiCy6c1GTvNRePi/SKiPle6yR0350HB758XWOl5+L7dVyCpRV89gT7HL3cI27RqzVueTnnkVb5VSuGreceFNeWyrWkiPk56Jo9zaxlta+o1iLLJSfQ0uEnCBVWyOf3/HZ8uveUi0/v55y+XgbmnQl964yU/viLtW/Ru2uVLFmSZKTgjyaRCNbjiYJKVVOa4vsJicv9enczlT6ne49X3efZv9WQPDgxcf8tQBZayxs1lrS09OpfXs5bc1Xwq6Hoaqqirp27dpwom7fromBBAAAAABoo0488URauHAheTzmossPVNg1GG6//XbVfQMAAAAArcPi50u4uP/++6m+vp5uvPFG9dNfwmpI0nfffUf//ve/6YYbblCTRAAAAAAAglVWVhb99NNPdOqpp1LPnj1p1KhRlJOTQ1br/n0CPLJmypQpprYTNg0Gzqa94oorqEuXLvTYY4+hwQAAAADQSjCHwTcMw6Cnn36a1qxZo4Ylvfbaa00ea74eGgwH4Oabb1bzFWbPnk1xcXE+epoAAAAAoC0aMmQI2Ww2mjhxorqE6qJt06dPV9Gqp5xyilqHIT4+3ufbCYsehlmzZtGrr75KV199NY0ePZrCiS6xyF/pS7rbmd0fXRKS7j51+zLxH2PF2owZC8WadVu5qZQka7tY+XaaxBNPjTwm0aZJGVG3LZDTS1xbCsVaRA/5eHvK5JQZT4VcI91zXykfN1t7OfHFmiw3/ku3bxVrqUkZYq2obKdYy2nfVaxt2r1WrJU45VQit+EWa9269yedvI0rxFqpZpuHtR9gKpko1hZr6vlNsieaul1MvJwutWvzBrGW0b2HWLPnpIg154bdYs2WrjkPY3VJXvoxxZYUOenKKKiW9+dQOV2JIuXkKWsH+YPE2FHdyAyziUZmb2f2PR/Cbx2GxYsXU2Ki5v0nBLz88ssUGxtLP/74Iw0cONBv2wn5BkNpaSldddVVlJ2drVphZtTV1amL14EsvQ0AAAAA4E/btm2jkSNH+rWxwEK+Kc4TnAsKCujFF1803cp89NFHKSkpqeHCjQ8AAAAAaFkPg78u4SIzM5MSEuTe2JDvYZg8eTJ9/vnnprpmRowYof798ccf08yZM+myyy6jE044wfS+3HXXXTRp0qS9ehjQaAAAAACA1nTGGWfQO++8Qw6Hg6Kj5SGOIdtgyM/Pp7Vr5THBuoXZWFFREV133XUqbupf//pXi/YlKipKXQAAAACg5Sz/+58/+Ot+26IHHniAvvnmGzr//PPppZdeorS0tPBqMLz11lvqYhZn0u7evZs6depEp59+uni98ePHq8bApZdeqi4AAAAAAMGSAtqzZ0/69NNPac6cOTRo0CDtOgyvvPJKaDUYfIWjVPki+eWXX9RPnjACAAAAAKGRkhQOXnvtNdUQYJWVlTRv3jzxumgwNIF7FXiRCt1B884u516IUNWSiLk1+eWm4vB0t9PJzfD/pJ3G8nbJkaO33jhcrL36/XqxVvTcYrFmHyBHeXry5ShLW1yEWDOqnWJtz0bl5z+yrzx537lBjha1ZSTLm8uUa+5i+XgXV8pxlukxcvdq+eYtYi25XbpY27x7vakIUF1EpkWTIVHpkh97WoQcj7l902rSaRchvw6zE7JNRadGW+XhlzVuOf7XEi1Hi7rL5WQ5m1OOla1xyPvZoV9fsebKLxFr9ZoIX3uWfP5aouTv1yya16hV8xpkRo1LWxdvt1uOMLZ0kt9Lc/pmmHpfn7u8wNR7t9mYbd3tEJ0K8BdeNiAQQr6HAQAAAADaFqz07BsTJkygQAj5WFUAAAAAADAPPQwAAAAAEFCYwxBcwrbBoJvfAAAAAADQ1l1++eUHfF1MegYAAACAoIE5DL5LSdLxhvzwF+VoMIBfBDoJSZdaZFZBsZwkMqy3nBaik5seLxevHyKWSj6XFyK0JsnJNHKOCJGlmQQW0qT6uHdXmEpCqlwnJxPFZ3cQa5ZoOUmmfXIXU0lICWma5KnSKlNJSKlZcrrQ7h15Yi3Cqkmz0jyLMbYYsZZfIyfTsETN4yiqLhRrKZHt5G3WyQlZaREpYq1+d6mpdKXoVPk+413yqqWuXWWmzl/SJPOQJpnHqNOlGcmvX4vmtd0cW3856Suyd3uxNnZUN1Pb06UWjerXwef3aTZBySykK0E4pSR5PB7asmULffXVV/Tbb7+p9Rr69+9vejthOyQJAAAAAFoHf+/tr+USwmgZBmouJYlXgp48ebJaBXrJkiWmt4OUJAAAAACAEDV16lRKSEig++67z/R9oIcBAAAAAAIKKUmBY7fb6fDDD6fZs2ebvg/0MAAAAAAAhLDa2loqLZXnmjUHPQwAAAAAEFBISQqc1atX008//UTZ2XKoR3PQYAAAAAAACEJvvPGGWKusrFSNhTfffJMcDgddcMEFpreDBgOYirXTRa6ajcPT3afO3OUFpqIAdfupi401e58zfs8Xa1TuEEuWaqdcS4uV75Nj1UrkOMuIXnIkqXunHHGbeKgcgeqplWNcySKPgLREym9FcbY4sVZWKB/Tdp1yxFqynBxK1bvkONK0RPmYWSJsYq2wWN7PYmeJWOsYnUU6UdZIUzWnx2kqOtVpyLeLjJAjUFM0x62muNjUY7BnytGwOrpzzaKJ+bREybfzVNSJNWsz0ceJF/QVa/VV8uvpqvMGmIqo1kVbL1y1i8zwR+SqWYhODS7/WyIAWuDSSy9tWGtBt1DxaaedRvfee6/p7aDBAAAAAAAQhC655BKxwRAZGUkdO3akY489lo488sgWbQcNBgAAAAAIKMv//uev+w4XrzWz0rOvICUJAAAAAABE6GEAAAAAgIDCOgzBBQ0GAAAAAIAgT0U60DkPZqDBECR0aRK6VAizt/PX/vjjPnUJHbq0I10qk9nEJp3cozqLtaLdVWKtKkN+DO6vNmi3adTIKStuTc2WKSepONfISSrW1Hh5e7s1j6NWTplxG26xlmCX93PbljViLSsqU6zFJsnP/a7i7WItyZ4o1mo9cgpWjbtG3l7dbtIZlCQn5eiUuyrEWrRVTjtKzJRfa4X5W8RarFNO84qJ0iR9aZKndIlGOu5y+XjbE+XHbomLkGuaJCRragyZpUtC0tElIQU6RchsYpPZv2v++psHvod1GPyTitQcNBgAAAAAAELY6NGjD7rBsHDhQqqpqWlRQwM9DAAAAAAQUJjDYM7s2bMP+Lo//vgjTZ48mWpr96zJ1K9fP5NbRUoSAAAAAEDIWLFiBY0bN45GjhxJixYtouzsbBW/unTpUtP3iR4GAAAAAAgo9DD43rZt22jKlCn09ttvk9vtptTUVLr77rtp4sSJahG3lkCDAQAAAAAgSJWWltIjjzxCzz33HDkcDoqNjaWbbrqJ7rjjDkpMlAM5DgYaDAAAAAAQUDz91n8rPYcHh8NB//d//0dPPPEEVVRUkM1mo6uvvpoeeOABysyU0wDNQIMhSJiNgzMbTdeSqLyC4hpTEahm93XhKjnms0NqrM8fv9nHfvLQHFP3SUOyxdIs0rOtKRJrRrVTrrnkY2OJ1Lxt1LnEUkTn9mLNUytHvFZvliNAo6xyF2uyXY5HtUTLEZnOimqxFmuTIzIdmujUDlEZYi2/bqdY6xHXnXQ21mw2FY9aoYlV7RSdJda2bJOjatMj08Rawt96iTV3fplYs8TIz68rv0Ss2SOT5VoHTa23fI4aZQ5Tkau5F/cnnbOG5fo8Flp3Ox3d+7PZ90tddKr2fU/DH7HXAMHE4/HQyy+/TP/4xz+ooKCADMOgM888k6ZOnUo9evTwyzbRYAAAAACAgMIcBnM+/vhjuueee2jdunWqoXDMMcfQ448/TkOHDiV/QoMBAAAAACAInH322Wo9Be88hZNOOolcLhf9/PPPB3T7I4880tR20WAAAAAAgIDCSs8twwuxPfroo+pyMMecGxdmoMEAAAAAABAEcnJyWrRis1loMAAAAABAQGEOgzl5eXnUGtBgCHG6ZAuzyUvNpQEN6y0nwuiYTUIyy+x96h6f2fQO3e10xyV3SEft/Vb0SRdrhdMXiTVLnJxOY0mQ03c8xVVyrUZOQrIly2lWcXFyhnRtjbw9na1l8htuRmR7U8lD2x35Yi0pUU4Q6pzYTay5K2tJJye6k1iLio8Xa+UVcnqW3RJhKu2pziM/v/XLt4k1V62cPhTTS04Is6XJ50XkGb3l7f24VaxRqpyClTBaTjOacIq8PX/RJSHpkonMptG15O+FBGlHAMEDDQYAAAAACCheg8F/6zCEy0oMgeP7rwwAAAAAACBkoIcBAAAAAAIKcxiCC3oYAAAAAABAhB4GAAAAAAgoq8WiLv66b/AtNBiChC69QqclyRZzlxf4PAlJl+yhS8zQbU/3GHWPYVS/DqaOd96uSjJDl1xiNs3prGFyckuzyVPpcoqOzu/TFog1l2Z71ng5YciolxeSsaXL50VijJxoVLF6s1jr3KGnWCPNojaFxXISUqxNTtipqiw1lbxU4pRvx6y6TmJNgFSkNUqsxcTL56k9K0W+zyo57ciieY1aauR9sXaQ90X7zlYsp0vZx/UQa4eP6mrq/aI10o4C/b7+0UI5WezkoTnUVgQ66QkgXKDBAAAAAAABhTkMwQXNbQAAAAAIOUOGDKHevXvTjBkzWntXgh56GAAAAAAg5HoYFi9eTImJ8iKPcODQwwAAAAAAACL0MAAAAABAQGGl5+CCHgYAAAAAABChhyFItEYcnC5G8NXv14u1xNgIsZYSH2UqQlAXZWo2etBs5Kpue7N+3UqBpItkbC6qVkcXr1hy7WCxVrRbzvKs+majWHOtLxFr1kT5nKlbsk2sxed2FGs1eXI8qocMsWaz2MRapUs+R5Ps8hjaSleVqRrrntVbrBnVdWKttEY+3nFx7c3F36bKMb1GTb1Yi+oln2vW/nItZbgc5Xn+yG4+j2E2G23dXAyz7jXa3Os7kHTRqbrHWFBcY2p7HVJjTR0z3XtwczHUEFhISQou6GEAAAAAAAARehgAAAAAILAsFrL4OyYJfAYNBgAAAAAIKAxJCi4YkgQAAAAAACL0MAAAAABAQFn8OCTJb0OdwljYNBg2b95M//rXv+ibb76h7du3k91up6ysLBo2bBhNmTKFunbtSqFIl+zhr+SlPp3b+TwxQ3c7XU2X9qNL9jCbiKJLgTJLlxbSHF3Kiu5+35knJxoNOzRdrK3U7MuE6ePE2sJVu8TaH7+YS55y75Sf37huncSaoXnuYyvkc61dvZwuVF5RJNYq3XISUqwthnR0SUjWVDnNKyVaTjLTseekiDXboanyDdvHiaXIjvJ+XnXeAFPnjI7utZ2nSfnSvV5070ElVfJz1JKUN7PpSrrHofuboDtuusegOza6fVm5pdTUffrjPRgAwmRI0jvvvEO9e/emZ599lqKjo2ncuHE0cuRIstls9Nprr9GqVataexcBAAAAwobFzxfwrZDvYfj+++/poosuovT0dHr//ffpqKOO2quel5dHUVH4RgIAAAAAIOwaDG63m6688kryeDz00Ucf0ZFHHrnfdXJzsZALAAAAQCBhDkNwCekhSV988YXqQRgxYkSTjQUAAAAAAAjjHgae4MyOPvpocrlc9Nlnn9GCBQuotrZW9Sycdtpp1KtXr9beTQAAAICwgnUYgktINxj+/PNP9ZMTkYYOHUpLly7dq3733XfTzTffTNOmTdNGcNXV1amLV0VFhR/3GgAAAACg7QjpBkNxcbH6+eijj1JiYiK99dZbdPzxx5PD4aB3332X7rnnHhW1mpaWRnfddZd4P3z7Bx98kNoqbUygJjrUbJwfS4yNMBX3p4vK0+2rWbroRV2Eom4/8zeViLX4THPHdFS/DqYiEpuLqdU9Rl08apnmMS40eV7onl9tdOwROWKppG+GqXjFJXM3ydvbJR8zqnKKJffaPe83TUktkuNIU+pdYs2aEC3vC0eZdpJfa5Zo+e3dMkg+3+I7y/cZqTmmuufebAzzrF/lSN2Th+aYOtcWrt4t1uo1EajzF28Ta8cMyTYdq2rW3OUFPo+TNvteo3uMZmO2izTvXRAa/JlmhJSkMGowTJ48mT7//PODvt3LL7+s5iwwwzDUT6fTSTNnzqTjjjuu4Xq33Xabmgx9xx13qAbBjTfeSHFxTWeFc2Ni0qRJe/UwZGfLfyAAAAAAAEJFm20w5Ofn09q1aw/6dlVVf30rkZCw59tenq/QuLHgdd1116kGQ2VlJf366680atSoJu+TY1cRvQoAAADgK5Y9Exn8An0MYZOSxMOHuIfgYC8nnHBCw314V2+WVnHmBkX79ntWZy0okLt3AQAAAADCVZttMPjCoEGD1M+ioiJxnYaysjL17/j4+IDuGwAAAEC4wkrPwSWkGwxnnXWWSj9as2YNbd++fb/6vHnz1PwGvs7gwYNbZR8BAAAAANoyi+GdGRyiLrnkEnrzzTfVUCVORkpK2pMAsmXLFjrxxBNp9erVNH78eHr//fcP+D550jPfT3l5uUpfAt8kOkXbrG1me8Gyn/6i2x+d1tjXUH4M/hIs53ew3K4l/LHNtvZ+Aq2vLX1u8e7LqrwCSvDTvlRWVFDv3A5t4vGGijY76dlXpk+fTitXrqSvv/6aunfvTkcccYSKVf3ll1/UBOn+/fvTv//979beTQAAAACANinkv2rgViyv7jx16lTKysqiOXPm0M8//0yHHHIIPfbYY7Rw4UJKSZEz0gEAAADAtzCHIbiEfA8Di46OVmsp6BZnAwAAAACAMG0wAAAAAEAbYvHjOgx+W98hfIX8kCQAAAAAADAPPQwQUIFO6DC7vWDZz3DZn3B9DP4SLOd3sNyuJfyxTZz7EExzGPx13+Bb+IsKAAAAAAAi9DAAAAAAQEBhCkNwQQ8DAAAAAACI0MMAAAAAAAGGWQzBBD0MAAAAAAAgQg8DAAAAAAQU5jAEF/QwAAAAAACACD0MAAAAABBQmMEQXNDDAAAAAAAAIvQwAAAAAEBAYQ5DcEEPAwAAAAAAiNDDAAAAAAABhlkMwQQ9DAAAAAAAIEIPAwAAAAAEFOYwBBf0MAAAAAAAgAg9DAAAAAAQUJjBEFzQwwAAAAAAACL0MAAAAABAYKGLIaighwEAAAAAAEToYQAAAACAgLL873/+um/wLfQwAAAAAACACD0MAAAAABBYlj1rMfjrvsG30MMAAAAAAAAi9DAAAAAAQEAhJCm4oIcBAAAAAABE6GEAAAAAgMCy+HESg98mR4Qv9DAAAAAAAIAIPQwAAAAAEFCYwxBc0MMAAAAAAAAi9DAAAAAAQEBhCkNwQQ8DAAAAAACI0MMAAAAAAAGFOQzBBT0MAAAAAAAgQg8DAAAAAAQWJjEEFfQwAAAAAACACD0MAAAAABBQmMMQXNDDAAAAAAAAIvQwAAAAAEBAYQpDcEEPAwAAAAAAiNDDAAAAAAABhlkMwQQ9DAAAAAAAIEKDAQAAAABaZQ6Dvy7BYMOGDXTSSSdRfHw8paWl0fXXX0/V1dXUFmFIEgAAAABAAJWXl9Po0aMpKyuLPvjgAyopKaFJkybRrl276KOPPmpzzwUaDAAAAAAQUOE+g+GFF16gwsJC+u233yg9PV39LiYmhs466yz6/fffadCgQdSWhMWQpK+++orGjRtHmZmZFBERQQkJCeqJePjhh6mysrK1dw8AAAAAwshXX32lehi8jQV26qmnquFJX375JbU1Id9guOOOO+jkk09WBz87O1u13IYNG0Zr1qyhKVOmqIYDd/8AAAAAQPjOYVi7di1Nnz6dLr30UurXrx/Z7XayWCzqC+YDwUOLRo4cSe3ataO4uDjq378/PfHEE+R0Ove77qpVq+jQQw/d63e8vR49etDq1auprQnpIUlLly5VTxT3KsyaNYvGjh3bUONuIP7vZcuW0f3330///ve/W3VfAQAAAKD1PP/88/T000+buu3NN9+sbssf+rnngHsK5syZo764/uKLL+jbb79VQ468SktLKTk5eb/74cYGz2doa0K6h4GfKMYNg8aNBda+fXuaPHmy+vfChQtbZf8AAAAAwnsWg78uB69v375022230dtvv62+5b/44osP6HaffvqpaixwI2HRokX0zTffqInL69evVz0VP/30kxrVEsxCuochOjr6gK7HUVYAAAAAEL6uvPLKvf7baj2w79WnTp2qft555510+OGH7/X58rnnnqOjjjqKnn32WdVoSEpKauhJKCsr2+++uOfhkEMOobYmpHsYjj32WNU19N1339Hs2bP3qvGQJB6uxK655ppW2kMAAACA8NMW5zCYsWPHDlq8eLH69wUXXLBffcSIEWoObV1dnZro7MXzF/adq+B2u2ndunX7zW1oC0K6h6Fnz55q8srf//53NSRpyJAh1LVrV9V64+4hbuW99NJLdM4552jvh59kvjTOzmUVFRV+fwwAAAAALeH9vGIYRps5kP78DOW97323ERUVpS6+ni/LUlJSqEuXLtSUwYMH07Zt29R1zz//fPU7XrDtwQcfVF9g8zB5xnMdqqqqVFhPm2OEgW+++cZIT0/nV8lel3POOcdYunRps7e///7797stLjgGOAdwDuAcwDmAcwDnQDCdAxs3bjRaW21trZGZmen3xxofH7/f7/jz3MGYMGGCut1DDz0kXueZZ55R1xkwYIB4nRtvvFFd5+yzz274XWlpqdGxY0dj2LBhxldffWW8/fbbRkZGhnHaaacZbVGb7WHgCcmff/75Qd/u5ZdfVt0/Xvfeey898sgjdMIJJ9BDDz2kunl2796tJrTwf3NrjierHHfcceJ93nXXXWr1PS8ec9a5c2faunVrw1g02NOS5243bkUnJibikOCYiHCu4LgcDJwvOCY4V1qGR0bk5OSob8HbwvzSzZs3U319vV+3w70pHInamK97F5h3PS+OUZXwZOh9ezw4IYnDeW688UY6++yz1XEZP348TZs2jdqiNttgyM/PV3m4B4u7cry4UcCNhcMOO0w1DHg+A+MuI25I8H9zY+Daa69VM9ltNluT9yl1YXFjAR+M98fHBMcFx+RA4FzBcTkYOF9wTHCutMyBTuL1N/5wfKDBNKGsR48e9PXXX1MwaBtnThPeeust1To82Av3JHi99tpr6ie32LyNhca8k1O4pbtp06YAPjoAAAAACHYJCQnqZ3V1dbNfZgfzl6lttsHgCzxkSPcENR5O1BYXyQAAAACAtis3N1f95OHYEm/Ne91gFNINho4dO6qfvIhGU3755ZeGfx/Mk8jDk3h1aH+MhQtmOC44JjhX8BrCewveb1sT/g7huATawIED1c/i4mI1YqUpv/32m/rZeI2GYGPhmc8UonixjIkTJ6pJLzNnzqTzzjuvocZDkDjSiudJjBkzZr91GgAAAAAgfF166aX0+uuvq5AcnvsqGTp0qFqL4eGHH6Z77rlnrxrH+PPCbdyY3bVrV9CG5YR0D8PVV19Np5xyiprbwLm3vDw3r7kwatQo6tOnj2osdOrUiV588cXW3lUAAAAACEJ33323+vnYY4/RkiVLGn7PvQ7XX3+9+vcNN9wQtI2FkO9hYPzw3nzzTXX5448/VCQqz8zv3r07jRs3jm655Ra1PDcAAAAAhC/+sO/9gM82btxIRUVF6stl7zB39sknn1CHDh32uu1NN91EzzzzDEVERKiRKxyz+v3336vPncOHD6fvvvuOYmJiKFiFfIMBAAAAAKA58+bNU6NQmrN58+Ym576+//77NGPGDPUFtdPppG7dutFFF12kvpyOjIwM6icgpIckBdpXX32lei0yMzNVC5OjtgYNGqTGtHkX9ghX/OL6+9//rjKHY2NjVXJVr1696LLLLgv7SFuOW+vatauaa8OX7du3U7jhxRTfeOMNFXV8yCGHqF5APk/4HOFFbfLy8iiUffDBBzRy5EjV28nfSvXv35+eeOIJ9Qcn3PBj5m/lbr/9dhoyZIha3IjfT/l99dRTT6VZs2a19i62qQVOve8b/Hcm3PFCYPwNLy/eyguU8fsIfzN84okn0nvvvUfhhpMieRhMz5491TfbfDx4HaoJEybQsmXLWnv32iR+Hz6QCP9cISiHh73Pnz9fLZRXU1NDy5cvpzvuuCPoGwtKay81HSomT57csPT44MGDjXPPPdcYO3asERsbq353yCGHGDt37jTC0cyZM43o6Gh1HPr162ecc845xrhx44zevXur333xxRdGOLv22msNi8XScP5s27bNCDcXXniheuxWq9U47LDDjPHjxxsnnXSS0b59e/X7uLg449tvvzVC0U033aQeo91uN4477jjjzDPPNJKTk9XvRowYYdTU1Bjh5Lvvvmt4LWRmZhonn3yyes/o27dvw++vvvpqw+PxGOFswYIF6vXife946KGHjHDG75vevylpaWnGKaecov4OH3nkkerv8FlnnWWEk19++cVISEhQx6Njx47GqaeeapxxxhlGly5dGt5v3n///dbeTQgiaDD4wJIlS9QLMCIiYr8PNbt37zb69++v6tdcc40RbmbPnq3+qPEf/h9++GG/+ubNm438/HwjXPH5wufGDTfcENYNhr///e/Ggw8+aGzfvn2v31dWVhrnnXeeOi4pKSlGSUmJEUo++eQT9dji4+ON33//veH3hYWFqnHNtVtvvdUIJ99//736cNfU+8W7775r2Gw2dVxef/11I1xVV1erL6H4g+Dpp58e9g0GblT36tVLHYcHHnjAqK+v3+94LV261Agn/MWLt3Hd+Hi43W7j3nvvVTX+YqK2trZV9xOCBxoMPjBt2jT14uNvRJvy9ttvqzq/gMOJy+UycnNz1WPnb8Ngb+Xl5UZ2drb6xqeqqiqsGww6/Mfe+03Zm2++aYSSIUOGqMf18MMP71f78ccfVS0qKsooKytrlf1ri6644gp1XMaMGWOEqxtvvFEdg1mzZhkTJkwI+wbDlClTGj4cg2EUFRU1/D3hLy2b+tscExOj6vyFJ8CBwBwGH+BxgQciLS2NwskXX3yhxp7zeNIjjzyytXenzbn55pvVfIWXX35ZjVuHpvFcBh6D29xKmsFmx44dKreb8dyNffHrJjs7m+rq6tT8KNh7kaRQOhcOdlLm9OnT6ZJLLlFrCYU7nvPy/PPPq3/zvBfYs3jdgQq3zyVgHhoMPnDssceS3W5XkVn7LgBXWFioJi+ya665hsLJN998o34effTR5HK56KOPPqJJkybRddddR48//jitWbOGwhVP3Hz11VfpqquuotGjR7f27rT5DwTeSc/7xtgFs6VLl6qfPDmTJyI2ZfDgwXtdF4jWr18fcufCwQQkXH755ZSRkUFPPfVUa+9Om4nB5NjLrKwsFZfOk0wffPBB9ff2zjvvVO+1Ho+Hwkl8fLxaKIzxYmONwxP4WDzwwANUW1urJoPzlxIAB8J+QNcCLf72k7/x4RSgsWPHqmQPTr0pLS1VK/zxQh0vvfSSmj0fTv7880/1kxtTvArivh96eKET/pZ92rRpKuUjXPB5wQ0FfqP+5z//2dq70+a98sor6gMBp3zwH7hQSg5jOTk54nW8f8y91w13O3fupNdee039+6yzzqJwc9ttt6lzgTPgsX7Q3n9nOA2JGwj8BV3jtHj+cop7pT799FPtay3U8GcO7oHihWm50cRfPthsNvV3mHs3L774Ynr22WdbezchiKCHwUeuvfZa9aJMT09Xwww4wu3bb79VsVrc0vd+UxhOeIVD9uijj6p4t7feekv1uPBQAv6gzA2Jf/3rX2plxHDCMXcFBQXqjZzjZUHG3xZ6hxlMmTJFfbMaKrxRy7rhaPxNIauoqKBwx72UnGfOcYX9+vULux5b/nvywgsv0HnnnUenn356a+9Om/s7wx+EuXHAi26tXbtWnSfc689R3lw7+eSTwyqmmL/IXLhwIR133HGqgfDZZ5/Rxx9/rBqc3BPD8aH4+wMHI+x7GDjH+vPPP6eDxePOeYyxF3f7PfLII3TCCSfQQw89RIceeqjKln/77bfVf/N4fv6Gg1+84XJcvN/y8Jv0zJkz93rs/E0Zd41yPjE3KDhrv62P4/fFMeE3bD4WvP4EnyuhwFevoX3x/A5e14SHYXD+Pn97COH9pQyvz5CamkoffvhhaOSaHyD+8HvFFVdQ+/btVW82/KXx35nzzz9/r2/NebgwNxr4w/OKFSvo3XffVd+sh4MFCxbQmWeeqb6Y4785PPSVXzP8ex4azOcT/5t7cAEOiBHmvPnvB3v573//23Afb731VkMKktPp3G8bjz76qKpzGg6nE4TLcRk0aJD6HSclNaWioqLhdnPmzDFC/ZhwVGZ6erqRlZVllJaW7nf/wZqS5ItzZV8FBQVGjx491PWOP/54w+FwGKHmmWeeUY9vwIABzabhnH322UY48x6Hdu3ahWWqy6WXXqoe/3vvvbdfLdxTkqZPn97wnjJv3rwmr8MxvVy/5JJLjHDAf194DRteo4PXY9jXxo0bG9aICoa/vdA2hP2QJB4mcyCr+u17afztsHdM7fjx41Vrfl/eBBTuCty0aROFy3HheRyNf+6LV8Lmb8wYD9EJ9WPC81m418lqtaohBdwl3PjixecR/7f3vAqHc6UxPkb8bdi6devUN4TcM3cwqR/BwrtSqC7tx1uTVhUNB7feeqtavZdXfOZhOd6UpHDCcxb4b8tzzz233/vG119/ra7D3xTzf/OQpXDS+O+L9LfG+/tg+DvjCzw8mof/8uP+29/+tl+98e/3DWoBkIT9kCRf4PH5TBoPyJOevUpKSihcDBo0iD744AM1YbUpbrebysrK9hqrHQ54qA1fJL/88ov62bgRES74jxw3FlavXk1jxoxRQ50ONLY42Hg/+PIYbP4yoamkpN9++039PPzwwykc8XA3nufE76HcWAjHuWCN53DMnz9frHOSGF86d+5M4YRfGxyawV9C8N+aplJ/vH+DwuXvTHOfSRp/LgmnzyTQMmHfw+ALHTt2VD8XLVqk/QAYbt8UcooJv5FzfGpTH5A5T5zHnfJ1wuGDAPcq6L5xb/ytMv83R9+FE/6jzo2FlStXqsYCz/vhZKRQxakunKjGeIzxvrhHis8F7l0Jx7x9nrPC4Qj8wYbHoXuPVTjiL1ak940JEyao6/BcOf5vbwRxuMjMzGyYC9XUt+X8N8bb0OK0vnD6TMJ/e3n+S1PHhONomRTpDLCf1h4TFQpmzJihxgLyeMF33nlnv7GCPXv2DNuVSS+++GL12E844YS9VqvNy8szDj30UFUbP358q+5jWxGscxh8obi4WM0B4sd/7LHHGjU1NUY4+OSTT9Rjjo+PN37//fe9Vmrt16+fqt16661GuLnnnnvUY09OTjZ+/fXX1t6dNi3c5zCw2bNnN8xxWbhwYcPveU7h3//+d1Xj1eJ37txphANe3TkuLq7h72tlZWVDra6uzpg4caKqRUREqM8oAAfCwv+3fzMCDrar+IwzzqAvv/xS/Xffvn1VShIPr+DeBYfDob5N5G85pDGWoYq/3eBvjfnbDF5R8ogjjlDHg48Lp9/079+f5syZoxavCnfetSj4W2U+X8IJp3nwOG0+BjyHQ+pZ4F6aUIuUvOmmm9QY/YiICNWzwmlhnAbE3yoPHz5cfbseyj0t++JhaKeddpr6N/c89unTp8nr8fsJr+ES7i699FJ6/fXXVQ8Dp/WFq4cfflhFL3vX/eGeB/67wz0u/Prh4bEcrRoueG4Zp/Hx5xOeK8g9dPwew8McOWaV59LNmDFDpY8BHJADalZAszwej/H666+rb0fT0tIMu92uvjXkBJQpU6YYJSUlYXsUa2trjalTp6pvkDmZgS8DBw40HnvssbD5JvlAhHMPwzHHHHNAyUr333+/EYo4/eboo482EhMTjZiYGKNv377q9cHfBoabV1999YDOhc6dO7f2rrYJ6GH4yzfffGOceOKJRkpKivr2PDs7WyVMrV692ghHf/zxh3r8Xbt2NaKioozIyEj1uuFku0WLFrX27kGQQQ8DAAAAAACIMOkZAAAAAABEaDAAAAAAAIAIDQYAAAAAABChwQAAAAAAACI0GAAAAAAAQIQGAwAAAAAAiNBgAAAAAAAAERoMAAAAAAAgQoMBAAAAAABEaDAAAATIvHnzyGKx7HV56623ArLtE044Ya/t5ubmBmS7AAAQ/OytvQMAAOEmIyNDfYBn3bp1C8g2x44dS5mZmVRVVUUfffRRQLYJAAChAQ0GAIAA69WrF7322msB3eatt96qfubl5aHBAAAABwVDkgAAAAAAQIQGAwCAxsiRI/ebd7Dvha/jKw888IC6T/6Zn59PV155JWVlZVFMTAz17duXXnnllYbrrlmzhi644AI11Cg6Opr69+9P7733Hp5PAADwKQxJAgDQ4LkG0gTh+fPnqyE+NpvN58dw69atNGjQIIqMjKSjjjqKCgsL6YcfflANiLKyMho+fDgdd9xxqjExatQo2rJlCy1cuJDOO+88dftzzz0XzysAAPgEGgwAABp33nlnk7//73//S2+//TbFxsbSo48+6vNj+Oqrr9K1115L06dPJ7t9z1v1F198Qaeeeio9+OCDlJKSQnfccQfdfffdqkeCPf3003TzzTfTvffeiwYDAAD4DIYkAQAcpCVLltA555xDhmHQu+++S0OHDvX5MczJyaH/+7//a2gssHHjxtFhhx1GlZWVKmmpcWOBTZw4UTUkNmzYoHooAAAAfAENBgCAg8BDf04++WQVT/rss8+qD/H+wMOMeF7Cvg455BD188QTT9yrscC4ceEdPsXzHwAAAHwBDQYAgANUWlqqPqjv3LlTDVXiIUP+wj0MTYmPj9fWExIS1E+Hw+G3fQMAgPCCBgMAwAGoq6uj008/nVavXk0XXnghTZ061a/HzWq1tqgOAADgK/iLAwDQDJ6rMGHCBJVSxEOF/vOf/+w3HAgAACBUocEAANCMyZMnq/UNeB2ETz75REWdAgAAhAs0GAAANHhi87Rp06hjx44qSjUpKQnHCwAAwgrWYQAA0LjpppsaJhnz+gZN6dWrl7heAwAAQLBDgwEAQMPj8aifvIoyX5pyzDHHoMEAAAAhy2LwbD4AAPC7efPmqUnT3MDgf7eGvLw86tKlC3Xu3Fn9GwAAoDnoYQAACLA1a9bQpZdeqv59zTXX0LBhw/y+zSeffJKWL1+uFpwDAAA4GGgwAAAE2K5du+j1119X/z722GMD0mD47rvv6JtvvvH7dgAAIPRgSBIAAAAAAIgQqwoAAAAAACI0GAAAAAAAQIQGAwAAAAAAiNBgAAAAAAAAERoMAAAAAAAgQoMBAAAAAABEaDAAAAAAAIAIDQYAAAAAABChwQAAAAAAACT5f4ezHpHMtuFgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfjklEQVR4nO3dB3yT1foH8CdJ070phVLKliUICHhRUBCcKG7cintfBypuxb+K43K9KqLXvRD3RHEhgoqAoIiykT0KHXTPjPf/eY43tUCfUzhN0ib5fe8nt9gned83b0Zzcs75HZtlWRYBAAAAAAA0wN7QLwEAAAAAANBgAAAAAAAALfQwAAAAAACACA0GAAAAAAAQocEAAAAAAAAiNBgAAAAAAECEBgMAAAAAAIjQYAAAAAAAABEaDAAAAAAAIIqYBsPmzZvpuuuuox49elBcXBzFxsZS586dady4cbR06dLmPjwAAAAAgBbJZlmWRWFu4cKFdPTRR1NZWRllZ2fTwIEDyeFw0G+//UYbNmygqKgomj59Oo0dO7a5DxUAAAAAoEWJiAZDv3796Pfff6crrriCnn76aXI6ner3Xq+X7rvvPnrwwQcpNTWVcnNzVc8DAAAAAABESIOhsLCQMjIy1L/z8vKodevWu9U9Hg8lJSVRVVUV/frrrzRgwIBmOlIAAAAAgJYn7OcwxMTE7PN1fQ0LAAAAAACIkAZDYmIiHX744erfd999N7lcrroaD0maOHGi6l04/vjjKScnpxmPFAAAAACg5Qn7IUls9erVNHr0aFq/fr2a9Dxo0CA16XnJkiW0bds2Ouuss9TchuTk5AZvX1NToy71Gxq7du2iVq1akc1mC+I9AQAAANg//FGPg1/atWtHdnvzf1dcXV1NtbW1Ad1HdHQ05qX6URRFAI5SnT9/Pl1wwQX09ddfq0aCT+/evWnEiBFiY4E9/PDDdP/99wfpaAEAAAD8b8uWLdS+fftmbyykxqVSDf39RWwgtG3bViVhIszGPyKih2HevHl02mmnqfjUyZMn08iRI1XLk38/fvx4Wrt2LV1yySX00ksv7VMPQ0lJCXXo0EG98HQNDQAAAIDmVlpaqoZdFxcXU0pKSrMfCx/DUTSSogL0vbWb3DSLZqvPa/ic5h9h32DgF0f37t2poKBA9TL84x//2K3Ow5T69u1LlZWVNHv2bDryyCP3+cmOJyIAAAC0dC3pc4vvWEbTceSkv2Lu/c1FLppJX7aI+xsumn8gW4B9/vnnlJ+fT126dNmrscDq/37WrFnNcIQAAAAAAC1X2M9h2Lx5s/qpa2H6uud4IjMAAAAABJaN/xeg4BibhUAafwv7BgOnIrFVq1aprqk9x+5xzCov2MY6d+4clIXkPvroIzX8iYdJ1Z8bAdBUnP7Fq5bzAoRjx46lnj174qQCAABAk4R9g4HXV0hISKCKigq6/PLL6eWXX1ZrMzCO9OJJz9wL4XQ66YwzzgjYcfC+LrvsMpo+fbqKN+NhUNyYwex98Ce32616yv71r3/RvffeS/3796cPPvhADb0DAABoKez/+1+gtg3+FfYNhtatW9N///tfuvjii+m9996jOXPm0ODBg1UDYfHixSpilTOJn3rqqYB9qOLGAq/1MHPmTJXSdM4551CbNm0Csi8AX2zdV199RbfccouayP/dd9+h0QAAAABGIqIJdv7556vGwUUXXURJSUn07bff0hdffKFiVs877zyVnnTVVVcFbP///ve/1eTrDz/8kG688UY0FiDguOfq5JNPVg0Fbhzz8xwAAKClsNtsAb2Af4V9D4NPv3796JVXXmmWfb/99ttquNMJJ5zQLPuHyMUL9DzwwAN07rnn0saNG6lTp07NfUgAAAAQYiKih6E5rV69mn7//Xc1ARWgOZx44okUExND77//Ph4AAABoEWxkD+gF/AtnNMD++OMP9fOII44I9K4AGsTD8AYOHFj3XAQAAADYHxEzJKk5V5pmaWlpzX0oEMH4+ed7LgIAADS3QM414D4GsgKy6YiFHoYA83q9amESTmICaC48wZ+fiwAAAAD7C59iWwiejMoNC9+FGxg8lIQnrXIsJsdj/vzzz819mC0CD+/ic3T77bfv0/VvuOEGdf3Ro0cH/NgAAACgZcxh4Bj93r1709SpU/GQNBEaDC3M0KFDady4cXThhReqD7g9evSgpUuXqmhWXuxtxIgRtH79eopkl156qfr5+uuvk8fjaXQNjDfffHO32wUKx/Zyw+TVV18N6H4AAACgcYsWLaIVK1bQtddei9PVRGgwtDC8GjR/4OTLO++8o9aMKCwsVOs4HHDAATR37lw67LDDaMOGDRSpOHEqOTmZcnNz1XoaOp988ok6f7yA30knnRS0YwQAAAAZ1mEILWgwhADfcBoeksSNhp07d6qGRaSKj4+ns88+W/27sbU1fHVevI8XMAMAAACA/YMGQwhJTU2lJ554Qv179uzZ9Msvv+x1HbfbTS+++KIaupSenq7y9zt37kxXX301bdmyRdz2tm3b6NZbb6W+ffuquRMJCQnUvXt3Nczmp59+2u263HCZMGECHXLIIdS2bVuKjo5Wq1ePGTOGZs2atde277vvPtXoufLKK8X98zb5OtnZ2eo+NMbXYJoxYwYVFBSI9+nrr79ucDgS99ycdtpplJWVpY4/MzOTTj31VLXqd0N8c0t8jZBDDz2UUlJS1O94QTT++dprr6n6xRdfvNt8lIkTJ+62raqqKjXEbMiQIeox5VWZeegZn1PuDamP107gbXAPydatW/c6rq+++oocDoc6lrVr1zZ63gAAAFoCnmcQqP9hHQb/Q4MhxBx//PGqIcC++eab3WplZWV09NFH0+WXX64aEwcddJAahsONhv/+9780YMAAWrJkyV7b5A/Pffr0ocmTJ1NeXh6NGjVKrUrNH2anT59Ozz///G7Xv/POO9UH3urqapXvf8opp6jJ2Z999pna/5NPPrnb9bmxwh/KeS6BFO3pm5DEjQpO9GkMT2Tixo3L5aI33nijwevwB3ie48BzPw488MC63/ME8qOOOkoNV+rQoYM6/i5duqj/Pvzww7W9Fv/85z9VY4WPkc8Rb5s/0PO8k65du+42D8V36d+/f93tt2/frm7Dx8Af8Pl+cO9RTU0N/etf/6JBgwbRpk2b6q7PK4TzPrlRdM455+zWmOIG0QUXXKDSj1544QXV+wQAAADgdxbst5KSEk73VT8b89xzz1k2m63R63Xs2FFt85VXXmn0ukcddZS67vnnn7/b788991z1+xNPPNHauXPnbrX//Oc/qnbAAQdYbre77vebN2+2UlJSVO3222+3ampqdrsdb+eHH37Y7XczZ860tm/fvtdx/fTTT1ZycrLldDqtrVu37lY777zz1D4ef/zxvW6Xn59vxcTEqNvl5uZa++qJJ55Q2+zbt2+Ddb6vXH/++efrfsf/5t9169bNWrp06W7Xnzt3rpWUlGRFR0dba9as2a3Gt+EL37/58+c3uL9x48ZpH0Ov12sNHTpUXefSSy+1SktL62oul8u6+eabVe3II4/c7Xb8mBxyyCGqdtttt9Vdf9iwYep31157baPn6uSTT1bPCwAAiDz787klWMdyVtRY6wLnuQG58LZbyv0NF+hhCEEZGRnqZ/3hKytXrqS33nqL2rVrp3oFeIhNfTfeeKP6Jpu/1a4/Ufjxxx+nkpISNZzo4YcfVj0B9fF2hg0btlcvBw/l2RMP0+EkAv7Wn7+t3zPalD377LPcSN2txkOo+Bt2/jadhzjtK56XwL0nvILx4sWLd6v98MMP6r7Wn+/A38T7hge9/fbbqgdmz7jWe+65RyUrPffccw3uk3sGeCiRCR4+NG/ePNXjwD0+PPTLh3ssHnvsMdXT891339GyZcvqavyY8AR4XnyNrzNz5ky666676Mcff1Q9PNzbAwAAABAoaDCEIN8CXL4x9Yw/RPIHcf4wX/+DaH08r4HVn5Pw5Zdfqp9XXHHFfh0DN1Y41pTH3fMQKJ7rwBdOcWKrV6/e7fo89IYbFPwhnj84178v/OGZXXfddft1DK1atVLDidjLL7+8W83335yo5DsfPByLhwTx0CH+oL2v56g+btSY4qQrdvrppzc47IrX3uBGS0P753U6fHGtPDSJhy/xvIV3331XNZoAAABCiT3AsxjAvxofLA4tjm+Sr28uA/OtzfDSSy+pi05+fn7dv33j5Xv27LnP++fx8jfddBNVVFSI1yktLd3rd9dff72aVPz000/Tcccdp37H8x74GHh+BcfF7i+ezMzfvnPvCveW8ATi8vJyeu+99+rqe56jdevW7dbYauwc7fnB3ZRv/9yLwZf93T/PR+H5E3z+Gc8t4bkXAAAAAIGEBkOI4V4E38RlnvS7Z68DD3fp16+fdhs86dYUT6bmicmczPPoo4+qoUw8cZiH/vCHcP4Qy/U9hx35vp3nIT08JIrXkeD0Jt9k5/3tXfDhCdodO3ZUjY6PPvpIffvO37pzY4ZTnngS857niIc9HXvssfs07GtPcXFxRsdZf/88xMs3QVpSf5J2/V6d+sPJFixYQGeeeabx8QAAADT3OgwB2TZ6GPwODYYQw0OPioqK1L+POeaYut/n5OTUJfTwN/j7ij/s8/ChVatWUbdu3Rq9Pn9zz40BTu7h4Uh70kV78jAcTky6++676ZlnnlFDmTjpiXtK+IO+CR7GwzGmPDeBhyHxdnzDkfj39fnOEQ9lao7VmH37P/nkk1XDaX/wOedEJI5W5WFY33//Pf3nP/9RQ6iwIB0AAAAEEuYwhBCenMxDgRjHl9aP6+S5C+zTTz9Vcaf7yjc0yDfMpTG7du1SP/lb/T3xfj/44APt7bn3gYcN8Yd6nqzLH4R52FBTvrnnhgE3HHhtCm6A8MRi7gHhSNM951FwzwEvE798+XLyN9+EcWkdCd9j5Gt07Y9HHnlE9S706tWLpk2bpiJjuUeH543Uj2EFAAAIBTyDIZAX8C+c0RDAHy75wyIvlMbf4HNC0Z4f8HkOAE+m5cXZeEEyXkxsTzxMh9dC4JWifcaPH68mBXNDg7/554Sj+nhdBk7j8eEPrIw/sPK6D/UbC9dcc40aaqTDH9jPPfdc1fDg4Uv8QZ9v1xTcS8INKB7yc95556nfcSLUnklOvNIzLyLH55MXaat/v3x43QZuePBwn/3Fa1EwqTHCPQvcaOFF6riR09A8Be494kng9Rsd3JvAcx542Bc3NnhRvRNPPJFuvvlmdX0elrTn4wYAAADgL2qBAL9tLULwhF5OqOFv/JOTk7XX5Q/FV111Vd34dQlPpuVvinlIkW9oEEeN8gTnX3/9te6bfR6Cwt/O8/j/PfEHeP4gzAux8bfdPJeBr8cPMTcgli5dqiJDOYK1/iRnXg2Z5xfw7XnFZk4z4g/XfDw8X4I/4PuG8PDCa9yzwTUe2sNzBPjbfI4x5RWML7nkErVwG3+7Lw374ePw9Y7wHAhurDQVf5CuP57/448/Vh/QG8JDqThlyDdXgM8393Ds2LGDfvvtN3UfOf6VHzcf3yRp3cvl999/Vw03NnLkSDUEiRtEPGTIN2yIU5p4wTfeD3/w58eIGzz8uPCkaI6I5UYLn0vuieFGBZ8rvh0vKMc9Cj7cSOBUJW7ccGwuD1GS8DAm3i6vjA0AAJFlfz63BOtYLow+j6Jtu0e5+0utVUuv177ZIu5vuMAchhaGh9PwhfEHSn5R8eRmXgH4rLPOUt9QS7ingD/8c2oQD1vhCcr8wZRfLPxtO3/7zh9c95xwy3MhOPefU4Y4ZpUvPN+A13TgcfM818CHV3/mNQ/4m3qOR+WeD2448Db4dw19a78n/pDME4/5A7rpZOc9ceOAey+4gcWNHv5QLuG1DPgDNM+j4OPl+8sNLD5H3CDjb++5l2Z/8boOPCSLV8xeuHCharhxA4N7HnwNBj6n/AGfG1P8OHEjg3sceB4H17iRwtflxgI3MnmtCW4scAOsfmOBcaOOt8GNlCeeeIKGDx9eFzMLAAAA4C/oYWghPQyRZNasWWoIUY8ePVRvR2MRp9B06GEAAIhcLbGHYVz0+QHtYXitdlqLuL/hAnMYIKh4WAz3RPjmT6CxAAAAANCyYUhSgPEHYh6WwpdI/nDM4+958i4PZ+LhTzzMiuc7QHBwD1ckP/8AAKBlsdvs6hKQbf/v+3Aexs3zLK+99lp1AXNoMAQYzytgPKE4krvF5s6dq5KVeA4ET8zmMfc8TwKCg7tlfetAAAAARIJFixZF9Gcvf8KQpADr0qWL+ulbnTlS8SRf7mXhGNAPP/xQJQNBcHCaEvfqNJSsBQAA0BwCuwoDetT9DQ2GAON0I07J4dhPgObA60pwLK9J8hMAAAAAGgwBxjn8Y8eOpenTp9Pq1avxjIOg4gX1eJVojtKtvzI4AABAc8JKz6EFDYYguO2221TG/5FHHknz58/XLv4F4C/btm1T80V43YfnnnsOk54BAADACGadBgEvJMbDQkaNGkWHHXaYmtfAi3PxQl28wjCAP+cr8DyR7777Ti1Kx8+vzz77TD33AAAAWgq7zaYuAdk25jD4HRoMQWw08MTnOXPmqPkMn376KRUWFqohIwD+wvFxaWlpavVnTqXihiknUwEAAACYQoMhiJxOp1rhmC8AAAAAkTyHwbdeQiC2Df6FMwoAAAAAACL0MAAAAABAUNlstoCFcdgwh8Hv0MMAAAAAAAAi9DAAAAAAQFD9NYMhMN9bB2q7kQxnFAAAAAAAROhhAAAAAICgstv+WoshINsOyFYjG84pAAAAAACI0MMAAAAAAEHFayUEar0ErMPgf2gwAAAAAEBQ8XCkwA1JCsx2IxmGJAEAAAAAgAg9DCBanVsi1npkpbSYM1ft8Yq1WIfd77czFez9hYtAnLeW9NhvyisLidcZhP57ZSTA+2zowJCk0IJPKQAAAAAAIEKDAQAAAACCym6zB/TCBg8eTL1796apU6fi0W0iDEkCAAAAgLCzaNEiSk5Obu7DCAtoMAAAAABAUP0VqoqUpFARUUOSamtr6amnnqJhw4ZReno6xcbGUvv27en444+nd955p7kPDwAAAACgxYmYHoatW7fSscceSytWrKCMjAwaOnQoJSQk0JYtW+j7779X/z7rrLOa+zABAAAAwp7NZleXgGw7sr4PD4qIaDBUVVXR0UcfTatWraKJEyfSnXfeSU6ns65eWVlJa9asoXCMkWuKjplJRjGCcxdvE2sxCdFibUiv1mJt+aZisTZ6cI5Y+3DBJrGWu2GXWDtqRBcKpllz1ou1rM7pYi09UT6fjdmUVyHWyneWGR2P7rHQxYcuWJkv1pLinUb7W7Byp1hb/scOsVa9qkCseVcVijV7l1T5duvl568tVn4b/nBlHuk4+7UVa+6V8v1wntZLrGX0zxJrNRW1Yq2qQH4+pXZMM3p8yypdRrc7sGOq0WvNmRgj1oYPyjZ6z1veWn7sG3sO6zz3+i9iLadXptF7hu49QXe+ddsc0quNWHt95iqj82369wCRqwDmIqLB8PDDD6vGwhVXXEH33XffXvX4+Hjq379/sxwbAAAAQKTBHIbQEvZ9Ni6Xi5599ln171tvvbW5DwcAAAAAIKSEfQ/Dr7/+SgUFBdSuXTvq1q0b/fHHH/Thhx/S9u3bKS0tjQ4//HA16dluD/u2EwAAAECLYKu3XoLftx3+34cHXdg3GH7//Xf1k9OQbr/9dnrsscfIsqy6+qOPPkoDBgygjz/+mDp06NDgNmpqatTFp7S0NAhHDgAAAADQ/MK+CVZY+NckxSVLlqjGwTXXXEOrV6+mkpIS+uabb6h79+6qdsIJJ6jhS9IciJSUlLpLTo7ZJDUAAAAA4F6AwP4P/Mtm1f+6PQzxh31ORWLnnHMOTZ8+fbf65s2bqUePHlRdXU2vv/46XXDBBfvUw8CNBm50tPQVBHVpRo3pkZUS1NSmWIfcfp2zLNdom1mt4sVabmGl0e1MEzremSuns5w1vItRupAuyaoxuhShEX2yjJ5TpmlPOgX5cnJLmSadRpdo5NLcd7LLf2jcW+Rt2mLkDlurUk4XKnWb91impsjJYqR5PenY0xPFmk2zzeihHeWNpsWKpahOcqLRlRcOFGszF20Ra6cN0RxLC0uj073vme5T99rWvbfp6N5rTN+jdPddR/ceFIj9hQP+3MJfeLaEzy2+Y7kj+VaKtcnJZE1RbdXQw6X/ahH3N1yE/asnKenvN48rr7xyrzoPQ+LeBTZr1qwGtxETE6OecPUvAAAAAGCIv5wJ5AX8KuwbDF26dGnw3w1dJzfX7FtsAAAAAIBwFfYNhoMPPphstr9ampyW1BDf7xMT5a54AAAAAPAT/mwWyAv4Vdg3GNq2bUvDhg0ThxzxROe5c+eqfx9yyCFBPz4AAAAAgJYs7BsMzLe6M0+AXrBgQd3v3W433XzzzbR+/Xo11+Hiiy9uxqMEAAAAiAw8+sNmD9AFPQx+F/brMLBRo0bRAw88QPfcc49aqI17ErjngRd127hxI8XFxdFbb71Fbdq0ae5DBQAAAABoUSKiwcDuvvtu1VB44oknaOHChbRo0SLVaLjooovotttuo549e1I40kWjNhbZp6vr4ulMI/Z00am7ymuNIhR129RFh+ruu2mU6biR3YyOc0ivNkbnurFjNb3/Oolt5P1teG2JWLPc8v5cS3fIt6tueO0URXMf3Nt2iTVbrFOsReW0EmvbVq8Qa+nRaWLN5XWLtVZxGaSTu2urWGsTI0euOlolGUXHRmXL0bg1328Qa7Zo+U+Np1WCWJsyS96mvZt8Tj8UK/roY93ryTSGWXe7pry+F6zMN4pp1kWumtLdR9PzpnvvmquJUx4+KNvvUeEQIDzNIFA9AZjC4HcR02BgxxxzjLoAAAAAAMC+iagGAwAAAAC0AAFdLwFdDP4WEZOeAQAAAADADHoYAAAAACC40MMQUtDDAAAAAAAAIvQwhLnVuSXGiRG6pBzddnXpFrrUD9PUng8XbBJr6YnRRvdBl+yhSzXR0d0H0202lsCie4x191+XQlK2Vk7R8XwvPxb2lFix5l4npxbZk+PEmi7LyaqoEWvOrvL53rV6nVjbuWK1WOsW38Uolag2Tz7OxujSl2zx8nPfkZks1qxqOZHMU1Aq1uxxMWKNEuSaa52c9uMoTpT31yrOKJFr6hdrxFrn47uLtQM7pgYkfUeXOKfTMVNOl5q5aItRqpxpMp5pGp/u74GuduFos1RD0/sHAVyHIUApSViHwf/wCgEAAAAAABEaDAAAAADQPHMYAnUhosGDB1Pv3r1p6tSpeHSbCEOSAAAAACDs8CK9ycnyEEzYd2gwAAAAAEBw8fyFgK30jHUY/A1DkgAAAAAAQIQehjDXHOkdOroEJZ0FK3eKtdGDc4ySNnTHYpr6oTtnr83+U6ydNbyL35OlGkuQ2qBJiyFNopF3npzAYkuINkpC8uTJ6Ts2p0M+lopqsUZeS65pbpcYJafPpKQfKNbyC+Rkqbi8KrFW4pYfX1sj3+nEOeTHqbZCTtByr9gs1pyJ8WLNkSF37Xtyi+TbJcnHadfUSPN6ci+V3xM8BfI5jTqgtVjbUO6Sa9ny+8WC/llGr+3G3k9071G6hDTde6Juf4FI3At2+hDSjkII1mEIKehhAAAAAAAAEXoYAAAAACC4bPa/LoHaNvgVzigAAAAAAIjQwwAAAAAAQWWz29QlINsmpCT5G3oYAAAAAABAhB4GAAAAAAgupCSFFDQYoMXE2uli+7JayVGPOrpYwmDH7+niFU2P5fkZK7T1ssVy1Kd3VaFYs/dsJdasSjl6kjQ1e1KMfCxFcnQqaWJVHZlynKNVLR+LVeuWt5ngEWvlRXI0bIImjnV7da5Yi7bLUbS13lqxpvaZJN//qtICsZYckyrWNhWuF2udkuRYWXuy/Br1bJPPmyM7XaxRlXz/3YWa6NT28vPXpnmteXeUizVLEwuct1B+nS3IlJ8XbEivNhQKdO+lc5blGt0/XRyr7u+Bju52LenvAUCoQYMBAAAAAIIsgCs9Yw6D36FJDQAAAAAAIvQwAAAAAED4zGGwkJLEqqqqaM2aNdS+fXtq1Uoeqrkv0MMAAAAAABCCfvjhBxo/fjwtXbp0t99Pnz6dMjMz6eCDD6asrCz6v//7vybtBw0GAAAAAAgqm80W0EukeP755+npp5+m7Ozsut9t2bKFLrnkEqqoqKCUlBRyu910//3309y5c433gyFJEaza49XWdakRurSJQCRY6JimW+ju/6Y8OYHFlO7+6Y5Fd7uyP3bqd1orJ/7Y28jpLdZG+XGyxTvJSJT8ODkykoz2V7tyu1jbulNO+9lRLZ+39Gg5QajMLafo2DTfv6Q65TQYt6VJlmrkj15B8Q6xluxMFmsut5w+1C6mrVirzpWTl2Iz0sSaPS2RTHiLKzVFS95fhpzY5N6oSWzKkR97q1JO1rIlyElXi5+cTzrLR3YWa1md5QSp0YNzgppUp6NLsdMdi+n7nikkIUE4WrhwIfXr148yMjLqfvfGG29QbW0tTZw4ke69917VCzFixAh65plnaPjw4Ub7QYMBAAAAAIILcxj8oqCggA48cPfI69mzZ1N0dLQaqsQOP/xwGjJkCC1ZssR4PxiSBAAAAAAQgsrLyykuLq7uvy3LokWLFtGgQYMoMfHv3t1OnTrR9u1yr3xj0MMAAAAAAMHFQy4DNdcgguYwpKen08aNG+v+m3sRysrK6LDDDtvtei6XS/U6mEIPAwAAAABACBo8eDD9/PPPNH/+X/OlnnzySTXpe+TIkbtdb+3atSotyRQaDAAAAADQPHMYAnWJEDfccIMahjRs2DDV2zBt2jTq0qULHXPMMbvNc/jjjz9owIABxvtBgwEAAAAAIAQdddRR9PLLL1PHjh1VMhKnIM2YMYPsdvtuqUler9c4IYlhDkMEa0rEnGlUXo8sOV4yEHGsuuPURaeabjMQkYVzF28Ta0l922hv22jsqkD33YytnRyR6V1fLNbcf8qRnDtWrhRrebXy7Zx2+S0sK0Y+N6mJ8vMwPlqOm11ftt4oOtVjyfG2Fa4KMlXiLhVrCVHy/XDYHEb7c0bJ41+rC4rEml3zjHKmaeIzXfJ5c3aT41/da/PFmi3WMBZYwyqtkYtufXx15cerxdr6ZPl8b+qY6vf3WdPbzVmWa7RN0/dgndzCSr/fPwgQpCT5zbhx49RFctVVV6l1GepPgt5f6GEAAAAAAAhB33//Pa1Zs0Z7HU5RysvLo3nz5hnvBw0GAAAAAGiGkKRArfQcOQ/miBEj6NFHH230eo899hgdeeSRxvtBgwEAAAAAIERZlrzyvb9gDgMAAAAABBfmMARVUVERxcbGGt8eDQYAAAAAgBCxefPmvVZ73vN3Pm63m5YvX05ff/01de3a1XifaDCEuQ8XbBJrpw3paLxdXeKPLolCl6AUiNQi3f5021ywUk4XGtKrjd/vw0vvLhVrB/aV02A25TWSsKNJUXKVy8ku1fO3ijXvml1ibedXC+XbabpM4xx/L2u/pz5dBou10lx5mfsaby2ZqKiSz2m6M80oJamwVj5nds3I0JQ4eX+NpR3VeuXHt9JTJdayEttpdigfa22tvL/EBDnRx1Ukv2aiNKuSurdqzmlqvFxrJaeEWOUu+XZtEsySkKIaGfmrua0tQ74fn731u1hbflgHsTZ6cA6ZMH1PDATde35WK/mcQQuDlZ6NderUSc3V8Pnggw/UpbFhS+eff77xPtFgAAAAAAAIER06dKhrMHDPQnx8PGVkZDR43ejoaGrfvj2dfvrpdPXVVxvvEw0GAAAAAAguzGEwtnHjxrp/8wJtY8eOVYu3BRJSkgAAAAAg7AwePJh69+5NU6dOpXD1yiuv0KWXXhrw/aCHAQAAAACCyrdmQqC2zRYtWkTJyckUzsZpVnj2JzQYAAAAAABCnMfjocLCQqqurtbOfzCBBkOYO7CjnE7SGF3CUCDo0pV0qUy69CHTpI0RfbKMkqd0cgsrxZozMUasrdlQJNbKfmo4Rq1OtJyiQ7UesVTx+s9ibVPVFrHWOaObWPNWyCk6FskJStu3/CnW2qZlizVHuZy+U+2R30yL3fJzrUtSF3mbLjl5yEvya6lLfCexVl5dSqZcXrdYy24nP07bt68Xa5kxDU+qY0nJ6WKtrHSX0e1ssdFGiU2udXKiT5Tmfc29pVCsxR13oHy7DfL9i8rRvwd7C+T3BatUfs3YM+XUpg2a/W3S/E3QvUeZpsPpmKbfBeJvWiD2B43gXgCexxAI3gha6pn+6km59957ae7cuVRTU6PteeGYVRNoMAAAAAAAhKAFCxbQyJEj63oV0tLSAjIMCw0GAAAAAAiflKRAbbcFuu+++1Rj4ZJLLqGHHnqI2rQJzLooaDAAAAAAAISghQsXUo8ePeiFF14I2CRyhgYDAAAAAAQXVnr2C56T0L9//4A2FlhEzvKZMGFCXZzXgw8+2NyHAwAAAACw33r27EkFBQUUaBHXYPjpp5/o3//+d8BbYgAAAADQyByGQF0ixBVXXEE//PADrVu3LqD7iaghSZWVlXTRRRdRVlaWWv3v448/pnCni61rSmxqsCNQA7E/3e10+zONqp27eJtYu3B0T7H23Ou/iLXOJ/fS7nPDa0vE2rbXZ4u1FKecsNAuVo6c3VWcJ9bSW8u38xRXiLU28fIErpJS+VuVOEe8WEuKSiQjmteMLqrVaXOKNa8mUrbErY+rjLfHibXWafL5rsiXz1tGtBxzatfEnFqWfD9SOuSItV2bNoq19FQ5ctZbIZ9ve7J8XhyZ8nPbpotq/SNXPpbCMqNjUZwOo+hUW4ocxexdKL/XfFYtRyqeePHBFMz3Z9MoU9P3fESnQrg2GObPn09HH300Pf3003TssceSw6GJVDcUUQ2GO+64g9auXUuff/45vfvuu819OAAAAAARKRgrPUeCLl3+Wh9o48aNNGbMGIqKilJfjNvt9gbPi2lPRMQ0GObMmUNTpkyhCy+8kEaPHo0GAwAAAACEtI0bN+7W0+tyuWjz5s1+b0hFRIOhvLxc5dNyNu0TTzzR3IcDAAAAENmwDoNfbNigW9vdfyKiwXDLLbeoE/rRRx+pFfD2Fy+zXX+p7dLSUj8fIQAAAADA/unYsSMFQ9inJH399df03HPP0dlnn02nnHKK0TYefvhhSklJqbvk5MgT+AAAAABgH9dhCNQF/CqsexhKSkro0ksvpdatW6v5C02ZLD1+/PjdehhCpdHQlFQIXYqSrmaahKTbpun90N3ONEFpwcp8o2OJSZATZt6Zu16sRcXKL9OVF72v3ee2TavFWrv0DmKtplxOLYqyyekLqU45LcVbXCnW7PFy4ou7okqsJTjkFJkKj3wfUtPl5CUqLBdL+bUFRklIlV75PuyslJOlMpytyJRNk2jkKnGJtdgYOdXHcnnk/WnSfsq3yAlDKckZYs1TJD8Wtih5f1ZVrbzNPLMeYl26kj1Bfv5a1S79djWpa7YMOenLu7FYrHl2yufN/o9ssfbZf38WaydedYjRe6kuQcmUbn8zF20Ra6cNCc43sQDNgT+bTps2TS0fkJ+fT6NGjVLrjrE1a9aouQ5HHHEExcbGGm0/rBsMN954I23dupXeeecdysiQ/yg1JiYmRl0AAAAAwA8wh8Gvo2nOPfdcKioqUhOfeXJzdvbfXw6sXr1ajbJ566236MwzzzTaR1g3GHjOAsdLPfPMM+pS36pVq9TPl156iWbNmkVt27alt99+u5mOFAAAAABg/6xcuZJOPfVUqq2tpauvvpqGDx9OZ5111m7X4bUZ4uPj6ZNPPkGDQeJ2u2nu3Llinbto+BKsSSMAAAAAEY+nGQRqqkEETWGYNGkSVVdX03vvvUennXaa+t2eDYbo6Gjq378/LV261Hg/YT3pubi4WHXNNHQZN26cus4DDzyg/rt+ji0AAAAAQEv33XffUb9+/eoaC5L27dtTbq48nyyiGwwAAAAA0AIhJckveIJz9+7d92nETUWFHAbSGDQYAAAAAABCUEpKCm3btq3R661fv54yMzON9xPWk56haVGluroudjQQUXm6+6GL7dPdbsHKnWJtRJ8ssZZbKMeDZrWKN7qdzqLnFstFTcwlaxWtieXUPL52wwGg9mQ5ktPRWo6ldG2Uo2oLaneJtVK3HJGZHdvOKHaz2lst1uId8v3zWpZYc9rkt9qc2PZizSL5+dtYrKxVLd9Hp12OgC2uLhJrsQ45js9V4zK6nU5VeZlYi0+Sn082TcypW/Nci+rU2ige1ap1izVPvj7G1Z6kOdad8reBtkT5MXQeLkcmU7V8rFQrv5/MmiNHP197zgCj92Ad0yhtRKeGDpvdpi6B2nakOPjgg+n777+nzZs3U4cODb/2ly1bpuYv8ORoUxHbw/Dqq6+quQt33313cx8KAAAAAMB+u+yyy9Sk53POOYd27NixV72goEBdhz/z8k9T6GEAAAAAgOBCSpJfnHHGGTR27FiVktS1a1caOnSo+v28efPopJNOojlz5lB5eTmdd955Kl7VVMT2MAAAAAAAhLrp06fTHXfcof7Na4uxtWvX0meffabWZ7j55pvVyJqmQA8DAAAAAASZ7a+kpEBtO4I4HA566KGH6JZbblExqzzB2ev1Uk5ODo0aNapJk5190GAAAAAAAAhxaWlpja7HYAoNhjBnmjTRlESjTXllRrczTWXSpSTptqlLQnp+xgqxdsWY3kaJILr7/tQpb4o11wp5oRXLpUk84fufkSbWvKVyapMzLckoEYY0yRSeHcXy7TTnLT1avg9xjhijJKDyajm5JjlKTt+J06T92DTfaJW5y42SnpKiEklnl0tONCrOl18zXdMPEGsVpWY53Q6bwyglyhYt12Ls0fL+2qYaJRrZHPJxWmVyQpZHs01tOpjmOJl7m/y6iBnaUT6erfL7LGmSl6wN8nOGauXXoXxmiFaPKGkx7/m625keCwQI/70IVJpRBKUkTZkyhc4//3zVWAgkvEIAAAAAAELQDTfcQO3ataOzzjqLvvzyS5WGFAhoMAAAAABA86QkBeoSIU477TTVSOCUpBNOOEHNW7jrrrvUpGd/QoMBAAAAAIKLJzwH8hIh3n//fdq+fTs98cQTdNBBB6l/P/LII9SzZ0864ogj6JVXXqGKCrOhpvWhwQAAAAAAEKLS09Pp+uuvpyVLlqjLddddR61ataIff/xRLdbWtm1buuSSS9SK0KbQYAAAAACA4LIH+BKh+vXrR08++aTqaeDeh9GjR1NNTY1ah2HkyJHG243gUwoAAAAAEH6ioqLU/IZnn32WrrzySvW7pkyIRqwqGEWE6phG15lGkprG7+n2171zmt9j+6be9LlYy/tusVjL6H+gWHP9uYN07Ely3GNVvhyr6qitEWvOKDnq0p4cL9Y8xcVG0ZP2siqxFl0rx0eS5rlmr5LHt1Z65P2VucuMYkUtkp9rraJbibWYFPn5xBJK5WOt8FQaxdgmRCWItbhE+XhspmOGvfIfsJg+HeT9xcvPw5qf14k1R6b8nuDJk1/bzq5txJpVUWMUuarEyvG/rj/y5Nvp3p9/3ibXajxiyXFIO7Hm/VOOY12wMp/8TfferaN7D4YWRk1ODtBcg8iZwtAg7lH46KOP1PyF2bNnq0Xc2IEHyp8nGoMGAwAAAABAiFu4cKEaevTOO+9QSUmJ6lFISUmhs88+my6++GI65JBDjLeNBgMAAAAABBX3Shr3TO7DtiNFbm4uvfHGG/Taa6/RqlWrVCOB7/+RRx6pGgmnn346xcbKi47uKzQYAAAAAABCUIcOHdSQI24odOzYkcaNG6caCvxvf0KDAQAAAACCK5ALrNkib3LzJZdcQqNGjQrcfgK2ZQAAAAAACJgdO3aoeQqBhgYDGCUa6ZKCTBMsFqzcKdZG9Mky2uacZblkYld5rVHts7d+F2vrXpgh1rJzuos1q0reX1R2Oul4CuVUn/ikZPmGmsfeFi8nE3lL5WSeUnepWEvOl/eXXyUnxSQ45ESfxFZy+tDWovViLSVKPi+psWlGxxnvkJNyPJacWlO8S35NsJRE+T62Jznxxl1ba/S80EXylZfKKVhOu5wEVOySb1e5c41YS3fKj0VSjHwfanfuEmvxgw8Qa641uUavQ/c2eX/M2TlTrNmS5deapUk7Io/8OHny5PcE+0b5fd2eLKdSFSzYItaWx8uP/ejBOX5P6YMQYrf9dQnUtiNEShAaCwzrMAAAAAAAhID/+7//o08//bTB2u+//05bt25tsDZlyhQ1dMkUGgwAAAAAEFycZBTIS5iaOHEiffzxxw3WBgwYQPfdd1+DtV9//ZU++eQT4/2iwQAAAAAAEOIsy2rSas46mMMAAAAAAMGFlKSQgh4GAAAAAAg7gwcPpt69e9PUqVOb+1BCHnoYwCilQpdMtEmTwqFLXtIlIenotqmj25/uvuvu36orGh5XyFpHZ4g1e5K8CqMjJ1Ws1f66mXRsTvklbrnklJWaEs1jqElJssfJNZJDksgeKyepxNTI6SxJmXLCTNHObWLNYXOQCV0SUqxdfgyrPTWaY3GLtTJPufZ4akprjY7HZbnEWusEOfHH0qRg6ZKgdAlZLku+/50zuhkledlT5fQsR7V83z15pUbb1CUh6V6Darvt5UQne9tEsVY7R076crSTU1OcB8vpWbYo+Zx68+TH3n6AnNa14dftYm1TR/m9TadHVorRe7fp3woI3ZSkRYsWUXKyJhEQ9hlePQAAAAAAIEIPAwAAAAAEF+YwhBQ0GAAAAAAAQsRvv/2m1mPYnxr/vinQYAAAAACA4ArkeglhvA4DW7p0qbrsT43jVm1NOC9oMAAAAAAAhIAjjjiiSR/8TaHBAAAAAABBxR96bQFKSWqOD9TBMmfOHGoOaDCAUQTd6tySoEbe6fYX7OjUjy/4UKzlrVsr1jJaZ5MJz3Y56tHRWh8XZ0/TREFuyBdrcZrtejQRkoWVBWItzSlHKNpi5ejUVGot1vJ3yLGyUZro1A6ZXcXa5rx1Yi3dmSbWEtPkONLcfPk4q7zVYi3eLkeVMi95jWJOXZYcY2vVyrGj3mo5xtVryceyrXqHWOsQJ78u7Jrn4c41q8VamyQ5jtXS3AdnjzZizb2lyCg61VslR+qq46mQj8ezTn6t2VvJkau2ZDne2KWJOY3qJkc/W5r3S1pbKJYyxvYRa19+uUasHXdcd7//HUHkKoA5NBgAAAAAILiQkhRSsA4DAAAAAACI0MMAAAAAAMGFlKSQgh4GAAAAAAAQoYcBAAAAAIKLE5IClJIUsO1GMDQYwIguCUnHNMGiY2aS0f506Uq6bc6as16suVZuE2uZB8jJHvbEWLFmi5dTglxrcsVaVJac2qO2G6d5iWseC8+OYnmb0fI2M7Pl++/dVS7W8nI3ibVYh5z4khQlP4alrlKjPya6dKVqTaJRRcEWseay5OSh9rHtxNrWajnRprFj3eWSU32cNjklKV6zvzK3nB6WEic/F3tH95I36pTvg2tjnlhrFScn+hRtklOp0rp0kve3ItcolYgS5OdodNdM+XacPlQkP6e0NOfN2lUl1hzt5Pdur+5Yatzy/lrLz5qCz+UkJMo2e1/X0f0dAQBzaDAAAAAAQHAhJSmkYA4DAAAAAACI0MMAAAAAAMGFlKSQggYDAAAAAEAIcDjk+UuNsdls5HbL85F00GAAAAAAgOAPig/UwPgwHnBvWVaz3DaMTykAAAAAQPjwer17XcaPH0+xsbF0ww030K+//kpFRUXqsmTJErrxxhspLi5OXYevawo9DOD3uFIdXZSpaeSq7nY6m/LkiMiK138Xa/bWyWLNkSLHC7r+3CHWnN3aijVbbLRRNCpzb5GjNa3qWrFmT9aFa8q8xRVyraJGrLktj1iLd8jHYlMxGw1LdsqP0/adG8RajVc+LzpZiXI8akFFvlgrrN0l1nKScrT73FImR7m2im4l1vJrC8RaUpH8uvBqvp1yZMpxnTVb5fvvjJYfX2e2fB92bdoo1lIS5dtVbZJfhzEp8vuTt1COBXZkpYo190b5XLMozW1NuTXvz84ecsyrPT1OrHnz5Ne2LU6O6aVETU1j7mI5vrp7ZznCd0ivNn7/WwEBgjkMfvHKK6/QE088Qd988w0deeSRu9X69etHjz/+OJ100kl01FFHUa9evejSSy812g9ePQAAAAAAIeiZZ56hoUOH7tVYqG/EiBE0bNgwevbZZ433gwYDAAAAAAQVT8AN5CVSrFq1inJy9L3RLDs7m1avXm28n7BvMLhcLvr222/p1ltvpcGDB1Nqaio5nU5q27at6qL5/PPPm/sQAQAAAAD2W1RUFP3xxx+NXm/ZsmXquqbCvsEwd+5cNW5r8uTJtHXrVtUlc9ppp1Hr1q1pxowZdOKJJ9KVV17ZpJnjAAAAAGCQkhSoS4QYMmSIagw89dRT4nWmTJmiGhWHHnqo8X7CftKz3W6n008/Xc0cP/zww3ervfPOO3TeeefR888/r8Z/XXjhhc12nAAAAAAA++Pee++lWbNm0U033UTvvvsunXvuudS5c2dV27hxI7355ps0f/581btw9913k6mwbzCMHDlSXRpy1llnqVnlL730Er3++utoMPgpCUlHl1Kh21+PrBS/H+eClXJyS83SzWLNFq152XjlnqqoDhlizVMkJ5A40hLk3Wlup7abV2KUhFS9s1CsJfT9642oIbXLthglOqVHy6knNs0iNZW18v2v8lSJtdbR8mOh47LcRklIusSmXbVyklVRpZygxNKc8utCJ9YeIx+PSz4eh01+LEo2y499YpL8+FqaBDRvRbVYi9bch6rKcqP7YE+VX2uWJuVLx6p1aeuekkq5tqNYrEX3kFO5onLk8+1anWeUoGR5zHrhPb/KqVSOg+V0uLI/doq1Xa0T/J6EFIgkPmgEUpL8gnsNpk+fTpdddhn99NNPqnFQH4+gSUxMpBdeeIEOO+ww4/2EfYOhMQMGDFA/t2zRfNABAAAAAGiBxo4dS0cccQS9+OKLaig+D8H3TXQePny4ilLNyspq0j4ivsGwdu1adSKaeiIBAAAAYB+hh8Gv2rRpQ3fddZe6BEJENxh27NhBr776qvo3z3OQ1NTUqItPaWlpUI4PAAAAAKC5RezAPLfbTeeffz6VlJRQ3759VVKS5OGHH6aUlJS6y77k3QIAAACAAClJfsVfZvMibvzZ9thjj6XHHnusrrZmzRr6+uuvqbpanhfWmIjtYbjqqqvU+gytWrWi999/n6Kjo8Xr3nHHHTR+/PjdHhQ0GgAAAACguXFjgNORioqK1CRnXriO5y/48IJtp5xyCr311lt05plnGu0jIhsMHLHKyUhpaWkqJal79+7a68fExKhLuNGlQrCOmUlBTaLQ7U+XhLR8k5wkMnqw3Bv0wVEvGyUI6VKSojqmizXXWjmdxJ4cJ9bcmwvkY4mVG7qssFK+bUbC328me4qOlp/vrvVyeok9Qb5dTbmcaOSxPGKtrFpObGoVL6cdVVXIKUlrKtaJtfaxcvpMpSZ5KUWThLSzRn7sc5Lk52hFtZz2w+w2u9E+s2LaGG3THh9jlBBm1cjpUqZi7PJz35EQKx9LrXws3tJKo/cET678HuRoJb+vqbrmfc+RIddsTvlx8uwsk7eZIt8Pq1ROgrKnyeeUEpxiyRYv16hcTpDqfLz+77K/IQmpGWAOg1+sXLmSTj31VKqtraWrr75aTXLmFND6uMchPj6ePvnkEzQY9tXNN9+sFrfgFZ+5ReZLSQIAAAAACCWTJk1SQ43ee+89tTAx27PBwKNo+vfvT0uXLjXeT0TNYZgwYQI9/vjjah4CNxYGDRrU3IcEAAAAEIFsf/cy+PvC244Q3333HfXr16+usSBp37495ebmGu8nYhoMt99+O/3rX/9SjQUehjR48ODmPiQAAAAAAGP5+fmNDq33hf1UVOgXe6VIn8PAS2E/+uijdcOQ0FgAAAAAaAEpSYHadoRISUmhbdu2NXq99evXU2amvJo7RXqD4dNPP6WHHnpI/btbt240derUBq+XkZFBkydPDvLRAQAAAACYOfjgg+n777+nzZs3U4cOHRq8zrJly9T8BZ4cbSrsGwy7du2q+/fixYvVpSEdO3ZEgwEAAAAgGJCS5BeXXXaZGj1zzjnn0AcffEBt27bdrV5QUKCuw3Gr/NNU2DcYLrroInWB4MXI6aJTdfucs0yejDOklxwDqbMpT44X1PHskGMSnV3lY3Fv+ruBuj9smvNiT00Qa94K/SIsbQ/qYxbXqomO1cWjxrZpJdaiLTl201spxznGxWhiIF1yHGt6dJpYq/TK8aguS4561Kn2yI+FRfJ9r6qpNIqbVbfVxLzqOBM151TzOOnonjPaSNJC+TVq18Sjmr5myOkQS95iTfRvQSkFgmvdTqO4ZZsu4tZQVIb8ONnby7HB3s3yubG3kR+LqD6txdqG2evFWueRXYwiuHtkpYg1gFB1xhln0NixY1VKUteuXWno0KHq9/PmzaOTTjqJ5syZQ+Xl5XTeeeepeFVTYd9gAAAAAIAWBj0MfjN9+nQ17P6JJ56gWbNmqd+tXbtWXThSlZcUeOSRR5q0DzQYAAAAAABClMPhUPN1b7nlFhWzyhOcvV4v5eTk0KhRo5o02dkHDQYAAAAACC6kJPldWlpao+sxmIqg4CkAAAAAgPAxcuRIeuyxxxq9HieB8nVNoYcBAAAAAIILcxj8gic1d+rUqdHrrV69mubOnWu8HzQYIpguzaixRCPTJCSdrFbxRmlHHTOTxNrU5xYaJaLE9Oso1uyaJBH3Rk1Kkl1eqt61IU+s2WKdci1arrGalVvFWkyv9mLNW1Ur1pzVcoqQt1xO7bEq5W1Gd909Bq6+4jVyWkq1R5Ou5JATZtrGyElXdpIfp6g4ObWnsEx+DHV0KVDe6nLtbau8cjJTokOTrqV5DMtq5MSbWId8/6s8ctpTWvuGs8GZxy0fi0OTaGRVyO9BuzZtFGtxDvl8x2bIyVq2RPm1FpWVKtZqV8ivQebsniXW7HHRZMJTIL9fOlrJzwvXKjmxKapWTuyyauSaLUr+e+D+WbPYVI6caLThizVibfS9o8QaEpQgkrlcLrLbzQcWocEAAAAAAMFl+18vQ6C2Dbv5448/qFUrOfq8MWgwAAAAAACEiEsuuWS3//7xxx/3+p2P2+2mFStW0G+//abWZTCFBgMAAAAABBdSkoy9+uqrdf+22Wz0559/qotOu3btVPSqKTQYAAAAAABCxCuvvKJ+WpalehaGDRtGl156aYPX5YXb2rdvT0OGDCGnUz/vUQcNBgAAAAAILqQkGRs3blzdvydOnKgaA/V/FwhoMAAAAAAAhKCNG+VUOH9CgyGCNRZ/qoug00WZ6iJXTeNRdceqO07v3E1izd46WazZ4p1G0ameQvn+WbVu+VgS5LhKd6Ecc+nM1icexPSR4yyr/pDfZGI6yrGjNk08rC1afkupKJMfp6RiOZIzIVrzvHDL563GK8e41nrlONYETRypTfM8dHnlxzfeLke8el3y7ao1saks3SnHgMZpIlC3VshRnzmpcqRwXmmuWEt1ytGiVpkct2u32Y2eT7rHIiVOPi/2tESxlr9Nfk1kHtBdrLm3yu8JUZ0zScfRRn5+u9cXyDfURM5GdUgXa1alJsY2WxMrmxwj18QKv5fKj6G3VBO1nCU/Tjm9Mo3+xvTIkqNaoblSkgK4bfArNBgAAAAAAEJYTU0Nfffdd2qBttLSUjW/YU88Qfqee+4x2j4aDAAAAAAQXNxbremxbvK2I8hHH31EV155JRUWForX4QYEGgwAAAAAABFm8eLFdNZZZ6l/n3322bR8+XK1SNvtt99Oa9eupW+++Ub1OHCKEqclmUIPAwAAAAAEF1KS/GLy5Mnk8XhULwMvzHbxxRerBoNvzYX8/Hy68MIL6YsvvqAlS5YY70c/6xUAAAAAAFqkefPmUe/evcVVnFu3bk1vv/02VVRU0P3332+8H/QwhDldYlFjKUmmiRK6feqSkEwTlHIL5YQdHUdmslGSiL2VnN5hae47eS2jBCVd0pFr9XZ5f7xdl0esRbeRk1Tc2zSpLzlyMpNrY55YS+6cI9Y8uUVyzS0/FsUuOXmpVbR8/9ZXymk4XTPkpJiC4h1iLSlKfl5UeeSUoIJaecxptSbNibVKktNiCkp3ijWL5OfijhL5OdU2pZ1YKymX70e0R06JKndXiLXU2jSj14wuQciqlpN50jRJT958Oa3Mniona1kV+sfQIz9M2vvhyEgyev/SblOTTGSVy+fNqpXfZ6ib/BiSJiXJvSxfvp0mJUn3twJaGKQk+QX3IPA6DD5RUX99tK+urqbY2L/S8lJSUmj48OE0c+ZM4/2ghwEAAAAAIAQlJSWR2/33FyjcOGDbt+/+5Q+v8rxjh/ylV2PQYAAAAACA4M9hsAfowtuOEO3bt6ctW7bU/XfPnj3VT45Y9XG5XLRgwQJq00ZeY6kxGJIEAAAAABCChg0bRi+++CKVlJSo3oUTTjhBDUsaP368GpbUoUMHev7551WPw3nnnWe8H/QwAAAAAEDzpCQF6hIhTjnlFNXLMHfuXPXfWVlZdOedd1JZWRldf/31qv75559TamoqPfjgg8b7QQ8DAAAAAEAIGjVqlFpvob777ruP+vbtS++99x7t2rWLevXqRTfeeKPqbTCFBkOYaywJqTnSl/xtSC95TN73Xy0XazGDuhilHdkd8jcX9rhoseat0qSMlMkpOt5Yp1iL7q1fhMVTVGGU3mJPipW3mVdilHhD6zXHQvL5dtjkVJf0aDmBpcIj7691dIZYc1dUGaXolLnllK8id7FYs2s6eqPt8vOJbS6W057i7XFG93+XS06syivNFWvt+vQVa+6tcoJSSoaceOMtlh9DW7T856uyTE40Smgt3/eYXvLryVNYLtasapdRKhNzaF7fUZqkOl0Ski1e3qblkl9rVrXbaH+6bVJRtViyd5CT6qhC3t+GnzaLNV0GzOjBOS3m7xYgJSnQTjvtNHXxF7xCAAAAAABC0MiRI9XCbIGGBgMAAAAABFegEpJ8lwjx008/UW2tvifTH/ZpSNL333/vtx0eccQRftsWAAAAAECkat++PdXU6BeIDFqDYcSIEWTzw4xz3kb9xSUAAAAAIAIFMs0oglKSTjzxRJo2bRpVVFRQQoK86nxT7fOk58zMzLrFIEysWrWK8vLyjG8PAAAAAAC7JyLNmDFDTXDm9RY6duxIzdpgOP744+nll1823tHFF19Mr7/+uvHtAQAAACBMcCdAoDoCQqCD4c8//6TJkyfTzz//TH/88QdlZ2fTxo1y8p3k5ptvpgMPPJA+++wz6tGjBw0YMIA6depEcXFxDY70eemll4yOF7GqYa4p8aerc+X4zI6ZSX7fp26bOjMX/b0k+p6istONYkV1saqWSxNZWCsPuXNvzBdr0X3kuD/X6u1izZsvx0cye6rcPemt0ox5dHnEkqWpJSemGd1OF+O6K1+O8qwiObIxOTvbKK6zvEKOQK32yOesdVqWWLOVyM/7xCj5MbI7zd+itec7WY5cjS2NMYpcda2RHydHWzmOtjZXjlyNzmpl9ByNd8j7cxfKrxmbJuLUnhpvFKtq0zy3mbe4Ut5noua2Tjlu2L15l1hzZKeZRad6LLFmbyM/h2sXyO/P0QPbiTWK10QKb5MjjDf8Kr9fxg4JzDevACaWL1+uPuQfcsghZFkWFRXJ7686r776at20AZ78vHDhQnVpSMAbDG+99RZ17tyZmuLqq6+m4447rknbAAAAAIAwEMg0oxBISRozZgydfPLJ6t9XXXUVffnll0bbeeWVVygY9qnBcNZZZzV5R9yC4gsAAAAAQCSz2/2zssG4ceMoGLAOAwAAAAA0T0pSoC4GVq9eTVOmTKGLLrqI+vbtS1FRUWoYz4MPPrhPt3/vvfdUsmhaWppKLOrXrx899thj5HLJw/1CBeYwAAAAAEDEe/bZZ+nJJ580Og833nijui03Mnj15cTERJo9ezbddtttKsXo66+/bnAisj+tWLFCLeSWn5+vJkKfdNJJ6vder1ctaxAdrZkbFMgGw/z58+nbb7+l7du3U3V1td8nWAAAAABAGLIHcJyL4Xb79OlDt9xyi0oaOvjgg2nSpEn0xhtvNHq7jz/+WDUWuJEwd+5cdVtWUFCgGg8//vgj3XPPPSoVKRC2bNmi0ki/++673YYq+RoML7zwAl1zzTWq0TJq1KjgNRgqKyvpzDPPpC+++EL9N8/ulqDB0Lw25clpEj2yUrS31dV1SUi6feqSkEyPtSBfTrxxb5PTQuzFMUZpR7FHdBdrnjw5gSVmUBex5i2S74M9Od4ouUUdzw458ceeaPZNh7e8SlPUJKkkyOe7cpecDpEUlSjfziMfS/HWrWIt3iHf94Ro+TlaU10r1vKLco3ShbJtclLMtgo58YUlaBKWUqLk+5GgCdfSndOM1tlmSUGadDSHzWH0GKZ16STWqFreX1R8jNF98OSVGCUWRbXXJD3x/e/c2uh9gXTnNMMscc5bYLY/m+Y1Gj1EToCzSjRJdbvkBDT7P+TnYVKO/u8agM5ll11mNM9g0qRJ6uftt99e11hgGRkZ9Mwzz9Dhhx9OTz/9tGo0pKT49zm6a9cuGj58uIpk5QbPEUccofZZH39mv+666+jTTz8NboPhzjvvpJkzZ6oxWueffz4dcMABlJRk9gYFAAAAABEmTFZ63rZtGy1atEj9+9xzz92rPmzYMMrJyVG9APzZ+ZxzzvHr/h999FHVWOCeEf43f1G/Z4OBP6/znAzu6TBl1GDgSR2pqan066+/BmxFOQAAAAAAU6Wlu3enxsTEqIs/LVmyRP1MT08XlyAYNGiQajDwdf3dYPjkk0/UQm2PPPJI3XoMDenSpQvNmzcvuA0GXlzi6KOPRmMBAAAAAFpkDwN/s1/ffffdRxMnTvTrrjZs2KB+dujQQbyO7zh81/UN7+ceB7Z+/Xr13++//77678GDB+/zZ+xNmzbRCSec0OjwKZ7wzMOXgtpg4Dvhr/xYAAAAAIgwQZj0zN/qJycn1/3a370LrKzsr/mXHKMq4cnQe/Z45OXl0dixY3e7nu+/eTE2jnbdF7GxsXXHoLN58+YmzZ8wajDwGK3HH3+ciouL1dAkAAAAAICWhBsL9RsMLUmnTp20oUH7qmfPnmqKQEVFhdho4bSmpUuX0j/+8Q/j/Ri17ThTlmdiH3/88bRy5UrjnQMAAABABGqBC7eZSPpf6A9/YJeUl5ern4FovJxxxhlUWFhI48ePV+stNOTWW29VQ57OOuus4PYw8Dior776ig499FA165rHbfGloWFKPAGD12qA5tFYdKqOaXSqaRyr6bGWrS0Ua/ZkOT7Tni5HAZrSRksmOuVaRZRRdKotWv8StsXKi7R4SyuNolxLSgvEWpxDvl11uRyTmKiJB3VbHrGWHCc/Z2pr5cjGqLhYsWa55P3VeuVY1VbRcnxmslP+I1Htkc9L6+gM0vFozk2N5liTs+QoV/sO+bzl58kxp60z5KhLb7H8hzS/Vn4+tY7LFGvuzQVGEaD2WKfR60X3vNB9NHFvld+fGnut6V7fun3a4uX76C2TH19HB3nEgLdIfp7WLpXjf6MHtxdrtn5t5FqJvD+dsj92ysUxvY22CdBYT4Fv+JPEV/Nd15+uvfZaeu211+jFF1+kX375hU477TT1+3Xr1qnRQBxU9PPPP1P//v33eZiT3yc9L1u2THWncJwTXxqim7ENAAAAABEoTGJVBwwYoH7yt/w8qbmhpKTFixern/XXaPAXnsPAX+Lz/Ade5dmX2sQRqnzhz+k8iZoXl3M65S8TArYOA4+X4vUXrr76avXTN6GjJeNW1tSpU9U4rtraWurWrRudd955dNNNNzXpJAIAAABA5Gnfvr36QM5rMUyfPp3uuuuu3er8oZ17GHjC9ejRowNyDFlZWWo/3HD4/PPPVeoSD0/idCaePnDyySc3+Qv8KNPM1zZt2tCCBQvUYhCh4MYbb1TLdkdFRallurmBM3v2bDUfY8aMGWq57Lg4s5VvAQAAAGA/2AKYkhTkwS133nknnXrqqWotBP6A7utJ4F6Ha665Rv2bV1r29yrPezr22GPVJRCMGgwlJSV03HHHhUxjgbthuLHAjYS5c+fWPZA8a5wbD9wq4+W6J0+e3NyHCgAAAADNgEfP+D7g++YBsOeee44+++yzut9/9NFH6lt9n1NOOYWuv/56euqpp2jIkCE0atQolVjEc3g5UXTo0KH0wAMPUCgzajDwUJ7qarMJSc1h0qRJ6uftt9++2/ixjIwMtXz24YcfTk8//bRqNAS69QcAAAAQ8VrgHAZeJ2HhwoV7/X7r1q3q4lNTs3d4AH8xzQ0DHvrOcwlcLhd17dpVffbkoe8cGBRoHo9H9WroPqPrFpjze4Ph0ksvVd0vfPJ47FZLtm3bNjWuzLd+xJ6GDRumxnjx+DJecc/fS3aHK9NEI126kqnYLHn+TE2SPMwsSnMfPIVyqotrnZzO4siU03Dca/ON0pWiB8kv7tolcmoN82jSaaK7//3tyJ5cG/LEWkqinAZkT5XTjlzbco2SkGJS/oqsa4i3tEo+Fk2f9I4SOdXFZcmPRbxDfj65vPLt7Da5391pl+dPOUk/tyrWLi9CtMtVJNbytv692uieyj3ycybdKfcql+ySn9/VXvmPV2aqnNjkrdQk+iRokq40aWyO7HSx5skrMUori/nH3pMcfVwrNak9aqdes9Q1TdqT5ZK3GdVVc/9z/4p+bJBXzot3dpXTvGxxmsSmhdvEmr2L4RpPqbFGKX2xmmQtiBwjRoxo0toIZ555proEG3/Ovffee9UomoYaMz48j8HtdgevwfDPf/5TtcB4OM+UKVNUYlJLXfnZN1s8PT29wZnrbNCgQarBwNdFgwEAAAAg8noYQtGCBQvU53FfrwJPFwjEeg9GDQbuYmEcpcozvnkiMY/lktZh8I0Baw4ccdVYFwz3MNS/7p64tVa/xVZ/aW8AAAAAaHk4vcjhcKi1CvgSju677z7VWLjkkkvooYceUqFEgWDUYKi/5gJ33fA4rc2bN7fIdRjKyv4aAiMtl818kbBSQ+Dhhx+m+++/P0BHCAAAABBh+DvmQA1Osf89VCcQ37a3JDzip0ePHvTCCy8E9DO3UYNB+iY+XN1xxx1qyW0fblj4eiUAAAAAAJoDz0ngVZwD/QW9UYOhY8eOFCqSkv6aMFlRIU/kKy//a6KX1ArlxTb4AgAAAABNxx9wA/Uht7lHtwRTz5491TIBgdYyZyr7UadOndRPntQs8dV81wUAAAAAaOmuuOIK+uGHHwI+X9iohyGUDBgwQP3kXFoeStVQUtLixYvVz/prNIA+Zm51rhw/2DEzyagWCO4dxWLNcslRnlGd5JhAzzY5rtJTUGYWg6iJP/VsKzU6zsaiIAv/WC3WUtJbi7WaEvk+xmjuY5xDjjuMyjSMUNTEqkZnyNtMyZdj5bZXy/GvFslxeylR8jjZ3JpGojUNxdjlXO+MaDn+1qaJnE21UoziYSs9lWKtdbT8PK0oKzF6zpDTIZZ03y16C+XoUJtDs03Nc7v8y9/FWnSW/Dg0yi7fE6tWfg7bU+Qecfe6XWLN2TdTrHm2yq97e6b8PmNVydGwWsWatZ6S5PuXdIB8vhGd2sIgJclvDYb58+erxFJeU4xXeuaJ3s3Sw3DMMcfQv//97ybtiFdR5u0EG68TwbPk2fTp0/eq8yrP3MPAQ4448QkAAAAAIBR06dJFrb/AgURjxoyh+Ph4NWKGf7/nxZdyGrAehlmzZjV5gbbly5erJbKbAy8yd+qpp9IjjzxCxx9/fF1PAvc6+JYAv+6667DKMwAAAEAQoIPBP4KVXLrPQ5J4YrB0APt6++Zyyimn0PXXX09PPfUUDRkyhEaNGqViVrkBU1xcrJbyfuCBB5rt+AAAAAAAWmpy6T43GD744AN1CVVPPvmkahhMnTqVfvrpJ9UC466Z22+/nW666SaKjpbHAgMAAACAv3sYApWSRBGjY5CSS/epwcCrJIdDRNWZZ56pLgAAAAAA4McGQ/3xUQDNkXakS7dIbCMfS1GSnLLi7GG2fLotQU7ocGhSiXTpLPZUeSVyb7mcFmLlyilQzNm3nVhLWpdslIQUHRcn1uwJ8vn2lmlSTzxesVS0c5tYS+/SRay5N8u51LXeGrGW6pRTgnh8qMRlyak1OslRf60035BNVXIcNMuMzjRL/NEkDEUny/e/YkeeWEvpLH/LVb5Rfgyddjl9qMZbK9biquVe4ajsdKN0NJ1ta1eKtazWHeQbeuXnTGNJSDbN+54jU379esvk82bP0CQaVWqSl9omGCVWkW6bXVKNkpCoRt5m2dpCsVateZ9BglJ4rvQcSUpLS2natGlqFE1+fr4afj9hwgRVW7Nmjfosf8QRR1BsrCZ9LpJjVQEAAAAAwtXXX39N5557LhUVFakvtnhUUHZ2dl199erVaj7vW2+9ZTzSJgLbYAAAAADQElZ6DtQlUqxcuVIlgZaUlNDVV19N77zzzl694bw2A8etfvLJJ8b7QYMBAAAAAMIOr8PVu3dvFXgTriZNmkTV1dWqocALt40dO3av63CwT//+/Wnp0qXG+8GQJAAAAAAIu4UYFi1aRMnJ8nyfcPDdd99Rv3796LTTTtNej9dTW7FihfF+0MMAAAAAABCC8vPzqXv37o1ez+12U0VFhfF+0MMQ5pqSCqG77aY8OUWnR5acsqLz4YJNYu20IXICS1K80yihxLV6p1iza9KV7K3kVBsde6ImQUjzWNii5ZepLUVOPGGuP7YbJcnEtJUfQ/dGOX3IUyg/LyyPnE5jVcupLpWeKrEWt2mHWCt1lYq11pnyyvUF+XKij8tyibUSzf7axMhpRjtq5OfhQa37k05B6U6j813tks9pZZmchJQe28ooCSnGLica5dXIz6c2Ma3NksWKK43OS1R7+f51OHyI0f5c6+THiMWN6CHfdm2+WLOnaZJOojTv7dVywpBnm/z6jRqcJda8a3aJNXunVLPbDZT3F9szwyg1D1oWrPTsHykpKbRtm/z+67N+/XrKzJT/FjUGPQwAAAAAACHo4IMPpl9++YU2b94sXmfZsmVq/sI//vEP4/2gwQAAAAAAzdPFEKhLhLjsssvUpOdzzjmHduzYu9e9oKBAXYeTk/hnUBsMX375pfEOAQAAAACg6c444wyVjDR//nzq2rUrHXPMMer38+bNo5NOOom6dOlCP//8s1qngeNVg9pgGD16NPXo0YOefPJJtbIcAAAAAMC+fwK1kS1AF90K6uFo+vTpdMcdd6h/z5o1S/1cu3YtffbZZ1RbW0s333wzvfrqq03ah9Gk5169eqmFIsaPH0933303nX/++XTttddSnz59mnQwAAAAAACw7xwOBz300EN0yy23qJhVnuDs9XopJyeHRo0a1aTJzk1qMCxfvpzmzJmjFoj49NNP6bnnnqPnn3+ejjjiCLruuuvUinN2O6ZHAAAAAIAgsjoCAi4tLa3R9RiCHqs6YsQIdeEop//+97/04osv0ty5c+n777+ndu3a0VVXXUWXX365X1o1YK6x6FTT23bMlKPrVueWGO1PF52q2+bowTny7drKkX5WtRyRaYuTYyDtSXLNWyDHK3oK5MhCb0W1WHNkyhGnXs19YLaEGLHm2pxvdG50Xb2WS46sdCTLEbBWrRz1aNOMnKzyyOe7dUa2WCPNcdo1+4vWxIPG2uWYy/xaOTo03h4n1txV8vOisZhXm8Mh1spqy4zuf4Xmdrr7r5MUJccUuyz5eVG6VU4ESUmU41Htmuehe7P8ONli5ce+dqccDxrbrR3p6N4zbLFyZLRnc7HR694WJ//ZtypqxJp7Ua7Z6yk7yaim49ZEw3bMTAjI30OASNfkdRiys7PpgQceoHvvvZfef/991evAEy/4v/n3PBGDex2aEuUEAAAAAOHDZrOpS6C2HYl++ukn+vPPPxusDRo0iHr37t38C7c5nU4V6cQNBG4sPPLII2qixZtvvqkmYxx22GE0efJkNBwAAAAAAAwNHDiQ1qxZo+YrcEPA54UXXqDXX3+9wdscdNBBtGTJkuZvMOzcuVPNY+DL9u1/rS47YMAAFe/01ltvqXinYcOG0QcffKBingAAAAAgMmGlZzPffvut+uB/6aWX7tZY8OH1Fniic31bt26l33//nWbPnk0jR45sngYDd3/wMKQPP/yQXC6XmuzMEy5uuOEG1UBgPHObJ0Zff/31NHHiRDQYAAAAAAD208cff6yGXN10000N1rn2zTff7Pa7jRs3qjUa+Ev7oDYYeEU5Hmo0depUtdQ0t2Z4ZjZPcuZ4VY5xqo8bEVdffTXNnDmzLh8WAAAAACJUELoYBg8erCJH+bMpX8LBzz//TB07dtyv+QidOnWivn37qtuaijKd6FxcXKwaCgceeKDqOeC1GOLi5LQP1qZNGzWvAYJHly7UI0tO32mMLm3CdLtzlskpHEN6tTE6FnuqnIjiLSyXD8bjFUuutXK6kCdPPt/Obm3FmiM7Td7mtiKjNJTG7oc9Psbodt7SarPbaRJYdLeLc8jHWempEmtV+XKKTpRNThBKiJJTVhya222qkvfXLiZLrFVp7oPdZp7qUlYjL6rZtn1XsbZtyxqx1sqRLtYqPBViLSFaTsOJpzijhLBYe4ZRupBrY55Yi+nV3uj5G9OxjVniGNc1iWy69DB7ZrJYc28uFGvOA+TkQkcHOVXOu0N+v4zqLT8W3m1yspaO7pnvTpUTuTblyc9DiDyLFi2i5GT5tRKK1q1bp+YFN4Q/l0sOOOAANechqA0GbiyceOKJqqGw5zgpnQkTJtAFF1xgsksAAAAACBNISTJTWlpKKSkNf5nCCypz+FBD+Ev9sjKzBrxxg4GXm+7Spct+36579+7qAgAAAAAA+ycxMZFKSkrEJCS+SF/2x8fLoy4C0mAwaSwAAAAAANSNOwvUWnphvEZfVlYW/fbbb/t9O74N39ZUGJ9SAAAAAIDwcdhhh9G2bdvo+++/3+fb8HU5WnXo0KHG+0WDAQAAAACaZQ5DoC7h6vzzz1eTm6+55ho1n6ExPG+Br8vn5NxzzzXeLxoMAAAAAAAhYPjw4XT00UfTihUr1MJtn3/+uXhdXs6Ao2VXrlypQoqOPPLI5l/pGVqmjplynGFjqjVRl7ooU9OYV9PoVB17a3mCj2eHfCz2VonyRjXxitEHdRBrVpkcR+rIkvdnVcpRxPYkfayqa81OsWaLll/+7kL5W4uoTDl60YqWjzVXE3OaES3HdUbb5fvotjxiLcYux1VWezQRrxo7a/KMolPjHHIMpEdzH+yx8n1gqV75sfBYciRnWe4OsRZrl4+VNK/DBEowis3V3f8oTTwq2eVvEL35jX/r1uCxaKKWvaWV8qEka95nCvWpJPZiOQbU2StbrLk3Fog1m1OO/9XRRafaMzSTJePl56m3QD7OqH7yez51kp/bUXH46BIWsNSzsenTp6vhRWvWrFGLIfNaaAcffDC1bt1a1fPz8+nXX3+loqIi1RvRrVs3dZumwKsOAAAAACBEtGrVihYuXEjXXXcdvfXWW7Rr1y61MLJvKJZvPQZeOPnss89WCy2npsqN8H2BBgMAAAAABBU6GJqG12J444036P7776fPPvuMfvnlFyr4X49eRkaG6nHgNdO6dpUX6twfaDAAAAAAAISgLl26qIWUAw0NBgAAAAAIKqz0HFqQkgQAAAAAACL0MIQ503Shxm5rmqDUIytFrM1ZlivWRvTJMjoWe7c0sWYtklN7bDFyyog9QZNM5P1rotH+JrDQOvmcWbVy2o1rTbG8Tb6tR06gsTnk+xjTR0578pZWibXi7dvEWlKUnATliJLTcEqq5cSbjNS2Ys1TIadSlbvlxBuHTT4vaU75+eu0y/ehzC0n5ZR75GNJrNYkD3Fgl1tO2IlzxIm1pCz5vNk0yUTapKAEOV2pZPMW+ViS5YSsmk1yyldUgnz/dBns2uQpzXuJs5vmuVYgP75ROa0oEEwfJ1u8fDurSn6v8eyU378s3Xtw+2Sx5i2U30t0f7lS+/cSa2cN76K5JbQoWOk5pKCHAQAAAAAAROhhAAAAAICgwhyG0IIeBgAAAAAAEKHBAAAAAADNsxBDoC5ENHjwYOrdu7dauCxcfP/992qF52BDgwEAAAAAws6iRYtoxYoVdO2111K4GDFiBD3yyCN1/z1y5Eh67LHHAr5fzGEIA6tzS4xSiRpjmoRkuk3TJCTdsZx41SFi7ZOft4s11wo5scnZWz5OW7TDMNVETgtxpMlJOVaSnEzDPFsKxVpUW3mZeG+5nDAUlS3fLjlPTqXSsSfHi7WMCvm8FRTvEGspUclGiU26RKMYu5ywYyc5mcdtyWlV8XY57efPivWkk6pJbSp1y+lSCUXy/bdpUsBsmoQhryaVKqlVa6O0rppSOQWspqxW3l+2/Bot2yYneaW0yhFrrj/l55otWvOn1CU/9sxTWGa2Xbv8fHO0StLuU9xkG817TYV8vu0p8vuQLV5zH5zyYx81QE6l6piZEJBkQAgurPRszrL+TmScM2cOderUiQINrywAAAAAgBCQlJREubnyl5qBgh4GAAAAAAgudDEYOeigg2j27Nl07733Urdu3dTv/vzzT3r99df36fYXXnih0X7RYAAAAAAACAETJkygM844gx566KG6382bN09d9gUaDAAAAAAQEmx2m7oEatvhasyYMfTzzz/Txx9/TJs2baJXX32VunbtSkOHDg3oftHDAAAAAAAQIvr166cujBsMw4YNo5dffjmg+0SDAQAAAACCivsA/rdcQkC2HSnuu+8+GjBgQMD3gwZDGGhKdKrOgpU7/R6BOnPRFrF22pCO5O9YWR3L83cs2Z6iOssxkLVL5fsQc2gXeX/VLrFm08QL6uSt1S/ektGqnVHMq6WJgnSt2Wl0H0kTd7hti9kiNO279BJruzZtFGtVnhqxZtf8BXPY5LfM3Br5vOSkys/tLcWbxFqbGPl5yLz1ovX2JwK2tEp+zcTWyhGZtV75vCWlZRjFsepiReOj5fhMuyb+VRdlmpiUZvT8jT6og1jzFpYb3T8WO6KHWHOvl2ORnQdoomrT5cfQKpXjUb07K+RtJmreL6rd8u1SNI9TWzneNy5Dfuw35VUEPWYcoCU3GIIBDQYAAAAACC6kJPmV2+2m999/n7777jva9r/1ZrKzs+nII49Uk6Sjopr2kT+sGwx5eXn05Zdfqguv9rdlyxay2+3UoUMHOuaYY2j8+PFBWewCAAAAACAQfvvtN9Uo2LBhw26LurEXX3yR7rnnHnrvvfeof//+xvsI6wYDNwjefPNN1Ujo06cPnXTSSVRRUaEaD1OmTFETRD766CM6+uijm/tQAQAAACKGzWZTl0BtO1Js375dfQleUFBAbdq0obPPPlulJrH169fT22+/TevWraNjjz1WNSyysuQh5RHbYEhPT6f777+fLr30UtUt41NeXk6XX365Ool8YnnBi7Q0eVwrAAAAAEBL8+ijj6rGwmWXXUZPPvkkxcXF7VafNGkSXX/99aqn4bHHHqP//Oc/RvuRZyGGgaeeekqthFe/scASExPppZdeUstr79q1iz7//PNmO0YAAACAyIxJCuAlQnzxxRdqqP2zzz67V2OBxcbG0jPPPKOu05TPu2Hdw6ATHx9PPXr0oMWLF6u5DeC/JKRYTRqOaRKSTsfMJKNjiTpFTiepeuhbseY8sL1Ys0rlFBlnjzZizbUiV6x5CuSUlTY9e5KOLVp+iXur5LSUkg1yck9KV3nej93jMUquia6WU3TSnWlGSUhxjnijdKGEKDmdpcItp7NkRLciE4kOeX+p6fJzhlmax3BD6Xqx5vLKqTY9uw4Ua/bcQqNj0aUk6eiSkLylVWKtzC2nFqWktzZKR/PskNN3vMXy8yKqg5wepW67s9woCcmjuZ2tTJOEVFxp9H5hbyM/T60KeX9WlSYdbod8H8pS5aSnC6/8B5kw/bsF0JLxZ9hTTz2VHA45bZEnPB966KFqsTdTEdtgcLlctHHjXx82TMdzAQAAAMD+w0rP/hETE0OlpaWNXq+srExd11TENhh4SBKP+eLum+OPP1573ZqaGnXx2ZcHBgAAAAAgkHr37q2iVLmnIScnp8HrbN68WV2nKSlJEdkH98cff9Ctt96q/s1RUzyrXOfhhx+mlJSUuov0gAAAAABA4zCFwT8uvPBCqqqqoqOOOopmzpy5V/2zzz5TaaDV1dXqumHXwzBhwgT69NNP9/t2PAt82LBhYn3r1q00ZswYlZTEMau33357o9u84447VERr/R4GNBoAAAAAoDlx6ucHH3xA3377rfp8ywmhnTt3VjVel4HDfXhtBm5Q8HXDrsHAubKrV6/e79txQ0CyY8cOGjVqFG3atEnl0b777rv7lNXLY76aMu4LAAAAAPZc6DlQ6zBEzpl2OBwq/YhTQTkNqbCwUF3qJ4Nee+21apkBXpcs7BoM06ZNUxd/rvo8cuRIWrNmjWpl8UxxNAIAAAAAwtPgwYPVB2r+wMyXcBUdHU2PPPKIahRw+ue2bdvU73lZgUGDBvnl826LbTD4U35+vmosrFy5UvUw8FAnzqWNdLqIuUBtd+YiOcJ29GCzuSGmcXjXaqL5Hp+6QKzV/LxOrEV1kmMQHZnJYs3ZXRO5ui5frFmNPIZWfqlRDGbyHmuX7H5AmuhUrxxXam8lx9/W7tos1na5isRapafK6HapUaliLcomR9PpeCw5qrSiQn4cStyaEAU5xVRxWXJkZWZ0plhL7iA/vtvWrzbaX4eUv1YWbYgnT44krfDIkaTJreXXjK1WPt8psfJ9d3ZrK9bcm+UT7i2Xn2v2xL2zz/fldcY8O4rFmk0TK6vdruZ9IXqI/D5bO0+OU7a3ku+j7l3IliHHG8ceJL/vVefKowVMITq1JfYwBG7bbNGiRZScLL+PhJuYmBgaOnRoQLYd9pOeOQmJGwvLly9XjYUZM2Y0uLAFAAAAAABEWA8DT/TgRsKyZcvUMCTuWUBjAQAAACD8exjAf8K6wXDZZZfR77//ribV8Kzxq6++usHrnXLKKeoCAAAAAAAR1sPAOE6KE5EknTp1QoMBAAAAIEhs//tfoLYN/hXWDYY5c+Y09yEAAAAAAIS0sG4wQNMSI3RpR6ZpE7okJNNtmqY96faXcIu8+F/JTfu/oCBzrckVaw5NgpCzhyZBaYW8TRbVIUO+7ert8j4PkFNmahbIKVG2uGix5mibItbabpbvoz1ZDinIzZfTlXKSzFK3SqqKjFKC8qsLxFrbGPn+pUTJCR4FLn1MUpZmu3GOWKMkpDYxrY1SqcqK5Pvv8sqJRmkp8v7cO+THIqqVfN4sj5zkVbNko7zN7HSx5s2T04wcaYmaY9G/P+lSm6yKGrFmi5b/fLtz5fPm2CknhDly5Jp3W5lYs2rl8+1dL5830qQknXjOQUbv3atz5USuHlnyexA0gwDOYUAHg/+FfUoSAAAAAEA42rx5M23ZIkfW+wsaDAAAAADQLClJgbpEik6dOtHZZ58d8P2gwQAAAAAAEIKSk5Opc+fOAd8P5jAAAAAAQFBx5D1fArXtSNG7d28MSQIAAAAAgIZdfvnlNG/ePFq0aBEFEoYkAQAAAEBQ2QJ8iRQXX3wxXXPNNXTMMcfQpEmTaPXq1VRTIyesmcKQJAgqXRxeIOJRdRF7OldeOFCsPfXuCrFWs2STUQyiVxOf6P5FjoG0J8eLNbXPeDnm1K6JctVFp9p1EZIV1WLNvVmOCLXFOsWap7RSrLWJl2MZa2vlc1rtkY+z1F0u1tKcciyj06a5D5YcO5mq2WZjdNt1JMixqlkJ7cWaq1w+3zqJsZqYU68l1kpL/1pgsyEpGXK8r1VdK9ZsSXIULxVr7p9d/pgR26+TWPMUVRi97plrU75Yi+7VTr7dBjnGNrq/HCnsLZSjcW2J8nPYli4/n+zt5PcSKpejiC89s59Ym7loi1E8KqJTIdI4HI66f99zzz3qohuq5XbLMdc6aDAAAAAAQFBhDoN/WJYVkOvuCQ0GAAAAAAiqQMafRtCcZ/J6zUZn7C/MYQAAAAAAABF6GAAAAAAgqAI5OTmCOhiCBj0MAAAAAAAhbN26dTRhwgQaNmwY9ejRQ/3bZ+HChfT8889TSYlZEAxDDwMYpQ/pBCLtSEeXhNQxU5PeobFg5U6xdvLLp4i1aT0fEWsxmhQZm+a+a9OVNAlCzKrU3H+Xxyh9qXqnnHYUkyLvrzq3wCjtx2mT77+D/k6H2FOFW06uKfPISUg5CXLCjKO1/BgWbd0s1tya+7eleptYc3nlhBmWEyenHZWXFhud76QY+T66awzTgDTvCampWWKtNG+HWEuIlp9rUZrHKbpXtljzFMrPi9odxUYpX3aPnC6kbhst39byyBMU7cmaJCjN7bRJSAlyqpptgPw40boiuZYtP06vz1wl1oYPkh8n078HSFBqWTDp2X9ee+01uuqqq+riVPncFhT8/Te3srKSrr76aoqOjqaLLrrIaB/oYQAAAAAACEELFiygyy67TDUGHnvsMdWbsGca0vDhwyklJYVmzJhhvB/0MAAAAABAUCElyT+4kcANhM8//1wNR2qI3W6n/v3704oV8jpSjUEPAwAAAABACJo3bx4dcsghYmPBp23btpSbm2u8H/QwAAAAAEBQYQ6DfxQXF1OHDh0avV5VVRXV1tYa7wc9DAAAAAAAIahVq1a0adOmRq/3559/ql4GU+hhgKAmIQV7m7rkJV2axog+ciLInGVyl17qjSPFWuUz88QapSbINa+ceOJIS5Rvx6k2G/LEmi0pzih9KTYjTax5CsvEWkyifB9tsXI6i1UtfyNSUCyn6MTY5W3GWjFirbJWTgKq2CyfzzK3nLCTEZ0u1lKi5BSZIpc+Ai86Wr4f+eUFRvssrZHTgBw2OZXKrnkOe4rkc2O53GLNpvlOy/LISU9WWbVc06Q5RXVoJdZca+TnobOb/EfYWyQ/nxpLO4oaKG/Xs7LALCVJl8gWpfkOcaf8GMYOkt8v3dXy43vh6J5ibVNemdHfCtNkPAjPdRgGDx5MDoeDrr32WnUJR0OGDFGTmZcvX04HHnigOGyJ6+eff77xftDDAAAAAABhZ9GiRWqib7g2FhjfN4/HQ6effjr99ttvtKeVK1fSJZdcooaAXXPNNWQKDQYAAAAAaJaUpEBdIsWoUaNo/PjxtGbNGho4cCB1795dNQ6++uorOuigg6hv3760du1auvXWW1VvhCk0GAAAAAAAQtTkyZPpueeeU3MUeK4Cx6xyItKyZcsoPT2dpkyZQo88Ii8suy8whwEAAAAAgsrG/wtQVwBvO9JcfvnlagG3JUuW0Pr168nr9VJOTo6axxEV1fSP+2gwAAAAAACEOJvNRgcffLC6+BsaDAAAAAAQdilJkciyLCosLFQ/OXKVV3n2BzQYwIgu8q5HVkpQY1VzCyuNakN6tTGKTl2zoUisXXvvKLH29EY5IrNq5jKxZtdEp3qL9ZGNpuxxMUZxls6u8jn1VtSINfcO+Zza4+VjyUiVYyetWjnO0VEjv/V5Lfl5uMslH2fHOHnhnGqPHPNZ6a0yioZl28q3ibUkh/y8cdjk+++x5MfXa8lxnaWb5WNxWy6j6NS0jh2MnvveKvm5RoVyyVsqPxbOnu3Emi1ePp9Wgf59zaqS41o9y/Ll29WYxco62iWb3Y/t8ns+9cwQS8cd193o74guHlUXlx2IeG6AUPDNN9/Qv//9b/rxxx/VIm0sNjaWDj/8cLrpppvo2GOPbdL2MekZAAAAAIIKKUn+wwlIxx13HH399ddUWVmpehf4wg0H/t3o0aPp5ptvbtI+0GAAAAAAAAhB06ZNUz0L3JvAjYLff/+dysrK1OWPP/6gW265heLi4uiJJ55Q1zWFBgMAAAAABH2CbiAvkWLKlClqNesvv/yS/vWvf1GfPn0oISFBXXjl58cee0zV+Jw8/fTTxvtBgwEAAAAAIAQtW7aMhg0bpuYqSHx1vq4pTHoGAAAAgKAK5IrMEdTBQDwUqV07OZTBh68THa0P0tBBgwGM6BIsdCkVgUhXGtEny+hYdHQJSrvK5VQTnUG3DhVri9zycRbNWCzWEtrJx9kYb6H8WDgy5cfCRk6xZlVr0nA0ySZuTTJPnOZY3BvlFBl7arxYq6iQb5cQlSDW2kRnirVab41RElJ2YrZYW1eyjnTSnWnyPj3yPtu1k/fp3LlLrqXJr3tyyY+hp0JO7YnKTBVr7h3F8u1yWhk9D2tz5Zik6Dbp8rFsLBBrZLcZJ5nZYuXXk62H/HyzJcvpYZSk+VAQpRlYkCk/91sP7yzWhvRqbfS3QgdJSAD7ZuDAgWreQmP4OoMGDSJTGJIEAAAAAMFf6TmA/4sUd911F61cuVLNVZDw3Aa+zp133mm8H/QwAAAAAACEgO+//363/+bJzNdddx3dcccd9N5779EFF1xAnTv/1SO4YcMGlYz0yy+/0PXXX9+kRdzQYAAAAACAoMIcBjMjRoxoMAWK113ghsGvv/661+/ZU089pRKV3G55UVMdNBgAAAAAAELAEUcc0SyxsWgwAAAAAEBwBTAlKZynMMyZM6dZ9otJzwAAAAAAIEIPQ5gzjRVtLNZOZ8HKnUZxpbpjNY3Y091udW6JURRgWaXL6L7rZF56sFizxcsv0+3T9d80pDpTjOIcdXGWjtbJYs2qlKNFdTyaWNWiPzfIx2JziLX4Mvmxj3XIkZTFLvm+6zht8vnU2VG+Q6xlRMsxn6zUXW4Uueotkm9X7dVEoFbHGkWL2hzy41S0fYtYS01vYxRXWlNUKtYS+srxoFat2ygWuGblVrHmzJbjX1n0oByx5i2RHwt7rOaxSJdrts7y88LaUCTWynfKMcwdh3chE7r3y6xW8X6PaoWWxU42dQnUtsG/0GAAAAAAAAhh1dXVtHjxYtq+fbv6t+TCCy802j4aDAAAAAAQVEhJ8h9eZ2HSpElUWir3rvqgwQAAAAAAEEGefvppuu2229S/+/btSwcccAAlJfl/2B56GAAAAAAgqNDD4L8GQ1RUFH3wwQc0ZswYChSkJAEAAAAAhKCNGzeqtRkC2Vhg6GEIc6ZJR03Z7og+WX7fn2mikU6PrBSj/Z2lSQTZlCcniSxYmS/WhvRqLdbmntRTrNni9Mk8xa/9JNaiySzVJ6qDnPpS84ucaKST0DpDrLkLS43SdzxuOc2qxF1mlC5UprldlSZdKDtWfk3UeGvF2obKTaRzYPv+Ym1n3maxZlXLyWKJCalirbxCTpBKSpYTndyaxyIlsZVZapEm5Suhd0ex5lovJ/M40hLlY3HKz7WotvJzxpYgJ3IxT66cWKVjJciPoTYfJtUsQenAvm2N3vd077O6JCTd7QKVDAjBxYuPBWoBsuZY2Ky5ZGZmUuvW8mcIf4m4Hoby8nLq0qVL3RN161Y5Dg8AAAAAoKU6/vjjaf78+eT1BraxHHENhltvvVV13wAAAABA87AF+BIp7rvvPqqtraXrr79e/QyUiBqS9M0339B///tfuu6669QkEQAAAACAUNWuXTv68ccf6aSTTqIePXrQkUceSR06dCC7fe8+AR5Zc8899xjtJ2IaDJxNe+mll1Lnzp3pkUceQYMBAAAAoJlgDoN/WJZFTz75JK1atUoNS3r11VcbPNd8PTQY9sGNN96o5ivMmjWLEhIS/PQwAQAAAAA036JtU6ZMUdGqJ554olqHITFRDnAwFRE9DJ9//jm98sordMUVV9DIkSMpkugSIxpLUGrKbU22qaNLzAhEKoYueck0CSkp3mm0v6qCCnmbR3clHc9mOe2pePbvZMK2xGwOUGmNnLBDO+VagkNu4EenJou1wlw5YSg7JUesVVXKqTWZCW3E2payLUZpR6nOFKMUJLZ5x59ircwt34/eab3IRKxdTtghzXuC3SbXLJdHvp0mCam8sFCsJWnSs2IGdhJr7k27xJojwyyNzVskv35ZVN9M+bYb5deFvYP83Kdo+f5TsZzmdeLFB5MJ00SjQCQhBSoZEPwP6zD4x4svvkjx8fH0ww8/0IABAyhQwv6VVVRURJdffjnl5OSoVpiJmpoaNaSp/gUAAAAAWq7BgwdT7969aerUqRSutmzZQocffnhAGwsR0cPAE5xzc3Ppiy++oORkzTcyGg8//DDdf//9fj82AAAAgEgUjB6GRYsWGX/2CxVt27alpCSzHtCwaDBMmDCBPv30U6OumWHDhql/f/jhhzR9+nS6+OKL6bjjjjM+ljvuuIPGjx9f99/cw8A9FgAAAAAAzeXUU0+lt956i6qrqyk2VjNsNFwbDNu3b6fVq1cbLczGCgoK6Oqrr1ZxU48//niTjiUmJkZdAAAAAKDpbP/7XyAEarst0cSJE+mrr76ic845h1544QXKyMiIrAbDtGnT1MUUZ9Lm5eVR+/bt6ZRTThGvN3bsWNUYuOiii9QFAAAAACBUUkB79OhBH3/8Mc2ePZsGDhyoXYfhpZdeCq8Gg79wlCpfJAsWLFA/R4wYEcSjAgAAAIhcSEnyD153gRsCrKysjObMmSNeFw2GBnCvAi9SoTtpvtnl3AsRrgIVMaeLtdPFjgY7HlVndW6J3+P+Omb6f42PnF5y7GJ6YrT2tktP7iHWWvWSuy2r35UjV/M0caXp0WlizWGTox4rPVViLc4RL9Yq8guM4krzSnPFWrwjTqx5XW6x5rZcYs1pdxrFn8YUyjG9LE1zH3PS5fjQijL5uZ8Qm2j0GJLm9WuPjTaKVXWVV4q1pEz5dWHTxLG6VsiPvT1Vfq7pODrLj4O9jf49wSqVY06tWvncWNvl540tXv4uMGl0d6P3vTnLco1ioQMRwY3oVIC/8bIBwRD2PQwAAAAA0LJgpWf/GDduHAVD2K/DAAAAAAAA5tDDAAAAAABBhTkMoSViGwy6+Q0AAAAAAC3dJZdcss/XxaRnAAAAAAgZmMPgv5QkHV/ID39RjgYDBIQuiUKXMKRLzDBNvtAldAzp1cbvx2lKdywLVu40SpbSWbOhiIzVah6LSweLtawZyWKtZqUcYVzulhNvnHa5s/PPivVi7cB2/cRa8S75fBfU7hJrneM7irVyd4VYc3nlBKW4KDl9J8YRbXScLCVKfixqK+TzrVNRLafvxEfLiT9WrSZBqrZWrEUlyKlUzgTNgplOObHJnixvk9ISjNKVvEXyY+/INn8vscXJ+3S0l7cbdUi2WDvuOLMkJN37pe69TffeHYi0I9NtInkJIiklyev10qZNm2jmzJm0ePFitV5Dv37y38zGROyQJAAAAABoHvy9d6DWY46cdZ6p0ZQkXgl6woQJahXoX3/91Xg/SEkCAAAAAAhTkyZNoqSkJLr33nuNt4EeBgAAAAAIKqQkBU9UVBQdfPDBNGvWLONtoIcBAAAAACCMVVVVUVGR+bxH9DAAAAAAQFAhJSl4Vq5cST/++CPl5OQYbwMNBgAAAACAEPT666+LtbKyMtVYeOONN6i6uprOPfdc4/3YLKxgtt9KS0spJSWFSkpKKDlZjjUMZ7p4OlOBiNgLNtNo2F3lcuykzpaVedp6XIYcIVm2RY5QpFUFci3BaRTV6l4qx5y6N+SLtbI8+T5uqZZjXFOjUsmERfJ9SIpKFGuJsfJ7wbbybWKtzC1H6raLySKdeIcmkjRFPtaCwu1iLcYux7zaNKNYdcfiaCXHgxbu0DyGTjkCNKpDhry/TPmx8OSVijW7JsbVrnktkVt+ztiSNdGwfN5O6SFvttod1OjU3EKzKN4RfbJazPuz6d+RcNeSPrf4juXbX9dRYpL/481ZeVkZjTq4a4u4v4Fmt9vr1lpoiO9j/sknn0zvvvsuOZ2av+Ea6GEAAAAAAAhBF154odhgiI6OpuzsbDrqqKPosMMOa9J+0GAAAAAAgKCy/e9/gdp2pHi1kZWe/QV9dwAAAAAAIEIPAwAAAAAEFdZhCC1oMAAAAAAAhHgq0r7OeTCBBkMY0KVQ6BIjGkuv0N3WdLuBuJ3OprwyoyQRU6aJIOmJcjLNmg3mC62UfbNOrFlVLrFmGyCnnlgL5cQfzzb5fNuc8mMYPaiDWEvdLCdcxK+Rk2t2VsqpTLWWnEqVGiU/L1aWrxFrrWvl1J50Z5pYK6wtFGsbqzaRTqe4jmLNXlRtlITksMl/FuKT5MdiV7GcZpVaLD/26amZZMLmdIg1q6JGrlXLz3t7l1by/mLM/lzae8rbZNWaRLLOx5slIeneh0zf95ZvKvb7e3DHzCS//60IxN8RCAysw2Dmoosu0qYiNQYNBgAAAACAMDZy5Mj9bjDMnz+fKisrm9TQQA8DAAAAAAQV5jCYmTVr1j5f94cffqAJEyZQVVWV+u++ffsa7hUpSQAAAAAAYWPZsmU0ZswYGjFiBC1cuJBycnJU/OqSJUuMt4keBgAAAAAIKvQw+N+WLVvonnvuoTfffJM8Hg+1atWK7rzzTrr22mvVIm5NgQYDAAAAAECIKioqooceeoieeeYZqq6upvj4eLrhhhvotttuo+RkOaxif6DBAAAAAABBxdNvA7fSc2Sorq6m//znP/TYY49RaWkpORwOuuKKK2jixInUtm1bv+4LDYYw0BxRcbrougUr5TjLEX2y/B6jp4vtyy2sNIoXXJ1bQiZ0+xvSq43Rfc9qFS/WZs1Zrz0ed88MszdUTdSjVe2Wb+fyiCV7thyh6MktF2s1K7eKNWe2HFnZZodYoqjsdKNIzn4FsWKtzC0/D5MT5VjVbEuO+UxzppJOubtCrOXXyo9hgiPBqLapUH6+dcruKdbsrRLFmlUrP5/scWZd6J68UrHmyJLPqaOf/Bq1NsrvCbYM+TUaq3kNskvP7Gf03qZjejvde6IuAlVHd7tAHCdAJPB6vfTiiy/S//3f/1Fubi5ZlkWnnXYaTZo0ibp3l+OYmwINBgAAAAAIKsxhMPPhhx/SXXfdRWvWrFENheHDh9Ojjz5KhxxyCAUSGgwAAAAAACHgjDPOUOsp+OYpjB49mtxuN/3000/7dPvDDjvMaL9oMAAAAABAUGGl56bhhdgefvhhddmfc86NCxNoMAAAAAAAhIAOHTo0acVmU2gwAAAAAEBQYQ6DmY0bN1JzQIMhzOnShZqSrqRLt9Cl+uiYJiHpEjN0qUWmSUg6uhQoU7qUkQP7msem/fK9/Kbj3Smn75Dba5R4491VJdcK5ZSkmD4dxFrR0lViLSFaPm+71stpP0lR8u1iUuRaaYGczGNPlZOHMqLbGZ1PlmyPEWuJlfI+dWwOh1iLj5a3WZEvpzIlJsjH6dGcN0qT05Vsmm3GHiOnhHhLa8mErYecyHXtbcPJlO59WPfan7Ms1++JbIH6eyFB2hFA6ECDAQAAAACCitdgCNw6DJGyEkPwBD/AHwAAAAAAQgZ6GAAAAAAgqDCHIbSghwEAAAAAAEToYQAAAACAoLLbbOoSqG2Df6HBEAYClWzx4YJNYm304ByjbeqSiXSJGbq0EB3TxCbdsejug2lyiY4uIaqxVCbdc0N3PAuO6CTWfvlUTiayaj1yrbRGrNlbyWk4nh3y+c44ZpBYq/1tq1hLc2ieT3b5D01tbqFYS3Ymi7XSbdvEWmJCqlirqpTTo1hconw/Slxy+lBafLpYs0XLfxZsSXFiLaVDZ7Hm3iyfN3uy/Bp1ap7f3qJqsUZOOenJPlR+78ro2VqsnTW8i9+Th/al7u/3NtN0uOWbiv3+9yAQgp30BBAp0GAAAAAAgKDCHIbQguY2AAAAAACI0GAAAAAAgGbpYQjUhQ0ePJh69+5NU6dOxaPbRBiSBAAAAABhZ9GiRZScLM8vg32HBgMAAAAABBVWeg4tGJIEAAAAAAAi9DCEgUBFxZ02pKNRNN+ClflirWNmgljLLaw0igA1jSXU0W1TF7mqix40jU7VbVN3LI1t1/R866zpK9+u7KfNYs0qkI/FFi+/TbnWys+1qPZydGjlb+vl20VHk4nCWjk6tHV0hlirqJDjT92WS7vPOK8cR5uWJO/TFusUa95i+bFwZqcbPU66/Tl7ZIo1e3t5KMHge4aLtV3ltUbva7pYZN37rO790DQSuilMX/e6qFZddKpufzq6vxVDerU2et8zPZbG3kvB/5CSFFrQwwAAAAAAACL0MAAAAABAcNlsZAvUisxY6dnv0GAAAAAAgKDCkKTQgiFJAAAAAAAgQg8DAAAAAASVLYBDkgI21CmCRUyDYcOGDfT444/TV199RVu3bqWoqChq164dHXrooXTPPfdQly5dmvsQQ4ou+WPu4m1ibVe50yiFY8HKnUbJHjqm6SW6BKX0RLOEHR1dqsuHCzZpb3tgx1SjJKSZi7YY3cfhg7LFWo8xvY3uR1mlnBRU8N4ysebNk9NgEg7rIdZc6+TkFme1nL6THSsnCFkV1WKtoqRCPhavm3TcVfJ24/vL72muP3eINWf3LDLhyJITmxyHyM+LKM3t+g1ub/T81SXl6BKNdOlKugQl3bG8PnMV6Vw4uqfR/dCl+ujeo3QpSabb1L2X6u6DLglJd5ymyUvjRnYz2iYARMiQpLfeekstDf70009TbGwsjRkzhkaMGEEOh4NeffVVWrFiRXMfIgAAAEDEsAX4Av4V9j0M3377LZ1//vmUmZlJ7777Lh1++OG71Tdu3EgxMTHNdnwAAAAAAC1ZWDcYPB4PXXbZZeT1eumDDz6gww47bK/rdOrUqVmODQAAACBSYQ5DaAnrIUkzZsxQPQjDhg1rsLEAAAAAAAAR3MPAE5zZEUccQW63mz755BOaN28eVVVVqZ6Fk08+mXr2lCecAQAAAID/YR2G0BLWDYbff/9d/eREpEMOOYSWLFmyW/3OO++kG2+8kSZPnqyN4KqpqVEXn9LS0gAeNQAAAABAy2GzLMuiMMW9B6tXryan00nJycn05JNP0rHHHkvV1dX09ttv01133UW1tbU0adIkuuOOO8TtTJw4ke6///69fl9SUqK225LpIgQbo4vK08WcmsYd6mL0TKNTddvURSjqojzLd8r3IauzHK1pGp2qewwbi4Z9Z+56sZYUL0fcFuTLUZ8xCdFG29TFsZo+Z5ZvKjba3y9f/0lG1haKJU9uuViziuT4U2+5XHPkyLG46rYF8vPb+Q85kpSyzSKFYzURqNeeM0CsvTbb7Hx3zEwwes7o6GJOXeV/fzG0P69t3fuF7jXRlNe+7rmvi1M2fV/XvQebRqDqLP9jh9FjYRrPPaKPWZxwqOAvOlNSUlrE5xbfsSzbsJ2SkgJzLGVlpdSnc7sWcX/DRYvtYZgwYQJ9+umn+327F198Uc1ZYL62kMvlounTp9MxxxxTd71bbrlFTYa+7bbb6OGHH6brr7+eEhIa/uPEjYnx48fv9mTPyZHflAAAAAAAwkWLbTBs375d9Q7sr/Lyv7/lS0r665sUnq9Qv7Hgc/XVV6sGQ1lZGf3888905JFHNrhNjl1F9CoAAACAv9j+msgQEFiJIWJSkqZNm6Z6CPb3ctxxx9Vtw7d6s7SKMzcoWrf+a6XJ3Fx5FU8AAAAAgEjVYhsM/jBw4ED1s6CgQFynobj4r3GgiYny2FwAAAAA8B+s9BxawrrBcPrpp6v0o1WrVtHWrVv3qs+ZM0fNb+DrDBo0qFmOEQAAAACgJQvrlCR24YUX0htvvKGGKnEyEs/MZ5s2baLjjz+eVq5cSWPHjqV33303JNMGQk21xyvWYh32iD3OlnZedMej05IeQ9N0qZZ0H8JFIJ7fobLNlrhPiDwt6XOL71hWbMylpAAdS1lpKfXulNUi7m+4aLGTnv1lypQptHz5cvryyy+pW7duNGTIEBWrumDBAjVBul+/fvTf//63uQ8TAAAAAKBFCvuvL7gVy6s781oL7dq1o9mzZ9NPP/1EBxxwAD3yyCM0f/58Sk83y84HAAAAgP2HOQyhJex7GFhsbKxaS0G3OBsAAAAAAERogwEAAAAAWhBbANdhCNj6DpEr7IckAQAAAACAOfQwQFCFSupHsI+zpZ2XlnY8Jnpk/ZWIBuH5fAqVbbbEfQK0pDkMgdo2+BfeqQAAAAAAQIQeBgAAAAAIKkxhCC3oYQAAAAAAABF6GAAAAAAgyDCLIZSghwEAAAAAAEToYQAAAACAoMIchtCCHgYAAAAAABChhwEAAAAAggozGEILehgAAAAAAECEHgYAAAAACCrMYQgt6GEAAAAAAAARehgAAAAAIMgwiyGUoIcBAAAAAABE6GEAAAAAgKDCHIbQgh4GAAAAAAAQoYcBAAAAAIIKMxhCC3oYAAAAAABAhB4GAAAAAAgudDGEFPQwAAAAAACACD0MAAAAABBUtv/9L1DbBv9CDwMAAAAAAIjQwwAAAAAAwWX7ay2GQG0b/As9DAAAAAAAIEIPAwAAAAAEFUKSQgt6GAAAAAAAQIQeBgAAAAAILlsAJzEEbHJE5EIPAwAAAAAAiNDDAAAAAABBhTkMoQU9DAAAAAAAIEIPAwAAAAAEFaYwhBb0MAAAAAAAgAg9DAAAAAAQVJjDEFrQwwAAAAAAACL0MAAAAABAcGESQ0hBDwMAAAAAAIjQwwAAAAAAQYU5DKEFPQwAAAAAACBCDwMAAAAABBWmMIQW9DAAAAAAAIAIPQwAAAAAEGSYxRBK0MMAAAAAAAAiNBgAAAAAoFnmMATqEgr+/PNPGj16NCUmJlJGRgZdc801VFFRQS0RhiQBAAAAAARRSUkJjRw5ktq1a0fvvfce7dq1i8aPH087d+6kDz74oMU9FmgwAAAAAEBQRfoMhueee47y8/Np8eLFlJmZqX4XFxdHp59+Ov3yyy80cOBAakkiYkjSzJkzacyYMdS2bVtyOp2UlJSkHogHH3yQysrKmvvwAAAAACCCzJw5U/Uw+BoL7KSTTlLDkz777DNqacK+wXDbbbfRCSecoE5+Tk6OarkdeuihtGrVKrrnnntUw4G7fwAAAAAgcucwrF69mqZMmUIXXXQR9e3bl6Kioshms6kvmPcFDy0aMWIEpaWlUUJCAvXr148ee+wxcrlce113xYoV1KtXr91+x/vr3r07rVy5klqasB6StGTJEvVAca/C559/TkcffXRdjbuB+L+XLl1K9913H/33v/9t1mMFAAAAgObz7LPP0pNPPml02xtvvFHdlj/0c88B9xTMnj1bfXE9Y8YM+vrrr9WQI5+ioiJKTU3dazvc2OD5DC1NWPcw8APFuGFQv7HAWrduTRMmTFD/nj9/frMcHwAAAEBkz2II1GX/9enTh2655RZ688031bf8F1xwwT7d7uOPP1aNBW4kLFy4kL766is1cXnt2rWqp+LHH39Uo1pCWVj3MMTGxu7T9TjKCgAAAAAi12WXXbbbf9vt+/a9+qRJk9TP22+/nQ4++ODdPl8+88wzdPjhh9PTTz+tGg0pKSl1PQnFxcV7bYt7Hg444ABqacK6h+Goo45SXUPffPMNzZo1a7caD0ni4UrsyiuvbKYjBAAAAIg8LXEOg4lt27bRokWL1L/PPffcverDhg1Tc2hramrURGcfnr+w51wFj8dDa9as2WtuQ0sQ1j0MPXr0UJNX/vnPf6ohSYMHD6YuXbqo1ht3D3Er74UXXqAzzzxTux1+kPlSPzuXlZaWBvw+AAAAADSF7/OKZVkt5kQG8jOUb9t77iMmJkZd/D1flqWnp1Pnzp2pIYMGDaItW7ao655zzjnqd7xg2/3336++wOZh8oznOpSXl6uwnhbHigBfffWVlZmZya+S3S5nnnmmtWTJkkZvf9999+11W1xwDvAcwHMAzwE8B/AcwHMglJ4D69ats5pbVVWV1bZt24Df18TExL1+x5/n9se4cePU7R544AHxOk899ZS6Tv/+/cXrXH/99eo6Z5xxRt3vioqKrOzsbOvQQw+1Zs6cab355ptWmzZtrJNPPtlqiVpsDwNPSP7000/3+3Yvvvii6v7xufvuu+mhhx6i4447jh544AHVzZOXl6cmtPB/c2uOJ6scc8wx4jbvuOMOtfqeD48569ixI23evLluLBr81ZLnbjduRScnJ+OU4JyI8FzBedkfeL7gnOC50jQ8MqJDhw7qW/CWML90w4YNVFtbG9D9cG8KR6LW5+/eBeZbz4tjVCU8GXrPHg9OSOJwnuuvv57OOOMMdV7Gjh1LkydPppaoxTYYtm/frvJw9xd35fhwo4AbCwcddJBqGPB8BsZdRtyQ4P/mxsBVV12lZrI7HI4Gtyl1YXFjAR+M98bnBOcF52Rf4LmC87I/8HzBOcFzpWn2dRJvoPGH430Npgln3bt3py+//JJCQct45jRg2rRpqnW4vxfuSfB59dVX1U9usfkaC/X5JqdwS3f9+vVBvHcAAAAAEOqSkpLUz4qKika/zA7lL1NbbIPBH3jIkO4Bqj+cqCUukgEAAAAALVenTp3UTx6OLfHVfNcNRWHdYMjOzlY/eRGNhixYsKDu3/vzIPLwJF4dOhBj4UIZzgvOCZ4reA3hvQXvt80Jf4dwXoJtwIAB6mdhYaEasdKQxYsXq5/112gINTae+UxhihfLuPbaa9Wkl+nTp9PZZ59dV+MhSBxpxfMkRo0atdc6DQAAAAAQuS666CJ67bXXVEgOz32VHHLIIWothgcffJDuuuuu3Woc488Lt3FjdufOnSEblhPWPQxXXHEFnXjiiWpuA+fe8vLcvObCkUceSQceeKBqLLRv356ef/755j5UAAAAAAhBd955p/r5yCOP0K+//lr3e+51uOaaa9S/r7vuupBtLIR9DwPju/fGG2+oy2+//aYiUXlmfrdu3WjMmDF00003qeW5AQAAACBy8Yd93wd8tm7dOiooKFBfLvuGubOPPvqIsrKydrvtDTfcQE899RQ5nU41coVjVr/99lv1uXPo0KH0zTffUFxcHIWqsG8wAAAAAAA0Zs6cOWoUSmM2bNjQ4NzXd999l6ZOnaq+oHa5XNS1a1c6//zz1ZfT0dHRIf0AhPWQpGCbOXOm6rVo27atamFy1NbAgQPVmDbfwh6Ril9c//znP1XmcHx8vEqu6tmzJ1188cURH2nLcWtdunRRc234snXrVoo0vJji66+/rqKODzjgANULyM8Tfo7wojYbN26kcPbee+/RiBEjVG8nfyvVr18/euyxx9QfnEjD95m/lbv11ltp8ODBanEjfj/l99WTTjqJPv/88+Y+xBa1wKnvfYP/zkQ6XgiMv+HlxVt5gTJ+H+Fvho8//nh65513KNJwUiQPg+nRo4f6ZpvPB69DNW7cOFq6dGlzH16LxO/D+xLh30kIyuFh73PnzlUL5VVWVtIff/xBt912W8g3FpTmXmo6XEyYMKFu6fFBgwZZZ511lnX00Udb8fHx6ncHHHCAtWPHDisSTZ8+3YqNjVXnoW/fvtaZZ55pjRkzxurdu7f63YwZM6xIdtVVV1k2m63u+bNlyxYr0px33nnqvtvtduuggw6yxo4da40ePdpq3bq1+n1CQoL19ddfW+HohhtuUPcxKirKOuaYY6zTTjvNSk1NVb8bNmyYVVlZaUWSb775pu610LZtW+uEE05Q7xl9+vSp+/0VV1xheb1eK5LNmzdPvV587x0PPPCAFcn4fdP3NyUjI8M68cQT1d/hww47TP0dPv30061IsmDBAispKUmdj+zsbOukk06yTj31VKtz58517zfvvvtucx8mhBA0GPzg119/VS9Ap9O514eavLw8q1+/fqp+5ZVXWpFm1qxZ6o8a/+H//vvv96pv2LDB2r59uxWp+PnCz43rrrsuohsM//znP63777/f2rp1626/Lysrs84++2x1XtLT061du3ZZ4eSjjz5S9y0xMdH65Zdf6n6fn5+vGtdcu/nmm61I8u2336oPdw29X7z99tuWw+FQ5+W1116zIlVFRYX6Eoo/CJ5yyikR32DgRnXPnj3VeZg4caJVW1u71/lasmSJFUn4ixdf47r++fB4PNbdd9+tavzFRFVVVbMeJ4QONBj8YPLkyerFx9+INuTNN99UdX4BRxK322116tRJ3Xf+Ngx2V1JSYuXk5KhvfMrLyyO6waDDf+x935S98cYbVjgZPHiwul8PPvjgXrUffvhB1WJiYqzi4uJmOb6W6NJLL1XnZdSoUVakuv7669U5+Pzzz61x48ZFfIPhnnvuqftwDJZVUFBQ9/eEv7Rs6G9zXFycqvMXngD7AnMY/IDHBe6LjIwMiiQzZsxQY895POlhhx3W3IfT4tx4441qvsKLL76oxq1Dw3guA4/BbWwlzVCzbds2ldvNeO7Gnvh1k5OTQzU1NWp+FOy+SFI4PRf2d1LmlClT6MILL1RrCUU6nvPy7LPPqn/zvBf4a/G6fRVpn0vAHBoMfnDUUUdRVFSUiszacwG4/Px8NXmRXXnllRRJvvrqK/XziCOOILfbTR988AGNHz+err76anr00Udp1apVFKl44uYrr7xCl19+OY0cObK5D6fFfyDwTXreM8YulC1ZskT95MmZPBGxIYMGDdrtukC0du3asHsu7E9AwiWXXEJt2rShJ554orkPp8XEYHLsZbt27VRcOk8yvf/++9Xf29tvv12913q9XookiYmJaqEwxouN1Q9P4HMxceJEqqqqUpPB+UsJgH0RtU/XAi3+9pO/8eEUoKOPPlole3DqTVFRkVrhjxfqeOGFF9Ts+Ujy+++/q5/cmOJVEPf80MMLnfC37JMnT1YpH5GCnxfcUOA36n/961/NfTgt3ksvvaQ+EHDKB/+BC6fkMNahQwfxOr4/5r7rRrodO3bQq6++qv59+umnU6S55ZZb1HOBM+CxftDuf2c4DYkbCPwFXf20eP5yinulPv74Y+1rLdzwZw7ugeKFabnRxF8+OBwO9XeYezcvuOACevrpp5v7MCGEoIfBT6666ir1oszMzFTDDDjC7euvv1axWtzS931TGEl4hUP28MMPq3i3adOmqR4XHkrAH5S5IfH444+rlREjCcfc5ebmqjdyjpcFGX9b6BtmcM8996hvVsOFL2pZNxyNvylkpaWlFOm4l5LzzDmusG/fvhHXY8t/T5577jk6++yz6ZRTTmnuw2lxf2f4gzA3DnjRrdWrV6vnCff6c5Q310444YSIiinmLzLnz59PxxxzjGogfPLJJ/Thhx+qBif3xHB8KP7+wP6I+B4GzrH+9NNPaX/xuHMeY+zD3X4PPfQQHXfccfTAAw9Qr169VLb8m2++qf6bx/PzNxz84o2U8+L7loffpKdPn77bfedvyrhrlPOJuUHBWfstfRy/P84Jv2HzueD1J/i5Eg789RraE8/v4HVNeBgG5+/zt4cQ2V/K8PoMrVq1ovfffz88cs33EX/4vfTSS6l169aqNxv+Vv/vzDnnnLPbt+Y8XJgbDfzhedmyZfT222+rb9Yjwbx58+i0005TX8zx3xwe+sqvGf49Dw3m5xP/m3twAfaJFeF8+e/7e/niiy/qtjFt2rS6FCSXy7XXPh5++GFV5zQcTieIlPMycOBA9TtOSmpIaWlp3e1mz55thfs54ajMzMxMq127dlZRUdFe2w/VlCR/PFf2lJuba3Xv3l1d79hjj7Wqq6utcPPUU0+p+9e/f/9G03DOOOMMK5L5zkNaWlpEprpcdNFF6v6/8847e9UiPSVpypQpde8pc+bMafA6HNPL9QsvvNCKBPz3hdew4TU6eD2GPa1bt65ujahQ+NsLLUPED0niYTL7sqrfnpf63w77xtSOHTtWteb35EtA4a7A9evXU6ScF57HUf/nnnglbP7GjPEQnXA/JzyfhXud7Ha7GlLAXcL1Lz78POL/9j2vIuG5Uh+fI/42bM2aNeobQu6Z25/Uj1DhWylUl/bjq0mrikaCm2++Wa3eyys+87AcX0pSJOE5C/y35ZlnntnrfePLL79U1+Fvivm/echSJKn/90X6W+P7fSj8nfEHHh7Nw3/5fv/jH//Yq17/93sGtQBIIn5Ikj/w+HwmjQfkSc8+u3btokgxcOBAeu+999SE1YZ4PB4qLi7ebax2JOChNnyRLFiwQP2s34iIFPxHjhsLK1eupFGjRqmhTvsaWxxqfB98eQw2f5nQUFLS4sWL1c+DDz6YIhEPd+N5Tvweyo2FSJwLVn8Ox9y5c8U6J4nxpWPHjhRJ+LXBoRn8JQT/rWko9cf3NyhS/s409pmk/ueSSPpMAk0T8T0M/pCdna1+Lly4UPsBMNK+KeQUE34j5/jUhj4gc544jzvl60TCBwHuVdB9417/W2X+b46+iyT8R50bC8uXL1eNBZ73w8lI4YpTXThRjfEY4z1xjxQ/F7h3JRLz9nnOCocj8AcbHofuO1eRiL9Ykd43xo0bp67Dc+X4v30RxJGibdu2dXOhGvq2nP/G+BpanNYXSZ9J+G8vz39p6JxwHC2TIp0B9tLcY6LCwdSpU9VYQB4v+NZbb+01VrBHjx4RuzLpBRdcoO77cccdt9tqtRs3brR69eqlamPHjm3WY2wpQnUOgz8UFhaqOUB8/4866iirsrLSigQfffSRus+JiYnWL7/8sttKrX379lW1m2++2Yo0d911l7rvqamp1s8//9zch9OiRfocBjZr1qy6OS7z58+v+z3PKfznP/+parxa/I4dO6xIwKs7JyQk1P19LSsrq6vV1NRY1157rao5nU71GQVgX9j4//ZuRsD+dhWfeuqp9Nlnn6n/7tOnj0pJ4uEV3LtQXV2tvk3kbzmkMZbhir/d4G+N+dsMXlFyyJAh6nzweeH0m379+tHs2bPV4lWRzrcWBX+rzM+XSMJpHjxOm88Bz+GQeha4lybcIiVvuOEGNUbf6XSqnhVOC+M0IP5WeejQoerb9XDuadkTD0M7+eST1b+55/HAAw9s8Hr8fsJruES6iy66iF577TXVw8BpfZHqwQcfVNHLvnV/uOeB/+5wjwu/fnh4LEerRgqeW8ZpfPz5hOcKcg8dv8fwMEeOWeW5dFOnTlXpYwD7ZJ+aFdAor9drvfbaa+rb0YyMDCsqKkp9a8gJKPfcc4+1a9euiD2LVVVV1qRJk9Q3yJzMwJcBAwZYjzzySMR8k7wvIrmHYfjw4fuUrHTfffdZ4YjTb4444ggrOTnZiouLs/r06aNeH/xtYKR55ZVX9um50LFjx+Y+1BYBPQx/++qrr6zjjz/eSk9PV9+e5+TkqISplStXWpHot99+U/e/S5cuVkxMjBUdHa1eN5xst3DhwuY+PAgx6GEAAAAAAAARJj0DAAAAAIAIDQYAAAAAABChwQAAAAAAACI0GAAAAAAAQIQGAwAAAAAAiNBgAAAAAAAAERoMAAAAAAAgQoMBAAAAAABEaDAAAAAAAIAIDQYAgCCZM2cO2Wy23S7Tpk0Lyr6PO+643fbbqVOnoOwXAABCX1RzHwAAQKRp06aN+gDPunbtGpR9Hn300dS2bVsqLy+nDz74ICj7BACA8IAGAwBAkPXs2ZNeffXVoO7z5ptvVj83btyIBgMAAOwXDEkCAAAAAAARGgwAABojRozYa97Bnhe+jr9MnDhRbZN/bt++nS677DJq164dxcXFUZ8+feill16qu+6qVavo3HPPVUONYmNjqV+/fvTOO+/g8QQAAL/CkCQAAA2eayBNEJ47d64a4uNwOPx+Djdv3kwDBw6k6OhoOvzwwyk/P5++//571YAoLi6moUOH0jHHHKMaE0ceeSRt2rSJ5s+fT2effba6/VlnnYXHFQAA/AINBgAAjdtvv73B33/xxRf05ptvUnx8PD388MN+P4evvPIKXXXVVTRlyhSKivrrrXrGjBl00kkn0f3330/p6el022230Z133ql6JNiTTz5JN954I919991oMAAAgN9gSBIAwH769ddf6cwzzyTLsujtt9+mQw45xO/nsEOHDvSf//ynrrHAxowZQwcddBCVlZWppKX6jQV27bXXqobEn3/+qXooAAAA/AENBgCA/cBDf0444QQVT/r000+rD/GBwMOMeF7Cng444AD18/jjj9+tscC4ceEbPsXzHwAAAPwBDQYAgH1UVFSkPqjv2LFDDVXiIUOBwj0MDUlMTNTWk5KS1M/q6uqAHRsAAEQWNBgAAPZBTU0NnXLKKbRy5Uo677zzaNKkSQE9b3a7vUl1AAAAf8FfHACARvBchXHjxqmUIh4q9PLLL+81HAgAACBcocEAANCICRMmqPUNeB2Ejz76SEWdAgAARAo0GAAANHhi8+TJkyk7O1tFqaakpOB8AQBARME6DAAAGjfccEPdJGNe36AhPXv2FNdrAAAACHVoMAAAaHi9XvWTV1HmS0OGDx+OBgMAAIQtm8Wz+QAAIODmzJmjJk1zA4P/3Rw2btxInTt3po4dO6p/AwAANAY9DAAAQbZq1Sq66KKL1L+vvPJKOvTQQwO+z3//+9/0xx9/qAXnAAAA9gcaDAAAQbZz50567bXX1L+POuqooDQYvvnmG/rqq68Cvh8AAAg/GJIEAAAAAAAixKoCAAAAAIAIDQYAAAAAABChwQAAAAAAACI0GAAAAAAAQIQGAwAAAAAAiNBgAAAAAAAAERoMAAAAAAAgQoMBAAAAAABEaDAAAAAAAABJ/h+m3HF7DhxlbAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJNCAYAAACcDPIGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQAklEQVR4nO3dB5gUVdaA4dOTByaQ85CTCCLJVUFFMOeEec05K4phjasCuuqqoK5p1TXrugbUNaACiogoqKgkJec8icnT/3Ouf88S5hRQTPdMd3+vTzlDn+6q6uowderee24gGAwGBQAAAACqkVDdjQAAAABAwgAAAADAEy0MAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAExxkzAsXrxYrrjiCunWrZukp6dLWlqadOjQQc4++2z58ccfa3v3AAAAgDopEAwGgxLjpk6dKgcffLDk5+dL69atpV+/fpKYmCg//PCDLFiwQJKSkuSVV16RYcOG1fauAgAAAHVKXCQMvXv3lp9++kkuuugiGTt2rCQnJ7vbKysr5Y477pB77rlHGjRoICtWrHAtDwAAAADiJGFYt26dNGnSxP2+evVqadq06RbxiooKyczMlKKiIpk+fbr06dOnlvYUAAAAqHtifgxDamrqDt83lFgAAAAAiJOEISMjQ/bbbz/3+6233iplZWVVMe2SdOedd7rWhcMPP1xycnJqcU8BAACAuifmuySpOXPmyBFHHCHz5893g5779+/vBj3PmDFDli1bJqeccoob25CVlVXt40tKStyyeaKxfv16ady4sQQCgQg+EwAAgJ2jp3pa+KVVq1aSkFD714qLi4ultLQ0rNtISUlhXGoNSpI4oKVUp0yZIn/+85/lk08+cUlCSI8ePWTw4MFmsqBGjRold911V4T2FgAAoOYtWbJE2rRpU+vJQoP0BlIi/7sQGw4tWrRwlTApZlMz4qKFYfLkyXLCCSe48qkPPPCADBkyxGWeevt1110n8+bNk/POO0+effbZHWphyM3NlbZt27oPnleiAQAAUNvy8vJct+uNGzdKdnZ2re+L7sNBMkSSwnTdulzKZbx87s7XOE+rGTGfMOiHo2vXrrJ27VrXyvCnP/1pi7h2U+rVq5ds2rRJPv/8cznwwAN3+M3OGxEAANR1dem8JbQvR8hhkix/lLmvaWVSJh/KR3Xi+caK2u/IFmYffPCBrFmzRjp27LhNsqA2v338+PG1sIcAAABA3RXzYxgWL17sfnplmKHmOR3IDAAAgPAK6H9hKhwTCFKQpqbFfMKgVZHU7NmzXdPU1n33tMyqTtimOnToEJGJ5N5++23X/Um7SW0+NgJA/NHSzzom6thjj5WhQ4dWzUQPAEBdEfMJg86vUL9+fSksLJQLL7xQ/vnPf7o/0EpLeumgZ22F0D/SJ510Utj2Q7d1wQUXyCuvvOLKm2k3KE1mGL0PxC/9LigoKHDdIf/xj39Iw4YNXWEGLcIAALEs4f//C9e6UbNiPmFo2rSp+0N87rnnyptvvikTJkyQAQMGuAThu+++cyVWtSbxo48+6sYzhCtZ0LkePvzwQ3cycNppp0nz5s3Dsi0A0Zk4/PTTT+774fzzz3dzvegFBgAA6oKYTxjUmWee6SohPfzwwzJp0iT57LPP3B/oli1byhlnnCFXXXWV7LXXXmHb/oMPPugGX2tXpCOPPDJs2wEQnbQfb+/eveVf//qXZGZmutbQgQMHym677VbbuwYAYZEQCLglLOuWgEhM1wCNvJgvq1oXypPpicDuu+/uuiMBwPYmNWrWrJkMHz5c7rjjDg4WgJgsq3ps4ChJDoSprGqwTN4Nvl8nnm+soJNXmM2ZM8d1NRg2bFi4NwUgBui4pmOOOcZ1oQSAWBVw7QDhW1CzOKJhNnPmTPdz//33D/emAMSIAw44QH755RepqKio7V0BACA+xjDU9kzTSqufAMCOCH1faNM93x0AYhFjGKILLQxhptVOdECjVmICgB2RlJRU9f0BAEBt4yy2jmjfvr1LLEKLJhhaLaVNmzZy4IEHyvXXXy/ffvttbe9mnaDdu/QY3XTTTTt0/6uvvtrd/4gjjgj7vkWb448/XtLT02Xp0qVb3D548OAt3o/VLddcc4277znnnOP+/fzzz+/UtvX++jh9fG1/7hYuXFgj6wsdm81pt6Lu3btLu3btpKioqEa2AwDRLhJjGLSMfo8ePeSxxx6r7acb9eiSVMdoKcXOnTu73/XkQmeDnjFjhps/Qsuzat9mnXwuXHNGRAOtU//ll1+6EpT33nuvJCYmes6B8fLLL1c9Lpz0xPeFF16Q5557rlZPgneUThb2zjvvuGRUE1Orwteee+5ZbSycpYhjib4/77nnHlf44P7776fyEQBEyLRp06iSVENIGOoYnaxp65NNrXz73//+113RnThxouy7774yZcoU6dChg8QjPfHSuTNWrFjhjstRRx1l3vfdd9+VdevWuQn8tPIM/ufaa691FXm8WmqOO+44ufPOOz0P26hRo9w6dF6TaKNzspSVlblZ18NJZ5HXuWDuu+8+ufjii6VFixZh3R4ASLyPYUCNoktSFAh1p9EuSV26dJFVq1bF9Syw9erVk1NPPdX9rlfzvYTiOnmfzu6NP3z66afy888/u4SgcePGu3RYNFHQLjdaVzvadOrUye17JN4b5513nms1fOqpp8K+LQAAahIJQxRp0KCBm61aff755/L9999vc5/y8nJ55plnXB/0Ro0aSWpqqmuJuPTSS2XJkiXmupctWyY33HCDuwqqYyfq168vXbt2da0dX3/99Rb31cRlxIgRrkuKXilNSUmR5s2by9FHH+26uWxNJ5/SpEevrFp0nXofvdKrz2F7QgnTuHHjXLct6zl98skn1XZH0ivLJ5xwgjvZ1f3XibK0P7+23Gyvb7omIfvss487QQ71f9ef2h1JnXvuuVv09d/6Cr2eNGr3sr333tu9pnqVv1u3bu6YamvI5v7973+7dWgLydbjDNTHH3/surzovsybN0921NixY93Pmug65TWGQV9Lfc/q+0qfpz6PE088sarccHX0eFV33EK0e57G9T2+q+9lawzDokWLXGvAkCFDpG3btu5zpK/VoEGD5Mknn/Q1GFlnldfBzPr4HXmPA0As03EG4fqPeRhqHglDlDn88MNdIhC6Sry5/Px8Ofjgg+XCCy90ycQee+zhuuHoyc4//vEP6dOnjxsPsTU9ee7Zs6c88MADsnr1ahk6dKgceeSR7gRJZ6fe+oroLbfc4k54dUbafv36uavU2gf+/fffd9t/5JFHtri/Jit6Uq5jCUJlZrcWGpCkSUWoQowXHcikJ4TaneTFF1+s9j56Aq8DTv/0pz+5mbZDtM/+QQcd5Lor6cmg7r+OCdF/77fffp6tFldeeaVLVnQf9RjpuvWE8+yzz3ZXq0PjUPTfoWXzMQDLly93j9F90BN8fR7aelRSUiJ/+9vfpH///u5kdfOuLLpNTYpOO+20LU409cT4z3/+szt5ffrpp13r047Q100TDb2qHs75QXS/tPuYdn2aO3euG3+j763p06e7ZFP7lta0nX0vW/Q9pd2sNJHQZEOTS30ddZ8vueQS97y0q+DO0GRJ16HvgXA8dwAAwiaInZabm6tnCu7n9jz55JPBQCCw3fu1a9fOrfO5557b7n0POuggd98zzzxzi9tPP/10d/tRRx0VXLVq1Raxv//97y7WpUuXYHl5edXtixcvDmZnZ7vYTTfdFCwpKdnicbqeL7/8covbPvzww+Dy5cu32a+vv/46mJWVFUxOTg4uXbp0i9gZZ5zhtvHQQw9t87g1a9YEU1NT3eNWrFgR3FEPP/ywW2evXr2qjetz1fhTTz1VdZv+rrd17tw5+OOPP25x/4kTJwYzMzODKSkpwblz524R08foos9vypQp1W7v7LPP9nwNKysrgwMHDnT3Of/884N5eXlVsbKysuDw4cNd7MADD9zicfqa7LXXXi524403Vt1/0KBB7rbLL788uDPGjx/vHjdgwADzPgcccIC7zx133LHd9VnPe+zYse725s2bB3/99dctnuull15adUz18ZvTbXpt+4svvnBx3cfN+Xkvhz53CxYs2OL2b7/9Njhz5sxttr1s2bJg79693WPeeOONbeKh52S56qqrXPzuu+8Oenn77bfd/dauXet5PwCo6fOWSO3LKUnDgn9OPj0si667rjzfWEELQxRq0qSJ+7l595VZs2bJq6++Kq1atXJXUrWLzeZ0wLReydar2jpQOOShhx6S3Nxc151IB69qS8DmdD3aDWPrVo7qBrhqN53LL7/cXfXXq/VblzZVTzzxxDZXZrULlV5h16vpOzMYVMclaOuJdm/57rvvtohpFSV9rpuPd9Ar3qFuLq+99pprgdmcXm2/7bbbXGUl7TZSHW0Z0K5EfuhV/cmTJ7urzNrio91lQrTFQivo6NXxL774wo0vCNHX5PXXX3cTeOl9PvzwQ/nLX/4iX331lWvh0daenRFqZdptt922e9+77rqr2pKq2pVne0Ld5/SYb74tfa76vqvpgb9+3ssWbfnR12Jr+vnS10C9+eabO72PoZYubWUBACBaUCUpCoX6T29e711PIvVEXE/mNz8R3Zz2+db7aT/uUGWhjz76yP286KKLdmofNFn54IMP3Inthg0bXJKgQv3o58yZs80JmCYUOkZAT5wPO+ywqueiJ8/qiiuu2Kl90MG62p1IT6a11Kx25wnRfyvtOhI6HnqirN1BtOuQnmhXJ9Qvfuu+7iGa1Pilx0tpH/7qul3p3BuatOgx1e1vfsKqJ+g6RkCfr3ZN0u5nOm7hjTfecEnTztBB82pHBjtbZVVDSatFu0v99ttvVYnd1nQ8w8knnyyPPvqo1BS/72WLJrE6Bka7D2n3Jv23fsb02Ff3Ht8RoWMeeg0AIF79MdIgPNetqZJU80gYolBokG9oLIOaP3+++/nss8+6xcuaNWuqfg/1l9dKMTtK+8trv/TCwkLzPnl5edvcpqVQNWHQAbehhEHHPeg+6PgKLRe7s3QwsyYM2rqiV5j1RLSgoKDq6u/mg51Dx+j333/fZnItr2O0uR25sm4JbV9bMXTZ2e3reBQdP6HHX2l/fD/zcehVeJWVlbXd++5IWdXqhAZoa2KRkZFR7X1quiywn/ey5ZtvvpFTTjlFFi9evFPv8e0JHXNNsgEAiBYkDFFGr3CGupTooN+tWx30arBeFfaig2790sHUOjBZK/NoFRnt/qEDh7Xrj56E60msxqsbEKpX57VLj3aJWrBggTthDA123tnWhRAd1Koz6OrJ4ttvv+2uvutVd01mdLCqDmLe+hhpV5hDDz3Uc73WFXSdFdmv0Pa1W0xogLRl80Ham7fqbN6dTE9q9Sr9ztIBwH5PeOsCPxWKdsamTZtcoqStAFrxSgft62SKerKv73sdwK1VrXZ20PPmyZp2LwOAeMY8DNGFhCHKaJei0NXJQw45pOr2nJycqgo9oZKZO0JP9rVrxezZs6tmmPaiV+71REkr92gZ0K15lfbUbjh68nXrrbfK448/7qo5aaUnbSnRE30/tBuPntTpVXDthqTrCXVH0ts3FzpG2i2kuhKg4Rba/rHHHusSp52hx1wrIumVez2ZnTRpkvz97393Xah2dkK60PiWrUu41qTQRGjaGqYtPtW1MmxdyjQkNPYg1PVna5tXkdqV97JFj60mC3379q16L21uZ8rXbi10zLUMMQAA0YJBz1FEr05qVyCl5Us371uuYxfUe++958pm7qhQ16BQN5ftWb9+vfupV/W3ptt96623PB+vrQ/abUhPxHSwrp4Ia7ehXblyr4mBJg46N4UmIDqwWK8Ea0nTrcdRaMvBr7/+Kr/88ovUtNCJrlVjP/QahZKunTF69GjXuqCDh1966SVXMlZbdHRuAesE2qInwkqPQ7homd1QdykdhL81HQ9gDRoOJRs6kN9rLMiuvpe39x7XBKQ6evz9Cg1mt8bQAEC80BEM4VxQsziiUUBPLvVkUWvX69VNrVC09UmRjgHQwbQ6OZvWjK/u6q1209G5EDYfcHnddde5QcGaaOiV/9Dg5RAd7KnVeEJC1W70hHXzK8CaLFx22WWuq5EXPWE//fTT3UmZdl/SE3193K7QEztNoLSrik6OpbQi1NaVnHTeAZ1ETo+nTtK2+fMK0XkbNPHQ7j5+TpKVlYxoy4ImLTpJnSY51Y1T0NYjHQS+edKhV7x1zIN2+9KTbJ2ITAetDx8+3N1fuyVt/bp50bEiOlD6xx9/dJPIhYtW5lLa+qNX/Tc/xtrCogPQq6OTpen7QgfHT5w4sep2fd10kLSVlO7se9kSeo/rnA5bJ1X6ntUxM36FBtPrcwQAIFqQMNQxWmJUrxrrot1r9ERYT7L1BFj7TmsXFL2CXt0Vfp1wTPv0a3Khfaw1wdCBm3pCqb9r1x+tWLP5gEs92dbZhPVE695773XdZvRkWh+jYx30JFj3KURPdHXbOo5CxyDofXVsgt6m6wmVT/Wig59DdFKtXRlIHBIa3Bw6Cd96ZucQHSuhswBr4qXjG7QSUajy0IEHHuiOtR7DH374Yaf3QdejJ7p6Uquv23nnnecGKesJrNLYO++841qGNOHS46ddyHTbmuxp0qeTe2m3rVDCoM9H43qSreM9Nh/bMHLkSFfiNTTz9o7SFh4dw6En1DprcrhoiV0d47JixQo3rkZbAPS56ARz+p7S51kdfQ9qlzdNAPW10NdFj48+ThMNnVCtOjv7Xrbo66DJnSbE+rseK91vTSR00jaduNAPfS1/+uknV5pVE0cAiGcJgYSwLqhZHNE6RpMBPZnUZdy4ce4Kpw5u1qvJemKoNfqt6jJ6oqRlILULiM5krBVedCCwXjHXK8l69V3/vfWAWx0LoV0l9GRfB8RqeUpNOnRWZu03rydJIRrXOQ+0VUB/1/tp5SNdh9aWr64E59b05DFUg9/vYOet6QleaKCy9g/XRMSidfT1OOvx0P71+ny1m4te8daETE8qNdHaWTqvg1791vKxU6dOdeMktGLV5jX39WRRWy+0FUGTOO1zrye5oSvfeqz1yrqe1OsJsyZ4ul/avUqTyK1bTPRqtyaCOueBJiM7KnTcwzmWQxOk//znP67rmY4p0OREu4zpcdJjoM/fouMz9HE6cF2vyutje/To4R7nNWB9Z97LXrQlR2fe1sRbXxv9XGlCoq+NJoF+aFcmTQR3dDZzAADqCjcFcW3vRLTR6jJaA1/HFGyvNKV2YdCTlHBXdokm48ePd1fg9WRM+6lvr8Qpap5+7PXEXVtadCD19uZVwK4fb02UdW4KLa+7vUnrNPnT1hEdNL4j82UAQE2dt0RqX85OOVNSAltOsFlTSoOl8kLpS3Xi+cYKWhgQUdq1RscRhPqckyzUDj3uOm+FDj7WAdUIL21F0hnJb7zxxhqf4RoAgHAjYYjAiZleXYz3hhwdX6HjH7TLknYx0W5W2scftUdbeXTchY6NCE20hvAkyTpoXbs07ehYk+pmcweAWMIYhuhCR9ow03EFSgdQxnOzmFa70XEZ2q9cu1pon3v6cdc+HdOC8NISv5tXidqZCd5C3x8AANQmWhjCLFSLPjQ7c7zSwbXayqIVmnQgrFXjHsAf3xda1UkHtgNALArvLAy0ztY0EoYw69+/v/vDb01SBQBbd0fSals6nwoAAHUBCUO4D3BCggwbNsyVOtUSmgDgRSdl1FK6+r0BALGKmZ6jCwlDBGhlFJ11WCeg0jkL4n0ANIBt6WzpY8aMcRPa6VwNOiM3AAB1AYOeI0AnEtPJ03TWWj0J0HENxxxzjJvEKz09PRK7AKAO0osHWhBBJ2jUGcH1d523RStXaeskAMSqhEDALWFZN2MYahwJQwSTBh3IqDPW6ngGPTlYt26du6oIIH5pJaScnBy5/vrrXTek3XbbrbZ3CQCALZAwRJBWPNHa97oAAADE8xgG/S9c60bN4ogCAAAAMJEwAAAAIKJ0JvtwLmrAgAHSo0cPNy4Mu4YuSQAAAIg506ZNk6ysrNrejZhAwgAAAICI+mMEQ3g6uoRrvfGMIwoAAADARAsDAAAAIioh8MdcDGFZd1jWGt84pgAAAABMtDAAAAAgonSuhHDNl8A8DDWPhAEAAAARpd2RwtclKTzrjWd0SQIAAABgooUBAAAAEUWXpOhCCwMAAAAAEy0MAAAAiKiEQIJbwrJurofXOFoYAAAAAJhoYQAAAEBE/VFUlSpJ0SKuWhhKS0vl0UcflUGDBkmjRo0kLS1N2rRpI4cffri8/vrrtb17AAAAQJ0TNy0MS5culUMPPVR+/fVXadKkiQwcOFDq168vS5YskUmTJrnfTznllNreTQAAgJgXCCS4JSzrjq/r4RERFwlDUVGRHHzwwTJ79my588475ZZbbpHk5OSq+KZNm2Tu3Lm1uo8AAABAXRQXCcOoUaNcsnDRRRfJHXfcsU28Xr16sueee9bKvgEAAMQbxjBEl5hvsykrK5MnnnjC/X7DDTfU9u4AAAAAUSXmWximT58ua9eulVatWknnzp1l5syZ8p///EeWL18uDRs2lP32288Nek5IiPncCQAAoE4IhHEeBsYw1LyYTxh++ukn91OrId10001y//33SzAYrIrfd9990qdPH3nnnXekbdu21a6jpKTELSF5eXkR2HMAAACg9sX8ZfV169a5nzNmzHDJwWWXXSZz5syR3Nxc+fTTT6Vr164uduSRR7ruS9YYiOzs7KolJycnws8CAAAgdgTC/B9qVswnDKHWBE0GTjvtNBk7dqxLErKysuSggw5ySYPOx/Dzzz/La6+9Vu06br75ZpdghBYtxQoAAADEg5hPGDIzM6t+v/jii7eJazckbV1Q48ePr3YdqampLsHYfAEAAIBPCYHwLqhRMZ8wdOzYsdrfq7vPihUrIrZfAAAAQDSI+YShb9++Egj8kWlqtaTqhG7PyMiI6L4BAADEJT03C+eCGhXzCUOLFi1k0KBBZpcjHdswceJE9/tee+0V8f0DAAAA6rKYTxhUaHZnrXb0zTffVN1eXl4uw4cPl/nz57uxDueee24t7iUAAEB80N4fgYQwLbQw1LiYn4dBDR06VO6++2657bbb3ERt2pKgLQ86qdvChQslPT1dXn31VWnevHlt7yoAAABQp8RFC4O69dZb5eOPP5aDDz5YZs+eLePGjZOKigo555xzXOIQqpQEAACAMNNhBmEbw8CrV9PiooUh5JBDDnELAAAAgB0TVwkDAAAA6oCwzpdAE0NNi5suSQAAAAB2Hi0MAAAAiCxaGKIKLQwAAAAATLQwAAAAIPLzMIRpvgTmYah5tDAAAAAAMJEwAAAAoHbGMIRrEZEBAwZIjx495LHHHuPV3UV0SQIAAEDMmTZtmmRlZdX2bsQEEgYAAABEVmhW5nCtGzWKLkkAAAAATLQwAAAAILKYhyGq0MIAAAAAwEQLAwAAACIrkPDHEq51o0ZxRAEAAACYaGEAAABARAUSAm4Jy7qFKkk1jRYGAAAAACZaGAAAABBZVEmKKiQMALCDPv1hmRn75Ts75ldFYaln/NATepqxzq3s2U3TEmlcBgDsOBIGAAAARFgYZ3pmDEON4zITAAAAABMtDAAAAIidMQxBqiSpoqIimTt3rrRp00YaN24su4IWBgAAACAKffnll3LdddfJjz/+uMXtr7zyijRr1kz69u0rLVu2lL/+9a+7tB0SBgAAAERUIBAI6xIvnnrqKRk7dqy0bt266rYlS5bIeeedJ4WFhZKdnS3l5eVy1113ycSJE31vhy5JAKLWg1eNM2PFH8wyY+Xr8sxYfnm+GdtQlmvGOjTpbMaSd/vfF/nWAun213AgPVm8fPzrWjP2we8bzFhSp4b2Sttnm6HEpvXN2EGHdjVjPXMa2NsDAPg2depU6d27tzRp0qTqthdffFFKS0vlzjvvlNtvv921QgwePFgef/xxOeCAA3xth4QBAAAAkcUYhhqxdu1a2X333be47fPPP5eUlBTXVUntt99+svfee8uMGTN8b4cuSQAAAEAUKigokPT09Kp/B4NBmTZtmvTv318yMjKqbm/fvr0sX77c93ZoYQAAAEBk6TiDcI01iKMxDI0aNZKFCxdW/VtbEfLz82Xffffd4n5lZWWu1cEvWhgAAACAKDRgwAD59ttvZcqUKe7fjzzyiBv0PWTIkC3uN2/ePFctyS8SBgAAANTOGIZwLXHi6quvdt2QBg0a5FobXnrpJenYsaMccsghW4xzmDlzpvTp08f3dkgYAAAAgCh00EEHyT//+U9p166dq4ykVZDGjRsnCQkJW1RNqqys9F0hSQWCmpZgp+Tl5bm6trm5uZKVlcXRA3bA0x5lThef/i8zVlxRbMbWl9mlQ7vuZ38xls1dYcaSOzSz9+XH//UT3Vr63l3MmCTb12bKF603Y4FE72s6gXp2f9RAUqIda/S/AXLbKCo3Q4kHtDVjlT+vMWMJPZuasVaD2pmx0/braMYAROd5S2hfbut5n6QlpoVlG/p34+6fb6wTz7euzPisyYQOgk5MtP82eKGFAQAAAIhCkyZNkrlz53reR6sorV69WiZPnux7OyQMAAAAqIUiSeGa6Tl+XszBgwfLfffdt9373X///XLggQf63g4JAwAAABClghEYXcA8DAAAAIgsZnqOqA0bNkhamv8xIyQMAAAAQJRYvHjxNrM9b31bSHl5ufzyyy/yySefSKdOnXxvk4QBwE55cMR/zdj8Me+aseJKu9pRhyadzVi91jlmrGFxmRlb880PZiw9sZ4Zk98qzVBSswZmLFhuP67s12VmLLFxpr29Hs3FS+XSPDNWvmKjGUvOShU/Kr5easeW2ttLKrOPzfIVBWbswenLzVirvq3MGNWVgCjATM++tW/f3o3VCHnrrbfcsr1uS2eeeabvbZIwAAAAAFGibdu2VQmDtizUq1dPmjRpUu19U1JSpE2bNnLiiSfKpZde6nubJAwAAACILMYw+LZw4f/mBNIJ2oYNG+YmbwsnEgYAAAAgCj333HPSubPdrbemkDAAAAAgokJzJoRr3fHi7LPPjsh2SBgAAACAKFdRUSHr1q2T4uJiz/EPfpAwAHHq0x/syj2TDhhrxn4rnG/Gdm/ey4xVFpWasWCFXUUnd5a9vYyGjcxYUiDZjKVm25WJflz2nRnb68STzVjxF7PNWEqPNmas4Iff7cctXSdekto0NmPJu7c0Y2W/rLDX2dZeZ9nMJWYspZddzapspl3tKDnZPjaBAvs9s/Rbe51P55WYsX32sI9Lzxy7ChaAGqatADqOIRwq46eFQU2bNk1uv/12mThxopSUlHi2vGiZVT9IGAAAAIAo9M0338iQIUOqWhUaNmwoWVlZNb4dEgYAAADETpWkcK23DrrjjjtcsnDeeefJvffeK82be8/f4xcJAwAAABCFpk6dKt26dZOnn346rIO9SRgAAAAQWcz0XCN0TMKee+4Z9spQCRKHRowYUVXO65577qnt3QEAAAB2Wvfu3WXt2rUSbnGXMHz99dfy4IMPxlWNXgAAgDo5hiFcS5y46KKL5Msvv5Tff7cr7tWEuOqStGnTJjnnnHOkZcuWMmDAAHnnnXdqe5eAsHpw1BdmbOYd9jTyiYFEM9aj4W5mbOn6RWasw15/MmP5M+aZscyWLcxYsNCuNZ3k8RwqC+zH9dn9AF/lQRMaZpgxSbb3Ja1JQ3udWen2OnV/Fq0xY4lt7BKhgUT7WlFlXpEZS2rf1IxVrMozY8m9Wpmx4Dp7e4FW9jENepROzfv4NzP28dSldizd/pM4/OYDzRgA1GbCMGXKFDn44INl7Nixcuihh0piov03x6+4ShhuvvlmmTdvnnzwwQfyxhtv1PbuAAAAxCVmeq4ZHTt2dD8XLlwoRx99tCQlJbkL4wkJCdUec78tEXGTMEyYMEHGjBkjZ511lhxxxBEkDAAAAIhqCxcurPo9GAxKWVmZLF68uNr77kp3/LhIGAoKClx9Wq1N+/DDD9f27gAAAMQ35mGoEQsWLJBIiIuE4frrr3cH9O2333Yz4O0snWZ786m28/LsvroAAABAJLRr1y4i24n5KkmffPKJPPnkk3LqqafKcccd52sdo0aNkuzs7KolJyenxvcTAAAg7uZhCNeCGhXTLQy5ubly/vnnS9OmTd34hV0ZLH3ddddt0cJA0oC64N6uD3jGp86bYMYGNOlvxpYVLLNX6lFhp2WqPSV92YLVZiwlKdWMBdKSzVj56o1mrF5re18q8zaZsWBxmf24DQXiR8lau1WyrMLeXv7K6vuhhrTsv6cZK/1xiRlL7tDMV0WnynUFvqoyVa63KyEFi0rtfVnjcU0ryaPSk0flJa+rZGk97ItBj732gxk7f9ge9jo9Pi8AUFP03PSll15y0wesWbNGhg4d6uYdU3PnznVjHfbff39JS0vztf6YThiuueYaWbp0qbz++uvSpEkT3+tJTU11CwAAAGoAYxhqtDfN6aefLhs2bHADn3Vwc+vWravic+bMcb1sXn31VTn55JP9vVwSw3TMgpaXevzxx2Xw4MFbLB999JG7z7PPPuv+rV2WAAAAEBt0zq0ePXrIY489JrFq1qxZcvzxx7teNZdeeqm7SK5Jw+Z0boZ69erJu+++63s7Md3CoMrLy2XixIlmXJtodInUoBEAAIC4p8MMwjXU4P/XO23aNMnKyorpQz1y5EgpLi6WN998U0444QR32ymnnLLFfVJSUmTPPfeUH3/80fd2YrqFYePGjS7Lqm45++yz3X3uvvtu9+/N69gCAAAAdd0XX3whvXv3rkoWLG3atJEVK1b43k5MJwwAAACog6iSVCN0gHPXrl13qMdNYWGh7+2QMAAAAABRKDs7W5Yt86hs+P/mz58vzZp5VMiL9zEMQLS774BnzFj+ipWej81Ja2PGghWVZqxJciP7caXlZiytfydf5TNLZ9lfdit+m23GNlXY5TM75Nml4wJpKb5KtSZm1TNjCQ3qm7FNC5f7KinbckA/8RLwKC2aundHM1b8hX1MA+n2sUnu2tKMlf+2xowlNLKPTXCT/b4o+sUuDVv/hD5mrHj8HDOWdlA3M7Zp3FwzlpBhH5fHfrWfe9af7M+guvDI3TzjQKwKJATcEq51x4u+ffvKpEmTZPHixdK2bdtq7/Pzzz+78Qs6ONqvuG1heP75593YhVtvvbW2dwUAAADYaRdccIEb9HzaaafJypXbXkRcu3atu4+e8+pPv2hhAAAAQMxVSYoHJ510kgwbNsxVSerUqZMMHDjQ3T558mQ55phjZMKECVJQUCBnnHGGK6/qV9y2MAAAAADR7pVXXpGbb77Z/T5+/Hj3c968efL+++9LaWmpDB8+3PWs2RW0MAAAACDCAn9USgrXuuNIYmKi3HvvvXL99de7Mqs6wLmyslJycnJk6NChuzTYOYSEAQAAAIhyDRs23O58DH6RMAB1wH0HPWfGVnz3gxlrXK+J53rrS4YZW124yow1SWlsxhIy7OpDJdMXmLHEhva+5JXmmrFm9ZubscLiAqlp+eX5Zqxxi1ZmrOw3u2JVelP7eK5cYR+zZj969xr1qmhUWVBsxhI8HleSaz//xHWZ9vYK7e1JcqIZChaXmbGUDvZrX7ncfu3Tj+tlxoo/mGXGkvdobcbEo0qSFNuVwwpX2MdT/bzErsrVM6eB52OBqKaVjMJVzSiOqiSNGTNGzjzzTJcshBNjGAAAAIAodPXVV0urVq3klFNOkY8++shVQwoHEgYAAADUTpWkcC1x4oQTTnBJglZJOvLII924hb/85S9u0HNNImEAAABAZOmA53AuceLf//63LF++XB5++GHZY4893O+jR4+W7t27y/777y/PPfecFBYW7vJ2SBgAAACAKNWoUSO56qqrZMaMGW654oorpHHjxvLVV1+5ydpatGgh5513npsR2i8SBgAAAERWQpiXONW7d2955JFHXEuDtj4cccQRUlJS4uZhGDJkiO/1xvEhBQAAAGJPUlKSG9/wxBNPyMUXX+xu25UB0ZRVBSLkgfPeMmM/TfzYjPXo0N+MVW7wLisaSLE/4pvyisxYQbnd3zG7wi6rmtgky4yVr7bLRzbIbmrGErLq2fuS1thXKc+KlR770qi5r9KpXqVKJdG+NtNmQD8zFiyvsNepr3++Xco0WFRqxhIa2+VR09Ls51Gxzi4Rmrp3RzNWNtsu4ZtQP9WMJXWx3xeBjGQzVv7rWnt7WelmrHK1x+epvNJeZ5n9OpUttEsGqykt7deicyv785Tm8Z4CooIbnBymsQbxM4ShWtqi8Pbbb7vxC59//rmbxE3tvvvu4hcJAwAAABDlpk6d6roevf7665Kbm+taFLKzs+XUU0+Vc889V/baay/f6yZhAAAAQEQFAgG3hGvd8WLFihXy4osvygsvvCCzZ892SYI+/wMPPNAlCSeeeKKkpdk9A3YUCQMAAAAQhdq2beu6HGmi0K5dOzn77LNdoqC/1yQSBgAAAERWOCdYC8Tf4ObzzjtPhg4dGr7thG3NAAAAAMJm5cqVbpxCuJEwADXowRH/NWOTnnvOjA1o4q8SkldVIlW+yq4G1KF5VzNWkmtXw0lqb1euKfllib/KS4l2JaT1SxbZj8to7KtC1NI1C8xYm6YdfFVCqii0KxYllJabMTsiEthOJZyk7nZFp0qPikae6/WqWtTMfu3zPv7RjKU1aWjGNqxaYcaylq7zVXkquZN9XIIVdrWj5G5N7MeV2JWQAk3s92+wxH4dVN5v9nP8x3PfmbGDDrU/vz1zGnhuE6gTEgJ/LOFad5zIjkCyoKjLBgAAAESBv/71r/Lee+9VG/vpp59k6dKl1cbGjBnjui75RcIAAACAyNJKRuFcYtSdd94p77zzTrWxPn36yB133FFtbPr06fLuu+/63i4JAwAAABDlgsHgLs3m7IUxDAAAAIgsqiRFFVoYAAAAAJhoYQBq0MYnJ5mxFql25ZaEhhm+KtoULV/juT+p2ZlmrCJvkxnbWGZXV0pfb1c7SmrmUZ1leaGvfdlQlmvGsisa+qr0lOFRlWntuuVmLDPJPp71OrYyY+Ue1X4qPZ57YWGeeMnweGxurr3NDI+KTukH7mbGSr+3K1alZtQ3Y4uWzTFjbRt7VKXKsl+nhEb29oJldkWjxGZ2ZbHK5XZFMkm3/1yWjJvla3sqobX9ntr99D3M2MyF680YVZIQFaiSFFVoYQAAAABgooUBAAAAkcUYhqhCwgAAAABEiR9++MHNx7AzMb19V5AwAAAAILLCOV9CDM/DoH788Ue37ExMy60GduG4kDAAAAAAUWD//fffpRN/v0gYAAAAEFF60hvQSklhWnesmjBhQq1sl4QB2Ekjd3vIjM0pmGfGmqc29XWsg6XlZiyteWPvB1dUmqGEtBQz1rJtdzO24rfZ9v4kpNmxRDuWWN+OtU/r6Kvk7MbCVWaseZMcM5a73i5Vm5yYbMYq84rM2LKCZb5KvGZneL++JQV2qdqmg/Y0Y2Xz7GMTzC/1Vf42uWUjMyZ2hVcJerxHJTnRDFV6lfdtZx+3YHmlr9Kpnjz2M5Buv2ecNHubP/3nV/txjdPt2H72ZwYA/CBhAAAAQGRRJSmqMA8DAAAAABMtDAAAAIgsqiRFFVoYAAAAAJhoYQAAAEBkaYWkMFVJCtt64xgJA1CNpz+YZR6XouV2FZ2e2T3MWGLDDDOW0MCulFM4e5EZS2/hXXkpuUtzM1byg73eDfMX+qowlOBR7cirGs7Kpb+bsQbJDczYqpLVZqxeol1FprKg2F81J4/XcMMquxJSm0bt7HW2tqsLbZqzRLwEg/YxLfpmnq+KRgmN7ONWHqwwY2nNssxYhzS7YlNCY/uYlv5ov0dzizaYsQZe1Zx2a23GKhauN2OJbez3YVKnJvbj9molfgXn2fsT8Kjo9OqX883YaVRQAuADCQMAAAAiiypJUYUxDAAAAABMtDAAAAAgsqiSFFVIGAAAAIAokJhozyy/PYFAQMrLy309loQBAAAAke8UH66O8THc4T4YDNbKY2P4kAIAAACxo7Kycpvluuuuk7S0NLn66qtl+vTpsmHDBrfMmDFDrrnmGklPT3f30fv6RQsDUI11Iyf5Oi7JnVuYsaUzfzJjraSjGUtNtctcbk/J9wvMWCA9xVdpUfEoj7pp2Spfz6N+Yn0zlhSwm19TE+znkJmUacbKKsrM2MayjWYse4393Bs2t8t1rlxhvw5Ni0rNWL2O3iU5f/v1ezPWoXlXX6WBK9bmmbGUlFQzVplX5C9WWGLGUvt1MGMlk1b5KuFbNmuZr89vxap8M5ayt11quPJn+1irhAz7PRxoYpdblg12aeDl4+aYseJ925uxtESuISKCGMNQI5577jl5+OGH5dNPP5UDDzxwi1jv3r3loYcekmOOOUYOOugg2W233eT888/3tR2+HQAAAIAo9Pjjj8vAgQO3SRY2N3jwYBk0aJA88cQTvrdDwgAAAICI0gG44VzixezZsyUnx27lDGndurXMmWO3Pkq8JwxlZWXy2WefyQ033CADBgyQBg0aSHJysrRo0cI10XzwwQe1vYsAAADATktKSpKZM2du934///yzu69fMZ8wTJw40fXbeuCBB2Tp0qWuSeaEE06Qpk2byrhx4+Soo46Siy++eJdGjgMAAMBHlaRwLXFi7733dsnAo48+at5nzJgxLqnYZ599fG8n5gc9JyQkyIknnuhGju+3335bxF5//XU544wz5KmnnnL9v84666xa208AAABgZ9x+++0yfvx4ufbaa+WNN96Q008/XTp0+KNgxMKFC+Xll1+WKVOmuNaFW2+9VfwKBOP80voFF1wgzz77rAwdOtQd8B2Rl5cn2dnZkpubK1lZWWHfR4THq1/ON2NTD3vIjCUHks1YVkZDM5bYMMNXZZrElvY6KzcWipdVa5eYsRZtOpmxNcsWmrHmu/cwY2W/rTRjeaW5ZiwrJdtXRaOUdLvyUmGhfUzrp9mvhZcEj9fQ65g1Sm1kxtaXrPf1XlMNmrc0Y8Fiu/pSQZ5dCapesl2ZZ02xXfEnO8n+LqzXurkZq8zbZMbEo2pPSa5dtSiteWN7nR4VlJJ72MezfJH9OiU2s597INOugqQqVxfYsfX25zt1WC/xpdietGn4/Yf7WyfqvLp03hLal3vOf0XSUjwqge2C4tJNcuuzp9eJ5xsJb775pjufzc/P32b8hp7mZ2RkyNNPPy2nnHKK723EfAvD9vTp08f9XLLEPrECAAAA6qJhw4bJ/vvvL88884zriq9d8EMDnQ844ABXSrVlS/uCyI6I+4Rh3rx57kDs6oEEAADADmIehhrVvHlz+ctf/uKWcIjrhGHlypXy/PPPu991nIOlpKTELZs3pwEAAADxII7GkW+pvLxczjzzTNe/rVevXq5SkmXUqFGuv11o2ZF6twAAADBQJalG6cVsncRNz20PPfRQuf/++6tic+fOlU8++USKi+0Z4rcnblsYLrnkEjc/Q+PGjeXf//63pKTYA9Nuvvlmue6667Z4UUgaAAAAUNs0GdDqSBs2bHCDnHXgs45fCNEJ24477jh59dVX5eSTT/a1jbhMGLTEqlZGatiwoXz66afStWtXz/unpqa6BbHl91NfMWON6zUxY0GvKiud7GowpbOWmbFAiv1RXDZvlhlr1aqjeMkvtyuwpC239yctIc2MrfvVnimyYfP/fUFtLWn1Jl8VlPI8nkNWhV21qKTSrhK0Om+1GWuUbFel2pBnV0Lq0Nz+Hlm7brkZa5jcwIyVVdoVolSgvv29tGblYjPWrFMXM1a5zq4+1Dzdfn0Tm9mVrkoXrDJjKR08KigV/q8r6NZSJdOMBTyqK3lVXgoW2RWEAml2xaqKZRvMWHLfNva+6HrT7YtVqZfsbj9wXZEdW+VdPc1S7PHdluZ1TAE/GMNQI2bNmiXHH3+8lJaWyqWXXuoGOW9dDUlbHOrVqyfvvvsuCcOOGj58uJvcQmd81owsVCUJAAAAiCYjR450XY20tKpOTKy2Thi0F82ee+4pP/74o+/txNUlgxEjRshDDz3kxiFostC/f//a3iUAAIA4FPhfK0NNL7ruOPHFF19I7969q5IFS5s2bWTFihW+txM3CcNNN90kf/vb31yyoN2QBgwYUNu7BAAAAPi2Zs2a7XatDxX7KSz0110xbsYw6FTY9913X1U3JJIFAACAOlAlKVzrjhPZ2dmybJk9JjFk/vz50qxZM9/bifmE4b333pN7773X/d65c2d57LHHqr1fkyZN5IEHHojw3gEAAAD+9O3bVyZNmiSLFy+Wtm3bVnufn3/+2Y1f0MHRfsV8wrB+/fqq37/77ju3VKddu3YkDAAAAJFAlaQaccEFF7jeM6eddpq89dZb0qJFiy3ia9eudffRcqv606+YTxjOOecctwBbKymw+/KtKV1rxlqlt/RXOtWjLGFCVj0z1qzYo8RrsV06VHVusZsZK95olzINBOx9TQommrHydfYs6PWS7eeYX+pRyjPVbkLNL7cf16JlBzM2bf5XZqxxcmMz1jbdu0SmHwnJ9tdw+XYm2dm00F+5Vs/3YmO7XGn50nVmLDHZfl8kNbP3RTwe51XKNGVP+7Uom2kfl6R29utbvmidr3LKXiq3U+K0Ms8uj1r+n9lmLKFNlhkLepRcTdzD/jy9/bVdNvi0/bxLOAOoHSeddJIMGzbMVUnq1KmTDBw40N0+efJkOeaYY2TChAlSUFAgZ5xxhiuv6lfMJwwAAACoY2hhqDGvvPKK63b/8MMPy/jx491t8+bNc4uWVNUpBUaPHr1L2yBhAAAAAKJUYmKiG697/fXXuzKrOsC5srJScnJyZOjQobs02DmEhAEAAACRRZWkGtewYcPtzsfgVxwVngIAAABix5AhQ+T+++/f7v20Eqje1y9aGAAAABBZjGGoETqouX379tu935w5c2TixIm+t0PCgJj22Gs/+Kqwk9OqixlL6tDUjJV5VEmqLLIrGm1YvsSMFVWUmLEWyVuWT9taXpFdCalBq9a+qugsWzjXjDVKaWjGguVlZiw7u7GvalZpCWlmrDJvkxnrXN+uoNSw4/a/eKuz4je7ok39xPq+1pnduZ1nfN2833xVukrxWGflRvt455Xa76fGYr8Xkzvan5mS7xeYsdR+9utU8s18M7Z0jb3OpsvtqmNZR/XxVe0o6PHZrlhtVw5TSa3sClKJ7bI91lvoqxJSYlf7s7Z8ul1dSqiSBES1srIySUjw37GIhAEAAACRFfj/VoZwrRtbmDlzpjRubF8w2B4SBgAAACCCfvvtNzeu4Ntvv3Un861bt5aFC+25UDZ33nnnbfHvr776apvbQsrLy+XXX3+VH374wc3L4BcJAwAAACIrzqsk/fLLL/L+++/LXnvt5WZh3rBhww4/9vnnn6/6PRAIuORDFy+tWrVypVf9ImEAAAAAIujoo4+WY4891v1+ySWXyEcffbTDj33uuefcT000tGVh0KBBcv7551d7X524rU2bNrL33ntLcnKy7/0lYQAAAEBkxXmVpIRdGIB89tlnV/1+5513umRg89vitNEGAAAACC8tPTpmzBg555xzpFevXpKUlOS6/Nxzzz079Pg333xTBg8e7CZQq1+/vvTu3dvNkaAVisJFxz3syDwMu4oWBsS0gmdmmLHG9ezyigmNM8xY6c92CdSVuXZZwvTEVDOWlWKXTywpXmPGEhra+6kaNskyYxuW2M8ju5FdBrN1+65mrGJDgRlbnbfCjKVW2GVHiyuKzVhWRkNfpWGlyA4Fi+0v9oq1donMxECiGSsP2usMVlSasU3zPcpcikhmUqYZS0i2v95zf1tkxurXt98zJZUe5UNXbjRj63+dZ8YyU+znUL5onb09j7K5XmWRvd6jJV96lKn1OJ7JXZqbscTW9mdbJXS3q5ZUfOvx+ifb7++KWWt9lVWVTfb7tNjjfZrm9VkDPKskhenw+FzvE088IY888oivx15zzTXusZpk6ARpGRkZ8vnnn8uNN94o48aNk08++UTS09MlWpEwAAAAIO717NlTrr/+eunTp4/07dtXRo4cKS+++OJ2j8s777zjkgVNEnRyNH2sWrt2rUsetIrRbbfd5qoihUtJSYl88cUXrpUkLy/PjW/YmraW6H74QcIAAACAyEoI/LGEa90+XHDBBb7GGYwcOdL9vOmmm6qSBdWkSRN5/PHHZb/99pOxY8e6k/XsbO9WRz/efvttufjii2XdOrtVVhOIXUkYaEcEAAAAfFi2bJlMmzbN/X766advE9cKRjk5Oa4F4MMPP6zxY/zdd9/JKaecIhs3bpRTTz3Vjb0IJS8nnniiZGX90c1UqyjdfvvtvrdDwgAAAIDaqZIUrkXEdc3ZfNGT9po2Y8YfYyUbNWokHTp0qPY+/fv33+K+NUm7OVVUVMi///1vefnll113KqVzLrzxxhsyd+5cOeSQQ+S///2vXHbZZb63Q8IAAACAmKNX9rULUGgZNWpUjW9jwYIF7mfbtm0992Pz+6pNmza5k3xd5s+fv8W/Fy2yC1NsbfLkydKjRw9zFuemTZvKa6+9JoWFhXLXXXeJX4xhQNxK9KggVLnOrqSSUD/NjLVMsb8wKgvsaj/rS9absVY9/2herM7SmT+JF6+KRqkJKWYsWGRXw6n0qJZSsqnQjLXs3N2MVazO9bWfv6+3q+/kpLcxYxvK7O01KPaoeONRlapxof11mpBVz4yVr7arCxVV2JWAVFLAnoQnOWjHiivt96LYL6G0bGdXHypablfzatzbfu1LZy0zYwmN7OpZCR4Vq7wqISV3buGr0pN4VAIKFpX5qvSkAgvtz76UVZihlL1y7P3xeFzFGvsFztrDPjZvf73QjJ22X0czBtRmlaQlS5ZUdclRqal2tUK/8vPz3U8to2rRwdBKWzlCVq9eLcOGDdvifqF/68RsWtp1R6xZs8bNwxCiVZpUcXGxpKX9cb6iydIBBxywS12iSBgAAAAQczRZ2DxhqEvat29fbSWjnZWZmSnl5eVV/w4Nql6+fLl07Pi/ZF5neV65cqXv7dAlCQAAAJGl4wwSwrREcKbnzMw/5pLRLj+WgoI/Wj3Dkby0adPGtaSEdO/+R4uullgN0YnjvvnmG2ne3G5B3x5aGAAAAACfLQVq85P2rYViofvWJK3C9Mwzz0hubq5rXTjyyCNdt6TrrrvOdUvSsRVPPfWUa3E444wzfG+HFgYAAADEXJWkSOjz/1WJdA6EzQc1b136VG0+R0NNOe6441wrg04Yp1q2bCm33HKLG1tx1VVXufgHH3wgDRo0kHvuucf3dkgYAAAAAB/atGkjAwYMcL+/8sor28R1lmdtYdAB10cccUSNH+OhQ4fKvHnztqiSdMcdd7hqSyeffLIcdNBBLnH4/vvvPSs5bQ9dkhDT5nz5vz58W+vcrZ/9wNL/DSDaWiDF/tgktWlkxkpmLjZjaQlpviq3tO6ymxnbbvWh1HQzVlpq16reWLjKjJVU2tWVEubZ1WDSEuzKFRmJduWJDvXambHVJWvNWGaSXe0okJzkq/pOQrpdzWnl0t/N2NpS+7ikJ3pX9KjvcWyapdl9VRune7z2RUW+KiFlDulpxkq+sqtZJWTY7/3yJet8fQ5zcz0qNoldCSi5a0szVrHarspU6VFVLJBpPz+V2Nqe9TWQnGhvs8DeppTZlczE43OYt8J+f2cM291eJ1BHqyRFyi233CLHH3+8jB49Wg4//PCqlgRtdQjNfXDFFVeEZZZnywknnOCWmkLCAAAAgLg3ffr0LSY3+/33Py72PPnkk/L+++9X3f7222+7rj8h2u1Hr+I/+uijrsSpXvXXMqufffaZm4F54MCBcvfdd4fl+A4ZMsS1cvzrX/8K6+tHwgAAAIDIClU0Cte6fdB5EqZOnbrN7UuXLnVLSHUzRj/yyCMuMXjsscfk66+/dpWJOnXqJDfddJNce+21kpJit0LvCt2WJizhtkMJw6RJk2psg/vvv3+NrQsAAACoCYMHD96luRFOPvlkt0SSti5Ul8DUSsKgBzBQAyPOdR2bTy4BAACAOBTOakYRrJJU24466ih56aWX3DwQXrNNR6xLUrNmzaomg/Bj9uzZbhpsAAAAALtOKyKNGzfODXDW+RbatbOLgUQkYdBR3//85z99b+jcc88N+4AMAAAARIEIVEnScqeJiYly+eWXuyUWDR8+XHbffXc3KLtbt25uXgidIC69mmp42tPn2Wef9bUdBj0j6hVX2CUE29e3Z1UMFpeZscrCYjMWKE7wVXYzr9QucdqgkV0C87eVs8xYp6JO4iXgUepzxRq7zGvLRm3MWHa+fbyTE5LNWHmwwoyVVdqvRVpmphnb6FE+s2VTu9500KNs7qJlc8xYo+SGZizDozxog+QGZqxlZ/8tt4G0ZF/leBNb2PsTWGaX3SzOzzdj5bPtcruSaH9mSnLtdaY1b+zruTdqnOmr/G3Z3BVmLKVHa/tx8+znnnqA92e0fI5d/je5p/29ULG60IwlNLTfi4Em9eydybX7QTfJ9C7xC9RF06ZNk6ysLIllzz//fNWwgdLSUjdou7qB2xFJGF599VXp0KGD7IpLL71UDjvssF1aBwAAAGJAHaySFI2ee+65iGxnhxKGU045ZZc3tNdee7kFAAAAwK47++yzJRLokgQAAIDIokpSVCFhAAAAAKLcr7/+6iZyW7NmjRsIfcwxx7jbKysr3bQGuzJ53C4lDFOmTHHTXi9fvlyKi4trfIAFAAAAYpDWQkgI47rjyJIlS1w10i+++GKLrkqhhOHpp5+Wyy67TD755BMZOnRo5BKGTZs2uZns/vvf/7p/e82KR8KAcPvHc9+ZsUWFdiWgxE2JZqxZShMzVr97O1+VadIT7eokCQ3syVY6lXYxY+JRIUoVb8z1VQmpwqNKVEpSqq9KUGkJduWWesn2sVm1YZkZq/T47knzeO6rS+3KNO277mHG8hYs8XWsc8vzzFjqOvu1X7p+kXhpkJRtxpIC9vs7Pc2+ypS8m10NKPijvT8JjeznkdTOrnaU+9V0M5ae1sKMBTwqL3kpX2F/RgPJ9p/EsvlrfFWBqlyzyXN/EhrZ7/2K5XYFqUCW/Tks/W6pGUs9rKsZSzvQrio3d7b9/A/e037PAAiv9evXywEHHCALFy6Unj17yv777y+PP/74FvfRc/YrrrhC3nvvvcgmDLfccot8+OGH0rBhQznzzDOlS5cukulR+hAAAACowhiGGnHfffe5ZOH66693v+uF+q0TBj1f79Wrl3z11Ve+t+MrYXjzzTelQYMGMn369LDNKAcAAADA9u6777qJ2kaPHl01H0N1OnbsKJMnTxa/fLXpbtiwQfbbbz+SBQAAAPhvYQjXEicWLVokffv2lYQE71N6HfCs3Zci2sKgrQrb2zEAAACgWgx6rhFpaWmSn2+PdwpZvHixZGfb4962x9dZ/+mnny4TJkyQjRvtwWMAAAAAwqd79+5uiEBhYaF5n7Vr18qPP/4oe+xhF/UIS8Jw4403upHYhx9+uMyaNcv3xgEAABCH6JJUI0466SRZt26dXHfddW6+herccMMNrsLpKaecEtkuSdoP6uOPP5Z99tnHjbpu27atW6rrpqQDMHSuBiBcKtYU+irl2apVRzNWmeddCtESLCo1Yxl7djJjJTPt8q9JzRvY29tOWdXUDeKrdGpBuX1My4Jlvo53caW9vZJS+7h5adm0rRmrLLC3l1PPLtZQtGilGVtfZh/Qjv32MmPpa+zm4iVL5pixzMQM8VJYYb9O2UlZvkqSli+wy2eWlBSZsYSVdlnZ8iXrfJUblrIKO5aWbG9vwWozFki3S8omNrar/SU2t49nxXr7dSj/zaMcq36+uzc3Y8H19vGWJPs1TD2/n/24X+2SwsWrCuzHbbI/98Ue30NpPsvfAtgxl19+ubzwwgvyzDPPyPfffy8nnHCCu/3333+Xhx56yBUq+vbbb2XPPfeUc845RyKaMOig54MPPlh+/vlnNweDlnPSpTpeI7YBAAAQhyJQVnXAgAGSmJjoTqp1idUxDB9//LEMGzbMzfI8Y8YMd7uWUNVFz9P1OLzzzjuSnGxfaAnbPAzaX0rnX7j00kvdz4wM7ythdYFmWY899pjrx1VaWiqdO3eWM844Q6699tpdOogAAACoW6ZNmyZZWXbrYKxo2bKlSw40cfjggw9k/vz5rntSTk6OGz5w7LHH7vIF/CS/NV+bN28u33zzjZsMIhpcc8018sgjj0hSUpIMGTLEJTiff/65G48xbtw4N112enp6be8mAABA7NPz13D1WIvTzi2HHnqoW8LB10uVm5sr++67b9QkC9oMo8mCJglTp051Gdhbb70l8+bNq5r57rbbbqvt3QQAAADqHF8tDNqVp7jYHlBY14wcOdL9vOmmm9zkFiFNmjRx02frJHRjx451ScOu1KgFAABA3RjDEG8qKipcxSSvc3QtUhSxhOH888934xiWLl0qbdq0kbps2bJlrg9baP6IrQ0aNMj18VqyZIl8+OGHctppp9XCXmJXpHWwW7oapdixhMb2uJvydXl2bLFdZSSpQzNflZC8qtYES8t9V3PKK7Ir1zRo3tKMpa21q9NkZzc1YyW5djWgpGCi1LSE+mm+jltegV3tKDXBrqLTKNl+P5XOWmbGEjLs/WzbpacZCxaWmDG33iy7G+W6eb+ZsZIlS8zYypJVZqxzfbuyWMUGu8JOfqn9vsjObuzr/Z3cLMtX9bAUj89omUd1pWCxXSUoqZ39HKT1di5ClXtXOrMkNqtvxionLzVjCX3sqkwAotO0adPk9ttvl4kTJ0pJif13Q8cxlJfbfxtrPGG48sorXdceHQswZswYVzGprs78HBot3qhRI+nQoUO19+nfv79LGPS+JAwAAABhRgtDjdDxxHo+HmpV0OEC4Rjo7Sth6NTpj3ryWkr1iCOOcAOJdYS2NQ+D1oKtLQsWLNhuE4y2MGx+361ptrZ5xpaXZ199BgAAACLhjjvucMnCeeedJ/fee68rShQOvhKGzedc0PquZWVlsnjx4jo5D0N+/h9N4fXr2823oZKwViIwatQoueuuu8K0hwAAAHFGrzGHq3NK3ez0Ehba46dbt27y9NNPh/Wc21fCYF2Jj1U333yzm3I7RBOLUKsEAAAAUBt0TILO4hzuC/S+EoZ27dpJtMjMzHQ/CwsLzfsUFPwxWM/q85WamuoWAAAA7Do9wQ3XSW5t926JpO7du8vatXYxlpoS84027du3dz91ULMlFAvdFwAAAKjrLrroIvnyyy/DPl7YVwtDNOnTp4/7qXVptStVdZWSvvvuO/dz8zkaED3KCkrN2LJiu9Rlq9l2OcOsfXuYsbyvfzVjJbPtlqyUJLuVqrDYLkmZ7VEGMrmHXRpVZU6eZ8YWLZtjxlqn2evNXb/G3l7KHy161SmrsMtSpnjMsp4qHuUjC4t9lU4trrQf99um+Wascz27rOj6kvVmbNOmIjPWbGMTX/upAqvsaz5pCXYp19RU+3hnN7LL5gaS7T8ZwTKPUn3r7bKq4rOksCTbZXpT+1ZfEU+VTLe71KYd0M3el3z7e6Zivf25D3jsp1tvmV3COLGR/d6vWG1vM7FLI3uDRfYxzdqjhRnLm/i/sYtAjaBKUo0lDFOmTHEVS3VOMZ3pOTExDGXMd+ROhxxyiDz44IO7tKEHHnjArSfSdJ6IAQMGuN9feeWVbeI6y7O2MGiXI634BAAAAESDjh07uvkXtCDR0UcfLfXq1XM9ZvT2rZdQldOwtTCMHz9+lydo++WXX+Szzz6T2qCTzB1//PEyevRoOfzww6taErTV4bLLLnO/X3HFFczyDAAAEAE0MNSMSFUu3eEuSTow2NqBHX18bTnuuOPkqquukkcffVT23ntvGTp0qCuzqgnMxo0bZeDAgXL33XfX2v4BAAAAdbVy6Q4nDG+99ZZbotUjjzziEoPHHntMvv76a5eBadPMTTfdJNdee62kpKTU9i4CAADEUQtDuKokSdxoF6HKpTuUMOgsybFQourkk092CwAAAGKbjmHVAcCXX365WxDmhGHz/lFAXbN7/9ZmbFlyYzOWuVd3M1Y2364EVK+1Pe16sMKuvFSxtvqZxFVWm1ZmrHKd3Z2vcPYi8VK/kz32qN5cu6rP2tJ1ZqxBcgMzlpBut9SlVNhfN5XFdgWagvJCXxV9GjS3Kz1tWGVXz+rbrJ8ZW5m73IylJ9pVsDaU2RWbcjLtSSALNtnPXTWu19CMBTxeCy/BIvu18JLY2K6Qle3xuagssCtBBSvtx5Uvtt+jyd3sz2hyZ7sSUMWyXDO2dOZPZqztwD+ZsUC695/ZoEfVIk8ej0vsan/vVcy1j1ve1KVm7NAr9zFjaR6VroDanOl52rRp5hxbsSYvL09eeukl14tmzZo1rvv9iBEjXGzu3LnuXH7//feXtDS7gl5cl1UFAAAAYtUnn3wip59+umzYsMENfNZeQa1b/+9i6pw5c9x43ldffdV3TxsuCwAAAKBWZnoO1xIvZs2a5SqB5ubmyqWXXiqvv/66Sxo2p3MzaLnVd9991/d2aGEAAAAAotDIkSOluLhY3nzzTTnhhBPcbaeccsoW99HCPnvuuaf8+OOPvrdDCwMAAABqZyKGcC1x4osvvpDevXtXJQsWnU9txYoVvrdDwgAAAABEoTVr1kjXrl23e7/y8nIpLPQupOGFLkmIevv1sqvhfCx2lZXi7343Y4n17SoCCa0b2TuTb1d8SWpjVy4JFpeZsUCK/TFNy7Qr06jKvCIz1jizmRlL7mRXmalYaVeSKVpjV2BJSUr1VZUpLcF+LVatXWLGmmXZ74vsDPu1KNlOZSJLQcUmM7ZHoz3MWF5Rrq/XSAVL7Uo5lXn2/iQ1zvK1Ti8V6/J9rdOrElLq7nYFqfIl9numZJo9kVHqgA5mTMrsfWl/whBfjyubaVfWUsl97UpmwbwSM5bYyv7sVxR6VLrKtdcpre11zlxoV1XrmWNXTgMszPRcM7Kzs2XZMrvyX8j8+fOlWTPvvyleaGEAAAAAolDfvn3l+++/l8WLF5v3+fnnn934hT/9yS4BvT0kDAAAAIgsxjDUiAsuuMANej7ttNNk5cqV28TXrl3r7qOVk/RnRBOGjz76yPcGAQAAAOy6k046SYYNGyZTpkyRTp06ySGHHOJunzx5shxzzDHSsWNH+fbbb908DVpeNaIJwxFHHCHdunWTRx55xM0sBwAAAOz4GWhAAmFadN3x5JVXXpGbb77Z/T5+/Hj3c968efL+++9LaWmpDB8+XJ5//vld2oavQc+77babmyjiuuuuk1tvvVXOPPNMufzyy6Vnz567tDMAAAAAdlxiYqLce++9cv3117syqzrAubKyUnJycmTo0KG7NNh5lxKGX375RSZMmCBjx46V9957T5588kl56qmnZP/995crrrjCzTiXkMDwCAAAABjiqyEg7Bo2bLjd+RgiXlZ18ODBbtFSTv/4xz/kmWeekYkTJ8qkSZOkVatWcskll8iFF15YI1kN4CUt0U5OGzZvbcbK19nd6YIVdpnExEb1zVhFWYUZ2zTfLq9YVmmXVc3u3M6MyXZ6BFYW2mVe1+WvNmON59rPP6FhhhkrqLBLkjZMSDZj2Ul2mc/ccvtJNkhu4KuUZ0J6iq/nUFxpH8/OPfqZsdIFq8xYVnq27xKvqanp4sfKFQt8HdOUilRfZYPLV2ywY6X2Zybhd/u45RXY62zUo4sZq1i60YyVLVpjxlJ2a+2rxGtKD/txbn8W2s8joZn9WQt6fNfIj/ZxC7SxP2vy61o71reVHQMQ83Z5HobWrVvL3XffLbfffrv8+9//dq0OOvBC/62360AMbXXYlVJOAAAAiB2BQMAt4Vp3PPr666/lt99+qzbWv39/6dGjR+1P3JacnOxKOmmCoMnC6NGj3UCLl19+2Q3G2HfffeWBBx4gcQAAAAB86tevn8ydO9eNV9BEIOTpp5+Wf/3rX9U+Zo899pAZM2bUfsKwatUqN45Bl+XL/+h60adPH1fe6dVXX3XlnQYNGiRvvfWWK/MEAACA+MRMz/589tln7sT//PPP3yJZCNH5FnSg8+aWLl0qP/30k3z++ecyZIjHrPXhTBi0+UO7If3nP/+RsrIyN9hZB1xcffXVLkFQOnJbB0ZfddVVcuedd5IwAAAAADvpnXfecV2urr322mrjGvv000+3uG3hwoVujga9aB/RhEFnlNOuRo899pibalqzGR2ZrYOctbyqlnHanCYRl156qXz44YdV9WEBAAAQpyLQxDBgwABXclTPTXWJBd9++620a9dup8YjtG/fXnr16uUe61eS34HOGzdudInC7rvv7loOdC6G9HTvih3Nmzd34xqASAnUt6u6JBan+aqwUzpziRlbun6RGWvbxZ6npF6aXUGodK5dXSmwnfLFXtWAkgP2NivLPJ7/KrsiTFqCfUzzy/PNWHZ6QzOW6FG1aEnRUjPWINmuPlRWZD+/FhktzFiax3tm6exfzFiz1CZmbGXBSjPWdqB3sYjFk6f62mbLzt3NWN4C+/2dmp7pqxJUUYVdXarBHnZFo8p8+3FNuvmr2hNMtqsLpe3Vyde+JDa2j0uw3K445h7b2n6fSrK/8uQVv9uVl5K8qiQ1tyvANcm0v0uBumratGmSleXxno9Cv//+uxsXXB09L7d06dLFjXmIaMKgycJRRx3lEoWt+0l5GTFihPz5z3/2s0kAAADECKok+ZOXlyfZ2dVfaNAJlbX4UHX0on5+vn3hLiwJg0433bFjx51+XNeuXd0CAAAAYOdkZGRIbm6uWQlJF+tif7169SSiCYOfZAEAAABwtMedv1532xeu9dYBLVu2lB9++GGnH6eP0cf6FcOHFAAAAIgd++67ryxbtkwmTZq0w4/R+2pp1YEDB/reLgkDAAAAamUMQ7iWWHXmmWe6wc2XXXaZG8+wPTpuQe+rx+T000/3vV0SBgAAACAKHHDAAXLwwQfLr7/+6iZu++CDD8z76nQGWlp21qxZrkjRgQceWPszPQN1UVK7RmasZIVX6cHGZqwyr8hX6dRgYYkZS8i0y3Umt21qxgIe5VhV+YLVZiw1wS65Wh60S0+meJRPTi619ye/1K7OsLrQLsmZnZTlq4xrcaVdBjM90S4RWVJiv76FHiVem6c3M2PBSru0Zotsuzxo2dwV4qVN993NWMXqXHt/isvMWP20DDNWWeBRWjTLHkxXv8j+U1O53j6mia3tcrvBIrtEd8WafF+fmfKFa8xY8m6t7X0pq/D9Gibl2N81CY3sYxoss99TSQe0sze40X4NpYH9edqvl/++z0C1mOrZt1deecV1L5o7d66bDFnnQuvbt680bfrH+cKaNWtk+vTpsmHDBtca0blzZ/eYXUHCAAAAAESJxo0by9SpU+WKK66QV199VdavX+8mRg51xQrNx6ATJ5966qluouUGDRrs0jZJGAAAABBRNDDsGp2L4cUXX5S77rpL3n//ffn+++9l7dq1LtakSRPX4qBzpnXqZE9IuTNIGAAAAIAo1LFjRzeRcriRMAAAACCimOk5ulAlCQAAAICJFgbEtMQ+LcxY6aRffX0wytfZdY+T69sVjSoLPaqTrLFz98oNBWYsWGFXStme1Hr1zVhis2wzVrRopRlbU/pH/8nqNEjK9lUJyavaUYNs+3inexzvgnK7Mk9Kkl1BqWmSR8WqFPtdk9zSrvZTtsiuzFNYuJ0a2xvWm6GMhnaFsJQBbc1YcJ1dJap80Tp7nfvYlXkWvPqpGWvToZm/CkO78N63JLZu5KsqU0KWXTkssZH9OduehKZ2laTKDR7fJ6vs97c09/jct7U/o0CNY6bnqEILAwAAAAATLQwAAACIKMYwRBdaGAAAAACYSBgAAABQOxMxhGuJUZMmTXIzPEcaCQMAAAAQBQYPHiyjR4+u+veQIUPk/vvvD/t2GcOAmDb8rwebsVHjZpux0gWrzFha7/ZmrNKjkopXVZeKtXY1nISMNDMW2E6lmAqPSkGJ9e31eqnXLceMZf5qby+zmV0NRxI9rl2stKsIFeRtNGP163tUXsqzq/1kVNpVZJIa2+tcs3KxGWvmUXUqWGm/hhvLc8VLq/SW9npLy81YyQT76lRCll2ZJ5Bpv2dKJv5uxtp0392MVSyzKz0V5+ebsfqd2pixQL0UM7bxp3lmLFNa1HhVpqQOdmUtVfydfdzqHdLTjCXm2O/F8l/tamWpA1qZsd37tzZjaV6fUcAHZnr2LxgMVv0+YcIEad/ePi+pKXwDAAAAAFEgMzNTVqzwKDkdJrQwAAAAILJoYvBljz32kM8//1xuv/126dy5s7vtt99+k3/961879PizzjrL13ZJGAAAABBzBgwYIImJiXL55Ze7JRaMGDFCTjrpJLn33nurbps8ebJbdgQJAwAAAKJCICHglnCtW02bNk2ysuzxPtHo6KOPlm+//VbeeecdWbRokTz//PPSqVMnGThwYFi3SwsDAAAAECV69+7tFqUJw6BBg+Sf//xnWLdJwgAAAICI0jaAcE2XELuzMGzrjjvukD59+ki4kTAgfiUn2qGWjczYmu9nmrGme+9pxkpLS8xYaoZdyjPBo/zpD3O/Fi97tLD3pzJvk/1Ar3KsDTPMWFa6XT60fJ1dOnbBpkVmrGlKEzPWoJVdBrLIoxxrYsB+7QvKC81YVqFdrtNLxepcX9tr130Pz/Xm/mYft8wmdonQ8tV2OdpAmv0cKxasth+XYv85SezS3NfnMHWxXco0WFxmxioL7c9awz/ZJV6TOjU0Y+W/bzBjgXT7uVeu9/icaRnfi+xuBMG1Ho9tmeHreVSssd9vLRvb30MA6m7CEAkkDAAAAIgsqiTVqPLycvn3v/8tX3zxhSxbtszd1rp1aznwwAPdIOmkpF075Y/phGH16tXy0UcfuUUHvixZskQSEhKkbdu2csghh8h1110XkckuAAAAgHD44YcfXFKwYMGCLSZ1U88884zcdttt8uabb8qee9q9DuI6YdCE4OWXX3ZJQs+ePeWYY46RwsJClzyMGTPGDRB5++235eCD7dmAAQAAULMCgYBbwiFc662Lli9f7i6Cr127Vpo3by6nnnqqq5qk5s+fL6+99pr8/vvvcuihh7rEomXLlr62E9MJQ6NGjeSuu+6S888/3zXLhBQUFMiFF17oDqIeWJ3womFDu88nAAAAUNfcd999Llm44IIL5JFHHpH09PQt4iNHjpSrrrrKtTTcf//98ve//93XdhIkhj366KNuJrzNkwWVkZEhzz77rJtee/369fLBBx/U2j4CAADEZ5mkMC5x4r///a/rav/EE09skyyotLQ0efzxx919duV8N6ZbGLzUq1dPunXrJt99950b24D4k35RfzO27JpXzVjjLn9MxV6d8sXrzFjGnn80EVZn7fe/mLEGHlVr9mjdV7wkNLCrnlSssKu+FBbaFY2Si4rMWGp2phkr96gSlZlkV3zJSLKfw8qlv5ux5k1y7H3ZUGHG6qdl+DouTVu0NWPBsnIzlpXR0Fe1H5XZrJkZW77kNzPWKMXeZoJHhayUHm3Ej9KZHt+xifZ1q8RmdtUtL8XL7QpZmd3sik0lU+yqU4nN7MmfKlblm7Gk9nbFNae1/ZkRrypJKwrMULCg1IylH2J/D/XMaWBvD0CdpOewxx9/vJvR2qIDnvfZZx832ZtfcZswlJWVycKFC93vfvtzAQAAoG7O9BwPUlNTJS/PvpgVkp+f7+7rV9wmDNolSft8afPN4Ycf7nnfkpISt4TsyAsDAAAAhFOPHj1cKVVtacjJqb5lffHixe4+u1IlKabHMFhmzpwpN9xwg/tdS03pqHIvo0aNkuzs7KrFekEAAACwfQxhqBlnnXWWFBUVyUEHHSQffvjhNvH333/fVQMtLi529425FoYRI0bIe++9t9OP01HggwYNMuNLly6Vo48+2lVK0jKrN91003bXefPNN7sSrZu3MJA0AAAAoDZp1c+33npLPvvsM3d+qxVCO3To4GI6L4MW99G5GTSh0PvGXMKgdWXnzJmz04/TRMCycuVKGTp0qCxatMjVo33jjTd2qFav9vnalX5fAAAA2Hqi53DNwxA/RzoxMdFVP9KqoFoNad26dW7ZvDLo5Zdf7qYZ0HnJYi5heOmll9xSk7M+DxkyRObOneuyLB0pThIAAACAaJaSkiKjR492SYFW/1y2bJm7XacV6N+/f42c79bZhKEmrVmzxiULs2bNci0M2tVJ69Iivl1zwV5m7Lbhb5uxBbN+MGPtWnczYxWr7cHyjXt3N2PlC+0SkcGKSvGybN4sX6U1szrY43Qq19klJCsLPEpypthfWPUr7dKpK0pWmbHcMvuYblyRa8aapzY1Y5UeJVDrJdczY8Vr7TK1+eX2MWucaZdGLVppv/aqoKLQjLVq1dGMVXqUThWP91Txj39UlqtOStdW9io9tpdY3/4uDnqUlU1sYZdczdy/hxkLpCebsYRMj78LZXYp3opl681Yyt7eY94qxi8QPxKT7RKKXg4Y2N7X44DwtDCE57jGUwvD5jQxGDhwoIRDzA961kpImiz88ssvLlkYN25ctRNbAAAAAIizFgYd6KFJws8//+y6IWnLAskCAABA7aKFIbrEdMJwwQUXyE8//eQG1eio8UsvvbTa+x133HFuAQAAABBnLQxKy0lpRSRL+/btSRgAAAAiJPD//4Vr3ahZMZ0wTJgwobZ3AQAAAIhqMZ0wAH41+OuRZmzZiKfM2MZVK8xYVrpd1aVirV3tJ7lrSzNWOuuP0mmW1u27+qqU41UtZtPC5WYsNdUuKJDar4O9L9/MM2MZWQ3sWK5dRSgrxT7e60vsqjZegpWVviohNW3d3lclpEDAuy6F13or8zaZscJC+/2W3bmdGStbZO9r5UZ7ewGP2t/JnVuYsfKl/l6nsjl2Za3kjnaFrECSR+Uhj6pEybu1NmPBglLxK7GPfWxko/35DWTbFcl65tifJyCiwlgliQaGmhfzVZIAAACAWLR48WJZsmRJ2LdDwgAAAIBaqZIUriVetG/fXk499dSwb4eEAQAAAIhCWVlZ0qGD3eW3pjCGAQAAABGlJe91Cde640WPHj3okgQAAAD4MWDAAHdC/dhjj8XsAbzwwgtl8uTJMm3atLBuhxYGAAAARJS2AYS7SJKeRGuXnVh27rnnyowZM+SQQw6RG264QU488UQ3riE11a6W5kcgqLOaYafk5eVJdna25ObmxvwbEdu674BnzMOy+NvvzFiLDLtEYl5RrhlLDNjlHNMT7fKnKqVrKzNWvnitGQuWlpuxhPQUMxZIs2NeAvXtL7b18+f7Kp26ptguAVo/sb4ZK660y1UmB5LtfcloaMYS6tuvUyDFvm6zYTuVL7KzG/sq9VmZV2TGSufaZXMTPF5fv89x0zK7BGr9Tm3MWMW6fF+liL2ee2LzTDMmZXZJ3WC5HQuke1+XS2zlsU0vPZqYoUNP6GnGKKsan+rSeUtoX5797w9Sr77P9/92bCrMl/MP37NOPN9wS0z0KAddTVet8nL777sXWhgAAAAQUYxhqBk7c91/V9oISBgAAAAQUeEsfxpHY56l0mNC0ZpEWVUAAAAAJloYAAAAEHODnlFzaGEAAAAAotjvv/8uI0aMkEGDBkm3bt3c7yFTp06Vp556yg0C94sWBmAnXf35eWbssnqTzFhu0QYz1rBVjhnbsNyulLOixPvD37a4qRmrLC41Y4lZ9cxYRd4mM5afa1cmWl9mP//29dubsYbNvar92PviV5MGLXxVHiqYNteMedWOWubx+rZMbe7xSJHc3HVmrMFiu2pR8Sr7cent7Odftth+fZM72ftascauaJTWwK50Fayo9FUJKaG5XQXLS2If+7mXvDnTflxru0JWsMi7Ikllgf05TNjLrnJ2+RX7eq4XqOsY9FxzXnjhBbnkkkukpKSk6tiuXfu/SoibNm2SSy+9VFJSUuScc87xtQ1aGAAAAIAo9M0338gFF1zgkoH777/ftSZsXQ3pgAMOcKVsx40b53s7tDAAAAAgoqiSVDM0SdAE4YMPPnDdkaqTkJAge+65p/z666++t0MLAwAAABCFJk+eLHvttZeZLIS0aNFCVqxY4Xs7tDAAAAAgohjDUDM2btwobdu23e79ioqKpLTUHjO1PbQwAAAAAFGocePGsmjRou3e77fffnOtDH7RwgDspLREO8/e/erTzNjCse+ZsfLVG81YVopdRaZBhncVncp1dnWahGT741+Saz8uNTvTjGXm2fuSnW5XkklskmXGylfZx8ZLg+QGZmxVyWozll5oVxea/+UXZqxxcmMzlp9vH8+cVl3MWLDMu8JOhsfxrlhrB1Mz7CpCiQ3tWLCwxN7eSrtiV6B+qr29pvb7qTK/2IyVzbWb1pOK7Ncisb1HRaOl9jFL7mVXLPKS0NB+PzmpiTVeCcnrOwqoK5iHoWbsvffebjDzL7/8IrvvvrvZbUnjZ555pu/t8K0CAAAARKHLL79cKioq5MQTT5Qffvhhm/isWbPkvPPOc13ALrvsMt/bIWEAAABArVRJCtcSL4YOHSrXXXedzJ07V/r16yddu3Z1ycHHH38se+yxh/Tq1UvmzZsnN9xwg2uN8IuEAQAAAIhSDzzwgDz55JNujIKOVdAyq1oR6eeff5ZGjRrJmDFjZPTo0bu0DcYwAAAAIKIC+l+YmgJ03fHmwgsvdBO4zZgxQ+bPny+VlZWSk5MjAwYMkKSkXT/dJ2EAAAAAolwgEJC+ffu6paaRMAAAACCiqJIUHtodad26de6nllzVWZ5rAgkDUIOG33+4Gbt/3noztvyTKWascWYzM1ZZYJedVOtL7G0262SX85RFK81QsNQu9ZncspGvx21atsqM1Wttl46t2FBgxlITU8xY2+xOZiyQZj8uZYm9nw1atRY/vMqf5pfa5VhVRpJdAjUhI83Xcyxfar9nKvM2mbFgRaW9vUL7fVqx2i7HmtLNLmWakOnx/JLsUqXBPLs0bLDMfg6Jh9vvGfl9gx1L286fWY/4b8vt90bPHLtsMID48+mnn8qDDz4oX331lZukTaWlpcl+++0n1157rRx66KG7tH4GPQMAACCiqJJUc7QC0mGHHSaffPKJbNq0ybUu6KKJg952xBFHyPDhw3dpGyQMAAAAQBR66aWXXMuCtiZoUvDTTz+5yUJ1mTlzplx//fWSnp4uDz/8sLuvXyQMAAAAiPgA3XAu8WLMmDGSmJgoH330kfztb3+Tnj17Sv369d2iMz/ff//9LqbHZOzYsb63Q8IAAAAARKGff/5ZBg0a5MYqWEJxva9fDHoGAABARIVzRuY4amAQ7YrUqpVdICJE75OSYhe82B4SBiBCRrx9hhn728l2VZdZ735oxjpkdfTcZkaiXUWnYoVd2SUlJdWMJbVtYsaC+XY1nKQ2dgWlwFp7X5LaNTZj5as2mrGUvh3MWMn0Bfa+eFRzatOonRmr9KjYVFJSZG8vYDf0ZmU0FE8elYkSW9hVdBLS/VVJSt3brhRUvsh+XGKzLDMWyLT3pXK1fUwDHs8hWFRqr3Opx3vm4M7iR8USu5rR9vS5Y7AZoxISgO3p16+fG7ewPXqf/v37i190SQIAAEDkZ3oO43/x4i9/+YvMmjXLjVWw6NgGvc8tt9ziezu0MAAAAABRYNKkSVv8WwczX3HFFXLzzTfLm2++KX/+85+lQ4c/WtgXLFjgKiN9//33ctVVV+3SJG4kDAAAAIgoxjD4M3jw4GqrQOm8C5oYTJ8+fZvb1aOPPuoqKpWX291uvZAwAAAAAFFg//33r5WysSQMAAAAiKwwVkmK5SEMEyZMqJXtMugZAAAAgIkWBqAOuOGNU83Y386w8/rpr7/lud4mKXYp0/rBCjOWnJBsxhI2bhI/yhasNmNrSteasZTvF/jb3qxlZmxTmf0c1m+yS7y2a7ubvcFEu5Rnmt8SoMV2TCW3bWrGKlba5UMTOjQzY4H6dkndyvX2cUvITDNjpT8vMWPJnZqbscTW2WasfOF6X+V9U4f1MmOVv2/wd3Wt3C5v2+fuIV6PlIP3bO0ZB2JVggTcEq51o2aRMAAAAABRrLi4WL777jtZvny5+91y1lln+Vo/CQMAAABirkrSgAEDJDExUS6//HK3xKq//e1vMnLkSMnL2/4kkiQMAAAAwP+bNm2aZGXZM83HgrFjx8qNN97ofu/Vq5d06dJFMjMza3w7tDAAAAAgopiHoeYShqSkJHnrrbfk6KOPlnChShIAAAAQhRYuXOjmZghnsqBoYQDquBtePtmMPZCa6PnYua98aMYaJDcwY2lNGpqxhAb1zFjurPm+Ki+1zs4xY6VFRWYsKWA//0CaXZlo4/pce1/SWpqxirV2/9BgZaWvakbSoL4ZCmwstB+nVYSa2U3tlR6PrfSozJTY0N6fst9WmrGUvTqYsYSV9vH2Urnefu1TBtvbK5u82Nf2Enp6vE717Pdvn9P3MGNUQQKqp5OPhWsCstqY2Ky2NGvWTJo29fjuqiFx18JQUFAgHTt2rHqjLl26tLZ3CQAAANhphx9+uEyZMkUqPS5a1YS4SxhuuOEG13wDAACA2hEI8xIv7rjjDiktLZWrrrrK/QyXuOqS9Omnn8o//vEPueKKK9wgEQAAACBatWrVSr766is55phjpFu3bnLggQdK27ZtJSFh2zYB7Vlz2223+dpO3CQMWpv2/PPPlw4dOsjo0aNJGAAAAGoJYxhqRjAYlEceeURmz57tuiU9//zz1R5rvR8Jww645ppr3HiF8ePHS/369qA+AAAAIFombRszZowrrXrUUUe5eRgyMjJqfDtx0cLwwQcfyHPPPScXXXSRDBkypLZ3B6gx1//zRM/4g8l2FaE5L4wzY+VLl5mxjsVdzVhGll15KVha7ivmVQkppWsrXxV9cnK6mbHy1RvNWCDF/soMFtt9RytWbDBjSW0am7HU/TqLl+LPZpuxvAJ7m037tTNjwXz7eaT0sqtZVa4uMGNJHewKHoEkeyhdsNwexFcybpYZS9nHfn57nNBD/GjZ2L7Q1DPHft8DqB7zMNSMZ555RurVqydffvml9OnTR8Il5hOGDRs2yIUXXig5OTkuC/OjpKTELSE7MvU2AAAAEE5LliyRwYMHhzVZiIsqSTrAecWKFfLUU0/5nh581KhRkp2dXbVo8gEAAIBda2EI1xIvWrRoIZmZmWHfTp1tYRgxYoS89957vppmBg0a5H7/z3/+I6+88oqce+65cthhh/nel5tvvlmuu+66LVoYSBoAAABQm44//nh59dVXpbi4WNLS0uIvYVi+fLnMmTPH18Rsau3atXLppZe6clMPPfTQLu1LamqqWwAAALDrAv//XziEa7110Z133ikff/yxnHbaafL0009LkyZN4itheOmll9zil9akXb16tbRp00aOO+44837Dhg1zycA555zjFgAAACBaqoB269ZN3nnnHfn888+lX79+nvMwPPvss7GVMNQULaWqi+Wbb75xP3XACAAAAMKPKkk1Q+dd0ERA5efny4QJE8z7kjBUQ1sVdJIKr4MWGl2urRBALBr+pN26Vvz4MWbsgQ6jzdhPy6absd0zu5uxxUV24t6uflszVlZZZsYSFqw2Y8nt7FKeCVnpZiyQaNeCSGxmF04onbPcY3v1zFhlXpEZK/nyN/GS0s0uK9uit10xo2KJR6W3sgozFGjkcdw8SqAG0j3K0RZ5lNTt28KMJba1X4tARooZW5v/v4p3Wzttv45mDADqIp02IBJivoUBAAAAdQszPdeMs88+WyIh5suqAgAAAPCPFgYAAABEFGMYokvcJgxe4xsAAACAuu68887b4fsy6BkAAABRgzEMNVclyUuoyI9eKCdhALDT0jyqAd26+BYz9uCoL8xY8XPfm7HgosVmbH7BAjOWkmBXvOnUZx8ztmH6bDOWFEg0Y+kt7OpKZR5VmUo2FZqxeg0z7H3ZvaUZK5+9SrwEsuwJJcu+t6s2JbbONmPBZPvYVK63KzolNK9vr3OTXekqaWh7Myb1ks1Q66O7mTGqHQGI9ypJlZWVsmjRIvnwww/lu+++c/M19O7d2/d24rZLEgAAAGqHXvcO13zM8TPPs2y3SpLOBD1ixAg3C/T06XZZ9O2hShIAAAAQo0aOHCmZmZly++23+14HLQwAAACIKKokRU5SUpL07dtXxo8f73sdtDAAAAAAMayoqEg2bNjg+/G0MAAAACCiqJIUObNmzZKvvvpKcnJyfK+DhAEAAACIQv/617/MWH5+vksWXnzxRSkuLpbTTz/d93YCQWYw22l5eXmSnZ0tubm5kpWV5fvgA/Hk4We+NWNFj001Y2WL1pixefm/mbGujbvbO1NRaYYqy8rNWFJj+/OesrddHrT8V7s8aqCeXTY2kGSXOHXxdLvsaEIru5Rr5fICMxYst49NIMnuxZq4Vys71tYu49q8WxMz1qt9IzPWM6eBGQNQd89bQvvy2fTfJSMzMyzbKMjPl6F9O9WJ5xtuCQkJVXMtVCd0mn/sscfKG2+8IcnJ9t8NL7QwAAAAAFHorLPOMhOGlJQUad26tRx00EGy77777tJ2SBgAAAAQUYH//y9c644Xz29npueaQpUkAAAAACZaGAAAABBRzMMQXUgYAAAAgCivirSjYx78oEpSlFcbAOLZg498ZcbK/zPbjJUtWG3GKvI2mbGiimIzlpFlV+1J7tzCV6Wjynx7e269A9vaj12Wb8bqHd3VjBU+/6MZ6zP6IPHj4D1b+3ocgNg7bwnty4QfFoS1StLgPTvUiecb6apI21NRUeHrcbQwAAAAAFFgyJAhO50wTJkyRTZt2rRLiQYJAwAAACKKMQz+jB8/fofv++WXX8qIESOkqKjI/btXr14+t0qVJAAAACBm/Pzzz3L00UfL4MGDZerUqZKTk+PKr86YMcP3OmlhAAAAQETRwlDzlixZIrfddpu8/PLLbqxC48aN5ZZbbpHLL7/cTeK2K0gYAAAAgCi1YcMGuffee+Xxxx+X4uJiqVevnlx99dVy44031tigbxIGAAAARJQOvw3fTM/xobi4WP7+97/L/fff76pPJSYmykUXXSR33nmntGhhV+fzg4QBQNQafvUgO+gV86m4otKMPTb2azOW1jzDjHXt3tT3/rRsXN+M9cyxy7x6OnVP3/sDAAi/yspKeeaZZ+Svf/2rrFixQoLBoJxwwgkycuRI6drVLpu9K0gYAAAAEFGMYfDnP//5j/zlL3+RuXPnukThgAMOkPvuu0/22msvCScSBgAAACAKnHTSSW4+hdA4hSOOOELKy8vl66/tVu7N7bvvvr62S8IAAACAiNKT3l2ZSGx76451mzZtklGjRrllZ46LJhd+kDAAAAAAUaBt27a1khCRMAAAACCiGMPgz8KFC6U2kDAAwA5KS0zwV7EJAIAoRsIAAACAiNI5GMI3D0Psj2GINPtyGQAAABClBgwYID169JDHHnustncl6tHCAAAAgJgbwzBt2jTJysoKz0biDC0MAAAAAEy0MAAAACCiEgIBt4Rr3ahZtDAAAAAAMNHCAAAAgIhiHoboQgsDAAAAABMtDAAAAIgoWhiiCy0MAAAAAEy0MAAAACCimOk5utDCAAAAAMBECwMAAAAiijEM0YUWBgAAAAAmWhgAAAAQWYGABMI1IzMzPdc4EgYAAABEFF2SogtdkgAAAACYaGEAAABARAXC2CUpbF2d4ljctDAsWLBArrzySunatavUq1dPsrKypHv37nLuuefK/Pnza3v3AAAAgDopLhKGV199VXr06CFjx46VtLQ0Ofroo2Xw4MGSmJgozz//vPz666+1vYsAAABxIxDmBTUr5rskffbZZ3LmmWdKs2bN5I033pD99ttvi/jChQslNTW11vYPAAAAqMtiOmGoqKiQCy64QCorK+Wtt96Sfffdd5v7tG/fvlb2DQAAIF4xhiG6xHSXpHHjxrkWhEGDBlWbLAAAAACI4xaGjz/+2P3cf//9pby8XN59912ZPHmyFBUVuZaFY4891g18BgAAQOQwD0N0iemE4aeffnI/k5KSZK+99pIZM2ZsEb/lllvkmmuukQceeMCzBFdJSYlbQvLy8sK41wAAAEDdEdNdktatW+d+jho1ShYvXiwvvfSSrFmzRpYsWSJ/+9vfXCLx0EMPyejRoz3Xo4/Pzs6uWnJyciL0DAAAAGIPVZKiSyAYDAalDhoxYoS89957O/24Z555xo1ZUN26dZO5c+dWdU865JBDtrjv/fffLzfeeKNkZmbKihUrpH79+jvcwqBJQ25urpvPAQAAoK7S8xa94FkXzltC+/LzguWSmRmefcnPz5OeHVrViecbK+psl6Tly5fLnDlzdvpxBQUFVb9rIqB0vMLWyYK69NJLXcKQn58v3377rRx44IHVrlPLrlJ6FQAAoKYE/hjIEBbMxBA3XZK0+5A2fuzscthhh1Wto2PHjlv83JomFE2bNnW/awsDAAAAgChJGGpCv3793M+1a9ea8zRs3LjR/Z6RkRHRfQMAAIhXjGGILjGdMJx44omu+tHs2bNl6dKl28QnTJggZWVl7j79+/evlX0EAAAA6rKYThg6d+4sZ555ppSWlsqFF17oBr+ELFq0SK688kr3+0knnSStWrWqxT0FAACIv3kYwrUgTgY915QxY8bIL7/8Ih999JFLIPbee28pLi6Wb775xg2Q7t27t/zjH/+o7d0EAAAA6qSYbmFQWrpLZ3ceOXKka0X4/PPP5euvv5YuXbq4+RemTJkijRo1qu3dBAAAiBuMYYguMd/CoNLS0uTmm292CwAAAIAdFxcJAwAAAOqQcA42YBBDjYv5LkkAAAAA/KOFAQAAALUyhiFc60bNooUBAAAAgIkWBgAAAEQUQxiiCy0MAAAAAEy0MAAAACDCGMUQTWhhAAAAAGCihQEAAAARxRiG6EILAwAAAAATLQwAAACIKEYwRBdaGAAAAACYaGEAAABARDGGIbrQwgAAAADARAsDAAAAIoxRDNGEFgYAAAAAJloYAAAAEFGMYYgutDAAAAAAMNHCAAAAgIhiBEN0oYUBAAAAgIkWBgAAAEQWTQxRhRYGAAAAACZaGAAAABBRgf//L1zrRs2ihQEAAACAiRYGAAAARFbgj7kYwrVu1CxaGAAAAACYaGEAAABARFEkKbrQwgAAAADARAsDAAAAIisQxkEMYRscEb9oYQAAAABgooUBAAAAEcUYhuhCCwMAAAAAEy0MAAAAiCiGMEQXWhgAAAAAmGhhAAAAQEQxhiG60MIAAAAAwEQLAwAAACKLQQxRhRYGAAAAACZaGAAAABBRjGGILrQwAAAAADDRwgAAAICIYghDdKGFAQAAAICJFgYAAABEGKMYogktDAAAAABMJAwAAAColTEM4VqiwW+//SZHHHGEZGRkSJMmTeSyyy6TwsJCqYvokgQAAABEUG5urgwZMkRatWolb775pqxfv16uu+46WbVqlbz11lt17rUgYQAAAEBExfsIhieffFLWrFkj3333nTRr1szdlp6eLieeeKJ8//330q9fP6lL4qJL0ocffihHH320tGjRQpKTkyUzM9O9EPfcc4/k5+fX9u4BAAAgjnz44YeuhSGULKhjjjnGdU96//33pa6J+YThxhtvlCOPPNId/JycHJe57bPPPjJ79my57bbbXOKgzT8AAACI3zEMc+bMkTFjxsg555wjvXr1kqSkJAkEAu4C847QrkWDBw+Whg0bSv369aV3795y//33S1lZ2Tb3/fXXX2W33Xbb4jbdXteuXWXWrFlS18R0l6QZM2a4F0pbFT744AM5+OCDq2LaDKT//vHHH+WOO+6Qf/zjH7W6rwAAAKg9TzzxhDzyyCO+HnvNNde4x+pJv7YcaEvB559/7i5cjxs3Tj755BPX5Shkw4YN0qBBg23Wo8mGjmeoa2K6hUFfKKWJwebJgmratKmMGDHC/T5lypRa2T8AAID4HsUQrmXn9ezZU66//np5+eWX3VX+P//5zzv0uHfeecclC5okTJ06VT7++GM3cHnevHmupeKrr75yvVqiWUy3MKSlpe3Q/bSUFQAAAOLXBRdcsMW/ExJ27Lr6yJEj3c+bbrpJ+vbtu8X55eOPPy777befjB071iUN2dnZVS0JGzdu3GZd2vLQpUsXqWtiuoXhoIMOck1Dn376qYwfP36LmHZJ0u5K6uKLL66lPQQAAIg/dXEMgx/Lli2TadOmud9PP/30beKDBg1yY2hLSkrcQOcQHb+w9ViFiooKmTt37jZjG+qCmG5h6Natmxu8cuWVV7ouSQMGDJCOHTu67E2bhzTLe/rpp+Xkk0/2XI++yLpsXjtX5eXlhf05AAAA7IrQ+UowGKwzBzKc51ChdW+9jdTUVLfU9HhZ1ahRI+nQoYNUp3///rJkyRJ339NOO83dphO23XXXXe4CtnaTVzrWoaCgwBXrqXOCceDjjz8ONmvWTD8lWywnn3xycMaMGdt9/B133LHNY1k4BrwHeA/wHuA9wHuA90A0vQd+//33YG0rKioKtmjRIuzPNSMjY5vb9HxuZ5x99tnucXfffbd5n0cffdTdZ8899zTvc9VVV7n7nHTSSVW3bdiwIdi6devgPvvsE/zwww+DL7/8crB58+bBY489NlgX1dkWBh2Q/N577+3045555hnX/BNy6623yr333iuHHXaY3H333a6ZZ/Xq1W5Ai/5bszkdrHLIIYeY67z55pvd7Hsh2uesXbt2snjx4qq+aPgjk9dmN82is7KyOCQcExPvFY7LzuD9wjHhvbJrtGdE27Zt3VXwujC+dMGCBVJaWhrW7WhripZE3VxNty6o0HxeWkbVooOht27x0ApJWpznqquukpNOOskdl2HDhskDDzwgdVGdTRiWL1/u6uHuLG3KCdGkQJOFPfbYwyUGOp5BaZORJhL6b00GLrnkEjeSPTExsdp1Wk1YmixwYrwtPSYcF47JjuC9wnHZGbxfOCa8V3bNjg7iDTc9Od7RwjSxrGvXrvLRRx9JNKgb75xqvPTSSy473NlFWxJCnn/+efdTM7ZQsrC50OAUzXTnz58fwWcHAACAaJeZmel+FhYWbvdidjRfTK2zCUNN0C5DXi/Q5t2J6uIkGQAAAKi72rdv735qd2xLKBa6bzSK6YShdevW7qdOolGdb775pur3nXkRtXuSzg4djr5w0YzjwjHhvcJniO8Wvm9rE3+HOC6R1qdPH/dz3bp1rsdKdb777jv3c/M5GqJNQEc+S4zSyTIuv/xyN+jllVdekVNPPbUqpl2QtKSVjpMYOnToNvM0AAAAIH6dc8458sILL7giOTr21bLXXnu5uRjuuece+ctf/rJFTMv468RtmsyuWrUqaovlxHQLw0UXXSRHHXWUG9ugdW91em6dc+HAAw+U3Xff3SULbdq0kaeeeqq2dxUAAABR6JZbbnE/R48eLdOnT6+6XVsdLrvsMvf7FVdcEbXJQsy3MCh9ei+++KJbfvjhB1cSVUfmd+7cWY4++mi59tpr3fTcAAAAiF96sh86wVe///67rF271l1cDnVzV2+//ba0bNlyi8deffXV8uijj0pycrLruaJlVj/77DN33jlw4ED59NNPJT09XaJVzCcMAAAAwPZMmDDB9ULZngULFlQ79vWNN96Qxx57zF2gLisrk06dOsmZZ57pLk6npKRE9QsQ012SIu3DDz90rRYtWrRwGaaW2urXr5/r0xaa2CNe6YfryiuvdDWH69Wr5ypXde/eXc4999y4L2mr5dY6duzoxtrosnTpUok3Opniv/71L1fquEuXLq4VUN8n+h7RSW0WLlwosezNN9+UwYMHu9ZOvSrVu3dvuf/++90fnHijz1mvyt1www0yYMAAN7mRfp/q9+oxxxwjH3zwQW3vYp2a4DT0vaF/Z+KdTgSmV3h18ladoEy/R/TK8OGHHy6vv/66xButFKndYLp16+aubOvx0Hmozj77bPnxxx9re/fqJP0e3pES/u2NQjna7X3ixIluorxNmzbJzJkz5cYbb4z6ZMGp7ammY8WIESOqph7v379/8JRTTgkefPDBwXr16rnbunTpEly5cmUwHr3yyivBtLQ0dxx69eoVPPnkk4NHH310sEePHu62cePGBePZJZdcEgwEAlXvnyVLlgTjzRlnnOGee0JCQnCPPfYIDhs2LHjEEUcEmzZt6m6vX79+8JNPPgnGoquvvto9x6SkpOAhhxwSPOGEE4INGjRwtw0aNCi4adOmYDz59NNPqz4LLVq0CB555JHuO6Nnz55Vt1900UXBysrKYDybPHmy+7yEvjvuvvvuYDzT783Q35QmTZoEjzrqKPd3eN9993V/h0888cRgPPnmm2+CmZmZ7ni0bt06eMwxxwSPP/74YIcOHaq+b954443a3k1EERKGGjB9+nT3AUxOTt7mpGb16tXB3r17u/jFF18cjDfjx493f9T0D/+kSZO2iS9YsCC4fPnyYLzS94u+N6644oq4ThiuvPLK4F133RVcunTpFrfn5+cHTz31VHdcGjVqFFy/fn0wlrz99tvuuWVkZAS///77qtvXrFnjkmuNDR8+PBhPPvvsM3dyV933xWuvvRZMTEx0x+WFF14IxqvCwkJ3EUpPBI877ri4Txg0qe7evbs7DnfeeWewtLR0m+M1Y8aMYDzRCy+h5Hrz41FRURG89dZbXUwvTBQVFdXqfiJ6kDDUgAceeMB9+PSKaHVefvllF9cPcDwpLy8Ptm/f3j13vRqGLeXm5gZzcnLcFZ+CgoK4Thi86B/70JWyF198MRhLBgwY4J7XPffcs03syy+/dLHU1NTgxo0ba2X/6qLzzz/fHZehQ4cG49VVV13ljsEHH3wQPPvss+M+YbjtttuqTo4RDK5du7bq74letKzub3N6erqL6wVPYEcwhqEGaL/AHdGkSROJJ+PGjXN9z7U/6b777lvbu1PnXHPNNW68wjPPPOP6raN6OpZB++BubybNaLNs2TJXt1vp2I2t6ecmJydHSkpK3PgobDlJUiy9F3Z2UOaYMWPkrLPOcnMJxTsd8/LEE0+433XcC/6YvG5Hxdt5CfwjYagBBx10kCQlJbmSWVtPALdmzRo3eFFdfPHFEk8+/vhj93P//feX8vJyeeutt+S6666TSy+9VO677z6ZPXu2xCsduPncc8/JhRdeKEOGDKnt3anzJwShQc9bl7GLZjNmzHA/dXCmDkSsTv/+/be4L0TmzZsXc++FnSmQcN5550nz5s3l4Ycfru3dqTNlMLXsZatWrVy5dB1ketddd7m/tzfddJP7rq2srJR4kpGR4SYKUzrZ2ObFE/RY3HnnnVJUVOQGg+tFCWBHJO3QveBJr37qFR+tAnTwwQe7yh5a9WbDhg1uhj+dqOPpp592o+fjyU8//eR+ajKlsyBufdKjE53oVfYHHnjAVfmIF/q+0ERBv6j/9re/1fbu1HnPPvusOyHQKh/6By6WKoeptm3bmvcJ/TEP3TferVy5Up5//nn3+4knnijx5vrrr3fvBa0Bz/xBW/6d0WpImiDoBbrNq8XrxSltlXrnnXc8P2uxRs85tAVKJ6bVpEkvPiQmJrq/w9q6+ec//1nGjh1b27uJKEILQw255JJL3IeyWbNmrpuBlnD75JNPXFktzfRDVwrjic5wqEaNGuXKu7300kuuxUW7EuiJsiYSDz30kJsZMZ5ombsVK1a4L3ItLwubXi0MdTO47bbb3JXVWBEqtezVHU2vFKq8vDyJd9pKqfXMtVxhr1694q7FVv+ePPnkk3LqqafKcccdV9u7U+f+zuiJsCYHOunWnDlz3PtEW/21lLfGjjzyyLgqU6wXMqdMmSKHHHKISxDeffdd+c9//uMSTm2J0fKh/P3Bzoj7FgatY/3ee+/JztJ+59rHOESb/e6991457LDD5O6775bddtvN1ZZ/+eWX3b+1P79e4dAPb7wcl9BVHv2SfuWVV7Z47nqlTJtGtT6xJhRaa7+u9+OviWOiX9h6LHT+CX2vxIKa+gxtTcd36Lwm2g1D6+/r1UPE90UZnZ+hcePG8u9//zs26prvID35Pf/886Vp06auNRv/s/nfmdNOO22Lq+baXViTBj15/vnnn+W1115zV9bjweTJk+WEE05wF+b0b452fdXPjN6uXYP1/aS/awsusEOCcS5U/31nl//+979V63jppZeqqiCVlZVts41Ro0a5uFbD0eoE8XJc+vXr527TSknVycvLq3rc559/Hoz1Y6KlMps1axZs1apVcMOGDdusP1qrJNXEe2VrK1asCHbt2tXd79BDDw0WFxcHY82jjz7qnt+ee+653Wo4J510UjCehY5Dw4YN47KqyznnnOOe/+uvv75NLN6rJI0ZM6bqO2XChAnV3kfL9Gr8rLPOCsYD/fuic9joHB06H8PWfv/996o5oqLhby/qhrjvkqTdZHZkVr+tl82vDof61A4bNsxl81sLVUDRpsD58+dLvBwXHcex+c+t6UzYesVMaRedWD8mOp5FW50SEhJclwJtEt58CdH3kf479L6Kh/fK5vQY6dWwuXPnuiuE2jK3M1U/okVoplCvaj+hmDWraDwYPny4m71XZ3zWbjmhKknxRMcs6N+Wxx9/fJvvjY8++sjdR68U67+1y1I82fzvi/W3JnR7NPydqQnaPVq7/+rz/tOf/rRNfPPbty7UAljivktSTdD++crqD6iDnkPWr18v8aJfv37y5ptvugGr1amoqJCNGzdu0Vc7HmhXG10s33zzjfu5eRIRL/SPnCYLs2bNkqFDh7quTjtatjjahE58tQ+2XkyorlLSd99953727dtX4pF2d9NxTvodqslCPI4F23wMx8SJE824VhLTpV27dhJP9LOhRTP0IoT+ramu6k/ob1C8/J3Z3jnJ5ucl8XROgl0T9y0MNaF169bu59SpUz1PAOPtSqFWMdEvci2fWt0JstYT136nep94OBHQVgWvK+6bX1XWf2vpu3iif9Q1Wfjll19csqDjfrQyUqzSqi5aUU1pH+OtaYuUvhe0dSUe6+3rmBUtjqAnNtoPPXSs4pFeWLG+N84++2x3Hx0rp/8OlSCOFy1atKgaC1Xd1XL9GxNKtLRaXzydk+jfXh3/Ut0x0XK0yirpDGyjtvtExYLHHnvM9QXU/oKvvvrqNn0Fu3XrFrczk/75z392z/2www7bYrbahQsXBnfbbTcXGzZsWK3uY10RrWMYasK6devcGCB9/gcddFBw06ZNwXjw9ttvu+eckZER/P7777eYqbVXr14uNnz48GC8+ctf/uKee4MGDYLffvttbe9OnRbvYxjU+PHjq8a4TJkypep2HVN45ZVXupjOFr9y5cpgPNDZnevXr1/19zU/P78qVlJSErz88stdLDk52Z2jADsioP/bNo3AzjYVH3/88fL++++7f/fs2dNVSdLuFdq6UFxc7K4m6lUOq49lrNKrG3rVWK9m6IySe++9tzseely0+k3v3r3l888/d5NXxbvQXBR6VVnfL/FEq3loP209BjqGw2pZ0FaaWCspefXVV7s++snJya5lRauFaTUgvao8cOBAd3U9lltatqbd0I499lj3u7Y87r777tXeT79PdA6XeHfOOefICy+84FoYtFpfvLrnnntc6eXQvD/a8qB/d7TFRT8/2j1WS6vGCx1bptX49PxExwpqC51+x2g3Ry2zqmPpHnvsMVd9DNghO5RWYLsqKyuDL7zwgrs62qRJk2BSUpK7aqgVUG677bbg+vXr4/YoFhUVBUeOHOmuIGtlBl369OkTHD16dNxcSd4R8dzCcMABB+xQZaU77rgjGIu0+s3+++8fzMrKCqanpwd79uzpPh96NTDePPfcczv0XmjXrl1t72qdQAvD/3z88cfBww8/PNioUSN39TwnJ8dVmJo1a1YwHv3www/u+Xfs2DGYmpoaTElJcZ8brWw3derU2t49RBlaGAAAAACYGPQMAAAAwETCAAAAAMBEwgAAAADARMIAAAAAwETCAAAAAMBEwgAAAADARMIAAAAAwETCAAAAAMBEwgAAAADARMIAABEyYcIECQQCWywvvfRSRLZ92GGHbbHd9u3bR2S7AIDol1TbOwAA8aZ58+buBF516tQpIts8+OCDpUWLFlJQUCBvvfVWRLYJAIgNJAwAEGHdu3eX559/PqLbHD58uPu5cOFCEgYAwE6hSxIAAAAAEwkDAHgYPHjwNuMOtl70PjXlzjvvdOvUn8uXL5cLLrhAWrVqJenp6dKzZ0959tlnq+47e/ZsOf30011Xo7S0NOndu7e8/vrrvJ4AgBpFlyQA8KBjDawBwhMnTnRdfBITE2v8GC5evFj69esnKSkpst9++8maNWtk0qRJLoHYuHGjDBw4UA455BCXTBx44IGyaNEimTJlipx66qnu8aeccgqvKwCgRpAwAICHm266qdrb//vf/8rLL78s9erVk1GjRtX4MXzuuefkkksukTFjxkhS0h9f1ePGjZNjjjlG7rrrLmnUqJHceOONcsstt7gWCfXII4/INddcI7feeisJAwCgxtAlCQB20vTp0+Xkk0+WYDAor732muy11141fgzbtm0rf//736uSBXX00UfLHnvsIfn5+a7S0ubJgrr88stdIvHbb7+5FgoAAGoCCQMA7ATt+nPkkUe68qRjx451J/HhoN2MdFzC1rp06eJ+Hn744VskC0qTi1D3KR3/AABATSBhAIAdtGHDBneivnLlStdVSbsMhYu2MFQnIyPDM56Zmel+FhcXh23fAADxhYQBAHZASUmJHHfccTJr1iw544wzZOTIkWE9bgkJCbsUBwCgpvAXBwC2Q8cqnH322a5KkXYV+uc//7lNdyAAAGIVCQMAbMeIESPc/AY6D8Lbb7/tSp0CABAvSBgAwIMObH7ggQekdevWrpRqdnY2xwsAEFeYhwEAPFx99dVVg4x1foPqdO/e3ZyvAQCAaEfCAAAeKisr3U+dRVmX6hxwwAEkDACAmBUI6mg+AEDYTZgwwQ2a1gRDf68NCxculA4dOki7du3c7wAAbA8tDAAQYbNnz5ZzzjnH/X7xxRfLPvvsE/ZtPvjggzJz5kw34RwAADuDhAEAImzVqlXywgsvuN8POuigiCQMn376qXz88cdh3w4AIPbQJQkAAACAibKqAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAEwkDAAAAABMJAwAAAAATCQMAAAAAEwkDAAAAABMJAwAAAAAxPJ/UQrQY7IQU6cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAJOCAYAAAD/KYUYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4DElEQVR4nOzdB3wU1fbA8bOphEBC56GAIDYCiJQgCiiCgqAIiGIDxa4EUREVUR4iPOCh8h4ldrFjAQUBkaKg/oGn0uQpoFIFbHQSSkLK/j/n8jam7IbNZrbM7u/7+QybzM7OTCbZZe49957jcDqdTgEAAAAAAAAAAAhxUcE+AQAAAAAAAAAAAG8Q1AAAAAAAAAAAALZAUAMAAAAAAAAAANgCQQ0AAAAAAAAAAGALBDUAAAAAAAAAAIAtENQAAAAAAAAAAAC2QFADAAAAAAAAAADYAkENAAAAAAAAAABgCwQ1AAAAAAAAAACALRDUKKf3339f2rRpIxUrVpRq1apJ586d5ffff7fmtwMAAAAgotHeAAAAAIoiqFEOzz77rPTv318uvfRS+eSTT+TNN9+UVq1aSVZWVnl2CwAAAAC0NwAAAAA3HE6n0+nuCZRu8+bNkpKSIpMmTZJ7772XywUAAADAMrQ3AAAAAPeYqeGjadOmSVxcnNx+++2+7gIAAAAAaG8AAAAAkRrU+Omnn2TKlCkyYMAAadasmcTExIjD4ZAxY8Z49foZM2ZIx44dpWrVqpKYmCjNmzeXCRMmSE5OToltV6xYIeecc4688cYbctppp5lj6faffvqpH34yAAAAAMFGewMAAAAIvhgJI88//7xJB+WLBx54wLxWgxOdOnWSSpUqyZIlS+TRRx+VuXPnyqJFiyQhIaFg+z/++EN+/fVXGTlypPzzn/+U2rVrm4DKVVddJd999500adLEwp8MAAAAQLDR3gAAAACCL6xmajRt2lSGDh0q77zzjmzcuNEU8fbG7NmzTUBDAxnffPONLFy4UD788EPZtGmTmfGxbNkyGTFiRJHX5Ofny+HDh+WVV14xx+nSpYt5zd/+9jcT5AAAAAAQXmhvAAAAAMEXVjM17rjjjiLfR0V5F7MZO3aseRw2bJi0bNmyYH2NGjXkueeekw4dOsjUqVNNYCM5Odk8pymq1CWXXFKwvdbYaNeunaxfv96SnwcAAABA6KC9AQAAAARfWM3U8IWmkFq5cqX5+sYbbyzxfPv27aVevXqSnZ0t8+fPL1jvKb2U0+mUrKwsP54xAAAAALugvQEAAABYK+KDGmvXrjUXolq1atKwYUO3F6l169ZFtlVaO0N9/vnnBes08KGpqlzbAwAAAIhstDcAAAAAa4VV+ilfbNu2zTzWr1/f4zY6U6Pwtq6gxgUXXGCmoI8bN87U0tBC4QcOHJBHHnnE47408KFL4doc+/fvl+rVq4vD4bDopwIAAECk0RnDmZmZcsopp3idhhX+R3sDAAAA4cAZQu2NiA9q6C9CJSYmerxIWkBcZWRkFKzTX9y8efNMYfKHHnpIjh07JqmpqbJkyRKPqamUBkBGjRpl6S8RAAAAcNm5c6fUrVuXCxIiaG8AAAAgnOwMgfZGxAc1ykNTVk2bNs0s3nrsscdkyJAhBd8fOnTIzBLRP4akpKRynQ8AAAAilw7A0RnGlStXDvapwCK0NwAAABAqMkKovRHxQQ3XL+HIkSMeL9Lhw4fNoxVBh/j4eLOkp6ebJS8vr2DfBDUAAABQXqQ0DS20NwAAABBOHCFQQiHik+02aNDAXAidKeGJ6znXtlZIS0uTDRs2yMqVKy3bJwAAAIDQQnsDAAAAsFbEBzVatGhhLsS+ffuKFAIvbNWqVeaxZcuWFl9+AAAAAOGM9gYAAABgrYgPamhREy3wraZPn17iAi1btszM1NCUUd27d7fswmvqqZSUlIJjAwAAAAg/tDcAAAAAa0V8UEMNHz7cPI4fP17WrFlTcHF09sbAgQPN14MGDZLk5GTLLjzppwAAAIDIQHsDAAAAsI7D6XQ6JUxoQMIVhFBbtmyRvXv3mtFRp556asH6WbNmSZ06dYq89v7775fJkydLbGysdO7cWRITE+Xzzz+XgwcPSrt27WTx4sWSkJDgl6rxGiw5dOgQhcIBAADAfWUIo70BAACASJURQv3YMRJmF/abb74psX7Xrl1mccnOzi6xzaRJk0zwQtNCrVixQnJycqRRo0YybNgwefDBByUuLs7Sc9Xj6JKXl2fpfgEAAAD4B+0NAAAAIPjCaqaGHYVShAsAAAD2xX0l+LsAAABAJLQ3qKkBAAAAAAAAAABsgaAGAAAAAAAAAACwBYIaQaL1NFJSUiQ1NTVYpwAAAAAgTNHeAAAAQLiipkaQhVIuMgAAANgX95Xg7wIAAACR0N5gpgYAAAAAAAAAALAFghoAAAAAAAAAAMAWCGoECTluAQAAANDeAAAAAMqGmhpBFkq5yAAAAGBf3FeCvwsAAABEQnuDmRoAAAAAAAAAAMAWCGoAQBjavn27OBwOGTBggF9f4499ALAH3u8AYN3nI/dhALgXAwDvEdQAgBDiatBefvnllu/7iy++MPt+8sknLd83gJKWLl0q1113ndSrV0/i4+OlWrVq0r59e/nXv/4lWVlZ5b5kvKcBwFrchwHhhXsxAAhfMcE+AQCA9U499VTZuHGjyXXoz9cAKCk3N1fS0tLkpZdeksTEROnWrZucccYZJu/ookWLZMiQIfLCCy/IJ598YtbbFZ8ZAGDd5yOfqYB1uBcDgPBHUCNI0tPTzZKXlxesUwAQxmJjY+Wcc87x+2sAlPTYY4+ZgEZqaqrMmjXLdFS56P/7Tz31lFl0RtaaNWuCXmDNV3xmAKGN9kbwcB8GBBf3YgAQ/kg/FSQ6gnPDhg2ycuXKYJ0CAJsonGJm1apVctlll0nlypXN6L/evXubVAkny8usr73kkkvM16NGjTLPuRbX693lcj5+/LhMmTJFunbtWpBCp1atWnL11VfL2rVry/2zaYeuHlP3V9iBAwfMz9i5c+dyHwMIpJ9//lkmTpxoUk3NnTu3SEBDRUdHm/fgjTfeKFu2bJFnnnmm4LnXX3/dvB/08WSpprx5T7tGKo4bN04aNWokFSpUMDND9PutW7d6zPf+2muvyfnnny+VKlUyi37t7pw85X/35TPLl/N0h88U4C+0N6zBfRhgL9yLcS8GIDIwUwNASHM68yUv+4DYRXR8VXE4/BMv1iDohAkTTEfm3XffbYIKs2fPlu+//15++OEH0xHoSceOHU1H4htvvCEXX3yx+d6lSpUqHl+3f/9+eeCBB6RDhw7SvXt3qVq1qulknDNnjnz66afy1VdfmdHovnJ1+O7atavIej1Onz595M0335S9e/dKjRo1fD4Ggi8/X2TfPrGF6tVFosrxFtb3WH5+vtx1111Su3Ztj9uNGDFCpk+fLtOmTTOzNsrK2/f0bbfdJm+99ZacfvrppoMzOzvb1PT4z3/+43a/gwcPNoFMfW/efvvtZt2HH34ot956q/nMmTRpkl8+s8p6np7wmQJYj3uxE7gPg13Z6T5McS/GvRgAeIOgBoCQpgGNbR+1FrtoePUqialQ3S/7nj9/vrz33num8LDLzTffbDoCtaPw+uuv9/haV4endoDq194WC9fgwo4dO0qMNl+/fr20bdtWhg8fLosXL/b5Z9JZH5qioXhQQzVt2lScTqf897//lU6dOvl8DASfNqRr1Qr2WXhn926RmjV9f/2KFSvM48lmGWmqt1NOOUV+/fVX2blzp5kJVRbevKc///xz8/lw3nnnyfLly6VixYpm/eOPPy4tWrQosb0GKTWg0bhxYxNMcOWC133r+33y5MlyzTXXmCCnlZ9ZZT3P0vCZAliPe7ETuA+DXdnpPkxxL8a9GAB4g/RTAGATF110UZHOQdfoZuWvVHaabqp4QEM1adLEjL7WTtCcnByf969pZerUqSN//vmnST/jztGjR33ePxBof/zxh3n0Jkjh2ub333/3y7m8/fbb5vHvf/97QaBA6Xvu/vvvL7G9BkhcQYzCxW01uDly5Ejztbs0VOX9zCrreZaGzxQA/sJ9GGAP3Iv9hXsxAOGMoAYA2ESrVq1KrKtbt655PHjwoN+O+91335n8//Xr15e4uLiCvP1aL0Brbmh6qPLQn0HT9fz2229F1i9dutQ8NmvWrFz7ByLVunXrzGP79u1LPNeuXbsS61x1cgqnsnJx1e/QzwOrP7PKep4nw2cKAH/gPgxAWXEvRvsOgP+QfgoAbCIpKanEupiYEx/jeXl5fjmmptJxpX7q0qWLnHnmmaZwsAY1NH2M3qhr7vvyKJwDXwMnrlHcCxYsMB2pp512mgU/CRAYf/vb3+THH380KaXOPvvsUrfVbVwzEvwhIyNDoqKi3NakcVfvw7V9TTf5t3R7fd/rNlZ/ZpX1PE+GzxQA/sB9GGAP3Iv9hXsxAOGMoEaQpKenm8VfHZFAuNDC21qnwk7nG07+8Y9/mKDF//3f/5UYRf31118XjD4qj+KFfQ8fPiwDBgwwnZ8TJ04s9/4RGgUfNT+yXc61PC688EL54osvTJ2ISy+91ON2GvjQ2Un69+9KQ6Ud+8pdKrZDhw6V+Vy0IauzoHQ2VfFAhaZ887T9nj17TG2Kwnbv3m1q3LhrHJdXWc/zZPhMAaxtb3AvFjzchyHS7sMU92LciwGANwhqBElaWppZdHRi4bzVAIpyOKL8Vng70kRHR5vHsnRubNmyRapVq1YioKF1LtasWWPJebk6IHXUunaaaiHhjRs3mtz9WjgY9qd99eUpvm0n+vc7fvx4efnll2XIkCFuZz24OqoK15hw1a5QWjzcU2qosrynmzdvbl6nxbd79erltqB5YVqUW7fXoEzfvn2LPKfrlD/ek2U9z5PhMwWwtr3BvZg1uA9DsETSfZjiXqzsuBcDYEfU1ACACKHBicIpb7yhqZ8OHDgg69evL1inHahDhw41o7mt4Mqxr+d1xx13yKxZs2TSpEmmQQLYjaac0uLW+/btkx49epQoAq4zEkaPHm2KYzdq1Mi8lwrna9cUT++9955kZWUVrN+0aZN5T5T1PX3TTTeZx6eeekqOHTtWpICmu/3dcsst5nHUqFFF0kzpLBFdV3gbK5X1PE+GzxQAoYj7MCAwuBcrO+7FANgRMzUAIEKcc845csopp5gO0/j4eNPxpx2o9913n8cRnPrcokWLzEwNHbldoUIFM2JbR5JrMWHX6O3ycI2qfuGFF0yqq3//+9/muIBdTZgwwQQCpk2bZurQXHHFFSaAoYECfT9pkELXz58/v0g6J31/3nDDDTJ9+nQT4Lj88stN2icN9OnXH374YZne05r+6sYbbzT7a9asmZkFoe+xDz74QM4//3yZO3duQcorddFFF5nXTpkyRZo2bSp9+vQxs6f0uJoebvDgwWYbq5X1PE+GzxQAoYj7MCBwuBcrG+7FANgRQQ0AiKC0Bx999JE8+uij8u6770pmZqZZ369fP49BjSuvvFJmzpwpY8eONSPLK1asaAqHayerjqq2gqsDUmeAaCfwrbfeasl+gWDRejCvvvqqCVC89NJLsmzZMvOeSUxMlMaNG8s999wj9957ryQkJJR47SuvvGIKZr///vsmF76ONtR9aPCieFDDm/f0G2+8YY6p7y0NVmjg44EHHpDOnTubYEHxGhmTJ082aaief/55c1zVpEkT837353uzrOdZGj5TAIQi7sOAwOFerOy4FwNgNw6nDsFD0Lhy3OqITn8U3wQAAHAXPLnzzjvlueeeMwGWUGWX8wwV3FeCvwsAsAe73OPY5TwBRF57g5oaAAAAYUrrUhQfv6Lp48aMGWNGDetsrFBgl/MEAAAIx3scu5wnALiQfgoAACBMjR8/Xj755BPp0KGD1KpVS3bs2CHz5s0zqaqefPJJqVevnoQCu5wnAABAON7j2OU8AcCFoAYAAECY0gLjGzZsMI3UAwcOSIUKFeTcc8+VgQMHmuLcocIu5wkAABCO9zh2OU8AcKGmRpCFUi4yAAAA2Bf3leDvAgAAAJHQ3qCmRpCkp6dLSkqKpKamBusUAAAAAIQp2hsAAAAIV8zUCLJQinABAADAvrivBH8XAAAAiIT2BjM1AAAAAAAAAACALRDUAAAAAAAAAAAAtkBQAwAAAAAAAAAA2AJBDQAAAAAAAAAAYAsENXz0xRdfiMPhKLE0bdrU2t8QAAAAgIhEmwMAAAAoKYaLUj6vvPKKNGnSpOD7ihUrckkBAAAAWIY2BwAAAPAXghrlpAGNtm3blnc3AAAAAECbAwAAADgJ0k8BAAAAAAAAAABbCKugxk8//SRTpkyRAQMGSLNmzSQmJsbUuRgzZoxXr58xY4Z07NhRqlatKomJidK8eXOZMGGC5OTkeHxNz549JTo6WmrXri133XWX7N+/38KfCAAAAEAooc0BAAAABFdYBTWef/55GTx4sLzxxhvyww8/SF5entevfeCBB6Rv376yfPlyadOmjVx++eWyY8cOefTRR6VTp05y7NixItsnJyfLQw89JK+++qp8/vnnMmTIEPnggw/k4osvluzsbD/8dAAAO9i+fbsJqGuAPRA+/vhjqV+/vpx66qnyf//3fwE5JqylAyr0b8ZdceAnn3ySyw2EGNocQOjiPgy+4F4MAOwnrIIaTZs2laFDh8o777wjGzdulP79+3v1utmzZ8ukSZOkUqVK8s0338jChQvlww8/lE2bNpkZH8uWLZMRI0YUeU2LFi3kmWeekSuvvNL8B6jBD53pocGUd999108/IYBw5+rILK1D3Jtt7OBknbZ06p6c/l934403SkZGhvz222/y9NNPW/57gu9uu+028zdevXp1vw940PeRHqu0JZQDJPp5pueonVFAqKPNEb64Dyt5LUL5/45g4z4s9HEv5j3uxQDYTVgVCr/jjjuKfB8V5V3MZuzYseZx2LBh0rJly4L1NWrUkOeee046dOggU6dONYENnaHhyWWXXSbVqlWTlStX2r6zEQAQXEuXLpXU1FQTcPdk8uTJMnPmTDn33HOle/fucskllwT0HOFZZmammcGpHUKamlIHUFx33XV+v2R9+vQxHa7u6CAMAOVHmwMIf9yH2R/3YgAQ3sIqqOGLX3/91QQhlI52La59+/ZSr1492blzp8yfP19uuOGGk+6zeAoJAADKSmdd9O7dW+688063z2uKxS1btki3bt3M9+vWreMih5D3339fjhw5YtJT/vvf/zbpKgMR1Ljmmmvk+uuv9/txAJQNbQ7AXrgPsz/uxQAgvIVV+ilfrF271jzqDIuGDRu63aZ169ZFtvVE01bpaEytyQEAgVQ4RYCmzNMR2ZUrV5YqVaqYkdubN28u8RpNs6d1gGrVqiUVKlSQU045RS699FKzvrivvvpKevXqJbVr15b4+HgT7L366qvNsVyOHz8uU6ZMka5du5rndTvdt25X/PNTz9M1q2DUqFFFUuRo+pmTPV/4vHr06GFm1unxzjzzTHniiSfk6NGjHq/PihUrpEuXLubaFA9Ce7s/V1Dhn//8p5xxxhnm+unjuHHjJD8/X6ywatUqeeGFFzw+r/UzNPCO0KRBjJiYGHnkkUfM37LW3/rll18kFLz11lvmb/+pp55y+/yaNWvM8zfddFOR9bt375YHH3zQ/K3r+0PfJ/r5oqk3i2vQoIFZDh8+LPfff7/5fNHX6KwinV1UfFuth6b0Xsz1Xi88s0TPSQM2Wj9G91OzZk0zk+kf//iHRVcF8C/aHOGN+zDuwxB6uBfjXgxAeIv4mRrbtm0zF0IbyZ5o51zhbVW/fv1Mw7tVq1am41BrcWjn1nnnnVfqCEnNqV04r7bmQQfgWb7TKQeOH7fNJaoaFydRQZyt9fXXX5uO9csvv1zuu+8+Wb9+vcyaNct0gOtzp59+ekGR04EDB0qdOnXMbADN+f/HH3/It99+a7bXjkoXrTmkHZkJCQlmW/281BGnGtDQzklXx7oGdR944AGTsk9TIVWtWlW2bt0qc+bMkU8//dQEDLQTUmlnpQYntCNTAyuFOy812HCy510/Q1pamvleAxEaQNFAgHZyasoAXeLi4opcHw1oaMpB7WS+6667ZMeOHQXPlXV/+vpp06aZ/wv0dVlZWTJx4kRzjPLSn33Pnj1m0f9fzj///BLb6O+peAqUUKWBnn379okd6HvB2/SVnmzYsMG83/R9oIHAm2++2QQ1XnvttZDITa6BxnvvvdfUIPv73//uNuihCtcm01lB+j7ctWuXCQpqkFODHBoE1UEd+vMV/zvNyckx2x44cMB8pmhw8L333pO+ffvKggULzHNKPzdef/11M9tIAyCu97gGO9R3330nF154oURHR0vPnj3ltNNOk4MHD5rr/NJLL8njjz/u1+sF2K3NYXV7g3sx73Efxn1YKLLTfZjiXox7MQDwRsQHNTTPokpMTPR4kVz5zAs3CJo0aSLTp083nX3Hjh2TunXryu233y4jR44s0YlWmHY26qhjAN7RgEbrRXNsc7lWdblKqsfHB+342rmoo/vvvvvugnUvvvii3HPPPaazcO7cuWbdK6+8Yj6rtLNQO+8LK9zo0U5GTZ+jwY/ly5cXdDIqp9Mpv//+e8H3GsTQIMGpp55aZH8aWGnbtq0MHz5cFi9ebNa5ghQatNCvi3f0nux57cwcPHiwGfWtnana+HEZP368PPbYY2bWyEMPPVTkdXp8DUTceuut5dqfjsjU/TRv3txcF9f/IfozakdTeWlaRL2e2hmstZ3cBTX0ujZr1kzsQP+miv+dhSrtqNdZAOUdGVg4KKBBBA0ialBDgwjlDZqURgONP/74o9vn9HPgb3/7m/l71QDl22+/bQKZhWeY6gykd99912yntcJcNDCj73cNRuhsLBedyaQzWjVN2n//+98ix9Pi9RrI1PeL695IU33qjDANABYOauhnkX7e6NeFP2dcQRbtoNW6JBrUKMxOnTSIbIFsc1jd3uBezHvch3EfForsdB+muBfjXgwAvBHx6ad8pR1c33//vWl06EhEHVGlDfTSCom7Xnfo0KGCRWt1AIBVzjrrrBI1GPR7TaP0ySefmJH/LrGxsWYprnCHvgZEdHTXmDFjSnQ0anoYTSnjoilhigc0XB0yOjNCZ2ro56UV9Lxyc3NNoKHw+SpN96Od0toxW1zLli1LBDR82d+bb75pHrWDunAHlf78GjwqL+1o1hkiek11ZLs27gpbvXq1+VkQevRvXDvhk5KSzGwGV0elBhE06PfZZ5/59fg6c0I7M90tOhvLxRVw0cBGYYsWLZI///zTjADXmRGutDk6A+mWW24pEtAo/Jmj90Tu0lD961//KtLx2rlzZzPTwlXPrCx0tlhxxd+vQLjxpc1BeyN4uA/jPgzBx71YUdyLAQhXET9TQ6dxKy3m6Ynmg1baQVFe2kGlS3p6ull0RCQAWKVdu3YlRoHr97p+06ZNZiS0jpLWDkvtrG/atKkZOa1BB00jVfxzTjvXlWtE9cnoaOsJEyaY1FTagVo8iLF3714z68OK9A7KlfamOA3WuBut7kp/Vd79uYpya6qt4tytKyud/aEj1jXNiM5WmTp1apH6BzpiXTvJEXo+/vhjEzzUkdRaa6XwTAcNIOgsDm/fT77Q4Js3hcI1uKDvRQ2aaQep1v8oHOQonHrK9f7QYIe79Fmu94Y+6meKi6aRclevTEea/+c///H6Z9J0VVpsXf/mtdi6ziC56KKL3AZRgVAVyDYH7Y3g4T7sBO7DEEzci3EvBiAyRHxQwzXyuLQZE67nio9SLg/Nv66Ljro62ewOAJHDFZAordi06zl3KWw0f787rvU6Q0wNHTrUjHDWOhLPPvusPPPMM6ZT84orrjCjeVwdkbq9zsjwJhChI7k7depkvtZOW50doiPU9fXaCa+BgMI5vstD63eoshYJ9nR9yro/vS56/bVQsrfH8Jb+v6AdW9phq4EnHfWvQfCHH364oFNMgx2eijwjuFyppzSIUTyIoL9TbWjr31u1atUkmHQWhgY09f2vwTx97+vfnb5XU1JSiswEcr0/dLaXLp4U76z1dH+jnzWlfcYVp+nXNIWV1sPRNDyaxssVpNTaAhqUBUJdMNoctDfKjvsw73Afxn1YKONe7C/ciwEIZxEf1GjRokVBnkmdzu1uRKEWilWk+gCCU3hb61TY6XzLw3XjWVqeeJ3tUHjbwnQktTuu9a7XaKDhtttuM4seSwuJ6wjvDz74wMzo0Nz42umpI61dtTNONipaAwIatNB9uYqHFx7p7ZrdYAXXKFYNALg6+r2hP7cV+9PrqJ2y+rsoXn/B0+/AW/Pnzy8Yya+dyzfccIMp6Ky1PfQaa8HmM844w+PPEoo0gFY8hVaoKk86I+2Q1PRNSgvce6KzIbSGS7DpbAwNauj5aFBDU1dpMe/CszQKvz80PdugQYOCcq46A+rTTz81NQU0qKf1gbTejJ63pr06/fTTg3JeQCS0OSLpXoz7MO9wH8Z9mD9xL8a9GAB4I+KDGpoCQUf6aW5nHf33+OOPF7lAmkJFOyl0Gnf37t3FKqSfArwT5XAEtfB2oJ199tkm/7x+JmmNB1dKmMJcaVu0qLW7tEXa2V54Fod+r7MotBNcC1u7azho7n9dtJN+yZIlsnnzZnMuWkBYO1m0o9ZdLYrCtLNdR58XD2hoJ+maNWtKbO/K1+8pDV9pz+vIbd2nBksKFzP2VVn3p9dRt9cAjhaBLkzXlYcWIC88Y2T06NHy0UcfmRRB+jvQkf52Sz2lf4/lLb5tB6+//rp5v+l7QN8/xel7WtOJ6QjCUAhq6N+xFpvXvyktYqzBDf2cuOmmm4ps5ypUr589/gpqnOzzoHBdjY4dO5pFg65a12bx4sVy9913++W8ADu3Oaxqb0TSvRj3YX/hPuwE7sPshXsx33EvBsBuKBQuIsOHDzcXQ0fBFu5405FUAwcONF9rI97KNFE6HXzDhg0+FcoEEL40B7/mj9ec/FqcuzgtFvrKK6+Y2QTuOrZ//vlnefnll4us0+91vY5odnUsayoXnYFRmNa/cKUTcNUCuOeee8wN7hNPPCG//PJLke319b/99lvB91r898CBA7J+/fqCddqRoqmuChcod3Gl3/GUiqO05/WzWQM+9913nym+XNzBgwdNcWNvlXV/rpHsmgKqcMqdX3/9VSZNmiRlcfz48YKvtSaBXsPCtT90NK8Wfc3KyjKFmpcuXWo6dBFa9P2gaZE0KKCBC32fFl+0oX3BBReYmVCuEdnBpn/LOvth8uTJJqCpM0zq1atXZBsNbmpgQ2dzvf/++yX2oYGcL7/8slznUdr7XYMp+vdfnGtWVOHaJUAoC3Sbg/ZG2XEf9hfuw07gPsw+uBfjXgxAZAmrmRraOHA1CFyjhtWLL74o8+bNK1g/a9asIvnhdXSyjpjUBn3btm1N3uvExERTLFY7srTgm47QAIBA0HQwml5l1KhR5rNLOxm1ka2BiTlz5pgbdk1HpKOUi+vatav5PNMURk2aNDEBBk3TorUfCne26+eepg7QzzwNRmhAQ0c7a7D1mmuuMeuUjuLWAr26T92fvk6f0yLgX331lQmU6PNKAwI6o0NHqWtgRs9Zgyfa0a+d8Pp1Yeecc46ccsopplCxjkzVUazaIaz70Q6d0p7XYsSaeubee+81oyp1VGujRo3MaPOtW7eaDtYBAwbICy+84NU1L+v+NIe/zprQTmy9Rhpg0tRb2uGr17Tw/zml0WCP1h7R6/j000+bfT700EMlttPaGtqhrDNu+vXrZwpwIrRoQEBTyuj7tbRUSPo71k56na3RunVry89j5syZRYraF6bvqeJFxLWuxrBhw8znjQYniqeectG/P/2719fre17T4+isCQ0C6s+jf8vuAg/e0no8Wtvnrrvukj59+pj7MP2s0fPRuhkazNPi4Nq5pJ8tes+n92l6re02cwn2R5sjvHEfxn1YcdyH2QP3YtyLAYgwzjCydOlSHXZ80mXbtm1uX//+++87L7roImdSUpIzISHB2bRpU+f48eOd2dnZlp/r1KlTnY0bN3aeddZZ5pwOHTpk+TEA2NfBgwedI0eOdDZv3tyZmJjojI2NddarV8954403OtesWePx809f83//93/Oiy++2LxOP8969+7t3LRpU5Htn3vuOedVV13lPO2005wVKlRwVq9e3dmmTRvn888/7zx+/Ljb/V955ZXOatWqOePi4px169Z19unTx7l8+fIi282cOdPZsmVLZ8WKFZ01atRw9u3b17llyxbnLbfc4vbz9+uvvzbnWrlyZbef0Sd7/ttvv3Vef/31zlNOOcVcIz2mHn/YsGHOjRs3ur0+pfF2fyo3N9c5btw45+mnn26uiT6OHTvWuXnzZnMs/ZlPxrWta+nVq5czPz/f7bZr1641x/noo49Oul8E3g033GB+h6+99lqp2+n/93qPkZyc7Dx69KhZp3/jxW/JvP2bddHtTnb/07NnT7evvfTSS83z+llQ2v3I/v37nU888YS5P9KfoVKlSs4zzzzTfC4V/7vUzxZd3HH386oJEyaY/el7T5/X7dSCBQucN998s/Pss882nwV63JSUFOfw4cOde/bs8er6RAr9/XFf6X92aXPQ3vAd92EncB/2F+7DQh/3YtyLAYis9oZD/wl2YCWSaVFaHZF86NChgoJrAFBWOgtCR1GPHDlSnnzySS6gjegodC3QrrU8NOWYuzoqLjoTpEePHlKxYsWAniMAe+C+EvxdBAf3YfbFfRgAAPZsb4RV+ikAAOzm0UcfNYs3rrvuOr+fDwAAQKTgPgwAAHuiUDgAAAAAAAAAALAFghpBkp6eLikpKZKamhqsUwAAAAAQpmhvAAAAIFxRUyPIQikXGQAAAOyL+0rwdwEAAIBIaG8wUwMAAAAAAAAAANgCQQ0AAAAAAAAAAGALBDWChBy3AAAAAGhvAAAAAGVDTY0gC6VcZAAAALAv7ivB3wUAAAAiob3BTA0AAAAAAAAAAGALBDUAAAAAAAAAAIAtENQAAAAAAAAAAAC2QFADAAAAAAAAAADYAkGNIElPT5eUlBRJTU0N1ikAAAAACFO0NwAAABCuCGoESVpammzYsEFWrlwZrFMAAABB8MUXX4jD4ZAnn3zS69d07NjRvCZQXn/9dXM8fSwP3YeeO4DAo70BAO5xLwYA9kdQAwAAwALbt283nfilLQcPHuRan6SDobQllAMkVgWCAACAb7gXKx/uxQDYSUywTwAAACCcNGrUSPr16+f2uQoVKkibNm1k48aNUqNGDQlVvXv3lrZt20qdOnUCfuxWrVrJlVde6fa5Bg0aBPx8AACAvXAvVj7ciwGwA4IaAAAAFjrjjDNOmlrqnHPOCelrnpycbJZgaN26dZlScwEAABTGvRj3YgDCH+mnAABBnR4+YMAAfgOIKKXlcV62bJlcfPHFkpiYKNWrV5frrrtOdu7c6XY/+t7R/eh7qTjdtz6nxyruq6++kl69eknt2rUlPj5e6tWrJ1dffbU59slSKc2aNUtuuOEG01lQsWJFE/jo0KGDfPjhhxJIv/zyi0RFRUmnTp3cPp+Tk2NmwujPlp+fX7D++PHjMnHiRGnZsqW5xpUrVzbnP2fOHI/Xd9u2bTJ58mQTiNLrddppp8moUaOK7Fe3vfXWW83X+lg4ZZbL77//Lvfff7+ceeaZkpCQIFWqVJHGjRvLPffcI4cOHbL4CgFA6bgPQyTjXqz8uBcDEGzM1ACAELV06VJ54YUXZMWKFbJ7927TAZeSkiJ9+vSRe++916SxKe/N/CWXXCIjR45kVDQCZs+ePT6/tlKlSqYz2J29e/eK0+n0ab/aOa/vr2D7/PPPpVu3bqazXoMZp5xyilnXrl07qVq1qiXHmDRpkjz44IPmOmqKqfr168uvv/5qAhozZ86U9u3bl/r6xx57TOLi4sx2mppKf58aELjmmmtMx/99990ngaCBhYsuuki+/PJL2bVrl9StW7fI8/Pnz5d9+/bJo48+aq6nys7Olssvv9x89p133nly++23m+DHJ598Ij179pQpU6bIoEGDShzr4YcfNsfRlFhdu3aV2bNnm89MDZD84x//MNtokEjrpXz88cdmX7r/wo4ePWp+j9qJ2KVLF3Pt9fUaMHnrrbdk6NChQZsZA8A97sMQjrgPKx33Yt7jXgxAsBHUCJL09HSz5OXlBesUAISo3NxcSUtLk5deesl0tGonp46K1pG8ixYtkiFDhphgh3bE6Xq7OvXUU01dATryIkutWrV8fu3UqVPNe8MdHfGugQ1fWB3Y27x5s9v9aYe61qlwR0f933XXXeb9rzMpXMEFDdRofY7p06eX+7zWrVtnPj80GLF8+fIi9Sn0ODqT4GQ0WHD66acXWXf48GG58MILZcSIESZQoEGi8li1apXH30fha9i/f38TbNBr88gjjxTZTgMFrm1cnnrqKRPQ0PPUmRauWRSZmZlmxsdDDz1kZqxoMKmwNWvWyH//+9+C+iL6ep1toUEQ/dvRIE/hoIZ+XXwGmnaSaADjgQcekH/9618lrl9sbGw5rhjgHu0N33AfhnAWCfdhinsx7sW4FwPCH0GNINGbAV0yMjLo0ANQYiS0BjRSU1NNqhft/HfRQKh2zOminXva2ZaUlGTLK6ideKFeVwDwxZYtW0yneXGabshTUENnSmzdulV69OhRZLaEdryPHTtW3n///XIPhHjxxRdN8GTMmDElCm7rcYp35rtTPKDhmkGjDUcNCqxcudKkzyqP1atXm8WdwtdQZ4fozIq33367SFBDgwvz5s0zsyWaNGli1unP/fzzz5vCoYUDGkpTUP3973+Xq666Sj766KMSszU0iFG4YLqmtdLZGG+88Yb89NNP0qxZM69/NnczjfT6Af5Ae8M33IcB9se9GPdinnAvBoQPamoAQAj5+eefTb73atWqydy5c4sENFR0dLTpkLvxxhvNzfozzzxz0hz47vLG6qOmnlKuDj7XUjg/v45WHDdunOkI1HRXOjNEv9fOV0/1MF577TU5//zzTUedLvq1u3PylMu58LnqiO3LLrvMdDrqjA5N2eKufoAv5+mOdo7qqGu9Npq6xh1NeaM3wzrqGnBHUxTpzIfii47SL20WhdL6Du6m92ttiPL69ttvzaOmP/KVpsLT2R46IlNnZLg+NzSgoX777bdyn+fdd9/t9voVv4b6maCBiO+//77g+qkZM2aYVFOFZ2lo8OHAgQPm80E/8/TzpfCyYMECs92PP/5Y4nxatWpVYp0r3ZUGULyhnxsaGBk/frxcccUVJsCyYcMGn1OmAfAP7sO4D0N44F6sfLgXA2AHzNQAENKc+U7J3X9U7CKmWkVxRP01ArisdOSvKw2NFvH1REcOa8qVadOmmVkbZdWxY0cTHNDj6ahq/b7wSGiX2267zaRx0dHZOuJTOwo1dcp//vMft/sdPHiwScmiwRhNQ6O0gLAWzl27dq3J5+8tHfE9YcIEE2DQG2t9veay1w7MH374oUhNkbKepyfaUamj5DWPto5qHz58eJHn9Zr/3//9n7n+DRs2LNO+gdK4CkV7SguhnwfuAnplPYYGIArPOiiL/fv3mxlkO3bsMPUhLr30UvN5ocHW7777zqRe0vdeIGng4oMPPjAByebNm5t1+lmg56TB38LnrtavX28WT44cOVJinbvZcDExJ26hvZ09owGYr7/+2swI0YC1pvFSGqwaNmyYDBw40Kv9AMEQSfdi3If9hfswRBruxXzDvRiAYCGoASCkaSN6dYr3HeHB1mrD/RJbw/eCw1oUXHXu3LnU7TRtk6aK0QK/O3fuLPMoblcQQxvv+rW7PLaaA147BzWFi+bfd+XJf/zxx6VFixYlttc6ABrQ0BHcGkxw1crQfWu6GC0irOli3I1Ed0c7/d577z1TMNnl5ptvNuekwY3rr7/ep/M82XXRjlFNL6OpvYp3dmqKGy2srJ2Q8H2kv69KS9Oj9VnKUyg82FzvF0/X588//yyxzlUAW2cqeWqYF6YBCFftjOKzwLzx6quvmoDG6NGj5YknnijynM5A0KBGoGkavpo1a8q7774r//znP835aSovnY3yt7/9rURgok+fPqYgejDoZ4fOWtPAtdbo0BpJ+rmogVgtBH/DDTcE5byAk4mkezHuw/7CfVh44j7MM+7FfMO9GIBgIf0UAISQP/74wzx6E6RwbeNNcV9f6MhnpSOLC3f66ijv+++/v8T2GiBxBTEKF//WzjotAKjcpaEqLV1L4YCGa0aGa/Sgr+d5Mnq+mu6neBoarUOgQSRN+RUKneB2pR3Qvi7ucuC6aCDK1/0mJvoeiLSKa5aBzgQq7pdffjHBS3d/q0r/LovTmU3FtWnTxjxqZ7ovNOWd0noSxbk770DQGRMa4NRroDOs3nnnnYLi6oVpsFUDG5rSLicnxy/norNDvJm9ocEoDcJqkFSDMWrOnDl+OScAZcN92F+4DwtP3Id5xr2Yb7gXAxAsBDUAAG65ctQXLlrsoqlnPHWiFk5l5eKq36EparzlbR77sp6nN84++2zZvHlzQeekduZqOiv9Oa699lqf9gmURv9+NaWZFrjWmQYu2kGvadDcdZRrKih3wUKdifDll1+W2P6ee+4xHe86y0IDJYXpcU5WD0ODfarw+bnSsrnSKQWDq3aGztjSRYNUWn+neIP73nvvNT/30KFD3QY2NK1deUawai0k5S4ApSmv3M22ca0rnE4PABT3YdyHIbC4F/Md92IAgoH0UwAQQjRdis4Q0E4x7VgvjavjzNf8+CeTkZFhRhTrCPji3NX7cG2vI8Dcba+5/HUbb3mbx76s5+kNvfZaOFiLgWvRcS1OrCl+NFUM4A/6N/zSSy9J9+7dTa0KnaWkKeaWLFliZmOde+65JmVRYTpjolGjRiaooZ8Hmm5N03Dpa3Q/xQMNzZo1k3//+9+m9k2TJk2kV69eJlChI5M1fZwWsNbnS2uwaoqn++67z8yK0Ndqp5umgLv66qvlo48+suRa6GwKdynxXJ3/xdO/aXBH37MaXNFghZ6nu9k3WiBc08rp+/iTTz4xo5C1honO8nAVG9fUeZ7qmpzMBRdcYGYT6TXUouSuz0INIi1evFgefvhhE2g966yzpHr16rJ161YzQ0N/Jk1BBSD4uA/7C/dhiDTci/2FezEAdkBQA0DIF3vU3Mh2Ot/yuPDCC+WLL74wnYTasemJBj50VLXmxXeloSprfn1vGrOa+33v3r0lAhXuRhy7tt+zZ0+JTkEd/awjwd01kMurrOfpDe10VD/99JNs2rTJjJ4fNGiQNG3a1JJzBtzR97y+97UTfMaMGaaDXOvr6NdaT6Y4ff6zzz6TBx980LxOC1Fr/RoNUOjfrLvZE66/42effVY+/fRTOXz4sHm/nn/++dK3b99SfzE6U0pngGjaJD2ufta0bNnSpLPSoIpVQY3Vq1ebxR1Nbeeupo0GMlx1PoqnnnKJj483P7PWBnnzzTflww8/NIXNNfiZkpJiZrJo4Kc8MzV0lowGZF5++WU5duyYWa/n1bVrV1PoXX83ep30uuvntwav9Hrq8YFQFUn3YtyHlR33YQgn3IudwL0YAFtweiEqKsp52223ebMpyujQoUNa1dQ8AsCPP/5oPnOrV6/u3L17t8cL0q9fP/PZMWLEiIJ1c+bMMeuefPLJEtuPHDnSPKePLl999ZVZ98QTT7g9xoABA8zzs2bNKvHcuHHjzHO33HJLwTr9f0LXvf/++yW2f/fdd81zhf8v2bZtW4l9qKVLl5Y419JeU9bz9MZnn31mXjd27FjnWWed5axRo4Zz//79ZdoHAASane8raW/4j53/LgKN+zDuwwAAgD3uK72qqaGja3WBddLT082oPFc+bABQmkJFi1vv27dPevToUaIIuM5IGD16tCmOrWlnNDd84RoUmuLpvffek6ysrIL1OtNg0qRJZcr/rm666Sbz+NRTTxWMOFaaqsbd/m655ZaCFC+F00zpLBFdV3gbK5X1PL3hSv2lqXZ+/vln+cc//lFQlBkAYD3aG9ajvVF23IeVHfdhAAAgGEg/FSSaO1kX7fjTVAoA4DJhwgQTCJg2bZqceeaZJs+9BjD080LTvGiQQtdrapnC6Zw0//4NN9xg8sprgOPyyy83aZ9mzZplvtZUK4Wdc8455jUaBNG0LJpaRoMimi9fP5d0+vWNN95o9qcpWTT/vqZq+eCDD0yqmrlz5xakvFKan15fO2XKFJPepk+fPqaTSo+7a9cuk8dft7FaWc/TG5oWRnPy6+9B0+vccccdlp83AAD+RHvDN9yHlQ33YQAAIBgIagBAiNFi2JrzXQMUWjh42bJlJjChneyNGzc2ed/vvfdek0+/uFdeecUUzH7//ffNCE0dcaj70OBF8aBGdHS0ye3+6KOPyrvvviuZmZkF+ehdwdY33njDHFMDLBqs0MCHFs3WPP8aLCheI0ML8Gqx4ueff94cV2lBYp1Fceutt/rtmpX1PE9GgzsaOPruu+/Mz1TWoAgAALAn7sPKjvswAAAQaA7NQXWyjbQzZ8CAAaazCNZyzdTQ0cD+KKALAP6gwZM777xTnnvuORNgCcfzbNiwoeTk5JhZJgBgB3a+r6S94T92/ruAe9yHAQCASL+v9HqmhuYm/+qrr3w6iD/SjQAA/E8/+2vXrm1mLrj8+uuvMmbMGDPT48orrwzL8zx48KBs377d1DUBAAQG7Q2g5HuC+zAAAIByBDUWLlxolrLSDqbc3Nwyvw4AEHzjx4+XTz75RDp06CC1atWSHTt2yLx580yqqieffFLq1asn4XiemnZKaSotAEBg0N4AiuI+jPswAABQzqCGF1mqLH2dnWjQRgvJfv/99yYv/fXXXx/sUwIAS2iB8Q0bNpiAwYEDB6RChQpy7rnnysCBA01x7nA9T4IaABB4tDc8o70RmbgPI6gBAADco6aGBZ599ll55plnzPTgsgY1QikXGQAAAOzLzveV1NQoHe0NAAAABFtGCLU3ooJ69DCgBWRHjRol//znP4N9KgAAAADCDO0NAAAAoCiCGuX0wAMPyFVXXUUxdAAAAACWo70BAAAAhHFQ46effpIpU6bIgAEDpFmzZhITE2MKlY8ZM8ar18+YMUM6duwoVatWlcTERGnevLlMmDBBcnJy3G6/YMECWbRokTz99NMW/yQAAAAAQg3tDQAAAMBGhcLt4Pnnn5dJkyb5PAJKX6uBkE6dOkmlSpVkyZIl8uijj8rcuXNN8CIhIaFg+6ysLBk0aJCMHDlS6tSpI9u3b7fwJwEAAAAQamhvAAAAADaZqXHxxRfLOeecI6GuadOmMnToUHnnnXdk48aN0r9/f69eN3v2bBPQ0EDGN998IwsXLpQPP/xQNm3aZGZ8LFu2TEaMGFHkNWPHjpW4uDgZPHiwn34aAAAAIDLQ3qC9AQAAAFg6U2Pp0qViB3fccUeR76OivMuupQEKNWzYMGnZsmXB+ho1ashzzz0nHTp0kKlTp5rAhlZ4/+WXX0xaKg2eHDlypKD6uzp69KipAK/bAQAAADg52hu0NwAAAAC/pZ/Ky8uT6dOny5w5c2TVqlWyZ88es75mzZrSqlUr6dmzp9xwww0mjZMd/Prrr7Jy5Urz9Y033lji+fbt20u9evVk586dMn/+fPOzbdu2TbKzs+Waa64psf3tt99uZm8cPnw4IOcPAADKLif3uOw/us8vl65axeoSGxPnl30DkYD2Bu0NAAAA+MaZnyt5xw/55fLlZmVKqChT5EGDGNdff73p1FdOp7PgOZ29oMusWbPkySeflHfffVfatGkjoW7t2rXmsVq1atKwYUO327Ru3doENXRbDWqcd955JUaT/fHHH+Y5nc1x2WWXBeTcAQBA2U1f+6GM3XlUjjgq+OXyJTqzZHi9inJjiz5+2T8Qzmhv0N4AAACAbzK2zZI9q0ZKfo5/gg+Hj+aL7YIaK1askEsvvdQUyNZaEl26dJHU1FSpXbu2CW7s3r1bvv32W1NQW4Memhd38eLFZqZDKHMFaOrXr+9xG52pUXjbKlWqSMeOHYts4yoUnpKSYtJVeaIzPHRxcaWtAgAAgZmh4c+AhtJ96zGubXacGRtAGdDeoL0BAAAA32do7PFjQCPUeBXU0LoRffr0MQGNa6+9VqZMmSK1atVyu+2ff/4p9913n8ycOVP69u1rim0nJiZKqMrMPPGLLu0ctYC4VQGIcePGyahRo8q9HwAAUHaacsqfAQ0XPYYeq3ZSHb8fCwgHtDdobwAAAMB3eccPRUxAQ3lVSfvFF180wYr+/fvL+++/7zGgoXTmxgcffCD9+vUzr9HXRoIGDRqYGSuanqs0jz32mCkk7lo0rRUAAAAQyWhvnBztDQAAAKAMMzW0KHhCQoJMnjxZvKXb6mwNfe2QIUMkVFWuXLlgdJgnrqLfSUlJ5T5efHy8WdLT082ihRABAEDwzG/dWKolVi/XPvYf2SfdV2207JyASEN7g/YGAAAArHXaFYslKr6qZfvLyMgUudN9TeqQDGps3LhR2rVrJ8nJyV7vWOtOaD2NdevWSaiPeFKlzZhwPefa1gppaWlm0ZRWZbmuAADAWhrQIE0UEFy0N2hvAAAAwFpR8VUlpkL5BvAVFnM8VmyVfurgwYOlppzyRF+jrw1lLVq0MI/79u0rKARe3KpVq8xjy5YtA3puAAAAQCSgvUF7AwAAALA0qFG1alVTH6Os9DU6YyOU1a1bV1JTU83X06dPL/H8smXLzEwNTRnVvXt3y46rqadSUlIKjg0AAABEKtobtDcAAAAAS4MajRs3luXLl8uBAwe83vH+/fvNa7TjPtQNHz7cPI4fP17WrFlTsF5nbwwcONB8PWjQIEvTRGnqqQ0bNsjKlSst2ycAAABgR7Q3aG8AAAAAlgY1evToIVlZWTJ48GCvd3zfffdJdna2XHXVVRIoGpBo27ZtwfLJJ5+Y9S+++GKR9b///nuR1/Xq1cv8bFoQXJ/v1q2bXHPNNXLGGWfI999/b+qJjB49OmA/BwAAABBJaG/Q3gAAAAAsLRR+zz33yNNPP23SM2mgYurUqR5rbGjKKZ3V8OGHH0rt2rXl7rvvlkDRotvffPNNifW7du0yi4v+DMVNmjTJBC80LdSKFSskJydHGjVqJMOGDZMHH3xQ4uLiLD1XPY4ueXl5lu4XAAAAsBvaG7Q3AAAAAG85nE6n05sNNZXUpZdeKsePH5fY2Fjp0qWLtGnTxgQuXMEMDSgsXrzYBAR0m88++0zat2/v9clEIg3EaFqrQ4cOSVJSUrBPBwCAsPZnxu/S9stlRdZ9fXF7qZ1UJyT3C0TSfSXtDf+w+98FAAAATi43a59s+6h1kXUNr14lMRWqh+V9pVczNZTOYvjiiy/k+uuvl19++UXmzZtXkN7JxRUfOe200+Tdd981qZwAAAAAgPYGAAAAgIAGNdT5558vP//8swlYzJ49W1avXi179uwxz9WoUUNatWolPXv2lJtuusnM1AAAAAAA2hsAAAAAghLUUBqsuPnmm80C31FTAwAAAKC94S+0NwAAABCuooJ9ApEqLS1NNmzYICtXrgz2qQAAAAAIM7Q3AAAAIJEe1Dh27Jg8+eSTkpKSIhUrVpSqVavKJZdcInPmzPHvGQIAAAAIe7Q3AAAAAFiWfio3N1cuu+wy+c9//lNQDDwrK0u+/PJL+eqrr2TixIly//33e3VAAAAAAKC9AQAAAMBvMzVeeOEFWbFihURFRcktt9wikydPljFjxkibNm1MkGPYsGGye/dun04gknPc6qyX1NTUYJ8KAAAAEFS0N6xHewMAAAARHdT44IMPxOFwyOzZs+W1116TQYMGyfDhw+Xrr7+W6667To4fP04aqjIixy0AAABAe8NfaG8AAAAgooMa69evl1atWskVV1xR4rkRI0aY2Rpa9BoAAAAAyor2BgAAAABLgxqHDh2Ss88+2+1zZ511lnnMyMjw+qAAAAAAQHsDAAAAgF+CGvn5+RIbG+v2uZiYmIJtAAAAAKCsaG8AAAAAsDSoAQAAAAAAAAAAEGwnpll4YcGCBdKpU6cyP68Fxj///HPfzzBMpaenmyUvLy/YpwIAAAAEHe0Na9HeAAAAgER6UOOPP/4wS1mf16AGSkpLSzOL1iJJTk7mEgEAACCi0d6wFu0NAAAARHRQY+TIkf4/EwAAAAARifYGAAAAAG8R1AAAAAAQVAQ1AAAAAHiLQuEAAAAAAAAAAMAWCGoAAAAAAAAAAABbIKgBAAAAAAAAAABsgaBGkKSnp0tKSoqkpqYG6xQAAAAAhCnaGwAAAAhXBDWCJC0tTTZs2CArV64M1ikAAAAACFO0NwAAABCuCGoAAAAAAAAAAABbIKgBAAAAAAAAAABsgaAGAAAAAAAAAACwBYIaAAAAAAAAAADAFghqAAAAAAAAAACA8Apq5ObmypgxY+Sss86ShIQEOf300+WRRx6RAwcOeHzNrbfeKjExMVadKwAAAIAwRXsDAAAAgKVBjauvvlpGjhwpmzdvluzsbNm+fbs8++yz0rx5c/n66689vs7pdHp7CAAAAAARivYGAAAAAMuCGtOnT5d58+ZJxYoVZfTo0ebrf/3rX9KgQQPZtWuXdO7cWRYvXuzVAQEAAACA9gYAAAAAvwU1Xn/9dXE4HDJ//nx5/PHHpXv37nL//ffLDz/8IDfffLMcO3ZMevbsKQsWLPDpJCJRenq6pKSkSGpqarBPBQAAAAgq2hvWo70BAACAiA5qrF271nS+d+jQoch6ra2hDZBRo0ZJVlaW9O7dWz799FN/nWtYSUtLkw0bNsjKlSuDfSoAAABAUNHesB7tDQAAAER0UOPQoUOmMLgnI0aMkGeeecbU2tBcuAQ2AAAAAHiL9gYAAAAAS4MaSUlJcuDAgVK3GTJkiEyaNMkENvr06WNSVQEAAAAA7Q0AAAAAVonxZqPGjRvLqlWrxOl0mtoantx3330SFRVlHjWwUdrsDgAAAACgvQEAAADA8qDGJZdcIitWrJDPPvtMLrvsspPmbo2OjjaPP/74Y5lOBgCAUJabK3KSiYvlUrWqSIxX/zMDQHihvQEAAIBIkpufL4dycqzb3/HjctCRaL6u7Dwm0ZIv4cyrrpNu3brJmDFjZMKECScNaqh77rnHBDb0MZx99NFHMnHiRBO8yczMlFNPPVV69eplaoxU1Z4pRAxnbr7kHjzmt/3HVEkQR4xX2eIA+Mnbb4sMGqR53/13iZOTRaZOFenXz3/HAIBQRHvDPdobAAAA4WfWrl9k5PdrJTPXuqCGUWmkeUh0HpO0rNlyp0R4UKNt27ayadOmUlNPFXfnnXdKmzZt5ODBgxKu9u/fLx07dpSHH35YkpOT5fvvv5dRo0bJunXr5PPPPw/26SFA9sz4QbY/tlDyMrL9dozopHhpMK6r1Ly2qd+OAaD0GRr+Dmgo3b8e5/rrmbEBILLQ3nCP9gYAAED4zdDwS0CjkCOOBEmv0Etuzc/3rvPfhrz6uTSY0ahRozLvvHnz5hLO7rjjjiLfa4CjQoUKctddd8mOHTukfv36QTs3BG6Ghr8DGkr3r8ep0TuFGRtAENJE7d3r/4CGix5Hz71mzcAcDwBCAe0N92hvAAAAhBdNOeXPgEbhwMah3FypIOEpXIM1QVOtWjXzmGNhTjSELk055e+AhoseJ2vrfomplmDpfklthXCrT6FpooYMsX6/AACEAtobAAAA9qx7oQ4cD0w/YrgLu6DGTz/9JIsWLZLVq1ebZePGjZKXlyejR4+WJ5544qSvnzFjhqSnp5sUUsePH5czzjhDbrrpJnnwwQclNjbW7Wt0/xrE+OGHH0z6qe7du/s0swX2q32Ru99/dTTcWdf+Jcv3SWorhGt9Cn/bsEGkRg1rZoGkpFhxRgCAQKC9AQAAEP78VvfCjcUdu0rVuPhy7WNP5p/S7T/fFFl34HiOxGRbF0TJtHBfAQ1qvP322/Lmm2/Kzp07pU6dOnLNNdeYVEsxMe53o7UmtLjdli1bJFCef/55mTRpkk+vfeCBB8xr9efp1KmTVKpUSZYsWSKPPvqozJ071wRLEhJKjpKvXr26HPpfz1yXLl3kgw8+KPfPAXvWvlDNl91lyWwKDZj4I4hRnF6PLWlzJPmiBuKI9r5ujjeYBYJg1qfwJy3ofeaZ1L0AAKvR3qC9AQAAEAl1LwrTgEb1+PIFNXKzSw7GLx7kKK/8o0fFdkGNe++9V1566SVxOp0FI5S+/PJLefnll2XmzJluZybs3btXtm/fLoHUtGlTGTp0qLRo0UJatmwpY8eOlbfeeuukr5s9e7YJaGggQ38ufa3rZ9AAx7Jly2TEiBHyzDPPlHjtF198IUePHjWFwseMGSM9evSQxYsXS3R0tF9+RoRu7QulAY3YGonl30+VBDOLIlDprdY0m2z5PpkFYn/+SBEVyPoU/gpoTJ1KQAMArEZ7g/YGAABAJNW9UJVjYiXZQ3YglDOoMX/+fHnxxRdNJ/2AAQNMwGDTpk3y+uuvmzRNF154oenEP/fccyXUiulFRUV59ToNfqhhw4YVBDRUjRo15LnnnpMOHTrI1KlTTWAjWXu0CjnvvPPMo14H/bpt27Yya9YsM5MFkVX7QjvxNRhhBUdMlDQY1zVgwRh/YBaIvYVDiqiJE0X69bN2n1WrEtAAAKvR3qC9AQAAEGl1LzSgMapZC4nxsv+6NMkxMZLoPGYKhEcCr4IaGtBwOBwyffp0ufbaawvWawBA601oiqbOnTub9Ewa8LCbX3/9VVauXGm+vvHGG0s83759e6lXr55Ju6UNrhtuuMHjvjQgotdq8+bNfj1nhB7XrAQNRlil5rVNpUbvFEvrgChnntMvMzM8YRaI/QQ6RZRV9SkKI/gAAPZBe4P2BgAAQLjXvShOZ2hYEdBQup+0rNmSXqFXRAQ2vApqfPvttyatU+GAhqpdu7YsXLhQ7r77bpk2bZpcdtllJrBReKaDHaxdu9Y8VqtWTRo2bOh2m9atW5ughm5bWlBj+fLlJkXX6aef7rfzRWjVvvB3/QjdpxXprIprlH6V7WeB6Plr0Mcf191O7J4iivoUAADaG7Q3AAAAwr3uhb9dmrtWLjm8TjL/F9Sof8ViiYmvZtn+MzMyxH3PeYgGNfbt2ycdO3Z0+5ympHrllVckMTFRpkyZYgIbmorKToGNbdu2mcf69et73EZnahTeVnXt2tXMUGnSpInEx8ebgMfTTz9t0nD16tXL7X6ys7PN4pKRkWHhT4Jg1L6wq3CYBaKBjayt+y0NTtmtwLndU0RRnwIAoGhv0N4AAAAoC+peuOfMc0j+kRPBl/xD8ZJfwbpATH5m6AR1vApqaMDiyJEjpW6jRbZjYmLkX//6V8GMDbvIzMws+Dk90QLixYMQbdq0kbfffrsg0NGgQQMZOHCgDBkyROLi4tzuZ9y4cTJq1CiLfwIgcmeBrGv/UsQWOCdFFAAgXNDeoL0BAADCF3Uv/J91IzfLIa99epuMe3uERAKvghpnnnmmrF69+qTbPfvss2bmxjPPPCNdunSRM844Q8LZ6NGjzVIWjz32mAl6uGiQxDULBAgX/poFkrv/mF+CGIFIbUWKKAAAPKO94R7tDQAAYHfUvQhU1o1qIhIZAQ2vgxoXX3yxTJw4UVasWCEXXnhhqdtOmDBBoqKizOOqVavEDipXrmweS5uNcvjwYfOYlJRUrmNpmipd0tPTzZKXl1eu/QGRNAtE00LpLIpAzADRY2hQxoqfgRRRAACUjvYG7Q0AABB+qHvh5prk2juNuK2CGt26dTOzMP7973+fNKihxo8fb1JRjR07VhwOh4Q6TRultBC4J67nXNuWV1pamll0pkayJpUH4FWgRNNCBSq1lc4MseQ/q7SKcigjMJ+FGzaI1Khh7T6rVhWJ8ep/CwAAfEN7g/YGAAAIP3ave2H3rBvhzKtuqosuusgU/9YZGN4aM2aMnH/++bJ//34JdS1atCgoUKj1MRo2LFnH3TXrxE4F0IFwFMjUVlakujqQrwGNByQQND565pkEIAAA9kN7g/YGAABAeQIao5q1kJgy9F2He9aNx/qNlvvGpklMBU1LZQ0tS92okdgnqKGzLjp37lzmnffo0UPsoG7dupKamiorV66U6dOny+OPP17k+WXLlpmZGpo2qnv37pYck/RTQOgVOFe5TodkOhMs29+hfOv2dbKAxtSpBDQAAPZEe4P2BgAAiIxi3os7dpWqcfGWzqbIPxxrAhp79li3z/79JWCsyLqRm7Vfdnxymfk6KfGQxETnSc2aAyWmglgm3rpfW7mRUOR/hg8fLr179zaps3T6u2tGhs7eGDhwoPl60KBBlqWKIv0UEFq0Xscix3ny9N5Octhp4Se+G+uWH5U6Z1a0dJ+kiAIAILTR3gAAAKEqkMW8NaBR3aLecbvPprAy60ZullMOJ4V+xiSrhF1QY82aNQVBCLVlyxbz+OKLL8q8efMK1s+aNUvq1KlT8H2vXr1k8ODBMnnyZGnbtq2ZmZKYmCiff/65HDx4UNq1ayejR48O8E8DIFDyJEqePdxVDjuj/X6sKlHHpIrDaek+o0VnhFg3zRIAALhHewMAAISTQBTzduY5zGwKtXePSH68/WZT+ANZN4Ic1Hj11Vdl+fLlMm3aNAk2Lbz9zTfflFi/a9cus7hkZ5ec/jRp0iQTvNDUUCtWrJCcnBxp1KiRDBs2TB588EGJi4uz7DxJPwWEFi38lHHU/wGNSo4s2dHjJfnN6qBGUrwpoq41RwAACDe0N8qO9gYAAAiFYt6Hl9aXfS+1EOeRE/2q59j01/Lbb9an/Cbrhu8cTqez3D1rt956q7z55puSl5dX3l1FHA3CaEqrQ4cOSVJSUrBPJ2zl7D0iq1MmFVnXasP9fqvLAP/SaLwGIay0d69ISor4PaDxUKWFcnmF9X7ZvwY2Wv/4oKk5AvvQnJ+1ahVdt3u3SM2awTqj8PZnxu/S9stlRdZ9fXF7qZ1UJyT3C5RFON9X0t7wXTj/XQAAgPLbl50trRfNKTKbwirOvCjZNcAeNZdPNpuiXz8JablZ+2TbR62LrGt49SqJqVA9LO8rwy79FIDwFsh8iVYUanLm5st3F74geZnHpbLjmMRYPEOjsLyMbMk9eIxgHQAAAAAA8Hk2hV0xmyJyENQAYKsZGoEsAKUBjfKPlo+SFhMuku2PLZS8DP8FNFxy9x/zSxF1Zn8AAAAAABB+mSt2HxHZ+6/zJRxmUxQqn4wwR1AjSMhxC5Sd/scdqICG/oeouQ2toHUuavROMbMorA5grGv/UpF1xb+3AvU6AACwH9obAACEY+YKpxw65LB4zxZU7S4DZlPACgQ1giQtLc0srlxkAEIvwm9lASid6WDXGi6a1kpnmmhghhkbAADYA+0NAADCZ0aF7q9/f/3K6oBG4DCbAlYqc5fdbbfdVmLdsmXLPD7ncDjk1Vdf9fX8ANiUv4p5+6PuRXE6Q8PKgIa/aFoonUWhQQd/o14HACBQaG8AAAA7C2QtUH/5YVu21EqMj8i+FthDmf+UXn/99TI9R1ADiDyB/A/cmroX9qSzJhqM6/q/eh3+D2wAABAItDcAAIBdBboWqNUcicfl1Hv/K2fXbykxUcE+G8DCoMbSpUtLrBs/frwsWrRIlixZUtbdAQgzdv8P3G4CWa8DAIBAoL0BAADsnGEiUP0hdV+fK47ofEv3mVxF5KnzzpOYKCIaCLOgxsUXX+xxNJW75+AehfsQruxazNvOAlWvQwMd/kihRZ0OAEBhtDesQXsDAIDwTBGlsymq37VWll59sVSNszZFVHJsLAEN2AKZzIKEwn1A6BXzRun8MXNDa4JoCi2dcYLS68eUF/lLASCy0N4AACA0Mkyckr5AopOsSxkdVSlHHNFOqRp3nlSPtzaogaKcufmWZ8YojIGevqM7EIDfRXIxb5ROa4FoTRBNocWMjb+kpPgvENivH3+VAAAAAOzB7imidFZF7CmHTRAi0jvw7WbvzPXyy98/8/txTnvqUqlxTZNy7yc3+5jkH65QZF3OvmPijD9S7n0X7C/Tun2VF12CAPwukot525WOFtBZFIEoQK7H0BunQKTQimR6066jka6/noAgAAAAEGn82WFtAg8Hrd/v9Jkx8vAI+85EiKp4XE65ebUkHc2xfN+VomOl4qEcyYnKtVUHPkrS627dte9f5LsDT7xp6SU/kp8lYRXUcDpDP9oIIHAjHmB/OmtC00LpLIpABDYimc460lkUgRgppMfQ9zxBRgB2Q3sDAADf7Znxg9/adguymsizh7vKYWfREeJ2827VFyU5ytqgT2XHMYmZ6RSZKX6xTn72z44BG7AkqPHYY4/JrbfeasWuIgaF+xBsdi6KhcDQOheaFsrq0TxacNwf9TnsStOoaVoo3o8A4BntjbKjvQHADkh3E4BrnOeULWlz/LLvXKcjLAIalRxZUjd6v8Q4GLQNRFRQ4+yzzzYLvEfhPkRSUSzYe8YGaaH8T+tcaFoof8yc8kd9DgAINNobZUd7A0Akzx6A+wBEpjPB0ktzKD8hLAIaD1VaSEADAal74UK6r/KjpgYQgbTjNFABDU2ro+l1AJx8xgZpoQAAABAJsyn8OXsA4ZkianDiYrm8wnrL92tSRDFDw68d+OFQc1QHfFqpzj1t5G93tLb0szU3+4Ds+OSyIuvqX7FYYuKt65TLyMwQOX20hE1QY/PmzbJnzx6pXr26nHXWWVbsEkAY0ICGptXRzlrgZCmp7HDjAQAIDtobAMKF3dItMZrY/jMq8pwOGZXZUwJl3fKjUqOatWmcqlbRfoULRUSX8tt//Lhc9sUCCQQt6P35JZdLTJRD7IB2tH0zYziysiSqUtFC3rHVEySmgnXHiI3Lk1Dhc1djXl6ejBs3TqZOnWoCGuqWW26RadOmma/feecdk8f15ZdfliZNiO4BoW7DBpEaNazdp87QIKABb/ijxkZ0Urwpdq61QQAA9kN7A0A4BQcUAQKE+4wKHdiY0qZiyPcDxGTHSGZl/59k5ZhYebhZC0moVcnvxwIiTYyvDYwrr7xSFi1aJDExMdK4cWPZoD2ihbRr10769+8vH330EUENwAY0oEHqG4QTzc2rOXq12DkzNgDAXmhvAOHBX4EHggPhqeX3g8URbY/R7P6qfXn52RXlsNOe18DumRoWd+wqVePiLd1ncmysxESRPQDwB58+al544QVZuHChdOrUSd5880055ZRTJKrYm7RBgwbSqFEjE/gYMWKEVecLALA5nc6qsygCURBQj6ENaYqdA4C90N4AAofAA4LNNcM6rnZkj2Y/uEfkUEZgjvXbb9YHH/yVqSE3P18O5eRYus8Dx0u2RTWgUT3e2qAGAP/x6ePmjTfekGrVqsmMGTOkaikVgHUGx7p168pzfmFLU3PpoqPQgJON1tDC3lbau5drjuDRWRPaaNFZFIEIbAAA7If2RvnR3gg//gg+MOMBoVA82I45/O3aTnfNpqhTR2xh1q5fZOT3ayUz19qgBoAIDWr8+OOP0r59+1IDGio5OVl2797t67mFtbS0NLNkZGSY6wS48/bbIoMGiRw6xPVBeNE6F5oWyuqGuRYc90d9DgBAYNHeKD+7tzfsWC/Bnwg+hB9/BQj8xY6Bh3Bop1td+9JOdS91hgYBDQCW19SI92JK1u+//+7VdgDcj/wgoIFwpo0i0kIBANyhvWEPpC1CKLBbcEARILDvbArdZ//+EjCRXPtSU04FaoaGFvTW+hcAwjyocdppp8l///vfUrfJycmRH374Qc4880xfzw2IaHrzFagZGjp47yQTrwAAAAKG9ob1cvYdkZzj0Zbtj5kDKAvSFiHQwiHrgZ3a6YGqe+GvgMaoZi0o6A1EQlDj8ssvl0mTJslLL70kd911l9ttpkyZInv27JF77rmnvOcIIAA5Ne0yBRUAAIQ/2hvW+y71eUmMquCHPSNcEHhAMITDbIpIb6cHsu7F4o5dTUFvK+kMjZgoUqsBduPTx+PDDz8sr7/+ugwcOFA2bNggffv2NeuPHDkia9askQ8++EAmTpwoNWrUkEEaGgcQkvk07ZZTEwAARAbaG0Bggw+kQ0IwhMNsCvXbb9a3qe3STg903QsNaFQnzT0AX4MaderUkdmzZ8vVV18tkydPNrMyHA6HzJw50yxOp1OqVKkiH374oQlsALBGJOfTBAAAkYP2BuxcL8GfCD4gXIRDDUnXbIo6dSRiUfcCQLD4HPe96KKLZP369fKvf/1L5s+fL1u3bpX8/HypV6+edOvWzYyuOvXUU609WwAAyih3/zFLrxmdCQAQGLQ37IO0RUB480eKqL17AxvQiOTZFOGAuhcAiivXx2/t2rVl/PjxZgEAIBSta/+SpfuLToqXBuO6Ss1rm1q6XwBASbQ3rHPeynslqXKS5X9mBPuB8Gb3FFHMpgh8MW/qXgAIBGLKAACUQV5Gtmx/bKHU6J0ijhgKygEA7CG2eqLEJiUG+zQA+Ek4FNymhmR4FPOm7gWAQCCoESTp6elmycvLC9YpAEDY0dGiOpNCAw/+pPvPPXhMYmvQOQQACE20N4DIYffZFK4ZFWeeSTqncCjmDQC2CWrMmTNH5s6dK7t27ZLKlStLmzZt5LbbbpNq1apZsfuwlJaWZpaMjAxJ1v+9AQDlpjMnNDWUzqTwd2ADABA4tDfKjvYGEBnCqeA29Sn8g2LeACI2qDF8+HBp1aqV9OnTp8j6I0eOyDXXXCOLFi0y3zudTvP44YcfmjobH3/8sbRr184f5w0AgFta60JTQ+lMCiuLjVtdmwMA8BfaGwAihdVpoii4HX6srn3hru6FP1DMG0DIBTU0QDFgwIASQY17771XFi5cKNHR0dKjRw9p3Lix7Nu3z8za+P333+Xqq6+W9evXS40aNfx1/gAAuJ2xQWooALAP2hsAIoGd00RRcDu8al9QzBtAxKaf+vnnn+Wdd96RSpUqyeeffy6pqakFz02cOFGuuuoqWbp0qTz//PMyYsQIq84XiJiibDriBgAAIFLR3gAQTgKZJoqC2/abTaHynPkyZO23EggU8wYQsUGNTz/91KSbGjZsWJGAhqpYsaK8/PLLkpKSIp988glBDYQ1O4+2AQAACFW0NwAEemCZPwUqTRQFt8NnNoU/00Qlx8YG+zQAIDhBjS1btojD4TApptxp2LChnHfeeWaEVbiaOXOmma2yevVq2bt3r/mZtUD64MGDJZb/ICJCOBRlAwAACEW0N2hvAJ4wsMw9Cm4HZoaG3QMao5q1kJioqGCfCgAEJ6iR879pdtqR74k+t2bNGglXzzzzjDRo0EAmTJggtWvXlhUrVsgTTzwh//3vf+WNN94I9ukhAHRkUKACGnqDWrVqYI4FAAAQbLQ3aG8A4T6wzOo0UdpejPG5lwfe0JRTgQxofHPZlRLtsC4AoTM0CGgACAc+/3ennflKC4Ofcsopbrc5fvy4JCUlSbjSgug1a9Ys+P6SSy4xKbm0hogr0AFYgRE3AAAg0tDeoL0B+/NX7cFwCGiQJgrezKioVSGBCwUA5QlqaKqlL774ouD7I0eOmMcNGzZ4DGpo6qlatWpJuCoc0HBp1aqVefztt98IakQoirIBAACUHe2NkmhvwM5IEeUZg9bsW8z7wPHsEusWd+xqCm9biRkVAGBRUOPw4cNmcdf4uPTSS0us37Vrl6xfv1769u0rgfTTTz/JokWLTJ0LXTZu3Ch5eXkyevRokxrqZGbMmCHp6emybt06M9PkjDPOkJtuukkefPBBr+pkfPXVVxIXFyeNGjWy6CeC3ej0YTfxLgAAAJSC9gbtDYSPQKeI8sfAMn8iTVR4FfPWgEb1eGuDGgAAC4Ia27Zt8/hcvIcP7k8//VTOPfdc6dq1qwTS888/L5MmTfLptQ888IB5bUxMjHTq1EkqVaokS5YskUcffdSkmtJgSUKC56l/OmtFX3/XXXeFddotAAAAwEq0N2hvIHjsniKKNE725o/ZFHnOfBmy9ltL9wkAsGFQ47TTTivzju+8806zBFrTpk1l6NCh0qJFC2nZsqWMHTtW3nrrrZO+bvbs2SYgoYGML7/80rxW7d271wQ4li1bZmplaHFwd3S7Xr16mZkd48ePt/znAgAAAMIV7Q3aGwhO8EFTRA0ZYt+rTxonewvkbAp/1r7QVFEAAJsUCg9Vd9xxR5Hvo6KivHqdBj/UsGHDCgIaqkaNGvLcc89Jhw4dZOrUqSawkax3ToVkZmZKt27dTLoqrTuSmJhoyc8CAAAAILTQ3kAwhEN9CmoPovgMjXAIaGgx7xgv+50AANYJu6CGL3799VdZuXKl+frGG28s8Xz79u2lXr16snPnTpk/f77ccMMNBc9lZ2dLz549Zfv27WY2h6ei6QAAAAAiE+0N2Kk+hT+QIsre/FVwO5ABjW8uu1KiHdYGHyjmDQA2Cmr89ttvpnO/Tp06Ur9+/VK3/fnnn+WPP/6Qiy66SELZ2rVrzWO1atWkYcOGbrdp3bq1+bl1W1dQQwuQX3/99SYgorU3zj777ICeNwAgeHL3H7N8nzFVEsQRw0gvAJGN9gbtDTuze30KfyBFlL3ZPUWUazZFrQqe66MCAMI4qLFr1y4ZMGCALF26tGBdq1atTB2KCy64wO1rxo0bJ2+++abp/LdDYcLSgjQ6U6PwtiotLc3U4hg9erT5Gb/++uuC51JSUtwWC9eZHbq4ZGRkWPZzAAACZ137lyzfZ3RSvDQY11VqXtvU8n0DQKijvUF7w+7sniJq4kSRfv2s32/VqiIx5IiwpUCniFrcsatUjYu3dJ/MpgCA8OTVrcWRI0fkkksuka1bt4rT6SxYv2rVKrn44ovl6aeflvvvv1/sSmtiqNJqYWgB8eJBiAULFphHrbOhS2Ea/OnYsaPbQM+oUaMsO3cAQPjIy8iW7Y8tlBq9U5ixASCi0N6gvWF3gU4RZXV9CgIP9mf3FFE6o6JBYiXqUwAArAtqTJkyRbZs2SJNmjSRF154QVq0aCGbNm0yHfQffPCBDBkyxHT2F+/YD3daR6OsHnvsMXO9XPS6uWaBAABCk6aF0lkUGnTwNz1G7sFjElvDc6AdAMIN7Q33aG/4h91TRFGfwt78EXyYvesXGbNhndgVBbcBAH4Janz00UeSkJAgn3zySUGKpubNm8t7770nl19+udxzzz3y5JNPSm5uri1nIVSuXLlghJgnhw8fNo/uUkqVRXx8vFnS09PNEuqpuQAAYmZNaFoonUURiMAGAEQa2hu0NwLF7imiqE9h38BDOAQfFCmiAAC2CWr89NNPpm6Gu5oTWmdDZxr06tVLxowZY9JTPfXUU2InDRo0MI9aCNwT13OubctL63HoojM1kvXOFAAQ0rTOhaaF0lkUVhcc90d9DgCwE9obtDcCMZtC99m/vwSM1SmiFGmi/M/uhbH9iRRRAABbBTWysrKkdu3aHp/v3LmzfPrpp9K9e3f5xz/+YdbZKbCh6bTUvn37TCHwhg0blthG64eoli1bBvz8AAChM2ODtFAAYD3aG7Q3wmk2hSJFlD1nU+Q582XI2m8t3We4IEUUAMB2QY2aNWvKrl27St2mffv2pnC2pqPSwEbhguKhrm7dupKamiorV66U6dOny+OPP17k+WXLlpmZGpo2SgM3ViD9FAAAAHAC7Q3aG8EquO0PpIj6C2mcAu+JlObSq+5plu83OTaWIt4AAHsFNbR+xhdffCFHjx6VihUretzuwgsvlEWLFpnAxtixY6VKlSpiF8OHD5fevXvL+PHjpVu3bgUzMnT2xsCBA83XgwYNsixVFOmnAAAAgBNob9DecNGUU4EMaPz2m0iMV63i8E0RReAhfIIPBB4AAJHCq1utyy67zMzCmDFjhtxyyy2lbtu2bVsT2OjatascOHBAHA6HBNKaNWsKghBqy5Yt5vHFF1+UefPmFayfNWuW1KlTp+B7rQkyePBgmTx5svkZNKVWYmKifP7553Lw4EFp166djB49OqA/CwAAABAJaG/Ys73hj7oXe/dKQGdTFGoSRiTqR5zcN5ddKdGOKEuvO8EHAAACENTQlEvPPPOMvP322ycNaqg2bdrI4sWLpUuXLnIowPOGtfD2N998U2K9ps8qnEIrOzu7xDaTJk0yjQlNDbVixQrJycmRRo0aybBhw+TBBx+UuLg4y86T9FMAAADACbQ3/N/e0GCBmyZQuepeDBkiAWGngtv+mvXgD9SP8K6GRK0KCQH6jQAAAG85nHYqfhGGNAijKa00+JOUlBTs0wlbOXuPyOqUSUXWtdpwf7kL/u7ZI1KrVtF1u3drXuhy7RZABPHX55PiM6qkPzN+l7ZfLiuy7uuL20vtpDohuV+gLLivRGl/FyI62Mye7Q273F8z6yE4qCEBAIBIbtY+2fZR6yKXouHVqySmQvWwbG/YKNMnAAAAACCSaDxGZ1WEOp2hMfL7tZKZa49ZGoFG4AEAAFiJoAYAAAAAIOS46l5YnSbKHymiDhzPDouABvUjAACAHRDUCBJqagAAAAAIh/bGxIki/fpZv19/1L0gRZR71I8AAAB24regRkpKivz000/icDgkNzfXX4exrbS0NLP8leMWAAD4fySt/UfRAjiB9kbZ2htbtohUrmz9X4+/Cm6HQ4qoxR27StW4eLGD5NhYiYmKCvZpAAAAeMVvt5/5+flCDXIAAOALRtICoL1hrRo1RIJczzGiUkTpzIcGiZUIFAAAANgpqPHWW2/J0aNH/bV7AAAQpii2CsAbtDfCl90D265UTsx8AAAAsFlQIzU11V+7BgAAYUxH5gaqIyvReUyS7ZI3BUARtDfCUzikiCKVEwAAgH/Rig8SCoUDABBcGtBIy5otMVFX8KsAEHbs2t4IZGCbFFEAAAD2RFAjSCgUDgBA4EfS5mbvlx2fXGa+ruw8JtGSz68BQFiivVE6UkQBAABEUFBDR/rs3btXqlWrJrGxsaVuu3//fjl8+LDUr1+/POcIAAAinAY0qsdbENRwxkmG84gl5wTAP2hvoDhSRAEAAMCnoEZGRoYMGTJE3nvvPTl27JjExcVJjx49ZNy4cdKoUSO3r3nooYdMAb/c3FxvDwP4Va7TIZnOBPP1nr0isc7y7W/vXmvOCwAAINLR3rBn/QtNF2WlA8ez/RbYBgAAQAQFNTQo0aVLF1m5cqU4nSd6gbOzs2XmzJmycOFCee211+Tqq692+1rX9kCwLchqIs8e7iqHnRVOrGgc7DMCAACAor1hP7N2/RLQgt4AAACAS5R44aWXXpJvv/1W/va3v5mZFz/88IPMmjVL2rZtK5mZmXLdddfJG2+84c2u8D9atC8lJUVSU1O5JgGgk4WKBDQAAAAQMmhv2Ku9oTM0CGgAAAAgWLwKamjKqZiYGFm0aJHcdNNN5ua4Z8+esmLFCvn73/8u+fn5cvvtt8u0adP8f8ZhVLhvw4YNZvYL/O/AQQlIQCM5WaRqVb8fBgAAIKzQ3rBXe0NTTgVqhoYW9E4+SS1HAAAARBavgho6M+OCCy6QJk2alHjuySefNOmnHA6H3HXXXfLKK6/44zyBkKcBjalTRWK8rlQDAAAARXsDngIao5q1kJgor5qtAAAAiBBedb8ePnxY6tat6/H5m2++WRISEswsjnvuucesu+OOO6w7S8AP1i0/KnXOrGjZ/nSGBgENAACAsqO9YX+LO3Y1Bb2tpDM0CGgAAADAp6BGtWrV5M8//yx1m2uvvVaio6PlhhtuKAhsAKGsRjWn1KwZ7LMAAAAA7Q3704BG9XhrgxoAAACAO17N423atKnJxZqTU3re1Kuvvlref/99E9zQwMaSJUu82T0AAACACEZ7AwAAAIClQY3OnTubKeFz58496ba9evWSmTNnmsLiu3bt8vpEAAAAAEQm2hsAAAAALA1qdOvWTZxOp4wfP96rnfbo0UM++ugjiY2N9fpEIk16erqkpKRIampqsE8FAAAACCraG/5vb+zPzpZ9Fi0Hjmf74YwBAAAAC2tqnHfeeSdNPVVc9+7dZefOnXL06NEyvS5SpKWlmSUjI0OSk5ODfToAAABA0NDe8H974+Il8yWqYkU/HAkAAAAIwaCG0joZZVWTKswAAAAAaG8AAAAACGT6KQAAAAAA3KkcEyvJpB4GAABAgBDUAAAAAAD4HNAY1ayFxETRtAQAAECIpZ8CAAAAANjTl526S+WkJMv3qzM0CGgAAAAgkAhqAAAAAECYqxYfL0nx8cE+DQAAAKDcmCMMAAAAAAAAAABsgaAGAAAAAAAAAACwBYIaAAAAAAAAAADAFghqBEl6erqkpKRIampqsE4BAAAAQJiivQEAAIBwVe5C4b/++qtZsrKyPG5z0UUXlfcwYSctLc0sGRkZkpycHOzTAQAAAEIS7Q3f0N4AAABAuPI5qPHxxx/LsGHD5Oeffy51O4fDIbm5ub4eBgAAAEAEor0BAAAAwLKgxqeffip9+vSR/Px8M8vg9NNPl6SkJF92BQAAAAC0NwAAAAD4L6jxj3/8wwQ0nnzySTNbIy4uzpfdAAAAAADtDQAAAAD+DWp89913ct5558nf//53X14OAAAAALQ3AAAAAJRZVNlfIhIdHS3nnHOORLrNmzfLPffcIy1btpTY2Fhp0KBBsE8JAAAAsD3aGyfQ3gAAAAAsmqlx7rnnyq5duyTSrV+/XubNmydt2rQRp9MpBw4cCPYpAQAAALZHe+ME2hsAAACARTM1HnjgAVm+fLmsWrVKIlmPHj1McOejjz6S888/P9inAwAAAIQF2hsn0N4AAAAALApq9OnTR0aMGCFdu3aV5557Tnbs2CGRKCrKp8sHAAAAoBS0N2hvAAAAAJbX1Bg9erQcPHhQ7rvvPmnYsKFZ526JifEpw5XPfvrpJ5kyZYoMGDBAmjVrZo7vcDhkzJgxXr1+xowZ0rFjR6lataokJiZK8+bNZcKECZKTk+P3cwcAAABAewMAAACAZz5FHLR+hD+2tcLzzz8vkyZN8nmau75WAyGdOnWSSpUqyZIlS+TRRx+VuXPnyqJFiyQhIcHycwYAAADwF9obAAAAACydqZGfn1+mJZCaNm0qQ4cOlXfeeUc2btwo/fv39+p1s2fPNgENDWR88803snDhQvnwww9l06ZNZsbHsmXLTMotAAAAAP5FewMAAACAJ4HNDRUAd9xxh091L8aOHWsehw0bJi1btixYX6NGDVM3pEOHDjJ16lQT2EhOTrb4rAEAAADYAe0NAAAAILiodC0iv/76q6xcudJckBtvvLHERWrfvr3Uq1dPsrOzZf78+YH/LQEAAACwLdobAAAAgHUIaojI2rVrzcWoVq2aKXruTuvWrYtsCwAAAADeoL0BAAAABDj91Omnny4Oh0M+++wz0+mv33tLX7dlyxYJZdu2bTOP9evX97iNztQovK06evRowcyNrVu3mu9nzpxpvk9NTZXTTjutxH50tocuLhkZGRb+JAAAAID90N6gvQEAAABYGtTYvn27CU7k5OQUfO8tfV2oy8zMNI+JiYket9EC4sWDELt375Zrr722yHau71977TUZMGBAif2MGzdORo0aZdm5AwAAAHZHe4P2BgAAAGBpUMM1O+HUU08t8n2ka9CggTidzjK95rHHHpMhQ4YUfK9BEtcsEAAAACAS0d5wj/YGAAAA4GNQo3gaJXdpleyscuXK5vHIkSMetzl8+LB5TEpKKtex4uPjzZKenm6WvLy8cu0PAAAAsDvaG7Q3AAAAAG9RKPx/I6DUzp07PV4o13OubcsrLS1NNmzYICtXrrRkfwAAAABCE+0NAAAAwDoENUSkRYsW5mLs27fPY2qtVatWmceWLVtaePkBAAAAhDvaGwAAAIB1CGqISN26dSU1NdVckOnTp5e4SMuWLTMzNTRtVPfu3S258Jp6KiUlpeC4AAAAAMIT7Q0AAADAOgQ1/mf48OHmcfz48bJmzZqCC6SzNwYOHGi+HjRokCQnJ1ty4Uk/BQAAAEQO2hsAAABAAAuF24kGJFxBCLVlyxbz+OKLL8q8efMK1s+aNUvq1KlT8H2vXr1k8ODBMnnyZGnbtq107txZEhMT5fPPP5eDBw9Ku3btZPTo0QH+aQAAAACEEtobAAAAQHCFXVAjIyNDvvnmmxLrd+3aZRaX7OzsEttMmjTJBC80NdSKFSskJydHGjVqJMOGDZMHH3xQ4uLiLDtPPYYueXl5lu0TAAAAgH/R3gAAAACCK+yCGh07dhSn0+nz6/v27WsWf9P0U7poo8iqlFYAAAAA/Iv2BgAAABBc1NQAAAAAAAAAAACRMVNjw4YNJlXTnj17pEmTJnLVVVeZ9fn5+ZKbm2tpyiYAAAAAkYX2BgAAAABLZmrs3LlTLr30UmnWrJncfffd8sQTT8js2bMLnn/55ZclISHBFNpGSVpPIyUlRVJTU7k8AAAAAO0NS9HeAAAAQLjyKaixf/9+ufjii2XJkiVmdsa9995boo6F1qWIioqSOXPmWHWuYUXraeios5UrVwb7VAAAAICQQnuj/GhvAAAAIFz5FNT45z//Kdu3b5ehQ4fKunXrZOrUqSW2qVq1qpnFsWzZMivOEwAAAECEoL0BAAAAwNKgxscffywNGjSQ8ePHi8Ph8Ljd6aefLr/99psvhwAAAAAQoWhvAAAAALA0qPHLL79Iy5YtTXqp0miRcJ06DgAAAAC0NwAAAAAEJahRoUIFyczMPOl2O3bskOTkZF8OEfYo3AcAAAC4R3uD9gYAAABgaVDjnHPOkTVr1siRI0c8brN3715Tb+Pcc8/15RBhj8J9AAAAgHu0N2hvAAAAAJYGNa655hrZt2+fDBkyRPLz891u8/DDD8vRo0fluuuu8+UQAAAAACIU7Q0AAAAAnsSIj7MM3njjDXnllVdk9erVcvXVV5v1W7ZskYkTJ8qMGTPk22+/lfPOO08GDBjgyyEAAAAARCjaGwAAAAAsDWpojtuFCxfKtddeKytWrJC1a9ea9cuWLTOL0+mU1NRUmT17tsTGxvpyCAAAIlbu/mOW7Cdnn/6baMm+ACCQaG8AAAAAsDSooerUqWMCGBrc+OSTT2Tr1q0mFVW9evWkW7du0rNnT3E4HL7uPiIKheuSl5cX7FMBAISYde1fsmQ/B/IrisgDluwLAAKN9kb50N4AAABAuPI5qOHStWtXs6DsU+p1ycjIkOTkZC4fACAgnLn5vpbUAoCgoL3hG9obAAAACFc+9Wo89dRTMmfOnJNuN3fuXLMtAABwL6ZKgkQnxQfs8uQesia1FQD4E+0NAAAAAJYGNZ588klTL+NkNPAxatQoXw4BAEBEcMRESYNxXQMa2ACAUEd7AwAAAIDf0k+VRmtsUFcDAIDS1by2qdTonSK5B62dRfH75iyRC7j6AMIX7Q0AAAAg8vg1qLFz506pVKmSPw8BAEDYzNiIrZFo6T5j9lq6OwAIObQ3AAAAgMjjdVDjzTffLPL95s2bS6xzyc3NlfXr18vSpUvlggsYIgoAAACA9gYAAACAAAY1BgwYUCSV1PLly83iidPplKioKBk6dGj5zzIMpaenmyUvLy/YpwIAAAAEHe0Na9HeAAAAgER6UOPmm28uCGq88cYb0qhRI2nXrp3bbePi4qRu3brSq1cvadasmXVnG0bS0tLMkpGRIcnJycE+HQAAACCoaG9Yi/YGAAAAJNKDGq+//nrB1xrUaN++vUybNs1f5wUAAAAggtDeAAAAAOC3QuHbtm2jADgAAAAAv6C9AQAAAMDSoMZpp53my8sAAAAAgPYGAAAAgMAGNQo7cuSIbN682dSG0OLg7lx00UXlPQwAAACACER7AwAAAIAlQY2tW7fK/fffLwsWLJD8/HyP22lx8dzcXF8PAwAAACAC0d4AAAAAYFlQ4/fff5cLLrhA9uzZI6eccooJWuzevdus27Rpk+zdu9cEM/T72NhYXw4BAAAAIELR3gAAAADgSZT4YPz48SagMXz4cNm1a5d069bNBDGWL19ughuffvqpqbuRkJAgixcv9uUQAAAAACIU7Q0AAAAAlgY1Fi5cKKeeeqqMGjXK7fNdu3Y1gY2vvvpKnn32WV8OAQAAACBC0d4AAAAAYGlQY8eOHXLeeedJdHT0iZ1EndhN4doZZ599tnTo0EGmT5/uyyHCXnp6uqSkpEhqamqwTwUAAAAIKbQ3yo/2BgAAAMKVT0ENrZORmJhY8L3ra62lUVitWrVMgT+UlJaWJhs2bJCVK1dyeQAAAADaG5aivQEAAIBw5VNQQ4uD79y5s+D7hg0bmsdVq1YV2W79+vVSsWLF8p4jAAAAgAhCewMAAACApUGNVq1aycaNGwvSTXXu3FmcTqcMGzbMBDIyMzNl7Nix8v3330vz5s19OQQAAACACEV7AwAAAIAnMeKDyy+/3NTKWLBggVx55ZVy7rnnSq9evWT27NnmaxettTFy5EhfDgEAAOA3eRIlmY4E8/WezN0Sdfy4V69LjI6WihWSJSo63u3zlfMPy2FHgjgdJ+qOAfAN7Q0AAACgfPKyD5Rp+6jYSh7burlZ+yQ3K9PeQY3rr79eLrnkEklOTi5Y9/bbb5uZGjNmzJD9+/dL48aNTUCjXbt2Vp4vAABAuXwW00LSK/SSI/8LasjXP3j92kFZs+Su82+SyvWvcPt8ZlQlqeg8Jg1y/xSR9vymAB/R3gAAAADKZ8cnl5Vp+7+1n+qxrbvto9Zy+Gi+vdNPxcTEyKmnniqVKlUqWKe1MyZPniy///67ZGdny3fffSe9e/eWcLZ582bp3r27uQ41atSQgQMHypEjR4J9WgAAwIOc3JyiAQ0/OOpIkO3RtSUnL4ffA+Aj2hsn0N4AAACAN5z5J8pERAqfghplsXjxYglHhw4dkk6dOplZKTo7ZdKkSfLhhx/KzTffHOxTAwAAHhw8dsAvAY19h/eUCGxkHDvI7wEIANobAAAAiHT5OaGTGipk0095Y+nSpSb91IoVKwoKioeTF198Ufbs2SOrVq2SWrVqmXUJCQnSp08fWb16tSluCAAAQktUXFKwTwGARWhv0N4AAADACVFxf5WJiARlCmpoWqn//Oc/8ueff0rt2rXlggsukPj4osVDli9fLiNGjJAvv/xSnE6nVKhQQcLR/PnzzUwNV0BDXXXVVSYV1bx58whqAAAQgqrHV5BFmY+Yrw86Es1j3UtnSFR8Fa9enxh9sSkUDsA/aG/8hfYGAAAAvOVwlEzIVP+KxRIdX7VMhcI9aXj1KsnIyBS5s6G90k/Nnj1b6tevL507d5Ybb7zRPDZo0EAWLFhgnj948KAp6HfRRRfJF198IQ6Hw6Ri+vHHHyVQfvrpJ5kyZYoMGDBAmjVrZnLx6nmMGTPGq9drGqmOHTtK1apVJTExUZo3by4TJkyQnJySObE3bNhgiqEXpsc766yzZOPGjZb9TAAAwD+qOI+YpWblWlI7qY5XS6XEWhIVXXRABwBr0N4oivYGAAAAyiM6vqrEVKju9VJaW/fENtXsNVPjhx9+kL59+5ZII6UzNq655hr55ptv5NprrzVBBZ2doTMWxo4dKykpKRJIzz//vKlt4YsHHnjAvFYDEzoDQ2dcLFmyRB599FGZO3euLFq0yKSXcjlw4IBUqVJyVKcGRLTOBgAAAADv0N6gvQEAAABYOlPj3//+twloXHjhhSa9VGZmpvz666+mrkRsbKwJAuiMjDp16shnn31mRlkFOqChmjZtKkOHDpV33nnHzJbo37+/V6/T89WAhgYyNECzcOFCU/R706ZNZsbHsmXLTEotAAAAANajvUF7AwAAALB0psZXX31lZiDojAV9VJqe6c4775SoqCjzqDMcdGaDpl8KljvuuKPI93pu3tBZJWrYsGHSsmXLgvU1atSQ5557Tjp06CBTp041gY3k5BN5tPU6aMqt4nQGx5lnnlnOnwQAAACIHLQ3aG8AAAAA3vKq119nZbRp06YgoFHYlVdeaR7bt28f1ICGr/RnW7lypflaa4UUpz9XvXr1TNFCLdbnovU0itfOyMvLk59//rlErQ0AABAanPk5Xq0DEFi0N2hvAAAAwHfOCGvrehXUOHbsmEkt5U7t2rXNo3b829HatWvNY7Vq1aRhQ/fV21u3bl1kW9W9e3dZunSp7Nmzp2CdzmQ5fPiwXHHFFX4/bwAAUHZZ2RnyVUyzIouuAxBctDdobwAAAMB3+TmHvVoXUemnvBEdHS12tG3bNvNYv359j9u4AjaubdXdd98tU6ZMkZ49e5q0VJp2asiQIeZ7VxDEHZ3xoYtLRgYdKQAABMrh3DwZk1C05lb33DypzK8ACHm0N2hvAAAAAGUKaugMhB07dvj0fGkBg2DToueuGiGeaAHx4gGIKlWqmBoigwcPlmuuuUYqVKgg1157rTzzzDOlHm/cuHEyatQoy84fAAAACAe0N2hvAAAAAJYGNT788EOzuONwODw+r8/l5uZKONIaIgsWLCjTax577DEzo8NFAyV2Td0FAAAAWIX2Rkm0NwAAAIByBDWcTqe3m1ryukCpXPlEwokjR46UOmpMJSUllft48fHxZklPTzeLFhcHAAAAIh3tDdobAAAAgGVBjcK1JMJNgwYNzOPOnTs9buN6zrWtFdLS0syiMzWSk5Mt2y8AAAi8ClFR0i97cbF1jflVAF6ivUF7AwAAAOWXJ1GS6UgwX1c6niNxhWo7u1M5NlbioqJKrM93OuXA8eNF1mWeZF8hF9Q47bTTJFy1aNHCPO7bt880pho2bFhim1WrVpnHli1bBvz8AABA6KsYX0kOORJLrAPgHdobtDcAAABQPp/FtJD0Cr3kyP+CGvL1DyKii2fvXnCxtK1Rq8R6DWi0XjSnyLr8o0dD5ldUMgwTYerWrSupqanm6+nTp5d4ftmyZWamhqaM6t69u2XH1dRTKSkpBccGAAD25YiOl7lxFxZZdB0A0N4AAACAv+U6nUUDGmEu4oMaavjw4eZx/PjxsmbNmoKLo7M3Bg4caL4eNGiQpWmiNPXUhg0bZOXKlZbtEwAAAEDoob0BAAAAf8rIyY2YgEaZCoXbgQYkXEEItWXLFvP44osvyrx58wrWz5o1S+rUqVPwfa9evWTw4MEyefJkadu2rXTu3FkSExPl888/l4MHD0q7du1k9OjRAf5pAAAAAIQS2hsAAABA8IVVUEOLbn/zzTcl1u/atcssLtluippMmjTJBC80LdSKFSskJydHGjVqJMOGDZMHH3xQ4uLiLD1XPY4ueXl5lu4XAAAAgH/Q3gAAAIBdfNK6sdSuduZJC4W7UzUuTlZ1uarIusyMDClZjTo4wiqo0bFjR3E6nT6/vm/fvmYJBE0/pYs2jKxMawUAAADAP2hvAAAAwC6qxkRL9Xjfaj1GORwlXhvr4778IayCGgAAAMFwKCfH7braQTkbAAAAAEAkSYqNkZeOPFts3VsSrghqAAAAlFPu8UNerQMAAAAAwGoxDoc0yP+zxLpwFeXLi3bs2CH79+8/6XYHDhww26IkraeRkpIiqampXB4AAOzOXfrLcqTEBCId7Y3yo70BAACAcOVTUKNhw4by8MMPn3S7Rx55RE4//XRfDhH2tJ7Ghg0bZOXKlcE+FQAAIkZUbCWv1gEILtob5Ud7AwAAIHJExVb2al1Ep5/SYtzeFuQuT+FuAAAAK1WNT5APDo8qtu4LLjIQYmhvAAAAAN5zRMV4tS5c+PUny8zMlLi4OH8eAgAAwGtRDodUcR4psQ6APdHeAAAAACKPX4Ia+fn5sn79elmyZInUr1/fH4cAAAAAEKFobwAAAAB/yc3Pl+1RtQutEamXn+/fGQ1B5PXPFR0dXeT7N954wywnc/vtt/t2ZhFQuE+XvLy8YJ8KAAAAEHS0N6xFewMAACByHMrNlbsSHyqy7uvcXKkgER7UKFwbw+FwlForIzY2VurWrSt9+vSRUaOK5q3GX4X7dMnIyJDk5GQuCwAAACIa7Q1r0d4AAACARHpQQ6d4u0RFRcmAAQNk2rRp/jovAAAAyznzc71aByDwaG8AAAAAvt5M53q3Lkz4lFZr5MiR0qJFC+vPBgAAwI+ysg/JuujTi6z7W/Yhia1YNPcogOCivQEAAAB4Lz/nsFfrJNKDGgAAAHZzODdPHq54T5F17XLzpHLQzgiAO7Q3AAAAAHgS5fEZ+L1wX0pKiqSmpnKlAQAAANDeAAAAAPwZ1NixY4fce++9cuaZZ0rFihUlOjra7RIT49NkkIgo3LdhwwZZuXJlsE8FAAAACDm0N8qH9gYAAADClU8Rhx9//FHatWsnBw8eFKfTWeq2J3seAAAAAGhvAAAAAPDbTI3HH39cDhw4IF26dJGvv/5aDh06JPn5+R4XAACAcBYX5ZAex1cUWXQdAN/Q3gAAAABg6UyNL7/8UurXry8ff/yxxMXF+bILAACAsFEpLlGqOA+XWAfAN7Q3AAAAAFga1Dh69Kh06tSJgAYAAICIOGIS5K34LkWuRVpMAtcG8BHtDQAAAACWpp86/fTT5ciRI768FAAAAABobwAAAAAI3EyN/v37y5gxY2TPnj1Ss2ZN344c4dLT082Sl5cX7FMBAAAAQgrtjfKjvQEAABC6cvPz5VBOjs+vrxoXJ1GOknUcnXkOceY6JCrefZ3rvXtFnE7fjpmbK/YOajz00EPy+eefS7du3eT111+Xpk2bWn9mYS4tLc0sGRkZkpycHOzTAQAAAEIG7Y3yo70BAAAQmmbt+kVGfr9WMnN9D2qs6nKVVI+PL7Lu8NL6cujFc6Vy/42SdMUWt69r3PhEYMMXw4aJvYMaXbp0kZycHFmzZo2cd955pmi4LlFRJbNZORwOEwAB4Btnbr7kHjxW5tdFV46XqHj3b/GcvX+lj4upkiCOGJ8y0QEAAPgF7Q0AAACE6wyN8gY0PM2iOPxiU8k5Ghm1HX0KanzxxRcFX+fn58v27dvN4o4GNQD4Zs+MH2T7YwslLyO7zK8985XeUv2qxm6fW50yqeDr6KR4aTCuq9S8lhlXgDc3CQcO+H6ddGJeXFzJ9fn5Ivv2iVStKhLj0//MCLZMN/NwdV3toJwNYH+0NwAAABCO8pxOGde8VcH3b27bLN/u93HqRCGOo/GSdTSx4PusefUlu3G8SJhWjvCp62Tp0qXWnwmAEjM0fA1olIXuX49To3cKMzaAUrz9tsigQSKHDvl+mfS/z44dS67XgEatWieCHlOnivTrx6/CbnKyM7xaB8A7tDcAAAAQjuKjo+WKU+qZQZPPf7dV/rNN240nRj9GVcwVR6z7Whh5h4qOkNy7RyS/UPapffuiC74+/MnpcnxXFYl5ZKuEK5+CGhdffLH1ZwKgCE055e+AhoseR48XW+OviC6AQu/H3PIHNLyh+9fjXH89MzbsxunM82odAO/Q3gAAAED4D5o8XUR0OeHVd3Kk5xXugxo1KhStn3FOiS1OK/hKAxqebNxYvkLh48dLSCDJBQAgrB0/Xr5ghKaEUsuX/7VOZ1O88IJYYs+eE/tz0XPVFFc1w3SKaLBFxSZ6tQ4AAAAAgEAOmqwcGyvVi8YuyiUqpmRbt0YN3/eXEULJCMoV1HA6nfLpp5/KihUrZM+ePXL++efLbbfdZp7T7w8cOCCNGjWS6Oi/pr8AoST/eJ7kZWT5/HpPRbZ9Le7tEp1UQWKqVZRWG+433+fsO3rieFUTxBHl8LpQuCfNl90l69q/5PP5AXayYoXIJZf4/voffhBp0uTEYnVAw+Wpp6zdHzxLjkuQl448W2zdXC4ZEKJobwAAACCc6CBGf2eBUJUrZki16uE7n8Hnn2zdunVy3XXXyaZNm0xjQwuC5+TkFAQ1Fi9eLP3795fZs2dLjx49rDxnwDKZK3fJxt7v+Pz6c7+6UyqeU3I49bHN++S/F73s834bz7pJktudVpAOyuq0UDHVEizdH2Cl7OzyRf+rVxeJKhlrtMx1151YfKE1MxBcMVFR0iD/zxLrAIQe2hsAAACAbwGNv98yUmJingjby+dTUGPXrl1y6aWXyr59+6R79+7SsWNHeeSRR4ps06tXL4mNjZWPP/6YoAYAwGtz5oj07ev7Bdu927+pm0gLBQD+R3sDAAAAkWLDhhNpoZKSSu/rKE1u1n7Z8cll5uukxEMSE601HglqFDF27FgT0Pj3v/8tgwcPNuuKBzUqVqwozZs3l5UrV/r6+wxr6enpZsnLo4goAAAAUBjtDdobAAAA4Wi/pqeQoinjoypnS82a8eUaYJmb5ZTDSfslUvg0U2PBggVyzjnnFAQ0PGnQoIEsXbrU13MLa2lpaWbJyMiQZPKRIAxpXZH87FyJToxz+3zugWPizMv3ad9RFWIkupKFlZNQagErzfeoHA7PBaWOHRM5fDg0Zz1ceOHJRzR4UygcABA4tDfKj/YGAAAAwpVPQY3ffvtNevbsedLttM6GdtoDwebMd0oVx5ES6yqn1i0oxu1roXB3Es6oXq79aqHwQMvPyvX4nClU7nR6va+9M9fLL3//TE4d2l7qPXKR223WX/WWHPtpr0/nWvvWltLwn5f79Fp47+23RQYN+quAlQY09uxxv+20aSe2DcWUUXFxpIzCX5zOfK/WAQgu2hsAAAAIpYGeZaHj17Uvorj8fJH9+xziD84Ia+v6FNRITEyUPZ56tgrZtm2bVKtWzZdDAJbKzzgmn9YoWrg7P+NOiYqrJFEWF+FWjpgoy4t7+9vu6es8BiDWtX9RcvcdC/g5Ibj/cRcOaATSVVeVb2aFFgoHPDmefVC2R9Uusu6U7IMSmxCAaUMAvEZ7AwAAAKE00LMsNHFRx44l1+/bJ3Lhee4zmpRX/vFD7teFaVvXp6BGs2bNZPXq1bJ3716p4SEXyS+//CLr1q2Tyy47UaAEQGT649VVUr1nY9sFecJl5EB0tIin2PKRIyJHj7p/bu/ekv9x6zp/0BEMhVM8xcczswL+k5GTK3clPlRk3YqcXOETCggttDcAAAAQiQM94Z0o8UG/fv0kMzNT7rjjDjnqpkfs+PHjMnDgQMnJyTHbAggtmjYrOqloTYrY6hUtP86f01bLzvFfeUzTBWtGDmhsuVYt90uHDp5f+/TTnl+XkhKY344GNKZOFYnxKcQOAAhXtDcAAAAQLDpwNFABDUficalCLc8y86kb6dZbb5V33nlH5syZYwqGX375idz2OjNDi4fr+h07dsill14q1113nS+HsIXNmzfLM888I99++618//33cuqpp8r27duDfVqAV+mxGozrKtsfWyh5Gdl+u2J5h4/L6f+6whyvuCZz+perUDgCP3JgwwbPz912m0jfvmXfp87QIKABACiO9sYJtDcAAAC8d/x4+fpIAt1HoQGN6netlZiY8wJ30DDh068pOjpa5s6dK3fffbe899578sorr5j1a9euNYvq06ePvPbaaxLO1q9fL/PmzZM2bdqI0+mUA75UjgGCpOa1TaVG7xTJPXiiVkZ0ouecfs2X3V2mQuEuOkPDXUDDPFeV2Rt2GjmgMyrOPNPz8wkJJxYAAKxAe+ME2hsAAADeW7FC5JJLfL9iP/wg0qTJieCGfq1cZaXPPtv7gIf2oXiqAfrjzmy57IsF5vuoSjniiNb+NoIaZeVz7KlSpUpmtsaIESNk/vz5snXrVsnPz5d69epJt27d5Lzzwv+X0aNHD+nZs6f5+p577pEFC078QQJ24W1Bc3+kpoo0pdW9cCc2VqRKFffPZWaKZGX5r8ZFcaSIAk4u1uGQDjn/LbbuHC4dUA60N2hvAAAABIMGLzS4YbWoKJEaNUWik49bv/MIU+4JNZp+SpdIFKV/iQCCImfvkTK/xhEXLTFJFdw+l5uRJc7jeSedYeJr3Yuypom6+GKRL75w/9ywYSLPPec5RZTW2ChcKNyThx8WSUs7+bmQIgo4ucrxCdI8b0uJdQDKj/YGAAAAgiE3P18O5eSU6TUOEakWX7SOrUtWXp4cOO6/NPCRxKeghqaeuuKKK/zeqf/TTz/JokWLZPXq1WbZuHGj5OXlyejRo+WJJ5446etnzJgh6enpptaHFi8/44wz5KabbpIHH3xQYnUYNABbyT2UJT/dMtN8nbliR5lfX63HOXLWq1e7fW7rg/Nl/9wfzddaRF1rjmiKLrvVvdCARs2a3m2bmHhiQXAlJYl88EHJdbAXR0yiTK3Qu8i6fjG8wQBf0d4AAABAMM3a9YuM/H6tZOaWLahRLS5OVnc9kdmnuA92bJORP5wo3YAgBDU05VKdOnWkX79+MmDAAGncuLH4w/PPPy+TJk3y6bUPPPCAeW1MTIx06tTJTF9fsmSJPProo6aRpMGSBBLAA7bizMnzKZhRVlo8XYuoa82R8s7YCHTdC51VAXvRARzXXhvsswCA0EJ7AwAAAGV14YUiu3f7ft1cfSo6Q8OXgAYCx6feupYtW8rvv/8uTz/9tDRt2lQuvPBCefnllyUjI8PSk9N9Dx061NTu0Fka/fv39+p1s2fPNgENDWR88803snDhQvnwww9l06ZN0qxZM1m2bJmpBVLY66+/Lg6H46TLzJknRokDCDxNC6WzKPwhZ9/REoENVxF1O6DuBQAgnNDeAAAACB+axUILbrsWT7Kzi25X2vLnnydScOviWqe1MDR7ha+LqxC4ppwKVECjckysJJNRKDAzNVatWiU//PCDTJs2zQQcvv76axM80NkRffr0MbM3dHZEed1xxx1Fvvc23dXYsWPN47Bhw0yDyKVGjRry3HPPSYcOHWTq1KkmsJH8v3L0vXv3lrZt255036eeemoZfwoAVtFZE5oWSmdRaNDBrorXvXCntP/Pxo8XefLJouuoewEACCe0NwAAAMKDuzqjTqf7befMEenb1/dj6SwNb1NyhwINaIxq1kJiqNscuELhOoti4sSJMmHCBJk3b5689tpr8umnn8rbb79tAh3169eXW2+9VW655RY57bTTJFB+/fVXWblypfn6xhtvLPF8+/btpV69erJz506ZP3++3HDDDWa9BjdcAQ4AoUvrXGhaKF9mUWihcE8aTewu37V9oci63P0lj+GIjZaYZPfFxvMOZ0t+Vm7R7TNFru5xYnZJlB7f4ZBTTjkxs8JXlSufWAAACGe0NwAAAOwt0HVGrZIQHS33n5Vivt73v8Ledzc6WxKiY7wqFO5J3/oN5YpT6hV8rzM0CGgEOKhRsIOYGOnVq5dZ9uzZI2+99ZYJcKxfv15GjRplinrnlLFKfHmsXXui2Eq1atWkYcOGbrdp3bq1CWrotq6gBgB7zdiIrWFtAV53aa3WtX+pxLrKF9aXJrP7ud3HjtFL5c/X1pRY/3ChY+hMk+Tk8hcgBxBaDuvdupt1tYNyNkB4ob0BAADgf9qk0bqg7jgcnjNOHDsmcviw++f27rVnndGKMTHywNlNxGoVoqPNghAIahRWs2ZNGTJkiNx7770yfPhwU9ciPz9fAmnbtm3mUWeKeKIzNQpv66ujR4+a2R5q69at5ntXzY3U1FS3M1Sys7PN4mJ1HRIA1svMj5dcOfGfTk52vMf8j/uOxsqB/IpF1sVKnlSKyra8ADmA0HL8eKZX6wCUD+0N2hsAAESy0gIPLtpnXq2a++eOHNH+TPcpooYM8bxPDWh46guZNu3EbIxgos5o5LE0qKG1NXSWxgcffFDQWa8zJgIpM/NEB0JioudR3FpA3IqAwu7du+Xaa68tss71vV4HrS1S3Lhx48wMFgChWYTcXa2ORzOukbU5/wtSLhCRWp720vl/y18uidsoY5NnFXyv+8/aul9iqiWIIzpKYqomuN1T3pHjkn8sp0znT6DEnvTGsFYte+cBhYgzP9erdQDKh/YG7Q0AACKVu9oU7qSkiKxf7/65p58WCXa3pNYZ9eSqq060h8uKOqORp9xBjd9//13efPNNef311+Xnn38Wp9NpCnp36dLF1NTQtFThqkGDBubnLYvHHnvMzGZx0cCKa+YI/CeqYpw8fqh3kXVvVozjkgd59IA7GnNMSPA8bdH1lrP6P6xAFiF3pbVKOLuGNP+/u9xu81v61/LrM8u83qcrtZXWHAHgWVRMolfrAIQO2hu0NwAAiHR2rU3hbkbFmWd6fj4+ngF+voqKsLauT12Cx48fl9mzZ5tAxuLFi02KKe3cb9SokZmdoMupp54qwVD5f9Vzj+h8Kg8O/y/RW1JSkgRafHy8WdLT082Sl5cX8HOIRI64GFlyvHGxdZ7/RhCY0QPuTJ0qkpbm/rnGjU8ENgpPLeznvryFpUXIK/esILLCt31WueR0kZJlNixHaivAO5XjE+Tpoy8UW9eRyweEGNobvqO9AQBA+NFBo173seTnS87eov0aLnlHY0UkOIN8SRHlX47oOK/WRXRQo06dOnLw4EETyKhYsaJcc801ctttt8lFF10koTB7QmkhcE9cz7m2DYa0tDSz6EyNZH1XA2EiUKMHdP96nOuvt37GRvEi5A79P99H0ZXiPKa1spoeQwMyxc9f01hpOitfWV2UHQimuKgoaZ63tcQ6AKGF9kb50d4AACAy5ew/JqtTJrl97vcjHUREF8+euvl3ueeZOiUKhXty220iffue/LxIEQUr+dQVeODAAbngggtMIOO6664rqFERClq0aGEe9+3bZwqBN2zYsMQ2q1atMo8tW7YM+PkB4a5MowfKyDVLw0WPo8ezovaAluMZNqzouvHjdfaXyOzZIjnel7coIi7OIccXBSatlSe7p6+T7Y8t8vn1bXcPt/R8AAA4GdobAAAAf3Hm5msyoRK1KbSAd3F/pK+TI8+5v3o3Vfxa+iSs9nhpKzuOSfzyOKlR9cGCup2ugZI5xfpkCncuV3GUfaBkfnau5GX63k8SU62iOKJKOXA5HDx+XPouXypReU6pcORErcTXOneWqpVK5kt35jsld7+b6uteoD5qgIMaGzdulLPPPltCUd26dSU1NVVWrlwp06dPl8cff7zI88uWLTMzNXRadvfu3YN2nqSfAkJLVpbIc8X+03/yyRNBjSpVyrlzD2mttFC4J6ektZW/3daq1N3m7j9WUJ8jpnqC1B1a+mgL2EfxAF5Z6s0Utm+/9ecGAIFAe6P8aG8AsEtHbfF2kkcOh8RWr+j2KU+z0+kwRLjIPaTvk6LBgWTHEalZs2TAIKtirnhKuJ7gyDGLO9qvIFLhf8fLKni/+Wug5IGFm2TTHbN83m+rDff7LbNEntMptRfvkgHv7JHEYxpQEjn8wTlSteMZJbbVgIanmTEnQ33UAAc1QjWg4TJ8+HDp3bu3jB8/Xrp161YwI0NnbwwcONB8PWjQoKCmfWI6OMKVzppwda7u2VP215c28UtHIaSkiC25S2tVmujEOLOURm/QC6e2+tvtrct9nggN7v7Ova03UxSpwwDYE+2N8qO9ASDU7ZnxQ5lmtGuHa+uND7p9zlOnayA6DPOP50leRpbPryfwEppBNUdctMQknejgLy43I0ucx32rkeuIjZaYZPf7zTucLflZue6PeTDL7+07HShJv8JffxuFAxr+Qn1UPwc13nzzTTnjjDPkwgsvLPGc1oSIi4uTChVKviHfffddM2Ni4sSJPp3cmjVrCoIQasuWLebxxRdflHnz5hWsnzVrlsm769KrVy8ZPHiwTJ48Wdq2bSudO3eWxMRE+fzzz00tkHbt2sno0aN9OicA3rMiLVRh7qZVFu/IrVhRJNHD//P794vkebjvcN8hHPqBEr1B14YAUJa6NwAQamhvAEDkdRgGIkVvIDoMM1fuko293/H59ed+dadUPMfixjPKHVSr1uMcOevVq90+t/XB+bJ/7o8+XeXKF9aXJrP7uX1ux+il8udra9w+dyBfZ0084NUxvMn8gNLlHcoqEdDI2+dbiilf66PCgqDGgAEDzOIuqFG1alXz3KuvvlriuUWLFpkGiq9BDQ2YfPPNNyXW79q1yywu2dklP4AmTZpkghc67XrFihWSk5MjjRo1kmHDhsmDDz5oAjHBxHTwwMo7eFT+U7PoVLC8g3cyijkMR7SPHHkibZQ7HTqcmO0RTmq6Ulsd8jwyqNaNzaV6z8YBPS94T4ul6cRBf9WiKe5QhkS0nKz9ctCRWGJdTIXqQTsnALQ3/IH2BoBQph14gao5SIdh2VJ9RVeOl6h4992FOXuPhMWMk0AF1awUJ7lydYWitTAqVDjH58wPCL7KF9QrmBmj77vyyss+4HZduLZ1fUo/VZjT6TSLP3Ts2LFc++7bt69ZQhHTwQFYmtrKQ25ZFZUQaxaEppiYE6mlBg0KXGAjkh3MyZW+lUYWWbciJ1c8lCsBEAJob/iG9gbCnXZKOvPyfep8PRntDOT+GZGa6uvMV3pL9avcD4orrW6AnWoDBDKoZpXEqOPycOWFRa531botAnJsfw2UrNr1TFMXozyFwlVufr4cynFfJ8QlNsohSbHuAz2Hc3MkO6/orIxDx0vW6ElodYrH8/D152B2RhCDGgAQjiPa9Th6PJSvQaj/uTuiHB7zztppNI8/9esncv31IgdKDqzwqt7Mxo3uC4Vv+PaodLzSc8ALAADAzh20p0/s7lPn68k0GNeFvPJlzPd/Mo7oKImpWvowkubL7pKYaqVs4yjZrnDX6Zq7/5isa/+S2DFQd2zzviLrEs6oXu72Ujil+kLRAFKgrrO/BkpqUNpTYNob2q8wf/5qeW3rJjmad+Kz6eczEiQvpuRnxfnVa8p7F3Z0u59/bvxe3t5+ouSBS+XMXCnxKRIX7fb12udBcCLwCGoAsI1AjWjXgIYeR48HkX0fb3RbdM8bOlrB3X/urryzdhrN42/69+ZrHRp39WZUtar+mUkJAAAQLHZMGxMuSsv3fzIJZ9eQ5v93V6nbaEDD147BYM5Or5xat3yjzaskFMwe+O9FL5ct0PM/0UkVJMpNh6sz3ylZW/fbOtWXt2mzCouqECPRldyn89HUzRr4Ml87HZLpTDCpnS5cMaDItdZC4ergQZHikwAqP95dKj3c9aTnUbVKyX4FLRTuSf0Rl0jdhzucdL8MDjwh++AxqX7XZzK00LW5698NJbMynTmRgN9ykJDjFuFKS9zMmVN03VVXicSXPz2gVyPatVC4J//3f54LhRemMzQiPaCRn50rBxZuMl/H1kw0uR4z/7PT8uMwmgcAAP+gvYFwVTxtzB+vrjIj9Bklay8agDh1aPsS6/xFO7E9/Y1o2ycv07tOfw0S5B440SHuSgGss9P99ffn7YyTxrNukuR2p5VYn7v/qC1nrfiSNquw2re2lIb/vNztcz/dMlMyV+yQBVlN5NnDXeWws4KpVXGRh6Bar14iX35ZfG2FMg2Y1H6MwnSQppvsRiKiHSeld57ExopUifD+CpeM3JIppypnahqpkjPKEmJyCrJQeAoKReU5JfFoXqH9FJUUQ1rvUMLbIEjIcYtwlZGh9WyKrtu92/cR6FaOaK9WzbpzCHc6PXzrkPl+GdGjNxJ/vrqq4HsK9yEcxDgccm5u0SnLMQ73hfsAIBBobwRHWUYUl5aOJ+/Icck/VrKzhtG5RWlAQwfe+CPXO/xL65bUe+SigF1m7dhvu3u42+d0MNemO2b5vG9Ps9NDWbOv7pJDHqrK5VaKlz173L+u/lcnZqQkVT4xcNGfqb78OStLZ2i4Ahr+pMELzTShAzMLD5y84w6RmTN92+fFF4t88YVlpxh2nh3xi4dntslqWWm+OverO6XiOSU7lU7547g8/fcdHvcd4ya1NoKHoAYAoAQdtaBpofx1E7l/3k9c9QBIqODdOpRfUlwFuSpnRbF1fbi0ABBByjqiuLR0PL+lfy2/PrOsxHpSdxZV2kzi8qQD0g53INA0aKnvcX+nitJjHEmuJqee4ks9hhPBmw8+ELn2WrFtMW9NOVU4oPFRVis5kJMvtSw8xjXX/PX1kSMnZm1EMm+KeXsSGxUlSTpFxU8ebdxMHjiriWT/tFd2yBt+Ow6CFNTYvHmzvPnmm2V6TtcDAOxJ61xokbey5i8tTKdiI3jcpWMrLUUbfOeIrSRjEvoXWXdlbCnV3QGUQHsDdkYh3tBjt5HzduBtvn9PM5PCLTig9DiumhihPrCscGBUKOTt9vpbSWdU6CwNiMza9YuM/H6tZLpJF+WNbnXqynOtLyixPjq5ghxJiJLEYyVTRZVFpZhYqRQjcjQuTnYE4L2u2StWp0yy/Ywv2wQ1li9fbpbiHA6Hx+ecTqd5HgBg3xs7/mMFAAQC7Q3YmT9HFBdH6k4EixZe9lR8OZQEIjhQOEBgZWe4rwPLtFC4p0FmhWctuVLYeUovFUo0EKYz2v6/vfsAj6Ja+wD+Jtk00hN6b4I0kaZIkSagKAhKFbAgcq+CDUVB8QLiVVSuXpCqqHBBrwIK4hURlKKI8tFENIiAIEUEQgIppG7me94TZ9ky22d2Z3b/v+dZEs7OzE5OTnbnzHvOeVnphcvia4t1o8mUGudRonBnmi4bTGlnzEQerlq3dq1jonDwboaGPwENV7gtLx1Zhe5977zfgY1A/61DgIIadevWRXBCZUjcBwAAAACA/oZW0N8AI+UY4RuykTFRykmZsytuZsp4DX8ANYMDaX2v8mm5Mq1y3Kg5sCwiMsKwg9Q455CzJfr8Om5KHEUrJulWlpqq+inQkiVECxb4tq+GqzBp4rK5jJqnXKnEnRfUi6hlxMZS0h3Nadx1J0WC78SoaPqqx81uc184m3ER3zhD8b0A+awMHNQ4fvy49mcSZpC4DwAAAACgAvob6G+Eotbbx5EpPd6n5Xhqju9I1ce0E99rmYhXLzlGmq0ZSSmd6zmUc0DDfokOLfFo8P1dFle89oVCj36Pssj4aKe5OMpyCkkylxvuBlnZpSI6dM9qh1HufFPYCDwNDkTGmsQjnGRkEJ075/v+yckVX89nEd1w3jYB++msAqpZMcGiYoaFJPn0Gq7+powunPJrJEfH0Aeduovvlx07ompQQ1YeFUGUFk+TWrWh+Kq+LwGMlSqMJbzetQEAAAAAAAACgG+E+zpCmm/kGflmXqByjKhOkizBDJmnAaVaT3ahOk/dqPjczwOWU+GhLMMlfJdKzZS344RDGRhLSQnRjh22ZZ06EVWp4v+xoyo5vk/lFMZQ9F/3rX/o9B8qyyly2CY+ooTiIsoUj3mxPJ4kiqAaD11PtR52zKPgCucPTHDytpudTWT+q/lmXflzhAC6rWYd8fAlUbgzs1q3p5mt2lJKdDSZXGwHoQdBDQAAAAA/FZSVeVQGAAChiddvr3ZfW4eycBXIHCNqJm8NFK4bDvrw8khGmLEBxnbpElGPHrZlPEtDjaAGz6aw17KtddnfFfd7IvELGhy/R/G5Edl/o4tSJaKZVPHwwrRpRNOnKz/XtStRZqZ3xwN18XJRaks22npcTigtrciDG5T+xpzNgirNLaLy/IqZdBHxxRQR5dssKaMI36ssAACAEJdzUbmsZjBOJsQVl+R7VAYAAKGJkyc3ePnmYJ8GlReWkrnAi8XiDbYcktbJW7ke+JiBCMgg4TsAALiaFVj/pT5U/f72ipW0v8tih5mFFUaLfyPiiilh8A6iW0O3jhHUCBIk7gNvp4vy6ApfpaURmRT+2uVBxErPAYDxlZd7Vgb+k8pLPSoDAAgUo/c35ATTPNuBAwbO1vv3dSkco97Ed+fc+/vp+JSNXu8XiOWQXOWm4EThSkzplVwmcFb798jH4noI1NJZSiNztWrzETFRZHJSz2W5RSSVOB4XSdnBk3sNnB/Cn/sVesA/A/8sAKFCKoqlgtWdSHo2dG8A4FZmkCBReGBFxMfQ7Lw+NmX/jjfOGrW8/qX9dFFv/PQTUYsWjuWHDhG1bEn02mtEo0Z5/6Efo1CFuGEKAHoWYYr3qAwAwOiM3N+wTjDNSzo5mwHBCYzt1/v39ya+s5u7noiIjjJMAuVgLIfkS46RiMgIn/OS+IrbBNcDB9W84WyJENZi3WgqPV/gMBJXaWSuVm0+vf/V1OTtOxSf++3x9ZT96S8+HRfCGw+QnDePaMIE7wIbdad2p3b3d1E+5tXxRBcoYPgjkn8GDPaEQAnUrECpKJbMBVFEGRSSENSAsBAZa6KPimynbM2NLQja+ejNxIkVD29s2ULUvbtj+YUAXnwAAHgrKTaBphYutytTeDMDAICQTjDt7Ca+Pzd3kzrVpRZrvRwp5MPND1OG7wnIXcFySFdwm1Czjk1p8SSZQ3e0LIQ3HiA5fDhRTo7n+yQmxlJ0vPKMpIO/OKQK8CpRuDPffHMlUbgnK1uAOvLLSunlgwdsyp5u1ooSTaGRC0PvswIjo9TPY6IX+LMFCEPnzxN9+KF/sz8AtF5uwle8fEFkTJSq5wShIzYykm4sO+BQBgAA+kwwffbdvVR7UldVbzDziHWZ+XKJ0yV59CLQSyKBNgKZr0MrRkzKDoHBQQE1Eo+zypVJE+np2hwXXCs2l9OK40dtyh5r0oISw/yOtCezAjlRuDOtt//NIfpXdOYM/dxrpU1Z+eW/1p1XUJZT6HXAvTRPPwPEw7wJAYQnHonw3HMVoynUZn8hg7UpwVuFRy7Qjze+5XPFNVszklI610PFAwAAWCm9UEClJd4H/blD7WxZndILl8VyS0bLTZHcqa7TxJuGuPkREeF0u6p3taaM25t5fXy1Z37wje9rvn7AoSycGT04pXZSdgCAcOfPrMDoDMdpSWXFjoM0/lz8AzWaXV/xGD8PWE6Fh7K8et2C8iLSCwQ1AAygUyeic+d8398+4RWPonjjDaIHHyRNYW1KUIJOLgAAQOD90GEhJUR6PyOh/kt9nAYA9ndZTFJpueYJpp1pumywz0mTQ/XmBwegXOV2COS5VrpapWHbYTYylxOFa9HmOVG4Mw1f70cNXu7rcn+1k7IDAAD4A0ENAAPghNxqTeX0Z91La87yTWZkXAnAYG1KUIJOLgAAQOgIRIJpZ7RIyu3JzV1XicIBtByZq1Uier0vwQYAAO6ZUmIpIq5YJAi3lKWH7ixJBDWCZP78+eJhVspSBGDAdS9lvDS92scEAAAAAP30N0qzCujCJwdDMsE0bu4CAIBRXCj2fSm7BJOJ4qIQjA+1oHnC4B1UsLqTTWAjVCGoESTjx48Xj9zcXEpxNuQdVGO+WEjrM960KxvNb+O6reXycqILFxxnQSCfLYS6+MYZ1C7zUb8ShQM4Yy6+qFhmistApQFASNG6v3F8ykab/5dlO19Oh/GSSM4SXlonqnR3HAAAAKjQfuM6n6tiRss2dHeDxqjKEGIuvkix7Y9QTJujJBVWBDWq9L/T6fYt1o32OlF4bl4uUcOZpAcIakCYkCgt0r6DJJGecUCjalXbMl7WCbMgINT5MyUfwJ3skhLqk/SKTdmOkhKqgaoDgBB37a4HKTkp2ev9nAUi7O3vYjuAyF6tJ7tQnaduVC1RJQAAgL/KysvpUmmp+D4tJoYiIyIctikpL6e8v7bxVkp0NJkwMhUCRhL/RkRJFJFYkdA7qpLz2TimNO+XpoqO0c+KQwhqAABAyJDKJSrLvmxTZkqvRBGRjhenAAAA4SQ6I4GikzFoAK4oLy6jnC8O21RJWt+rKDLW/9sEUlk5FR654DAbF4mmIRQVFhLl5/u+PwYueh54kGXEKi+tU2w2U35ZmUf1vvbU7/RC5n7L/3f3GaB43L3ZWTTiu23kiyRTNM1o1YYG1a7n0/4A4ByCGgAAEDI4oLGn+RybMl7KCjM/AAAA1GNKjaeo5FiRS0Nr/Dr8eqA+c14xHR67xuG6SY2gBudY+fHGtxyOjWsyCEXvvEM0YYLv+0v6XkQiqNac+p2mHdhHeWW2QY1j/Ycobv/l2T9owp7vSS/4vPn8+9eso+sZG9nFxdR764aK70tKxNdN3ftSWoz7vAzxUVFUiRO2KrhYUkI5JdpfK0B4QlADAAAAAAAAPMaj7eu/1JeOT/lC08AGBzT4dTC6HwAgPGdoKAU0tJJdUux0Bog/+Px5pokWx+bZJf4kCpdJVsEMWe+tX3h0nEebNKfHmrZQfG7ot1vocH6uz+cI4AqCGgAAAAB+ioogqmf+066sKeoVAEJWlSEtqfKg5mJEvic4Ubi3iSp5hgYCGgAA/klLI/rpJ8cyveNAQKACGnL+CzWNrNfQkohb7WPLtAiUABgFghoAAAAhSukaF9e92kiJiaMJxWvtyvpq9GoAAPrAAQc1lhPyJVElAIA7nFohN5coPV35+YICosu26fg8xvmkK1dW93dQXEy0bh2RubycLpsrkvHefFu52+v3RJOJYqOUkwFf4IMSUfWKe+tIXO3E1OatqXJsnOJzbdMr+zwjQs2gA+cL4eW1rN1UrabT3703OOjC+T8CEUTi19EqyAPhBUENAACAEJWY4FkZ+C8iOokmVfq7Tdn30UmoWgAAMJSybOWZN6b0ShQRGeFQXl5iJnNukcfHAQiUFSsq8lzUqkX088/K27z6KtGMGb4dnwMa589XfD9mDNHQoeQ3DsBUHIdzL1TkX6iz/BOKSrFdFsjevHYd6daadRSfa79xXUglrnaX54Fv8nsbgOAb7K7yXcRERupiRgQnQLfPF8I/qxpBDf75uV1ovdyX3P70nF8EjANBDQAACGlKneqopFinSTBLswpcHg9LYQAAAECo2t/lTcVyZ0m+83adooOD3gvAmUEoz6bIybnyfx7AnZqqvG1eHlFRkWfHHD264nsOamgtPr7ioUYOCTmYEe6Jq53hgIarAAPf4FfjJn844kAXtwte9ssbnCjcmZWde5BZ4owdngWQALyBoEaQzJ8/XzzMf00pBACAwHXOr1oyiDIGNFPcfk/zOR4lLeW1xAEAAPQK/Q0AMMpsikuXrpR160a0davy9pMnEy1Y4P3rzJtHNGwYUZUqpGu54may9jMCtExcDcbGAQc120VqTIxqxwKwh/BYkIwfP54yMzNp165dwToFAADwgTm3mI5P+YKkMseEpgAAAHqB/ga4w7NPebBGIPDr8OsBWM+msA9oaCEzk+jhh1Hv9nJKikW+DetHkYtBt9l22yo9KmaaAAAEBmZqAABAyHXOOfCgJT5+2cVCVZKjAgAAAAQr0TvPPuXBGlpeO8mzXPn1AGS85JTWAQ1ZSgpRWppj+aRJHAD2PVF4IKzq3JMa14xxmyjcGc65cP5yMfV6/zub8pu+2kgRUVeWBWIzWrahuxv8lVHcTu+tGyi7xHVuD6Pn61ALB3d+K8izKWuYkIRllwBUhqAGAACEjEB1zgHsFSqMbFMqAwAA0BNeTrPyoOZisIYrnChcSVKH2iLfhst9U+MR0ICg4YAGLz+ldN8/IaHioWep0TF+LQfE+2adJ/pjQl+bck8SkIdbvg618NJefbdudAguYbkvAHUhqAEAAGHXOedE4c4odcw52bizxJl6dilXuaxmME4mxBWW5HlUBgAAoMdBIb7OPo2MiaJIzFwNu2TezvDy+RxEUMKzMqwH+mdlKS8VVaOG8+PPmkU0fTp5hWdouJjIoCtK+QfUyEmQzNnXAwT5OgAgUAzy1g4AABCYzrm/S0qVXrhMJNlO5faU2iMZuQPqSRn4TzKXelQGAAAAYPRk3s4MHky0apXyc2PHEq1e7Xr/ypWJUlOdP5+UVPEIVZEKa1plX4igyL+KMzKIlCZAcLDI1e/nYnb4zprQUw4TV5KioylG4ZdbLkmU81c00N0xAMINghp+WL16Nb333nu0Z88eysrKogYNGtCYMWPokUceoegARsLBvYjYaFpS0MWmbHqsNr+jwkKi/Hzf969SRc2zAYBA299lMZVdcL2Eg7s1p3m2CWgjIirOozIAAD1AfwMAgilQybzBuebNr3x/7pzy/YIdO4h69PCuFjd1v5kq2x0rwcWUFt5eadgW32jvvfUL7148DLmro//e0I06Vq7qUM4BjfYb12l4ZhBKIsKsr4ughh9mz55N9evXp1deeYWqVatGO3bsoKlTp9KPP/5Iy5YtU++3BH6LjI+mty/faFP2fHyBJjX7zjsVF36+kgd4JycTrVxp+xyXAUDwxV2VoclxOQ8I5wPh5bOQTFMbibEJNKFojV1ZN41eDQDAP+hvgP0NZh5A5Wyk+sWLRKU+ThI00hI9EF7JvEEb6bGxlBHr3faBxkEWTl5uXwYAyiJN8R6VhQq8G/jh008/pSpWYfIePXqQJEn03HPPWQIdAL7ia4YhQ1B/AHrAy0LxLAo5+Xj1Me38XqbK5vjp8VRtTDvL/8uLyyjK5P/6ueAoLiqKBpR+51AGAKBH6G+A/RJAI0cSzZ+vXC8DBxJt2+ZfMuVRo1DngcxPwYPWnN0rPn8+fIJTrpJ5hxP+/XFdaB1IMkoAia/R727QmIwmJTqakkzRIr+Ilvg1+LUAwhUW1vODdUBD1q5dxU2pP/74w59DAwCAjvCsCV4WigMbWuBE5NEZlajOUzeKR1QCAhoAAID+BgRuCSA+Nr8Gcm9pH5zivBFVq1Y81rlYVUbexpsHH5tfQ0uczJuXQVJ6LFnifD9+ztl+nDQcAbWKoA4Hd5wlW1cDAkjaM0VG0oxWbUTQQSt8bH4Nfi2AcKXrOPihQ4do48aNImcFPw4ePEhms5lmzpwplnlyZ9WqVTR//nzav38/lZSUUOPGjWnkyJH0+OOPa5bz4uuvv6aYmBhq1KiRJscHAIDg4DwXvCxU2cVCl0GH1tv/5nOicAAACCz0N8CISwDxTc9hw9TLxcfJnWUFBdreUA1ngQxODR+u3awHDpz40vZCrV2VlZfTJav13njEvNINZvvtXCktL6e0nln0nx+Joi9XrIN/TVqGJYE0JwpX0qlTRXAoGLN54qOi6NEmzR3Kwt2g2vWof806Hv/uOVG4krSYGNrdZ4BDubP2BhBOdB3UWLhwIc2ZM8enfR977DGxr8lkop49e1JiYiJt3ryZnn76aTGNm4Ml8fHqriuWmZkpXnPcuHGUjOQHYWvMGKKhQ4N9FgCg1YwNd8tO8YwLAAAwBvQ3wGgWLKj4ykENtXTr5l9OQPA9P4UvS0y5w6/Br6VW0AscrTn1O007sM9meaEvuvehJkmOkZvfCvKo79aNPlcj39DOcJPPIiYmeL/vSiYTPda0RXBeXOc46ODud+dOZESE38cACFW6Dmq0bNmSnnzySWrTpg21bduWXnzxRVq+fLnb/dauXSuCCxzI2LZtm9iXZWVliQDH9u3bRd4LTrwnW7p0Kd13330ezf4YbD2U5S987IEDB4rZILNmzfL6Z4XQwbEyleNlAAAAAKAB9DcglKxd63uicAAlPHicg172ZeGMZ17YBzQAACDwdB3UGDt2rM3/Iz2cWsXBDzZ58mRLQINVrlyZFixYQF27dqV58+aJwEbKX3MgBw0aRB07dnR77Fq1ajmU5eXl0S233CKWuNq6dSslJKiXPBbUYc4tovfS3rMru5OI/Ptd8dqfzZrZlh08WDElFwAA9MdcckmxzBTnZD4/AIQ09DcglKSmBvsMwFsDHFeVsfB0OaHCQqJ33qn4Xh6tn5ioXpvaulWdY4UKXk4oUAENJIIGAG+Yw6yvq+ughi9Onz5Nu3btEt/fddddDs936dKF6tSpQydPnqT169fTiBEjRDkHN+QAhzeKi4vp9ttvp+PHj4sZIDVr1lThpwDVlZdTQ1OWQ5m/eNl8DmzYlwEAgD7llJTQkIR/2JRtKCmh6kE7IwAwGvQ3AEAtrlaV8WY5oenTVTkd0BEkgibKLi6m3ls32NTLpu43UzqWYwJQJpV7VhYiQi6osW/fPvE1PT2dGjRooLhN+/btRVCDt5WDGr7gpOXDhw8XQRTO19G0aVOfjwUAAOGpLKeQfh5gu7Rii3WjyZSGdey0IEkSXYpMdCgDAPAU+hsA3iXH5vwOsogI57PaecZBfr53tat20mNn5+0Kj43knAb2eAzdhQtX/m8/GA5Cx6bufal+gvL0mIYJSYqJnt1BImgivkLPLimxqRdctQNAyAY1jh07Jr7WrVvX6TY8U8N6W1+NHz9e5O+YOXOmCHB8//33lueaN2+umCycZ3bwQ5abm+vXOQAAgLFJ5nIqPJTlUAYAAPqE/gaAZ1asqEhAbp0cmwMazpJj8xJK3iYs54DCvHlEo0Zpe96ubNlC1L27YzkHNKpWVe+8wLf8F7xclCfSYmJEUmZ7JeXllGd1jJySYoV9Y0VSaK2SRQMAQBgENTi/BXOV14ITiKsRUNiwoWIaHOfm4Ie1LVu2UHeFK5uXXnqJZsyY4dfrAgAAAABAcKC/AaGCb9rbpbGkJUsqAgVqzHTwJjDgKz4+v87w4erM2AjUeYP21pz63auE3jybQin4sDc7i0Z8t02DMwwNF0tKaOi3W2zKVnbuQalK05cAAFQUckGNQOI8Gt6aMmUKTZw40fJ/DqzIM0cAAADAmHhcX0q57ZoZjmP9AAC8g/4GaIlXdVm92rZswQJ1js1LNwUqMMCvw6/nTQ4KPZw3B494+SzQZoaGNwEN8J1Zkuhwfq5DGQCA1kIuqJGUlCS+FhQUON0m/6+FOpWWh9JabGyseMyfP188eNkqAAAALURHe1YG/uNlB14tXGxXtgxVCxCC0N8AAH/Jy2apmQ/E06WWYqMiKdGkfEGYW1pCpeVXbkjzQhgzp1acZExkpFieadYsfh8kXeN6CFRAgxN6c/4LAAAIrJALatSvX1985UTgzsjPydsGA+fj4AfP1EhRY34vAACAneQkz8rAfxExyTQu4Qmbsu9jAj94AgC0h/4GgG8yM13PphgzhmjoUPfH4YTbzZsH9rydJTdnzrrzGRlE585pn+Cc66NRUzMVlJVZkijXWrCBopJtEyzLRtVvRDNbtVV8btyuHbTzwpWkJ+ZLMXRy8e0220yfrv+gRqBwQGNGqzZO82kAAIB2Qi6o0aZNG/H1woULIolfgwYNHLbZvXu3+Nq2rfIHOQAAAAAAAPobAOrhwICr4EB8fMXDHQ6MBHJ1Gz5nX5a24vvcaiyJ5U6puZxys6OIiB9/0bB+eEYIkfFu4m/q3lfMrHWVKFxJ2/TKIt+GEp6hgYAGAEBwGO+TyI3atWtThw4dxPfvv/++w/Pbt28XMzV4Cah+/fpRsPDSU82bN7ecKwAAAAAA6B/6GwCgJ7keLDll5NdTCwc0OBG4swcvraWEl91ytg8CGgAAwRNyQQ32zDPPiK+zZs2ivXv3Wsp59sZDDz0kvp8wYUJQl33ipacyMzNp165dQTsHAAAAAADwHvobAKGJl4X66SfbB5J5AwAA6I+ul5/igIQchGBHjx4VXxcvXkz/+9//LOVr1qyhGjVqWP4/cOBAeuSRR2ju3LnUsWNH6tWrFyUkJNBXX31FFy9epM6dO9PMmTMD/NMAAAAAAICeoL8BRhAV5ZhDgstAfZznokUL49fsm1f3ogbVHZNXx1ciSk9WHtuanU30Yv1OVFr3ytpVx/4spVvIeBJNJprXrqNDGQAAhA5dv6tzEu2dO3c6lJ86dUo8ZMXFxQ7bzJkzRwQveJmnHTt2UGlpKTVq1IgmT55Mjz/+OMU4WS8xUPi8+GE2m4N6HgAAAOC/IoXPc6UyANAX9DfACNLTiX7+OdhnAUZyS4dExfJp0yoSfSvp2pWTotvfJ3Geg0LPYqOi6NaadYJ9GgAAEK5Bje7du5PkRwawoUOHioce8fJT/OCOVDCXwQIAgNCVm6dcVjMYJxPiLpcUeFQGAPqC/gYAAAAAgPHoOqgBAAAAvlPK42jQ3I66J5mLPSoDAAAA//BCDevW2ZYNGEAUa8xJBX7LSI8gU0IplRU4LjeltoiEEkpN0/xlAAAA3EJQA8JCRIyJPipsa1P2aIz/zb9SpYopvPZlAACgTxGRMR6VAQAAgD7l5vKqDLZl584RValCYalypRh6dxHRhAlEly5pG9DIGLePTKZrtXsRAADwWUSY9XUR1AgS5NQIrMhKMTQ7/2absscr+b8sSEKC8zVJAQBAfyrFJdGo4k12Zd2Cdj4AAFpBfwOCyaiDv8rKiA4dsi1r2rQigbiejRpFNHw4UU6O6+1c/Q6++YbIPh1YdnEx9d66QXwfmVhKEVG8PPiVoEZuaSmVlpf7dM7RkRGUHB26N9vAf/FRUfRok+YOZQCgLDI6waOyUKHzj+bQhZwaAADAIuNMVO2+tg5loI1KUVF0d4ldUCPqJVQ3AIQc9DcgmIw6+IuDAi1bGnMWCAde/DlPTkhvL7Y0km67uqpNWXRkpOX7yft30+dnTvn0etdnVKEPOnX3aV8ID5VMJnqsaYtgnwYA6BTumgAAAARRVGIsNXjZdiYZAAAAgKyggOjVV23rY9KkisCBlvLyiIqKfNuXB1Mr3SQHY0mOjqYF7W8go7lQXEztN9omXtndZwBlhGviFQCAEISgBgAAAAAAAIBOXb5MNGOGbdn48f4HNaKjibp1cyyTTZ5MtGCBb8du3pzo55/9Oz8A0L/YqEgaVb+RQxkAgNYQ1AAAAAAAAAAIM6mpRFu3UkjIynIsy8ggslopyaKkxHlCbaXjAIBziaZomtnKdildAIBAQFAjSJC4DwAAAAAA0N8A8B/PDLHnLBfGjh1EPXqETq1fLiujN4/aZjcf16ipyEegtVmt2/t8Q5sThQMAAPgKQY0gQeK+wCrPK6b5KWvsyvpxCju/jpudTdS1q23ZN99g/VgAAL0yl+QplpniMoJyPgAAWkF/AzxVVl5Ol0pLLTeak6Nj/K48s1ROF4orjpkSHU0mpSkToIpCs5nm/JppUza6fuOABDU45wYAAOiDOcz6ughqQFiQzGZqG3PCocxffIjMTMcyAADQp4slRfRApYk2ZR+WFFG1oJ0RAABA8Kw59TtNO7CP8soqAhDXZ1ShDzp1F9/PmkU0ffqVbV/K/JFWnzzm0XEvR0rUfmPFMZNM0TSjVRsaVLueKueclkaUkuJ8CSk18evw64H68stK6eWDB2zKnm7WSixnBMAulpTQ0G+32FTGys49KDXG/8ArQEiSyjwrCxEIagAAAARR2aUiOnTPapuypssGkyklLmjnFMrKJYl+j6ruUAYAABCOMzSsAxr2kpIqHrKE9DKKyi3x+nX4+Pw6/WvWUWXGBk9AmDePaMIEbQMbHNDg1wnAhIewVGwupxXHj9qUPdakBSWivuEvZkmiw/m5DmUAAAwfFwAAAEEklZopb4fdTLJSTPkCAAAAbfGSU/YBjeziYk1ei1+HXy8jNlaV440aRTR8OFFOjvNtOFG4kk6dKvJtuMMzNBDQAAAA0CcENYIEicIBAAAAAMDI/Y2yMtubynFxtiP7rV28SPRX2gaP4aZyaLgqMVl8jYpQNzE0BxyUEoG7wyvX+LIfADjKLS2hcbt22JS92aGTKrl5AABcQVAjSJC4DwAAAAAAjNrfWLHCcfmfhx7iYIry9gMHEm3b5tvyPzwqHwJjcYdOTp/jfAe8PJC31JqdAQD6U1ou0c4L5x3KAAC0hqAGAABAiFJaMgHLKGgjLSaaVubPsCtbpdGrAQAEF8/Q0DqfAePj8+vwMkP4/AoMV6OrOYEz8h0AAACAHiCoAQAAEKJSkj0rA/9FxqTS0MRpNmXfx6SiagEgJPGSU1oHNGT8Ovx6RlkuyH5JLm8kJhLFx6t9RgAAAAChB0ENAAAAAAAAAA2W5PIGL7U1fjx+DQAAAADuIKgBAAAAAAAAfsnMJKpd2/nza9d6liicAwJjx1Z8L8/O4MTOeheoJbkgMMrKy+mSt5ntrSSaTBQbFaX43IXiYkqJjiZTZKQfZwgAABDeENSAsFImRVCeVDGnOy4nguJs81kpio4mSnWygkhensonCAAAAACggeziYiotLvZ6vwSTieKc3Jy1VrkyUVKS8+edXU/b40DG1q1kOFouycV1wvWblXUlgXpaGhkG38T3VgQRpTtJMF5kNlMBR5G4LjQIDqw59TtNO7CP8sp8D2rMa9eRbq1ZR/G59hvXia9Tm7emgbXrqf63CAAAEA4Q1AiS+fPni4fZbA7WKYSdDUUt6F/5fSlfiqso6OfZft26Oe9YTZ6s3vkBAAAAAGjV3+i2eT1FVqrk9XFmtGxDdzdojF+MB4EHSbqyjNTDD2tTZRzQ4OPrPXH65bIyevPoIfH9f44doZzSEq/2T4+JoT19b1d8buWJYzTtp33i+yRTNM1o1YYGeREccDdDw9+AhqdeyNwvHp7C3yJ5FQDi+rIvAwCA0IF39SAZP368eOTm5lIKX5mCpnggj01AAwAAQEUl5eUelQEAhGp/g28GE2E5HTZsWMXDl0Thzhw8WBE04RkaRrg3W2g205xfMzV/HQ4+cBCif806qszYiIyIoC09b7H8/z/Hj9BclX4OnrHyvz9OqnIscI1ntCAYCwAQ2gxwOQTgv0t5EZoENOR1fmVGmwoOAKEtv8CzMlChrksue1QGABAqS1kR2S4NlFtaSjXsysKVfR9BDbz8lJHwslA8i0KLGQ/ZJbbLWfFrcP6LDCfLVXkb1JCPs+yYegENuU5eO/QTqY3Pl2e2ZJdUzIbheufXAgAACGUIagCE2VRwAAgfSktY+7CsNXhAKiv0qAwAACAc8KwJXhYqUEs5aeG2mnXEw9dE4Up1Mr1lG5q47/9IK/JyXKGShJyXMeNZP75wlZcFAACMD7dfISzExEdRS9Mp8X2B9NfIm1XRdHUX9xkLXQ1ymTWLaPr0iu+NMhUcAMCI8kt9vyESHRlBydEx4vuISMc3daUyAIBQs61nP0pKTvZ6P6xDH7qiIyPplhq1HcrUwnkueFkonkXhyw1pZ4bUaRCQpa3UmPmhZp24+lvc1P1mkjRKnB5MnJfF19+1q7wsAAChKCLM+rq4BQthIbV6DP1UZrsuVKNmBX5PDU9KqngAAIC2Zmb+QF+dPePTvtdnVKEPOnUX38fFJlH/kh02z8fF3qjKOQIA6BmPWE42wKjlS5eIxo61LVuypGJWNKgrOTqaFrS/QdNq5RvsagcHOF+CkWlRJ0ackRAVEUFXJSY7lAHIYqMiaVT9Rg5lAKAsMjrRo7JQgaAGAABAEEXERFF6/6sdykAbvBzEw8Vr7cqmoroBAHSC0wKsXm1btmAB6R4v77hunW3ZgAFEBrzXDBAQqTExtLFHX9Q2OJVoiqaZrdqihgBAEYIaAAAAQWRKjqMmb9+B3wEAABgGD5SPrnPJriyOwlluLtHQobZl585pkzQctFNSXk57s7NsytqmV6aYEFrSCSCQcktLqbS83O8lZAEA7CGoAQAAAAAAAB5LSyeqNX+jXdkA1CAYXl5pKY34bptN2e4+AzTJrwHujWvUlEbXb+xTVWEhK33k5pm8fzd9fqYiv6k/S8gCANhDUAMAAAB077nm19LLrTv4PMoLAAAAAIylkskkHhDeuXkAAJTg0yFI5s+fLx5mszlYpwAAAGAYidHRGCUJAOAF9DcAAAAAIFQhqBEk48ePF4/c3FxKSUkJ1mmEjYt/llBLU45dWQLVvDohaOcEAADK8ktLFcvUWPqhvDRfuSwuA78OAAgp6G+AJ2vd89Iw1ma1bi9GXgMAAICxlIdZXxdBDQgLJYVm+qnMdp3HkkLbBHAAAKAPpVK5R2W+kMpLPSoDAAD9yLK6bOf77ampytvl5REVFXl2zLQ0onBf1YaT99qvdT+zVdugnQ8AhB4OlPr6voIlZAG8I4VZXzfML+MAAACCqyy3iH57fL1NWcPX+5EpOS5o5wQAAKAnzZtf+b5bN6KtW5W3mzyZaMECz47Jk+XnzSMaNUqdcwQAAEeY+QUAWkFQAwAAIIikEjNlf/qLTVmDl/sG7XwAAADcKSggynm/uW1ZZ6IM/1cJDJhLl4gmTCAaPhwzNgAAAACMBkENAAAAAAAA8FjhZaJLH7SwLXu1mCjd/0rkZaF4FgUHHbTGr5GTQ1SlivavBerhHFvH+g9BlQIAAISxyGCfgJF9/PHH1KVLF6pcuTLFxsZSw4YNaeLEiZTDV8YAAAAAAAAh2N+Ii4ryqMwXnOeCl4XiwAYAAAAAgBLM1PBDdnY2de/enSZNmkQpKSl04MABmjFjBu3fv5+++uorfw4NAADgt8hIz8rAfymmKFqZP8Ou7ENULQCEZH+jkkKGbaUyX3GeC14WSil2w4nCnZk1i2j6dNcJx63zcwAAAACAMSGo4YexY8fa/J87HHFxcTRu3Dg6ceIE1a1b19/fDwAAgM/SUj0rA/+Z4tJpaOI0m7Lv41RYhwUAwlo49zc4RuLtslBJSRUPAAAAAAhtCGqoLD294gZGaWmp2ocGAAAAAIAwh/6G73iFLPuZGiqtmgUAAAAAAaTrRSgOHTpEb7zxBt17773UqlUrMplMFBERQS+88IJH+69atUqMZkpLS6OEhARq3bo1vfLKK6oHHMxmMxUVFdHu3bvFdPB+/fpRo0aNVH0NAAAAAABQF/ob4YXHn/38s+3jrzFpAAAAAGAgup6psXDhQpozZ45P+z722GNiXw6E9OzZkxITE2nz5s309NNP06effkobN26k+Ph4Vc4zIyODLl26JL7v06cPrVy5UpXjAgAAAACAdtDfADCeYrOZvjz7h03ZTdVqUiym3QAAAIQNXc/UaNmyJT355JP03nvv0cGDB2n06NEe7bd27VoR0OBAxs6dO+mLL76gjz76iA4fPixmfGzfvp2ee+45m32WLl0qZoG4e6xevdrh9bZu3UrffvstLVq0iDIzM6l///5i9gYAAAAAAOgX+huglowMonPnbB9cBurLLyujCXu+t3lwGQAAAIQPk5ES40VGehaDefHFF8XXyZMnU9u2bS3llStXpgULFlDXrl1p3rx5IrCRkpIinhs0aBB17NjR7bFr1arlUHbttdeKr506dRLf83HWrFlDgwcP9uh8AQAAwNhKy8s9KgMAfUF/wzeXSkqIKMahrIpdWTjhrqq3ic1Bf1Kio+mL7n0cygAAAEBfdB3U8MXp06dp165d4vu77rrL4fkuXbpQnTp16OTJk7R+/XoaMWKEKOfghhzg8AcHUXhGx5EjR/w+FgAAgD8uX/asDPyXV1LoURkAGB/6G0RmSfKoDMBoTJGR1CTJ//sCAAAAEMbLT/li37594mt6ejo1aNBAcZv27dvbbKsmXoZKkiRq2LCh6scGAADwRmGRZ2XgP6nsskdlAGB86G8AAAAAAARXyM3UOHbsmPhat25dp9vwTA3rbX3Vt29f6tWrF7Vo0YJiY2NFB+fVV1+la665hgYOHKi4T3FxsXjI5ATjubm5fp0LuFZcVkANIy/alUVTbm74TpEHAH0ozSuggnLbSENuXi5Fx/ifmym/oIDHzjqU5ebqO+9TYX4+ldtNKSnMy6dcFQYBF+cVUv5l22WhcvMKKTbCv8/h/DzHc+YyfL5DIMntjQfYgHaM2t84diyXkpK8P4eEBKL4eNuy/Dw+fqxDWW6ubZne8Mfi3Lm2ZY88UvEzhqPC0hJqG1fJtiw/j3Kt2o8e5RUXO3zm5uXmUnSsvtsfAACAloo16uvqtb8RckGNvLw88TXBxZUpJxBn/t5ouO6662jFihWWzkr9+vXpoYceookTJ1JMjPLN8pdeeolmzJjhtOMDgdNxAGobAHSq4UzNDt3Jdplow7jGgEe/XpOjArh34cIFVZZVhdDqb1x7rbb9jfbNyZBmzQr2GejLx2RMyms0AAAAhLtrQra/EXJBjUCaOXOmeHhjypQpohMiu3jxItWrV49OnDgR9MZgdNxplPOlJCcnB/t0DA11ibrUG7RJ1KUeoV2iHvWGR+Tz7AFehhVCA/ob+oL3fdSlHqFdoh71Bm0Sdak3aJOh2d8IuaBG0l9zqgvEkhvK8vPzxddg3PjmaeP8sMcBDdyIVwfXI+oSdak3aJeoR71Bm0Rd6g3apHoiI0MubZ6uoL8BeL9SD+oSdak3aJOoSz1Cu0Q96k2kDvobwT8DlfGUbMaj9Z2Rn5O3BQAAAAAAQH8DAAAAAED/Qi6o0aZNG8vaXs4S8+3evVt8bdu2bUDPDQAAAAAAjA39DQAAAACA4Aq5oEbt2rWpQ4cO4vv333/f4fnt27eLmRq8BFS/fv0o2Pg8pk2bprgkFaAugwXtEnWpN2iTqEs9QrtEPeoN2mRgoL8RvvA3hrrUI7RL1KPeoE2iLvUGbTI06zJCkiSJDOLee++lZcuWiYR5U6dOdbrd2rVradCgQZSYmEjbtm2zzMjg2Rs9evSgAwcO0BNPPEGzZ88O4NkDAAAAAICeob8BAAAAAKB/ug5q7N27lx566CHL/48ePUpZWVlidFStWrUs5WvWrKEaNWrY7Pvoo4/S3LlzKTo6mnr16kUJCQn01Vdf0cWLF6lz5860adMmio+PD+jPAwAAAAAA+oH+BgAAAACA8eg6qLF161Yxs8Idzp2hlPR75cqVNH/+fPrhhx+otLSUGjVqRKNGjaLHH3+cYmJiNDprAAAAAAAwAvQ3AAAAAACMR9c5Nbp3704cc3H3UAposKFDh4rlpy5dukSXL18Wy049/fTTHgU0Vq1aJV4/LS1NzPJo3bo1vfLKKyI44os9e/bQkCFDqFq1ahQXF0cNGjSghx9+mM6dO+dyv7Nnz9KECRPE9rxeGe/Px+FRZa6UlJTQyy+/LM6bz59/Dv55Vq9eTYFm5LrkthUREeH00bFjRwqXejSbzaL9TJkyhfr06UMZGRmiDkwmk0evl5eXR8888ww1bdpUzJKqXLky3XrrrbR582YKNCPXpav2yI/hw4dTONXliRMnaPHixXTHHXdQvXr1xN82Lz3I58Ht7fz58y5fD+1SnbrUU7sMdps8deoUPfXUU9S7d2/xGZKUlCTqsm7duqIeOLeXK2iT6tSlntqkHtqlktOnT4vz8eTzR0/tMpT6G75av349TZ8+nfr37081a9a0tGv+m/GHP/0Htdt4oKjZtjlA5u69R37wZ679smfu9ikqKiI9U/t9gtuTq/qoXr26y/2//PJLkUOTz4PP5+qrr6Znn32W8vPzSe/UrEt+X/rf//4n+sH8d8mfpfz+VKdOHfFZ+O233zrd1wjt0uj3bfRErbrct28fvfTSS2LFFK4HXj2Fj9m1a1cx6NjZ8Tx5D120aBGFSz0uXbrUbX1s2LDB6f5ok57f15Mfzz//fMi1yUOHDtEbb7wh3s9btWolrvn5vF944QW/juvrZ+yRI0fEufAKTPxeyV/5/7/99ptvJ8IzNcDWo48+yrNXJJPJJPXp00e64447pNTUVFHWpUsX6fLly15V2apVq8SxeP8OHTpIQ4cOlRo2bCj+X61aNenw4cOK+x06dEiqWrWq2I635/14f/ncPv74Y8X9CgoKpE6dOont+Lz5/PnnkM/hiSeeCNiv3Oh1Wa9ePbHNnXfeKd1zzz0Oj+eff14Kl3rMyckRz9s/oqKi3L7e2bNnpSZNmojta9SoIQ0ZMkS68cYbpYiICPGYO3euFChGr0t5W6X2yI8FCxZI4VSXnTt3tpwD7zNs2DCpd+/eUnJysiivUqWKtG/fPsXXQ7tUry710i710CY3bdoknk9LSxN1OnjwYGngwIFS06ZNLfX08ssvK74e2qR6damXNqmXdqnklltuEZ/B7j5/9NQuoUJKSoridcTJkyd9riJ/+g9qt/FAUbttHzx40Ol7Dj+aNWsmXqtRo0ZSeXm5zb78PD/H73XO9i8pKZH0Sov3iW7duonj9e3bV7E+HnnkEaf7vvbaa2Jffm0+Dz6f6tWrizL+DDl//rwULnX51ltvWd4juG97++23i75t48aNLXX0wgsvKO6r93Zp9HsNeqJWXZaWllraW2JiotSjRw9p+PDh4hh8rcHl1113negP29uyZYulrp21t82bN0t6pmabfPfddy2fGc7q48cff1TcF23SFl/DOKvD/v37W9rs119/HbJtkuweM2fO9PmYvn7Gbt++XapUqZLYrkWLFuJ+A3/l/yckJEjfffed1+eCoIadNWvWWN6A9+zZYynnX0qrVq28DgqcPn3a8ktbvHixpbysrEwaNWqU5QPT/sKW/9+mTRvx/OjRo8X2Mj6OfI5nzpxx2mj5fK0b0+7du8U+/Nynn34qaS0U6lIOahw7dkwKFr3UY35+vjRy5Ehp9uzZ4o37hx9+8PhGPF8887a9evUSnWbZZ599JvaPjIyU9u/fL2ktFOpS/hAKNr3UJXcaXn/9dSkrK8um/Ny5c1L37t3FfldddZXN370M7VK9utRDu9RLm/zzzz9F8MdsNjsc8/3337e852VmZjo8jzapXl3qoU3qqV06u8k1YcIEt58/emmXcMV9990nvfjii9KGDRvEe7QaQQ1f+w9qt/FACnTbloMa//znP53ePOabWEakRV3KQQ2+qeSNvXv3ihst/Lrr16+3lPN58fnxMfmmfrjU5dKlS6UxY8aIerHGnxP/+te/LO8fW7duNVS7DIV7DaFYlxzUaNeunbRy5UqpqKjI5jm+Ac+BOj4ef47Zk28g89++EandJuWgBv8degNt0js8QIrrmYPJodYm5Wv+J598UnrvvffE4At+n/InqOHrZyw/X7NmTfH8lClTbJ7j/3N5nTp1vA5GB7+3pzNyRF1ptMI333wjnouNjZUuXrzo0fEmTZok9rnpppscnsvLy7OMtOJOiTW+aOFyjurydvbkxjJ58mSb8uzsbCkmJkY8x1Ewe9xw+bmOHTtKWjN6XeolqKGXerTHdeLJjfiff/7Zst3x48cdnr///vvF8zyCQ2tGr0s93ajTa11a45s7cn3xOVlDu1SvLvXSLo3QJlnPnj3FfvYjLdEm1atLvbRJvbZL/ixOSkoS14JHjx51+fmjp3YJzvkb1PCn/6B2Gw+UQLftHTt2WF6Pb54a6eZxsOrS16AGjxjl/caOHevwHJ8fBwX4eb65ozfBeM+V+8J8bCO1y1C416AXgXwfX758uThefHy8wywfo99AVrsefQ1qoE16R54BPmvWLIfnjN4mlcjv674GNXz9jJ0/f74leGQ/YI3/L89QXLRokVfno+ucGoHGawvv2rVLfH/XXXc5PN+lSxex9mRxcbFYy9YTa9ascXo8Xqt8wIAB4vuPP/5YcT9+nrezJx/Pfj8+L14Pl9eb7ty5s9P9vv/+e/rjjz9IK6FQl3qgp3r0lfx63B55nX578nl8+umnmq67HAp1qRdGqUten5HXeGQnT55UfD20S//rUg+M0iaZnLuA1xBVej20Sf/rUi/02C75/veYMWPEteI777xDkZGuuwJ6aZegLV/7D1q08UAJdNvmvzd28803izwooURP7xPcjj/77DOb17XG5ye3cfm8w70u27Rpo9vrOyN8vhr5XkMw3sfl9lZYWEhZWVkUKvT0eYg26TnOKcQ5J7hPcc8992j4WwkNJX58xsr/51xO9v0P/v+wYcN8eq9EUMMuoRFLT08XCZ6UtG/f3mZbdwm+OAmK9X6eHk/+v7v9Dh8+TAUFBR7v17BhQ/HzsR9++IG0Egp1ae3dd98VCcIefPBBmjlzJn399dcUCHqqR195Wv9c9/w70Eoo1KW11157jR566CEaP368SOoZyCR0RqlLvlDOyckR39eoUUPxZ0C79L8u9dAujdIm+SJwy5YtIvFknz59FH8GtEn/69Ia3ittLViwQCSanTZtGjVr1sxtPeulXYK2fO0/qP3eG0iBbNucqPnDDz8U399///0ut+X3tSeeeILGjRtHU6ZMETcB+CaYnmldl1wHjz32GP3tb3+jf/zjHyIxbnl5ueK2v/76q6hvT85Hb20yWO+58nFcXd/prV2G2r2GYAr0+7jc3jhZvfy5opTgmhM289/8o48+SgsXLqQTJ06QnmlZj9w2p06dKv7+Jk6cKILkrgJCaJPeDzjghNfVq1d3up0R26QW/PmM9bRdevv3UTHEDYRjx46JrzxKyRmOrlpv68rx48ct3zs7prPjuTsXeT8eccev06JFC49/Bh5xm52d7dHPEM51aY3fwOx16NCB3n//fWrcuDGFQz1q9TMkJyeLR25urti2efPmqryut+dhhLq0xh0La5MnTxaj/5YuXUrVqlUjLRmlLmfPnk1ms1l00jp16mTzHNqlenWph3ap1zbJAR6+8MvPzxcXgQcOHKCkpCQRKK9fv75XP0O4v1d6U5fW8F55xdGjR+npp5+mdu3a0aRJk9z+7vTULkFbvvYf1H6/CKRAtu1Vq1aJm6ZVq1al2267zeW2//nPfxzK+LOXb7zw56keaV2Xc+fOdShr0qQJrVixQvTHlM4lNTVVfEYYqU0G4z2XP0vlUbd33nmnYdplqN1rCKZAvo9zHbzyyivie34vdDbT9pdffhGDL6zxSHoeZMr7yzN1w6UeeTYBP6zxoJ7p06eL6zpvzwVtsgIHGVeuXOnRgAMjtkkt+PoZy9dAFy5c8Khdnj9/XvxuEhISPDonzNSwwhXNXFWePKWQLyQ8PZ6rYzo7nrtzsZ7aaL2v2j9DONclu/XWW0XggqPjPEWS/zD5oo7/EHl6Yffu3encuXMUDvXoK7RJdf/WeJrf2rVrxUUxt0m+uTdv3jzKyMgQI9d69+5NRUVFpCUjtMsvv/xS3Ihn//rXv8RoIC1/hnCuSz20S73WI39+LFu2jD766CNx46BKlSoiwKN04wBtUr261EOb1Fu75FHN9957r5g2zoEgTztfemmXoC1ff89Gbh+BPHd5JOjdd99N0dHRitu0bt2a5syZQz/99JN4PR4VunHjRjGQ4MyZM2Jpm61bt5IeaVWXXbt2pbfeekssDcI3OE6dOiVmCPBNYX5Pv+mmm+jgwYMBOZdACeT58yAB/qwsKyujvn37Uv/+/Q3TLkPlXkO4tbkZM2bQd999J443a9Ysh+dTUlLErKxt27aJ9sV/9z/++CM9/vjjFBERQa+//roY5KJHWtQjzxx49tlnaefOneJGL+/H96D4s4RnSvHgsRdffNHrc0GbrMABDX4f5HrmmRpKjNwm9Xi9qEW7DI9wEoCP5s+fb/N/Hg3KDw528EhHvlnCHyT//ve/UccQEO+9957N/6+66irx4A9iXqOUb/YtWrRIfPiGK66DIUOGiJkFPHpixIgRwT6lkK9LtEtlFy9eFF95dDPfEODPC74Jz2uJ8gjTqKgoDX974V2XaJO2+Dpl+/bt4oZCq1atAvibA2tPPfUUrVu3zutKWbJkiViPG4xXjzwwSl62lvPZOMM3SKzxCEgOvvKN+0GDBtEnn3wiru3UXj5Yz3XJS/5aq1SpEtWqVYtuueUWEfDgm3u8FBIHsPVAz3Vpj/Nx8PUdf57y8nLLly/XVbuE0MMDQ3n1C147nwO93H+1x31ZOeeGjK9ZeClR/hvh6z4OdPJN5GuvvZZCHc+Csp8JxUv08CAfDjjybGSuU55loPVKDaHo7bffFl85SORssA/apP5hpoYVefqMq7UOOZLHeNqnO9bTcZwd09nx3J2LvJ/9vmr/DOFcl67wWonyTWNO1BYO9egrtElt/9ZkvHbnfffdp3mb1Hu75Kmh3NHiG6BcHzy6LBA/QzjXpR7apZ7rUf7MuPHGG+nzzz8XQfEPPvhArMWq5c8QznXpSji+V/IoZx7pxx1gvgHoDb20y1DBSbb59+Htw/paVQu+/p6D1T7UqMdAnbs8S+OGG27wKI+NPR4JysFItn//ftWTORupLmW8ZA2/pzGeeWedMDuY71lGqUuemcEDArjuOKkr51ni2Y96apdG+XzV6l5DIAWizfESfHJQl4MSHFDz1h133GEJZGh9/eaLQL/3cF6HypUrixkbPHvKm3NBm6zIDSEv6eVqwIGR26Qerxe1aJcIaliR12R29aEsP+dq/WYZXyTInCWRcXY8+f/u9uMLCuvXcbcf46m7nv4M4VyX7sgdE7k+Q70efeWu/nlqmTy9LFzapFYC0Sb1XJd8cdKzZ0+xJByPuOCRb/x37epnQLv0vy7dwXvlFVyHvAQQ4yU00Ca1qUs9tEk9vVdyAIiX2uJOBI+w5aUz5Qff2GI8G0su4xtdenuvDBU8q4jXFPf2ofWa9b72H9Ru44Gsx0C0bf67knMRuFuv2xXrYIja71tGqUtndcI39KwT5srH5wEZ1stdBOL63Ah1yW1y5MiR9PHHH4v1yzkBuDf930C1S6N8vmp5ryFQtH4f57bGy5zxMpiLFy/2+QZyIK/ffBHoz0OeoSzPdrGvD7RJzwcc8Aygpk2bhmSb1IKvn7Ec1OCBaZ68V3KwztN8GgxBDSvyVDdOYOIsec/u3bvF17Zt27qtXI4uyUmk5f08PZ78f3f78RuZ9dpj7vb77bffxNINzH5qn5pCoS7dkRPdOEuQE2r16CtP65/fuDjpn1ZCoS710Cb1WpeHDx+mHj16iLUuR40aJdaM5+nNzqBdqleX7uC90pZ8kWafjwltUr261EOb1ON7JS+Dw2sCWz94nWaZXPbnn3/qrl2CtnztP6jdxgMpEG37iy++oNOnT4v+xbBhw3w+V/k9KxDvW74IxvuEszrhm1O8TJUn56O3Nql1XXJAg6/reB15OaDBsxeN2C7D4V5DoGj5Ps5Lw/HgCW57PKv2gQce8OtcA3X95otgfB46qw+0ycAMOHD1OwhVTf34jPW0XXr99yGBjQ4dOkhcLS+88IJDzXzzzTfiudjYWOnixYse1dykSZPEPjfddJPDc3l5eVJqaqp4fsOGDTbPffbZZ6Kcn8/Pz3fYt1evXuL5yZMn25RnZ2dLMTEx4rnt27c77Ddz5kzxXMeOHTX/zRu9Lt0ZMGCA2O+WW26RwqEe7R07dkxsFxUV5XK7n376ybLd77//7vD8/fffL54fPny4pDWj16UrZrNZuvbaa8VxHnzwQSmc6vLIkSNSrVq1xPOjRo0SdeEO2qV6damXdqmnNunKE088Ifa74447bMrRJtWrS1fC+b3Sl88fPbVLcI5/B/w4efKkT9XkT/9B7TYeKIFo2/zexMcYM2aMX+f62muvieMkJydLJSUlkt4E433ikUceEcds1qyZw3NDhgwRz40dO9bhuePHj4vz5OcPHjwohUtd8mffXXfdJfatU6eOuN7zV7DbZajfawgkLd7H161bJ0VHR0sRERHSokWL/D7HU6dOSfHx8eJcPvzwQ0mPAvl5uGfPHstn/86dO22eQ5t03za53pKSkhT/ZkOpTSq55557xDnztZ0vfP2MnT9/vihv0qSJwz0G/j+X8/Pevl8gqGFnzZo1oiITExPFG4UsKytLatWqlXiOO9HWPv74Y6lp06ZSz549HSr49OnTUqVKlcR+b775pqW8rKxMGj16tCjnN7/y8nKb/fj/bdq0Ec/ffffdYnvZ4sWLLed45swZh9d89NFHxfPXXHONOG8Z/zy8Dz/36aefSlozel2uXbtW2r17t8N55ObmWuqYH5s2bZLCoR79uRF/++23Wy4SL1++bClfv3692D8yMlLav3+/pDWj1+WKFSukX375xaH87NmzonPDx+CLx8zMTClc6vK3334TnTN+nrfz5iY82qU6damXdqmXNsmfK0r1wR1+fo7rwtlNZ7RJdepSL21ST+3Sn88fvbRL8D+owW2K2xa3MbX6D760cb3wtW3z3xrX4xtvvOH02OfPn7e8R3377bcuz2Pfvn3SJ598IpWWltqU8+fwkiVLpLi4OHGcqVOnSnqldl1u3rxZ2rJli8N7WXFxsfTSSy+JG6X8elw/9rgd8vP8up9//rmlvKCgwHKD+c4775TCpS65HXEf2NuAht7bZSjct9ELteuSb6pzoJz/DrkOPPXvf/9bvHfa4/Yu13GjRo2koqIiKdTrkd+v5s2bJ+492du2bZtUv359cbwuXbo4PI826dgmrQ0cOFDU3QMPPBDybdLXoAZ/jnC75Pc+tT5j+fmaNWuK55955hmb5/j/XF67dm2bzz1PIKjhYuQHX4jefPPN4hciR+Y7d+7sUMnvvvuueK5evXqKlbxy5UpLtOr666+Xhg0bJjVs2FD8v1q1atLhw4cV9+MOeZUqVcR2vD3vd91114n/m0wmxQ6J3FhuuOEGsV1aWpo4f/455AvriRMnSoFi5LqUO3d169aVbr31VmnkyJFSjx49RJ3K+/GbXDjVI49q5e35IY90lY8hP55//nnFG0lXXXWV2LZGjRrS0KFDpe7du1s6JHPmzJECxch1KXdyuC75ex5xxRcy8s0GvhDn8wmnupQvJnjUC3/o8oe00oNHx9hDu1SnLvXULvXQJrt162a5wOUZfVwffIFXvXp1Uc43I/iGjBK0SXXqUk9tUi/t0p+ghp7aJVTg6wPr6wX5GoLfx+UypZlI3KZ4O25javYfvG3jeuFr25bfm6ZNm+Z2FPvVV1/t8Y0wrnd+j+P3rH79+ok+iPy7HTFihMPN5VCuy9dff93ynta3b19RJ7179xb/l+vkySefdFv//Pp8Hnw+fF5cxjdqlG5ShWpd8vZynfFxnF3f2X+eGqFdGv2+jZ6oVZfcfrkvId+gdNbe+GH/d5iSkiLqv127dtLgwYNF2+fv+XpPvi8TiAEpeqjHnJwcS7+MZ0lyXfDsv5YtW1r+/jhQ8scffyieB9qkMm6f8nXN999/7/b3GQptcs+ePTbXjJUrV7b8fVqXW7cl/hzhbfhzRc3PWJ4NLAePuS3zYDO5TSckJEjfffed1z8fghpO8PShG2+8UUyn5ClFXNGzZs0So0PsuftwZDzin9+E+MOOo9a87fjx46U///zT5S+II/q8HW/P+/H+fBzryK8SeRQLnzefP/8x8s8TyE680euSRwfxFF/uIPJFDL/58R8aT3P++9//Lv34449SuNWjfLHs6sEXKEouXbokpt3yRTp/OKenp4sP+i+//FIKNKPWJV8Q85JAfL78YcQXyTxtkoMiPOqDR9qHW13KN2jcPZRu4DC0S//rUm/tMthtkkenjRs3TmrdurXYR66PFi1aiJuM7ka0o036X5d6a5N6aJf+zhTUU7uEK6PsXD2UOqKughr+9h+8aeN64kvb9iSoIY/KfeWVV9yeA78nPfbYYyL4yktA8gh4Phe+WcI3Ufi90AjUrMu9e/eK93m+Mcw3Svh43K44yM2j4d3NfmE8m55fn8+D9+fzmjJliuLI51CuS/nmlLfvGUZpl0a/b6MnatSlfF3hyYO3tcbvlzwYpXHjxuLzh6/fuO1zG3z11VcN8berVj3yts8995xY6rxBgwbiOpbrg9sVz+LiGTDuPl/RJh3Nnj1b1Df3JTwRCm1yy5YtXv89ugtq+PMZy8Fh/hznWRt8j5W/8v99XRYxgv/xLgsHAAAAAAAAAAAAAABA4EUG4TUBAAAAAAAAAAAAAAC8hqAGAAAAAAAAAAAAAAAYAoIaAAAAAAAAAAAAAABgCAhqAAAAAAAAAAAAAACAISCoAQAAAAAAAAAAAAAAhoCgBgAAAAAAAAAAAAAAGAKCGgAAAAAAAAAAAAAAYAgIagAAAAAAAAAAAAAAgCEgqAEAAAAAAAAAAAAAAIaAoAYAgE7Ur1+fIiIi3D6WLl0a7FM1hOPHjzvU3QsvvOB0+8LCQlq4cCH179+f6tSpQ5UqVaL4+HiqXbs29e3bl2bNmkW//fab3+d19OhRioyMFOfzyy+/uN2+tLSUqlSpIrZfuXKlKPvzzz8dfrbp06f7fW4AAAAAAOA/vs4fM2aM6FfExcWJvt7TTz9NRUVFqF4AABWY1DgIAACop3PnztS4cWOnz7t6DhwlJCTQ4MGDxfetW7dWrKJNmzbR6NGj6ezZsyLgcO2119J1111HMTExIoDw7bff0saNG2nq1Kn0yiuv0MSJE32u6kaNGlG3bt1o69at9M4774jjubJu3TrKysqijIwMGjhwoCjjYMs999wjvv/hhx9o//79+NUDAAAAAOjAW2+9RePHjyeTySSu+xMTE2nz5s3iuv/AgQO0fv36YJ8iAIDhIagBAKAzY8eOpXvvvTfYpxEyKleu7HJ2y//+9z8RLDCbzXTfffeJ2Rw1a9Z0mC3BwYUXX3yRfv31V7/P6f777xdBjeXLl4tjcofHGQ58sFGjRokgC0tJSbH8TDxDA0ENAAAAAIDg++9//0vjxo0TA9V4lrXcrzh37hy1a9eOPv/8c/ryyy/ppptuCvapAgAYGpafAgCAsHXhwgURLOCAxuOPPy4CCPYBDRYdHU133nkn/d///R898MADfr8uHys1NVXMAuGOjTNnzpyhL774QnzP09cBAAAAAECfTp8+LQIa9erVo88++8ymX1G1alXLwDUeVAUAAP5BUAMAwODknArso48+oi5dulBycrJYdolHCLma3lxWVkZLliyh7t27U3p6OsXGxlKDBg3owQcfpJMnTzpsz7ML+LV4+8uXL9M//vEPatasmcg/wevEyiRJEgGC9u3bi+d46aRbbrmFduzYYXMM2bvvvivKOHeFM3/88YcILvDSSxyMUMMbb7xBly5dourVq4ucGe5ERUWJEVZKcnJyaNq0aWLpqqSkJPFzt2rVSsz84Lqyxj/DXXfdZTMTQ8myZctEwIXr8ZprrvH65wMAAAAACBV8Tf3vf/9b9HfS0tJE34UDCJwT7/3333fY/tSpU/Twww/TVVddJfJa8Gxn7h8tXrxYXGPbO3z4sBhIxP0hPjYvG8XHv/XWW0V/xZ0ZM2ZQfn6+mInNr2WvWrVq4uuxY8d8rgMAAKiAoAYAQIjgG+pDhgwR3/fr109cvHMQ4bbbbqM1a9Y4bJ+Xl0e9e/cWMw/27NkjbpoPGDBAXMAvWrSI2rRpQ/v27VN8LU5wx0GJ1157TVz08378ejJeQ5aXWOL9OTdFnz59RJDkxhtvVByZxDf4ORk257ZwtrwTdz44CDNixAgRJFHDJ598Ir4OHTrUsrSTLzIzM0W+jueff15MLeeOFk8pP3/+PD333HOi88TBE2tcP4xHcfE+SuTOk7wtAAAAAEA44r5Ehw4dxOxq7mPw93fccYcIOnzzzTf0zDPP2Gy/a9cucX0+b948KikpEcvNdurUifbu3Ut///vfRaCCy2U//fSTGEjE19/cH+I+FPepatWqRV9//TXNmTPH5fnxtf6KFSvE7Ixhw4YpblNYWGgZAAYAAP5BTg0AgBAxd+5c+u677+j666+3lHG+BR4xNHnyZBo0aJDN9nwxz7Mm+IL97bffFlOiZTwCijsMfEF+8OBBMUPB2s6dO0UQ5MiRI2KWgzXOPbFw4UIxsomXTuLOg4yDIE888YTDuXPHgadq//Of/6T58+c7dBo4p8Wbb74pvp8wYQKpgQMkP/74o/ieO0W+4s4JB3W4o8WJxDmIIQdIeDQZ50jhtXXl5a1kbdu2FbM6ONE3d4Dsk49zcnIO8PCsDg7kAAAAAACEo/LychHA4IFEPFiKr515QJT1gCtOxC0rLi4Wg72ys7NFn4f7STzjm/3222/Uq1cv0U/hfhL3P+R+Sm5urphl/eyzzzpc73OQxJW1a9eK7Xg2hrMBSfKAMbUGaAEAhDUJAAB0oV69ejxkx+0jJyfHZj+5fO7cuQ7HLCoqklJSUsTzJ06csJRnZmZKERERUs2aNaXc3FzF8+nXr5/Y79NPP7WUbdmyxfJ6X3/9teJ+PXv2FM9PmTJF8fkOHTqI57t162ZTfvr0aSk6Olqcb35+vs1z//3vf8U+N9xwg+SpY8eOiX24XpWcPXvW8rNs2LBBcZt58+ZJ99xzj8PD2sKFC8UxbrvtNsVj5OXlSVWrVpVMJpOUnZ1t89wbb7wh9m3ZsqXDfmPGjBHPjRo1yuXPOW3aNLEdfwUAAAAACDVr164V17s1atQQ19buLF++XGzPfR3uD9lbvXq1eD4pKUkqLCy06fvs3bvXp3Pka3ZP+nL8eOmll3x6DQAAuALLTwEA6AwvVXTPPfc4fThbJonXklWaAdGwYUNL4joZ59ngeAjnueD8D0rknBe8hJU9ntXRtWtXxdkP8vYjR45UPK6cS8IeT9UePHiwmLq9fPlym+d49oaaszQ8tWXLFpHXwv5hjZePYs6mmfOMFZ7KznVjP8KLk5Tz+r483Z2TkMsKCgpo5cqV4nssPQUAAAAA4WzDhg2WfgRfW7vDs9HZ8OHDRX/IHs/64JwcvBwvL8PLeMlcxrkFeRYHz/7whnydz7NJuJ9l/+AZ3PK5yK8FAAC+w/JTAAA6w8sV3XvvvV7vV7duXcVyThrOrC/Medo142Wn+OEK54WwZ50U3FpWVpbldZxt46ycPfLII2KpJg5i8FRxxktEbd++XUzl5qCHWjgxOicn506G0s/IVq9ebZNosE6dOg7byHU5evRo8XDF/nVSU1NFp4oTG/LSVHIHhwManGSwUaNG1K1bN59+PgAAAACAUPD777+Lr1dffbVH28uDuTj3nxLuA/BzOTk5lm0nTZok+hxffvkl3XzzzWK5Ks7JwTkBOTjiarlaHrx09OhR8X3t2rUVt+G8HLwsFi8ty4PYAADAPwhqAACEiMjISK/WpWWc04Ev1l2xztEh44txX3EnwpmOHTuKG/s8a2Hbtm3ihr48S4NzbviTzNueyWQSeUH2799Pu3fvFrMmfCHXJXd+OPDiCicytMczMTio8cEHH9Drr78u6lZOED5mzBiX9QUAAAAAAP6rVKkSbdq0Scy44JkhPPucH9xP4HwbDz30kKVfYo9nfHBggzmbSbJq1SrxlQc0Kc0eAQAA7yCoAQAQhuQZBzxKaN68eaodl5Pe8UU6j0LiEVXNmzd32Ob48eMuj8GzNTjAwOfFAZf33ntPBCDkmRtq4gTfHNTgmRGvvvqqJYGgt3X5yy+/iOCELzNJevToIZYI4xkfH3/8sQgiffPNNyI5Oy83BgAAAAAQzuQZ6XzN7YlatWrZzKhWcuzYMZttZTwjQ56VwYEKTgB+991304IFC8S1Pl+727MehFRSUuIQtLhw4YKYjR6M5XQBAEIVcmoAAIQhzqXB1q1b5/V6sa5wUOCGG24Q3/PsAyXyBb0zQ4cOpRo1aogOxD//+U+RX2LQoEEi54baOIDCy3OdOXOGnn32Wb/qUs6B4S3uBPGMDMZLUPGD9e3b16GTBQAAAAAQbnhGtNyP4L6BO3JuwA8//FCxr7NmzRqx9BTnFmzXrp3T4/DAKg5k8HU5++GHHxS34yVl+SEvnWtv8uTJIqcGH4tnpgMAgP8Q1AAACENt2rShO++8k06ePCmmQCvNnuAOA8+SOHv2rNeBAjZ37lz6/vvvbZ6bM2cO7dy5021ghBP08cio2bNnazqiqXLlyvSf//xHLN3FMzUeeOABEeCwx3k3vv32W8Vj8LJYvKwUTyl/+umnxfRze3/++Se99dZbTs+Dc6jwzAxOTP7mm2+KMiQIBwAAAAComF3N/Zc//viDhgwZImY+WOPAxeeff275P2/Dszt4+4kTJ1qWhpJnaDzxxBPi+4cffpji4uLE9zwT49ChQ4rX8bwElbOlZGW33nqr+Dpz5kzL8rTch+BBWkuWLBHns2jRIvw6AQBUEiHxuywAAAQdJ9DmJZt4SajGjRs73a5Pnz501113OUx3dvZ2ziOVOD8F3zCXRy0xvvnOMyC++uorkauCl3rihHl8HA5y8LJMPH364MGDlqR8W7duFVOuOdcFf+/M3/72N3Fznm/Ud+3aVcy8OHDggDgWBz04d0Tv3r1p48aNivufO3dOXPjzMlZy3gtv8c/APw93PtwtecXr5vK0ck7kzefMuUb498H5LbjTtG/fPtGh4eAHL421bNkym/1//vlnuu2228Tr8CgtPmdOEsgjsn799Vfxc1etWlUcw1VHaP369eL7KlWqiKSFniyHNX36dJoxYwZNmzZNfA8AAAAAEGq4n8QzJjjwwPkvunTpIpa+5Wtm7ivwNbj1NT/nxuAZHtnZ2aI/wDMkuP+zefNmEQThY/GsdTlnH1//83G4/9CyZUsxm5v7BrwsbGFhIfXs2ZO++OILMXtDyZEjR0TgJT8/X/SduG/FfQjuCzRp0kT0N5wlLgcAAO8hpwYAgM7wjABnswIYX7BbBzV8xdOtOajA07JXrFhBe/bsEVOq+QKegxAjR44Uo6IaNWrk9bF5FBKvRbtw4UIxW4NHQHECcB4BJXc2eJaEMxwA4I4Fz+oYP348aY07PDxqa+nSpSKwwB0aDlRwgIc7S9yx4fPgeuf8F/ZatGghpprzz83T2fn77777TvyMHNx48sknRQDJFZ6ZIQc1Ro8e7VN+DwAAAACAUMSBCZ4xwf2J1atXi2ttHoBVvXp1MeDKvn/EfRHu27z88stiFgdfo3OuCw488GCmsWPH2gQoeEbFZ599Jvou/Lh06ZLok3C+u/vuu49GjBjhNKDBeFAaJxZ/5plnaPv27XTixAkRzJg1axY9+uijlhkhAACgDszUAACAgOL8Ee+++y7961//EtPBlfCIJh7hlJKSIkZf8WgsLWdqGBlmagAAAAAAAABAOMFMDQAAUB3PcuDlmxISEixlvLbs22+/LWZD8EglHu3kzD/+8Q8xS4Jza/gS0LCWlZUlclYwziPSv39/MjoeOcYjvlwlLAQAAAAAAAAACEUIagAAgOo46fbKlSvF9O5atWqJpOOZmZlixgTnrOBp47zElTVe0/aTTz4RARFedoqnkj/11FN+nwu/tpwDg6eFh0JQg9f1tc/rAQAAAAAAAAAQDhDUAAAA1Q0bNoxyc3MteTrKysrEmrRc/thjj4lEffb27t1L77zzjsj1cdNNN9Frr70m8of4imeKOEuebnQc8AnVnw0AAAAAAAAAwBXk1AAAAAAAAAAAAAAAAEOIDPYJAAAAAAAAAAAAAAAAeAJBDQAAAAAAAAAAAAAAMAQENQAAAAAAAAAAAAAAwBAQ1AAAAAAAAAAAAAAAAENAUAMAAAAAAAAAAAAAAAwBQQ0AAAAAAAAAAAAAADAEBDUAAAAAAAAAAAAAAMAQENQAAAAAAAAAAAAAAABDQFADAAAAAAAAAAAAAADICP4fpEe4d5ta8aYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJNCAYAAABOXPheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK3klEQVR4nO3dB3xUVfbA8ZNCCoSEJr2DgggiUkRBqqKisljBCiprARcUFLCjrqgsuqCia4VFxIKKirB2iiAiTRcE6UiTDgkkJKT9P+e6k38Cc1/yJjOZZOb33c/bCe/NK3nzMr7z7j3nRuTm5uYKAAAAABRRZFHfCAAAAAAEEQAAAABcoyUCAAAAgCsEEQAAAABcIYgAAAAA4ApBBAAAAABXCCIAAAAAuEIQAQAAAMAVgggAAAAAroRFELFu3Tp58cUXZeDAgdKqVSuJjo6WiIgI+fvf/17out9884307t1bqlWrJvHx8dK8eXN56KGH5OjRoz4fz8aNG82x1K1bV2JjY82r/nvz5s0+bxMAAAAoKRG5ubm5EuLuuecemThx4knzn3zySXn44Yet6/3zn/+U4cOHm4Dj/PPPlxo1asj3338vu3fvlmbNmsnChQtNcOHGokWLpFevXpKWliZnnHGGtGzZUlavXi2//vqrVKhQwQQtHTt29On3BAAAAEpCWLRE6I36fffdJ++8846sXbtWbrrppkLXWblypYwYMUKioqJk9uzZMn/+fPnggw9k06ZN0rNnT9O6ceedd7o6Dg0crr32WvP6wAMPmODhvffeM6/679TUVLP82LFjxfhtAQAAgMCKljAwaNCgAv+OjCw8dnr66adFG2luueUWueSSS/Lmly9fXt58801p3LixfPTRR/Lbb7+ZLk5FMWXKFNm1a5ecdtppJ3Wl0n/r9tavXy9Tp06VO+64o8i/HwAAAFCSwqIlwq3jx4+b1gd1/fXXn7S8QYMG0qlTJ/PzzJkzi7xdz3v79+9/UiCj/+7Xr5/5+eOPPy7W8QMAAACBRBDhhbYGaJcj1a5dO68nzjNfuz0Vlee9/twmAAAAUNLCojuTW1u2bDGvlSpVkooVK3p9T7169Qq8tzBHjhyRAwcOmJ/r16/vuM19+/aZ/AhNtPYmIyPDTB45OTly8OBBqVq1qkkCBwAAKArtuq33KLVr1y5Sd+9ASU9PNz1BAikmJkbi4uICuo9wQhDhhf4xKdtNvEpISDCvKSkprrbptF3PNj3btb1P8zUef/zxIu0XAACgMNu3bzcl54MVQFSKryQZ8v8PSAOhZs2a5uEvgYR/EESUQVrJSUvPeiQnJ5vWDf0CSExMDOqxAQCAskMfWmpPCFvPi5KgLRAaQFwgPSQ6QLemWZIl3+z+zuyLIMI/CCK88PwhaZciG89gc0W9ac//x2nbbv4B7Jy2qwPU6XQiXYcgAgAAuFUaukPHSIyUk3IB2XYkacB+R2K1Fw0bNjSvhw8fLtANKT996p//vUUJIqpUqWJ+3rZtm+M2dQA7p65UAAAAQDARRHiho1HreBBq2bJlXk+cZ/7ZZ59d5JPtea8/twkAABAKIvR/EQGaJPgtLaGG7kyW7P1LL71UZsyYIdOnT5fu3bsXWP7777/LDz/8YH6+4oorinyy9b3ffPONGaX6scceK1AFQSssvf/+++bnK6+8UkqDP/74wwyAt2DBAlP9KTMzM9iHBISV6OhoqVy5snTo0EGuueYaadSoUbAPCQAAgyDCYvTo0fLhhx/K5MmT5aqrrpKLL77YzNfxI2677TbJzs42808crfqnn36Sm2++2fyso1nnN3DgQHnqqafMOBSPPPKI+dlD/63ztTKCZ/1g0dyMG264QWbNmiVRUVFy3nnnSY0aNbzmYQAIHA3c9+/fbx46jBo1Sjp37mwC++rVq3PaAYQczVsIVO6CZ7vt27c39zZDhgwxE3wXkasFgkPcihUrZPDgwXn/3rRpk/kPs96w16lTp8CI0rVq1cr79z//+U9TBUmbwbp27Wr+w/3999+bJ/Ta5WnhwoUmfyG/efPm5bVceDu1ixYtkl69eplgpGXLlmZavXq1mTQPQlsqOnbs6LqyQlJSkqnSVNzEag0gtBVGB7x7/vnnTauIJ5cDQHDo3+Xnn38u9957r/l7nDt3LoEEAL/w5z1EcY/hcrlUykUEJrE6MzdTZsnsoP6eoSYsWiL04lyyZMlJ83fs2GEmj/wDuCn9D3arVq3kueeeMy0MWlVJS6lqiVWdfCmH1qlTJ/nll1/kySefNAGDPlU85ZRTTOvDo48+Kk2aNJFgeuihh0zQ9eWXX5oWCADBp2PI9O/fX8466yzp1q2b3HHHHeahBwCEksiICDMFZNuaExHyj81LVli0RIQ6fz1F0C5a2jpz3XXXmVYIAKWPtpBqd8u9e/eav3sACJWWiL9EXBbQlohPcz+nJcKPqM6EPNo9a/fu3SaBE0DpdPXVV5vBkjRnCQBCSYRpLwjcBP/ijCLPqlWrpFy5cnLOOedwVoBSSkeWbdy4sfl7BQAgWMIiJwJFo02ZlSpVKlB6FkDpo2VfdTBMAAgl5ESULdwtosBYFVqXHkDppn+n+vcKAECwEETAla1bt+aN/qg/O2nYsKF535QpUzjLQaTjk5Tmz6FLly7m+DRZuCiGDRtm3t+7d++AHxsAILRyInSciBYtWsikSZP4aIuJIAIoJk9QZaNjh+hyLc2Jk+ngjWrq1KmmQpgTTSh+5513CqwXrsEXAMC9pUuXypo1axhozg8IIoAQ9/TTT8vatWvliiuukNJIq4FpWUEdxPE///mP43s//fRTOXDggBlbpU+fPiV2jACAksuJCNQE/yKIAEKcjsLevHnzUjumQPny5c1Aamry5MmO7/Usv/HGG00lMQAAEBwEEShx2q1Hu4loN5/58+dLr169pEqVKuZmskOHDvL22297XU9HFP/HP/4hbdu2NaOFx8TESM2aNU3/xpEjR8rBgwdPWictLU0mTJggnTt3NhVtYmNjpUGDBnL55ZfL9OnTC7z3999/l2effVZ69OhhRibX92q1Kl331VdfPSmRdcyYMQW6MXm6NeXPGdHftXv37ma5/q75l2vOyIm+/fZbufLKK82Nv/5+1atXNy0IixcvLrQrld5gn3vuuSZYyJ+zYuuW4zl+fd23b59p2tXyobpfff3b3/5mrQCkY1S+9dZb0q5dO/O5Va1aVS655BL54YcffOq+NWjQIPOqYx/s37/f63t27twpX331ldeuTP4+b/r673//2yy/5ZZbCnxuer7yO3bsmBnVvmPHjuZ6iYuLk2bNmplrUltN8vvwww/NNrQlZceOHScdl44UHxUVZY5lw4YNRT5/ABAKNG8hUP9jnAj/oxQPgmbmzJny0ksvmafkF110kezatcsMeHfzzTfLzz//bG7MPPQG/tJLLzU3i9r15fzzzzc3bHrzqzdbGlxcf/31Jhjx2L59u1x88cWm76Pe6Hbq1Mnc7OrN6Pfff2/q7Os6Hhq8PPLII9KoUSM57bTTzPu1i43eiC5atMjcwHpuAtVZZ50lAwYMyLvZ1J/zS0hIMPvXm0q9OaxRo4b5t0e1atUKvP++++4zv7OW2NWbc/0dt23bZrrw6M3166+/bm5ovdEb/pdfflnOO+88c542b97smKeRn56ns88+WzIzM83vnJ6ebn5f/WyWLFlifj7xqb8GHK+88oo5Vj1OvXnX86lJ0vfcc4+4pYFgq1atzDb0c7j33ntPeo+eZ82Z0HFMzjjjjICeN/0s9VrctGmTOSdNmzbNW0c/dw+9ZvUz1ePWa09/Dw1wV6xYYa7JGTNmmKBKA1fPQHG6zxdffNGMDD937ty8imh6Xd50003mWtdjPvXUU12fRwAASkwuyrzk5ORc/Sj1tTieeOKJ3Fq1ajm+Z8uWLWZfOunPTho0aGDeN3ny5ALzu3btmreNsWPHFlg2b9683Pj4eLPsiy++yJs/f/58M69Nmza5KSkpJ+1r6dKlufv378/7d3Z2dm67du3MOr169crdu3dvgfcfO3Ysd/bs2QXm/fTTT7mrVq06ads7d+7Mbd26tdnWBx98cNJyz+9iM3fuXLNcf2+b1157zbynadOmub/88kuBZfq7V6xYMTcmJiZ3/fr1XvedmJiYu3jxYq/bHjBggNfP4bHHHstbf+DAgbnp6el5y7Zt25Zbp04ds2z69OkF1vv000/N/ISEhNxFixYVWPbcc8/lbdPp9/VmwoQJZr1WrVp5XX7qqaea5XqugnnePHJycnI7depk3nPbbbcVuC4zMzNzR4wYYZZ17969wHoZGRm5HTp0MMtGjRqV9/7OnTubeUOGDCn0XJ1zzjm5gwYNKvR9AFBS9xD+OIZ+0dfk3lTu+oBMuu1g/56hhu5MCJo2bdrIAw88UGBe165dZfDgwebn/C0Re/bsMa/6lFmf9J5In0BrK4OHPoFetmyZeUL+0Ucfme4j+WnrwIklQvUpcsuWLU/adu3atWXcuHHmZ32y7G/65NnTRea9996TM888s8ByfbqvLSRamUi7VXmjT+O1O40v6tata0rdafctD093JvXNN98UeP/EiRPNqy7XJ/j5DR8+3JxHX2iegx6DPtXXzy4/bTnSFqf8+RPBPm/auqStNNoy8a9//avAdamtC3rN6PWkrQ2rV6/OW6bdrd5//33TvU7fM2fOHHnooYdMy4d21ct/3QMAUFrRnQlBo92WvNGuJHojpTdV2n1F+4hrdxt91X742tXI0//d5osvvjCv2l1JuxUVleZdaLclLQG3d+9e8299cH3kyBGzfN26deJvK1euNN1imjRpYm4ivfHkF2jOgTfaTcZXPXv2NDfnJzr99NPzutl4ZGVl5R3DDTfc4HV7es71/LmlQWDfvn3NDbYn38JD/+2p5OS5WQ/2eZs9e7Z5veqqq7wO0qjdqzSQ0QBC958/QNV8GM1R0d9XuzXp9aV5EB988EGBYA4AwsmfmQuRAdu20gddej+h3XJ1gu8IIuBK/n72f/YKsfMst/XN19wDp/masKqJqZokqzeK//znP+X++++Xu+++20zaz1wTYi+77DJzc6lPePMnSSvNtyiqH3/8Ufr162f609ukpKSIv2k/fKX97wvLY9AcEG+8JWkXlSaRe6O5J0pzJDw06dnzb9s+i3MsmjCtQcS7774rzz//vGkxOnr0aF4LUP6E6mCfN8/+tbVDJ7f71xK1mlCu+Q/qtddek8aNG/t8PACAwulDLs9/31A8BBFwpUKFCnk/p6amOr5Xb/6Um5aAE+UPVLT7zLXXXiufffaZaaXQSbux6PTYY4+ZLi9OrRNOtIqTPhXWblOahHvXXXeZZFr9otEnFuvXrzcVdwoLnHzhqfqklaY0wdzJicnYHvHx8T7vX5+Y+1NRE7ptrSIaHGoQqIn3+pRen87rtaYtUNqdrbScN8/+tXqXBrlO8ieCe2iAnH9cDA1i9foGgHAVyPEcPC0R8B+CCLiiFWg0KNAAYePGjV5zCJSWW/WUXLU96d6yZYvX+Z7SpPoUOn+eg9IKR3/961/NpH777Te59dZbTQWl0aNH51VK8uxTlxfFggULTACh3aY8XWfyC2S5Tc0/UPq7lvbRkfUYtbuNdvPSG/0WLVpYPz9fAxoN4jTXQT8HDSI8n8eJFZaCfd48+//LX/5icivc0GBUKzFpmVcNXvX605Y27X7FIHoAgLKAxGq4u2AiI03ys9KEZRsthao0eTR/Scz8pk2b5nX+1KlT857weutrnp92Vxo1apT5WcvCenhKqWq3mMJaTFRhAY/tWJWn/KnmC3jj6WZlW679M/VJuZai/fXXX6U0099Vu5CpE8fZ8NBzXhwaLOh19t1338nXX39tkpe1NejEErqBPm+FfW46LobSrlZuW6ieeeYZ0wqheSd6bWnwqy04OqaHpyseAIQbzYgI5AT/4ozCNR1ES2943nnnHXnzzTdPWq6tAg8++KD5ecSIEdaRhZcvX55X9chDuyhppSCVf6wAvaHUKjY6lkF+evP2+eefm589tfiVPs3V6k+aeKv5EicO+qX9+vN3JfEkEes4FHpTmp/2Vdd++k7VjZTtRtazXFszTjx+pedHu2Pp76IDpOk5OJEmmOs50C4vwTZ06FDz+sILL5x0PFq5SceWKA4N5C688ELTXciTvK2VtE7sqhbo81bY56otEBrI/PTTTybw8Zb3cOjQIVO5KX8goq0OmkOhyewagGgXQc3r0b8Vfb92afJ2nQAAUJrQnQmuacUZHQVay3lqYujYsWNNNyBtNdAuThoc6I2dluLULkZON6Na4lVbHrQ8p97wa16D3jwOGzasQAnW//73vyao0BwF3ZeWXdXEax3US5/camWbJ554Iu/9+iRb+9RrX3kNFvTGVFs2PIPN/fLLL2awOk/XGw049KZQByjTn7VbiXbd0tYNrcikQdFTTz3l9ffQ6jzjx4+XCy64wIx27akepKNf6/5031ppSMuW6oBq+rN21dKn6PpEWmmiuCZ06wBl2u9f+9BrTob22d+9e7c5Dh09Wgd487Ukqb/oDfvtt99ugis9p/kHm1u7dq35nLRrTv5Ed7c0gVpLqHpuzE8codojkOdNuxk9/vjjJljSCkvafUmvKw1QddKfP/nkEzNInbYkaOtb69atzeetZWU18VrPiQYy2sKgfx/6+2gXLZ2nwXL+XAn9O9JASAMeDdT1HAJAOImMiDRTQLbNc3O/I4iATzQA0GBCRzXWJ6vaSqBPW3U8Br0Z1yezhfXt1ptRfa/ePOn6euOlAYLeGJ7YdeXyyy+X5OTkvPEC9EZLbxT1xk4DFS3T5nly7KEtE3rjriMS6w2etpDoPjQRV7tk5R+tWulTYX2SrkGN3szpjb7e8OtNpI4ebAsinnzySXND+fHHH5ubSt2Hevjhh/NyOrTrlwZMOmaAtmroudLj8wQRSltl9MZVj1f3r2Vq9UZcb9A1qNGn1VratjTQp+v6FF5vzvWz0HPVoUMHc+yewMyWzFwUel3o+loNSvNg9EbdJlDnTQNb/dw0QNTWFW2l0uBYrzPPta3BrP7+mpOhn6sGu9oyoQGoLrvzzjvNe/X8aHCsY2FosKzXtwYWJ7as6DY0iNUgXa9R/b0AACiNInTEuWAfBIpHy47qk3i9yS5O2TK9GdabQr3JCSS9sZs/f765ofbU8Ufo0ET3yZMnm7E+tLUK/qetKtqq5SkPCwDBvofwxzEMiLlRYiJ8b8V2cjz3uPz7+LSg/p6hhpwIAK5pnsCJCev6pF1vavWpvD551247AAAgNNGdCXk0WdpT+x5wojkIOn6Ddr2pU6eOCSg0IV27MmklJe1a5OuYHSic/p0WZzwOAAjXnAhGrPYfggjk0YTgQIzIjNCjI3vrtaJJ9Jq8rDkeOrK4zr/nnnuCnvwd6miOBwDfMGK1/xBEIE+jRo1MxSOtRqSjMwfKvHnzOOtlnI6R4BknASVLq03pQI369woAocQzokOgtg3/IicCebQ2v45GrVWKAJROWoZYx5GgchMAIJgIIpBHS6ZqKVWt/69jKQAofd2YdPyITp06mVwUAAgljFhdthBEoIC///3v5rV79+5moCwApYMOXterVy8zuKKOZwIAQDCRE4ECGjdubHIWNIjQwbZatGhhBvrSAb9iY2M5W0AJ0oELDxw4IF999ZUZOLFy5cryzTffSNu2bfkcAIScyIgIMwVk2+RE+B1BBLwGEuvXrzc3LpofoaU8Dx48mDcSM4CSER0dbQKHc845R+6//37p3bu3yVsCACDYCCLglbY6aH6ETgAAACWRE+EZzyEQ24Z/cUYBAAAAuEJLBAAAAIIuIiLCTAHZNjkRfkdLBAAAAABXaIkAAABA0P2ZERGY59uB2m4444wCAAAgLLRv396Ur580aVKwD6XMoyUCAAAAQRcZ8edYEQHZ9v9ely5dKomJiQHZR7ihJQIAAACAK7REAAAAIOh0LIdAjefAOBH+RxABAACAoNOuTIHrzhSY7YYzujMBAAAAcIWWCAAAAAQd3ZnKFloiAAAAALhCSwQAAACCLjIi0kwB2TbPzf2OlggAAAAArtASAQAAgKD7s8Ar1ZnKCloiLLZu3SoRERFFmhYsWFCkkz1mzJhCt/Xbb7/58/MFAAAA/I6WCIuEhAQZMGCA9cStWbPGDJ1esWJFadu2rauT3rp1aznrrLO8LktKSnK1LQAAgFAQERFppoBsm+fmfkcQYVGtWjWZMmWK9cT17t3bvPbv318qVKjg6qT37dvXtEoAAAAAZRFBhA927twpX375pfn5tttu8/dnAgAAEHbIiShbyInwgbZQ5OTkyBlnnCHnnHOO/z8VAAAAoBSjJcIHnm5OvrZCrFixQkaPHi0HDx40ORBt2rSRyy+/3ORXAAAAhKOIAI4T4cmJaN++vURFRcmQIUPMBN8RRLg0f/582bhxo8TExMhNN93k00mfNWuWmfLTYOKFF16Qm2++udD1MzIyzOSRkpLi03EAAACEEy2Kk5iYGOzDCAl0Z3LprbfeMq99+vQxydduNGnSRMaOHSsrV640rRA6LVy4UC677DJJTk421aDeeeedQrfz9NNPm6DDM9WrV8/trwEAAFCqRAT4f/CviNzc3Fw/bzNk6RP/WrVqSVpamsyZM0cuueQSv2176NCh8uKLL8opp5wiO3bsMC0dbloiNJDQQIToGgAAFJXeQ+gDyWDeQ3iO4YHE+yUuIjYg+0jPzZCnU/7BvZIf0RLhwnvvvWcCiLp168pFF13kz8/BlHzVPnr79u2TJUuWOL43NjbW/KHnnwAAAMq0yIjATvArgggfujINHDhQIiP9e+qqVKki1atXNz9rSwQAAABQWpFYXUQ6QrW2EERERMgtt9zi9w8iOzvbNLEpqjQBAICwExHx5xSYjQdou+GLlogievPNN81r9+7dpXHjxn7/ID777DPTVUqDlHbt2vl9+wAAAIC/EEQUQWZmpkybNq1IY0O89NJL0rx585NKtW7bts1sIz09/aR1PvnkExk0aJD5+YYbbpCaNWu6+QwBAADKPH2QGhEZoClgLRzhi+5MRfD555/L3r17pVKlSnLllVc6vnf//v2ybt26kwIBLeeq40rcddddZnC5OnXqyLFjx0w3qQ0bNuS1crzyyivF+TwBAACAgCOIcJFQff3110tcXJxPJ1pLsI4aNcoMcqKD1emo1cePHzdjTeg4Ebrtfv36+T1hGwAAoEzQxoJAtRjQEOF3jBMRAkpDjWcAAFD2lIZ7CM8xPFh1tMRF+vawtjDpOeky9sAz3Cv5ES0RAAAACL6AjudAU4S/0XcGAAAAgCu0RAAAACD4aIkoU2iJAAAAAOAKLREAAAAoHeNEBKg6E+NE+B8tEQAAAABcoSUCAAAAwUdORJlCSwQAAAAAV2iJAAAAQPBpPkTARqxmnAh/oyUCAAAAgCsEEQAAACg9ORGBmkSkffv20qJFC5k0aVKwf9syj+5MAAAACAtLly6VxMTEYB9GSCCIAAAAQPBFRP45BWrb8CvOKAAAAABXaIkAAABA0EVERpgpINsWqjP5Gy0RAAAAAFyhJQIAAADBx4jVZQotEQAAAABcoSUCAAAApUAAR6wmJ8LvaIkAAAAA4AotEQAAAAjtnIhcqjOpY8eOyfr166Vu3bpStWpVKQ5aIgAAAIAQ8f3338vw4cPll19+KTB/+vTpUr16dTn77LOlVq1a8sQTTxRrPwQRAAAACLqIiIiATuHitddek5deeknq1KmTN2/79u1y6623SmpqqiQlJUlWVpY8/vjjMn/+fJ/3QxABAAAAhIglS5ZI69atpVq1annz3n77bTl+/LiMGTNGDh48mBc8vPzyyz7vh5wIAAAABB85EX6xf/9+OeOMMwrM++677yQmJsZ0c1Lnn3++dOzYUVauXOnzfmiJAAAAAELE0aNHJT4+Pu/fubm5snTpUmnXrp0kJCTkzW/YsKHs2rXL5/3QEgEAAIDg07yFQOUuhFFORJUqVWTr1q15/9bWhiNHjsh5551X4H2ZmZmmdcJXtEQAAAAAIaJ9+/by008/yeLFi82/J06caBLLe/ToUeB9GzZsMFWafEUQAQAAgNKTExGoKUwMGzbMdGHq3LmzaZWYNm2aNG7cWHr16lUgb2LVqlXSpk0bn/dDEAEAAACEiAsuuEDeeustadCgganI1LVrV5k1a5ZERkYWqNaUk5NjlvmKnAgAAAAEH9WZ/GbAgAFmsrnzzjvNuBH5E63doiUCAAAACBELFiyQ9evXO75Hqzft3btXFi1a5PN+CCIAAABQSoozBWrEagkb3bp1k2effbbQ940bN066d+/u834IIgAAAIAQkpubG/B9kBMBAACA4CMnokQdOnRI4uLifF6fIAIAAAAow7Zt23bSqNUnzvPIysqSX3/9Vb766itp0qSJz/skiAAAAEDwMWK1zxo2bGhyPzw++ugjMxXW5enGG2/0eZ8EEQAAAEAZVr9+/bwgQlsgypcvL9WqVfP63piYGKlbt65cddVVctddd/m8T4IIAAAABB85ET7bunVr3s86qNw111xjBpwLJKozAQAAAEH28ccfS+fOnU0LQmxsrDRu3FiGDx9uEqDdmDx5stx2220SaLREAAAAIOg8YzoEatul3cGDB80YD/fff78kJSXJqlWr5PHHH5dffvlFvv322yJvx2mkan8iiAAAAACCbNCgQQX+rQGFlmC9/fbbTZ6D5j24lZ2dLQcOHJD09HTre3zZriKIAAAAQPBpa4HmRQRCTulvifCmSpUq5jUzM1PcWLp0qTz66KMyf/58ycjIcGyh0ZKvviCIAAAAALxYt26dGU9h+fLlZlq7dq15uv/kk0/Kww8/XOg5mzFjhkyaNMl0STp+/Lg0bdpUbrjhBrn33nulXLlyXtfR7WvQsHr1atOdqXfv3q7Gc/jxxx+lR48eea0PlStXlsTERL9/vgQRAAAACO3qTD5u95VXXpGJEyf6tO4999xj1o2OjjY39QkJCfLdd9/JqFGjZNasWSY4iY+PP2m9qlWrSnJysvm5V69e8sEHH7ja72OPPWYCiFtvvVWeeuopqVGjhgQC1ZkAAAAAL1q2bCn33XefvPPOO6YV4qabbirSefrkk09MAKGBw5IlS+TLL780g79t2LBBWrVqJQsXLpRHHnnE67rz5s2TRYsWyb/+9S9Zs2aNXH755aZ1oqh0f82aNZPXX389YAGEoiUCAAAAwVcKR6w+MdlZx2AoirFjx5rX0aNHy9lnn503X8u3vvzyy3L++efLSy+9ZAIJrcSU31lnnWVezzvvPPNzx44dZebMmXL11VcXad+a46DrBboiFS0RDgYOHJhXbsw2OWW722ifOh0ERKNDzbpv1KiR/O1vf5O9e/cW57MEAABAkO3cudMkNqvrr7/+pOU6FkS9evVMwvOcOXMct6UBiN5vbty4scj7b968uezfv18CjZaIIujUqZNJhPEmKirK1Qn/8MMP5brrrjNRYvv27U0AsWzZMhONavKNNm/Z9gUAABCySiAnIiUlpcBsHdRNJ39auXJlXmUlvc/zpl27drJ9+3bzXr0vtNFuTbm5uWbguaLSkrBDhw6VTZs2uUrIdosgoohNWdoqUVy7du0yA4BoAPHqq6+aD1lpPzfd/rRp00zEqn3ZysKgKAAAhKK9R7yXxEws772ajtq296h12Wm1vFfGSc/Osa4TF0VnkUDQFoATk5DHjBnj131s2bKl0PEXPMfhea+66KKLpGfPnnLGGWeYwEYDjH/84x9y5plnSt++fYu8f72/XLx4sVx44YXmIbVu1+1D76IgiChBEyZMkLS0NLngggvyAgilH6xm/2umvjZ/aba+fuAAAADhoiRGrNan//nLnfq7FUIdOXLEvFaoUEFsNOH6xJaRDh06mAfKnsCiYcOGMnjwYBk+fLjExMRIUXlaLbZu3WqSsrU6VK1atbzmc+h50RYLXxBElCBNirH1j9OLqU+fPvL222/Lxx9/TBABAADgZxpABGLMBH/QsSd0Ki4NHjy0K5SOOaEjXntTnKCNIKII5s6dK6tWrTKRpdbu1UhRB/5wE73qup6kGO0H543O1yDC05cOAAAgbJTCcSJ8UbFiRfOamppqfc/Ro392fwtEQJO/i1QgEUQUwdSpU0+ap81Cb731llx88cWuo0JbHzlv/eO80Wz+/EOYn5gkBAAAgOBo2LBhXtcpG88yz3v9qUGDBlISyNpx0Lp1azNQiA47rjfqe/bsMfkKWrf3jz/+MN2PdEAQN/3jnPrIeesf583TTz9tagp7phOThAAAAMrsOBGBmkpImzZtzOuBAwesD4a1MqfKP4ZEWUNLhIN77733pOYpzXTXxOgrrrhCPv30UzOk+c8//ywl6YEHHjBJNh4adBBIAADC1baDaV7np2dkWdeplGDvkrzm94Ne52fn5FrXSc+0jyi8fZ/3yk3xsfbbsPOaVbcug++0vL4WtBkyZIiZAqFu3bpmP1osZ/r06fLQQw8VWK7l/LUlQrvFa/f4QNH7Q03U/uGHH2Tfvn2m8tPIkSPNsvXr15teMl26dDFjlvmCIMIHmoTy+OOPmyDil19+MRdCYTfxnv5xnj5yJ45O6KZ/XCBqGgMAAIR6ToTe2JdEYvWDDz5oHjg/88wzcskll+S1OGjrhFZcUnfffbfX+0F/0J4zWsjn0KFDJrla713r1KmTt3zdunWmbOy7774r1157rU/7oDuTj04//fS8n3fs2OGqf5otQz6Q/eMAAADgzooVK6Rjx4550+zZs838V199tcB87eaen96g64Bv+oBYl2sgcfXVV5sBhbVYjw5k7I9KTN6sXbvWBDDJycly1113yfvvv28Cifx0KIHy5cubB+K+oiXCRxpJemtlsNGoVy8crdCk/eBatWoVkv3jAAAAfKKNBYFKXYjwvUuQDgJ8oh07dhR4iJy/4I2H5tVqsDBp0iTTpUhLreoI0qNHjzZd5t2M/eDG2LFjJT09XWbMmCFXXnmlmdevX78C79F9n3XWWaZHja9oifDRe++9lxccNGvWrEjraFSotH/ciTRS1cHmlOcDBwAAQPB069bNPMUvbGpo6UWiXYXmz59vWgV0wGFthRg1alTAAgjP0ARaHKiw+0nN3TixBcUNgggLTZb+7LPPJCurYFJWTk6OvPnmm6avm9KmqnLlyhUYUK558+YmeeVEmoStTUfffPONvP7663nzs7OzTf+4w4cPm0ScXr16+fyBAgAAlEkhUp0p2DSJ+rTTTiv0fXqP6zSWRWHozmShGevaclC5cmXTvahGjRrmJl/LvXpyGq677jp57LHHCqynkaYmq2gz0olq164tU6ZMMevdfvvtJhjRyFWTfDZv3mz2oa0UgRryHQAAIJyVRHWmYNNk7Z07dxb6Pr33rF7d9ypgBBEW2gykLQeap/Dbb7/JokWLTHOV3uhrYswtt9ziU1mua665Rho3bmz6q33//fdmdGoduE4v5EceecRsHwCAUJWenWNdtmFXsnVZZpZ9vT2HjnmdX6NyvHWdTX/Yx2Sqmui9AmJWtr3Ea0y0vXPHccux7z3s/bjDVURkhJkCte2SrM4UTPrwe8GCBeaht22AY30orvkQnq72viCIsGjUqJH885//dH1CBw4caCYnbdu2lY8++sj1tgEAAAAngwYNMiVeteeL3m/WrFmzwPL9+/eb9+jDcX31FUEEAAAAgq8UVmcqi66++mrT80WrM2k1KK0QpbRXTZ8+fWTevHmmoM8NN9xgSr36isRqAAAAIIRMnz5dHnjgAfOzFvRRGzZskM8//1yOHz8uI0aMMHm6xUFLBAAAAEqBQFZRCqOmCBGTPP7UU0/JfffdZ0q+ahK1VhitV6+eqSBanIRqD4IIAAAAIARVrlw5YOOPEUQAAIASq8K0N/nkEugeuw+kWZcdd6jq5FS5yRdH0jK9zs/JsVdnqhD//2NGncRyfE7HvffIySMge1Sv6L16VJmnFZQCVJ0pYNsthV588UW58cYbTQARSOREAAAAIGzGiWjRooVMmjRJQtWwYcPM2GT9+vWTL774wlRhCgSCCAAAAJSe6kyBmv43TsSaNWtCdqA5pd2XNHDQ6kyXXnqpyYN46KGHTGK1PxFEAAAAIPg0qTqQU5j48MMPZdeuXTJhwgQ588wzzc/PPPOMNG/eXLp06SKTJ0+W1NTUYu+HIAIAAAAIIVWqVJGhQ4fKypUrzXT33XdL1apVZeHChWaAOR2A7tZbbzUjW/uKIAIAAADBFxngKUy1bt1aJk6caFoktJWid+/ekpGRYcaJ6NGjh8/bDeNTCgAAAISH6Ohoky/xyiuvyB133GHmFSfpmhKvAACgxKRnZFmXxcVEWZdViLKXUM22lH895FAmNalCjOvtHXDYXtWkONfbq+JQqjU9M1vCjkmADlDuQvikRHilLQ8zZ840+RDfffedGXhOnXHGGeIrgggAAAAgBC1ZssR0W3r//fclOTnZtDwkJSVJ//795ZZbbpEOHTr4vG2CCAAAAARdRESEmQK1bc84EVFRUabEa6iWef3jjz/k7bffln//+9/y22+/mcBBf//u3bubwOGqq66SuDh7y1lREUQAAAAgLOg4EYmJiRLK6tevb7orafDQoEEDGTBggAke9Gd/IogAAABA8OUbFC4g2w6zBOpbb71VevbsGbj9BGzLAAAAAErU7t27Td5DoBFEAAAQQvY6VBBKLG+vcLQ3Od31vvYnH7Muq1stwev8+tW9zy9MRpa9WlGrepW9zv9p4z7rOpUq2Csj2TSz7EcdPmo/7wcs5zYpwV4hqn6V8hJ2IiP+nAK17TCRVAIBhGKcCAAAAKCMeuKJJ+Szzz7zuuy///2v7Nixw+uyF1980XR78hVBBAAAAIJPKygFcgpRY8aMkU8++cTrsjZt2shjjz3mddmKFSvk008/9Xm/BBEAAABACMrNzS3WqNROyIkAAABA8FGdqUyhJQIAAACAK7REAAAQYNsOppVYFZ7qFe1Vh1ZtP2RdVqNSedcVnXYfTLUuS8/0Xk0pPdleZcmJ7ficKlI5VWCKi7XfAm3Ycdj79hLs2zucaq/O1Ky+96pOO/Ydta6Tnp1jXRYXFaLPgKnOVKaE6FUIAAAAFNS+fXtp0aKFTJo0iVNTTLREAAAAICxyIpYuXSqJiYkB2kl4IYgAAAAAyrCff/7ZjBfhZpnOLw6CCAAAAARfIMdzCOFxItQvv/xiJjfLtPRrRDHOC0EEAAAAUEZ16dKlWMGArwgiAAAAEHR6IxyhFZoCtO1QNW/evKDslyACAAAXbOVEncqhOpVx9WV7KiUt0/U6mVn2sqEbdyV7nV8tMc66TrxDmdS4clGuS9A6nQsnW/ekeJ0f7VAKtX71BOuy5NR4r/OXrt9rXaf9adVdH19Fh88KKO0IIgAAABB8jFhdpjBOBAAAAABXaIkAAABA8FGdqUyhJQIAAACAK7REAAAAIPi0MlOAqjMFbLthjCACABC20rNz3K+TmW1flmxf5gun7VVP8l41aYOlypJqUb+yddm2vUe9zs/Ish/DEUuFqD+XeT+OdQ7nvJJD5abYaO/VnlTDGonilu33dVLLocqWrbqVyrb8zk7nr0Yl+77iHM4TnLVv316ioqJkyJAhZoLvCCIAAAAQFtWZli5dKomJ7oNOnIycCAAAAACu0BIBAACA4KM6U5lCEAEAAACUUVFR9nyhwkREREhWVpZP6xJEAAAAoHR0sg9UR/sQ7sCfm5sblHVD+JQCAAAAoS0nJ+ekafjw4RIXFyfDhg2TFStWyKFDh8y0cuVKueeeeyQ+Pt68R9/rK1oiAABhK8VSYvPw0QzrOnGx9v907j6Y6nV+vMM6p9ZO8qkMqW2ZU2nQNdsOWZfVrZbg+lwci7J3g4iO8v6cMivbXn4nMyvHpxKva34/KG6Vj7N/JhnHs12XoC0XHen696rgcHzVw7GMKzkRfjF58mSZMGGCfP3119K9e/cCy1q3bi3PP/+89OnTRy644AI5/fTT5bbbbvNpP7REAAAAACHi5Zdflk6dOp0UQOTXrVs36dy5s7zyyis+74cgAgAAAEGnSb6BnMLFb7/9JvXq1Sv0fXXq1JF169b5vB+CCIvMzEz59ttv5f777zejG1aqVEnKlSsnNWvWNE1As2fPdn2yx4wZU+gFrh88AAAA4Ivo6GhZtWpVoe9bvXq1ea+vyImwmD9/vlx44YXmZw0ctMmnQoUKsmbNGpk1a5aZbr/9dvnXv/7lOrrV/mhnnXWW12VJSfa+sQAAACGL6kx+0bFjR/nqq6/khRdekKFDh3p9z4svvmgCjYsvvtjn/RBEWERGRspVV11lstrPP//8Asvef/99ueGGG+S1114zfc5uvvlmVye9b9++plUCAAAA8KdHH31UvvnmG7n33nvlgw8+kOuvv14aNWpklm3dulXeeecdWbx4sWmFePjhh33eD0GERY8ePczkTb9+/UzG+5tvvilTp051HUQAAOz2HrFXA0rP9F41Z3/yMddVh5wqD2Vked+Pql/dvj0bp+Pbm5xuXbZhV7J12Z6D3reZnWGvmNSwrr21e88h+zHa1D3FXl/osOVzjI2xV1lKt1RFKuz4kirEeJ1fsXw56zrHHM6TrQrTEUs1r8L2lRBnX2az/o8U67LTaiVKSKI6k1+ce+65Mn36dBk0aJD88MMPJmA4cWyIhIQEef311+W8887zeT8EET5q06aNed2+fbvPJx8AAADwt2uuuUa6dOkib7zxhumiv2PHjrxk6q5du5qyrrVq1SrWPggifLRhwwbz6ssHoIN+jB49Wg4ePGhyIDQgufzyy6VixYq+Hg4AAEDZRkuEX9WoUUMeeughMwUCQYQPdu/eLVOmTDE/a96EW57E7Pw0mNAEmKJ0jcrIyDCTR0qKvckTAAAAf9KKm1FRUTJkyBAzwXeUeHUpKytLbrzxRklOTpZWrVrJHXfcUeR1mzRpImPHjjVDjmsrhE4LFy6Uyy67zGxvwIABJtmlME8//bQJOjxTUWoBAwAAlInqTIGaRGTp0qWm0mY4BBApKSlm4Dm9b73oootk3LhxecvWr19vKjilp9tzsgpDS4RLd955pxk/omrVqvLhhx9KTIz3ZC5vbrrpppPmaXUnbZXQElxabksz6bUfm9N2H3jgARk+fHiBi4RAAgAAAEoDBK3KdOjQIZNIrcMRaD6Ehw4yp9VC3333Xbn22mvFFwQRLmi5V63IVLlyZVOd6bTTThN/0ZKvGi3u27dPlixZclJZ2fxiY2PNBAD+lJ6dU2In1KkiUfWkOPuKae4rMNkqOjlVYcrMsp+LbXuPij85VW76ffNB67JcyzFmZdh/3+2x9v/sR0d775xQNTHWp3MRE+V9ewccqm/VrlreuszpOGycPkcntspNThWYbNWoVIX4cq6rNoVsBSYn5ET4xdq1a+WKK66Q48ePy1133WUSqbWyaH7aMlG+fHn59NNPCSICbcSIESZnQUeu1ujOU53JX6pUqSLVq1eXP/74Iy+DHgAAAHBDu85rN6UZM2bIlVdeaeadGERojxcd+PiXX34RX5ETUQQjR46U559/3uQfaADRrl078bfs7GyTF6Go0gQAAMJPxP+3Rvh70m2Hiblz50rr1q3zAgibunXrmofXviKIKISWYv3HP/5hAgjtwqRZ/YHw2WefSVpamumzFoggBQAAAKFv3759Repyr8WCUlNTfd4PQYQDHQr82WefNV2YihpAvPTSS9K8efOTSrVu27ZNpk2b5jUL/pNPPjGjCqobbrhBatas6f6TBAAAKMtKoDpTOEhKSpKdO3cW+r7NmzebrvS+IrHaoWXgqaeeMj83bdpUJk2a5PV91apVk/Hjx+f9e//+/Sbj/cRAQMu5anUmTXDRfArNkD927JgpM+YZuK579+7yyiuv+PxhAgAAILydffbZsmDBAvMAu379+l7fs3r1apMPoQnYviKIsNCbfo9ly5aZyZsGDRoUCCJstATrqFGjTH3ijRs3mlGrNWtegxAdJ0LLcGnSS2RkGIXKAAAAHlRn8gvt3aI5vNddd5189NFHJz3Y1gfe+h4t/erpCeOLiFzdAso0HSdCm640MTsxMQxLwgEhXl41JS3T6/zqFWNLdSlX23Grw0czXJddVbHRUa7XcSrzWc5S1tS2n8LEWUqo7tjnW1nY5cvs1fqyLWVIIy2lVVWFGvZSuLWre1+W4VAiNyrSnqyaY7m7iI6yr5NoKYVaGFsJVScHHMoMN6hR0ev8TX+kWNepe0oF67K9h7yX8a13SoLra0nVr2IvhVsW7yE8x/D3wR9IXKz/frf80jPS5OGXrw2be6V+/fqZ6kzx8fFmTLJvvvlGTj31VGnWrJnMmzdPjh49arrQv/322z7vg5YIAAAABB8tEX4zffp00x1/woQJJoBQ2n1eJy3vqkMXPPPMM8XaB0EEAAAAEEKioqJMbu99991nSr5qEnVOTo7pXt+zZ89iJVR7EEQAAAAg+AJZRSlMU04rV65c6HgRvgrTUwoAAACEnh49esi4ceMKfZ8WBtL3+oqWCAAAAAQfORF+oYnTDRs2LPR9OiTB/Pnzfd4PQQSAkPHJkt9dV4rp3b6eX6sL7U+xV3yJi7FX/Ek/bq+AUy0xztUxqEoJ9spNew6neZ2fVMG+zu6D9lFNa1bxXpVm865k6zq1q1bwqZqSrWrSMUulIhXvUOXGVqEnsUKMdZ0sp+pWqRmuP3un7TlVWsrRGy5vbPN1kcP2bMcRW85+7McdPitb8ce0dPu13qpRVesyp+vJ8TOxcPpMbH/HCXH2a+nwEfvfY2VLJTWnqmJOy8SP1ZkQvjIzM4s1tABBBAAAAIIvwjkILva2UcCqVaukalV74F4YgggAAACgDLv11lsL/HvhwoUnzfPIysqSNWvWyM8//yx9+vTxeZ8EEQAAAAg+qjP5bMqUKXk/R0REyMaNG83kpHbt2qYMrK8IIgAAAIAybPLkyXm5SNoC0blzZ7ntttu8vlcHm6tbt6507NhRypXzbZR4RRABAACA4KM6k88GDBiQ9/OYMWNMgJB/XiAQRAAAAAAhYuvWrSWyH4IIAEGz11ISsbqlHKJKdyjleODQMeuy2Dj3Tbbrth+yLqsQ7317yanHrescy7CX0ouKtJcO2XXAe3nVxrWTrOvs2H9U3Eq2lCdV0Q6lQeMsJUDLO5TDdCqF68RWyrNhjUTrOqu2HHB93stF23/faknx1mW/707xOj8tx16C1uk8RTocR46tvKpD2VWxlDo2+7KcC6fyqWkOpXWb1Krodf6uA95LDKsd++zXrVPZXV9KJzuVp7V9BzmVcY1y+Bs55LCezal1K0l4VmcK4LZFpH379hIVFSVDhgwxE3xHEAEAAICwsHTpUklMtD90CCUZGRkyd+5cM6hcSkqK17FbNAn7kUce8Wn7BBEAAAAIPm0Nc2iVLfa2w8jMmTPljjvukAMH7C2xGlQQRAAAAACQZcuWSb9+/cyZ6N+/v/z6669mYLnRo0fLhg0b5OuvvzYtE1q9Sas0+YqWCAAAAAQf1Zn8Yvz48ZKdnW1aI3QwuVtuucUEEZ4xIfbt2yc333yz/Oc//5GVK1f6vB97FhAAAACAMmXRokXSokUL62jUp5xyirz33nuSmpoqjz/+uM/7oSUCQLGtcqhitHz9fuuy81rUcF2daW+yb1V9qiZ63+aabfZjr1G5vHXZnkNprvajko/aKzdVLF/OdWWk3Qe9V21SR9IyrcsqW87vAYdzW7tqBeuyNb8fdF11yOn3jY32Xu1Jrdtx2Ov8+Fj7vlo1qmpdtnWP92pKmQ6Ve5zOu61CT4V4+++U4FA5LCfTXl0ox1I1KSLS/nywSpL9+kxLz3JdqSo+Jsr1Nei0vTiH7aUes1/TvjjsUEntgKWaUqylEpk6vZ69mlKlBEu1p6P2qk3pDpWvQlYJVGcKB/v27TPjRHhER//5/Zieni5xcXHm56SkJOnatavMmTPH5/3QEgEAAACEiIoVK0pW1v8HoRowqF27dhV4n45WvXv3bp/3QxABAACA0pETERmgSbcdJurWrSvbt2/P+3fz5s3Nq5Z79cjMzJQff/xRatTw3iOgKOjOBAAAAISIzp07yxtvvCHJycmmFeLSSy81XZqGDx9uujTVr19fXnvtNdMyccMNN/i8H1oiAAAAEHye6kyBmsJE3759TWvE/Pnzzb9r1aolDz74oBw5ckSGDh1qls+ePVsqVaokf//7333eDy0RAAAAQIjo2bOnGQ8iv8cee0xatWolM2bMkIMHD8rpp58u99xzj2mV8BVBBFBKvDN/k3XZ7h+22Vd0qGbS4ZLTvM5PP26v+HLcUvFFVbZUGFm+bId1nUhLtRqnCkdH0+1VWLIcji/WocrNMcvv7FTxJcWheoutWpHjsefkWpftc6iMFGM5hw1qVLSuk+HwGds4VVM6nGqvIpNYIcb1ubVVnCqsMlLVxD8ri7ipRpWZddS6LCvb9pnYj+FAiv1cxFgqD2U7XLdO58mp0lKUpYpVZDn7Okcc9tWs7p/Jlyfasd/736nZl8PDXVuFo+pJ3j9DtefQMeuyBIfr07YvJ1EOB58Y7/27JMXh/P2+54h1me17walS1am1vX8eIY3qTAF15ZVXmslf6M4EAAAAhIgePXqYweQCjSACAAAAwReoykyeKUz88MMPcvy4vSXdX4rUnWnBggV+22GXLl38ti0AAAAA/0+TqjMy3HfxC0gQ0a1bN4nwQ1a7biP/4BcAAADA/24UA1dFKYyqM1122WUybdo0SU1NlQoVvOfv+UORE6urV6+eN1iFL3777TfZu3evz+sDAAAAcKaVmGbNmmWSqHU8iAYNGkhQg4hLLrlE3nrrLZ93dMstt8jUqVN9Xh8AAAAhjOpMfjFixAg544wz5PPPP5dmzZpJmzZtpGHDhhIfH++1l9Cbb77p034o8Qr4aOLkpdZlWavsrW65h72X8sw9ai8dKLn20qARlbyXXVU/WcoURjmUhY10WGY7jszf9ltXSerS0LosylLm84BDudP0THvp0pQ99lKe5eokui7Z6FQKN9tSrjXZodRozconf4F7HMuwd/WsXDHWddnVww7laWMtn7FT2VWnc5GW7j6Bz2l7cQ7XYHSU9y4J8bH2/5w5lX+tWN7738hhh5KhNRw+x0OW9ZyuM1sJXxUVZz8XOcner8Eoh7Khmcfdl66NdSgZe/SY/bpNtJxbp3LGdapVcP1Zqe37U73Or+BQ9rm8w3VmK3XtdG06lXDettf7d1OT2t6/l1SKw3UbZ/lOANSUKVPy0hA0wXrJkiVm8ibgQcS7774rjRo1kuK466675OKLLy7WNgAAABCiAllFKYyqM02ePLlE9lOkIKJfv37F3lGHDh3MBAAAACAwBgwYICWB7kwAAAAIPqozlSkEEQAAAEAIWrNmjRl8bt++fSbZuk+fPmZ+Tk6OGXYhJiYmOEHE4sWL5dtvv5Vdu3ZJenq63xM2AAAAECY0hz8ygNsOI9u3bzeVUefOnVugm5MniHj99ddl8ODB8tVXX0nPnj1LLohIS0uTa6+9Vv7zn/+Yf+c6VY4hiEAJ+8+KHV7nr/noV+s6OZsPu6+mlJnjXKbOukHLKk5VkSwVaYyj9m/GSEuVlhyHKiIxDlVuciwVSyTLfi6OH7VXudlpqaiSYKkqpaomxlmX7XI6hxYVHH7fTIffK8qSpFcxzr694w6VpWIcKur8cTDN6/xTkuJ8qnKTZfkcfa2YlG3ZXgWHz9F2DCrFobJUecv5dapu5cRWCcz2+RbGVkGoVY2q1nV+2WSvbpabbf9bjbJUTYp0OPbcHIe/Vcv17nTdlnO4bg9aKlVVSrA/+XTa1+EjDt+5FgkOf49Oso7nuv47dVpmq5bmVDksqYL9XABODh48KF27dpWtW7dKy5YtpUuXLvLyyy8XeI/ex999993y2WeflWwQ8eCDD8qcOXOkcuXKcuONN8qpp54qFStW9OkAAAAAAHIi/OPZZ581AcR9991nftYH+icGEXoP36pVK1m4cKHP+/EpiJgxY4ZUqlRJVqxYEbBR8AAAAAC48+mnn5rB5Z555pm88SK8ady4sSxatEhKtIfYoUOH5PzzzyeAAAAAgH+rMwVqChO///67nH322RIZ6Xybr0nV2vWpRIMIbX0o7MAAAAAA14nVgZpKuQ8//FCuuOIKqV+/vpQvX95UU3ruueckM9OeO+NNXFycHDlypND3bdu2TZKSknw+Xp9O6fXXXy/z5s2Tw4ftyagAAAAAimb8+PESGxsr48aNk9mzZ5v77YcfflgGDRokbjRv3tykHKSmei9eovbv3y+//PKLnHnmmVKiQcSoUaNMtvcll1wia9eu9XnnAAAAgBHm3ZlmzZol7733nvTv31+6d+8uDz30kJmmTp0qe/bsKfJ2rr76ajlw4IAMHz7cjAfhzf3332+qrfbr169kE6u1D9WXX34p5557rsns1mYXnbx1cdKEDh1LAvDmuVFfWE9M1vI/rMtyDhy1Lst1KB1pExHlEE+X817aMsIy33DYXkS09/VyHcqJikP1yogYexlAW6lHp7LMmcfcNZv+b0fWRU5JXVGW83TU4RhsZSgL41Su1aZ21fLWZfsspUHjHK6LZIdyjuUdSqjattmwRqJ1nXXbD7k+705lUp1KvNo+k2yHUq1OJVRtZVxVlkPJU7claFVVhzK5NrGWv2EnTp9HkkPJU1uZZqe/Y6cSzpEO16fT94Ivn2MFy+cYGeHbZ799n/2pakVLOeEjPn6XxFrOk1Np4gyH8rS2UrO28s2FXbf1q9i/m1B2nXLKKSfNa9u2rXnVMdlq1KhRpO0MGTJE/v3vf8sbb7why5cvlyuvvNLM37Rpkzz//POmQNJPP/0kZ511lgwcOLBkgwhNrL7wwgtl9erV5ktHy0jp5PYGAgAAAPjfTWPgWgx83O66devMgGx6M66T9sDJzs6WJ5980nQ1KozesE+aNMl0HTp+/Lg0bdpUbrjhBrn33nulXDn7WDoeCxYsMA/vmzRp4ionQh/2X3PNNWa06pUrV5r5Ws5VJ713b9++vXzyySdFOga/jxOhfa10fIi77rrLvCYkJEioKu4FcCK9CLXsll4YycnJUqtWLbnsssvkkUcekerVqwfkdwAAAIA7r7zyikycONGn03bPPfeYdaOjo6VHjx7mXvm7774zaQHadUmDk/j4eOv6a9asMevffvvtkphob3n2Ru8tNWDQYELzKzZv3my6NtWrV8+kI/zlL38p9oP+aF/rz2qTyo8//mgGqwhlxb0AvGXeX3fddZKVlWWiwEaNGsmyZcvkpZdeMsGKfuAapAAAAISViABWUfLxfllzgHXQtjZt2piyqWPHjpW333670PX0Kb/eP+p94/z58826noRmvZ/U+z19eKzJ1N7o+/r27WvuCfXBs68uuugiMwWCTx+VPj0/77zzQj6AyH8BLFmyxERzH330kWzYsCFvlD+9AIpK+7MNGDDABBCvvvqq6Y/2/vvvy/r1683I35o0o5n4vvRLBQAAgH9pZaR//OMf5v5Mqx4VdYiDsWPHmtfRo0fnBRCqWrVqeaNH6wNkvac+kZZn1dYC7f3yxRdfSIUKFaQ08imI0KgoPd17UmEoKc4F4M2ECRNMJvwFF1xgmqY8oqKiTHOZ1updunSpad0AAAAIKyVQnSklJaXAlJGR4fdfY+fOneZ+TmnwcaLOnTubbkW67zlz5hRYpvO0q5HmGuvD69q1axfrWDR/Y+/evWZMCNtUot2ZbrvtNpMXsWPHDqlbt66EoqJeANu3bzcXgHZRKszMmTOt29PWjj59+pgmso8//jhgTU+BdF/CMOuy9ambvM4vH2XvCtYwvoF1WYU4ew5ORJz3PJWIOHsFFImJdt8C6mtfQtt6DlVYIhwqoIjDsmxLNaCoBIdcHoeWsKhY7+cpy6HKiWMlKMt61RJjfaqoElnOfg5zLMdx2KGCkBNbxaTqle3XdLxDdaZDR+3/ITu1hvfBgH7ZtN9+fE7VnizLnKoz7Tl0zLqsquXzinaoUnboiP33zXaoLmSrBnQ03X7s8Q7nIqmC92P/fXeK/Rgcfi/buXVa54jDdZHl8JnY+jNnH7OvE+vwN2L727JVWVIpDsdey/K3cPDocZ/OhdM1bTsOp+pRMQ7fubbVnL5/nKoz2apHVa1o/66r5LAMvtN7t/wee+wxGTNmjF9P6cr/JTJXqVLFdFv3pl27duYeUt/ruYfUG34t76r3n9p1vlmzZj4fg27j0UcfNV2pnAIl/R7RHjIlFkT87W9/M917tE/Xiy++aCo1hdoI1r5eADbaNLVx48a89Wzb0yDCs28AAICwUQLVmfS+LX+Ssg7u5m9btmwxrzr8QWHBjOe9ntKs2pVeKz9pQKG5xx4tWrQocnK1rqf36J5eQ5p+4DYxO2BBhKfMlDa19O7d2yQdaxa4bZwIrUtb1vh6AdjkL4Fr22ZRt6cRZf6oUpvjAAAA4ExvpgNxQ33ig2PllMvgqWqa/x5O8x+U5tuemHM7d+5c6datmxSFtq5oAHHrrbfKU089VeTxJUokiMh/Q6xdFTIzM619qsrqOBG+XgCFbc9pm0Xd3tNPPy2PP/54ofsEAAAoM/RZdKA6tpSBDjNbLWOuuaW9hbQr1Ouvvx7Q+3CfgoiiPHlH4DzwwANmKHMPDTpO7OMHAACAklexYkXzmppqH2X96NGj5jUQrSKa46CjUQf6Qb5PQUSDBvaE11Dh7wvAsz3PNrUSk6/b0/57gejDBwAAECx60xuoG9+S7BnTsGHDvPwLG88yz3v9SUvR6jgTgVYGGneCw98XQP7Ay9b1K5AXFAAAQLjTgX41SXnSpEkB20ebNm3M64EDB6y9d3SgYZV/CAF/0WEEvv/++4DnJPvUEhEOTrwAvFVocnMBaOuCjq+hFZp0PR2srjjbK43GH3U/LPxzj31tXZb1ww7rspxke7nJ3DRL+UCHUqO2srCGrTSjQ3lA6zpOyxzKWjoNPxjhsF5kvPc/8dxshxKalnXMvmwPcmLsv6/TvqKjIlyXXkx3KKOYfdy+LKqi932Vc9iXUylKW9nQHfvsrZfRDuUmsxzO0/Z9f7ZSnqiCpWxkYdIt58mpfGXdU+z5YQeSvY8bdMzh87CVhS1OaVibGEs5XrX7YKrrz75xrf9vWT7RXksp3HhLeeTClmVnuL/eYxxKgx5zKP9as1p5r/PTHMrnOl3Tew6nuy7V6nQunL4Xjlp+L9u1XhhbeVqn7TllM9quaae/kRqVvH8eIa0EqjNp6dNAJ1bXrVvXBCu6r+nTp8tDDz1UYLkOVqwPjrVXiRYoCkQQsXjxYlM9Vccz02EDdEyyoLRE9OrVS5577rli7UiH9dbtlBWeC0DpBXAiXy6AK664wro97co0a9Ys8/OVV15ZzKMHAABAsDz44IPm9ZlnnpEVK1bkzdeH04MHDzY/33333V67txdX48aNzfgQmqh9+eWXS/ny5U0vF51/4uSpuBqwIOKbb76RX3/9VYpD1//2228l1C8AHVBO+6L17NnzpO3dc8895oPU86kZ8x5aC1i3d/jwYRO4lKVgCwAAoIwMWO2a3v917Ngxb5o9e7aZ/+qrrxaY/8cffxRYr2/fvjJ06FDzkFiXX3LJJXL11VebXimrVq2STp06mfEgAkGDB0+lp/xVVD3zT5wC3p1JT0Jxhsb2JA2XJZ4L4IUXXjAXgAYGWp5VgyG94fd2ASQnJ8u6devyBvjIT4cunzJlihmYTpua3nzzTRMZanPX5s2bTR1fbaUoq2VxAQAAQolWwNSSqSfasWOHmTy8jQo9ceJEc6+o+Rc//PCDuZnXJ/+jR4+We++9V2JiYgJyzCVVRbXIQcRHH31kpnDj7wvgmmuuMc1HY8eONUkvOjq1DtSnoxTqwCKBGhAEAACgNPuzxSBQ1Zl8W08HeNOn+b669tprzVSSSqqKapGCCB1hOZyfjru5AAYOHGgmJ23btg3LgAwAAAChIbokR9ADTjTi8Qv9flJmL/delve3D+15PTlbk63Lci0VRnIdKtk4llOyVDOJcKr25FABReLsf8Y52d6PsVx5ewtarmUdw1bdweFc5Dgsy7BUWsp2qDgV51Bpp1x5e7WiCpbzFOnwgKSupVqNU8WaKIfP6qhDlZtaVbxXg3GS4VDZpUFNe/WRHZZqT04Vk45l2I/dxml7TlJSj/tQvcd+fNkO13TqMe/n8JSkOOs6sdH2a9D2+TtVJHL6fWMqxLj+28p1+PuJibUfR6Zte9Y1nCtpRVqe3tr+7v/cnv3vJ9qH6jJO27N9J6iUY5ne13GoHlXJ4bOyVT5zqm51+Ki9Ell1hwpcZVoJjFituadaqUh7gOgU6l2xpk2bZnrS7Nu3z3TLHzlypFm2fv16c3/fpUsXiYuzf985ocQrAAAAwkJJlHgtDb766iu5/vrr5dChQ6Y7lvYoqlOnTt5yzd/V3N93333X5+5WDDYHAACAUjNidaCmcLF27VozrIAW+7nrrrvk/fffPymvQ8eO0Iqhn376qc/7oSUCAAAACBFjx441VUJnzJiRN/ZYv379CrxHCwOdddZZ8ssvv/i8H1oiAAAAEHylcaCIMmju3LnSunXrQgcv1oGVTxzfwg2CCAAAACBE7Nu3T0477bRC35eVlSWpqak+74fuTAg5l7at52q+r16Yuty6LPPXfdZlufvTXFWBMhwqeERUsFckioj0/pwgwmF7UeXsXwuZaZYqMpb9mEUO1VHKO1Q6cV+dRyTSoXJTqqUyUlWHKif7ku2fSYylKk22w7nNcqgSlHzUXqGnQY2KXucfjfJeQUZt2HHYuqyyD5Vdtu6xDxjasEaC69/XqaqPrUqQSrRUwKnoUJnLqbJUrEPVJJvf9xxxvU6qpdqP0++ksrPslYzEUv3IqcJausN1lmip2nY80749X57tOlUwc/r7PpJmP4e2TZaLifbpOrNVYXKqHOfkqOXzr1Otgk/bC1WBbDAIo4YISUpKkp07dxb6Ph3ouHr16j7vh5YIAAAAhAUt8dqiRQsziHCoOvvss2X58uWybds263tWr15t8iHOOeccn/dDSwQAAADCoikiHEq8Dho0yJR4ve6668zgxjVr1iywfP/+/eY9WrFJX0u0JeKLL77weYcAAAAAAuPqq6+Wa665RhYvXixNmjSRXr16mfmLFi2SPn36SOPGjeWnn34y40hoqdcSDSJ69+4tzZo1k4kTJ5rR8AAAAIBiiYwwOXuBmJxyC0PR9OnT5YEHHjA/f/PNN+Z1w4YN8vnnn8vx48dlxIgRMmXKlGLtw6fuTKeffroZyGL48OHy8MMPy4033miGDm/ZsmWxDgYAAABA8URFRclTTz0l9913nyn5qknUOTk5Uq9ePenZs2exEqqLFUT8+uuvMm/ePHnppZfks88+k1dffVVee+016dKli9x9991mlLxIh2otAAAAwEnCq8Eg4CpXrlzoeBElnljdrVs3M2kJqX/961/yxhtvyPz582XBggVSu3ZtufPOO+Wvf/2rXyIdoDQaenNbv27v/YVbrMt2LHco1eZQQrVVh7pe52c5lClMiLN/Lew6eMzr/H0OZRmzj2e7LqNYNSlOfJGZai9fWaFqedclG09xOI4DKRmuv1SdqkM6fSa7Dniv4924dpJ1nWpJ8dZluw96315WtsO5SLSXhbWVcq1ZxV6+Mt2h7Gq6wzWTEOe9lOvh1AyH48t1XXrV6fPIsZRWVZUTvJ+naolxrj9fFeGQZBpl+fvJciiFGutQTjYm2vvDvwbV7Z/jXocyyLa/Laffae8h798xhZUmbl6/ktf5a7fZSx07fIwSEeFQWtci2uG72Om7BCiril2dqU6dOvLkk0/Ko48+Kh9++KFpndBEDv23ztfEDm2dKE4JKQAAAIQ2DTCdgszibjsc/fDDD7Jx40avy9q1a2fK3Qa9xGu5cuVMKSkNGjSAeOaZZ0zixjvvvGOSO8477zwZP348wQQAAADgR23btpX169eb/AcNDjxef/11mTp1qtd1zjzzTFm5cmXwg4g9e/aYvAiddu3aZea1adPGlJV69913TVmpzp07m3q1Wl4KAAAAKMkRq3WwOU061oJAOoWCb7/91gQDt912W4EAwkPHg9Bk6vx27Ngh//3vf+W7776THj16BCeI0GYS7cL08ccfS2Zmpkmo1gSOYcOGmaBBaXa4Jl8PHTpUxowZQxABAACAEheKg8198sknprvWvffe63W5Lvv6668LzNu6dasZQ0If7pdoEJGenm66KemQ4TpktkY4mv2tidQa1Wn5qPw0sLjrrrtkzpw5ebVqAQAAgBJtighBP/30kzRo0MBVfkPDhg2lVatWZl1fRfuaTH348GETPJxxxhmmhUHHioiPt1cDUTVq1DB5EgBO1q9zI/tpcVpWCuw9Yq+M883KHdZlF55Vx+v8bQfTrOvUr+K9ypJa/PMf1mVVLZVdjjlUAkp1qCCUGF/OdbWnWgkxPlUQyrZUP9q8K9m6Tu2q9oo6aenef6/yDpW5qiXaz3ucpUpQskPFJCdxMVHWZU5VmGyOZ9o/45qWql2HHa7pGpXLuz4+pwpMTufdDJLlQzUym3SH3yvNchy2qk2FfVYZmd6v29hy9u1Vr2y/j3D6TBrU9P5kuWlt+xPnTbvsg+WmpHk/t3Hl7L9vQlys68/Y6e/+aLq9yhaQ36ZNm0zusTd6r25z6qmnmhyKEg0iNIC47LLLTPBwYh8rJyNHjpSbbrrJl10CAAAghFGdyTcpKSmSlOS95LcODK1Fj7zRh/9Hjhwp2SBCh81u3Lix6/VOO+00MwEAAAAovoSEBElOTrZWYNLJ1ihQvry9ZTUgQYQvAQQAAABgpT3d7L3diidQ2y0FatWqJT///LPr9XQdXddXIXxKAQAAgNB23nnnyc6dO2XBggVFXkffq2VeO3Xq5PN+CSIAAABQanIiAjWFqhtvvNEkUA8ePNjkRxRG8yD0vXpOrr/+ep/3SxABAAAAlFFdu3aVCy+8UNasWWMGm5s9e7b1vTrcgg64t3btWlMcqXv37sEfsRpA+KpuKZ+qru/SxHVpWKcyrumWcqeqXHnvZVfV7kPHvM5vf9op1nX2HLKXmq1k+Z0PJKdb1zmSZi/ZGOVQyjOxgvfSsNWS7OUw0x3K07ZoUMXr/I0OJWP3p9h/r7qnJHidHxvtUP4zy152NSGunOsSqo4lch3K7rotGarWbTtkXVbBUvrX6fO1ldw16zmUULU9WY10WMep3KOtXOtRh+Mr77CvU5LivM7/46D3v0W1+0Ca63K8qrplX7/vtj+Vbd24quvrvWlt7xVw1NY9Ka7/9utZ/nZUpQT792rIKoFxIkJxxGo1ffp00zVp/fr1ZlBnHb/t7LPPllNO+fO/cfv27ZMVK1bIoUOHzPdA06ZNzTrFQRABAACAsBCKI1arqlWrypIlS+Tuu++Wd999Vw4ePGgGePY8bPA8QNABoPv3728GjK5UqZIUB0EEAAAAgo4Bq4tHx4p4++235fHHH5fPP/9cli9fLvv37zfLqlWrZlomdJy3Jk3sPQTcIIgAAAAAQkTjxo3NgNCBRhABAACAoGPE6rKF6kwAAAAAXKElAkCprOpkExdlf/aREGf/SqtkqXB0Wq1En6qjpGd6ry5Uo5K9gszho94rC/nKqYrVqu2HXB9HRYfqVk5slaBslZRUpQr2c3s0PdN1JSNbBSt13PJZqWOWY7fNd6rA5OR4lr2qmFPlJie2Sks5DpWvypW3n6dIS1Wc3Fz7se91qEZ28Ohxr/MT4u1/p8cdqq9lOpzDub/s8r49h3ViHSpLZVuOw6kC0x5LBThVo3K8+wpw4VidiRGryxRaIgAAAAC4QksEAAAAgo6ciLKFlggAAAAArhBEAAAAoPQMFBGoKUQtWLDAjFRd0ggiAAAAgDKqW7du8swzz+T9u0ePHjJu3LiA75ecCAAh45pOjYJePcrX7e09kuHX43CqEuULWzUqs8xSySjaoZJWhkMFoRb1K1uXbdt71PX2yjtU7fKl2lOlCvbqTLsOpHqdX9nhM8xyqEiUZTk+ZSnOZK2ypMqVc/hMLJ+x9lO3qeLwe+VYDtDp+Jo4VEvbn2KvBFX3lAquq2w5VQjLiM12XSGqamKcuOVUPSrRx2ppZVlJjFjdvn17iYqKkiFDhpgpVOTm+3ubN2+eNGzYMOD7JIgAAABAWFi6dKkkJtqD1bKoYsWK8scff5T4fgkiAAAAEB5NESHozDPPlO+++04effRRadq0qZm3ceNGmTp1apHWv/nmm33aL0EEAAAAUEaNHDlSrr76annqqafy5i1atMhMRUEQAQAAgDIrIjLCTIHadqi6/PLL5aeffpJPPvlEfv/9d5kyZYo0adJEOnXqFND90hIBAAAAlGGtW7c2k9IgonPnzvLWW28FdJ8EEQAAAAg6bSsIWEqEhI/HHntM2rRpE/D9EEQAQClQkuVkfSkzW7+KvWRsuqVEaUpapnWdPYfTrMvWbDtkXVa3WoLX+YeP2o/dFwlx9vKaR9MzfSonaxMfa18nx6EEaDkfSoDGlYuyLjtyzPvvlVjeXu72cOpx67KYaO/lZLOyc306t3VP8f7Zqx37vJf+jYux/76+lEjeuifFp+OzlUF2KjPr9PcT5+fvC4ReEFESCCIAAAAQfFRn8qusrCz58MMPZe7cubJz504zr06dOtK9e3eTiB0dXbwwgCDCi71798oXX3xhJq0nvH37domMjJT69etLr169ZPjw4T4N4qHraMKLzTnnnCM//vij6+0CAAAAHj///LMJFLZs2VJgIDr1xhtvyCOPPCIzZsyQs846S3xFEOGFBgnvvPOOCRxatmwpffr0kdTUVBNQvPjiiyZRZebMmXLhhRf6dNKvuuoqSUg4udlTM+kBAADCkY6O7jRCenG3HS527dplHnrv379fatSoIf3798+7x9y8ebO89957smnTJrnoootMsFGrVi2f9kMQ4UWVKlXk8ccfl9tuu800+3gcPXpU/vrXv5qTrx+IDuRRuXJl1yd9/PjxJTIcOQAAAMLLs88+awKIQYMGycSJEyU+Pr7A8rFjx8rQoUNNi8S4cePkn//8p0/78Z71FOZeeOEFM+pf/gBCaevBm2++aYYXP3jwoMyePTtoxwgAABB65ZkCOIWJ//znP6YL/iuvvHJSAKHi4uLk5ZdfNu8pzr0sLREulS9fXpo1aybLli0zuRIAECpKskKU07JtB+2Vm2ziHCocZWRlW5dFR0W63l6lBPuxp2d631dyqr16VGy0vYJQxRr2ij9RlsGzck7o/5xfOUvFJNW6cVWv83cdSLWu07hWReuyw5ZqXxXi7VWl0o/bP6vfd9srIzlt08bpM7ZV+3KqpuTL8TlVAUv0ofoWoPT+9IorrpCoKPt3iyZVn3vuuWaAOl8RRLiUmZkpW7duNT/72ods8uTJpiVDs+Zr164tXbt2lS5duvi0LQAAgFDAiNX+ERsbKykp9qDW48iRI+a9viKIcEm7M2k/M20euuSSS3w66U888cRJ89q3by/Tp0+Xpk2bFrp+RkaGmTyKcqEAAAAg9LVo0cKUddUWiXr16nl9z7Zt28x7ilOdiZwIF1atWiX333+/+VlLY2nGuxuXXnqpCRQ0IfvYsWOm7NbUqVNNnzSt/NStWzdTXrYwTz/9tCQlJeVNtgsEAACgrCiJlAh9aKs32ZMmTZJQdfPNN5v7zAsuuEDmzJlz0vLPP//cVBhNT0837/VVRO6JxWPLuJEjR8pnn33mej3NUO/cubN1+Y4dO8xyHedBS75qHzJ/lQvTrk1t27Y13aSGDRsmEyZMcN0SoYFEcnKyJCYm+uWYAKCobCNWx1nyDQrjlBNhG3HZlotQWD5CpmVE6GpJ8a6PIRA5ET/+ttevOREVHXIHWtSv7DonompSXInlRGRbrrPCtmnj9BnbRph2sudQml9zIupXt+fD+Pq35Y3eQ+gDyWDeQ3iO4eVPV0h8BfvvXRzHUo/K4L+cHRb3StnZ2XLxxRfLt99+a+5Vtepoo0aNzDJ9gK33nXr7r0GGjommQxr4IjoUa+OuW7fO9XpavtVm9+7d0rNnTxNAaE3dDz74wK/1hvXDveeee8w0a9asQoMI7b9WnD5sAAAApXPA6kCNEyFhIyoqylRd0kqjWoXpwIEDZspfbXTIkCFmOANfA4iQDCKmTZtmJn/R7kU9evSQ9evXm4hNWyACcQN/+umn57V4AAAAAL6KiYmRZ555xgQKWlF0586dZr4OX9CuXTu/3MuGXBDhT/v27TMBxNq1a01LhHaT0tq6geCJEHUMCgAoS/zZtULVr1LeumyvpYtMdYduNU7dj2ylPJ3s2H/Upy4yNkfTM63Lru3S2Lpsb3K669/X6dgPW7pcOXVZSnIoebr7gPfuPVEO10tcjP3YExz++2sr43vMoVvS/uRj1mVZlq5TGQ7drWpULu+6LLDT5xG+LRGB23Y4io2NlU6dOgVk2yRWW2gFJg0gfv31VxNAaDcjbwN2+IuOgq06dOgQsH0AAAAA/kAQ4YUmnGjgsHr1atOFyU0Aoes1b95cZs6cWWD+p59+KsuXL/dao1dzITzJ4MOHD/ftkwQAAAiBlohATfAvujN5MWjQIPnvf/+bl9F+1113eT15ffv2NVN+mzZtMgnYmv2fn9binThxoinn2qpVK6lUqZJJAv/555/l0KFDZuTA8ePHm6AFAAAAKM0IIiwtEUrLX2klJpuGDRueFETY6Pu0AtSKFStMgovuQ5NeNKjo16+fDB482AQXAAAA4Sjif/8L1LbhXwQRXsybN8/nE6pjPXijA8npBAAAAJR1BBEAgDKjekX3ZQnjHNbxZXtOA5HZltWoZK/c4zRQ3tJ1e10PYGYbNE7VrWYfyGvrnhTx57moWbW864pJTsfn9Fn9tHGf1/lnNqrq07ltVq+y63PkVGXLtsxpcD1/Vz0rEwKZu0BDhN+F4RUKAAAAhKZt27bJ9u3bA74fgggAAAAEHdWZ/ENzdvv37y+BRhABAAAAhIjExERp1KhRwPdDTgQAAACCTkvr6xSobYeLFi1a0J0JAAAAQNH99a9/lUWLFsnSpUslkOjOBAAAgKCLCPAULm655RYz/livXr1k7Nixsm7dOsnIyPD7fiJydUQ1lGkpKSmSlJRkRsnWfnAAgMBJz87x6/a27T3q03r1qye4Ll3aoKb9vxFx5aK8zt+4K9m6TtPaSeKWU0lbx/UcSsM6lVe1SYjzXiJX7TqQ6np7VZPirMtsZW0b1rB/Honly5VI+dfScA/hOYY3//OzlK9QMSD7SEs9IrddclZY3CtFRXn/W7Z188rKsv9tOSEnAgAAAEFHToR/uGkfKE5bAkEEAAAASk2J10BtO1zk5Pi3tdSGnAgAAAAArtASAQAAgKALZAJ0GDVElBhaIgAAAIAQs2nTJhk5cqR07txZmjVrZn72WLJkibz22msm0dxXtEQAAOCCPyvjqNNqJfq1EtT5LWpal+09Yi/zePio92VnN61mXWeDQ+WmGpXKS0mxVVo6nJrhU0WnxAoxXudnOXwemVn2ZZUqxLquVFU9yvs6oawkEqvbt29vqhcNGTLETKHq3//+t9x55515pV3199+/f3/e8rS0NLnrrrskJiZGBg4c6NM+aIkAAABAWNAB2NasWRPSAcSPP/4ogwYNMgHCuHHjTKvDiVWYunbtasrqzpo1y+f90BIBAACAoKM6k39o4KBBw+zZs01XJm8iIyPlrLPOMgGVr2iJAAAAAELEokWLpEOHDtYAwqNmzZryxx9/+LwfWiIAAAAQdAw25x+HDx+W+vXrF/q+Y8eOyfHjx33eDy0RAAAAQIioWrWq/P7774W+b+PGjaY1wle0RAAAECaVoBLLe69i5CQlzV7FKDY6yrpsz+E0r/OTLJWKClMpIdb1vpw4VVqyiXb4PKolxVuX7T6Y6nV+JddHENoYJ8I/OnbsaBKmf/31VznjjDOsXZ50+Y033ujzfmiJAAAAAELEkCFDJDs7W6666ir5+eefT1q+du1aufXWW033scGDB/u8H4IIAAAAlJrqTIGawkXPnj1l+PDhsn79emnbtq2cdtppJmD48ssv5cwzz5RWrVrJhg0b5P777zetFr4iiAAAAABCyPjx4+XVV181OQ+a+6AlX7US0+rVq6VKlSry4osvyjPPPFOsfZATAQAAgKCLkACOWG0yLsLLX//6VzPo3MqVK2Xz5s2Sk5Mj9erVM6N2R0cXPwQgiAAAAABCUEREhJx99tlm8jeCCAAAAAQd1ZkCQ7syHThwwLxq+VcdrdofCCIAAAgTTiVj4yp6L6Ga7lAKtbplHSd7j2RYl63bfsi6LMrh2I9nZnudn5llP/akhBjrsrT0LHGrXLT9+GpWqeB1fnKq/VwAxfX111/Lc889JwsXLjQDy6m4uDg5//zz5d5775WLLrqoWNsnsRoAAABBR3Um/9HKSxdffLF89dVXkpaWZlohdNJgQuf17t1bRowYUax9EEQAAAAAIWLatGmmBUJbHTRQ+O9//ytHjhwx06pVq+S+++6T+Ph4mTBhgnmvrwgiAAAAUCqSgAM5hYsXX3xRoqKi5IsvvpB//OMf0rJlS6lQoYKZdATrcePGmWV6Tl566SWf90MQAQAAAISI1atXS+fOnU3ug41nub7XVyRWAwAAIOgCObJ0GDVEiHZjql27dqHv0/fExNgLDBSGIAIAANhvSByqIvki3VJJSR13qKZ03KFiUlIF7zdCMeWifKrAlJrhfVmMw7nYe+jP6jfeHEnL9Do/OfW4dZ1W9SpblwFO2rZta/IgCqPvadeunfiK7kwAAAAoHSNWB/B/4eKhhx6StWvXmtwHG82V0Pc8+OCDPu+HlggAAACgjFqwYEGBf2vC9N133y0PPPCAzJgxQ2666SZp1KiRWbZlyxZTkWn58uUydOjQYg08RxABAACAoCMnwjfdunXzWn1Kx4XQYGHFihUnzVcvvPCCqeSUleV+cEVFEAEAAACUUV26dAlKCVuCCAAAAARfAKszhXJKxLx584KyXxKrAQAAALhCSwQAACgx9auU92m9dEvZVbV931Gv86Mi7Y+fncq/2tY7cCTD9TqFLcP/i5QIMwVCoLYbzggiAAAAgBCTnp4uy5Ytk127dpmfbW6++Waftk8QAQAAgKCjOpP/6DgQY8eOlZSUlELfSxABAAAAlFEbN26U8ePHy08//SSrVq2SOnXqyNatW11v56WXXpJRo0aZn1u1aiWnnnqqVKxY0e/HS0sEAAAAgi7cWyJ+/fVX+fzzz6VDhw5mLIdDhw75tB0NIqKjo+Wjjz6Syy+/XAKF6kwAAABAkF1++eWyY8cO+fjjj+Wcc87xeTvaeqFjRwQygFC0RAAAgDJdual+9QSv8/cm25NJd1gqOqnsnD9H9D1R1Yqx1nWcKjclp2V6nd+4lv+7mJRlOmBaoAZNC8ZgbG5FRvrn2X716tXllFNOkUCjJaKQC9k29e/f36cTnpOTI6+++qqJMLV/mk7682uvvZY3DDkAAACCb926dfLiiy/KwIEDTX6BdhPS+8C///3vRVp/xowZ0q1bN6lcubJUqFBBWrduLePGjZPMTO+BpT9ccsklsnjxYnPPGUi0RBRiwIABXuf70syUnZ0t1157rWmmKl++vPTs2dPM/+abb+SOO+4wr++9957fIlEAAICyQtsKStuA1a+88opMnDjRp3Xvueces64GHj169JCEhAT57rvvTNLzrFmz5KuvvpL4+Hjxt8cee8xsf+jQofL8889LTEyMBAJBRCGmTJnit5OtkawGEJpt//3330ujRo3M/C1btkjnzp1NtKp92O6++26/7RMAAAC+admypdx3333Spk0bOfvss03Z1LfffrvQ9T755BMTQGjgMH/+fLOu2r9/vwkoFi5cKI888oipxuRvtWvXNtvv06ePNGvWTLp37y7169f3+pBaW1X0OHxBEFFCtEnp2WefNT/rqyeAUPqzzrvpppvk6aeflsGDB9MaAQAAwkppzIkYNGhQgX8XtbfI2LFjzevo0aPzAghVrVo1efnll+X88883VZT0Bj4pKUn8SbvHawDz22+/mftPbw/E9Xzo+wgiygDtm7Z7926JjY2Vq6666qTlOu+2224zowouWbJEzj333KAcJwAAQKg6cfA1vS/TyZ927twpS5cuNT9ff/31Jy3X3if16tWT7du3y5w5c+S6667z+0Bz2vtFu1FddtllZpwIbRHxN1oiCqF9yXTwD43UtCnowgsvLBBRFtXKlSvN6xlnnCFxcXEnLdc+cbpM36cTQQQAAEUTFxXputqTL5Wg0rPtiarb9tqrPcXFer/diisX5foYQllJjBOhN+8n5g+MGTPGr/ta+b97vipVqhToeZJfu3btTBCh7/V3EPHGG2+Y3FvtOq/dsAKFIKIQI0aMKPBvbZa6+OKLTdNQjRo1inyiNe9BaSBioxe2Xkye99pkZGSYyaMoQ5oDAACEO71xT0xMzPu3v1sh3Nzz5X+vSktLMy0TavPmzebfH374ofl3+/btpUGDBlLU31ErQgUygFCUAbLQ5idNitEBO44dOybr1683fdeqVq0qX3zxhWmRSE+3158+0ZEjR8yrlvey8TQ1FRYUaN6E9p/zTCdG1QAAAGW1JSJQk9IAIv8UiCDiiI/3fHv37pVrrrnGTF9//bXs27cv799z584t8v5r1qxphhAItJBriRg5cqR89tlnPjX9aB81j3feeafAcu1PplPv3r1NZLdq1Sr517/+Zcp3lbQHHnhAhg8fnvdvvQAJJAAAAMquhg0b+mXMsCuuuELeffdd87DbWxd6fwm5IEITk3VgELeOHrX3ZcxP+7bdcsstMmHCBFODt6hBhCciTE1NLfQY8jezeROIJCAAAIBgivjf/wK17ZJS0Y/3fL7QHI8vv/zS5Fq8/vrrpiJUIIRcEDFt2jQzBdLpp59uXnfs2OEqulTbtm1z7MOW/70AAAAoWxr+7z7Oc19X0vd8+oBbx4fQbvk6uF3btm0dx4l48803fdpPyAURJeHAgQPm1U1/M09Fp19//dVr85LmXeiy/O8FAAAIFyVRnUkTlKOiomTIkCFmCoQ2/0to1vtFTZz2VqFp2bJlAbvn0+I/nnExND9j3rx51vcSRJQgHbTjgw8+MD936NChyOtpyVZNdNGxIj766CO54YYbCizXecePHzejDJ5zzjl+P24AABCYUrLqtFr+75YC/9PxGwLRhSi/unXrmmBF9zV9+nR56KGHCizX0aS1JUK7pmuurb9NnjxZSgItEV5oUrXW79WmoPw0a37YsGHy888/S7ly5eRvf/vbSevefPPN8tNPP8ndd99tJg9tQho1apTce++95vW8887Li0w1StXSsZ6k6aKOhggAABAqSuOI1b568MEHTYLzM888I5dccklei4O2TgwePNj8rPeJ/h6tWg0YMEBKAkGEFzNmzJAbb7zRVGNq0aKFKdGluQwaPGgijA7goU1FntyI/PR9mti9f//+k5Zp0LFgwQKZOXOmtGzZUi644AIz/5tvvjG1gK+++uq8CwsAAADBtWLFigL3Zps2bTKvr776qnz++ed58/XerlatWnn/7tu3rwwdOlReeOEF6dixo/Ts2dPcT3777bdy+PBh6dSpkzz55JNSlhFEWCI4zXfQoGHRokXmw9YRpZs2bWouAu1DZxuB0In2wdNBQzRTXkvK6oWkdKTq2267TW6//fYSj5QBAADCJSfCLS2jv2TJkpPm79ixo0CBnfyDAHtMnDjRBAuTJk2SH374QTIzM6VJkyam94n2TImJiZGyLCLXHwVpEVR6gWtzWHJycsD7+QEAgNBRGu4hPMfw5dINUiEhMIOkpR49Ihe1PzUs7pVuvfXWIr+XxGoAAACUaaGUExFM2uW+KOdC2xEIIgAAAIBClESJ12CzVWfSCqO///67zJkzx5SY1fEkWrdu7fN+yIkAAABA0Onz8UC1F0SUYInXYCusOpOOaD1y5EiTo6uJ476iligAAAAQRsaOHWuKCD366KM+b4OWCAAAAARdaazOFKqio6PN2BU6zICvaIkAAAAAwsyxY8fk0KFDPq9PSwQAAACCjupMJWft2rWycOFCqVevns/bIIgAAAAAQsTUqVOty44cOWICiLffflvS09Pl+uuv93k/BBEAAAAoFQKduxAOJV4HDhzoOC6GZ5zpv/zlL/Lwww/7vB+CCAAAAISFcCjxevPNN1uDiJiYGKlTp45ccMEFct555xVrPwQRAAAACLqI//0vUNsOF1MKGbHaX6jOBAAAAMAVWiIAAAAQdIwTUbYQRAAAAAAhWI2pqDkUviCIAAAAQNAxTkRgqjEVhiACAAAACDM9evRwHUQsXrxY0tLSihV80BIBAACAoCMnwjfffPNNkd/7/fffy8iRI+XYsWPm361atfJxr1RnAgAAQJjQweZatGghkyZNknCyevVqufzyy6Vbt26yZMkSqVevnikFu3LlSp+3SUsEAAAAwqIlIhwGm8tv+/bt8sgjj8g777wj2dnZUrVqVXnwwQfNaN068FxxEEQAAAAAIeTQoUPy1FNPycsvvyzp6elSvnx5GTZsmIwaNcpvQRRBBAAAAIJOGwsCN2J1eEhPT5d//vOfMm7cOElJSZGoqCi5/fbbZcyYMVKzZk2/7osgAgAAACjDcnJy5I033pAnnnhC/vjjD8nNzZUrr7xSxo4dK6eddlpA9kkQAQAAgKCjOpNvPv74Y3nooYdk/fr1Jnjo2rWrPPvss9KhQwcJJIIIAAAAoIy6+uqrzXgPnryH3r17S1ZWlvzwww9FWv+8887zab8EEQAAAAg6RqwuHh087umnnzaTm3OuAYcvCCIAAACAMqp+/frFGnnaVwQRAAAACDpyInyzdetWCYbIoOwVAAAAKGHhOmJ1INASAQAAgKDTMSICN05ERFiOWB1ItEQAAAAAcIWWCAAAAAQdORFlCy0RAAAAAFyhJQIAAABBFxkRYaZAbRv+RUsEAAAAAFdoiQAAAEDQkRNRttASAQAAAMAVWiIAAAAQdLRElC20RAAAAABwhZYIAAAAhMWI1fAfWiIAAAAAuEIQAQAAgFKTExGoSbVv315atGghkyZNCvavW+bRnQkAAABhYenSpZKYmBjswwgJBBEAAAAIvogIiQjUyNKMWO13BBEAAAAIOkq8li3kRAAAAABwhZYIAAAABF1EALszBaybVBijJcKLMWPG5F3ITlPjxo1dneyGDRs6bq9jx47++lwBAACAgKElwouzzjpLBgwYYD1pn332mRw6dEi6d+/u00m/6qqrJCEh4aT5TZo08Wl7AAAAZZ22FQSqvYB2CP8jiPCib9++ZvJm165dMm3aNPPzbbfd5tNJHz9+vGmVAAAAAMoiggiX/v3vf0t2drY0b95czjvvvMB8KgAAAGGGnIiyhZwIlyZPnlysVggAAACgrKMlwoXvv/9eNmzYIOXKlZObb765WIHIwYMHJSsrS2rXri1du3aVLl26+Lw9AACAso5xIsoWgggX3nrrLfN62WWXSfXq1X0+6U888cRJ89q3by/Tp0+Xpk2bFrp+RkaGmTxSUlJ8PhYAAADALbozFdGRI0dkxowZxerKdOmll5pAYePGjXLs2DHZsmWLTJ06VerXry9Lly6Vbt26yd69ewvdztNPPy1JSUl5U7169Xw6HgAAgNJWnSlQE/wrIjc3N1dCyMiRI00JVrfeeOMN6dy5s+Pyv/71r6b70bZt2yQqKkr8Rbs2tW3bVrZu3SrDhg2TCRMmuG6J0EAiOTlZEhMT/XZcAAAgtOk9hD6QDOY9hOcYVm/ZJRUrBuYYjhxJkZaNanOv5Ech151JS7CuW7fO9XpHjx4tUlcmHT/CnwGEqlKlitxzzz1mmjVrVqFBRGxsrJkAAABCR8SfiRGB2jb8KuS6M+kYDtq44na6+OKLrdv87bffZPHixebnW2+9NSDHffrpp5vXHTt2BGT7AAAA4U5zUFu0aCGTJk0K9qGUeSHXEhEInlYIraJUlMRnXxw4cMC8VqxYMSDbBwAACPcRqzUHla7f/hFyLRH+pmVYNfk50GNDvPfee+a1Q4cOAdsHAAAA4A8EEYWYPXu27NmzxyT8XH311YWe0J49e5rRrGfOnFlg/qeffirLly/3WvVJcyE8yeDDhw939wkCAACE0DgRgZrgX3RnKmJXpuuuu07i4+MLPaGbNm2S33//3WT/5zd37lyZOHGiKefaqlUrqVSpkkkC//nnn+XQoUMSHR0t48ePlwsuuKA4nycAAAAQcAQRDrQFYs6cOX5JqO7bt6+pALVixQpZtmyZKesaExNjgop+/frJ4MGDTXABAAAQjkoiJwL+QxDhoEaNGpKZmenqhOpYD97oQHI6AQAAAGUdQQQAAACCL5DJCyRF+B2J1QAAAABcoSUCAAAAQUdORNlCSwQAAAAAV2iJAAAAQNCRElG20BIBAAAAwBVaIgAAAFAKkBVRltASAQAAAMAVWiIAAAAQdORElC20RAAAAABwhZYIAAAABB0ZEWULLREAAAAAXKElAgAAAEFHTkTZQksEAAAAAFdoiQAAAEApQFZEWUJLBAAAAMJC+/btpUWLFjJp0qRgH0qZR0sEAAAAwiInYunSpZKYmBiYnYQZWiIAAAAAuEJLBAAAAIKOjIiyhZYIAAAAAK7QEgEAAIDgoymiTKElAgAAAIArtEQAAAAg6CL+979AbRv+RUsEAAAAAFdoiQAAAEDwBXCcCBoi/I+WCAAAAACu0BIBAACAoKM4U9lCSwQAAAAAV2iJAAAAQPBFBDApImDJFuGLlggAAAAArtASAQAAgKAjJ6JsoSUCAAAAgCu0RAAAACDoSIkoW2iJAAAAAOAKLREAAAAIOnIiyhZaIgAAAAC4QksEAAAAgo+kiDKFlggAAAAArtASAQAAgKAjJ6JsoSUCAAAAgCu0RAAAACDoSIkoW2iJAAAAAOAKLREAAAAoBciKKEtoiQAAAADgCkEEAAAASk1ORKCmsmDjxo3Su3dvSUhIkGrVqsngwYMlNTVVSiO6MwEAAABBlpycLD169JDatWvLjBkz5ODBgzJ8+HDZs2ePfPTRR1LaEEQAAAAg6MI9I+LVV1+Vffv2ybJly6R69epmXnx8vFx11VWyfPlyadu2rZQmId+dac6cOTJmzBi5/PLLTWQXERFhph07dhS67vHjx+XZZ5+V1q1bS4UKFaRy5crSrVs3+fDDD4t1TBpd6nZ0e7pd3f64ceMkMzOzWNsFAABA2b1n7dGjR14Aofr06WO6Nn3++edS2oR8EHH99dfL448/bk7+H3/8UeT10tLSpHv37jJ69GjZtm2bXHzxxdKhQwdZtGiRXHPNNXLffff5dDz33HOPXHvttWY7uj3drm5/1KhR5sI5duyYT9sFAAAoy0pjTsS6devkxRdflIEDB0qrVq0kOjraPIz++9//7vcHx2vWrJHTTz+9wDzd32mnnSZr166V0ibkuzNdeeWVcuqpp8rZZ59tpvzRnZMHH3xQfvjhB3PBfPfddya5RWlzkl4Mzz33nHm97LLLinwsn3zyiUycONFElPPnzzfHo/bv328CiIULF8ojjzwi48eP9/G3BQAAgL+88sor5t7N1wfHEydONIGA3ufp/Z/eU+qD41mzZslXX31luit5HDp0SCpVqnTSdjQA0fyI0ibkWyLeeusteeCBB+Siiy6SU045pUjr6IeoF43SV08AobQ/mn746qmnnnJ1LGPHjjWv2rrhCSCUbv/ll182P7/00ksmsQYAACA8syICNbnXsmVL0/vknXfeMa0BN910k+sHx0uWLJEvv/zSJEdv2LDBPKD2PDguy0I+iPC1T5rmQ9SvX186derktYuU+vHHH2XXrl1F2ubOnTtl6dKlBdbPr3PnzlKvXj3JyMgw+wcAAEBwDRo0SP7xj3+Ye7fmzZtLZGRkwB4cV65cWQ4fPuz14XaVKlWktCGI8GLlypXmtV27dl5PWuPGjfM+zJ9//tnVNnW9Ro0aeX2PZ3+e9wIAAISL0pgT4YudPj441nyIE3MfsrOzZf369SflSpQGIZ8T4YstW7aYV22JsKlbt67pn+Z5rz+2qRdU/vfa6EWnk4cnik1JSSnSsQAAAOS/d8jNzQ36CQnkfYxn2yfuIzY21kz+tLKID463b99u3nvdddeZeTrInBYD0jKvni74mjtx9OhRufTSS6W0IYjw4siRI+ZVs+httI+bmwven9t8+umnzUVmC0IAAADc0PuUpKSkoJy0mJgYqVmzppzasEFA96P3WSfeKz322GNmKAB/2uLjg+M77rjDVIL6y1/+YvIltBuTDjan/7b1jgmmUhtEjBw5Uj777DPX673xxhummSiUaaK4XlQe2n+uQYMGplRssL4AwpEGe/oloE8SEhMTg304YYVzz3kPN1zznPdA0RYIDSB0LK1giYuLMzfTmo8a6N9Vy7Pm5+9WiOI8ONbKTFq9aejQoXL11Veb86LDCpTWqp2lNojQhGWtzeuWNvkUV8WKFc1rampqofsp6s2jP7dpa3rTAIKb2ZKn55zzHhyce857uOGa57wHQml4AKk3zDqFu9NOO02++OILKQtKbWL1tGnTTMTodtLB24qrYcOG5lWf7Nt4Rrz2vLeo29Sn1jaeZUXdJgAAAEqXigF4GF0aldogIpg8pbiWLVvmdfnmzZvzBv1o06ZNkbbped+BAwesidOe/eUvBQYAAICyo2GYPDgmiPBCs+M1yUdbIhYtWnTS8unTp5vXjh07FrkPoVZzat++fYH189NBR/SC0m5Kun83dB1NDApEvz5w3ksjrnnOe7jhmue8o+xoEy4PjnPDjP7KOm3fvt3xfcOGDTPvO/PMM3P379+fN3/58uW5CQkJZtmsWbNOWm/06NG5zZo1M68nmjlzpllP19fteOj2W7VqZZaNGDGi2L8jAAAA/G/AgAHmfu3JJ590fF/79u3N+/7+97+ftOz77783y2JjY3MPHz5cZj+mUptY7S9PPvmkzJ49+6T5ffr0Ma0NnijQM3pg/pEGf/rpJ1m8eLGceuqp0qNHD9O37dtvv5XMzExTHemyyy47abt//PGHSQjX1xP17dvXZNy/8MILphWjZ8+eJnNft6kVlnR0bD1eAAAAlF0PPvigXHHFFfLMM8/IJZdcktfioK0TgwcPNj/ffffdpSKp3VchH0Rs2rRJlixZctL8/KNCe6sGUL58eZk3b548//zz8s4775gRBTXoOPfcc82HriW3fDFx4kQTLEyaNEl++OEHE5A0adLEDIt+77335gU2AAAACK4VK1bk3fR77ivVq6++Kp9//nne/JkzZ0qtWrXC6sFxhDZHBPsgAAAAgNJGHyh379690Pdt2bLFa5L0Bx98YB4c//zzz3kPjm+88caQeHBMYnUZtHfvXpk6dapcf/31pquVtqRoy0nz5s1N1Lt161brunqB60ArtkmjZQTm3CsdSOfZZ5+V1q1bmycSlStXlm7dusmHH37IaS+EtgbqqKKXX365KWjguWY95Za55kvfuVdc84Hj9F2uU//+/QO499A3Y8YM8/2s39P6fa3f2+PGjTM3gggfeg0UZYiBhpYqS9dee63Mnz9fkpOTJS0tTVatWiWjRo0q8wGEoiWiDNIIVrtYRUZGSsuWLaVZs2YmX2Pp0qWyb98+82WnzWoXXnjhSevqRf7777/LVVddlTdaYn4aIetQ6/D/udcvD52v3dh0VErNs9E60To6ZVZWlowYMaLUjkpZGug50y/hE2lVM61+ZsM1H7xzzzUfWJ6RdwcMGOB1+TnnnCN33XVXgI8iNN1zzz2m+3F0dLT5rtb/Xup3tXZD6dy5s3z11VcSHx8f7MMEgivYmd1w729/+1vu448/nrtjx44C848cOZLbv39/k/FfpUqV3IMHD560boMGDczyLVu2cOpL+Nx7Kn5pJa59+/blzV+2bJljxS/86ZZbbskdO3Zs7hdffJG7d+/eIlda45oP3rnnmg8sz+cA/7JVUtTvbSopAv+Pb58Qk5qamluxYkXzBfj222+ftJwbquCcew0qYmJizLKFCxeetK6WitNlHTt2DOARhhaCiNJ97rnmS+5zgH+FQ2lOwB/IiQgx2j9fu9gUNlIiSvbca59y7Rtev359U5HhRJpjoX788UfZtWsXHw/KPK55lEU7d+403VPzfy/np12Z6tWrJxkZGeYaB8JZyJd4DTea8OVJ7s1fauxEkydPloMHD5q++Joo2bVrV+nSpUsJHml4nXtPSeF27dp5Xbdx48ZSpUoV85loBYeijoSOouOaL1lc8yVHS5Fv3LjR5EjogwrNvSrTo+CWgutWv48bNWrk9T36Pa4PivS91113XQkfIVB6EESEmDfffFP2799vEr50cBObJ5544qR57du3l+nTp0vTpk0DfJThd+49w97rf+BtNEFVgwjPe+FfXPMli2u+5GhRhvx03KGLL75YpkyZIjVq1CjBIwmP61ZbIvK/FwhXdGcKIVo27P777zc/a4Ulb//xuPTSS02goE+tjh07Zr4EtWSpfmFqE66WMtMypvDvuT9y5Ih51epNNp5qWSkpKZx+P+KaDw6u+cDT7jaffPKJaQHV7/P169fLSy+9JFWrVpUvvvjCtEikp6eXwJGEDq5boOhoiShhI0eOlM8++8z1em+88Ybpi2mj9dq1hruWDO3Tp495EuWNDnhyYvlLnfRGq23btuY/RmPHjpUJEyZIqAn2uQ9XgTrvRcU1H7xzj8D+TWi56fx07BqdevfuLW3atDEPN/71r3+ZcqUA4G8EESVMk2bXrVvnej29QbXZvXu3GU5dx3+46KKLzOiInvrhRaX9P/U/NDrNmjUrJIOIYJ77ihUrmlcdU6Kw/SQmJkooCcR59weu+cCe+3C+5oP9N6F9+W+55RbzPa7f5wQRRcd1CxQd3ZlK2LRp04o08uGJk/Zv9Ua7HulAONqMfcEFF5im7djYWJ+O7fTTTzevRRmFtiwK5rn3jGS5bds26/F5zrtt1Muyyt/n3Z+45gN37sP5mi8NfxOhfm0HiudadKpu6FkWbtctcCKCiDJMR0jWm9i1a9eap+HaPB4XF+fz9g4cOFDgSQz8d+49lVKWLVvmdfnmzZtNUrXSbggoGVzzgcM1H1xc277xfP/q+bMlTnu+x6mAhXBHEFFGaRUgvYn99ddfzU2sNllrVaDieO+998xrhw4d/HSUocmXc699lGNiYsxT2UWLFp20XJPdVceOHSnvWoK45gOHaz54cnJyTNdKxfe5O1olTysV5v9ezm/hwoWmJUJbnfUaB8KaX4asQ4k6cOBA7plnnmlGzbzgggty09LSirTeJ598krts2bKT5qekpOQOGzYsb/TTr7/+OgBHHd7nXnnOsa6/f//+vPnLly/PTUhIMMtmzZoVoCMPz1GTueaDd+4V13zgTJs2Lfe33347af6ePXty+/fvbz6fcuXK5a5ZsyaARxGaZs6cac6ffi/r97OHfm+3atXKLBsxYkRQjxEoDSL0/4IdyMCdK6+8UmbOnGkSeK+55hrrU/C+ffuayUOT6yZOnGjKubZq1UoqVapkEvx0cLNDhw5JdHS0jB8/XoYNG8ZH4udzr9LS0kzuxOLFi6Vy5cqmNUOTTr/99lszUN3w4cPlueee49xbPPnkkzJ79uy8fy9ZsiSv+4G28ni6F7z88stc86Xg3Cuu+cDR75dPP/3UVGNq0aKFKR+tLZ36fa4J2OXLlzfjROj3FNzT/w6+8MILUq5cOdPirOdXv6sPHz4snTp1kq+//rrYrf9AWUd1pjLI03de4z9Pk7U3mvSV/0ZWf9b/uKxYscL06dTt6A2ABhX9+vWTwYMHm+AC/j/3Sv+jPm/ePDO6rJZmnDNnjjn/5557rtx99938x74QmzZtyrt59TbCrDoxL4VrPnjnXnHNB86AAQNM/poGDdpFUm9u9aZWBwvVm94hQ4ZYR1xG4fSBmwYLWiL6hx9+MA96mjRpYkp433vvvXnBMxDOaIkAAAAA4AqJ1QAAAABcIYgAAAAA4ApBBAAAAABXCCIAAAAAuEIQAQAAAMAVgggAAAAArhBEAAAAAHCFIAIAAACAKwQRAAAAAFwhiACAENCwYUOJiIjImy644IIS2e97771XYL86zZs3r0T2DQAInugg7hsA4GdXXXWVJCQkyBlnnFEi57ZRo0YyYMAA8/MXX3whe/bsKZH9AgCCiyACAELI+PHjTatESTnnnHPMpLp160YQAQBhgu5MAAAAAFwhiACAEva3v/3N5A6cf/75kpWVddLyhx56yCw/++yzJT093S/73Lp1q9mmtlLk5OTICy+8IGeeeaaUL19eatWqJXfeeaccPHjQvDcjI0OefPJJad68ucTHx0vt2rVl2LBhkpqa6pdjAQCUfQQRAFDCnnvuOWnXrp0sXLhQHn744QLLNK/g6aeflsTERPnggw8kLi7O7/u/8cYbZfTo0VKnTh256KKLTFDx6quvmmRsDRT0VbtFNWvWzPyclpZmgo5rrrnG78cCACibyIkAgBIWExNjAgRtaRg3bpx07dpVLrnkEtmxY4fcdNNNkpubK2+88YY0bdrU7/v+/fffJTo6WtauXSsNGjQw8w4cOCDnnnuurFy50rxq68PmzZulatWqZvmWLVukbdu28p///EcWLVoknTp18vtxAQDKFloiACAItKrRlClTTMCggYPeqPfv31/2798vd999d0Cf+murgieAUBos3HXXXebn1atXy5tvvpkXQHiOVVsv1Lfffhuw4wIAlB0EEQAQJH/5y19k+PDhpiWgTZs25im/dnPS7k6Boq0QvXr1Omn+qaeeal7r168vLVu2tC7ftWtXwI4NAFB2EEQAQBA9++yz0qJFC0lOTpYKFSqYbk7a3SlQNIlaA4kT6dgSniDCm4oVK5pXfyV6AwDKNoIIAAiiJUuWyPr1683PmtS8atWqgO4vMjKyWMsBADD/veA0AEBwaP6D5kFomddbbrnFlGAdOHCgSX4GAKA0I4gAgCDwJFRrRaabb75Z3nrrLRkxYoQcOnRI+vXrJ5mZmXwuAIBSiyACAIJAx4LQMSE0H+Lll1/Om6clVrWL08iRI/lcAAClFkEEAJSwBQsWyKOPPmpGi54xY4ZJqFaa8Pzee+9JlSpVZMKECfLpp5/y2QAASiWCCAAoQfv27ZPrrrtOsrOzZdKkSaYlIj+tjqTjR2h+hOZJbN26lc8HAFDqRORqx1wAQJnWsGFDk5Ctg9bpz8HQrVs3mT9/vsydO9f8DAAIXScXCwcAlFn33XefGfPhjDPOkPvvvz/g+9P8jVdeecX8/NtvvwV8fwCA0oEgAgBCyEcffWRee/bsWSJBhLZ8/Pvf/w74fgAApQvdmQAAAAC4QmI1AAAAAFcIIgAAAAC4QhABAAAAwBWCCAAAAACuEEQAAAAAcIUgAgAAAIArBBEAAAAAXCGIAAAAAOAKQQQAAAAAceP/AOhj5PGFv28WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJNCAYAAABOXPheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8UElEQVR4nOzdB3hUVdoH8DekQ0JJkBAwEIpUEekgKCAoCthABSsW1r4WdO2ubcWyuisqVuyKWLAhLCoqKEhvQiihBSKEllDSSfue9/ANhnDfd3IPMymT/89nTLh3bplz79zMmXPP/wSVlJSUEAAAAAAAQDnVKu8TAQAAAAAAUIkAAAAAAADX0BIBAAAAAACuoBIBAAAAAACuoBIBAAAAAACuoBIBAAAAAACuoBIBAAAAAACuoBIBAAAAAACuoBIBAAAAAACu1IhKxPr16+nll1+ma665hjp16kQhISEUFBRE//rXv7wuO2vWLBo6dCg1bNiQIiMjqV27dvTQQw9RVlaW9f5s3LjR7MuJJ55I4eHh5if/e/PmzdbrBAAAAACoKEElJSUlFODuvPNOmjBhwjHTn3zySXr44YfF5f773//SuHHjTIXj9NNPp7i4OPrtt99o586d1LZtW5o7d66pXLgxb948OvvssyknJ4c6duxIJ598Mq1evZqSkpKoTp06ptLSu3dvq9cJAAAAAFARakRLBH9Qv+eee+jjjz+mtWvX0lVXXeV1meXLl9Pdd99NwcHBNH36dJozZw599tlntGnTJho0aJBp3bjppptc7QdXHC699FLz84EHHjCVhylTppif/O/s7GwzPzc39zheLQAAAACAf4VQDTB27Nij/l2rlve609NPP03cSHPttdfSueeee2R67dq16e2336aWLVvS1KlTad26deYWp/J47733aMeOHdSmTZtjbqXif/P6kpOT6YMPPqAbb7yx3K8PAAAAAKAi1YiWCLcOHTpkWh/Y5Zdffsz85s2bU9++fc3vX331VbnX63nu6NGjj6nI8L9HjRplfv/yyy+Pa/8BAAAAAPwJlQgH3BrAtxyx7t27OxacZzrf9lRenuf6cp0AAAAAABWtRtzO5NaWLVvMz/r161N0dLTjcxISEo56rjeZmZmUnp5ufm/WrJm6zj179pj+EdzR2kl+fr55eBQXF1NGRgbFxsaaTuAAAAAA5cG3bvNnlCZNmpTrdm9/ycvLM3eC+FNYWBhFRET4dRs1CSoRDvjNxKQP8SwqKsr8PHjwoKt1auv1rNOzXul53F/j8ccfL9d2AQAAALxJTU01kfOVVYGoH1mf8umvL0j9oXHjxubLX1QkfAOViGqIk5w4etbjwIEDpnWDLwB169b1yTbyioodp0cE13K9jLactoxG249fk3Y6Tu/ZrpHV+mz2cdvuvyqNvtCskXOLGFu0brfr9Z3RsXGFvV5t36XlbJZhc5dtF+ddN6yD4/TktAPiMjb7sTPDLl2tcUykOG9t6n7H6e0T6ovL/PJbijhvzMhOPntfsX3Zzn/4G9QJt3q9Wrm/P3WVq9fk7ZyRjpf0mtiQbodbjZ1MnrnOcXq/rk3JhnTstfLVylY7P6XXnJVTKC4TVdv9xwit/L5fmirO0873xev3ut4/bT9srqsbUzLEea0TY1yvT/ubNfU3+S6Ikae3cPWacrKzaNRZ3cQ7LyoCt0BwBWIwnUkhfvpoWkiFNGvnz2ZbqET4BioRDjxvJL6lSOIZbK68H9pLvzml9ZYewE5bLw9Qx4+yeBlfVSLCLCoR0jLactoyGm0/6kQ5l69WNravSxKV69vbyurWlS/udaLcf2jVysLXr1fbd2k5m2VYZO0Drl9zVJY8VI7NftQ5ZHdZjYquLc6rXadIWEY+jpG1/2rZLG9Z2LyvWD6FCcuEW71erdyl16Wd09o5Ix0v6TV525a0f9qx0kjHXitfrWy181N6zUVBBfL+1Q4lt7Tyq11Hec9p53udPNf7p+2HzXU1srZ8K06dKPcf0NXzrI7797e311QVbocOozAKJffnVHnUQjdgn0PHageJiYnm5/79+4+6Dak0/ta/9HPLU4mIiTn8TcS2bdvUdfIAdtqtVAAAAAAAlQmVCAc8GjWPB8GWLFniWHCe6V27di13YXue68t1AgAAAASCIP4vyE8PqvyWlkCD25mE3vvDhg2jzz//nCZPnkwDBw48av7WrVvp999/N79fdNFF5S5sfu6sWbPMKNWPPvroUSkInLD06aefmt9HjBhBVUFaWhp9/eWXNPe3X2lfxj4qKCigWsp7sFi+K0RcTltGo+3HgRznJuXoSPn2BNvXJckvkO8hthEeKr9VM3Pdp1nUqx1WYa9X2veQkBAKi4yiTl260TnDL6ATm5WvVQ8AAAAqHyoRgvvvv5+++OILevfdd2nkyJF0zjnnmOk8fsT1119PRUVFZnrZ0aoXLVpEV199tfmdR7Mu7ZprrqGnnnrKjEPxyCOPmN89+N88nZMRPMu7xR1Etfu7y2rXpJ7YN+PMoRfRkrk/UXBwMPXpcxo1bhzn2A8DwBZXSvfs3UsTX3iaXnjqUerUtSc99sIkahDbkNLSD4/T4qRPhzhxXuJw587TWodxbVs2+5EYZ9c5MWWX3Pl3WM9mrpcZO6qzOG/+ml2O0+Nj5XvpbeYlbd0nLjOwU7w4b+p8uVN4fIsGrl6Tt21Jtu7+q4+am3IPF/opaGWh6djc+fXarlM7jjb7MGv2ZtfrOzyUq7O0LfJr2qsck4aNnPsIZObI/TmmzN4kzhs9oJXrZaR90Mpdu8Zo51lzZVvSctI5nav0/6xo3G/BX30X0CfC92pEJWLZsmV0yy23HPn3pk2HLwJvvPEGfffdd0eNKB0fH3/klqIXXnjBpCANHTqU+vfvT40aNaLffvvNfEPPtzy9/vrrx2yLKxnr16933A++Reqzzz6js88+m8aPH0/ffvstnXzyybR69Wrz4H4Q3PoRGSkna/gbVyC4FWbtiuX05ptvmlYRT18OAH+dc/w+vPOuu+jusRfTC5O+MBUJAAAAqLpqRJ8IHnNh4cKFRx579x6Ogvvzzz+Pml56ADd211130Y8//khDhgyhP/74g7755hszlgNHrC5evNh0gHarb9++tHLlStPawAPETZ061fzkf/P03r17U2V66KGHTKXr+5kzaezYsahAgN/xe2r06NE0+5dfKCfrAP33yXtR6gAANVCtoCC/PliPHj2oQ4cONHHixMp+udVejWiJGDBggBmR0cbgwYPNw5fbat26Nb3//vtU1fAtWtxS8re//Y1OO+20yt4dqGH41sD777uP7rv/fsrKPGgdiQkAACDhL4F9FYdf09WIlggon7lz59LOnTvpkksuQZFBpbj44oup4NAhmj/nRxwBAIAaJohq+fUBvoUShSNWrVpFoaGh1KtXL5QKVIqEhARq0aIlbdmwFkcAAACgCqsRtzNB+Rw4cIDq169/VPQsQEVr0KCBuZ0JAABqltJ9F3y+bh4nwjJWHpyhEhFA2sTXO677/HisCs7uB6hMfA4ezM4X4whtIiq16FUt/lOKhWXTF21zFcfqLbJRi4aVthUjxIl6Y1OGUiQ0+2VVmuv1actoZahFudpsKyPr6EANj97tG1lFq2btcj5vo4VoWm8xpNq2pMhTLQpVer1alKu2D1Lkrm00se2xT1q103F6oVK25wxt6/o9p50XNnG3thG+2ntfio2V9j0rM0LdRwAJvnIG1xITE48aBZJbLqKjo80YFzww3z333GPGywCiM844w5QRjztSHnfccYd5PscKAwAA1CToE1G9oBIB1jiudsyYMSaelj/08tgZHFPL42twvwpOqtq82f03M4GEByZkH3zwgUm/0hw6dIg+/vjjo5bzFx74kCsr7733nl+3AwAAAIEJlQiwxuNI8IdQfnz66af0008/UXp6Ok2fPp1OOukkmjNnjomK3bJlS40tZU664lvMeIDC//3vf+pzeRwSLr8TTjiBzj///ArbRwAAgJoyTgT4DioR4FOeW3H4diauSOzatctUNmoqHqWcB1Jj7777rvpcz/wrr7zSpGQBAAAAVFWoRIBfcMrTiy++aH7/+eefaenSpcc8p7CwkCZNmmRue4qJiaHw8HBq0aIF3XzzzZSamique/v27fSPf/yDOnXqZPpi1KlTh9q0aWNu0fn999+Pei5XZu69917q2bMnNW7cmMLCwiguLo7OO+88mjVr1jHrfvTRR01F6MYbbxS3z+vk5zRt2tS8Bm88lahp06YdGS3d6TX98MMPjrcycQvPiBEjKD4+3ux/o0aN6KKLLqL58+c7rsvTV8VTMenTpw/Vq1fPTEtJSTE/PYMdXnvttUf1b3nssceOWldubq65PY1HUudjGhERYW5b4zLlVpPSvvjiC7MObknh0eDL+v777yk4ONjsy4YNG7yWGwAA1Lw+Ef76D+NE+B6ieGqwsskzhcW+zT4799xzTeUgIyODfvzxR+rWrduReZmZmeaWndmzZ1NUVJSZxx8+eayK119/nT7//HOzTJcuXY75QM0Dku3fv998mB40aJD5YM0fjidPnmyeU3q07QcffJB++eUX6tixo9kGVzg2bdpE3333nXlwRYc7M3twBeaZZ54xfROeffZZ88G5rIkTJ5qfXNEoT5pVjx49TIWHX9uHH35Id9111zHP4Q/13GeC+5LwvnpwJ3X+EM+d17t3706nn346bdu2zdz6xJWSt956y1QEnPz973+nV1991ZTHsGHDTP8U/pDP/Vh4YEEuB+7XwiOoe5x66qlHft+xYwedc845Zr/5OPLr4ErbsmXL6N///rc5Rnz8mjdvbp7Px4W3+fLLL9Nll11myt1TPlxJuuqqq0wCGO8zt1JJuP4TFRlKzRtFkVtamolkwdrdZCO6dqirVBdvtHSmkX0SHaev23HAp9vSUnO0hKM+HeIcp0+Zvcli74gmfbpSnBcVF+U6NUdKq/GWjGSzzOABLV2fm9K5ZJvApS0jHSvteGnvxeTNR3+ZUJ40JS0Rber8FLIhnRf5ShqVzXmhHUfp2GvvOe09op0XWsKatI9S4l1utpzmBaBBSwT4DX9g7dq1q/k9KSnpqHk33XST+QA6fPhw82GWf+cPpevWraP//ve/5lvuUaNGHdUZmVsnRo4caSoQnHbE//7666/ps88+M60D/O132Vun7r77bjP9jz/+MH01+LncKsItFtxXgVs0+AOuB7dWcD+G7Oxsx9uPuCWB+3/w7UY33HBDucvC07og3dLk6eBcuhWCP2xzBYI/5C9fvpwWLlxo9n/BggWmvPhWKS5H6Vt97sw9b948+u2330wFi5fjD/y8rX79+h3Tr4UfF154oZleUlJCl156qalA8D5xJY0rdV9++SVt3LjRlCtPK1uBef75502rD1dSHn74YTONW2v4lq49e/bQrbfeatYLAABQVumWcX88wLdQiQC/atiwoflZ+taXtWvX0ieffEJNmjQxH265RaG0O++80/Sr4A/HpTsj/+c//zED4vGtSE8//bRpgSiN1+P5cFy6NYRvAyqLb/HhD7QFBQXmW/3SPC0Tr732mvkwXRrffpWfn2++decKR3lxPwe+XYs/lC9ZsuSoefwhn19r6f4T/I2959aiKVOm0CmnnHJMdOwjjzxiEp3eeOMNx21yKwbfhmSDbz3iCgi3THDLELdAeHDrwnPPPUcnn3yyaW1YvXr1kXl8TLiSxQPG8XNmzJhBDz30kKlUcEsQV4oAAACg+kMlAvyKPwyz0t8A8AdL/nDOH/BLfzgtjftJsNJ9HGbOnGl+umkB8FRg+Ft5vo//b3/7m+k7wQ9Oj2Lr168/6vl82w5XMviDPX+YLv1a+AM1u+2221ztQ2xs7JFv+d95552j5nn+zS0gnvLglge+nahVq1ZH3QbmrYxK44qOLW61Ydzy43TLFt9exRUZp+3zOCKelhW+rYlvfeJ+ENyKwhUpAAAAJ7X83CsCfAt9IsCvPB2J+Z56D8/YEW+//bZ5aPgWGI+tW7ean+3atSv39vmWIO6DwLcnSQ4ePHjMtNtvv910XH7llVdMvwDGfSh4H7ifRul+F+XFtwXxt/TcCsOtKtxJOSsry9zG5Zlftoz4Vi9vTbCly6jsh3lbnu1zawc/3G6f+7vwrVJc/uzNN9+kli3l+4UBAACgekElAvyGWxv4G3XGHYvLtk7wrTKdO3dW18EdjW1x3wfu/MyJQNxJmm+DatasmbltiD+Y8wdbnl/2liXPt/h8OxDfTsXjXHBqlKdDtdtWCA/uBM59Ergi8tVXX5lv6fnbea7gcLoUd5ouW0Z8y9SQIUPKdctYWZGRkVb7WXr7fHsYt4ZoSncEL936U/pWNO6Pgb4QAACg8ed4DmiJ8D1UIsBv+LalffsOp0ScffbZR6YnJCSYn5wMxN/0lxdXAPjWI+58XTpRSMLf8HMFgROD+FamsrSYUb6Fh5OauHMwJxzxbVDcsZhbVPjDvw2+BYg7InNfB76FidfjuZWpbAdlTxnxbVCVMaq0Z/sXXHCBqUy5wWXOSUzcoZ1v4fr1119NZ3m+/QqD6AEAAAQGVCICSHLaAYrKOvpb9XZN6onPLxvnuC8rn3wV8sodoD1RpmedddZR0aHcF4I723777bcmzYdv6ykPvq2IKxF8iwynOnnD0bLME0FaWl5eHk2dOlVdnlsp/vWvf5kP+nzLE3845luOjucbfq4sPPHEE2bsDK6UcOdlbinh2NWy/TK4hWHNmjUm2crp2/7j4emULo1zwceIy5krYpzE5CbVgiNyuRWiffv29NFHH5nO11x54H4o3DLldDxK44ah2hEhYoShFsuokSIWtfVlKPGQUoymFl+pxaRq8apSZONeIbKRjRnegdyyLQspylOLqLSJSdVo0ZtaOYULx1ErC+11zZxxdB8rj5uu7S4uExFs1z1RivjV4oK188wmVrmhsowUJ1s2Xry0lFly5GnXC+VzeljPZq4jVLVzWoqGHT2glev3AZuz2Hnso/49Dn9h4/actjnfpWsC/327haqGID+O5+BZL/995b+7HK7CD7CHjtXgU/xBmz9Acswnf9PPyUie++I9uE8Bd9jliFYeRI2jQsviW3x4rAYe8dpj3LhxpuMxVz64hYCTlUrbvXu3SQHy4A+xnjEYeFyK0hWIW265xdympOEP8ZdffrmpjPCtT9ySwMsdD25N4UoV3y50xRVXmGmcRFU2QYojZHngOy5PHliu9Ovy4PhbrozwrUJunXjiiY7Rux7cAsEXWo7O5YqPU78HbmXijualKyLc6sB9KPiWMa6A8LgcXOHjigg/n29pKnvcAAAAKsrixYvNF3SoQBw/tESANY475fEKGMeecidqHojM0wLAt6/wt/hO3zzzeAk83gNXOHgEZO4bwf0O+EMzVypWrlxp4ks5DpZHmPZ8AOdRkbm/wlNPPWW2zylK/IGb+xnwt9z8od8T88offidMmGCm87q5zwF/+8CRqjwSM0e58nwNd7D23HLEA7YdT2dlD27N4NQnzwfzsiNUe3DfCx5YjtONeN+5NYJv4+KWkJ07d9KKFStMGXIUrdsoV77N6PHHH6eXXnrJRLTy7UtcSeIWA37w7zwGB79mroRxufMx4mPAx4U7XnNcLVdkuIWBb//i18O3aPE07j9SuvVk/PjxpiLEFR6+tYxvbwIAACitVlAt8/AHzmcC30IlAqzxrTj8YPyNM8d4cgdqHlmZB4rjb7Il3KLwww8/mLQivuWFO0Hzh2IeAI6/ledv6fnDbNlOvdy3gj/0croRR77ygz/A8pgTfB8+913w4NGmeUwG/kafP7RzhYX7GPA6eJrTt/tl8Qdn7tzMH9ptO1Q7fcvPrRxc6eIKEn9Ql/BYC/yBn/tl8P7y6+VbkbiMuJLG3/Jza45bPO4E387Ft5PxIHY8EjhX4LiFwtNvgcuUP/Rznww+TjxgH7dMcL8QnscD3fFz+XY0blnhsTA4lpZvzeKKRWlc0eN1cCsUjxLev3//I5G3AAAAUP2gEgGuOd1+ZIO/7eZvrt12VOZvw/mDaHnwh3VPqlJZ/K1+2Q+7Zc2aNctUILi1hG9D8gWuBEixrE44TtZNpKxT2pQT/hDv7YM8j+vAfUP44e1Ylh5TQzpupQcdBAAAKC3o///zB3+ttyZD2w6AgG/L4RYLT38MN52LAQAAAAIZWiICSJv4euZ2oPKmYJRN8IiJjqCS/x8foCbj/hrcQZhvheJbp/gWreuuu66yd6vGKCkptq6wdWzewHUqjZQgY5uaIyXmeEuDsaElMGlJMcmbnVuE2rSMFZcZ2UfuDzR1forrBKbe7RtZJc9I69QSk6QEJi2FJ9nyWIUI+/H+d2vEZbRytzlntFQ+mwSutC37rJK0pHNQSzDTEpiSVu10ve/aeSElOmnXC+19pe1ffAv52mRzPZNSwFh9YVvSvmdnyYldFQ19IqoXtETAEVHR0Y6jN9c0c+bMMf0AeJwDTkbikaq53wVUDI4HjoqSIyoBAACg8qESAUcktkg0qUU8FkNNxhUI7lfAkaRffvmluZcfKganTXH0btNm+lgSAAAQeA6PEuG/B/gWKhFwxKDBZ1FUVJTJ9weoDN98840ZR2LwEDmxCgAAACofKhFwBI8/MHT4cDOw2vbt21EyUOG3MfH4EX379qW4+CYofQCAGsa/7RD4yOtrKFE4ymNPPEkcEDpw4EAzmBhAReDB63j8Dh400NsAgAAAAFD50Fs0wGnpMk7JTS1atqQffvqZzhk8yAxI1qFDBzMYGg+KxmMGAPgKj3zN40Z8/8MPtHTJEqpXvz69/cnXVCe+tZrOE6Mk7WjmLE51nJ6mJONobFJztH2XEpNYw0ZRrhJkbGn7YJMiUzYBrrTpi7ZZbau5UBZbd2dZJUEtWLvbcfroAUcPdFnehJ742NquE5O0RC/tmEipU1JalrdEIilBqmOnxuIy2ntV8srk5eK80DqhVglHUoJU/g45LGS6OEdeX6GSONa5V4I4Tzo/tZSlhI7yeRt5gvN5piVSSedmVlghVRW1goLMwy/rRp8In0MlAhwrEsnJyWZEae4f8dlnn1FGRob50KeNY1aRwyiUczw1n+yfr7clrc8f+yet0/Y4+nLfOfGqbr361OnUbvSf196lMwadRXXqOH9ABAAAgKoFlQhwxK0O5513nnmU9xsuLUdeoo1joX3LapN1rn0Dp7XYaK/Zl5n62jLaN5VaWUjfPGnLaBnuv6xKc7Udb99G+/qbdAAAqL643wL/5691g2+hRAEAAAAAwBW0RAAAAABApQsKCjIPv6wbfSJ8Di0RAAAAAADgCloiAAAAAKDSHe4R4Z/vt/213poMlYgA8s2irVS7TnS5OxPbsOk8rdE6NNt2/nXbKdjb+qQy1GIetY7QNmWodU7W5tnQyknqtK51rNaOsRQPKUWGenu92jEZM7wD+ZLUKVyKDPX2ujRSuWvb0iJKbaJcVy50jsg1hGhLm/hPb9etKbM3OU7PVyJ3tWuJFIepnUtanKz0XtDeV1rZajGfmULcqBYlLJWfFiWs0bYllZMW1bpXKVttXlSc874PHtDS6rzIFNYnRQx7I8UMz1HOW+n4sjYW0dTS9SI3Wy5XAA0qEQAAAABQ6WoFHR4rwi/r9staazaUKQAAAAAAuIJKBAAAAABUOh7LwZ8P1qNHD+rQoQNNnDixsl9utYfbmQAAAACg0vGtTP67nenwehcvXkx169b1yzZqGrREAAAAAACAK2iJCCBDuiUcU7vWknHyiop9un1tfdJ+TJ2fYpVko6UfSek9NolO3srQhpTSoiUctWtST5z3yuTl4ryOnRq7SvvxVu7Sclpiks0x1lJT5ixOtUpgktJ2tHLXttW/h3MikcY2SUsqdy0pZvqiba63o6Xz7FWWk8rQtmy1BCHpNa/coiRBKUk2UuKPloyjkc5dLRGrvpJWpL0fZ85Y7zh9v1IWnYUkLW+pUzak/cgSErHYbZd3Eee98c1q12lkNucSSxeSjKQ0L2/pUdo1V6Jty9fHqqoofduRP9YNvoUSBQAAAAAAV9ASAQAAAACVrlZQLfPwy7rxvbnPoSUCAAAAAABcQUsEAAAAAFQ6Txirv9YNvi5TcJSSkkJBQUHlevz666/lKsXHHnvM67rWrVuHIwIAAAAAVRpaIgRRUVE0ZswYseDWrFljsoajo6OpW7durgq9c+fOdOqppzrOq1dPTuEBAAAACFRBQbXMwy/rxvfmPodKhKBhw4b03nvviQU3dOhQ83P06NFUp04dV4V+4YUXmlaJiqDFrqbsynS9Pi1q1GY/tPhC2zhMG1pkrKRPhzhxnhYrKEURShGk3owd1dl1zKdtuUvzbOJEWdLWfa73ryLLPXePHDW7wCIC0jZuMiYq3HWEqhYpKcXTzpq9WVxm8ICWPo01baPErmr7LkVbJnRs5HoZjW2UZ7Kw71p8rkZ7P54ztK2r6Fdverdv5DpyWTvG0jFJTXJ+79hGVmvvY+04amKFspDei97mSe/VBZZRwvnKe0Q612xjiwEkqERY2L59O33//ffm9+uvv95mFQAAAABQCvpEVC/oE2GBWyiKi4upY8eO1KtXL98fFQAAAACAKgwtERY8tznZtkIsW7aM7r//fsrIyDB9ILp06ULnnXee6V8BAAAAUBMF+XGcCPSJ8D1UIlyaM2cObdy4kcLCwuiqq66yKvRp06aZR2lcmXjppZfo6quv9rp8fn6+eXgcPHjQaj8AAAAAAGzgdiaX3nnnHfPz/PPPN52v3WjVqhWNHz+eli9fbloh+DF37lwaPnw4HThwwKRBffzxx17X8/TTT5tKh+eRkODcSRIAAACgugjy83/gW0ElJSUlPl5nwOJv/OPj4yknJ4dmzJhB5557rs/Wffvtt9PLL79MJ5xwAv3555+mpcNNSwRXJLgiUrdu3XKnM0UEu69DTp2fIs4b2SfRp+lHWiLIwE7x4jzpNdu8Xm3ftdQULfFHSp7RkjO05B6bstBoqV3SMdFSgrREL2n/bPbBW3KTdEy0JKCUpdvFeYndmjrv3xbnxClv6TLafkjnhnZe2KRYaevTSPuupdVor1dL55ISpLSytUmJ0s5pKVXMNklLSvrydkyk16UlQWnXGSnJSDuOWvKVlPY0Z3Gq6+Qwb8uNGd7BdSKaltwknYPasbJJgtKSvrQEM63cpXNGes/lZGfS1Wed4vgZoqLw5xj+UvSBuv+giCD5fDseeSX59PTBf1fq6ww0aIlwYcqUKaYCceKJJ9KQIUN8eiA48jU4OJj27NlDCxcuVJ8bHh5u3gClHwAAAADVWq0g/z7Ap1CJsLiV6ZprrqFatXxbdDExMdSo0eFvbbglAgAAAACgqkLH6nLiEaq5hSAoKIiuvfZanx+IoqIi08TGkNIEAAAANU5Q0OGHf1bup/XWXGiJKKe3337b/Bw4cCC1bCmP3Grr22+/NbdKcSWle/fuPl8/AAAAAICvoBJRDgUFBfTRRx+Va2yIV155hdq1a3dMVOu2bdvMOvLy8o5Z5uuvv6axY8ea36+44gpq3FjuIAgAAAAQiPiL1KBafnr4rYWj5sLtTOXw3Xff0e7du6l+/fo0YsQI9bl79+6l9evXH1MR4DhXHlfi5ptvNoPLNW3alHJzc81tUhs2bDjSyvHaa68dz/EEAAAAAPA7VCJcdKi+/PLLKSIiwqqgOYL1vvvuo8WLF5vB6njU6kOHDpmxJnicCF73qFGjjqvDNsdlhpWJzNSiMrWIUsmwns2sYlylbWmxq1qUp010qW3crbTvWtlq8XvXDDrJZzG43l7X+9+tcZwerkQ2SrGMWmyoFmmrxWFKscBajKJGi9G0iSHtOOJk9+e0ZdSxFkOqHS/JxNfmi/NuvbmP62WGKWUhne9anKhGe+9LUa5b/RCVKUlNks/PmF4Jrl+TRtu/3D3O69yrrE87l1LmbXWeHiF/VIhKkCOcJVoErfbe15abvmib69hV6fVqf+u0/dP+Pr7+7hLH6ZEn1La6JkiRttr1WLrWhdMhqjK4scBfLQZoiPA5VCLKoezo0t6iWvlRVmxsLD3zzDPujg4AAAAAQBWESgQAAAAAVD6/jueApghfQ8dqAAAAAKgRevToQR06dKCJEydW9q5Ue2iJAAAAAIAa0RLBfVPr1q3rp23ULGiJAAAAAAAAV9ASEUC27c6kqNyja/DtmrhPztASf7QUI19uxxttP35ZleYqWcjbfmgpTDYJR1Pnp7hKKtKW8Zb6IqXSaKkf2vqkedr6+vdwTqvRXpdWflqqmJYSJSWTSKlN3mipU5K9FklArLmQSqMl98QqZThl9ibH6YndmlqdF6MHtHKVDuYtJWjZ1/Jysac1c1VG3tYX3irGcbqc20NUlCenTknHRCojb+8fLZGo99C2ro/VyoWp4rzYLk2ct6OcS9r7YNbszY7TQ+uEWiVpaWxStroOaSPOm/TpSsfphUriWEp7+W9FZyG1S9vvfOXaJKVR2cjJtrsG+m2cCD+lM2GcCN9DSwQAAAAAALiClggAAAAAqHxIZ6pW0BIBAAAAAACuoCUCAAAAACof94fw24jVGCfC19ASAQAAAAAArqAlIoDszMilOofKf0htk5tsUnOkhCNtHwZ2ihfnrdtxQJwnpTDZpllIqT7xsbWtykJKLHlDSem48YKTXadRaWWhpcFoaUXDejZzXRYaaX1aIpaUmsLGjuoszpOOf6aStqKlKUmpU1pajZa0o5HeC9qxXzbH+TzTUpi0skhN2i3Ok46/9nrTtuxzncDEomuHuj6n6VCROGvwgJaO0+csllOMuvZ3XkZL25ESsbwlEiWt2un6/NTWd46Q6KRdm0hJZ+rYvIHrY6wlc2m0ZCmb9CPtWhffooHr1yuWHxFFxbl/72vJdtrfGOlaJ/0tC6dDVGWgT0S1gpYIAAAAAABwBS0RAAAAAFD5gmodfvhr3eBTKFEAAAAAAHAFLREAAAAAUOmCagWZh1/WTUhn8jW0RAAAAAAAgCtoiQAAAACAyod0pmoFlYgA0rNdI6pbt65P1iVFbKal57iOE9WiXLWISo1NpOjIPolWkbFSlN78NbtcL6NF/UnRlWzq/BSrGFLpmIwZ3kFcRovCdRsd6C16c4GwXNYu+TWF1gm12ncpolSLvNRiPqVzWnuPaGWhxTnaRFTGKrGc0jmjRbKOvra7OO/1d5c4Tg9Rzun8DLmcOnZq7LoMC7LleNrg5vXFedO/XO04PTzGLrZYex/bRJfWF6JGWXPheGnnmTZPikjWIpcXrJWjf23KSDuntbKQrnVaxKt23bJ5vVqMq3SstNerXUu0KGnp/S1FOOdmZ4vrAtCgEgEAAAAAVYAfR6xGnwifQ58IAAAAAABwBS0RAAAAABDYfSJKkM7EcnNzKTk5mU488USKjZVHty8PtEQAAAAAAASI3377jcaNG0crV648avrkyZOpUaNG1LVrV4qPj6cnnnjiuLaDSgQAAAAAVLqgoCC/PmqKN998k1555RVq2rTpkWmpqal03XXXUXZ2NtWrV48KCwvp8ccfpzlz5lhvB7czBZBF63ZTnajccicm5RUVW6ULSbS0ooGd4h2na/unrc+GlsAkJe1oyUjDejaz2ncppUNLEdHSTLREHcmkT4/+dqK8yThSKpaWImKzf82VfdDKSUuqSujonFY0a/ZmcZnBA1q6Pi+kFCjWuZecwKSVoZQIk68ku+TukdcnUo7VlNmbxHmRJ9R2nZikpR9piTVZqc7v46gE+T0cr6T6dGzewPXxWPb1GnFe1CnO17RwJQlIS7HSJK3a6XoZrSykdLO0Lfus1tdbeP9oqWdaOWnnu3RNs7me2VJTsYR9l85nJmfyESV2++vDIUBZCxcupM6dO1PDhg2PTPvwww/p0KFD9Nhjj9E///lP01oxYMAAevXVV6l///5kA5UIAAAAAKh86BPhE3v37qWOHTseNe3nn3+msLAwc5sTO/3006l37960fPly6+3gdiYAAAAAgACRlZVFkZGRR/5dUlJCixcvpu7du1NU1F8tzomJibRjxw7r7aAlAgAAAAAqH/db8FffhRrUJyImJoZSUv66IY5bGzIzM+m000476nkFBQWmdcIWWiIAAAAAAAJEjx49aNGiRTR//nzz7wkTJpiO5WeeeeZRz9uwYYNJabKFSgQAAAAAVJ0+Ef561BB33HGHuYWpX79+plXio48+opYtW9LZZ599VL+JVatWUZcuXay3g0oEAAAAAECAGDx4ML3zzjvUvHlzk8jE6UvTpk2jWrVqHZXWVFxcbJ3MxNAnIoD0bNeI6tate9S0lF2ZPt2GFoVqG68q0eJfI4JrWUXX2uyfFAGpkSJttf3TYi21OFmNFDVbmCNHb2q0aEabyEab16tFvLZpKY++KZVvVJwca5q0VY62zBTKUIo79RYpKcW4arHAUmwkq69Eb2btynL1mrR9YBlCRKn23pk5Y704L2XeVnHerXed7jq2WHtd0n7cdG13q3PQJqZ5v7J/2nLpGc4xtLHtneOMvR0TKdZ2bx15H2KU97d0vdBin7VjpS0n7Yd2rJbN2ew6gjhUKQuNFHc8bMTJ4jLTJ6+wKifpOmhz3lY4pDP5zJgxY8xDctNNN5lxI0p3tHYLLREAAAAAAAHi119/peTkZPU5nN60e/dumjdvnvV2UIkAAAAAgCoSzuSvEaupxhgwYAA9++yzXp/33HPP0cCBA623g0oEAAAAAEAAKSkp8fs20CcCAAAAACof+kRUqH379lFERIT18qhEAAAAAECNGUMhODiYbr31VvMIFNu2bTtm1Oqy0zwKCwspKSmJfvjhB2rVqpX1NoNKKqK9A/zq4MGDVK9ePdqVse+YdCZbUvqRTfKRZvoi5xOcjeyTKM77ZVWa6xQebX1T5/81smN5l9PKQntdUopI8uZ018keLF5J4UlN2u06QcgmOUVL7tESQaTkGduUIK0MbVKiNL2FBBwtdahzrwSrfddSpyQ2SSz7t8hpVJpzhrZ1nealnWca6dyQjgebNVtO4enYqbFPk+OkRDytLLL+cE5RY1GnxLm+LmgJQjbvAynNyxsp+SxfSRXTaOdMmnDuaulrmnQhLU1LvtKStPYK70fbpCptW26TqnKzs+iWC7rSgQMHfPYZwvZzzD9P/TdFBEf6ZRt5Rbn0xIp/VOrr9CeOb+W+H4w/2nt+1/DznnnmGbr33nuttomWCAAAAACAaqxZs2ZHKg7cAlG7dm1q2LCh43PDwsLoxBNPpJEjR9LNN99svU1UIgAAAACg8qFPhLWUlJSjWiUuueQSM+CcP6ESAQAAAAAQIN59911q3bq137eDSgQAAAAAVDrPmA7+WndNMUYZqdqXUIkAAAAAAAhARUVFlJ6eTnl5eWp/ChuoRAQQTlSSUpUqwvw1csLIwE7xrhOT1u04YJWOYpPoJKVZaPvRrkk9q1QNKaVjzPAOrhNfWFp6jjgvRkgD0spvyuxN4jwpVSVeSSyJj5WToJK27nOd3pKszOvfQ04/mj55heP04Pp2SSBJQjpKUVqmVVlIqWJacpOWtGOTFJPQsZHrZTTa/mnvEY2UzrVASNPxllbk62td0qqdPt0HLb1HSl8bPKCluExiXLQ4b9KnKx2njx3V2ep6IZ2D2rnZsbmcNqcln0mJc1qylJZslxVT21VqE+s94mRx3vSl210n72nnjJqYJbwu6bqan2OXluUX3FrA/SL8objmtESwxYsX0z//+U+aM2cO5efnqy00HPlqA5UIAAAAAIAAsWDBAjrzzDOPtD40aNDAL7G2qEQAAAAAQGCnM/lrvVXQo48+aioQ1113HT311FMUF+f+7o3yQCUCAAAAACBALFy4kNq2bUtvvfWWXzuUoxIBAAAAAJWPP/D660NvDUpnKiwspFNPPdXviVSV1wu3GrjmmmuOxI1JD623u2Tp0qVmEBBuXoqIiKAWLVrQ3//+d9q9W+6wBQAAAADgTbt27Wjv3r3kb2iJKIe+ffuKg3YEBwe7KvAvvviCLrvsMlNL7NGjh6lALFmyhF555RX6/PPPae7cuRUyQAgAAABAlYI+ET5xww030O23306bNm2iVq1akb+gElEOY8eONa0Sx2vHjh1mABCuQLzxxhvmIHsyfHn9H330EV1++eXmXrbKHhQlr6jYddSozfpsI2mnL9rmehktTlaLf5ViSLVo1d5K5Km2nM0yW5XozWsGneT69aYv3yHO6zqkjasy8hblKcV1pm2R15efIZdFkhKHGdulieP0/cq26isRkNLrij3NLm9be81S1KMWhZv+u/weSRzcynWMqxY1KsWravsQdYpdR78kLdrSIipTev9oUZ6aqIR6rssvK9I5wtc2CnfO4lRx3iwlUjQqLsr19VYtJ+U66DaKmUWdFCvOk8pXO6e1shXfc5vyrOJzY4Wy0P5W2F5Xpehf6XpWHGQXtwxVF3++nD9/Pp111lnmS+ohQ4a4/tK7PFCJqEAvvvgi5eTk0ODBg49UIBgf2Ndee42mTZtmcn1/+OEHc8ABAAAAagqMWO0bLVseHismJSWFzjvvPAoJCaH4+HiqVauWY5lzi4UNVCIq0FdffWV+cmtDWVFRUXT++efThx9+SF9++SUqEQAAAADgGlcePEpKSqigoIC2bXNuUTyeO19QiSiHX375hVatWkWZmZkUGxtLPXv2pKFDh1J4uDwaa1m87MaNG83v3bt3d3wOT+dKxPLly8u9XgAAAICAgD4RPrFlyxaqCKhElMMHH3xwzDRuFnrnnXfonHPOcV0rbNbM+Z7phISEch18Hr689BDmBw8eLNc+AAAAAEBga968eYVsBxGvis6dO9OECRNo9erV5oP6rl27TH+F0047jdLS0sztR7Nnzy53S4RHnTp1HJ/DtzSVp1Lw9NNPU7169Y48PJUPAAAAgGo/ToS/HuBTaIlQ3HXXXUf9Ozo62vR0547RF110EX3zzTd055130ooVcpqEPzzwwAM0bty4I//mSgdXJDgBKaxMCpJt+pGUwqSlT2ik/Vi344BVIlHH5nJqTrsm9VwlRHlLOJLSM7SymDJ7k+tEokmfrhSXGTuqM9l445vVjtP795Arnol93X+DERMVbpU6lCykC2lpOqF1nI+vt8QSKUUmsVtTq9eVvNk5UadNSzlBZvqXzseDBUfIrzleSFXRkmeC4+XzM2XWJteJSTbHuOuFHcRlklbtFOdpxz9/nnPyUOyI9uRL2vHo3Et+/2QoiVk2qUNaepikQElg6tipsev1aa+pa//DHTidLJuz2XF6eExtq+uP9v6W5mnXOi3FSlpueqr8N0tLsYquHeo6gckmsQ2gNP58yMmfv//+O+3Zs4cGDRpE9957r5mXnJxs7pI544wzzJhlNlCJsMCdUB5//HFTiVi5ciWlpqZ6bQ3gCohHdna2aUEoKyvr8AeCunXrquvivhhu+mMAAAAAVHnoE+EzfOcMB/ns27fPdK7mz65Nm/71pdn69evpwgsvpE8++YQuvfRSq23gdiZL7dv/9a3Xn3/+6er+NKmHPFdGWGKiPJ4BAAAAAIBk7dq15o6ZAwcO0M0330yffvqpqUiUxkMJ1K5d23whbguVCEvp6emOrQwSbl3wjETNI1Q78Uzv2rWr7W4BAAAAVE9Bfn7UEOPHj6e8vDxTeeDB5i655JJjnhMWFkannnqquaPGFioRlqZMmXKkctC2bdtyLcO1QjZ58mTHW5l4sDk2YsQI290CAAAAgBo+NEHnzp29fp488cQTTVCQLVQiBNxZ+ttvv6XCwsKjphcXF9Pbb79NDz74oPn37bffTqGhoUcNKNeuXTvTeaUs7oTNTUezZs2it95668j0oqIiuuWWW2j//v3Uo0cPOvvss60PKAAAAEC1hHQmn+BO1G3atPH6PP6My/10baFjtYB7rHPLQYMGDcztRXFxceZDPse9evo0XHbZZfToo48etRzff8adVbgZqawmTZrQe++9Z5a74YYbTGWE+z8sXryYNm/ebLbBrRTHM3ogAAAAANRc9erVo+3bt3t9Hn/2bNTIOYGyPFCJEHAzELcccD+FdevW0bx580ynFP6gf/HFF9O1115rRq12i+9La9mypblf7bfffjOjU/PAdbfeeis98sgjZv22OEbVTaTr1Pl/DYBX1sg+ia5jUrXIU2k5bRnbOFkpNlZbnxTjqkXw+Xp9gwe0tIoO1GRtcI4hTRJiZm1pEbmFSiyj9Jq1KNRYpWw1UqxkyoxkcZnMAS3EeQ2FMtTKQouT1WKLpShKLcpTiyGVoje19UnLaMdEK4uoOPkczNdiUmOcowjTl++Q969LE9fRm1nCdG/xtDa02NVlSqSoFpVqs+/SezVEKYtM5TjeenMfx+nvf7fGKtZUu5ZEnuBcFrNmy+etRosYt4lBlt4L0vnn7bzQ3lu5e9zve1URVCvIPPy17pqia9eu9Ouvv5ovvaUBjvlLce4P4bnV3gYqEYIWLVrQf//7X9cFes0115iHplu3bjR16lTX6wYAAAAA0IwdO9ZEvPKdL/x5s3Hjoyuke/fuNc/hL8f5py1UIgAAAACg8vkzRanmNEQQ3zHDd758/vnn1KpVK+rbt6+ZznfVnH/++TR79mwT6HPFFVeYqFdb6FgNAAAAABBAJk+eTA888ID5nQN92IYNG+i7776jQ4cO0d1332366R4PtEQAAAAAQBUQdDihyV/rrkGCg4PpqaeeonvuucdEvnInak4YTUhIMAmix9Oh2gOVCAAAAACAANSgQQO/jT+GSkSA09KUhvVs5no5Lf1JSkWyTcDIUBJatCSbdk3qOU5/4xs58ad/jwTX25q/Zhf5klYWe5UkDi1RR0ql0RJQtESQPh2c08OWfS2nrVCkfJmRUpiiEpyPIUv/fqM4L6qvfBzzdxx0nB7cvL68LSXxp/kQ5wzulFmbxGWiB7cS52mJVFJ5aGk1y76XU6cS+zYnt/bWCXVdTloq0n7lHNQkDnUu90ylLNRttXB+f+ev3SMuMuzmXuI8KQ0oVCk/7VqnJXpJ51rUKXLKX9Yf8nUrUTk/Jdq1REqVa9My1io9Skscs0nM0o5J8mbnZDuNlphkQ9sHKR1OO6erBU5Q8leKUg1KZ3r55ZfpyiuvNBUIf0KfCAAAAACAAHHHHXeYsclGjRpFM2fONClM/oBKBAAAAABUnXQmfz1qiBEjRpiKA6czDRs2zPSDeOihh0zHal9CJQIAAAAAKh93qvbno4b44osvaMeOHfTiiy/SKaecYn5/5plnqF27dnTGGWfQu+++S9nZ2ce9HVQiAAAAAAACSExMDN1+++20fPly87jtttsoNjaW5s6dawaY4wHorrvuOjOytS1UIgAAAACg8tXy86OG6ty5M02YMMG0SHArxdChQyk/P9+ME3HmmWdar7cGFykAAAAAQM0QEhJi+ku89tprdOONN5ppx9PpGhGvAYRjWcOUSNeyUnZluo5J1SRt3ec6TlaLNdViXLXlpHlajGtiXLTrctLi/Jor8Xva65Jo29Ki/qRyl6IXvW1r2ZzNrqMhU5ZuF+fFtnce7Gb0AHl9E5WIyqx5qVbxr5I2SqTkyoXO24o9rZlVWWiyNjhHPYY3qSsuU5RX4DoyWIsLliJyWdRJzpGd6Wt3kw0t1lSLFLWRL8SrRnVvYhXHGx5T23XZ2kY4S/HJWakHrCKXpZhc2+OYIsXkCjG93iKmpfecJvIE5+NhS4ufjq4tR8baCI8K9+n7ID/D+W9jXu7x3xvvM6YDtJ/6LtScLhGOuOXhq6++Mv0hfv75ZzPwHOvYsSPZQiUCAAAAACAALVy40Ny29Omnn9KBAwdMy0O9evVo9OjRdO2111LPnj2t141KBAAAAABUuqCgIPPw17prirS0NPrwww/p/fffp3Xr1pmKA7/+gQMHmorDyJEjKSIi4ri3g0oEAAAAAECAaNasmbldiSsPzZs3pzFjxpjKA//uS6hEAAAAAEDl8+egcEE1rwP1ddddR4MGDfLfdvy2ZgAAAAAAqFA7d+40/R78DZWIALJtdyZF5QaVO3VIS2CaOj/FdbJQjJIkoSVB2cgQElXU1Aol9UMrJ2melkbVp0OcOG/K7E2O07N2yQkt8S0auE5UYfPXOCcZpSbttkozkZJJUmY5vyZvyU3SfryftYasNKrtOuUmtE6oVRpM0db9jtOztISWvELXCUda2o6UtmLsy5PXJ8wLjpffB1oSVO6eHJ+mLKnXEuE1DxtxsrjMzBnrxXlZStqXREvg2i+8roSOzklkLGXeVqvzIlSYp6X6aAlC4nVhl5zeE9y8vjiv/oAWrq9Z2t+YDKUMJdq2tNSpW2/u4zj9/e/WWG3L5ryQksO8pVglb3ZOcyNyvj4W55Q/1dHvagUdfvhr3TVEvQqoQDCMEwEAAAAANUKPHj2oQ4cONHHiRAoUTzzxBH377beO8/744w/6888/Hee9/PLL5rYnW6hEAAAAAEDl4wQlfz6IaPHixbRmzRq69dZbKVA89thj9PXXXzvO69KlCz366KOO85YtW0bffPON9XZRiQAAAAAACEAlJSXHNSq1Bn0iAAAAAKDyIZ2pWkFLBAAAAAAAuIKWiADSrFE01a0rp6uUtW6Hc+KLlpCRlp5jkQgh27o7yyrhaNbszeK8wQNaut73SZ+udJ2MZJOKpKUwaSlBWpKNJknYVtH+XHGZAi1dSHKoSJy1VznGbtN+jAx536MGJIrzsjY4n5/5ESGu06jM+tKcE8fydxwUl6EDctpK1pId4rzw9ie4PmeyLJKgpBQoVpQsv7/DT23sOgWsSCg/liTOIQqOcH7NcxYrSVp58ns1vFWM6+OYvnyH67LV3gexXZpYJQh17e98rUtatVNchuKiXCeztemVIC6z7PtkcV507Uauy0JLvdOuudJ1NUp5vZrX313iOD1EuT6OGd5BnDe99jbXaVSzlOu+9rezTctYV3+jC4Msrvn+gnSmagUtEQAAAAAA4ApaIgAAAACg8qFPRLWCSgQAAAAAQDW2YsUKM16Em3k8/XigEgEAAAAAla/UeA5+WXcAW7lypXm4mcfRr0HHUS6oRAAAAAAAVFNnnHHGcVUGbKESAQAAAACVjj8IB3FCk5/WHahmz55dKdtFJSLARQT7NoBLi12Nj3WOB9Ri+0YPaGUVk9qxk3OkpBblqkXiaVGZKUu3O04fNuJkshEvRNBO/3I1+ZwQ8zns8lPFRaZPXuE6vjK0uxxRWZAtxzKKUbO5cjwpxUS6jjZkK4XYWC1qNGtXtrwf+UU+jaBt2EiOokyZt9V5F8iOFKEb2945kpOlK2UhvX/y58mxq9SinutYZS02Vjv2Sco5KEY4W0aD7hdiObVo0PCocNcxrhop5tpbFK7baFBvUmZtcp7RIEJcRosZDo+R/8b4Mo5Xox0rKRZWi88lJeJVk5+lvPuVawmAL6ESAQAAAACVD+lM1QrGiQAAAAAAAFfQEgEAAAAAlQ/pTNUKWiIAAAAAAMAVtEQAAAAAQOXjZCY/pTP5bb01GCoRAZbEVDaNKa+o2HWKkZbClLIr02p9e4VkJC2BSUtTilaSTiRZu+T1FeYUuE5HWbDWOSVGS2hhRXnO20rs1lRcJk1ZX5SSIpP+/UbH6dPfllNEtOSUzG/WO04f/q/B4jLqtiJD3E3nwXFWyuWeoSSWSOk4RcrrldKttASpkuQMcZGsJXJSTJaU9sTHuG+C6+Qr7bzY+/EfjtP3i0sQlSjpTFlSCpOSwEQH8l1fL7SUm2WfrRKXiR3QwnXyVdchbcRlklbtdH2e2SYmZVhc67Q0JS1dSLvmSmzLySaZS0rK05LFtGt7/x7O7ystUVA7NxM6NnJ9DbdN5QutU891uUvXhOIguYwANKhEAAAAAEDlQzpTtYI+EQAAAAAA4ApaIgAAAACg8iGdqVpBJQIAAAAAoJoKDg62XjYoKIgKC5X+fwpUIgAAAACgatxk768b7QP4Bv6SkpJKWTaAixQAAAAAILAVFxcf8xg3bhxFRETQHXfcQcuWLaN9+/aZx/Lly+nOO++kyMhI8xx+ri20RAQQjnMNKxPpqkWyxsc6RyWyslGx5YlxXblQjim86drujtNt9y8xLlqcp61TosX2SfKVONH6Skxh+uwtrqImWWyXJq5jXFlwm1jH6UVJckyqFq8a1LWx4/Tpry0Ul4nqLu971h9CxO+hIqv9S1VelxS9SdsOyttqVleeF+G8H0FtYuRlMg/J86LD3EfDZsnrCx2QKG8rxPn9XZQsR4MG1Y9wHUGrydogbysr9YA4T4xCVs6zdCWOObh+pOvrmUY6z7RrpxbVm6lElNrEuGrXrTHDOzhOn/TpSqtYZSleVYrp9RpnnaBEBrt93/N1a/IKecHtzn9HwnvIUdwxSrlnCvGqWqStzbG3iTnPzXH/989v0CfCJ95991168cUX6ccff6SBAwceNa9z5870n//8h84//3waPHgwtW/fnq6//nqr7aAlAgAAAAAgQLz66qvUt2/fYyoQpQ0YMID69etHr732mvV2UIkAAAAAgErHnXz9+agp1q1bRwkJ3luImzZtSuvXOw8iWx6oRAgKCgrop59+on/84x/Uo0cPql+/PoWGhlLjxo1NE9D06dNdF/Zjjz3m9QTnAw8AAAAAYCMkJIRWrVrl9XmrV682z7WFPhGCOXPm0FlnnWV+54oDN/nUqVOH1qxZQ9OmTTOPG264gV5//XXXtVu+H+3UU091nFevnvt7PgEAAACqPaQz+UTv3r3phx9+oJdeeoluv/12x+e8/PLLpqJxzjnnWG8HlQhBrVq1aOTIkaZX++mnn37UvE8//ZSuuOIKevPNN809Z1dffbWrQr/wwgtNqwQAAAAAgC/985//pFmzZtFdd91Fn332GV1++eXUokULMy8lJYU+/vhjmj9/vmmFePjhh623g0qE4MwzzzQPJ6NGjTI93t9++2364IMPXFciKlK7JnLLxrodB6zmSc4Z2lacN3+NcwpPnw5xrpfxJmmrnO4h6d9DvndwgZDsoiWqWNkil3l6bqFVglDR1v3u90NIJWFRQuLPgZ9SxGWy6smJJcHx0a73OyiujjhPW64oX0h8KlCSoNbKCULBXZyTqooi7QbtUROppH0PDXaffMVleEoj1+k3WpqSlgYkrk9ItzLri3Gf3pO/46BVulnv9s5lMXPGeqv0NSn9KHmzXH75mzLIl6RUJG/vkUnCNU1bX8qsTa7TyLLyCtynb/G2lm4X52VZrC9NnEMUelKs6/dBkrI+qQzTlbLo2r+lVSqWdA4OHuC8vqxMJaGuoiGdySf69OlDkydPprFjx9Lvv/9uKgxlx4aIioqit956i0477TTr7aASYalLly7mZ2qqXQwgAAAAAIA/XHLJJXTGGWfQpEmTzC36f/7555HO1P379zexrvHx8ce1DVQiLG3YsMH8tDkAPOjH/fffTxkZGaYPBFdIzjvvPIqOlsc+AAAAAAhoaInwqbi4OHrooYfMwx9QibCwc+dOeu+998zv3G/CLU/H7NK4MsEdYMpza1R+fr55eBw8WIWaIgEAAAAg4CHi1aXCwkK68sor6cCBA9SpUye68cYby71sq1ataPz48WbIcW6F4MfcuXNp+PDhZn1jxowxnV28efrpp02lw/MoTxYwAAAAQLVIZ/LXo4Y5ePCgGXiOP7cOGTKEnnvuuSPzkpOTTYJTXl6e9frREuHSTTfdZMaPiI2NpS+++ILCwsLKvexVV111zDROd+JWCY7g4rgt7knP97Fp633ggQdo3LhxR50kqEgAAAAAAOMKAqcy7du3z3Sk5uEIuD+EBw8yx2mhn3zyCV166aVkA5UIFzjulROZGjRoYNKZ2rRpQ77Cka9cW9yzZw8tXLjwmFjZ0sLDw82jPGxSllhinHP/jLT0HKv1SckkWsLE3t1S3gZRfKyc3tKxuZycIvnu4VnivKAW9Z1nRMpvn8L6kfLGhLSi4ObCdnhTJ8ivN/OLteK8iHNbO07Pmy2nKZGSBCUl/gQ3ibZKeyqStpXlnOriLZGoOFW+ta9Wh4aO00uUZaQUIy3lRjuORRFKotcmJVWsVQP3ywjJONq5m5UqXy+ClXM6a1eWT1OH5KsCUXBEqOv9a94oSpwnXdO0BKb05TuskqAkWdq1RElG0q4LkiIl3UzaVpGWpjS4lTgvNck52S6ktvMx9Hb9lpK5tHNN+zsSWkfeD0l4EzkNT0o/0s6zrcr+aTKV86KhcL5LSYO52Xb74BfoE+ETa9eupYsuuogOHTpEN998s+lIzcmipXHLRO3atembb75BJcLf7r77btNngUeu5tqdJ53JV2JiYqhRo0aUlpZ2pAc9AAAAAIAbfOs836b0+eef04gRI8y0spUIvuOFBz5euXIl2aqBd4i5d++999J//vMf0/+AKxDdu3f3+TaKiopMvwiGlCYAAACoeYL+ao3w9YPXXUP88ssv1Llz5yMVCMmJJ55ovry2hUqEFxzF+u9//9tUIPgWph49epA/fPvtt5STk2PuWfNHJQUAAAAAAt+ePXvKdcs9hwVlZ2dbbweVCAUPBf7ss8+aW5jKW4F45ZVXqF27dsdEtW7bto0++ugjx17wX3/9tRlVkF1xxRXUuLHzSLgAAAAAAQvpTD7BX3xv3y6P8O6xefNmcyu9LXSsVloGnnrqKfN769ataeLEiY7Pa9iwIT3//PNH/r13717T471sRYDjXDmdiTu4cH8K7iGfm5tLa9asOTJw3cCBA+m1116zPpgAAAAAULN17dqVfv31V/MFdrNmzRyfs3r1atMfgjtg20IlQsAf+j2WLFliHk6aN29+VCVCwhGs9913Hy1evJg2btxoRq3mXvNcCeFxIjiGizu91KqFxiEAAACogZDO5BN8dwv34b3sssto6tSpx3yxzV9483M4+tVzJ4yNoBJeA1RrPE4EN10tXreNoqLl+LmykrbKcXnDejrXXFN2yXGdWvyrFMk6Z3GquEz/HvIgelJUnRY3aSs/w/l1xbaXmwD3frpanBfSs6nr2MP8Hcqo5LtzXEeeBoUolVUlblKLf5UExcvxmiVpzscqqKEc1xncUYldVaIoxTjUQ8XytrrItxYWCfGV2v5pipKdY5CNgiLHyVEDEsVFMqcfbuF0Ej3sJMfpWUr0r/a6Chc5N5s3HHWyuEz679vEeVGnxInzCrIL3L9HIuRzOiqhnuP0rHnytSl2iHN0stkPIbZaikf2FpMaEyXHeSet2uk6FlaNa+3mfG1KmbdVXEaL1u3cy/kavmzOZnGZ8Jjarq/FWvSvbVSvTcSrFmksHWOtbLVtafG00nskXiiLnOxMuvqsU0y4S9265f8M4Y/PMf+65TOKCHcfXVweefk59PCrl1bq66xI/MU0pzNFRkaaMclmzZpFJ510ErVt25Zmz55NWVlZ5hb6Dz/80HobaIkAAAAAgMqHlgifmTx5srkd/8UXXzQVCMa3z/OD41156IJnnnnmuLaBSgQAAAAAQAAJDg42fXvvueceE/nKnaiLi4vN7fWDBg06rg7VHqhEAAAAAEDVSWfy17proAYNGngdL8JWDS1SAAAAAIDAc+aZZ9Jzzz3n9XkcDMTPtYWWCAAAAACofOgT4RPccToxUQ7e8OAhCebMmWO9HVQiAkizRtFUt250udOURvaRT7Cp851TWjKV1I/eSlqRrxOYopUkI4qLcp3aJKVWsL1CCoZtCpSUwqQle5QIKUve1GotvK6wYHmhjFx5XoJzokXRMueUGBak7HuQkARV/Kd83pYIySNmfXF15OUOOKfmBDWs7TqBSUsrKtqvlJ8iuE2s62WyfpBTbtTlUg84z2h69PWjtMgT5HLKahPjKqnIWyJRyoxkcV54+xNcJzCJyVwcOCak+nS96lRxma273b/3tdebtkXevzRlnWJa0baDVslSKUu3uy5bLf1IKictgUmjJjetcL4G5SvnbWLf5q7LomMnZTBYZZ6YSGWReMfCldQu6e+qlsgINVNBQcFxDS2ASgQAAAAAVL6g/2+N8Ne64SirVq2i2Fj3X2B5oBIBAAAAAFCNXXfddUf9e+7cucdM8ygsLKQ1a9bQihUr6Pzzz7feJioRAAAAAFD5kM5k7b333jvye1BQEG3cuNE8NE2aNDExsLZQiQAAAAAAqMbeffdd87OkpMS0QPTr14+uv/56x+fyYHMnnngi9e7dm0JDlT6mXqASAQAAAACVD+lM1saMGXPk98cee8xUEEpP8wdUIgAAAAAAAkRKinPCpq+hEhFAFq3bTXWiyh8v2a5JPXHesJ7NHKdrkbFp6ULcoCJplRwNGipEq3qLV5WiUoPjo60iJaO6N3GcnvP5GnGZ4JNPkPdv7R7H6YULd4jLhJzdQpxXsmavPC/FOcozKN45Btc4VCzPEyJZg0LkiLhaHRqK84qFfQ9qECEuEyTEzLKSLfvFeSTsY7GyTFB0mDivKE14Lwhl5E1RnhxdGyzEkFKYXO4RfeX4ZCmmctnX8jmdu0d5f28XyuIkOfUjZd5WcV5w8/rivCghwjl/hxKD3KqB63LXrk35i7fLEarD2zpOT1XigrWY1PTv1ovzKCbSdYxr+pdrxXklBUWO0xuOOllcRovxFaOELWNcC5WI8SjhfM/akC4uk7VEvuYmDm3jLqqVy12LOc8rdP13SXu9WrnPnLHe1XmWm2MXM+u/dCY/rht8CpUIAAAAAIAAk5+fT7/88osZVO7gwYOmv0RZ3An7kUcesVo/KhEAAAAAUPlqBR1++GvdNchXX31FN954I6Wny61xXKlAJQIAAAAAAGjJkiU0atQoUxKjR4+mpKQkM7Dc/fffTxs2bKAff/zRtExwehOnNNlCSwQAAAAAVD6kM/nE888/T0VFRaY1ggeTu/baa00lwjMmxJ49e+jqq6+m//3vf7R8+XLr7ci98gAAAAAAoFqZN28edejQQRyN+oQTTqApU6ZQdnY2Pf7449bbQUtEAGkcE0lR0UcnWyTGyckPeUVyCk9EcC2fJTCxlQtT3SXcsFYxrhOOjLBg520tl9NWqL2cImOTwFS8cZ88T0i5CW4mpw7RbqXcC+TjWLjFeT9CQuXvDwpWponzQnPjyS0tMamWkrQkKVokJ6qU5Duny7DgE53fC7XaKcdeWV+4cH6qKUHacVQUCak5FBVmlW4mJcxEnRInLqOl3Ej7UZAtp8tQhPznp2i/nDKXvlyYlysnzIQ3qes+qUpJ4QnuKKfw7Bfec5EnyKlD6cvlczq8R1PXx1hLrwtXUruk9aXP3iKvr/0JrtOKtNernbf5K5RruFS+B/JdJ++xNOE4qglMiighqUx7X0nLeHtvde6V4CpxLDdHPl8qHNKZfIJbGnicCI+QkMPX27y8PIqIOJx+WK9ePerfvz/NmDHDejtoiQAAAAAACBDR0dFUWPjXFytcYWA7dhxdgefRqnfuVCrnXqASAQAAAABVo09ELT89eN01xIknnkipqX/dAdKuXTvzk+NePQoKCmjBggUUFye3QHuD25kAAAAAAAJEv379aNKkSXTgwAHTCjFs2DBzS9O4cePMLU3NmjWjN99807RMXHHFFdbbQUsEAAAAAFQ+TzqTvx41xIUXXmhaI+bMmWP+HR8fTw8++CBlZmbS7bffbuZPnz6d6tevT//617+st4OWCAAAAACAADFo0CAzHkRpjz76KHXq1Ik+//xzysjIoPbt29Odd95pWiVsoRIRQNrE16O6dY9OIVm344D4fC1pKT7WOemiTwf53rnpi7aJ8xKENJMUJYUlKi5KnJe/KUOcRzuzHSeX5MppFkG7nJdhB+fIr0uipU7VahDpOP3Qsu3yMpFyCk9x7iFxXvjAlo7TC1fJ6Va1YqNcJ0upQpQGz73O6ytRknaCWzeQ19dUTiMrmven8/qUZcJPdU7u0ZJiSvbnicsEKckzFBrsfl5cHXGRrCVKipVwvhfEyAlCWvoRZTmfg2NHdRYXef3dJeI8ORPLTmGO/N4XU5j2yceR4uXjWL9FA1epTd7SozRSQk9+hvI+VV5XqJTOpaSUaWUrpTDZpg7FDmktzhPLV0jrYwenJInzgiKFj0eDna+p3spC+hsYHhUuLqOlbGl/H5d9vcZxeuLgVo7Tc7Kr0EdBpDP51YgRI8zDV3A7EwAAAABAgDjzzDPNYHL+hkoEAAAAAFQ+fyUzeR41xO+//06HDsl3KfhKudqwfv31V59t8IwzzvDZugAAAAAAAsHGjRvp+eefp0WLFtGqVauoadOmlJKS4no93Kk6P18eaLFCKxEDBgygIB/0aud1lB78AgAAAADg/z8o+i9FqRqkMyUlJdF3331HPXv2pJKSEtq3T+5LpRk+fDh99NFHlJ2dTXXqyH3njle5e9M0atToyGAVNtatW0e7d++2Xh4AAAAAIFCdd955dMEFF5jfb7rpJpo5c6bVejiJadq0aaYTNY8H0bx5c6rUSsS5555L77zzjvWGrr32Wvrggw+slwcAAACAAFbD05lq1fJNV+W7776bOnbsaFo12rZtS126dKHExESKjIx0vEvo7bffttpOFcr1An9IjJPjK9s1qSfO+2VVmuttDespZw2//50QOddXrh2nzNsqzitJPSjPy3TuTBQUrcSkrksX5xX96RyTW6uh3EQYFCFHQBZudI5XDWl9grhMwfpd4rzifXIMYO4XzlGzISfKEYtFe+V42tCTmzgvs12OEg7r2VacV5Kc4S5ekV/vn0p8bkykPO8EIb40I891jKsW5RqkxK5qUZk+p0Rbtri2i+P0lK/WWsVr2sQ+W8tzviU2tovzucnSf3e/H+GtYsR5oUpUrxTLWbR1v7hMwtA24ryUWZvEeVFCJGtoHfnaniWUn5mXesD1sVfLtkGE6/hhjRrtLV0zhL8HrEQpi8JNzn8TijbJt5eEDG4hzkurHer6XIoX4oLN+pTIYDpU5OpcysuTI86BaP369fTDDz/Q0qVLzWPt2rVUVFRETz75JD388MNei4jHZZg4cSKtXLnSdHZu3bq1GSX6rrvuotBQJfb7OLz33ntHuiHwNhcuXGgeTvxeifjkk0+oRQv5zVEeN998M51zzjnHtQ4AAAAACFD+TFGyXO9rr71GEyZMsFr2zjvvNMuGhISY2NWoqCj6+eef6b777jO3G3HlxKl14Hi9++67VBHKVYkYNWrUcW+IO4nwAwAAAACgOjj55JPpnnvuMbcEde3alcaPH08ffvih1+W+/vprU4HgisOcOXPMsmzv3r2mQjF37lx65JFHTBqTr40ZM4YqAm5nAgAAAIDKVwXTmcaOHWvVb2H8+PHm5/3333+kAsEaNmxIr776Kp1++un0yiuvmIpEvXryLYhVGSoRAAAAAFAjHDx4dJ/K8PBw8/Cl7du30+LFi83vl19++THz+/XrRwkJCZSamkozZsygyy67jPxlzZo1ZvC5PXv2mM7W559/vpleXFxshl0IC5P7i/q1EjF//nz66aefaMeOHZSXl+fzDhsAAAAAUEPwl/y1/LhuDjJISDgmDvWxxx7z6aaWL19ufsbExIh9irt3724qEfxcf1QieN2cjPrLL78cdZuTpxLx1ltv0S233GL6ZQwaNKjiKhE5OTl06aWX0v/+9z/zbx4QQ4JKRMVJTjtAUVkl5U5nyisqFufFxzon2aSl51ilPRVkF7hOgyFhGVa0WU46EZdREqcK/5TTmULbxDsvk6qkY+TLqR85252TliIL5eSe4IbycSTt/VfH+duVgq3OCVEsJF5OBClY7ZyqEt47UVym8LdUeVsnyQk48kLKX5idcspIUEJdx+lFy+QEplpCuoxZX1PlmAiC2yipWPtz5QUjhEv1NjmljArk8yll6XafpvBISUbpSrpVVN+j/5CXljUv1fVy+5W0muB4+VhFCqld0jWLhUfJ31pKy4W3l9PX9u7OskqJkralpfpor0uSvlxJU1LeI1KSlpYcJiULed2WtLqf5HSrkDbyMalV3/m8KEzZK29MudYlDm7lOn0rK1L+u6SlkeVnOP+djm3fyHF6brZ8/gUi/nBdt+5ffw983QrBtmzZYn42ayanVnoqM57nej5fc8sE27x5s/n3F198Yf7do0ePco/3kJGRQf379zejXXOfjjPOOMPcQlUaf46/7bbb6Ntvv63YSsSDDz5oXmSDBg3oyiuvpJNOOomio93/QQUAAAAAqKg+EVyBKF2J8IfMzMNR5Npo0dzhuuztVTwo8yWXXHLU8zz/5sSla665plzbf/bZZ00FgjuE8+/8hX7ZSgR/hu/UqZPp4G3LqhLBmbf169enZcuW+W0UPAAAAACAmiIxMVG9u6e8vvnmG7OuZ5555sh4EU5atmxJ8+bNs96O1Z1n+/btM73KUYEAAAAAAJ+2RPjrUUGi///unOxs+RbbrKzDt5H5o1Vk69atJhHKW5IUd6rmW58qtCWCKw++GpobAAAAAKAiOlZXhMTExCP9LySeeZ7n+lJERMSRW6o027ZtO654Wasi5biq2bNn0/797ju3AgAAAAAEqi5dupif6enpR3WcLm3JkiXmZ+kxJHylXbt2psuB1hLCg96tXLmSTjnllIqtRPBw3dzb+9xzz6W1a5V0HQAAAACAGnQ704knnmjSlNjkyZOPmc+dmbklgpOhhg4d6vPtX3zxxaYCM27cODMehJN//OMfJv1p1KhRFXs7E99D9f3331OfPn1Mz26OsOKH0y1O3KGDx5KAyjF/jXOcqK0+HeLEea9MPpyL7CRfiGwsXC9H2GUuWifOq3OSHA+ZvUFuPpTkFMnxmrXXHXK/THCkOC88XJ4n0SJZtShP6VuC4EZy82VISzmGtESIhyzaJX/bUbxfjgUu2uYc9RgkRZp6UbTPebwaVivD+XjVEiI+jUI5Bjm4eX3nfVgux5oWZe2Wt6VFxkqvS4nrDO7SWJxX8JPzN2PpUiQni5SPSf5a5/Mz/FR5H7KWyLGh2nK5e3JcvSbW8vZe4rw0IRpWislkoXVCreZJslIPiPPCY+TzM1+I0M2Mi5KXUV5XYremrteXtSvL9baC68vXwM695Gv7yoXytV163wVFygNpHVoqry+0rfPfuohR8re2eZ/+Ic5LmbeV3NLKKbq2fJ4179/ScfpWJUoYfO/BBx+kiy66yHRu5i/dPS0O/OGex2dgHLHqj9Gqb731Vnr//fdp0qRJtHTpUhoxYoSZvmnTJvrPf/5jApIWLVpEp556arkTn5yE2HasPuuss2j16tWmFznHSPHDidYrHAAAAACgoiJe3eLbgjwf+j0fxNkbb7xB33333ZHpX331FcXH/zWu1IUXXki33347vfTSS9S7d28zFgNHvvIX69wdoG/fvvTkk0+SP3CfCP6yn+NhebRqz+B33ALCD/7szi0lX3/9NYWGuv/i47jHieBC5fEhbr75ZvPTk3cbiLjGNnHiRHPv2KFDh6h169Z0xRVX0F133WVV+Fwr5Jrpr7/+SgcOHDAn3fDhw+mRRx6hRo2cB4MBAAAAgIrF4zgsXLjwmOl//vmneXjk5+cf85wJEyaYygJ/huQP8wUFBdSqVSu6//77zWdIvrPHX/izJVcYuDIxffp0M3gd39rEg9xxy8gFF1xw3F/0h9jmz8bFxdGCBQvMYBWB7M477zQnQUhICJ155pmmsvTzzz+bfiHTpk0zw4VHRpb/9hQeeZCHNy8sLDS1QB4OnTvXvPLKK6aywgecKykAAAAANUqQH1OULD8vDxgw4LjGbrj00kvNo7IMGTLEPPzB6lDxt+ennXZawFcguJmHKxBcceBaKNfmpk6dShs2bDgyyh+3HpTXjh07aMyYMaYCwc1gfD/ap59+SsnJyWbk7127dpnkK18MNAIAAAAA4C9WlQj+pjwvT+7AGCjGjx9vfnKzU+kIroYNGx4ZPpxbELhSVR4vvvii6Qk/ePBguuGGG45MDw4Optdee810rlm8eLFp3QAAAACoUSognYnvAunQoYO5xagmKCoqot27d5sxIaRHhd7OdP3115t+EXwvGMdYBaLt27ebD/SMWwfK6tevn7mvjCO6ZsyYYW5R8oY73Ujr49aO888/nz788EP68ssvrZqedmbkUp1DIT5JWrIhJTCxnM+WOU5fvPdwTrKTE8IaivOi1sopEw3rnOA4PShC7r8SniffkrY7e5fr/TtU7JzoZPYjynlbB3emictEN5SPVUlxvjxPSBcKjoqQl1ESeor3OaetBIXJ511IKzntyUatGPlY2aQ6BbWJkWdukb8gKPxdON8L5ESnoIbKrY/avh8QjnGY/D1QUbKcfFarcR3X+xCVUM91YpIqro5VwpGU+FOrr/y3aO9uiwQh5XqhKRASswpzlCQtZVtamlJwG+f31n4hcYrFtpf73WUK+5g+W06+6nppJ3Fe8uZ01+dLfKycRrVSnENEMc7XtOJ0+diHdvyrE2y5k+hWyImHIfHOiW3G7hzXSWSamKhwcZ6UwtS8kXPf1eysmnX3A3+288co0VXxdf7zn/+kOXPmOPbX8OB+EXyHTIW1RPz97383HTK4jwDf4iNl0FZnnp7sMTExpt+Ck+7dux/1XA2PHLhx48ajljue9QEAAAAElAAZJ6KycZ/l/v37m8/ofOdQ/fr1jwzHUPbBX4hXaEsE9yxnHOvKg2Rwp2PuBS6NE+GJw6pOPCMMcgFLPAUvjUZYWukIXGmd5V0f1yhL1yo5OQAAAAAA4NFHHzWVh+uuu46eeuopE4bkD1aViNIfiLkTMEdWSfdUVddxIrjlgHGmr8QTa1ueD/Ge9WnrLO/6nn76aXr88ce9bhMAAACg2qjlx3Qmf623CuIwoLZt29Jbb73l18/hVpWI8nzzDv7zwAMPmKHMPbjScTzNUQAAAAAQGAoLC81o1P7+It+qEtG8eXMKdNHR0eZndna2+JysrMOdl8rTQcezPs86nYY5L+/6wsPDzQMAAAAgUPCHXn998K2ud8bYaNeuHe3du5f8rQY17riTmJhofnL6ksQzz/Pc8la8pFu/3KwPAAAAAKAsHkbgt99+83ufZKuWiJqgS5cu5md6erq5fcspoYlHmmalx5CQcOsCj6/BCU28HA9Wdzzrc7IvO5/y6egh1If1lDuGp+z6q59GWYlx0a6XufWl4eK8Vw46x4t1mybHigXXlaP+atWRI0op2LlunLVth7hIcYmcMBYd4lwWmjrt5Na6vPV/Ok6v21iOGwwKCRbn5WfIMaThDZ1btQo2yzGF4b1aui7bWo3kvkMlUjwpzztU5Dg9pK0cC1uckSvOC4qUL2nFQqxksBC9aPZPOG/Ntjo7R2WWrNxNVjbJsZwUdfT7+ohQ+bzQoiPzN2W4jhrN+kM+Z6iB8/uxfosGVjGuWbP/6nd3DCniV9gHs74fNovzos52Pt8bCnGY3iJjBw9wXt+cxfIXUlrkqXZMIk9wvkZmbZDjffOzars+xlHdm4jLrFwov66irfsdp8cOcE48ZNPflmO/SbheaIqz5OsFCRHYhxcscR0jXbTjgOs43qg4+TzTonqXzZHP6a79lWt4VefPFKUa1BJxww030Pz58+mss84y45nxsAE8JlmltEScffbZ9MILLxzXhp5//nmznuqCx7/gAUnY5MmTj5nPo1VzywHfVsQJVeVx0UUXievjW5mmTZtmfh8xYsRx7j0AAAAA1EQtW7Y040NwENJ5551HtWvXNne58PSyD0/iqt8qEbNmzaKkpCQ6Hrz8Tz/9RNUJD6jHnnnmGVq27K/B0rh14pZbbjG/33bbbUf1b+AB5fhetEGDBh2zvjvvvNMcSC5P7jFfejRBXt/+/ftNxaU6VbYAAAAAfAHDRPgGVx48SaqlU1Q908s+/H47E39TfjxDY3s6DVcnF154Id1+++300ksvUe/evU3FgONZuTLEH/j79u1LTz755FHLHDhwgNavX2/yectq0qQJvffee2Z0a25qevvtt03NkEcV3Lx5s8nx5VaKmtT5BwAAAAB8p6JSVMtdiZg6dap51DQTJkwwlYWJEyfS77//bmpz3PRz//3301133UVhYcK9yoJLLrnENB+NHz/edHrh0al5oL5bb72VHnnkEb8NCAIAAABQ9Vsi/JXORDVG8wpKUS1XJYJHWK7J345feuml5lEe11xzjXlounXrViMrZAAAAAAQGMpViTie+6Wg4gzplnDMGBMRQpoOa9fk2LEqPNYJKRNJW+W0iAVr5VSaFrcc7qReVoqQcMOKft4qzivJPiTOC6rj3DpUJ79AXCY4Ti6LQ6ud00eCG8nLFO+X01bCE5xfc9Eu5yQTFhQlJNLwfoTI6S0529Icp9duKrd4FW6Rk10kBbPl5KvwfieJ84r3Ot/meGixc4IVCxaSw1itbnIiUS0pNamRnFajfnUipDoFNYx0nyzEKS2nyMck84u1ztuKl5NdtNSXwpwCV2k/rKC2fJ7lCWlK6bvkcXbC258gz+vRVJyXn+Fc7rHt5WtJep6cAhce5TzmTpqSjKOZNXuzqzL3Vu5jhncQ503872+O0xP7yt9CpsxSIh+FhKuCbHnfNcHN6ztOz9ol394c3ipGnKeVobgPynVaS1+TFO+Wz+nQzvGuk6rkqz5RiPKe05LPklbtdJWIlpuTVaNGrOa+p5xUxHeA8COQHTx4kD766CNzJ82ePXvMbfn33nuvmZecnGw+359xxhkUEaEkXioQ8QoAAAAANQL3Qy3PIMHV3Q8//ECXX3457du3z3Su5juKmjb96wsa7r/LfX8/+eSTct9tUxYGmwMAAACAKjNitb8eNcXatWvNsAIc9nPzzTfTp59+aioSpfHYEZwY+s0331hvBy0RAAAAAAABYvz48SYl9PPPPz8y9tioUaOOeg4HA5166qm0cuVK6+2gJQIAAAAAKh8GivCJX375hTp37ux18GIeWDktzbnvZHmgEgEAAAAAECD27NlDbdq08fq8wsJCys6WwwK8we1MAYSTmMqmMeUVFYvPn79ml+ttdGyuJEIoyU2S4PpKks2ZcsJI0Rx54MOgKOd0ptCTm4jL1BJSScy8us7zgoSkCyNErp8XpTonXxVnK0khRUXypuLlYxJa27ksQlrFisuUZCnJVxHOl4zghnJiEuUr+y6cT0HR8vgrQS2cE1+MA3IZBrVxTn0pSc6QlwkNFueF901wnJ6/SV5fcLxcTllLdrjed4qUL+HpXzonOhktnBNrcuUl1DSYY4fW9J7ApCXtFO2X9yS8iXOHyPTlO1wvw5o3ck6xWva7fI2JPa2ZOC8/K99VqhRrKOwDm/jYLNfpR5lK2WopYDYpTJ17Ob8PWHysc+rU9C9XyyvcJ51N+vkuHeOwofIHqbxP/5C3Veb+cY+QFvI5HXJaguukJS1FTTqXvJFSmPr3cN6/rMyDVNUaIvy17pqiXr16tH37dq/P44GOGzWSk+28QUsEAAAAAECA6Nq1Ky1dupS2bZO/DFm9erXpD9GrVy/r7aASAQAAAACVD30ifGLs2LGmY/Vll11GO3ceO27I3r17zXM4sYl/VmglYubMmdYbBAAAAAAA/7j44ovpkksuofnz51OrVq3o7LPPNtPnzZtH559/PrVs2ZIWLVpkxpHgqNcKrUQMHTqU2rZtSxMmTDCj4QEAAAAAHJdaQRTkpwevuyaZPHkyPfDAA+b3WbMO963asGEDfffdd3To0CG6++676b333juubVh1rG7fvr0ZyGLcuHH08MMP05VXXmmGDj/55JOPa2cAAAAAAOD4BAcH01NPPUX33HOPiXzlTtTFxcWUkJBAgwYNOq4O1cdViUhKSqLZs2fTK6+8Qt9++y298cYb9Oabb9IZZ5xBt912mxklr1YtdLcAAAAAABdqVoOB3zVo0MDreBEVHvE6YMAA8+AIqddff50mTZpEc+bMoV9//ZWaNGlCN910E/3tb3/zSU0H/GNgp3hx3hvfrHa9jBbxGhMV7jyjo3x+pCbtFucFX9BWnFeUnO44vXjLfnGZYiVWsFbjOs4zCuT43KJtB+T1neC8vrAGctxtiRKTWpyeJc4Lbuoc5Vm8R46bDG4pR6gWbd7vehkqLHZd7iVazOMeOcozuJnz6zXrLChyH9UbIx+T/B3CrZwZcjxp0U4ljztM/uKlZK/zOoMSldebK8d1Bm1xPj+LwjLFZeR3D1H0sJMcp2fNSyUbUUJ8rlnnhnTXcdFS5CVL3uy8Po0UC8u2SjMS5GOlRbImKhGl0nV15UK53Ivy5G3Ftne+HqcrcbcZSvRv0qpjO3Sy4Aj5eESeUs8qglaKDI7qLkd7axHEebNTHKcH1ZfjwAt/V8q9a2PH6WNHdRaXmTJ7kzhv/xb5721RmvP7eJZQfrk58t8QAL+OE9G0aVN68skn6Z///Cd98cUXpnWCO3Lwv3k6d+zg1onjiZACAAAAgMAWFBRkHv5ad030+++/08aNGx3nde/enTp06FD5g82FhoaaKCmuNHAF4plnnjEdNz7++GPTueO0006j559/HpUJAAAAAKgUPXr0MP0FuC8vPwJFt27dKDk52fR/4MqBx1tvvUUffPCB4zKnnHIKLV++vPIrEbt27TL9IvixY8fh2w26dOliYqU++eQTEyvVr18/mjp1qomXAgAAAACoyBGrFy9eTHXryqPYV0c//fSTqQxcf/31R1UgPHg8CO5MXdqff/5Jf/zxB/3888905plnVk4lgptJ+BamL7/8kgoKCkyHau7Acccdd5hKA+Pe4dz5+vbbb6fHHnsMlQgAAAAAAB/4+uuvze1ad911l+N8nvfjjz8eNS0lJcWMIcFf7ldoJYJHwePblCZOnGiGzOYaDvf+5o7U3DTE8VGlccXi5ptvphkzZhzJqgUAAAAAqNCmiAC0aNEiat68uav+DYmJidSpUyezrK0Q287U+/fvN5WHjh07mhYGHisiMlJOx2BxcXGmnwT4R15RMYUVHZ2Ek7JLTltp10ROwbjxAucxP6bOd06sUBOYFFoqSeQJtV0ntBjNnJspazWS10dCWg0r2uFchrUayCkdIYNbiPMKZmxwXqZTnLhM4apd4rzQznJilqRYSXsqyZTfo8HxQipNbiHZKNruXO5hPU4UlynerSQctY+V5y10TnWKEpKFvJ5n24X3Vis5raZ4jpxyU6uXnCITJKREBcdHi8sUhQWTa8o5rclKdT6OiRe1F5dJmZFslcIT3sT5/T14QEtxmemvLXSdfhR+Wrjr1CEtJUhLRdKSm7J2yck5e7VkMUGUzbYi5Y8KKbPkBCESriXhpzonFXkTFRflOjFLS9/Kz5BT6oLaxLhOAQtRXpe07xNfmy8uQ7vka11wczkRL7yV877HC0laOdk+u7MdKsmmTZtM32Mn/FldctJJJ5k+FLaszhyuQAwfPtxUHsreY6W599576aqrrrLZJAAAAAAEMKQz2Tl48CDVq+f8BQEPDM2hR074y//MTPnLZr9UInjY7JYt5W99JG3atDEPAAAAAAA4flFRUXTgwAExgYkfUqNA7drKXRr+qETYVCAAAAAAAEQ85qY87ubx8dd6q4D4+HhasWKF6+V4GV7WVgAXKQAAAABAYDvttNNo+/bt9Ouvv5Z7GX4ux7z27dvXeruoRAAAAABAlekT4a9HoLryyitNB+pbbrnF9I/whvtB8HO5TC6//HLr7aISAQAAAABQTfXv35/OOussWrNmjRlsbvr06eJzebgFHrV77dq1Jhxp4MCB1ttFrleAS4yLViNhJdMXOUdRdmwux1dqFqzd7Tg9urYcUdi7fSNx3nQlejM8xrmTUP6mDHkHW8ixh8FhznXt4p1y/F6QEpMa0v4E52XqK5GxreXo0uI9SkxhhPNbPLiFHA9YcjBfnCdFPWr7UCsqTJwX0kqJZHX5mljR95vFeWEXtHUf43pALouSvbnO+yevjWq1k19vyZq94rwg5XiJ69uyX15fV+coyuAI95GhLFZ4r2oxrlHdm7iOjDW2OX/LliTEVxpxdcRZKfO2uoqSZfk7lG/6lPNTkqu8f84Z6nzeatdVLSI3a7Yc0x3c0fk4JvZtLi6TsnS7vD4hgrhjJzkKddlnq8R5WfXk2N0si+jfBUosufS3SYu0LTpU5DriVXrvmH3oZvd+lKLT9+52jvDNzVFisysaxomwNnnyZHNrUnJyshnUmcdv69q1K51wwuHPHHv27KFly5bRvn37TKtF69atzTLHA5UIAAAAAIBqLDY2lhYuXEi33XYbffLJJ5SRkWEGePbcxuUZL4IHgB49erQZMLp+ffdfUJWGSgQAAAAAVDo0RBwfHiviww8/pMcff5y+++47Wrp0Ke3de7iVu2HDhqZlgsd5a9WqFfkCKhEAAAAAAAGiZcuWZkBof0MlAgAAAAAqHUasrl6QzgQAAAAAAK6gJSKARATXMo/yWrdDTkCRUpjS0uUUkT4d4sR5cxanOk4fPUC+L2/+ml3ivGGXnyrOmzXbOaEn6hR5/7KW7BDnUVPnhJHu13UTF1n68gJxXpCwPk1QopweRUudU4JYSWGx+23VlRNLKMY5QUo766ySm+rIqSRa+lFwvHMCCivaut91cg9tkd8jEee2dpyenyG/Xtolp6BEDJZTZKR1iq+Jy6lDQ3k/Nu1zXt8h5XwRUspYel6B67LVEokor1CeFx7sODnls9XyIj2aivNClXNNpCQ3SSk86bO3uE5s0xKYWNauLNevKV9JS6svJFxpiURSYhsLEZLykjfLiWgl2zPFedFKolfDRlGu/vZ4Oweb90pwnJ4qJE6xECVtMH258Ddmt7wPWafKKVYaKT1MStnKyT7c4bZKwIjV1QpaIgAAAACgRuAxEjp06GDSieD4oCUCAAAAAGpEn4jFixdT3bpyayKUH1oiAAAAAADAFVQiAAAAAKDqDBThr0eA+vXXX81I1RUNlQgAAAAAgGpqwIAB9Mwzzxz595lnnknPPfec37eLPhEBJDntAEVlHZ2y0K6JkupjIT7WOW3DW5pSQbZzeouWJqUleGjzpHQULQlqkrB/WtKFtg9BWuJPfpHj5KLVe8RFgs90TtVgrR45Q5yX8tVa5xnRckKLKvOQ4+SgNjHiIsGhzmk6qmZ1rRKOKCPP/bb2ycuE93VOaGF5s1Mcp4f0lJOAqHl9cVb+4u3ycq2cU3NiB7QgG+nknBQTrqQOFebI75Gi/bmu15e/KUOc1/XCDuI86X0XHiWniuVn5ZNbWRvk93dslyauE5O0YxWtpPrEKK8rWXhdavKVcP3REoRiT2smLrN/yz7X1858JYFJSxXTXlfKH85/f8Jbydemm67tLs6b9OlK1wlM0utlwfUjHacnCIlJLDVJTubS9oMinD/a7d3tfG7m5ijX1AqGEavtlZT89flv9uzZlJiYSP6GlggAAAAAgGoqOjqa0tLSKny7aIkAAAAAgMqHpggrp5xyCv3888/0z3/+k1q3PjyG0caNG+mDDz4o1/JXX3211XZRiQAAAAAAqKbuvfdeuvjii+mpp546Mm3evHnmUR6oRAAAAABAtRVUK8g8/LXuQHXeeefRokWL6Ouvv6atW7fSe++9R61ataK+ffv6dbtoiQAAAAAAqMY6d+5sHowrEf369aN33nnHr9tEJQIAAAAAKh23FfhrOIfAbYc41qOPPkpdunQhf0MlIoDszMilOoeOPqSJcdHi89PSc1xHuWrr0+JkM4QownU7DriOhfUWD9lGiId8/7s1ZCNRiODT4vdIiXiNbd/IcXq6Fmu6TY4OTPlstTiv5IBzuUcr0aVquQsxpCVr9orLUEGxOCuolxCVuUmOjdSUFMjxlUEkRCLulOMN8w/J65OiXIuW77TbPyUmV5L++zZxXnC8/F6NOinWcXpWqvx+DI+p7TriVYu81GJDVy5MJbe0fdfOp67XdXOe0dK5jNhWISqTDR7Q0nH69LeXiMukR8p/ilN2y9fpxIvaO07PVGJh04VjZQjbkmJrtWOvXTszlbhgjRbV27Cj83VVI8W4queuEJ/qLfpXisKVYldZ5Anye07nvFzDRs7x5znZR0fDQ2BUIioCKhEAAAAAUPmQzuRThYWF9MUXX9Avv/xC27cf/hKwadOmNHDgQNMROyTk+KoBqEQ42L17N82cOdM8Fi9eTKmpqVSrVi1q1qwZnX322TRu3DirQTx4Ge7wIunVqxctWLDA9XoBAAAAADxWrFhhKgpbtmw5aiA6NmnSJHrkkUfo888/p1NPPZVsoRLhgCsJH3/8sak4nHzyyXT++edTdna2qVC8/PLLpqPKV199RWeddZZVoY8cOZKioo5tVuSe9AAAAAA1UVBQkHn4a901xY4dO8yX3nv37qW4uDgaPXr0kc+YmzdvpilTptCmTZtoyJAhprIRHx9vtR1UIhzExMTQ448/Ttdff71p9vHIysqiv/3tb6bw+YDwQB4NGjRwXejPP/98hQxHDgAAAAA1y7PPPmsqEGPHjqUJEyZQZGTkUfPHjx9Pt99+u2mReO655+i///2v1XZq+Wh/A8pLL71kRv0rXYFg3Hrw9ttvm+HFMzIyaPr06ZW2jwAAAACBF8/kx0cN8b///c/cgv/aa68dU4FgERER9Oqrr5rnHM9nWbREuFS7dm1q27YtLVmyxPSVqEp6tmtEdesenfCTsitTfH6fDnGutxERLNc7f1mVJs6Tkow6Npdbcjp2aizviDJPSoLK2pDuOq3G2z5KtPSR9NlbHKeHtz9BXCY/r1DemJIWEiSkOtmm8FDMsRcjFqIkoxQly+VO0utqKicLBdePlLelJWZJYiLkeWHBrrcVO8I5Mcdbyo1GSiMLbyUnOhUq52DWkh2O06O6y+kyuXtyXJ+DUQn1rMoiQTmfUubJ/cokwcr6ls3Z7LxMhJDmRUTnDG0rzkvaKiRBRdql+mikZB8tYS28iZwCJ2UfRcU5p/p4O8+kY6Xug5K8lzi4lU+3Fd9CvrZnCq9ZO2+ja8vnDAnb0hKntOu09t6SXpd0vuTmyAl1UD2lpqbSRRddRMHB8t8w7lTdp08fM0CdLVQiXCooKKCUlBTzu+09ZO+++65pyeBe802aNKH+/fvTGWecYbUuAAAAgECAEat9Izw8nA4elCO2PTIzM81zbaES4RLfzsT3mXHz0LnnnmtV6E888cQx03r06EGTJ0+m1q1be10+Pz/fPDzKc6IAAAAAQODr0KGDiXXlFomEBOdxobZt22aeczzpTOgT4cKqVavoH//4h/mdo7G4x7sbw4YNMxUF7pCdm5trYrc++OADc08aJz8NGDDAxMt68/TTT1O9evWOPKQTBAAAAKC6QJcI37j66qvN58zBgwfTjBkzjpn/3XffmYTRvLw881xbAdcSce+999K3337rejnuod6vXz9x/p9//knnnXeeSWjiyNf777/f9TYmTpx41L85oYkfXLno1q2buU2Ke8y/+OKL6noeeOABE0NbuiUCFQkAAAAAHd/5wX0Fbr31VvMIRH/7299o6tSp9NNPP5nPrpw62qJFCzOPv8DmW+p57AiuZPBzbYUEYjbu+vXrXS/HlQPJzp07adCgQWagOM7U/eyzz3yaN8wH98477zSPadOmea1E8P1rx3MPGwAAAEDVHLDaX+NEHP7Jd36UDaEJNMHBwSZ1iZNGOYUpPT3dPEqnjXIFiocz4DHRbAVcJeKjjz4yD1/h24vOPPNMSk5ONjU27sXujw/w7du3P9LiAQAAAABgKywsjJ555hlTUeBE0e3bt5vpPHxB9+7dffJZNuAqEb60Z88eU4FYu3ataYng26Q4W9cfPDVEHoPCFsevahGsZWnxr4lxzvvxxjerxWVuvOBkcd5WIVpuwVq5D0jv9o3cxygqtKi/8Cj5zTRr9mbXEbQpszaJ82IHHG5SLKt5IzlGcaUSo1i0db84jwqKXMe45q/YKc4LbhPrPsbVRq4caVuUK5+3dKjY/baiw8RZwfHy+7FIiOzcv0U+N4vSlH1XIkCl/cibfTgpzklQXB1xnhQnnPWD87nuLbpWes3a+0qblzIjWZzX9dJO5FZ8rHy+T397ieP0IiXZWbv+SDGaWhSzFg0qxWOzEGG5QsvrhXheWEYTa9dcqxjXpYc/BDnpOqSNqwhf1nFAS3Ge9LdJi7tNU9770t+LPgPk1ztltvx3RLvOpAkRv/lr9zhOz8vPrmItEf5bd00UHh5Offv29cu60bFawAlMXIFISkoyFQi+zchpwA5f4VGwWc+ePf22DQAAAAAAX0AlwgF3OOGKw+rVq80tTG4qELxcu3bt6Kuvvjpq+jfffENLly51zOjlvhCezuClO0wDAAAA1BSelgh/PcC3cDuTg7Fjx9Iff/xhOvdwp+ebb77ZsfAuvPBC8yht06ZNpgP2gQNHjzTJWbwTJkwwca6dOnWi+vXrm07gK1asoH379pmRA59//nlTaQEAAAAAqMpQiRBaIhjHX3ESk4TjWctWIiT8PE6AWrZsmengwtvgTi9cqRg1ahTdcsstpnIBAAAAUBMF/f9//lo3+BYqEQ5mz55tXaA81oMTHkiOHwAAAAAA1R0qEQHk16SdVCfq6JSFjKx88fkdmzdwndzUpqVzOg/LKyp2nT6i7YOUEOVtnpRoEVon1CrpIqFjI1eJU94SRqTXLKVAscgT5HSZhsL+sUwhpUVNWxESnbT9yJXXJibIaElQUgqU14Qj5RhTeLDz9J1yMklRhvLKQoX11fd9AENRnvNxDGoTIy90QH7v52fkuN4Hm/eImFTE5+Afu+SNKclSKxemOk6/6dru4jKTPl3pOvlKe89pryt3T47rRDQtdSgqoZ7rhKvRSuKPlsonXYPydxwUl4nt0oR8SUujCo6Q39/Jm32bECddI7V0Ju1vzLLPVjlOT+6e7vpc0q4J7M6xzgEtv6xKc5yenZVJ9G+qGvzZdwENET6HjtUAAAAAAAFi27ZtlJrq/IWLL6ESAQAAAACVDulMvsF9dkePHk3+hkoEAAAAAECAqFu3LrVo4TywrS+hTwQAAAAAVDqO1ueHv9ZdU3To0AG3MwEAAAAAQPn97W9/o3nz5tHixYvJn3A7EwAAAABUuiA/P2qKa6+91ow/dvbZZ9P48eNp/fr1lJ8vJ/bZCirhEdWgWjt48CDVq1ePFq/bRlHRdcu9XNJWObJxWM9mrvdj/ho5srFPhzifLcOmL9omztNiYyVp6XKUXtKqna7j/KToRda8UZTr1yvF1nqL3pTiUKVYS6+RrJsOD8RYVngrOWpUi0TMFyKIs5bsEJeJHSDf55n+3XpxHrVq4Dp6U41C3SVEw9aTjz3lFoqztGNSv4X7c1qKVdYiRbUITS1a1yYmNXP6BnFexIBEcV6hEFusbSsr9YA4Tzr+2nmrRiRb0Lalvb+l11yQXWB1Tse2b+TqfeqNFFGqxZMOG3GyOE+LwZbOi6L9ckxz1ElylLRUhlr5ae8f6T2cvnyH1f5p+vdIcPU3Pyc7k64+6xQ6cOCAuZe+Mj/HvP2/FVS7jnwtPB78Oq8/99RKfZ0VJThYiCAXbvMqLJT/NmnQJwIAAAAAKh36RPiGm/aB42lLQCUCAAAAAKpMxKu/1l1TFBfLg//6EvpEAAAAAACAK2iJAAAAAIBK588O0DWoIaLCoCUCAAAAACDAbNq0ie69917q168ftW3b1vzusXDhQnrzzTdNR3NbaIkIcFrqkJbAlLJLTmLxpfhYOVFFs3e3nI6SJEyPURKTBnaKd70PyZvTrZJxtgr7rq1Po6aPnBLnOr0lXkkCShHSmbSkKi3ZpaGQVJWVdcgqrSa8R1N5P4R9JyWdKbFbU9cJR5rg+pFWqVjp3290nlFQJC7T/Lpu4rwUi32IFM4lLYVHSynLqh9hlVYkSV+72+o4ZgqpPlpqjs0xTujonHzEUmYky+trXt91uXfu5ZzOw1YuTHVdhlrqkHbOSClMUgoUmzljvVVCmJQQp5VFhkXqVKZF2pwmtksTq/Vp13ApxUq7tlcV6FjtO++//z7ddNNNR6JduWz37t17ZH5OTg7dfPPNFBYWRtdcc43VNtASAQAAAAAQIBYsWEBjx441FYTnnnvOtDqUTWHq37+/idWdNm2a9XbQEgEAAAAAlQ7pTL7BFQeuNEyfPt3cyuSkVq1adOqpp9KaNWust4OWCAAAAACAADFv3jzq2bOnWIHwaNy4MaWlpVlvB5UIAAAAAKgyfSL89WA9evSgDh060MSJEylQ7d+/n5o1k/u9euTm5tKhQ3IfRG9wOxMAAAAA1AiLFy+munXrUiCLjY2lrVu3en3exo0bTWuELVQiAlyfDnKiiiYxLtqn+xER7L7Ra/6aXeK8McM7uF5OS2CaOl/KqyGrfZi+aJs4L2tXluvkDClBxqyPfEtLsdorJPRkpcoRceFK+pGUshWsJNnUV8pJKluNmNrkJYlFlFcozpKzlIgiT5DLqbBNrPP6kuREomVznBNatGOipWxpSUtSSpCWpEWNalsdR+l4Dbu+u7jMAiW5SUok0lJz0n+X398JfRu5TpSjsGB5fcp7QV2nRZqSlGQkJcp5SxCKinPe99EDWonLvJ8l35+dpaQz2UhTzs+OnRq7vj5mKGXbsXkD1+emlF7n9W+CxXWwqsA4Eb7Ru3dv02E6KSmJOnbsKN7yxPOvvPJK6+3gdiYAAAAAgABx6623UlFREY0cOZJWrFhxzPy1a9fSddddZ27xuuWWW6y3g0oEAAAAAFSZdCZ/PWqKQYMG0bhx4yg5OZm6detGbdq0MRWG77//nk455RTq1KkTbdiwgf7xj3+YVgtbqEQAAAAAAASQ559/nt544w3T54H7PnDkKycxrV69mmJiYujll1+mZ5555ri2gT4RAAAAAFDpgvg/PzUZ8Lprmr/97W9m0Lnly5fT5s2bqbi4mBISEkxCVUjI8VcBUIkAAAAAAAhAQUFB1LVrV/PwNVQiAAAAAKDSIZ3JP/hWpvT0dPOT4195tGpfQCUiwGnRqnlFxa6X05ZJS3eOeWTtmtRzHSUrLcNenLTIdUzhuh0HrOLypDhCLYLWJnoxVYnr1GIZg+tHivPatIx1Hf+pzZNEJcjHSiPFhkqRod4iJfMXb5e31aOp64jX9OU7xHm03TluMnZ4W3l9s7eI87QzJra9c1RmtBL/mTJPzgiXoly1ctciXqV4Wi36l3bL2+o4pI04b6sQu6tdf7TIS6lsNVFC1LF2LdHiOukUsrqWZG1Id5yeoWwryiK2WItk1eKspbKY9OlKcRktZjg4Xv57IUVkZyjXC21b8bFyBLEkadVO18dRe4/kK9dV6drOkoXXLF0T8vKyxXVB9fbjjz/SCy+8QHPnzjUDy7GIiAg6/fTT6a677qIhQ4Yc1/rRsRoAAAAAKh3SmXyHk5fOOecc+uGHHygnJ8e0QvCDKxM8bejQoXT33Xcf1zZQiQAAAAAACBAfffSRaYHgVgeuKPzxxx+UmZlpHqtWraJ77rmHIiMj6cUXXzTPtYVKBAAAAABUiU7A/nzUFC+//DIFBwfTzJkz6d///jedfPLJVKdOHfPgEayfe+45M4/L5JVXXrHeDioRAAAAAAABYvXq1dSvXz/T90Himc/PtYWO1QAAAABQ6fw5snQNaoggvo2pSZMmXp/HzwkLC7PeDioRAU5LU0rZ5Zwuo6UmaWlPfTrEud6PKbM3ics0VxJGbrq2uzhPSk3S0p40UvrIsJ7NxGW2WqQzdezUWJy3cmGqOK++kEqipYVoiTTRShKUlvgj0dJHGnZzTkxKT5PPzQJl/4b9Q/7WZc5i5zLseGEHq3KPPCnWdXoUxdWxSriS0oXSM5Q0pSZ1xXlSClPhIjndKn3/4WQPRxHOf0qCI+Rj1fmqU63KXUpf05JxtESi9LXOqWjhMXI6T6GS5iaVrZakpSVfpX+5VpxHjZ3Pp47N5WuClmKVvDndZ0lF2ntBOx5akpZ23Z/42nzH6cNGnCzvoFJOs2Zvdn3si/LkeVFxzsc/V3mPaGlppKQzSctJ14TiHNyUEmi6detm+kF4w8/p3l1+X3mDMwcAAAAAqsaI1X78r6Z46KGHaO3atabvg4T7SvBzHnzwQevtoCUCAAAAAKCa+vXXX4/6N3eYvu222+iBBx6gzz//nK666ipq0aKFmbdlyxaTyLR06VK6/fbbj2vgOVQiAAAAAKDSoU+EnQEDBjimT/G4EFxZWLZs2THT2UsvvWSSnAoLC622i0oEAAAAAEA1dcYZZ1RKhC0qEQAAAABQ+fyYzhTIXSJmz55dKdtFx2oAAAAAAHAFLREBTotklWJcteWmzk8Rl4lRYgql+NfRA1qRL2NXtehVbd+1SESbiFwtJrW3EK+qRS8mKPGQmUrkYGidUFexlqx5/5biPOrb3HHyXiXSVovKTFnqHCkadUqcVezhzBnrxXmRJzjvx7Lvk8VlYrt4z9l2I2tXtjxTiXjN33HQcXqicDy8nRdSjGZRQl3XMa5aPG1BtrwPWiSrJkOIDc1fIa8vtK9zLCxLFGKGU5N2u46Z1WJS07bsE5eJV2Ka02MixHnB8dGuryWahkKs9gLleqGR3qvaeSFds9jE//4mzht2+amuop1ZGyUmVYtylWjR2Ta0+G6NdK3L+sM5/vxQnnJdqmC1KMg8/LVu8C1UIgAAAAAAAkxeXh4tWbKEduzYYX6XXH311VbrRyUCAAAAACod0pl8h8eBGD9+PB086NySXRoqEQAAAAAANdwrr7xC9913n/m9U6dOdNJJJ1F0tHwLuy20RAAAAABApUNLhO8qESEhITR16lQ677zzyF+QzgQAAAAAECBSUlLM2BH+rEAwtEQEuLyiYp8uN7JPorjML6vSXKc9rdtxwCo9SktTmr9ml6vUJm0ZW9r+JW2VU1psaElQUgqPlEijpd+wlHlbHad3HdJGXGarktwUFeecBqPRkl20lBspHSe8SV3X5aclJmnro/wieVtCcopZZ6sY14k/gwfIKVvTl+9wnJ44WE5L0xK4pGNik3CjpctoqUlRSgJT/x7yvFmzN7vcOz1ZqmOnxq7Xp71HEofK7y23CVFszPAO4rz3v1vjOhFNS44j4f2YPnuLuEi88nq1NCWbBCntWie9Li21S5OvbMvm+rNSee+HCH8TpOtIcU4YVRU8YJq/Bk2rjMHYKkujRo3ohBNO8Pt20BLh5USWHqNHj7Yq8OLiYnrjjTeoV69e5v40fvDvb7755pFhyAEAAAAAbJx77rk0f/5885nTn9AS4cWYMWMcp/MHf7eKioro0ksvpS+//JJq165NgwYNMtNnzZpFN954o/k5ZcoUqlULdTsAAACoWbitAANWH79HH32Upk2bRrfffjv95z//obAw/7Q2oRLhxXvvveezwn755ZdNBaJp06b022+/UYsWLcz0LVu2UL9+/ejzzz8397DddtttPtsmAAAAANQcTZo0oblz59L5559Pbdu2pYEDB1KzZs0cv6Tmu2seeeQRq+2gElFBuEnp2WefNb/zT08FgvHvPO2qq66ip59+mm655Ra0RgAAAECNgj4RvsG3x0+YMIHWrVtnPn86fSHOZc3PQyWiGuB703bu3Enh4eE0cuTIY+bztOuvv96MKrhw4ULq06dPpewnAAAAAFTvgeZefvllE/M6fPhwM05EVJT7IBNv0BLhBd9LtnHjRlNT46ags846i7p27eq6oJcvX25+duzYkSIiIo6ZHxkZaebx8/hhU4loE1+P6tatW+50ppRdma630a5JPXFefKycqKKlMPmatB/a6x3YKV6cN3V+iuuykJbRxESFk88J6Sjatvp0iBPnvS+kyGgpJzbJUtr+OedD2SenaElAWhIU5RY6Ts7flCEucuvTQ8R5kz5d6TrxZ9n3yVapQ1EnOafcbHlrqbhMwytOcZ0sNez67uIycxanivPCleMvHRNtmbR0OV0oP8N5XnhMbdfLaElL6Up6UGx7JeHIglYW0xdtE+c1bOT8ISNGSUXSrhdS6l1Wezk1JlNJ9NISwmySubSkPGk/tOuFTVJefSVRTlufeo0Uyqm3cJ5lZXof0TiQxono0aMHBQcH06233moegWjSpEmm7y3fOt+lSxe/bQeVCC/uvvvuo/59//330znnnGOahuLi5ItnWdzvgXFFRJKQkGAqEJ7nSvLz883DozxDmgMAAADUdIsXLz7mC9dAk5qaSgMGDPBrBYIhBkhw+eWX09dff20G7MjNzaXk5GQzAmBsbCzNnDnTtEjk5eWVu6AzMw9/C16nTh3xOZ6mJm+VAu43Ua9evSMPrnwAAAAAVGeelgh/PWqKxo0bmyEE/C3gWiLuvfde+vbbb62afjghyePjjz8+aj7fT8aPoUOHmprdqlWr6PXXX6c777yTKtoDDzxA48aNO/JvrnSgIgEAAAAAF110EX3yySfmy26nW+h9JeAqEdwxef369a6Xy8oq372WnKR07bXX0osvvmgyeMtbifDUCLOzs73ug7dmNu6czQ8AAACAQBH0///5a901xWOPPUbff/89XXbZZfTWW29Rw4YN/bKdgKtEfPTRR+bhT+3btzc///zzz3Ivk5iYaH5u27ZNvYet9HMBAAAAANzgL7h5fAi+Lf/nn3+mbt26qeNEvP3222Qj4CoRFSE9Pd38dHO/mSfRKSkpybF5iftd8LzSzwUAAACoKSoinakmeO+990zlwNMnd/bs2eJzUYmoQDxox2effWZ+79mzZ7mX48hW7ujCY0VMnTqVrrjiiqPm87RDhw6ZUQZ79epltW/JaQcoKqvkqGmJcXJFR5sXEezc516LjNViFKUIVW19tqTYvo7N5Si9937aIM67ZtBJrmNctSjCNkJcohaTqu37AiU6cvSAVo7Tp8ze5DoeUNv3pFU7XceTaq9Zi41cNkeOLtVIMZr5Wrkr+55cJ9R1LKwWr5m/Qw5U2BrnHL0Z3kS+9TFU2D9tH4M6NHQdUckSB7dyfW5mLdkhzms4tI04L1qIxFTjP4XoUjZsxMmu9z1KOB7a+RSVIEdCN1f2L3nz4S+t3JRholJ+WjmJ564SQ6pFE0vlpJ2bWlnEK1G40vHSYlw1NtdO7To9rGcz19Hj2jmoRbxKZSjFPufmuI/Ohart3XffrZDtoCXCAXeq7t69u2kKKm337t10xx130IoVKyg0NJT+/ve/H7Ps1VdfTYsWLaLbbrvNPDy4Cem+++6ju+66y/w87bTTjoxazZGuHB3r6TTt1NwEAAAAEMgwYrVvjBkzhioCKhEOPv/8c7ryyitNGlOHDh1MLCv3ZeDKA3d+5gE8uKnI0zeiNH4ed+zeu3fvMfO40vHrr7/SV199RSeffDINHjzYTJ81axbl5OTQxRdfTLfccos/jjMAAAAAgM+gEiHU4Li/A1ca5s2bR/v37zcjSrdu3ZoGDRpkRjj0tCK4wSMkfvHFF6anPEfK/vTTT2Y6j1R9/fXX0w033HDkHjYAAACAmgR9IqoXVCKEfF1+2NA6rzC+VenGG280DwAAAAAAX7ruuuvK/Vx0rAYAAACAag19InyDb7nXeO56KSkpQSUCDmvWKJrq1vXNMOfrdhxwnegkJTDZrm/+ml3iPC29R6Jtq10TOTnll1VprtI2vCVu+JqUIqKlbNmmwWgpNzakhBEtxSixW1NxXmaOnIwUXTvUfRpMbG3XKVZSgpW3BC6KkBuGewupNNOV9JaOnVq6PsahJ8n7rqVOpW1xTsAZPEDehyTheHhLEAoXzpmsVOdrDMuwOG/3C6+JhSj7Lr1mLSVISxwLjpC3FdW9ieP01KTdVvseL6QwaeurryQ3Se+tDGUftOuPlhwnbUu9nimkFCbtvFigrE86/inztorL3HrX6a73TysL6fjmZOOmlJqSzlRcXExbt26lGTNm0JIlS8x4Ep07d7beDs4cAAAAAKh0/P24v3qG1qQep2O8pDPxiNb33nuv6aO7bNky6+0gSxQAAAAAoAYZP368CRH65z//ab0OtEQAAAAAQKVDOlPFCQkJoa5du5phBmyhJQIAAAAAoIbJzc2lffvsRnVnaIkAAAAAgEqHdKaKs3btWpo7dy4lJCRYrwOVCAAAAACAAPHBBx+I8zIzM00F4sMPP6S8vDy6/PLLrbcTVMIhsVCtHTx4kOrVq0cHDhygunXr+mSdUiSrr2mxqxot3k6KPNWWuWbQSeK8vKJil3unb0uKGu3YvIFVOWlxslKsoBSt6o0UeapF5GrlJ0W5amWhRWVqpBjS0Dpy3GTunhxxXude7r+90aI8u/Z3H8kqxZ2yfCVOVlpOW0aLUJVid6UyZ1FxUVaxxRMfc75/t+ulncRlln2fLM6L7dLE1fvUWwStFIWrvV4tZlg7Z2KF6N/035WI5MFy2UrHq2OnxlaxxVI5NbSMitauW2p8sgUpLjprl3zstUjjWbM3u49BVq51Wpy1FEN707Xdxc8QcTENfPoZwvZzzE/LNlFUtG+i6svKysykQV1bVerrrCg8sLFnLAgnno/+F1xwAX322WcUGipf7zRoiQAAAAAACBBXX321WIkICwujpk2b0uDBg+m00047ru2gEgEAAAAAlS7o///z17prive8jFjtK0hnAgAAAAAAV9ASAQAAAACVDuNEVC+oRAAAAAAABGAaU3n7UNhAJaIG01JzpDQgLQkoLV1OsunTIc71+rTEHy29xZfLsPlrdrleRktbkcpCI6UYsWE9m4nzFqzd7TrlREpgYjNnrHfeTgs5TUnTW0iXkfbbW4JQm5ax4ry9QgqTlnCkpcgkrdrpOH3sqM4+T5CRkpHChfJj/XskuH6vrtTSlBLk96OUpqWlGGnHURM7oIXr8za8iZzEIqXtyHuuk9K+tNfbR7k2aelMNglM2vViipD4o523NklvttcfG1uVc1BL4LKhpehJKUza302tnLTkMyk5TkoNzM22Pdt9D+NE2LnmmmvUNCZvUIkAAAAAAKhhzjzzTNeViPnz51NOTs5xVT7QEgEAAAAAlQ59IuzMmuU8fo6T3377je69917Kzc01/+7USR5jxxukMwEAAAAABLDVq1fTeeedRwMGDKCFCxdSQkKCiYJdvny59TrREgEAAAAAlQ4tEb6XmppKjzzyCH388cdUVFREsbGx9OCDD9Ktt95qBp47HqhEAAAAAAAEkH379tFTTz1Fr776KuXl5VHt2rXpjjvuoPvuu4/q1pXDJtxAJQIAAAAAKh138fXfiNU1Q15eHv33v/+l5557jg4ePEjBwcF0ww030GOPPUaNGzf26bZQiQiwyNYwJba1rIhguUvML6vSXMfvafOkbSVt3WcV8artuxRda/N6NQM7xYvzps5PoYqixeRKEaoa7ZjcdG131xG0UvyntyhXiRbJqkVRSpGn2uvNFCIvWVScc/zr+9+tsdp3LQ5VilfVooS16EhJ5Anye3jM8A7iPCk60pYWqyzFcmrnknSstIjXjp0au473ZQXZBa7X9/q7S6yidaWy0OI/pRhXbX1a1KhNhKr2Pl25MFWcV98iSlp7j2j7Li0Xr1xTtfNW+vuYvDndKqa5jxIlLb0fpeMRXIKPgoGguLiYJk2aRE888QSlpaVRSUkJjRgxgsaPH09t2rTxyzZx5gAAAABApUOfCDtffvklPfTQQ5ScnGwqD/3796dnn32WevbsSf6ESgQAAAAAQDV18cUXm/EePP0ehg4dSoWFhfT777+Xa/nTTjvNaruoRAAAAABApcOI1ceHB497+umnzcNNmXOFwwYqEQAAAAAA1VSzZs2Oa+RpW6hEAAAAAEClQ58IOykpFRfmUhoqETWYlGLkLXnIl4b1bObzfZdSmNbtOEBVgZamZJNwlBgX7TqlQ0ss0RKJbPZdc82gk1wfX42WjERCGWqpSG1axorz+nSIc5w+8b+/icuEd2kiz1MScKQEoWVzNovLJHZr6voYa2kw2rGXzqckYb+9JSZp6T1S8pC2PimVxhCW01Jz4pWUIOm9qqXNacl2cxbLaUXauWtDSmHSUow0NsfqnKFtrRLHpOO1TEvtUpKvSDintX3QkqW2CudMQ+VarB37Bcr1Yr9Q7qOFdD2OAQWwgUoEAAAAAFQ6HiPCf+NE1JSRIiqOHJwPAAAAAADgAC0RAAAAAFDp0CeiekFLBAAAAAAAuIKWCAAAAACodLWCgszDX+sG30IlIoBwKpGUTOSrBBwt4UhLrZDSntzsrz9p6Sg2ZSGlnGjlpCVi/bIqTZyXtNU5iUNL9Ylv38h16pDt8dJSaaQy1M4ljZYuZJPApJ0Xkz5d6Ti965A2VutboKTISGlA8lmh6y0cf20ftEQvLU1Jkq8sk26RqKPtn1buM2esd50SpJ3Tb3yz2nF6UqN9rlOMWH6G/F6IFY5jQ8v0NV8mrGnXLS35Sksk0kjpZv1HnCwuo11npEQq6ZrKEjrK11WbvxW2iX1pwvGfvmib4/ScbN+m7kHNgUoEAAAAAFQ69ImoXqrG18AAAAAAAH7Wo0cP6tChA02cOBFlfZzQEgEAAAAANaIlYvHixVS3bl3/bKSGQUsEAAAAAAC4gpYIAAAAAKh0GLG6ekFLBAAAAAAAuIKWiADCka1hFrGtbqI3tWhDmyjPxLhoqzjRlF2ZriNPR/ZJ9GncrbYPWkyqtpwvIzRZx06NXUcbajGfUjSodhxtYoFtIne19WmxkgXZcuRl/ICWrst22ddrxGXufmSQVbnvFeImpX3wZtbsza6Xyagd6jqmsqNSftrrbdNfXs7Xr7dzrwSfvkfGDO/gOH3ia/NdR7V6I8XaSvGkLFo5jtJ7JCtVfg+/8LtzbCiLPa2ZT2OVbd7f0790jtxl4THytqT3VrJyLdZiV20iulOTdlttSyoLLfq3qkA6U/WClggAAAAAAHAFLREAAAAAUPmCgijI3/FM4DOoRAAAAABApcPtTNULbmcCAAAAAABX0BIBAAAAAJUuyI+3M/ntNqkaDJUIB4899hg9/vjjXguvRYsWtHlz+VNOEhMTaevWreL8Xr160YIFC8gWpxmVTTTSUoe09CMtacmXCUeaX1alWS0npTDZpARpbBOYbLY1rKdzygmbv2aX66QTLRFESnzRltPSmbRt2aRRaWWhbat/jwTXy9i8DxIHt7I6p7XUHGmedg5OXySn5gwWUpNmzljvOiGKZeYUuEqJ0Y6HN9L7RysLLa1o2Rzna3hUgnzstZSbKbM3OU5P7NbU6px+/zs57cvmPayVRbiQsqWlZa1cmOpy7+wTmLTlxGudUhZpW9xfm6T0Le3Ys3zhmpa7R3699VvICUxzFqe6fm9JqWK5OYXiugA0qEQ4OPXUU2nMmDFioX377be0b98+GjhwINkYOXIkRUUde2Fr1Ur+8AEAAAAQyLitwF/tBWiH8D1UIhxceOGF5uFkx44d9NFHH5nfr7/+eqtCf/75502rBAAAAABAdYRKhEvvv/8+FRUVUbt27ei0007zz1EBAAAAqGHQJ6J6QTqTS+++++5xtUIAAAAAAFR3aIlw4bfffqMNGzZQaGgoXX311cdVEcnIyKDCwkJq0qQJ9e/fn8444wzr9QEAAABUdxgnonpBJcKFd955x/wcPnw4NWrUyLrQn3jiiWOm9ejRgyZPnkytW7f2unx+fr55eBw8eNB6XwAAAAAA3EIlopwyMzPp888/P65bmYYNG0b9+vWjnj17UtOmTWnnzp2mdePhhx+mxYsX04ABA2jZsmVeKyhPP/10uSJovcW42kSy2sSJarF9NjF13qI3pdelxZBqpFg8LVLSJhpUo0XGauUuxZd2bC5HB2rlJB1/LdpQiy6Voi21WEutLKSoUY22zCuTl4vzOnZq7Hp9MUKEprcI1axUIZ5YiQbV9mPWbOdY08gTaruO/zT7tyvLVRl5i9bVykK6LmiRtlrkqbTvGu04SuWuxbhq57RGimuV4kRZm5axrtenXWO2KjGkUrlrUcIJHRtZxdNK29LOJY22LRtSuScry9jEPmvv73jhWAWXVJ2Pgkhnql6qzpnjI/fee6+JYHVr0qRJ5gO+5NNPP6Xs7Gxz+9E555xjtW8TJ0486t+c0MQPrlx069aNUlJSaPz48fTiiy+q63nggQdo3LhxR7VEJCTYZa4DAAAAAFBNr0RwBOv69fK3HJKsrKxy3crE40cEBweTL8XExNCdd95pHtOmTfNaiQgPDzcPAAAAgMARdLhjhL/WDT4VcOlMPIZDSUmJ64fWurBu3TqaP3+++f26667zy363b9/e/Pzzzz/9sn4AAAAAAF8JuJYIf/C0QnCKUnk6PttIT083P6Oj7e7bBwAAAKjO0Ceiegm4lghf4xjWDz74wO9jQ0yZMsX85E7XAAAAAABVWVAJ38sDom+++YYuvPBCqlevHqWlpVFkZKRaWoMGDaLt27ebBKWLLrroqPWceOKJpgN12dSnRx55hCZMmGD+/eOPP9LgwYNdHRHuWM37d+DAAapbt265l9PSmbRUJ1+uz9f7oNG2ZZuOYpNwJCUPaWlU2vq0VBopRSZDSW/RaKlObpO5bGmpWBqpnLQUIy0BxSa5x5Z0vLRtacfYZh9tUsB8Xbbe1mmzLWl9vds3sjqnbd5baVvkpKrQOvK+N1RSpyRaWpGW3GRzXkjJdhotLSsqTn69owe0cpw+6dOV4jKDB7QU50kJUlqCmVZ+y752vu4nDnbeb2+JXlqCndvzJSc7k64+6xTXnyF8yfM5Zk1KGkX7aR8yDx6kDonxlfo6Aw1uZyrnrUyXXXaZ1woE27RpE23dutWcpKX98ssvpqLQrFkz6tSpE9WvX990Al+xYgXt27ePQkJC6Pnnn3ddgQAAAAAAqGioRCh27dpFM2bM8EmHam7N4AQoHgdiyZIlZsTqsLAwU6kYNWoU3XLLLaZyAQAAAFAToU9E9YJKhCIuLo4KCtw1nfNYD054IDl+AAAAAABUd6hEAAAAAEDlC/LjOBF+G3+i5kI6EwAAAAAAuIKWiABnm34kLactoyUcSelC2vrW7Tjgen0abVva+qTXpSW0aOsbM7yD65SlOYtTxXk2qU7z1+yySj+S9lFL+9HSW6Qy1JbRyklLj5LmtWtST1zmvZ82iPPyhRQeLVFFK3eNVL5blaQdLZFIK19fpmw1V9KDtBSjikwBk7YlJU7ZJhxpr1dLCdLe+zZJVVqik/Te195z2jkoJVxpZdu8U2OyMWX2JteJTtp+2FxvpUQndvcjg1z/jdbKXUuCks416VzPygymqgJ9IqoXtEQAAAAAAIAraIkAAAAAgEqHLhHVC1oiAAAAAADAFbREAAAAAEAVgF4R1QlaIgAAAAAAwBW0RAAAAABApUOfiOoFlYgA8mvSTqoTlV3uuE6b+FdtGS0q02YftPX9sirNdXylFgGplZNkYKd4q9clRcb6IxpUWk7bd40W5erL88ImetFbHKYUbamdF1pEaZ8BrVzunR7zqR1/6ZzRolq1siCLWFMtdlWK+UxZul1cJipBPi9mJu0W59VvIcRU7pKjRuOFZWzjbm1iUrX3sHYOatuyeT9qJn260nX5STGu2vmknUvaOai9Xm0/rK5NfRIdJ0+dnyIuktCxkeu/WbYxzcmb08V54UI5LVjr/L7KzZb3AUCDSgQAAAAAVDr0iKhe0CcCAAAAAABcQUsEAAAAAFQ69ImoXtASAQAAAAAArqAlAgAAAACqAPSKqE5QiQggZ3RsTHXr1j1q2rodB8TnJ8ZFu04XklKbtGW0ZBKbVCRviSo2aUDa65LWp5WtlILBrhl0ks8Sp7wdRxva67JJvrI5B7XXJCUVGUrqi0Tbd82U2Zucd8EyTUdL75ESXLRttWkZ6zq5SVtGS80Rk3GUxByt3JPFOfJrjrdICbJ9/8yavVmcN12YvldJ4RkzvAPZkN4L2uvNzCkQ53Xs1Nh1ElCSsn/StrQy186LpFU7xXl9RnV2/b7SrtNa2pdkrLAPbPqibY7T85XENm1eQXaB63mhdZzTnvJz5O0AaFCJAAAAAIBKhz4R1Qv6RAAAAAAAgCtoiQAAAACASoceEdULWiIAAAAAAMAVtEQAAAAAQOVDU0S1gpYIAAAAAABwBS0RAc4m7tRbXKsNmyhXLfLU5jXbRnnaxJDalK1WRmqsqcL2NbstW9uykKJ1tfNP25YW1StFzdqWuxS7mqHEMmqG9WwmzhMjNpWIV03/HgmurxdvfLNanJcmRNdq0aANlX2X9s9bfKlN2UoRoFqsshSFygZ2incddSzFBXuL8bURXds55lPbd+09ou27FlEq0balnU9ShKoWratFGm+1KD9pHzThSuyzduy164wUJS2d01mZB6mqCPr///y1bvAttEQAAAAAAIAraIkAAAAAgMoXdHisCH+tG3wLLREAAAAAAOAKWiIAAAAAoNIhnKl6QUsEAAAAAAC4gpaIAMKJNmFlUm20tBotAUdaTksY0ZJdpKQlLYlDSgrxR3qUtu/Sa9aW0eZNnZ/iOkGmIvk60WnB2t2u00e080JK09ESk7RUFS3tp2PzBuI8Xy7j7XWNGd7B9fpsEr20RDQtMWnmjPWO088Z2tYqZcsmrUhLU7JJzdHOJZvUIU3WLnlbGUoakJTCk5lTIC7Tu30j18dfK1uNdM5oxzdduV507d/SdVqRlgKmvS7p+GtpT1rSklTu2vXR9hyUzgvpWpeTbZf+5xdBfuwU4bfOFjUXWiIAAAAAAMAVtEQAAAAAQKVDn4jqBS0RAAAAAADgCloiAAAAAKDSoUtE9YKWCAAAAAAAcAUtEQGEE5W0NCan51cUKW1HS5DR0ls0UpqSlsShpU5J+2GbVCWlMGllYZN8pdHKVksrktJCpMQcb2kw0ra0pCIphcXbtqQylNKy2JzFqeK8Ni1jXadb2abcSLRy0mjpVzbnTIiQIKQto+27dj5JZaiV+8g+iT59/0hJX9r5qaWvrVyYapX2JZ3T2mvSysnmOr1/i3y9SBOOo/Y+lZbxRkok0kz/crU479ab+zhOf/3dJVYpalIilXaua+lM0vVHW270gFaO0w8ePEhVBfpEVC9oiQAAAAAAAFfQEgEAAAAAlQ+dIqoVtEQAAAAAAIAraIkAAAAAgEqHPhHVC1oiAAAAAADAFbREAAAAAEClQ5eI6gWViACSnHaAorJKyh0NahNRqq3PJk7Wdn15RcXiPClWUosptNl3LSpRi7aU9kMrC+31+jo2VItKlGIqtbhOLTLWJu5We702Ubha/KdW7tJ5YRMX7C1OVooN1eI/bSxYu1ucp53vUXFRro+jFtWrnYPS+bRXicPUIm2TN6e7juu0oZXFnWN7ivO0uFapLDJzCsRltHhVaR+193DnXgmuy9ZW0qqd4rz4Fg1cR+tqEapSWWivVzvGUiywVkYNLeNu05fvcJw+X1hfdpbd30YAVCIAAAAAoApAr4jqBH0iAAAAAADAFVQiAAAAAKDK9Inw16M62LhxIw0dOpSioqKoYcOGdMstt1B2djZVRbidCQAAAACgkh04cIDOPPNMatKkCX3++eeUkZFB48aNo127dtHUqVOpqkElAgAAAAAqXU3vEfHGG2/Qnj17aMmSJdSo0eEQhMjISBo5ciQtXbqUunXrRlVJwFciZsyYQYsWLTKFz4+0tMNJF6mpqXTiiSeqyx46dIj++9//0uTJk03zUlhYGHXu3Jluu+02uvjii633iWuXEydOpJUrV5pttG7dmq644gq66667KDTUOcGhPNrE16O6deuWO13Ghk1aje36bNnsh01K1MBO8eK8qfNTxHlaWohN6oeW+COlJmlJOzZ8nRBlS0tGkvbR9hyUtqUlHGnHqn8POfVFS8eR2OyHltxj817Qjof2PtDSvqTkJi2pasrsTeI8KYVp+qJt4jJpW+TjMXhAS3JLS2DS2KSb2STHaWlPWrqZlH6kXS+0/dOuue/9tMH1uaSd79J7TksOm/7lanFe1/4tXZ+3ttfpxL7NXaWUHTwYabUd8M9nVm6J8FQg2Pnnn29ubfruu++qXCUi4PtEXH755fT444+bwvdUIMojJyeHBg4cSPfffz9t27aNzjnnHOrZsyfNmzePLrnkErrnnnus9ufOO++kSy+91KyH18fr5fXfd9995sTJzc21Wi8AAABAdVYV+0SsX7+eXn75ZbrmmmuoU6dOFBISQkFBQfSvf/2r3F8cDxgwgBo0aEB16tQxX0Y/99xzVFBwbOV8zZo11L59+6Om8fbatGlDa9eupaom4FsiRowYQSeddBJ17drVPErX7jQPPvgg/f777+aE+fnnn03nFsatGXwyvPDCC+bn8OHDy70vX3/9NU2YMMHUKOfMmWP2h+3du9dUIObOnUuPPPIIPf/885avFgAAAAB85bXXXjOf3Wy/OJ4wYYKpCPDnPP78x58p+YvjadOm0Q8//GBuV/LYt28f1a9f/5j1cAWE+0dUNQHfEvHOO+/QAw88QEOGDKETTjihXMvwQeSThvFPTwWCcVMSH3z21FNPudqX8ePHm5/cuuGpQDBe/6uvvmp+f+WVV0zHGgAAAICa2SvCXw/3Tj75ZHP3yccff2xaA6666irXXxwvXLiQvv/+e9M5esOGDeYLas8Xx9VZwFcibO9J474KzZo1o759+zreIsUWLFhAO3Y4jwxZ1vbt22nx4sVHLV9av379KCEhgfLz8832AQAAAKByjR07lv7973+bz27t2rWjWrVq+e2L4wYNGtD+/fsdv9yOiYmhqgaVCAfLly83P7t37+5YaC1btjxyMFesWOFqnbxcixYtHJ/j2Z7nuQAAAAA1RVXsE2Fju+UXx9wfomzfh6KiIkpOTj6mr0RVEPB9Imxs2bLF/OSWCAknO/H9aZ7n+mKdfEKVfq6ETzp+eHhqsQcPHnSVPJOVKSd4HDzo/G7T1neoiqQzSfuRlXls+Xh7vbZysrWyPei6/NR9jywR52VnyfthQ0rx0M6l7Kxcn67P17Ty00j7mJud5frYa+vTzqeszGBxGZv9sC136f1TkedtVlihT8tCew/n5sjr016zzXtEY/P+0crd1+e0tFxWZoTV/mnXSGlb2VklVueMdPzD6ZC4TF5ututzWtsH2/MiJ/uvzwflOVaZ/z+9pMTuWuhL2vnkq3WX3UZ4eLh5+NLycn5xzEmh/NzLLrvMTONB5jgMiGNePbfgc9+JrKwsGjZsGFU1qEQ4yPz/Cyn3opfwPW5uTnhfrvPpp582J5lUCQGAqukWqhqqyn5UBSgLlB/89TmlXj33cee+wBH6jRs3ppMSneNpfYU/Z5X9rPToo4/SY4895tPtbLH84vjGG280SVAXXHCB6S/BtzHxYHP8b+numMpUZSsR9957L3377beul5s0aZJpJgpk3FGcTyoPvn+uefPmJiq2si4ANRFX9vgiwN8klB2fA1D2gQjnPMq+pqkJ5zy3QHAFgkdJriwRERHmwzT3R/X3a+V41tJ83QpxPF8cczITpzfdfvvtZjwyLhceVqCqpnZW2UoEd1jmbF63uMnneEVHHx7sJjs72+t2yntR8eU6paY3rkAE6kWuKuMyR7mj7GsSnPMo+5om0M/5qvAFJH9g5kdN16ZNG5o5cyZVB1W2Y/VHH31kaoxuHzx42/FKTDw8Aid/sy/5888/j3puedfJ32ZIPPPKu04AAAAAqFqi/fBldFVUZSsRlckTxbVkyRLH+Zs3bz4y6EeXLl3KtU7P89LT08WO057tlY4CAwAAAIDqI7GGfHGMSoQD7h3PnXy4JWLevHnHzJ88ebL52bt373LfQ8hpTj169Dhq+dJ40BE+ofg2Jd6+G7wMdwzyx319gHKvinDOo9xrGpzzKHeoPrrUlC+OS2oYfsn8SE1NVZ93xx13mOedcsopJXv37j0yfenSpSVRUVFm3rRp045Z7v777y9p27at+VnWV199ZZbj5Xk9Hrz+Tp06mXl33333cb9GAAAAAPC9MWPGmM9rTz75pPq8Hj16mOf961//Ombeb7/9ZuaFh4eX7N+/v9oepirbsdpXnnzySZo+ffox088//3zT2uCpBXpGDyw90uCiRYto/vz5dNJJJ9GZZ55p7m376aefqKCgwKQjDR8+/Jj1pqWlmQ7h/LOsCy+80PS4f+mll0wrxqBBg0zPfV4nJyzx6Ni8vwAAAABQfT344IN00UUX0TPPPEPnnnvukRYHbp245ZbD4dK33XZblejUbivgKxGbNm2ihQsXHjO99KjQTmkAtWvXptmzZ9N//vMf+vjjj82Iglzp6NOnjznoHLllY8KECaayMHHiRPr9999NhaRVq1ZmWPS77rrrSMUGAAAAACrXsmXLjnzo93yuZG+88QZ99913R6Z/9dVXFB8fX6O+OA7i5ojK3gkAAAAAgKqGv1AeOHCg1+dt2bLFsZP0Z599Zr44XrFixZEvjq+88sqA+OIYHaurod27d9MHH3xAl19+ubnViltSuOWkXbt2ptabkpIiLssnOA+0Ij24tgz+KXvGA+k8++yz1LlzZ/ONRIMGDWjAgAH0xRdfoNi94NZAHlX0vPPOM4EGnnPWE7eMc77qlT3DOe8/2rWcH6NHj/bj1gPf559/bq7PfJ3m6zVft5977jnzQRBqDj4HyjPEQKKQsnTppZfSnDlz6MCBA5STk0OrVq2i++67r9pXIBhaIqohrsHyLVa1atWik08+mdq2bWv6ayxevJj27NljLnbcrHbWWWcdsyyf5Fu3bqWRI0ceGS2xNK4h81Dr4Puy54sHT+fb2HhUSu5nwznRPDplYWEh3X333VV2VMqqgMuML8JlcaoZp59JcM5XXtnjnPcvz8i7Y8aMcZzfq1cvuvnmm/28F4HpzjvvNLcfh4SEmGs1/73kazXfhtKvXz/64YcfKDIysrJ3E6ByVXbPbnDv73//e8njjz9e8ueffx41PTMzs2T06NGmx39MTExJRkbGMcs2b97czN+yZQuKvoLL3pP4xUlce/bsOTJ9yZIlauIXHHbttdeWjB8/vmTmzJklu3fvLnfSGs75yit7nPP+5TkO4FtSkiJft5GkCPAXXH0CTHZ2dkl0dLS5AH744YfHzMcHqsope65UhIWFmXlz5849ZlmOiuN5vXv39uMeBhZUIqp22eOcr7jjAL5VE6I5AXwBfSICDN+fz7fYeBspESq27Pmecr43vFmzZiaRoSzuY8EWLFhAO3bswOGBag/nPFRH27dvN7enlr4ul8a3MiUkJFB+fr45xwFqsoCPeK1puMOXp3Nv6aixst59913KyMgw9+JzR8n+/fvTGWecUYF7WrPK3hMp3L17d8dlW7ZsSTExMeaYcIJDeUdCh/LDOV+xcM5XHI4i37hxo+kjwV9UcN+raj0KbhU4b/l63KJFC8fn8HWcvyji51522WUVvIcAVQcqEQHm7bffpr1795oOXzy4ieSJJ544ZlqPHj1o8uTJ1Lp1az/vZc0re8+w9/wHXsIdVLkS4Xku+BbO+YqFc77icChDaTzu0DnnnEPvvfcexcXFVeCe1IzzllsiSj8XoKbC7UwBhGPD/vGPf5jfOWHJ6Y/HsGHDTEWBv7XKzc01F0GOLOULJjfhcpQZx5iCb8s+MzPT/OT0JoknLevgwYMofh/COV85cM77H99u8/XXX5sWUL6eJycn0yuvvEKxsbE0c+ZM0yKRl5dXAXsSOHDeApQfWiIq2L333kvffvut6+UmTZpk7sWUcF47Z7hzZOj5559vvolywgOelI2/5Ad/0OrWrZv5YzR+/Hh68cUXKdBUdtnXVP4q9/LCOV95ZQ/+fU9w3HRpPHYNP4YOHUpdunQxX268/vrrJq4UAMDXUImoYNxpdv369a6X4w+okp07d5rh1Hn8hyFDhpjRET354eXF93/yHxp+TJs2LSArEZVZ9tHR0eYnjynhbTt169alQOKPcvcFnPP+LfuafM5X9nuC7+W/9tprzXWcr+eoRJQfzluA8sPtTBXso48+KtfIh2UffH+rE771iAfC4WbswYMHm6bt8PBwq31r3769+VmeUWiro8ose89Iltu2bRP3z1Pu0qiX1ZWvy92XcM77r+xr8jlfFd4TgX5u+4vnXNTSDT3zatp5C1AWKhHVGI+QzB9i165da74N5+bxiIgI6/Wlp6cf9U0M+K7sPUkpS5YscZy/efNm06ma8W0IUDFwzvsPzvnKhXPbjuf6y+UndZz2XMeRgAU1HSoR1RSnAPGH2KSkJPMhlpusORXoeEyZMsX87Nmzp4/2MjDZlD3foxwWFma+lZ03b94x87mzO+vduzfiXSsQznn/wTlfeYqLi82tlQzXc3c4JY+TCktfl0ubO3euaYngVmc+xwFqNJ8MWQcVKj09veSUU04xo2YOHjy4JCcnp1zLff311yVLliw5ZvrBgwdL7rjjjiOjn/74449+2OuaXfbMU8a8/N69e49MX7p0aUlUVJSZN23aND/tec0cNRnnfOWVPcM57z8fffRRybp1646ZvmvXrpLRo0eb4xMaGlqyZs0aP+5FYPrqq69M+fF1ma/PHnzd7tSpk5l39913V+o+AlQFQfy/yq7IgDsjRoygr776ynTgveSSS8RvwS+88ELz8ODOdRMmTDBxrp06daL69eubDn48uNm+ffsoJCSEnn/+ebrjjjtwSHxc9iwnJ8f0nZg/fz41aNDAtGZwp9OffvrJDFQ3btw4euGFF1D2gieffJKmT59+5N8LFy48cvsBt/J4bi949dVXcc5XgbJnOOf9h68v33zzjUlj6tChg4mP5pZOvp5zB+zatWubcSL4OgXu8d/Bl156iUJDQ02LM5cvX6v3799Pffv2pR9//PG4W/8BqjukM1VDnnvnuf7nabJ2wp2+Sn+Q5d/5j8uyZcvMPZ28Hv4AwJWKUaNG0S233GIqF+D7smf8R3327NlmdFmOZpwxY4Yp/z59+tBtt92GP/ZebNq06ciHV6cRZlnZfik45yuv7BnOef8ZM2aM6b/GlQa+RZI/3PKHWh4slD/03nrrreKIy+Adf+HGlQWOiP7999/NFz2tWrUyEd533XXXkcozQE2GlggAAAAAAHAFHasBAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAAAAMAVVCIAAAJAYmIiBQUFHXkMHjy4QrY7ZcqUo7bLj9mzZ1fItgEAoPKEVOK2AQDAx0aOHElRUVHUsWPHCinbFi1a0JgxY8zvM2fOpF27dlXIdgEAoHKhEgEAEECef/550ypRUXr16mUebMCAAahEAADUELidCQAAAAAAXEElAgCggv397383fQdOP/10KiwsPGb+Qw89ZOZ37dqV8vLyfLLNlJQUs05upSguLqaXXnqJTjnlFKpduzbFx8fTTTfdRBkZGea5+fn59OSTT1K7du0oMjKSmjRpQnfccQdlZ2f7ZF8AAKD6QyUCAKCCvfDCC9S9e3eaO3cuPfzww0fN434FTz/9NNWtW5c+++wzioiI8Pn2r7zySrr//vupadOmNGTIEFOpeOONN0xnbK4o8E++Lapt27bm95ycHFPpuOSSS3y+LwAAUD2hTwQAQAULCwszFQRuaXjuueeof//+dO6559Kff/5JV111FZWUlNCkSZOodevWPt/21q1bKSQkhNauXUvNmzc309LT06lPnz60fPly85NbHzZv3kyxsbFm/pYtW6hbt270v//9j+bNm0d9+/b1+X4BAED1gpYIAIBKwKlG7733nqkwcMWBP6iPHj2a9u7dS7fddptfv/XnVgVPBYJxZeHmm282v69evZrefvvtIxUIz75y6wX76aef/LZfAABQfaASAQBQSS644AIaN26caQno0qWL+Zafb3Pi2538hVshzj777GOmn3TSSeZns/9r7+5VEwvCMABP0koaLyBYay4ikIsQm2CuwWhpny5NTBdIJ0gKr0C0S20jqaxsLMRawi7fQJZlf4rDrvEYnqc5B08x4hTycuadOT9PFxcXf32+Wq329t0AOB5CBMAB3d3dpXq9nrbbbapUKnmZUyx32pcoUUeQ+FWcLfERIv7k7OwsX/9X0RuA4yZEABzQ6+trent7y/dRap7P53sd7/T09J+eA0D+v/AzABxG9B+iBxHbvN7c3OQtWNvtdi4/A0CZCREAB/BRqI4dma6vr9PT01PqdDpps9mkZrOZdrudeQGgtIQIgAOIsyDiTIjoQwwGgx+fxRarscSp1+uZFwBKS4gA+GSz2Sz1+/18WvRoNMqF6hCF5+FwmKrVarq/v0/j8djcAFBKQgTAJ1qv16nVaqX39/f08PCQ30T8LHZHivMjoh8RPYnlcml+ACidk2+xMBeAo1ar1XIhOw6ti/tDuLy8TNPpNE0mk3wPwNf1+2bhAByt29vbfOZDo9FI3W537+NFf+Px8THfLxaLvY8HQDkIEQBfyMvLS75eXV19SoiINx/Pz897HweAcrGcCQAAKESxGgAAKESIAAAAChEiAACAQoQIAACgECECAAAoRIgAAAAKESIAAIBChAgAAKAQIQIAAEhFfAdfU8jj7y+lCgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJNCAYAAABOXPheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByVElEQVR4nO3dCbxM9f/48fe9uPZdhHAtIUuyC9krCYmsyd5iCVFoRQr5qoi0EUlSyO7bQiFLsva1ZZe17PvO/T/en37n/u8yc+/MuXPu3Jl5Pb+P8525M2fOmXtmus77fD7v9zssKioqSgAAAADAQ+GerggAAAAABBEAAAAAvMZIBAAAAACvEEQAAAAA8ApBBAAAAACvEEQAAAAA8ApBBAAAAACvEEQAAAAA8ApBBAAAAACvhEQQsXPnThk3bpx06tRJypYtK6lTp5awsDB56623En3tkiVLpFGjRpIrVy5Jnz69lCxZUl599VW5ePGi7fezZ88e817uuusuSZs2rbnVn/ft22d7mwAAAEByCYuKioqSINe3b18ZO3ZsvMeHDRsmr732mtvXvf/++9KvXz8TcDzwwAOSJ08e+fXXX+Xvv/+WEiVKyMqVK01w4Y1Vq1bJQw89JJcvX5bSpUtLmTJlZOvWrbJt2zbJmDGjCVqqVatm6/cEAAAAkkNIjEToifqLL74oX331lezYsUOeeuqpRF+zadMm6d+/v6RKlUoWLVoky5cvl2+//Vb27t0r9evXN6Mbzz33nFfvQwOHVq1amduXX37ZBA8zZswwt/rzpUuXzPNXrlxJwm8LAAAAOCu1hIBu3brF+jk8PPHYacSIEaKDNJ07d5ZHHnkk+vEMGTLIpEmTpEiRIjJ79mz5888/zRQnT0yZMkWOHj0qxYsXjzeVSn/W7e3atUumTp0qzz77rMe/HwAAAJCcQmIkwlvXr183ow+qXbt28Z4vVKiQ1KhRw9yfM2eOx9u11m3Tpk28QEZ/bt26tbn/3XffJen9AwAAAE4iiHBBRwN0ypGqVKmSywNnPa7TnjxlrevLbQIAAADJLSSmM3lr//795jZbtmySOXNml+sUKFAg1rqJuXDhgpw6dcrcL1iwYILbPHHihMmP0ERrV65du2YWy+3bt+X06dOSM2dOkwQOAADgCZ26reco+fLl82i6t1OuXr1qZoI4KSIiQtKlS+foPkIJQYQL+h+TcncSrzJlymRuz58/79U2E9qutU1ru+7W03yNoUOHerRfAACAxBw6dMiUnPdXAJEtfTa5Jv//AqkT7rzzTnPxl0DCNwgiApBWctLSs5Zz586Z0Q39A5AlSxa/vjcAABA49KKlzoRwN/MiOegIhAYQDaSepHbo1PSm3JQlf/9s9kUQ4RsEES5Y/yHplCJ3rGZznp60x/yP0912YzawS2i72qBOl7j0NQQRAADAWylhOnSEREgaSePItsNJA/Y5EqtdiIyMNLdnz56NNQ0pJr3qH3NdT4KIHDlymPsHDx5McJvawC6hqVQAAACAPxFEuKDdqLUfhFq/fr3LA2c9XqFCBY8PtrWuL7cJAAAQDML0f2EOLeL/kZZgw3QmN9n7jz76qMycOVOmT58udevWjfX8X3/9JatXrzb3H3/8cY8Ptq67ZMkS06V68ODBsaogaIWlb775xtxv3ry5pATHjh0zDfBWrFhhqj/duHHD328JgJ/oP8I6olq4cGHzN+qBBx6QVKlS8XkAQIgiiHBj0KBBMmvWLJk8ebK0aNFCGjZsaB7X/hFdu3aVW7dumcfjdqv+/fffpUOHDua+drOOqVOnTvL222+bPhSvv/66uW/Rn/VxrYxgvd5fNDfjySeflAULFpiThOrVq0uePHlc5mEACA16oUOnd86bN0/GjRtn/iZ8/PHH0qxZM3+/NQBBQvMWnMpdICfC98KitEBwkNu4caP06NEj+ue9e/fKyZMnzQl7/vz5Y3WUzps3b/TP77//vqmCpFfgateuLblz55Zff/3VXKHXKU8rV640+QsxLVu2LHrkwtWhXbVqlTz00EMmGClTpoxZtm7dahbNg9CRimrVqnldWSFr1qymSlNSE6s1gNBRGG14995775krjlYuBwDo3zW9WKIXQf773/+aEVsCCSBw+fIcIqnvoYk8KmnCnEmsvhF1QxbIIr/+nsEmJEYi9Mu5du3aeI8fPnzYLJaYDdzUCy+8IGXLlpV3333X/KOpVZW0lKqWWNXFTjm0GjVqyB9//CHDhg0zAYNOF7rjjjvM6MMbb7whRYsWFX969dVXTdD1ww8/mBEIAIhJL6pUrVrV/O1q166dtGrVyvwd1YssAJAU4WFhZnFCuOZEBP1l8+QVEiMRwc5XVxF0ipaOzrRt29aMQgBAQk6cOGGaN02YMEGeffZZDhYQgFLSSMRjYY0dHYmYF7WQkQgfojoToun0rL///ltatmzJUQGQKB1F1embOqUJAJIqzIwXOLfAtziiiLZlyxZJkyaNmaoAAJ7QfDH92wEACC0hkRMBz+hQZrZs2WKVngWAhGTPnt005gSApCInIrBwtohYJRxTpyauBOA5/ZuhfzsAAKGFIAJei4yMjNUFUkcutFKVJmXr/OgXX3zRVLOCSK1atcwx0r4jnujTp49Zv1GjRhw+F80a06dPH6uimqpTp06inUr79u0b3atFf54yZYpXx1fX19fp6/39392BAwd8sj3r2MQtrqC9bwoVKiRXrlzxyX4AwOO/S+REBBQuO8M2LVdbrFgxc19POLT3hvaX0F4ZWhZX50p//vnnUqRIkZA9ytqYUHuLTJ061dTVT6jD7/Xr1+Wrr76Kfp2T9GT4iy++MM0U/Xli7Ckthzx37lwToGqw6kq5cuXkvvvuc/lclSpVHH6HwUG/n2+99ZYprjBq1CgZPHiwv98SACCFIoiAbd26dYt3AqoVg7UBlV75Xb58uek1sWbNGilcuHBIHmk9Gevdu7dpUKjHpXHjxm7X1U7Ap06dMhVvmjZtmqzvM6XTni3p0qVLcERHG54NGTIkwe2MGDHCbCNmU8lAsXTpUrlx40asBplOeOKJJ0x/nHfeeceUbdUSrgAQFDkR8CmmM8GnrKk4Op3p7rvvln/++ccEG6EqQ4YM0qZNG3Nfr/onxHq+ffv2pkoW/vXTTz+Zju4aJOTMmTNJh0WDB52uo/XIA402otT3nhzfjS5dupjRxU8//dTxfQEAAhNBBByhVZ7GjBlj7v/888+yYcOGeOvcvHlTJk6caOa058iRQ9KmTWtGLLp37y6HDh1yu+0jR47ISy+9ZK6Wai5GxowZpXjx4mZUZPXq1bHW1WBmwIABZjqLXlGNiIiQPHnySJMmTcwUmbh0+oYGQgk1ztJt6jp6RVh/h8RYQdSCBQvMlC93v9OPP/7ociqTXoFu3ry5OQHW96+dgTU/QEd4EpvrroHJ/fffb06arfn0eqtTmVTnzp1j5Q7EvZKvJ5I6Na1atWrmM9XRgBIlSphjqqMmMc2aNctsQ0dS4uYtKO2CrtNl9L3s3r1bPDV+/Hhz64tpVwnlROhnqd9Z/V7p76m/R4sWLRIsX6rHy9Vxs+jUPn1ev+NJ/S67y4n466+/zKhBvXr1pGDBgua/I/2satasKZ988omtpOcnn3zSJEzr6z35jgOAr3IinPoffSJ8jyACjnnkkUdMcGBdTY7pwoUL8uCDD8rTTz9tAox7773XTOHRE6CPP/5Yypcvb/Ir4tIT6jJlysjo0aPl+PHjUr9+fXn00UfNSdP06dPjXTl95ZVXzEnw1atXpWLFiuZqts6pX7hwodn/2LFjY62vAYyeqGtugruylR9++KG51UDDk2pWlStXNieJOhXlyy+/dLmOntRrUqv26ChdunT045oD0KBBAzPVSU8Q9f1rjon+/MADDyQ4uvH888+bAEbfox4j3baehHbs2NFc1bbyWvRna4mZU3D06FHzGn0PetKvv4eOMl27dk3+85//SKVKlcwJbMxpMLpPDZS063nMk089WX7qqafMCe1nn31mRqk8oZ+bBh969V2T1J2i70unnum0qV27dpl8Hv1ubdy40QSg69at8/k+vf0uu6PfKZ2ipcGFBiAacOrnqO/5ueeeM7+XTjP0hgZQug39DjjxuwMAgkAUAt65c+f0DMHcJsWbb74ZlTdv3kTXK1SokNnf5MmTE123QYMGZt327dvHerxdu3bm8caNG0f9888/sZ57//33zXN333131M2bN6MfP3jwYFTWrFnNc4MGDYq6du1arNfpdn799ddYjy1evDjq6NGj8d7X6tWro7JkyRKVJk2aqMOHD8d67sknnzT7eO+99+K97sSJE1Fp06Y1rzt27FiUp8aMGWO2WbZsWZfP6++qz3/66afRj+l9faxYsWJRf/zxR6z1ly9fHpU5c+aoiIiIqF27dsV6Tl+ji/5+a9ascbm/jh07JvgZ3r59O6pGjRpmna5du0adP38++rkbN25E9e/f3zxXt27dWK/Tz6RKlSrmuYEDB0avX7NmTfNYz549o7yxZMkS87rKlSu7Xad27dpmncGDBye6PXe/9/jx483jefLkidq+fXus37V79+7Rx1RfH5PuM6F9//LLL+Z5fY8x2fkuW//d7d+/P9bjv//+e9SWLVvi7fvIkSNR5cqVM6/59ttv4z1v/U7u9O7d2zw/bNiwqIR89NFHUalTp05wHQDBfw7hi/fQOnXLqKfStHNk0W37+/cMNoxEwFG5cuUytzGnvuzYsUO+/vpryZcvn7niqtNzYtKkbL3irVe/NRnZ8t5775mGeDoVSRNkdcQgJt2OTuGIOxriKolWp/j07NnTjA7oVf24ZVbVRx99FO8Krk6/0ivxetXdm4RTzXPQURadGrN+/fpYz2n1Jv1dY+ZP6JVxa4rMjBkzzEhNTHpV/vXXXzcVnXTKiSs6gqDTkOzQq/+rVq0yV6N1ZEin2lh0ZEMr9+hV9F9++cXkK1j0M/nmm29MAzJdZ/HixfLqq6/KypUrzUiQjgp5wxqNuueeexJdd+jQoS7Lu+o0oMRYU+/0mMfcl/6u+r3zdXKxne+yOzpCpJ9FXPrfl34GaubMmV6/R2tETEdjAACIi+pMcJQ1HztmPXo9sdSTcz3Bj3lyGpPOIdf1dF64VdHo+++/N7fPPPOMV+9BA5hFixaZk90zZ86YwEFZ8/J37twZ76RMgwzNOdCT6YYNG0b/LnpCrXr16uXVe9CEYJ2KpCfYWvZWpwJZ9Gel006s46EnzzqVRKcd6cm3K9Y8+7hz5y0a6Nilx0tpToCrKVvaG0QDGT2muv+YJ7F60q45B/r76rQmnbqmeRDffvutCaS8oYn5ypOEanclXq1A1h2darVnz57oYC8uzY9o1aqVfPDBB+Irdr/L7mhgqzk1OvVIp0bpz/rfmB57V99xT1jH3PoMAMBp/2YuhDtanUn/jdf8PL2QqAvsI4iAo6xEYis3Qu3bt8/cTpo0ySwJOXHiRPR9a/69VqjxlM6/13nuly5dcrvO+fPn4z2mZVk1iNCkXiuI0DwKfQ+ar6Gla72lCdMaROgojF6J1pPTixcvRl8ljplQbR2jvXv3xmsIltAxismTK/DuWPvX0Q5dvN2/5rdoPoYef6Xz++30C9Gr9SpLliyJrutJiVdXrCRwDTYyZcrkch1flyi2811257fffpPWrVvLwYMHvfqOJ8Y65hp4A0Cw0IstnvybgsQRRMAxeiXUmo6iicVxRyf0qrFePU6IJvbapQnbmvysVxy0eo1OHdHkZJ02pCfmemKrz7tKOtWr+DodSKdT7d+/35xEWgnV3o5CWDRxVjsB6wnknDlzzFV6vTqvAY4mxGqidNxjpNNoHn744QS36+5Ku3Z3tsvav06psZKw3YmZCB5z9CfmVDQ90dWr+d7SJGO7J8EpgZ3KSN64fPmyCZ50tEArbWlhAG0Aqf9A6vdek8S1mpa3idUxAzidmgYAyYE+EYGFIAKO0elI1lXMhx56KPrxAgUKRFcGssp3ekIDAJ2W8eeff0Z3yk6IXuHXkyetGKQlSeNKqMyoTuHRE7LXXntNJkyYYKpIaYUpHVHRk387dAqQnujp1XKdwqTbsaYy6eMxWcdIp5S4KkfqNGv/jz32mAmmvKHHXCsx6RV+PcFdsWKFvP/++2b6lbdN9Kx8mbjlZH3Jat6mo2Y6MuRqNCJuWVWLlctgTRuKK2b1qqR8l93RY6sBRIUKFaK/SzF5U0o3LuuYa0lkAADiIrEajtCrmDqNSGkp1Zhz1TUXQs2fP9+U8PSUNa3ImiKTmNOnT5tbvfofl+539uzZCb5eRyl0ypGenGlCsJ4c65SjpFzh12BBgwntnaFBiSYv6xVjLa8ak87Z1BGG7du3y7Zt28TXrJNfdz0ArM/ICsS8MXLkSDMKoQnK06ZNM+VrdeRHex+4O6l2R0+OlR4Hp2jJX2uqlSb6x6X5Be4Sk60ARIsFJJRbktTvcmLfcQ1KXNHjb5eVMO8uJwcAfE0zIpxc4FscUfiUnnDqCaTW1teroFoZKe6JkuYUaMKuNpTTmvaurvLqFB/t1RAzqbNfv34m8ViDDx0hsBKkLZpQqlWALFaVHT2JjXmlWAOIHj16mGlKCdGT+Hbt2pkTNZ36pCf/+rqk0JM9Dap0mos29FJaiSpuBSnti6CN7/R4amO5mL+XRftKaDCiU4XsnDgrdwGKjkBoIKON9TTwcZX3oKNMmmgeMxDRK+OaQ6FTxvTEW5unaWJ8//79zfo6pSnu55YQzT3RZOw//vjDNL5zilYEUzpKpKMDMY+xjsRokrsr2uBNvxeagL98+fLox/Vz00Rsd4Gqt99ld6zvuPaciBto6XdWc3DsshL29XcEACAuggjYpuVO9eqyLjo1R0+O9cRbT4p1LrZOX9Er7a5GArRJmuYIaMChc7Y16NDkUD3J1Ps6bUgr5cRM6tQTcO2KrCdfb7/9tplyoyfY+hrNndATY31PFj351X1rXobmNOi6muugj+l2rFKuCdEEa4s2AktKsrLFSqC2Tszjdqi2aO6FdjPWYEzzJbQCklXxqG7duuZY6zHcvHmz1+9Bt6Mnv3qiq59bly5dTCK0ntQqfW7u3LlmBEmDMD1+Ov1M960BoAaC2pBMp3xZQYT+Pvq8nnhr/kjMXInhw4ebcrNWB3FP6UiQ5oToSbZ2f3aKVujQnJljx46ZPB0dKdDfRZvi6XdKf09X9Duo0+U0KNTPQj8XPT76Og0+tAmcK95+l93Rz0EDPg2S9b4eK33fGlxoozlttmiHfpb/+9//TJlYDSYBIDmEh4U7usC3OKKwTQMEPcHUZcGCBeZKqCZQ61VnPVnUHgLuqtroyZOWpNTpI9qRWSvLaLKxXlnXK856lV5/jpvUq7kVOs1CAwBNutVSmRqIaHdpnYevJ04WfV57Mujogd7X9bTikm5Da9+7Kgcal55QWj0C7CZUx6UnfVYytM431+DEHa3zr8dZj4fO19ffV6fI6JVxDdL0RFODL29p3wm9Sq6lbNeuXWvyLrRSVsyeAHoCqaMcOtqggZ3O4dcTX+sKuR5rvQKvJ/p6Eq1Bn74vnZqlgWXckRW9Kq7BofZk0ADFU9ZxdzI3RIOm7777zkxb0xwFDVh0upkeJz0G+vu7o/ke+jpNjter9/raUqVKmdcllBTvzXc5ITriox3ENRjXz0b/u9IgRT8bDQzt0GlQGhx62pUdABB6wrTjnL/fBJJGK9doHX7NQ0hK2bJhw4aZBmvupm6EoiVLlpgr9XqCpvPeEyu3Ct/TP1F6Mq8jMpqsnVjfByT9eGvwrL0ztNRvYo32NMjU0RhvpqkBCL5zCF+8h44R7SUiLHbzTV+5HnVdvrg+za+/Z7BhJAJwQ6flaF6CNYedAMI/9LhrXw1NcNakbThLR5u0s/rAgQN93qkbABA8CCIQ62TN6br2gUDzNTSfQqc76fQUnaKlOQPwHx0N0jwOzbWwmsPBmcBZE+N1OpSnuSv6N4MAG4AvkBMRWJjsilh5CoHa1MuXtMqO5nnoPHVNdtU5/MwL9z/NkYGztNxwzOpUnmBqAACEJoIIRNMkaE1q1gRazQEIVZrA648Gb0AgsqqfAUBSWR0dnODUdkMZ05kQa8qIdut111gLAGK6fPmyqRam/V4AAKGFIALRtBOz1srXJlVHjhzhyABIkJaW1UCiZcuWHCkASUbH6sBCEIFY3nrrLXOrTbO0QgsAuOooP3ToUNPh+4033jC9NQAAoYWcCMRSpEgR0yxLgwitza9Ns7QZmjZFS5s2LUcLCFFahUkLL2iH9MWLF5v8KQ0gNJAAAF8IDwszixPIifA9ggi4DCR27dplOt9qfsS3334rp0+fluvXr3O0gBClZVy1QVNkZKQJHJ544gnztwIAEJoIIuCSjjpofoQuAAAAyZETof9zatvwLY4oAAAAAK8wEgEAAIAUMW1SF0e2TZ8In2MkAgAAAIBXGIkAAACA3/2bEeHM9W2nthvKOKIAAAAAvMJIBAAAAPwuPOzfXhGObNuRrYY2jikAAAAArzASAQAAAL/TXg5O9XOgT4TvEUQAAADA73Qqk3PTmZzZbihjOhMAAAAArzASAQAAAL9jOlNgYSQCAAAAgFcYiQAAAIDfhYeFm8WRbXPd3OcYiQAAAADgFUYiAAAA4Hf/FnilOlOgYCTCjQMHDkhYWJhHy4oVKzw62EOGDEl0W3/++acvP18AAADA5xiJcCNTpkzSsWNHtwdu+/btsm7dOsmcObNUrFjRq4Nerlw5ue+++1w+lzVrVq+2BQAAEAzCwsLN4si2uW7ucwQRbuTKlUumTJni9sA1atTI3LZp00YyZszo1UFv1qyZGZUAAAAAAhFBhA1HjhyRH374wdzv2rWrrz8TAACAkENORGAhJ8IGHaG4ffu2lC5dWqpWrer7TwUAAABIwRiJsMGa5mR3FGLjxo0yaNAgOX36tMmBKF++vDRp0sTkVwAAAISiMAf7RJAT4XsEEV5avny57NmzRyIiIuSpp56yddAXLFhglpg0mPjggw+kQ4cOib7+2rVrZrGcP3/e1vsAAAAA7GA6k5c+//xzc9u0aVOTfO2NokWLyvDhw2XTpk1mFEKXlStXSuPGjeXcuXOmGtRXX32V6HZGjBhhgg5rKVCggLe/BgAAQIoS5vD/4FthUVFRUT7eZtDSK/558+aVy5cvy+LFi+WRRx7x2bZ79+4t48aNkzvuuEMOHz5sRjq8GYnQQEIDkSxZsvjsPQEAgOCm5xB6QdKf5xDWe3g5y0uSLiytI/u4GnVNRpz/D+dKPsRIhBdmzJhhAoi77rpLHn74YV9+Dqbka6pUqeTEiROydu3aBNdNmzat+Q895gIAABDQwsOcXeBTBBE2pjJ16tRJwsN9e+hy5MghuXPnNvd1JAIAAABIqUis9pB2qNYRgrCwMOncubPPP4hbt26ZITZFlSYAABBywsL+XZzZuEPbDV2MRHho0qRJ5rZu3bpSpEgRn38Q8+fPN1OlNEipVKmSz7cPAAAA+ApBhAdu3Lgh06ZN86g3xPjx46VkyZLxSrUePHjQbOPq1avxXjN37lzp1q2buf/kk0/KnXfe6c1nCAAAEPD0QmpYuEOLYyMcoYvpTB5YuHChHD9+XLJlyybNmzdPcN2TJ0/Kzp074wUCWs5V+0p0797dNJfLnz+/XLlyxUyT2r17d/Qox0cffZSUzxMAAABwHEGEFwnV7dq1k3Tp0tk60FqCdeDAgbJu3TrTrE67Vl+/ft30mtA+Ebrt1q1b+zxhGwAAICDoYIFTIwYMRPgcfSKCQEqo8QwAAAJPSjiHsN7DKzkHSbpwexdrE3P19lUZfmok50o+xEgEAAAA/M/Rfg4MRfgac2cAAAAAeIWRCAAAAPgfIxEBhZEIAAAAAF5hJAIAAAApo0+EQ9WZ6BPhe4xEAAAAAPAKIxEAAADwP3IiAgojEQAAAAgJlStXllKlSsmHH37o77cS8BiJAAAAgP9pPoRjHav/3e66detozOsjjEQAAAAA8AojEQAAAPA/ciICCiMRAAAAALzCSAQAAAD8Lyz838WpbcOnOKIAAAAAvMJIBAAAAPwuLDzMLI5sWxyq+hTCGIkAAAAA4BVGIgAAAOB/VGcKKIxEAAAAAPAKIxEAAABIARzsWE1OhM8xEgEAAADAK4xEAAAAILhzIqKozqSuXLkiu3btkrvuukty5swpScFIBAAAABAkfv31V+nXr5/88ccfsR6fPn265M6dWypUqCB58+aVN998M0n7IYgAAACA34WFhTm6hIpPP/1Uxo8fL/nz549+7NChQ9KlSxe5dOmSZM2aVW7evClDhw6V5cuX294PQQQAAAAQJNauXSvlypWTXLlyRT/25ZdfyvXr12XIkCFy+vTp6OBhwoQJtvdDTgQAAAD8j5wInzh58qSULl061mM///yzREREmGlO6oEHHpBq1arJpk2bbO+HkQgAAAAgSFy8eFHSp08f/XNUVJSsW7dOKlWqJJkyZYp+PDIyUo4ePWp7P4xEAAAAwP80b8Gp3IUQyonIkSOHHDhwIPpnHW24cOGCVK9ePdZ6N27cMKMTdjESAQAAAASJypUry++//y5r1qwxP48dO9YklterVy/Wert37zZVmuwiiAAAAEDKyYlwagkRffr0MVOYatasaUYlpk2bJkWKFJGHHnooVt7Eli1bpHz58rb3QxABAAAABIkGDRrI559/LoUKFTIVmWrXri0LFiyQ8PDwWNWabt++bZ6zi5wIAAAA+B/VmXymY8eOZnHnueeeM30jYiZae4uRCAAAACBIrFixQnbt2pXgOlq96fjx47Jq1Srb+yGIAAAAQAopzuRUx2oJGXXq1JF33nkn0fVGjRoldevWtb0fgggAAAAgiERFRTm+D3IiAAAA4H/kRCSrM2fOSLp06Wy/niACAAAACGAHDx6M17U67mOWmzdvyrZt2+THH3+UokWL2t4nQQQAAAD8j47VtkVGRprcD8vs2bPNktiUp/bt29veJ0EEAAAAEMAKFiwYHUToCESGDBkkV65cLteNiIiQu+66S1q0aCHdu3e3vU+CCAAAAPgfORG2HThwIPq+NpVr2bKlaTjnJIIIAAAAIEhMnjxZihUr5vh+CCIAAADgd1ZPB6e2HSo6JtCp2pcIIgAAAIAgdOvWLTl16pRcvXo1wXwKOwgiAAAA4H86WqB5EU64HTojEWrdunXyxhtvyPLly+XatWuS0AiNlny1gyACAAAACBK//fab1KtXL3r0IXv27JIlSxaf74cgAgAAAMFdncmp7aZAgwcPNgFEly5d5O2335Y8efI4sh+CCAAAACBIrF27VkqUKCGfffaZownlBBEAAADwPzpW+4TmONx3332OV6QKd3TrAa5Tp07R5cbcLQllu7uzYcMG0wREh5fSpUsnhQsXlueff16OHz/uyO8BAACA0FCyZEk5efKk4/thJMIDNWrUcNu0I1WqVF4d8FmzZknbtm1NlFi5cmUTQKxfv17Gjx8vM2fOlJUrVyZLgxAAAIAUhZwIn3jmmWekd+/esnfvXilatKg4hSDCA926dTOjEkl19OhR0wBEA4hPPvnEfMhWDV/d/rRp06Rdu3ZmLlsoNUUBAACAb+j55Zo1a+TBBx80F6kffvhhry96e4IgIhmNGTNGLl++LA0aNIgOIJR+sB999JEsWLDA1PX98ccfzQcOAAAQKuhY7RtFihQxtwcOHJAmTZpI6tSpJW/evBIeHu7ymOuIhR0EEclozpw55lZHG+LKlCmTNG3aVL788kv57rvvCCIAAADgNQ0eLFFRUXLjxg05ePCgy3WTMvOFIMIDv/zyi2zZskUuXLggOXPmlCpVqkijRo0kbdq0Hh9ofe2ePXvM/UqVKrlcRx/XIGLTpk0ebxcAACAokBPhE/v375fkQBDhgalTp8Z7TIeFPv/8c2nYsKHXUWHBggVdrlOgQAGPPnxtXx6zhfn58+c9eg8AAAAIboUKFUqW/VDiNQHlypWTsWPHytatW82J+j///GPyFapXry7Hjh0z04+WLVvm8UiEJWPGjC7X0SlNngQFI0aMkKxZs0YvVvABAAAQ8H0inFrgUwQRCXjhhRdMiazSpUtL5syZJXfu3CbTXcuwPvbYY2aOWd++fSW5vfzyy3Lu3Lno5dChQ8n+HgAAAJBy6UXpCRMmSPv27U2u7ahRo6Kf27Vrl7kwbqffmYXpTDZoEsrQoUNl3rx58scff5iT+MRGAzQIsVy6dMmMIMR18eJFc5slS5YEt6W5GN7kYwAAAKR45ET4jAYIWsjnzJkzJrlaz13z588f/fzOnTulWbNm8vXXX0urVq1s7YORCJvuueee6PuHDx/2an6auwx5a0QhMjLS7tsCAABACNuxY4c8/vjjZrZK9+7d5ZtvvjGBREw6MpEhQwZzQdwuggibTp065XKUwR0dXbA6UWuHalesxytUqGD3bQEAAASmMIeXEDF8+HAzTUmDB20217Jly3jrREREyH333Wdm1NhFEGHTjBkzooODEiVKePQajQrV9OnTXU5l0mZzqnnz5nbfFgAAAEK8NUG5cuUSPZ+86667TKEguwgi3Ni8ebPMnz9fbt68Gevx27dvy6RJk+SVV14xP2vidZo0aWI1lCtZsqTUr18/3jY1CVuHjpYsWSKfffZZ9OO3bt2SHj16yNmzZ6Vy5cry0EMP2f5AAQAAAhLVmXzixIkTUrx48UTX03NczdO1i8TqBPo66MhB9uzZzfSiPHnymJN8Lfdq5TS0bdtWBg8eHOt1Ov9Mk1VcZbvny5dPpkyZYl73zDPPmGBE8x/WrVsn+/btM/vQUYqkdA8EAABA6MqaNascOXIk0fX03FMrj9rFSIQbOgykIwda3vXPP/+U7777TpYuXWqee+KJJ2TRokXmhD91au/iMJ2XtnbtWjPEpB+ejlzoSETPnj3NvDQrbwIAACCUhIWHObqEigoVKsiGDRvcFvJRelFczzurVq1qez+MRLhRuHBhef/9970+oJ06dTJLQipWrCizZ8/2etsAAABAQrp162ZKvOrMFz3fvPPOO2M9f/LkSbOOVmzSW7sIIgAAAOB/TlZRCp2BCNEZMzrzZebMmVK0aFGpUaOGeXzVqlXStGlTWbZsmSno8+STT5pSr3YxnQkAAAAIItOnT5eXX37Z3NeCPmr37t2ycOFCuX79uvTv39/k6SYFIxEAAABIAcL+rdDk1LZDSKpUqeTtt9+WF1980ZR81TxcrTBaoEABU0E0KQnVFoIIAAAAIAhlz57dsf5jTGcCAACA/2kFJSeXEDFu3Dg5c+aM4/shiAAAAACCRJ8+fUxvstatW8v3339vqjA5gSACAAAAKac6k1NLiGjevLkJHLQ606OPPmryIF599VWTWO1LBBEAAADwP02qdnIJEbNmzZKjR4/KmDFj5N577zX3R44cKSVLlpRatWrJ5MmT5dKlS0neD0EEAAAAEERy5MghvXv3lk2bNpmlV69ekjNnTlm5cqVpMKcN6Lp06SIrVqywvQ+CCAAAAPhfuMNLiCpXrpyMHTvWjEjoKEWjRo3k2rVrpk9EvXr1bG83hA8pAAAAEBpSp05t8iU++ugjefbZZ81jSUm6pk8EAAAA/M8kQDuUuxA6KREu6cjDnDlzTD7Ezz//bBrPqdKlS4tdBBEAAABAEFq7dq2ZtvTNN9/IuXPnzMhD1qxZpU2bNtK5c2epUqWK7W0TRAAAAMDvwsLCzOLUtkPFsWPH5Msvv5QvvvhC/vzzTxM46O9ft25dEzi0aNFC0qVLl+T9EEQAAAAAQaJgwYJmupIGD4UKFZKOHTua4EHv+xJBBAAAAPzPyaZwYaGXQN2lSxepX7++c/txbMsAAAAAktXff/9t8h6cRhABAAAA/wsP+3dxatshImsyBBCKPhEAAABAgHrzzTdl/vz5Lp/73//+J4cPH3b53Lhx48y0J7sIIgAAAOB/WkHJySVIDRkyRObOnevyufLly8vgwYNdPrdx40aZN2+e7f0SRAAAAABBKCoqKkldqRNCTgQAAAD8j+pMAYWRCAAAAABeYSQCAAAA/kd1poDCSAQAAAAArzASAQAAAP8jJyKgEEQAAAAAAWzz5s2mX4Q3z+njSUEQAQAAAP9zsp9DEPeJUH/88YdZvHlOS7+GJeG4EEQAAAAAAapWrVpJCgbsIogAAACA3+mJcJhWaHJo28Fq2bJlftkv1ZkAAAAAeIWRCAAAAPgf1ZkCCiMRAAAAgJ/t2bNHnnvuOalQoYKkSZNGIiMjJSVjJAIAAAD+F+LVmbZt2yYLFy6UKlWqmMpJZ86ckZSMkQgAAADAz5o0aSKHDx+W7777TqpWrSopHSMRAAAA8D+tzORQdSbHtutD4eGBdW0/sN4tAAAAkEx27twp48aNk06dOknZsmUlderUplzsW2+95dHrZ86cKXXq1JHs2bNLxowZpVy5cjJq1Ci5ceOGBDpGIgAAAOB/KbA600cffSRjx4619dq+ffua12rgUa9ePcmUKZP8/PPPMnDgQFmwYIH8+OOPkj59eglUjEQAAAAALpQpU0ZefPFF+eqrr2THjh3y1FNPeXSc5s6dawIIDRzWrl0rP/zwg8yePVt2795tRjRWrlwpr7/+ekAfc0YiAAAA4H8psDpTt27dbOUtDB8+3NwOGjTIlGy15MqVSyZMmCAPPPCAjB8/3gQSWbNmlUDESAQAAADgI0eOHJF169aZ++3atYv3fM2aNaVAgQJy7do1Wbx4cZL3lypVKtuLTrWyiyACAAAA/hfu8CIi58+fj7Xoibyvbdq0ydzmyJFDChcu7HKdSpUqxVo3KbSnhN3l9u3btvdLEAEAAICQoCMAOn3IWkaMGOHzfezfv9/cFixYMMH3EXNddfnyZZk1a5ZZ9u3bF+vnv/76y+22NBCIu/Tr10/SpUsnffr0kY0bN5rGdbpo0KIJ35rQreskJYggJwIAAAAhkRNx6NAhyZIlS/TDadOm9fmuLly4YG61pKs7mnCtdDTEcvz4cWnZsmWs9ayfJ0+ebMrMekLXHTNmjPz0009St27dWM9pidn33ntPmjZtKg0aNJB77rlHunbtKnYQRAAAACAkaAARM4hISSIjI80Uo6TSxO0aNWrECyBi0t4VmpuhJWztBhFMZwIAAIDfaRM3J5fkkjlzZnN76dIlt+tcvHjR3DoR0Pz555/R06USkj9/ftNMzy6CCDe0k+DSpUvlpZdeksqVK0u2bNkkTZo0cuedd5ohoEWLFnl9sIcMGZLoF1w/eAAAAASmyMjI6KlT7ljPWev6klZc2rJlS6Lrbd26NUnVmZjO5Mby5cvlwQcfNPc1cNAhH53btn37dtNlUJdnnnlGPv74Y6+jW52Pdt9997l8LlBrBQMAACRJjCpKPpeMl83Lly9vbk+dOmUSp11VaFq/fr25jdlDwleqVatmumF/8MEH0rt3b5frjBs3zgQaDRs2tL0fggg3tJlIixYtTFa7NgSJ6ZtvvpEnn3xSPv30UzPnrEOHDl4d9GbNmplRCQAAAASXu+66y8xi0V4R06dPl1dffTXW89qtWkciNKm7UaNGPt//G2+8IUuWLJEXXnhBvv32W9OrwgpkDhw4YLpvr1mzxoxCvPbaa7b3QxDhRr169cziSuvWrU3G+6RJk2Tq1KleBxEAAABI+R2r7XrllVfk8ccfl5EjR8ojjzwSPeKgoxM9evQw93v16uXIDJT777/fBC/abXv16tUmYIhJk7e1OtRnn30m1atXt70fgogkDlUlNN8NAAAAgUt7LFgn/Wrv3r3m9pNPPpGFCxdGPz5nzhzJmzdvrFknOpVIpxTp9KL69eubafGab3v27Fkzk2XYsGGOvW8tDVurVi2ZOHGimaJ/+PDh6GTq2rVrm4pMMd+vHQQRNu3evdvc2vkA9As5aNAgOX36tIlANSBp0qRJdDY/AABAyEmBIxHax2Ht2rXxHj98+HD0ibly1fl67NixJlj48MMPzYiAFu0pWrSoOQfUqUYRERHipDx58pipVHGnU/kKQYQNf//9t0yZMsXc17wJb1mJ2TFpMKHRqidTo/SLGvPLGrNRCQAAAHxD+ykkpXdDq1atzBKMKPHqpZs3b0r79u3l3LlzUrZsWXn22Wc9fq1Gn8OHDzctx3UUQhdNrmncuLHZXseOHU2yS2K0RXvMlu2e1AIGAAAIiOpMTi0h5vz586bxnJ63PvzwwzJq1Kjo53bt2mUqOF29etX29hmJ8NJzzz1n5rPlzJlTZs2a5dVQ1FNPPRXvMR3m0lEJnTen5bZ0eEvnsSW03Zdffln69esX60tCIAEAAAClAYJWZTpz5owZSdF2BJoPYdEmc5q38fXXX9seKQnBuMw+LfeqFZmyZ89uqjMVL17cZ9vWkq+pUqWSEydOuJx7F5OWBLPatqfk9u0AAABe50Q4tYSIHTt2mMpQOsule/fupjVB3ClZOjKRIUMGmTdvnu39MBLhof79+5ucBe1crdGdVZ3JV3LkyCG5c+eWY8eOxUrUAQAAADylU+d1mtLMmTOlefPm0e0JYtIZL9r4+I8//hC7GInwwIABA+S9994z+QcaQFSqVEl87datWyZiVFRpAgAAocfJUYh/RyK0CVypUqVMxaRg9csvv0i5cuWiA4iEmuLpxWu7GIlIhJbh+s9//mMCCJ3CpF8+J8yfP18uX75s5qw5EaQAAACEOu0iHezTwE+cOCE1a9b0qFjQpUuXbO+HkYgEaCvwd955x0xh8jSAGD9+vJQsWTJeqdaDBw/KtGnTXGbBz50713QVVE8++aTceeed3n+SAAAAgYzqTD6hF76PHDmS6Hr79u0zU+ntYiQigZGBt99+29wvVqyY22GvXLlyyejRo6N/PnnypMl4jxsIaDlXrc6kCS6aT6EZ8leuXJHt27dHN66rW7eufPTRR7Y/TAAAAIS2ChUqyIoVK8wF7IIFC7pcZ+vWrSYfQhOw7SKIcENP+i3r1683iyuFChWKFUS4oyVYBw4caIbR9uzZY7pWX79+3QQh2idCy3Bp0kt4OINDAAAgBKXAjtWBqFu3biaHt23btjJ79ux4F7b1greuoxWbrJkwdoRFJaUNH1IE7ROhQ1eamB3s8/wAAEBwnUNY7+GtHt9KurQZHNnH1WuX5bUJrULmXKl169amOlP69OlNT7IlS5bI3XffLSVKlJBly5bJxYsXzRT6L7/80vY+GIkAAACA/zES4TPTp0830/HHjBljAgil0+d10fKu2rpg5MiRSdoHQQQAAAAQRFKlSmVye1988UVT8lWTqG/fvm2m19evXz9JCdUWgggAAACknOpMTm07BGXPnj3RfhF2heghBQAAAIJPvXr1ZNSoUYmup4WBdF27GIkAAACA/5ET4ROaOB0ZGZnoetqSYPny5bb3w0gEAAAAEGJu3LiRpNYCjEQAAADA/7SVg2N9IpzZbCDbsmWL5MyZ0/brCSIAAACAANalS5dYP69cuTLeY5abN2/K9u3bZfPmzdK0aVPb+ySIAAAAgP9Rncm2KVOmRN8PCwuTPXv2mCUh+fLlM2Vg7SKIAAAAAALY5MmTzW1UVJQZgahZs6Z07drV5brabO6uu+6SatWqSZo0aWzvkyACAAAAIVGdqXLlyqYRW8+ePc0SLDp27Bh9f8iQISZAiPmYEwgiAAAAEBLWrVsnWbJkkWB24MCBZNkPQQQAAABSSHUmB7cNnyKIAAAAAILMtWvX5JdffjFN5c6fP2/yJeLSJOzXX3/d1vYJIgAAAOB/4WH/Lk5tO4TMmTNHnn32WTl16pTbdTSoIIgAAAAAIOvXr5fWrVubI9GmTRvZtm2baSw3aNAg2b17t/z0009mZEKrN2mVJrsYiQAAAEBIVGcKBaNHj5Zbt26Z0QhtJte5c2cTRFg9IU6cOCEdOnSQ//73v7Jp06YktfUAAAAAEARWrVolpUqVctuN+o477pAZM2bIpUuXZOjQobb3QxABAACAlFOdyaklRJw4cUJKliwZ/XPq1P9OPLp69Wr0Y1mzZpXatWvL4sWLbe+HIAIAAAAIEpkzZ5abN2/GChjU0aNHY62n3ar//vtv2/shiAAAAID/ad5CuENLCOVE3HXXXXLo0KHon61RCS33arlx44b89ttvkidPHtv7IbEaAAAACBI1a9aUiRMnyrlz58woxKOPPmqmNPXr189MaSpYsKB8+umnZmTiySeftL0fRiIAAADgf1Z1JqeWENGsWTMzGrF8+XLzc968eeWVV16RCxcuSO/evc3zixYtkmzZsslbb71lez+MRAAAAABBon79+qYfREyDBw+WsmXLysyZM+X06dNyzz33SN++fc2ohF0EEQAAIOS8+8oP7p+8eN3lwz3ff9TtS9KlYnJHkjlZRSl0BiLcat68uVl8hW88AAAAECTq1atnmsk5jSACAAAA/udUZSZrCRGrV6+W69ddj6b5kkfTmVasWOGzHdaqVctn2wIAAADw/2lS9bVr1yRFBBF16tSRMB9ktes2Yja/AAAAAP7vRNG5KkohVJ2pcePGMm3aNLl06ZJkzJjRsf14nFidO3fuWC20vfXnn3/K8ePHbb8eAAAASIrKlStLqlSppGfPnmYJRoMHD5YFCxaYJGrtB1GoUCH/BhGPPPKIfP7557Z31LlzZ5k6dart1wMAACCIJUN1pnXr1kmWLFkkmPXv319Kly4tCxculBIlSkj58uUlMjJS0qdP73KW0KRJk2zthxKvAAAgKI2fvsntc1e/2+r2uaN/xa6xbxm9YLvb16R/8QG3z/XvWd3tc4CvTZkyJToNQROs165daxZXHA8ivv76aylcuLAkRffu3aVhw4ZJ2gYAAACClJNVlEKoOtPkyZOTZT8eBRGtW7dO8o6qVKliFgAAAADO6NixoyQHpjMBAADA/6jOFFAIIgAAAIAgtH37dtN87sSJEybZumnTpubx27dvm7YLERER/gki1qxZI0uXLpWjR4/K1atXfZ6wAQAAgBAR/n+LU9sOIYcOHTKVUX/55ZdY05ysIOKzzz6THj16yI8//ij169dPviDi8uXL0qpVK/nvf/9rfo6KinK7LkEEAADwhzN957t9Lk3JfG6fy3M8t8vHoy65vmCqrn2yzv0boToTktHp06eldu3acuDAASlTpozUqlVLJkyYEGsdPY/v1auXzJ8/P3mDiFdeeUUWL14s2bNnl/bt28vdd98tmTNntvUGAAAAAHIifOOdd94xAcSLL75o7usF/bhBhJ7Dly1bVlauXGl7P7aCiJkzZ0q2bNlk48aNjnXBAwAAAOCdefPmmeZyI0eOjO4X4UqRIkVk1apVkqwzxM6cOSMPPPAAAQQAAAB8W53JqSVE/PXXX1KhQgUJD0/4NF+TqnXqU7KOROjoQ2JvDAAAAPAYidU+kS5dOrlw4UKi6x08eFCyZs1qez+2IoF27drJsmXL5OzZs7Z3DAAAAMC3SpYsaVIOLl265HadkydPyh9//CH33ntv8gYRAwcONNnejzzyiOzYscP2zgEAAACD6Uw+8cQTT8ipU6ekX79+ph+EKy+99JKpttq6devknc6kc6h++OEHuf/++01md8GCBc3iaoqTJnRoLwkAAAAnjJ++yeXjN69dc/uam3/sd/tclp61XT6etozr0q9qz9Pue2LNXfuXy8ebVaU4DXyvZ8+e8sUXX8jEiRNlw4YN0rx5c/P43r175b333jMFkn7//Xe57777pFOnTskbRGhi9YMPPihbt241PSK0jJQuriSUFQ4AAAD830mjcwnQIXQ+mi5dOnOxv2XLlqZb9aZN/wbZWs5VFz13r1y5ssydO1fSpEljez+2+0ToXCvtD9G9e3dzmylTJglWGrF9+OGHZu7Y9evXpVixYvLkk0/KCy+8YOvga1SoZbdWrFgh586dk7x580rjxo3l9ddfl9y53V/lAAAAABKj55YaMGgwsWjRItm3b5+Z2lSgQAGTjvDYY48l+UJ/arv1Z/PkySO//fabaVYRzPr27Stjx46V1KlTS7169Uyw9PPPP5u8kAULFph24enTp/d4e7NmzZK2bdvKzZs3TRRYuHBhWb9+vYwfP94EK/qBa5ACAAAQUvSc1qnin6EzEBHLww8/bBYn2Pqo9Op59erVgz6A0GEeDSA0cFi7dq2J5mbPni27d++O7vKnoweeOnr0qHTs2NEEEJ988omZj/bNN9/Irl27TOfvf/75x1S+0mEmAAAAIKWyFUTolfKrV69KsBs+fLi5HTRokGnaYcmVK1d0+3AdQdCgyhNjxowxmfANGjSQZ555JvrxVKlSyUcffWRq9a5bt86MbgAAAIQUqjP53K1bt+T48eOmJ4S7JVmnM3Xt2tXkRRw+fFjuuusuCUZHjhwxJ/RKRwfiqlmzpplXdujQIVm8eLGZopSYOXPmuN2ejnY0bdpUvvzyS/nuu+8cG3oCACDY3FU0h8vH99w87/Y1eUqXcvvcjZWuT6xu/n7U7WtypHX9HgB/0HPYN954Q5YvXy7XEqhSpnkROkMm2UYinn/+eZOQoTkCOsXHXQ3aQGZlsufIkcPkLbhSqVKlWOsmRDsH7tmzJ9brkrI9AACAoJIMIxGaj1qqVClTMCdY/fbbb1K7dm1zjq4zh7JlyxbdjiHuohfEk3UkomjRouZWy7o2atTIJB1rFri7PhFalzbQ7N//b/1oPcDuWAfeWjchMUvgutump9vTiDJmVHn+vPsrLQAAAPj/V+izZMkS1Idj8ODBJnjo0qWLvP3226YYkhNsBRExT4g1CfjGjRtu51QFap8IHTlQGTNmdLuOVdbWk5N4a3sJbdPT7Y0YMUKGDh2a6D4BAAACRriD1Zmc2m4KpMWASpQoIZ999pmj5+G2gghPrrzDOS+//LJpZW7RoCMpw1EAAAAIDjdv3jTdqJ2+kG8riChUKPjbtGfOnNncXrp0ye06Fy9eNLeeDItZ27O2qZWY7G4vbdq0ZgEAAAgWetLr1IlvoM6MsaNkyZJy8uRJcVoIDe54JzIy0txq9SV3rOesdT0NvNxN/fJmewAAAEBc2kbg119/dTwn2dZIRCgoX768uT116pSZvuWqQpN2mlYxe0i4o6ML2l9DKzTp67RZXVK2BwAA/lUoz785hXHtu/z/czjjynUsr9vn0pTI5/LxG3uPu39NsTv5OJIqRhUlnwuhkYhnnnlG1qxZIw8++KDpZ6ZtA7QnmV9GIh566CF59913k7Sj0aNHm+0ECu1/oWXA1PTp0+M9r92qdeRApxVphSpPPP744263p1OZFixYYO43b948ie8eAAAAoahIkSKmP4QWQmrSpIlkyJDBzHLRx+MuVsVVx4KIJUuWyLZt2yQp9PVLly6VQKIN9dTIkSNl48aN0Y/r6ESPHj3M/V69esXKb9CGcjoXrX79+vG217dvX/NB6vHUjPmY3QR1e2fPnjWBSyAFWwAAAL5Aw2rf0ODBqqQas4qq9XjcxfHpTHqlPCmtsa2k4UDSrFkz6d27t3zwwQdSrVo1ExhoeVYNhvSEv0aNGjJs2LBYrzl37pzs3LnT1OeNK1++fDJlyhTT3VqHmiZNmmQiQ61ZvG/fPlPHV0cpQin5BwAAAL6TXFVUPQ4iZs+ebZZQM3bsWBMsaGfD1atXm2hOh34GDRokL7zwgkRERHi1vZYtW5rho+HDh5ukF+1OrY36evbsKa+//rpjDUEAAABS/kiEU9WZJGQUSqYqqh4FEdphOZSvjrdq1cosnujUqZNZElKxYsWQDMgAAAAQHDwKIpIyXwoAAMBJ5SNzuny88h3/Fkhx5cZ5932gxE0VpvDM6dy+JHWBbG6fa1Y1+Ptr+QQdq31KmxFPmzbNzKQ5ceKEmZY/YMAA89yuXbvM+X2tWrUkXTr33+uEUOIVAAAACCI//vijtGvXTs6cOWOSq3VGUf78+aOf1/xdzf39+uuvPZ5tExfN5gAAAJBiOlY7tYSKHTt2mLYCWuyne/fu8s0335hAIibtHaEVQ+fNm2d7P4xEAAAAAEFi+PDhpkrozJkzo3uPtW7dOtY6Whjovvvukz/++MP2fhiJAAAAgP/RKMInfvnlFylXrlyizYu1sfKxY8ds74cgAgAAAAgSJ06ckOLFiye63s2bN+XSpQQKDCSC6UwAACAoZRj8oNvnDg2Y7v6Fx8+7fPiOtIXdvuTuATW8e3NwOxDhhBBKiZCsWbPKkSNHEl1PGx3nzp3b9n4YiQAAAACCRIUKFWTDhg1y8OBBt+ts3brV5ENUrVrV9n4IIgAAAOB/5ET4RLdu3Uxiddu2beXvv/+O9/zJkyfNOlqxSW+TNYj4/vvvbe8QAAAAgDOeeOIJadmypaxZs0aKFi0qDz30kHl81apV0rRpUylSpIj8/vvvpo+ElnpN1iCiUaNGUqJECRk7dqzphgcAAAAkSXiYhDm06LZDyfTp0+Xll18295csWWJud+/eLQsXLpTr169L//79ZcqUKUnah63E6nvuucc0sujXr5+89tpr0r59e+nZs6eUKVMmSW8GAAAAQNKkSpVK3n77bXnxxRdNyVdNor59+7YUKFBA6tevn6SE6iQFEdu2bZNly5bJ+PHjZf78+fLJJ5/Ip59+KrVq1ZJevXqZLnnh4aRbAAAAwAuhNWDguOzZsyfaLyLZS7zWqVPHLFpC6uOPP5aJEyfK8uXLZcWKFZIvXz557rnn5Omnn/ZJpAMAAOCt/j2ru31uUrGcbp87u/yAy8fTlnF/TtOsaiEv3x0Q2JLcJyJ//vwybNgweeONN2TWrFlmdEITOfRnfVwTO3R0IiklpAAAABDcwsLCzOLUtlXlypXNVB+dhq9LsFu9erXs2bPH5XOVKlWSUqVK+b/ZXJo0aUwpKQ0aNIAYOXKkSdz46quvTHJH9erVZfTo0QQTAAAA8It169ZJlixZgu7oV6xYUXbt2mXyHzQ4sHz22WcydepUl6+59957ZdOmTf4PIv755x+TF6HL0aNHzWPly5c3ZaW+/vprU1aqZs2aMnv2bFNeCgAAALDQsdqepUuXmmCga9eusQIIi/aD0GTqmA4fPiz/+9//5Oeff5Z69er5J4jQYRKdwvTdd9/JjRs3TEK1JnD06dPHBA1Ks8M1+bp3794yZMgQgggAAADAB+bOnWuma73wwgsun9fnfvrpp1iPHThwwPSQ0Iv7yRpEaBc8nab04YcfmpbZGuFo9rcmUuv8Mi0fFZMGFt27d5fFixdH16oFAAAAojEUYYs2jitUqJBX+Q2RkZFStmxZ81q7UttNpj579qwJHkqXLm1GGLRXRPr06RN8XZ48eUyeBAAAgD91fbiE+ycTeg5IYfbu3Wtyj13Rc3V37r77bpNDkaxBhAYQjRs3NsFD3DlWCRkwYIA89dRTdnYJAACAIJYc1ZmC0fnz5yVr1qwun9PG0Fr0yBW9+H/hwoXkDSK0bXaRIkW8fl3x4sXNAgAAACDpMmXKJOfOnXNbgUkXd4MCGTJkSN4gwk4AAQAAALgV/n+LE5zabgqQN29e2bx5s9ev09foa+0K4kMKAAAABLfq1avLkSNHZMWKFR6/RtfVMq81atSwvV+CCAAAAKSYnAinlmDVvn17k0Ddo0cPkx+RGM2D0HX1mLRr1872fgkiAAAAgABVu3ZtefDBB2X79u2m2dyiRYvcrqvtFipXriw7duwwxZHq1q3r/47VAAAAgG30ibBt+vTpZmrSrl27TFNn7d9WoUIFueOOO8zzJ06ckI0bN8qZM2fMqEWxYsXMa5KCIAIAAAAIYDlz5pS1a9dKr1695Ouvv5bTp0+bBs/WNC6rX4Q2gG7Tpo1pGJ0tW7Yk7ZMgAgAAAH7HQETSaK+IL7/8UoYOHSoLFy6UDRs2yMmTJ81zuXLlMiMT2uetaNGi4gsEEQAAAECQKFKkiGkI7TSCCAAAAPgdHasDC9WZAAAAAHiFkQgAAAD4Hx2rAwojEQAAAAC8wkgEAAAA/I6ciMDCSAQAAAAArxBEAAAAIOU0inBqCVIrVqwwnaqTG0EEAAAAEKDq1KkjI0eOjP65Xr16MmrUKMf3S04EAAAA/I6O1fZFRUVF31+2bJlERkaK0xiJAAAAAAJU5syZ5dixY8m+X0YiAAAA4H8MRdhy7733ys8//yxvvPGGFCtWzDy2Z88emTp1qkev79Chg639hkXFHP9AQDp//rxkzZpVzp07J1myZPH32wEAAAEiJZxDWO9h7Le/S/oMmRzZx5XLF6VPqypBea60YMECeeKJJ+TmzZvmZz2113K5nrp165at/TISAQAAAL8LCw8zi1PbDlZNmjSR33//XebOnSt//fWXTJkyRYoWLSo1atRwdL8EEQAAAEAAK1eunFmUBhE1a9aUzz//3NF9EkQAAADA73SswKl2DsE7DhHf4MGDpXz58uI0gggAAAAgiIKI5EAQAQAAgJCozlS5cmVJlSqV9OzZ0yzB7ObNmzJr1iz55Zdf5MiRI+ax/PnzS926dU0idurUSQsDCCJcOH78uHz//fdmWbdunRw6dEjCw8OlYMGC8tBDD0m/fv1sNfHQ12jCiztVq1aV3377zevtAgAAIHF6Xhds1Zlc2bx5swkU9u/fH6sRnZo4caK8/vrrMnPmTLnvvvvELoIIFzRI+Oqrr0zgUKZMGWnatKlcunTJfPHGjRtnElXmzJkjDz74oK2D3qJFC8mUKX4JM82kBwAACEValtSb0qTebjtUHD161Fz0PnnypOTJk0fatGkTfY65b98+mTFjhuzdu1cefvhhE2zkzZvX1n4IIlzIkSOHDB06VLp27WqGfSwXL16Up59+2hx8/UC0kUf27Nm9PuijR49OlnbkAAAACC3vvPOOCSC6desmY8eOlfTp08d6fvjw4dK7d28zIjFq1Ch5//33be2HZnNeunz5stx5551y4cIF+fLLL6V9+/ZeT2fSoSVfBhEpoVEMAAAIPCnhHMJ6D+PnbJD0GR1qNnfpovR6vGJInCsVL15crl+/bkYbNP/DXb6EdreOiIiQXbt22dpPeBLfZ8jJkCGDlChRwtzXXAkAAAAgpdDz0+rVq7sNIJQmVd9///1JOpdlOpOXbty4IQcOHDD37c4hmzx5spw+fdpEgfny5ZPatWtLrVq1bG0LAAAgGNCx2jfSpk1rRncSo7NqdF27CCK8NGnSJDPPTOeXPfLII7YO+ptvvhnvMS05Nn36dDO0lJhr166ZxeLJFwUAAADBr1SpUqasq44yFChQwOU6Bw8eNOskpToT05m8sGXLFnnppZfMfS2NpRnv3nj00UdNoKAJ2VeuXDG5EVOnTjWlY7XyU506dUx52cSMGDHCzB20FndfEAAAgIDqWO3gEio6dOhgzjMbNGggixcvjvf8woULTYXRq1evmnXtCrrE6gEDBsj8+fO9fp1mqNesWdPt84cPHzbPa2K0lnydO3euz8qF6dSmihUrmmlSffr0kTFjxng9EqGBRCgkCwEAgOBMrJ4wb6OjidU9HqsQEudKt27dkoYNG8rSpUvNuapWHS1cuLB5Ti9g63mnnv5rkKE90bSlgR2pg7E27s6dO71+nZZvdefvv/+W+vXrmwBCa+p+++23Pq03rB9u3759zbJgwYJEgwidv5aUOWwAAAAps2G1U30iJGSkSpVKFi1aJG+88YZMmDBBTp06ZRaL9irTbt3azsBuABGUQcS0adPM4is6vahevXqm/JVGbDoC4cQJ/D333BM94gEAAADYpaVbR44caQKF9evXy5EjR8zj2v+sUqVKPjmXDbogwpdOnDhhAogdO3aYkQidJpUuXTpH9mVFiJkzZ3Zk+wAAACl/JMK5bYeitGnTSo0aNRzZNonVbmgFJg0gtm3bZgIInWYUt+OfL2kXbFWlShXH9gEAAAD4AkGEC5pwooHD1q1bzRQmbwIIfV3JkiVlzpw5sR6fN2+ebNiwwWWNXs2FsJLB+/XrZ++TBAAACIKRCKcW+BbTmVzo1q2b/O9//4vOaO/evbvLg9esWTOzxKQtxjUBW7P/Y9JavGPHjjXlXMuWLSvZsmUzSeCbN2+WM2fOmM6Bo0ePNkELAAAAkJIRRLgZiVBa/korMbkTGRkZL4hwR9fTClAbN240CS66D0160aCidevW0qNHDxNcAAAAhKKw//ufU9uGbxFEuLBs2TLbB1R7PbiijeR0AQAAAAIdQQQAAAD8z8ncBQYifI7EagAAACBIHDx4UA4dOuT4fggiAAAA4HdUZ/INzdlt06aNOI0gAgAAAAgSWbJkkcKFCzu+H3IiAAAA4HdaWl8Xp7YdKkqVKsV0JgAAAACee/rpp2XVqlWybt06cRLTmQAAAOB3YQ4voaJz586m/9hDDz0kw4cPl507d8q1a9d8vh+mMwEAAABBIlWqVNH3X3/9dbMkNM3r5s2btvZDEAEAAAC/IyfCN6KiohxZNy6CCAAAAKSYEq9ObTtU3L59O1n2Q04EAAAAAK8wEgEAAAC/czIBOoQGIpINIxEAAABAkNm7d68MGDBAatasKSVKlDD3LWvXrpVPP/1Uzp07Z3v7jEQAAADA70is9p0vvvhCnnvuuejSrnpsT548Gf385cuXpXv37hIRESGdOnWytQ9GIgAAAIAg8dtvv0m3bt1MgDBq1Cgz6hC3ClPt2rUla9assmDBAtv7YSQCAAAAfkd1Jt/QwEGDhkWLFpmpTK6Eh4fLfffdJ9u3b7e9H0YiAAAAgCCxatUqqVKlitsAwnLnnXfKsWPHbO+HkQgAAAD4HTkRvnH27FkpWLBgoutduXJFrl+/bns/jEQAAAAAQSJnzpzy119/Jbrenj17zGiEXQQRAAAASDF9IpxaQkW1atVk/fr1sm3btgSnPOnziU15SghBBAAAABAkevbsKbdu3ZIWLVrI5s2b4z2/Y8cO6dKli5k+1qNHD9v7IYgAAABAiqnO5NQSKurXry/9+vWTXbt2ScWKFaV48eImYPjhhx/k3nvvlbJly8ru3bvlpZdeMqMWdhFEAAAAAEFk9OjR8sknn5icB8190JKvWolp69atkiNHDhk3bpyMHDkySfugOhMAAAD8Lkz/59CQgW5bVa5cWVKlSmWm/OgSzJ5++mnTdG7Tpk2yb98+uX37thQoUMAcg9Spkx4CEEQAAAAgJKxbt06yZMkioSIsLEwqVKhgFl8jiAAAAIDfOVlFKYRSIuLRqUynTp0yt1r+VbtV+wI5EQAAAECQ+emnn6Rhw4aSOXNmyZMnj8mP0Pv6mCZZJxVBBAAAAPyO6ky+o5WXNFj48ccf5fLly2YUQhftUq2PNWrUSPr375+kfRBEAAAAAEFi2rRp8u6770q6dOlMoPC///1PLly4YJYtW7bIiy++KOnTp5cxY8aYde0iiAAAAECKSAJ2cgkV48aNMxWovv/+e/nPf/4jZcqUkYwZM5qldOnSMmrUKPOcHpPx48fb3g9BBAAAABAktm7dKjVr1pQHHnjA7TrW87quXVRnAgAAgN852Vk6hAYiRKcx5cuXL9H1dJ2IiAjb+2EkAgAAAAgSFStWNHkQidF1KlWqZHs/BBEAAABIGR2rHfxfqHj11Vdlx44dJvfBHc2V0HVeeeUV2/thOhMAAAAQoFasWBHrZ02Y7tWrl7z88ssyc+ZMeeqpp6Rw4cLmuf3795uKTBs2bJDevXsnqfFcWJQWjUVAO3/+vGTNmlXOnTsXUq3cAQBA4J9DWO9h1vLtkiFTZkf2cfniBXmidqmgPFcKDw93WX3KOsWP+1zMx3W5efOmrf0yEgEAAAAEqFq1avmlhC1BBAAAAPzPwepMwZwSsWzZMr/sl8RqAAAAAF5hJAIAAAB+Fy5hZnFq2/AtgggAAAAgyFy9elXWr18vR48eNffd6dChg63tE0QAAADA7+hY7TvaB2L48OGm8lViCCIAAACAEDd+/HgZOHCguV+2bFm5++67JXNm35fOZSQCAAAAfsdIhO+CiNSpU8vs2bOlSZMm4hSqMwEAAABB4sCBA6Z3hJMBhGIkAgAAAH5ndVB2atuhInfu3HLHHXc4vh9GIhL5Irtb2rRpY+uA3759Wz755BOpWrWqmZ+mi97/9NNPo9uQAwAAAHY88sgjsmbNGnPO6SRGIhLRsWNHl4/rib+3bt26Ja1atZLvvvtOMmTIIPXr1zePL1myRJ599llzO2PGDAkPJ7YDAAChRccKaFiddIMHD5YFCxZI79695b333pOIiAhxAkFEIqZMmeKzgz1u3DgTQOTPn19+/fVXKVy4sHl8//79UrNmTZk5c6aZw9arVy+f7RMAAAChI1++fLJy5Upp2rSplChRQurWrSsFCxZ0eZFaZ9e8/vrrtvYTFsUcmgTnzvnq8OiQkgYPf//9t0ybNk2efPLJWM/rY0899ZT54A8dOuTVaITWAM6aNaucO3dOsmTJ4pP3CwAAgl9KOIew3sOC1TslYybflyJVly5ekCbVS4TEuVJUVJT07dtXPvzwQ7dTmvQ8V9fTW50pYwcjEclE56ZpAJE2bVpp0aJFvOf1sa5du5qugmvXrpX7778/ud4aAAAAgqjR3Lhx40yZ18aNG5s+EZkyZfL5fggiEqFzyfbs2WMiNR0KevDBB6VChQpeH+hNmzaZ29KlS0u6dOniPZ8+fXrznK6nC0EEAAAIJfSJ8I2JEyea3FudOl++fHlxCkFEIvr37x/r50GDBknDhg1NrkSePHk8PtCa96A0EHGnQIECJoCw1nXn2rVrZrF40tIcAAAAwe/QoUNSp04dRwMIRRkgN9q1aydz5841DTuuXLkiu3btMh0Ac+bMKd9//70Zkbh69arHB/rChQvmNmPGjG7XsYaaEgsKRowYYeYOWosGHwAAAMEwEuHUEiruvPNO00LAaUE3EjFgwACZP3++raEfrZBk+eqrr2I9r/PJdGnUqJGJ7LZs2SIff/yxSVxJbi+//LL069cv+mcNOggkAAAA8Pjjj8vXX39tLna7mkLvK0EXRGhi8s6dO71+3cWLFz1aT8uydu7cWcaMGWNq8HoaRFgR4aVLlxJ9D4lVDdDkbF0AAACCRdj//c+pbYeKIUOGyA8//CBt27aVzz77THLlyuXIfoIuiNBSqbo46Z577jG3hw8f9vg1kZGR5vbgwYMJzmGLuS4AAADgDb3Arf0hdFr+zz//LBUrVkywT8SkSZPEjqALIpLDqVOnzK03882sik7btm1zObykeRf6XMx1AQAAQgXVmXxDi/9Y/c40J3fZsmVu1yWISEbatOPbb78196tUqeLx67Rkqya6aK+I2bNnx2s2p49dv37dNJurWrWqz983AAAAgt/kyZOTZT+MRLigSdWVKlUyQ0ExHT9+XPr06SObN2+WNGnSyPPPPx/vtR06dJDff/9devXqZRaLDiENHDhQXnjhBXNbvXp1k1+htKSrlo61kqa96VYNAAAQDPSquHUF3Ylth4qOHTsmy34IIlyYOXOmtG/f3lRjKlWqlCnLqrkMGjxo8rM28NChIis3IiZdTxO7T548Ge85DTpWrFghc+bMkTJlykiDBg3M40uWLJHLly/LE088IT169HDicwYAAAB8hiDCTQSn+Q4aNKxatUrOnj1rOkoXK1ZM6tevLz179oweRfBGqlSpZNasWSZTXkvKLl261Dyunaq7du0qzzzzTEhFygAAABZyIgJLWFRUVJS/3wSSRvtEaNO5c+fOJVoeFgAAICWdQ1jv4Yd1uyVjJmeapF26eEEernx3SJwrdenSxeN1SawGAABAQCMnwjd0yn1CrFkvOo5AEAEAAABA3FVn0gqjf/31lyxevFjWr19v+kmUK1fO9hEjJwIAAAB+p9fHncoMDaWM046JVGfSjtYDBgwwObobN260vR9qiQIAAAAhZPjw4aaI0BtvvGF7G4xEAAAAwO+ozpR8UqdOLRUqVDBtBuxiJAIAAAAIMVeuXJEzZ87Yfj0jEQAAAPA7qjMlnx07dsjKlSulQIECtrdBEAEAAAAEialTp7p97sKFCyaA+PLLL+Xq1avSrl072/shiAAAAECK8H8tDJAEnTp1iu4F4YrVZ/qxxx6T1157zfZ+CCIAAACAINGhQwe3QURERITkz59fGjRoINWrV0/SfggiAAAA4Hdh//c/p7YdKqYk0rHaV6jOBAAAAMArjEQAAADA7+gTEVgIIgAAAIAgrMbkaQ6FHQQRAAAA8Dv6RDhTjSkxBBEAAABAiKlXr57XQcSaNWvk8uXLSQo+GIkAAACA35ETYc+SJUs8XvfXX3+VAQMGyJUrV8zPZcuWtblXqjMBAAAAQW3r1q3SpEkTqVOnjqxdu1YKFChgSsFu2rTJ9jYp8QoAAIAUMxLh1KIqV64spUqVkg8//FBCwaFDh0zORPny5WXRokWSI0cOeffdd2XXrl0JNqXzBNOZAAAAEBLWrVsnWbJkkWB35swZefvtt2XChAly9epVyZAhg/Tp00cGDhzos9+fIAIAAAB+p9fEnetYHRquXr0q77//vowaNUrOnz8vqVKlkmeeeUaGDBkid955p0/3RRABAAAABLDbt2/LxIkT5c0335Rjx45JVFSUNG/eXIYPHy7Fixd3ZJ8EEQAAAPA7qjPZ891338mrr75q8hw0eKhdu7a88847UqVKFXESQQQAAAAQoJ544gmTIG3lPTRq1Ehu3rwpq1ev9uj11atXt7VfgggAAAD4HR2rk0abx40YMcIs3hxzDTjsIIgAAAAAAlTBggWTVKrVLoIIAAAA+B05EfYcOHBA/IFmcwAAAAC8wkgEAAAA/E57RDjXJyJUOkUkH0YiAAAAAHiFkQgAAAD4HTkRgYWRCAAAAABeYSQCAAAAfhceFmYWp7YN32IkAgAAAIBXGIkAAACA35ETEVgYiQAAAADgFUYiAAAA4HeMRAQWRiIAAAAAeIWRCAAAAPgdHasDCyMRAAAAALzCSAQAAAD8jpyIwMJIBAAAAACvMBIBAAAA/wsLkzCnOkvTsdrnCCIAAADgd0xnCixMZwIAAADgFUYiAAAA4HdhDk5ncmyaVAhjJMKFIUOGRH+RE1qKFCni1cGOjIxMcHvVqlXz1ecKAAAAOIaRCBfuu+8+6dixo9uDNn/+fDlz5ozUrVvX1kFv0aKFZMqUKd7jRYsWtbU9AACAQKdjBU6NFzAO4XsEES40a9bMLK4cPXpUpk2bZu537drV1kEfPXq0GZUAAAAAAhFBhJe++OILuXXrlpQsWVKqV6/uzKcCAAAQYsiJCCzkRHhp8uTJSRqFAAAAAAIdIxFe+PXXX2X37t2SJk0a6dChQ5ICkdOnT8vNmzclX758Urt2balVq5bt7QEAAAQ6+kQEFoIIL3z++efmtnHjxpI7d27bB/3NN9+M91jlypVl+vTpUqxYsURff+3aNbNYzp8/b/u9AAAAAN5iOpOHLly4IDNnzkzSVKZHH33UBAp79uyRK1euyP79+2Xq1KlSsGBBWbdundSpU0eOHz+e6HZGjBghWbNmjV4KFChg6/0AAACktOpMTi3wrbCoqKgoCSIDBgwwJVi9NXHiRKlZs2aCzz/99NNm+tHBgwclVapU4is6talixYpy4MAB6dOnj4wZM8brkQgNJM6dOydZsmTx2fsCAADBTc8h9IKkP88hrPewdf9RyZzZmfdw4cJ5KVM4H+dKPhR005m0BOvOnTu9ft3Fixc9msqk/SN8GUCoHDlySN++fc2yYMGCRIOItGnTmgUAACB4hP2bGOHUtuFTQTedSXs46OCKt0vDhg3dbvPPP/+UNWvWmPtdunRx5H3fc8895vbw4cOObB8AAADwlaAbiXCCNQqhVZQ8SXy249SpU+Y2c+bMjmwfAAAgJaNjdWAJupEIX9MyrJr87HRviBkzZpjbKlWqOLYPAAAAwBcIIhKxaNEi+eeff0zCzxNPPJHoAa1fv77pZj1nzpxYj8+bN082bNjgsuqT5kJYyeD9+vXz7hMEAAAIoj4RTi3wLaYzeTiVqW3btpI+ffpED+jevXvlr7/+Mtn/Mf3yyy8yduxYU861bNmyki1bNpMEvnnzZjlz5oykTp1aRo8eLQ0aNEjK5wkAAAA4jiAiAToCsXjxYp8kVDdr1sxUgNq4caOsX7/elHWNiIgwQUXr1q2lR48eJrgAAAAIReREBBaCiATkyZNHbty44dUB1V4PrmgjOV0AAACAQEcQAQAAAP9zMnmBpAifI7EaAAAAgFcYiQAAAIDfkRMRWBiJAAAAAOAVRiIAAADgd6REBBZGIgAAAAB4hZEIAAAApABkRQQSRiIAAAAAeIWRCAAAAPgdORGBhZEIAAAAAF5hJAIAAAB+R0ZEYGEkAgAAAIBXGIkAAACA35ETEVgYiQAAAADgFUYiAAAAkAKQFRFIGIkAAAAA4BVGIgAAAOB35EQEFkYiAAAAAHiFkQgAAAD4HRkRgYWRCAAAAABeYSQCAAAA/sdQREBhJAIAAACAVxiJAAAAgN+F/d//nNo2fIuRCAAAAABeYSQCAAAA/hf2b68Ip7YN32IkAgAAAIBXGIkAAACA31GcKbAwEgEAAADAK4xEAAAAwP/CHEyKcCzZInQxEgEAAADAK4xEAAAAwO/IiQgsjEQAAAAA8AojEQAAAPA7UiICCyMRAAAAALzCSAQAAAD8jpyIwMJIBAAAAACvMBIBAAAA/yMpIqAwEgEAAADAK4xEAAAAwO/IiQgsjEQAAAAA8AojEQAAAPA7UiICCyMRAAAAALzCSAQAAABSALIiAgkjEQAAAAC8QhABAACAFJMT4dQSCPbs2SONGjWSTJkySa5cuaRHjx5y6dIlSYmYzgQAAAD42blz56RevXqSL18+mTlzppw+fVr69esn//zzj8yePVtSGoIIAAAA+F2oZ0R88skncuLECVm/fr3kzp3bPJY+fXpp0aKFbNiwQSpWrCgpSdBPZ1q8eLEMGTJEmjRpYiK7sLAwsxw+fDjR116/fl3eeecdKVeunGTMmFGyZ88uderUkVmzZiXpPWl0qdvR7el2dfujRo2SGzduJGm7AAAACNxz1nr16kUHEKpp06ZmatPChQslpQn6IKJdu3YydOhQc/CPHTvm8esuX74sdevWlUGDBsnBgwelYcOGUqVKFVm1apW0bNlSXnzxRVvvp2/fvtKqVSuzHd2eble3P3DgQPPFuXLliq3tAgAABLKUmBOxc+dOGTdunHTq1EnKli0rqVOnNhej33rrLZ9fON6+fbvcc889sR7T/RUvXlx27NghKU3QT2dq3ry53H333VKhQgWzxIzuEvLKK6/I6tWrzRfm559/NsktSoeT9Mvw7rvvmtvGjRt7/F7mzp0rY8eONRHl8uXLzftRJ0+eNAHEypUr5fXXX5fRo0fb/G0BAADgKx999JE5d7N74Xjs2LEmENDzPD3/03NKvXC8YMEC+fHHH810JcuZM2ckW7Zs8bajAYjmR6Q0QT8S8fnnn8vLL78sDz/8sNxxxx0evUY/RP3SKL21Agil89H0w1dvv/22V+9l+PDh5lZHN6wAQun2J0yYYO6PHz/eJNYAAACEZlaEU4v3ypQpY2affPXVV2Y04KmnnvL6wvHatWvlhx9+MMnRu3fvNheorQvHgSzogwi7c9I0H6JgwYJSo0YNl1Ok1G+//SZHjx71aJtHjhyRdevWxXp9TDVr1pQCBQrItWvXzP4BAADgX926dZP//Oc/5tytZMmSEh4e7tiF4+zZs8vZs2ddXtzOkSOHpDQEES5s2rTJ3FaqVMnlQStSpEj0h7l582avtqmvK1y4sMt1rP1Z6wIAAISKlJgTYccRmxeONR8ibu7DrVu3ZNeuXfFyJVKCoM+JsGP//v3mVkci3LnrrrvM/DRrXV9sU79QMdd1R790ulisKPb8+fMevRcAAICY5w5RUVF+PyBOnsdY2467j7Rp05rFlzZ5eOH40KFDZt22bduax7TJnBYD0jKv1hR8zZ24ePGiPProo5LSEES4cOHCBXOrWfTu6Bw3b77wvtzmiBEjzJfMXRACAADgDT1PyZo1q18OWkREhNx5551yd2QhR/ej51lxz5UGDx5sWgH40n6bF46fffZZUwnqscceM/kSOo1Jm83pz+5mx/hTig0iBgwYIPPnz/f6dRMnTjTDRMFME8X1S2XR+XOFChUypWL99QcgFGmwp38E9EpClixZ/P12QgrHnuMeavjOc9ydoiMQGkBoLy1/SZcunTmZ1nxUp39XLc8ak69HIZJy4VgrM2n1pt69e8sTTzxhjou2FUipVTtTbBChCctam9dbOuSTVJkzZza3ly5dSnQ/np48+nKb7obeNIDgZDb56THnuPsHx57jHmr4znPcnZASLkDqCbMuoa548eLy/fffSyBIsYnV06ZNMxGjt4s2b0uqyMhIc6tX9t2xOl5b63q6Tb1q7Y71nKfbBAAAQMqS2YGL0SlRig0i/MkqxbV+/XqXz+/bty+66Uf58uU92qa13qlTp9wmTlv7i1kKDAAAAIEjMkQuHBNEuKDZ8ZrkoyMRq1ativf89OnTzW21atU8nkOo1ZwqV64c6/UxadMR/ULpNCXdvzf0NZoY5MS8PnDcUyK+8xz3UMN3nuOOwFE+VC4cR4UY/ZV1OXToUILr9enTx6x37733Rp08eTL68Q0bNkRlypTJPLdgwYJ4rxs0aFBUiRIlzG1cc+bMMa/T1+t2LLr9smXLmuf69++f5N8RAAAAvtexY0dzvjZs2LAE16tcubJZ76233or33K+//mqeS5s2bdTZs2cD9mNKsYnVvjJs2DBZtGhRvMebNm1qRhusKNDqHhiz0+Dvv/8ua9askbvvvlvq1atn5rYtXbpUbty4YaojNW7cON52jx07ZhLC9TauZs2amYz7Dz74wIxi1K9f32Tu6za1wpJ2x9b3CwAAgMD1yiuvyOOPPy4jR46URx55JHrEQUcnevToYe736tUrRSS12xX0QcTevXtl7dq18R6P2RXaVTWADBkyyLJly+S9996Tr776ynQU1KDj/vvvNx+6ltyyY+zYsSZY+PDDD2X16tUmIClatKhpi/7CCy9EBzYAAADwr40bN0af9FvnleqTTz6RhQsXRj8+Z84cyZs3b0hdOA7T4Qh/vwkAAAAgpdELynXr1k10vf3797tMkv7222/NhePNmzdHXzhu3759UFw4JrE6AB0/flymTp0q7dq1M1OtdCRFR05Klixpot4DBw64fa1+wbXRirtFo2U4c+yVNtJ55513pFy5cuaKRPbs2aVOnToya9YsDnsidDRQu4o2adLEFDSwvrNWuWW+8ynv2Cu+885J6G+5Lm3atHFw78Fv5syZ5u+z/p3Wv9f6d3vUqFHmRBChQ78DnrQYiHRTZalVq1ayfPlyOXfunFy+fFm2bNkiAwcODPgAQjESEYA0gtUpVuHh4VKmTBkpUaKEyddYt26dnDhxwvyx02G1Bx98MN5r9Uv+119/SYsWLaK7JcakEbK2Wofvj73+8dDHdRqbdqXUPButE63dKW/evCn9+/dPsV0pUwI9ZvpHOC6taqbVz9zhO++/Y8933llW592OHTu6fL5q1arSvXt3h99FcOrbt6+Zfpw6dWrzt1r/vdS/1ToNpWbNmvLjjz9K+vTp/f02Af/yd2Y3vPf8889HDR06NOrw4cOxHr9w4UJUmzZtTMZ/jhw5ok6fPh3vtYUKFTLP79+/n0OfzMfeqvillbhOnDgR/fj69esTrPiFf3Xu3Dlq+PDhUd9//33U8ePHPa60xnfef8ee77yzrM8BvuWukqL+3aaSIvD/8dcnyFy6dCkqc+bM5g/gl19+Ge95Tqj8c+w1qIiIiDDPrVy5Mt5rtVScPletWjUH32FwIYhI2cee73zyfQ7wrVAozQn4AjkRQUbn5+sUm8Q6JSJ5j73OKde54QULFjQVGeLSHAv122+/ydGjR/l4EPD4ziMQHTlyxExPjfl3OSadylSgQAG5du2a+Y4DoSzoS7yGGk34spJ7Y5Yai2vy5Mly+vRpMxdfEyVr164ttWrVSsZ3GlrH3iopXKlSJZevLVKkiOTIkcN8JlrBwdNO6PAc3/nkxXc++Wgp8j179pgcCb1QoblXAd0FNwV8b/XvceHChV2uo3/H9UKRrtu2bdtkfodAykEQEWQmTZokJ0+eNAlf2tzEnTfffDPeY5UrV5bp06dLsWLFHH6XoXfsrbb3+g+8O5qgqkGEtS58i+988uI7n3y0KENM2neoYcOGMmXKFMmTJ08yvpPQ+N7qSETMdYFQxXSmIKJlw1566SVzXyssufrH49FHHzWBgl61unLlivkjqCVL9Q+mDuFqKTMtYwrfHvsLFy6YW63e5I5VLev8+fMcfh/iO+8ffOedp9Nt5s6da0ZA9e/5rl27ZPz48ZIzZ075/vvvzYjE1atXk+GdBA++t4DnGIlIZgMGDJD58+d7/bqJEyeauZjuaL12reGuJUObNm1qrkS5og1P4pa/1EVPtCpWrGj+MRo+fLiMGTNGgo2/j32ocuq4e4rvvP+OPZz9b0LLTcekvWt0adSokZQvX95c3Pj4449NuVIA8DWCiGSmSbM7d+70+nV6gurO33//bdqpa/+Hhx9+2HRHtOqHe0rnf+o/NLosWLAgKIMIfx77zJkzm1vtKZHYfrJkySLBxInj7gt855099qH8nff3fxM6l79z587m77j+PSeI8BzfW8BzTGdKZtOmTfOo82HcRee3uqJTj7QRjg5jN2jQwAxtp02b1tZ7u+eee8ytJ11oA5E/j73VyfLgwYNu35913N11vQxUvj7uvsR33rljH8rf+ZTw30Swf7edYn0XE6puaD0Xat9bIC6CiACmHZL1JHbHjh3margOj6dLl8729k6dOhXrSgx8d+ytSinr1693+fy+fftMUrXSaQhIHnznncN33r/4bttj/f3V4+cucdr6O04FLIQ6gogApVWA9CR227Zt5iRWh6y1KlBSzJgxw9xWqVLFR+8yONk59jpHOSIiwlyVXbVqVbznNdldVatWjfKuyYjvvHP4zvvP7du3zdRKxd9z72iVPK1UGPPvckwrV640IxE66qzfcSCk+aRlHZLVqVOnou69917TNbNBgwZRly9f9uh1c+fOjVq/fn28x8+fPx/Vp0+f6O6nP/30kwPvOrSPvbKOsb7+5MmT0Y9v2LAhKlOmTOa5BQsWOPTOQ7NrMt95/x17xXfeOdOmTYv6888/4z3+zz//RLVp08Z8PmnSpInavn27g+8iOM2ZM8ccP/27rH+fLfp3u2zZsua5/v37+/U9AilBmP6fvwMZeKd58+YyZ84ck8DbsmVLt1fBmzVrZhaLJteNHTvWlHMtW7asZMuWzST4aXOzM2fOSOrUqWX06NHSp08fPhIfH3t1+fJlkzuxZs0ayZ49uxnN0KTTpUuXmkZ1/fr1k3fffZdj78awYcNk0aJF0T+vXbs2evqBjvJY0wsmTJjAdz4FHHvFd945+vdl3rx5phpTqVKlTPloHenUv+eagJ0hQwbTJ0L/TsF7+u/gBx98IGnSpDEjznp89W/12bNnpUaNGvLTTz8lefQfCHRUZwpA1tx5jf+sIWtXNOkr5oms3td/XDZu3GjmdOp29ARAg4rWrVtLjx49THAB3x97pf+oL1u2zHSX1dKMixcvNsf//vvvl169evGPfSL27t0bffLqqsOsipuXwnfef8de8Z13TseOHU3+mgYNOkVST271pFabhepJb8+ePd12XEbi9IKbBgtaInr16tXmQk/RokVNCe8XXnghOngGQhkjEQAAAAC8QmI1AAAAAK8QRAAAAADwCkEEAAAAAK8QRAAAAADwCkEEAAAAAK8QRAAAAADwCkEEAAAAAK8QRAAAAADwCkEEAAAAAK8QRABAEIiMjJSwsLDopUGDBsmy3xkzZsTary7Lli1Lln0DAPwntR/3DQDwsRYtWkimTJmkdOnSyXJsCxcuLB07djT3v//+e/nnn3+SZb8AAP8iiACAIDJ69GgzKpFcqlatahZVp04dgggACBFMZwIAAADgFYIIAEhmzz//vMkdeOCBB+TmzZvxnn/11VfN8xUqVJCrV6/6ZJ8HDhww29RRitu3b8sHH3wg9957r2TIkEHy5s0rzz33nJw+fdqse+3aNRk2bJiULFlS0qdPL/ny5ZM+ffrIpUuXfPJeAACBjyACAJLZu+++K5UqVZKVK1fKa6+9Fus5zSsYMWKEZMmSRb799ltJly6dz/ffvn17GTRokOTPn18efvhhE1R88sknJhlbAwW91WlRJUqUMPcvX75sgo6WLVv6/L0AAAITOREAkMwiIiJMgKAjDaNGjZLatWvLI488IocPH5annnpKoqKiZOLEiVKsWDGf7/uvv/6S1KlTy44dO6RQoULmsVOnTsn9998vmzZtMrc6+rBv3z7JmTOneX7//v1SsWJF+e9//yurVq2SGjVq+Px9AQACCyMRAOAHWtVoypQpJmDQwEFP1Nu0aSMnT56UXr16OXrVX0cVrABCabDQvXt3c3/r1q0yadKk6ADCeq86eqGWLl3q2PsCAAQOgggA8JPHHntM+vXrZ0YCypcvb67y6zQnne7kFB2FeOihh+I9fvfdd5vbggULSpkyZdw+f/ToUcfeGwAgcBBEAIAfvfPOO1KqVCk5d+6cZMyY0Uxz0ulOTtEkag0k4tLeElYQ4UrmzJnNra8SvQEAgY0gAgD8aO3atbJr1y5zX5Oat2zZ4uj+wsPDk/Q8AADm3wsOAwD4h+Y/aB6Elnnt3LmzKcHaqVMnk/wMAEBKRhABAH5gJVRrRaYOHTrI559/Lv3795czZ85I69at5caNG3wuAIAUiyACAPxAe0FoTwjNh5gwYUL0Y1piVac4DRgwgM8FAJBiEUQAQDJbsWKFvPHGG6Zb9MyZM01CtdKE5xkzZkiOHDlkzJgxMm/ePD4bAECKRBABAMnoxIkT0rZtW7l165Z8+OGHZiQiJq2OpP0jND9C8yQOHDjA5wMASHHConRiLgAgoEVGRpqEbG1ap/f9oU6dOrJ8+XL55ZdfzH0AQPCKXywcABCwXnzxRdPzoXTp0vLSSy85vj/N3/joo4/M/T///NPx/QEAUgaCCAAIIrNnzza39evXT5YgQkc+vvjiC8f3AwBIWZjOBAAAAMArJFYDAAAA8ApBBAAAAACvEEQAAAAA8ApBBAAAAACvEEQAAAAA8ApBBAAAAACvEEQAAAAA8ApBBAAAAACvEEQAAAAAEG/8P+4xUnWBRS1WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGIklEQVR4nO3dB3gU1drA8Te9kITeu6AoVlQUBaXZCzZEsYAielW8qKiIFStiuSoqdsUG9oqg1waooAiKHUHpVQgtISF9v+c93s2XhMxJmN3ZbPn/fMYNe6bt7OzuvHPOeU+cz+fzCQAAAAA4iHcqAAAAAACCBgAAAAA1oqYBAAAAgBVBAwAAAAArggYAAAAAVgQNAAAAAKwIGgAAAABYETQAAAAAsEq0F6M6ZWVlsnbtWsnMzJS4uDgOEgAACFs6jm9ubq60atVK4uPr/n5xQUGBFBUVebqN5ORkSU1N9XQbsYagwQUNGNq2bRv8dwMAAMAjq1atkjZt2tR5wNAgrYEUSqGn22nRooUsW7aMwCGICBpc0BoG/4cvKysrmO8HAABAUOXk5Jibnf7rl7qkNQwaMBwl/STRo8vQEimRz9Z/YbZFbUPwEDS44G+SpAEDQQMAAIgE4dSkOlmSJUmSPFl3PF12PVH3DdsAAAAAhDVqGgAAABBScfqfRzUfcb7wqVGJJgQNdaC4uFh+/vln2bRpkxQWetsRCEBlCQkJUr9+fdl7772lQYMGHB4AAGqBoCGEvvvuO3nmmWfknXfekc2bN4dy0wCqSEpKkmOOOUbOOeccGTx4cFi19QWAaKf9Drzqe0CfBm8QNITI9OnT5bTTTjOpzi655BIZMGCAtG7dml79QIiVlJSYWr4ZM2bIm2++Keeee6788MMPcv/99xM4AADggKAhBL788ksTMBx//PHyxhtvmAFHANQdHeBo3333lZEjR8pjjz0m//73vyUjI0Nuu+023hYACIH4uDgzebJuiRPxebLqmEb2pBCYMGGCdOnShYABCENXXHGFjBo1Sh5++GH6GAEA4ICgwWPbt283TZPOO+88ahiAMDVs2DDZtm2bfPbZZ3W9KwAQE+JMfYB3E4KPo+qxr776ygyZrs2TAIQnzaS0++67y8cff1zXuwIAQFiiT4PHNmzYYB7btWvn9aYABEA/o/7PKwDAW/RpiDzUNHhMaxk0lWNKSorjPMuXLzfz6KR/23To0MHM98ILL3iwt6itCy64IKzfhyOPPNLs35gxY2o1/5VXXmnmP+GEEyRWpaWlyY4dO+p6NwAACEsEDSFA/nd3x8x23GbOnGnK+/TpE9B7E60uuugi8/jSSy9JaWmpdd6ioiKZPHlypeViMdjicwoAIfzOpU9DxCFoAFy45557ZOHChWHbV+XMM8+UrKwsWbdunXz00UfWed9//30zbkHTpk3N+CEAAABVETQALrRs2VL23HNPqV+/flgev/T0dDn77LPN35MmTbLO6y/XDF86SjIAAKHq0+DVhOAjaIgS2kxHm1dos51Zs2bJMcccI40aNTIXj4cccoi8/PLL1S5XWFhoRsI96KCDJDMz06SFbdGihXTv3l1Gjx4tmzdv3mmZ/Px8k9O+V69e0rBhQ9Nfo3379nLyySfLlClTKs27YsUKuffee6Vfv36mo6nO26BBA7PsU089JWVlZZXm18G1KjYT8TdTqtjnQ19r3759Tbm+1orl2uejqs8//1xOP/10c6Gvr69Zs2amhuCbb76psWmUXlAfdthhJjio2OfEqZmNf//1cePGjTJixAhp27at2a4+6iBiW7durXa7Pp9Pnn/+eTn44IPN+9a4cWMzIOCcOXNcNccaPny4eZw6dapkZ2dXO8+aNWvkk08+qbZpUrCPmz6++OKLpvzCCy+s9L5VHVRN+xb85z//kR49epjzJTU11Yx1ouek1opU9NZbb5l1aE3J6tWrd9qv//73v5KQkGD25c8//6z18QMAAP+P7ElR5t133zUj3Opd8GOPPVbWrl0rX3/9tQwZMkR+/PFHcyHmpxfsJ554ork41KYsRxxxhLlA04tdvbjSYOKcc84xwYffqlWr5LjjjpPff//dXNj27NnTXNzqxaeml/3ll1/MMn4arNxyyy3SsWNH2WOPPcz82mRGLzxnz55tLlj9F33qgAMOkKFDh5ZfXOrfFemovbp9vYjUi8HmzZubf/s1adKk0vzXXnutec3x8fHmYlxf48qVK02THL2YfuaZZ8wFbHX0Av/xxx+Xww8/3BynpUuX1rrdux6nAw88UIqLi81r1g7x+nr1vZk7d675u+pdfQ0wnnjiCbOvup96sa7HUzs1X3XVVbKrNPDTUY91Hfo+XH311TvNo8dZ+zwceuihJu2ol8dN30s9F5csWWKOSefOncuX0ffdT89ZfU91v/Xc09ehAe0PP/xgzsk333zTBFEaqKqBAweabT766KMyePBgmTFjhiQm/vPVpufl+eefb8513WdNqwoACI8+DfqfV+uGB3zYZdu2bdPByc1jTZ588klffHy8dZ5ly5aZ9emkf9u0b9/ezDdp0qRKz/fu3bt8HePGjatUNnPmTF9aWpop+/jjj8ufnzVrlnmuW7duvpycnJ22NW/ePF92dnb5v0tLS30HH3ywWeaYY47xbdiwodL8O3bs8E2bNq3Sc999953vl19+2Wnda9as8e2///5mXW+88cZO5f7X4mTGjBmmXF+3k6efftrM07lzZ99PP/1UqUxfe2Zmpi85Odm3ePHiaredlZXl++abb6pd99ChQ6t9H8aOHVu+/AUXXOArKCgoL1u5cqWvdevWpmzKlCmVlnv//ffN8xkZGb7Zs2dXKvvPf/5Tvk7b663Oww8/bJbbd999qy3ffffdTbkeq7o8bn5lZWW+nj17mnkuuuiiSudlcXGx75prrjFlffv2rbRcYWGh75BDDjFl119/ffn8vXr1Ms+NGDGixmN18sknmwkAYvm6JVT7MihhoO+8xMGeTLrucHm9taG/V/o7rfv86quv+sIVoViU6datm9xwww2Vnuvdu7dcfvnl5u+KNQ1///23edS7yHontyq9w6y1CH56h3n+/PnmDvjbb79tmoNUpHf/q6bs1LvE++yzz07rbtWqldx3333mb71zHGx6Z9nf5OW1116T/fbbr1K53r3XGhDNHKTNpKqjd9u1eYwbbdq0kYkTJ1ZKtetvnqSqjjw8YcIE86jleoe+olGjRpnj6Ib2U9B90Lv2+t5VpDVDWqNUsf9DXR83rT3SWhiteXjyyScrnZdae6DnjJ5PWpvw66+/lpdp86nXX3/dNJfTeXQU9ptuusnUbGjTu4rnPQCg7lVtfhzsKZJMmDDBtPIIdwQNUUabIVXH38xHL6L8KTi1+Yy29dZ29HqBq82GbPyj5WrzI20mVFvab0IDjltvvVUuvfRS06xF+wT4LzoXLVokwbZgwQLTzKVTp07morE6/v4B2megOtrsxa3+/fubi/Gq9tprr/JmM34lJSXl+3DuuedWu76KTb52hQZ9p556qvlb3+eK/P/WTEv+i/O6Pm7Tpk0zj2eccUZ5E6OKtLmUBi7VbV/7s/j7mGgzJW3KpP0Y3njjDes4KQAA1JXVq1fL7bffbvp/hjv6NISBihHxP608nPnLnaJo7Ttge147mGpHUu3UqheGDz30kFx33XVyxRVXmEnbiWsH1pNOOslcTOod3IqdmpX2l6itb7/9Vs466yzTHt5JTk6OBJu2o1fafr6mOw5O0X11napry2kEcO07orSPg592Uvb/22mbgeyLdnDWu/CvvvqqPPjgg6ZGaPv27eU1PBU7QNf1cfNvX2szdNrV7WvKWO0Arv0X1NNPPy277bab6/0BAHgj/n+9Grxad6S46qqrzG+X/4ZYOCNoCAP16tUr/zsvL886r17sqV25019VxcBEm8MMGjRIPvjgA1MLoZM2S9Fp7NixpgmLNkdyQ7Ms6V1ubQaltQuXXXaZ6fyqF85aw7F48WKTEaemQMkNf1YmzQSlHcJtqnaerjhCsFt6RzyYAqlq1VoPDQY16NOO8noXXu++67mmndO1eVq4HDf/9jW7lga1NhU7bvtpQFxxXAoNWvX8BgCgJtryQRO0fP/992bS8Zi0dcadd94pN998c43L6804bbnx008/mWa8es2jLQg0EUl1Kc21BYduT7errTLCHUFDGNAMMRoEaEDw119/VdsHQGn6U38KVKc72cuWLav2eX+qUL3LXLGfgtIMRBdffLGZ1B9//CHDhg0zGY7GjBlTnsnIv00tr40vv/zSBAzaDKpq0xjlZfpL7T+g9LWG4+jDFek+avMZ/cLQC/uuXbs6vn9uAxgN2rSvgr4PGjT434+qGZDq+rj5t3/KKaeYvhG7QoNPzZSkVb0arOr5pzVp2pyKQesAILx4OZ6C25oGzWDo72PopsZgwoQJpmmtppnX67ovvvhCrr/+etNEW4ODijfVtIWBtvDQG7R6czaQ3/lQoU9DGNCLOu2srLSDsRNNTaq0s2fFFJUVvfLKK9U+/9JLL5Xfwa2urXhF2vxIT3KlaVr9/KlNtZlLTTUiqqYAx2lflT8i1/b+1fE3m3Iq147DeidcU8P+9ttvEs70tWqTMFV1nAs/PeaB0OBAzzP9Avv0009NZ2Ot7ama0tbr41bT+6bjUvjv1uxqDdT48eNNLYP2G9FzS4NdraHR/jP+pnUAADjRm7Z6w2ry5MmmlkFvRNXGe++9ZwIGDRQ0rbom9dDrOb05qqnPtRVH1Sa348aNM7+JI0eOjJg3hKAhTOigVXqBoyfqc889t1O53vW/8cYbzd/XXHON48i9Wp3mz0rkpyerVpepirn69QJSs8zoWAIV6cXahx9+aP7258JXerdWszNpR1nt71B1kC2Nmis2DfF3+tVxIPQitCJta67t7G3Zh5TThau/XD+QVfdf6fHR6F1fiw5IpsegKq1y1GOgTVjqmv9L45FHHtlpf/SLSL+EAqGB29FHH22a//g7W2umq6pNz7w+bjW9r1rDoIHLd999ZwKd6votbNmyxWRWqhh4aK2CfiFr53MNOLTJn/bL0c+Kzq9NlKo7TwAAdUN7NHg5uaF94vxjVOkN1No2NR43bpx51NYZ2rrCT2/C6bhFSsdp2rZtm/lbb2TptZo2e9KbsDroq79/pzbt9s8XbmieFCa0A4yOsqzpNfWk1RNQTzytFdAmSxoM6IWcpsbUk9J28akpV7VmQdNl6gW+9kvQi8Urr7yyUkrUn3/+2QQR2sdAt6VpULWjtA6ipSe0Zp654447yufXD4+2ide27hoc6IWo1lz4B3fTNnw6OJy/ik0DDL0I1AHB9G9tJqJNsbT2QtvvaRB09913V/s6NHvOAw88IEcddZSp5vNn99HsAro93bamhNU0ohrF69/a9Eo/oHrHWWm1n3bA1i8AbbevbeC1faFWD65fv97sh35QtTrSbYrQYNEL9EsuucQEU3pMKw7upnc79H3SpjYVO6bvKu3wrHc//BfiVUeA9vPyuGmzIc0SocGRpkzV5kh6XmlAqpP+rXdsdFA4rSnQ2rX999/fvN/aPlQ7Susx0cBFaxD086GvR5tc6XMaHFfs66CfIw18NMDRwFyPIQAAwbJmzRqZN2+eY6ZD/U3X3zod9FVv1OrvlTYl1ybJ1WUb1N9mvZbz92ENJwQNYURPEg0eNBrVO6d6cundVB0PQS++9c5rTW2z9eJT59WLJV1eL7Q0INALwapNUU4++WQTzfrz9euFlV4Y6smtgYmOUOy/M+ynNQ96oa6Rs17QaQ2IbkM7zmoTq6ofGL3rq3fKNYjRize9sNcLfL1o1NF5nYIGjb71AvKdd94xF5G6DaUdkfx9MrTqTwMkzdmvtRZ6rHT//EGD0kheL1R1f3X72ulIL7z1glyDGL0bffrpp0s40LvnepddL8b1vdBjdcghh5h99wdiTp2Pa0PPC11eszVpPxa9MHfi1XHTQFbfNw0ItfZEa6E0GNbzzH9ua/Cqr1/7VOj7qsGt1jxowKllmrZX59Xjo8GwjkWhwbGe3xpIVK050XVo0KpBuZ6j/hS0AIC6Ex8XbyZP1v2/moaq2Rm1/2CwU3AvWLDAPOpvlFMGS73u0aBB59WgQZuY67VLRXpTTsu01lxbBoSjOB3hra53ItLoSah34fWC259C04mORaADq/nHRvCKXsjNmjXLnIT+PPqIHtoxfdKkSWaQMq2NQvD5gxbNJAYAsXrdEqp9GZJ8riTHua89tynyFclLRZN3el6b3/oHMK0NvRGltd627EmPPvqouemrgYA/gKhKW3rozVKtWXAa0FZvDmrQoX0Y/QOuhhtqGoAwoe38dYyDiil49U669nHRu+56Z13vQgAAEOni/vefV+tWene/YpDkxUCfubm55rHib3dV/jT5XoxLFUoEDUCY0D4EOn6CNqVp3bq16RylHcj17oNmOtKmQm7HzAAAINZowFDXNSu1pTcNw73xD0EDECZ05Gy9C6Gd3rWzsfbR0JG79XnN/1zXnbUBAIikPg2hkPm/RC22VPT+Ts2REsA4IWjwmHYe1SYmmu7RKU1qMMycOdOzdSM0dIwC/zgFCD1NGaztbAEA2JUaAn9TKCf+Mv+8kYpxGjzmz3azbt06rzcFIACaganqaOkAAG94O0qDN30lqqNNipWOXaWpVKujWSdVxTEcIhFBg8d69uxpcsnrEOIAwpOO/6Ad0fv371/XuwIACBJNY961a9fyAW690KZNG7MdNWXKlJ3KNW251jRoJ+yKY2VFIoIGj2neXh2gTEd61mZKAMKPftHrGCWR/oUOAJEiFCNC66BrmlBEx53y0o033mgedZwoHSDXT2sfNO2+0vGyIr0JLEFDCFx22WVmsCo9YQgcgPCig83pKNU6eKItZR4AILrpBb8mHfFP06ZNKx9zq0eF56s2OddBQ/2jOGu59k/UMRk6d+4sv/zyi2l1omM9RDo6Qodo0Khnn31Whg8fbka31VGT9TlNn6mpNAGEjqa00yxVX3zxhRlkRyf9cteRywEAoREfF2cmT9btsk+D/jbMnTt3p+dXr15tJr/CwsKd5tHfEA0OtCnUnDlzTAKcTp06yZgxY+Tqq682iXEiHSNCh3Bkxffff9/k2v/888/NCNFxcXFRcRIBkURT2fpHaN9vv/3MgHnXXnut6XsEANEoHEeEviR1mKcjQj9d8HxYvN5owq9kCJ1yyilm0jZuX375pWRnZ1cbrQLwjtbuNWzY0GS86NKlC4caAOqA9jvwajwFf58GBBdBQx3QtI6nnXZaXWwaAAAgJmhWI71RpB2hve4MHQsIGgAAABBS2kRbJ0/W/b8+DZo9ieZJwROT9TejR48uP1nvuuuuut4dAAAAIKzFXE2D9mj/z3/+YwIGzaICAACA0PqnR4M39669Wm+si6mjmp+fLxdccIFJdaodkgEAAADULKaChhtuuEH+/PNPefrppyN+VD4AAIBIFR/3/2M1BH+q61cXnWImaJg5c6Y8+uijMmTIEDnhhBPqencAAACAiBETQYMO6z1s2DBp3ry5PPzww3W9OwAAADFNx1LwcvKnXO3atasZpRmBi4mO0Dra67Jly+Tdd981gzoBAAAgupFyNbiiPmj45JNP5KmnnpKzzz5bTj31VFfr0FGbK47crEOgAwAAwB1//wMvaF0Dgi+qmydt27ZNLrroImnatKnpz+DWPffcYzpO+6e2bdsGdT8BAACAcBbVQcNVV10lq1evlscee0yaNGkSUNYlDUD806pVq4K6nwAAALEkFH0aEFxR3TxJ+zAkJibK448/bqaK/vjjD/P43HPPyWeffSYtWrSQ1157rdr1pKSkmAkAAACIRVEdNKiSkhKZNWuWY/ny5cvN1L59+5DuFwAAQKyKj4s3kyfrpqbBE1Fdf7N161bx+XzVTkOHDjXz3HnnnebfGjgAAAAAiLGgAQAAAOHH2x4N/2RPYpyG4Ir65kkAAACIPYzTEFwEDQAAAAipuLh4M3mybhrSeCJmg4YXXnjBTAAAAADsYjZoAAAAQN2o2PfAi3Uj+OgIDQAAAMCKmgYAAACEVJyH4zTQp8Eb1DQAAAAAsKKmAQAAACEV97//vFo3go+aBgAAAABWBA0AAAAIrfg4bydGhA46micBAAAg6jAidHARNAAAACC04uL+mbxZuUfrjW00TwIAAABgRU0DAAAAQiouLk7i/tf3IOjrLqOmwQvUNAAAAACwoqYBAAAAoaWVAV71aaCiwRPUNAAAAACwoqYBAAAAoVVhPIXgo6rBC9Q0AAAAALCipgEAAAChRU1DxKGmAQAAAIAVQQMAAABCP06Dh5Pq3r27dO3aVSZOnMi7GwQ0TwIAAEDUmTdvnmRlZdX1bkQNggYAAACEFn0aIg7NkwAAAABYUdMAAACA0NJ+B56NCM04DV6gpgEAAACAFTUNAAAACC36NEQcahoAAAAAWFHTAAAAgNCKi/9n8mrdCDqOKgAAAAArahoAAAAQUnHxcWbyZN1C9iQvUNMAAAAAwIqaBgAAAIQW2ZMiDjUNAAAAAKyoaQAAAECIeTgiNH0aPEFNAwAAAKJO9+7dpWvXrjJx4sS63pWoQE0DAAAAoqdPg++f9c6bN0+ysrK82UYMoqYBAAAAgBVBAwAAABBlduzYIT/99JNs2rQpKOsjaAAAAEBIxcXFeTrFiq+++kpGjRplgoOKpkyZIs2aNZMDDzxQWrZsKXfccUfA2yJoAAAAACLQ008/LY899pi0bt26/LlVq1bJsGHDJC8vT+rXry8lJSVy++23y6xZswLaFkEDAAAA6qYjtFdTjJg7d67sv//+0qRJk/LnXn75ZSkqKpLbbrtNNm/eXB4sPP744wFti6ABAAAAiEDZ2dnSpk2bSs998cUXkpycbJotqSOOOEJ69OghCxYsCGhbBA0AAAAILe134OUUI7Zv3y5paWnl//b5fCbV7MEHHywZGRnlz3fo0EHWrl0b0LYIGgAAAIAI1KhRI1m+fHn5v7U2ITc3Vw4//PBK8xUXF5vah0AQNAAAACC06NMQtFGvv/vuO/nmm2/MvydMmGCyR/Xr16/SfH/++afJohQIggYAiDEFpWWOEwAgclx55ZWmSVKvXr1MrcMrr7wiu+22mxxzzDGV+j388ssv0q1bt4C2RdAAAACA0KKmISiOOuooef7556V9+/YmY1Lv3r1l6tSpEh8fXymbUllZmSkLRGIQ9hcAAABAHRg6dKiZnFx66aVm3IaKHaPdoKYBAAAAIfVPkiOvRoSOnTfzyy+/lMWLF1vn0exKGzZskNmzZwe0LYIGAAAAIAL16dNH7r333hrnu++++6Rv374BbYvmSQAAAAgtL0du9sVQVYP8MzZDKFDTAAAAAESxLVu2SGpqakDroKYBiFG29JqpCdxPiGa8vwDqnJcjN0d5p4aVK1fuNCp01ef8SkpK5LfffpNPPvlEOnXqFNB2CRoAAACACNGhQwfT4dvv7bffNlNNTZjOO++8gLZL0AAAAIDQok+Da+3atSsPGrSGIT09XZo0aVLtvMnJydKmTRs544wz5LLLLnO/UYIGAAAARKPu3btLQkKCjBgxwkzRYvny5eV/6yBuZ555phngzWvUNAAAACCk/GMqeLVuNW/ePMnKypJoNmnSJOncuXNItkXQAAAAAESgoZaRoIONoAGIUWTQAQDUmTgPx2koi+7sSU5KS0tl06ZNUlBQYO0P4RZBAwAAABCh5s2bJ7feeqvMmjVLCgsLrc22NAWrWwQNAAAAiJ7sSV6tNwx9++230q9fv/LahYYNG3rWj4OgAQAAAIhAY8eONQHDsGHD5O6775bmzZt7ti2CBgAAAIQWI0IHxdy5c6VLly7yzDPPeJaNyi/e07UDAAAA8IT2UTjggAM8DxgUNQ0AAAAILfo0BMWee+4p2dnZEgrUNAAAAAAR6JJLLpGvvvpKlixZ4vm2CBoAAABQJyNCezXFUtAwePBgOfroo2X69OlmrAav0DwJAAAAiEC77babeVy+fLmcfPLJkpiYKC1btpT4+J3rBTSYCqRGgqABAAAAoUWfhqDQYMHP5/NJcXGxrFy5stp5A62BIWgAAAAAItCyZctCti2CBgAAAIQW4zQERfv27SVUCBoA7KSgtMzxqKQmkD8BAIBYQ9AAAACA0KJPQ1Dl5OTIK6+8InPmzJGNGzdK//79ZfTo0aZs8eLFpu/DkUceKampqa63QdAAAAAARKhPPvlEzjnnHNmyZYvpDK0dnlu3bl1evmjRIjn11FPl1VdflUGDBrneDu0MAAAAEFpxHk8xYuHChXLaaafJtm3b5LLLLpPXX3/dBA4VHXvssZKeni7vv/9+QNuipgEAAACIQOPGjZOCggJ588035fTTTzfPnXXWWZXmSU5OlgMOOEB++umngLZFTQMAAADqJnuSV1OMmDFjhuy///7lAYOTNm3ayLp16wLaFkEDAAAAEIE2btwoe+yxR43zlZSUSF5eXkDbonkSgJ2QVhUA4KW4+DgzebXuWFG/fn1Zs2ZNjfMtXbpUmjVrFtC2qGkAAAAAItCBBx4o33//vaxcudJxnl9//dX0Zzj00EMD2hZBAwAAAEKL7ElBMXz4cNMRevDgwbJ+/fqdyrOzs808mlFJHwNB0AAAAACE0DvvvCO9evWSJk2aSEpKiuy2224yatQoM9bCrhg4cKCceeaZ8s0330inTp3kmGOOMc/Pnj1bBgwYYNb73XffmXEcNPVqIOjTAAAAgBDzMstR+Pdp2Lx5s/Tp00euu+460y/hl19+kdtvv900I/r88893aV1TpkyRzp07y8MPPyyfffaZee7PP/80k6Zbveaaa2T8+PEB7zNBAwAAABBCw6s0FdIAIjU1VS655BLTP6Fdu3a1XldCQoLcfffdcu2115oUrNrpuaysTNq2bSv9+/cPuAO0H0EDAISpgtIyxzIyXAGIaJrhyKssRxGaPalRo0bmsbi42NXyDRs2rHG8hkDQpwEAAAAxb9GiRfLoo4/KBRdcIPvuu68kJiZKXFyc3HXXXbU6Njoqs9YY6MV7vXr1zKBr9913nzUIKC0tNR2Z58+fb5onnXDCCaZvQm3p/u5qPwi3CBoAAAAgsZ496YknnpCRI0fKiy++aNKU6gV9bV111VUyaNAg0wH5kEMOkeOOO840M7r++uulX79+smPHjmqXa9y4saSlpUn37t2lZcuW8sYbb+zSPl955ZXSqlUrOeuss+Tjjz82WZK8EvVBg0Z32qFEO5roG9KgQQNJSkqSFi1amF7l06ZNq+tdBAAAQB3bZ599TL+AyZMny8KFC+X888+v1XLvvfeeTJgwQTIyMmTu3Lny3//+V95++23TEVlrLL7++mu55ZZbql125syZJtB48skn5ffff5eTTz55l4IVbY6kgYLWcpx44ommH8NNN91kth1scT4vQ5IwoL3Ijz76aPO3BgoHHXSQqTLSN0ajSKWdTvTN0iqo2sjJyTE93bdt2yZZWVme7j+A2EWfBgDBEE7XLf59uf24pyU1Kc2TbRQU75CxH18S8OvVZkpa63DnnXfKzTff7Dif1izMmzfPNGPSC/aKNGA44ogjTFrVv//+27x2Jxpw9OjRwwQAmkp1VzIxvfLKKzJp0iSTfcl/PduzZ0+58MILTQ2IXvsGKuprGuLj4+WMM86QL7/8UtatWycffvihvP766ya11WuvvWZ6nD/99NPy8ssv1/WuAgAAIIKsWbPGBAxKx0KoSsdi0Lv/hYWFMn369BpHd9YL/r/++muXO1Brs6oFCxaY6YorrjDNnjRg0SxNetN82LBh5lo4EFEfNGg7srfeestEeVVp+y+NItVLL71UB3sHAAAQg+I9nkJkwYIF5RfuHTt2rHaegw8+uNK8TrSZkjYA0gHZ3NLO19pUau3ateb6VztWa8DywgsvmGviQMR8ytVu3bqZA7Fq1aqADiQA92iGUz3SqgJAYE2hKtImQjoF07Jly8yjbVwFrWmoOK/S0Zl1DIW9997b7JMGFPfff7/st99+cuqppwa8X5r5Sfs7aNOpe++9VyZOnBhwJ+mYDxr8HUW0xzoAAABCwGQ58mg8hbjKF+t+Y8eOldtuuy2om8rNzTWPtj4D2kG6ahCjF/PaD8EfSHTo0EEuv/xyGTVqlBnFORBas/Duu++aPg5ffPGFGehNaYASiJgOGtavX2+qa5T2ewAAAEB00FYkFTtCB7uWIRDauVqnYNKO1Hpdq313tRO41ixox+uzzz7bdIjWQCUQMRs0lJSUyHnnnWcOqqbD+te//mWN2HRyqu4CAABA7WmH39pmrdxV/vVqwOB1tqjMzEzzmJeX5zjP9u3by/cn2DTJjybz0SxPf/zxhwkU9PX37dvXBAp6Uzw1NTUo24rZoOHSSy814zdo73LtKGKrCrrnnnvMKH0AAACAnzYrqqlvrL/MP28waV8KbX6kwUL79u1l6NChJljQv4Mt6rMnOY2e99xzz5lhvj/99FPZY489rPPfcMMNpkbCP9FpGgAAILpGhA4koc6mTZsqdXSuaP78+eUpVYNNOzxr8yO9ntXta58NLwKGmAwarrnmGnnkkUfMyNCffPJJ+Ztto23g/FVcoajqAmIxS5DTBACAG927d5euXbuazEFeadOmjdmOmjJlyk7lOlaC3mzWa0lNf+pF/1wdwVozMXktpponjR49Wh588EHTKUQDBn/eXAAAAIRQfNw/k1frFjGDroXiRu+NN94op512mowfP16OP/748hoFrX3QjEhKB1yzjQbtlhfrdBIzt/HGjBlj8t/qwdUqHH9UCAAAAPzwww/So0eP8mnatGnmoDz11FOVntfOxxXpuAo6IrN2eNZyDRwGDhwonTt3ll9++UV69uwZtExJd9xxh3zwwQfVlv3888+yevXqasseffRRM25DIGKipuHmm282A1v4myQRMAAAANQhzXDk2TgN7tar2TE1bWlVeiG+usLFeMWMmn46CrMGB9oUas6cOVJcXCydOnUyN62vvvrqgMde8NM+CxdccIEMGDBgpzJtcq9l2m+3uoDo/fffD2jbUR80aDR29913m7814nNq19akSRN54IEHQrx3AAAACAd9+vQJaNTkQYMGmamu6L4HOupzTAcNmzdvrtR73d+DvSrtaU7QAAAAEAJeZjkKYfakWBL1fRq0msYfedmm5cuX1/WuAgAAIIKyJ8WSqK9pABD+CkrLHMtIuwoAUSiKsifFiqivaQAAAAAQGGoaAAAAEFr0aYg4BA0AAABAhPjxxx/NeA27UqbPB4qgAQAAABLr4zREip9++slMu1KmSX/iAjwuBA0AAABABDjyyCMDvvh3i6ABCIMMQbk7ih3LMtOSHMuycwocy9o0TJdIef1rNuU5lhUVOy+Xme58bHLznY9psWVfCopKHMs6tnDOwrFyw3bHsqREdzknkhLiXb0GVS810dUxdatJ/VTHsnWb8x3Likuc96VdswzHsqYZKRIuNm7feXRYv5z8IseylKSEiPn8AsGmF75xHmVP8l9Ua8rVhIQEGTFihJmiwcyZM+ts2wQNAAAAiDqkXA0uggYAAACEFtmTIg7jNAAAAACwoqYBAAAAoUX2pIhDTQMAAAAAK2oaAAAAEFqaOcmj7EmerTfGETQAYc6WjjQrPVkihS097LpNzik5t1lSVmamOqdcjbf8aJSV+Vwtt3DFFseyepbUuFtznVNypqY4p91cta3A1WuvSZ4lxa8tBWpeYYmrFLC2dZaWOZcVFpdKJLDtpy29rS3l6uotzp8JRUpWAKFG0AAAAIDQIntSxKFPAwAAAKKODu7WtWtXmThxYl3vSlSgpgEAAABRlz2Jwd2Ci6ABAAAAiAAJCc59oWoSFxcnJSXOfdNqQtAAAACA0DeQ96qRfBQ3vvf5fHWyrCJoAEIk15KxJtuSJadJ/VTHshxLZqGmGSkSTnLznV9/giVjUXpyoqtsPsmJzr8aBZZsN7bv1OSEeFdZl2yZhdat3+FY1rpxuvO+JMW7zpBUUOT8+sssB6BZgzRXGaJs71OqJYPQ31t2RHX2IFvWpU7NMkO6LwAiQ1k1GeeuvfZaefzxx+Vf//qXDB06VDp27GieX758ubz44ovy1FNPyWWXXSYPPPBAQNsmaAAAAEBoMSJ0UEyaNEkefvhh+fTTT6Vv376Vyvbff3958MEHZcCAAXLUUUfJXnvtJRdddJHrbUVxBQ4AAAAQvR5//HHp2bPnTgFDRX369JFevXrJE088EdC2CBoAAAAQUtop18spVvzxxx/Stm3bGudr3bq1LFq0KKBtETQAAAAAESgxMVF++eWXGuf79ddfzbyBIGgAAABA3WRP8mqKkcHdevToYQKCRx55xHGeRx991AQWhx12WEDboiM0AAAAok4sDO526623ymeffSZXX321vPHGG3LOOedUyp40efJk+eabb0wtw8033xzQtggagBCxpVXt2MI5veLiNdscy1o2ipy0k5npSY5lW7c7p+u0SbSkObVtL7000VVq2CJL6tTsjdsdyzYu2exYVlpsScdqeX2NOjUSmw7NMlyl/02ypKrNyStylca2Xkqiq1S1pdWkFow0ttS4KZZ0s0s25FrXS0pWRDyyJwWF1h5MmTJFhg8fLnPmzDEBQtWxGTIyMuSZZ56Rww8/PKBtETQAAAAAEerMM8+UI488Up599lmZNWuWrF69urzzc+/evU2a1ZYtWwa8HYIGAAAAhBY1DUHVvHlzuemmm8zkFTpCAwAAALCipgEAAAChVSHLkSfrjjE5OTnyyiuvmH4NGzdulP79+8vo0aNN2eLFi02naG3ClJqa6nobBA0AAABAhPrkk09M1qQtW7aYjs86uJ32Z/DTQd1OPfVUefXVV2XQoEGut0PQAATRRksWIFs2nzWb8hzL6qVGx8fUlpVouyWbT0aa83HbvqPM1fbiLaOF5heVOJZt2e6cPWjzbxscy2RTvnOZJXtSqeW931jinK1I+XzOZU3qpziWJViOTb005/1JTXbOBORWanLkn/tZ6cmuMqrZvi+AqECfhqBYuHChnHbaaVJUVCSXXXaZ6fh81llnVZrn2GOPlfT0dHn//fcJGgAAAIBYM27cOCkoKJA333xTTj/9dPNc1aAhOTlZDjjgAPnpp58C2lYMtvoCAABA3Yr7/9qGYE+67hgxY8YM2X///csDBidt2rSRdevWBbQtggYAAAAgAm3cuFH22GOPGucrKSmRvDznptC1QdAAAACAusme5NUkIt27d5euXbvKxIkTo/bdrV+/vqxZs6bG+ZYuXSrNmjULaFuR38sMAAAAqGLevHmSlZUV1cflwAMPlC+//FJWrlwp7dq1q3aeX3/91fRn0A7TgaCmAQAAAKHlVX8GL7MyhaHhw4ebjtCDBw+W9evX71SenZ1t5tFUrPoYCGoagCBqmuGcynLJhlzHspQk53SVhcX21JqRIjkp3lVa1fxC5xSoJWXOeUU7NM1wLFu8ZptjWV6B8/ZyVm51LJONlraim3Y4Fvks729couW+jiVNrdqS6HxONdivhWNZerLzNktLLXlcLYpLnNPKJlleY6SkG7al9y1MKnX1mWiSZR+AqaDU+ZimJnA/EIgVAwcOlDPPPNNkT+rUqZP07NnTPD979mwZMGCAzJw5U7Zv3y7nnnuuSb0aiMj4RgYAAED0YJyGoJkyZYp07txZHn74Yfnss8/Mc3/++aeZNN3qNddcI+PHjw94OwQNAAAAQIRKSEiQu+++W6699lqTglU7PZeVlUnbtm2lf//+AXeA9iNoAAAAQGhVyHLkybpjUMOGDWscryEQMXpYAQAAgMjWr18/ue+++2qc74EHHjDzBoKaBgAAAIQWfRqCQjs6d+jQocb5Fi1aJLNmzQpoWwQNQBDZMppkpSc7lmVasgctW58bFZmVioqdj02pJQtSkSXzToN6zsd049YdrrZnKyvJLXIsk+3OZWXbCp2XK3J+D32W7Drxyfav79Ic523usGSksr3+Zon2jD5O8izby4xPcnXOhJO9Wtd3LNu43fl9yN5W4FiWW0N2LNt3BgBUVVxcLPHxgTUwImgAAABAaOlQCl6NpxA7wzTU2i+//CKNGzeWQBA0AAAAABFi2LBhlf799ddf7/ScX0lJifz+++/y448/mnEbAkHQAAAAgNAie5JrL7zwQvnfcXFx8tdff5nJplWrViYtayAIGgAAAIAIMWnSJPPo8/lMDUOvXr3koosuqnZeHdytTZs20qNHD0lKCqwvFEEDAAAAQovsSa4NHTq0/O/bbrvNBAQVn/MKQQMAAACiTvfu3c1oySNGjDBTNFq+fHnItkXQAARRaoJzOrNsD9KjpiQlSKRItqQPTUtx/irKL3BO11lsScdaYEtl6rOkVbWl+bSkyPRZ0qr6LKlaffnOqTXj0p2rkn2pljSuumxuoatjmmnZpi1Va/NG6a7epzJLilfbvoSTJRtyQ/4ZtX3XAJGTPcnDdYvIvHnzJCsry6ONxB6CBgAAACCCFRYWyowZM8wgbjk5OdXeHNNO07fccovrbRA0AAAAILTi4/6ZvFp3DHn33XflX//6l2zatMlxHg0iCBoAAACAGDR//nw566yzzN9nn322/Pbbb2YgtzFjxsiff/4pn376qal50OxKmkUpENQ0AAAAILTInhQUDzzwgJSWlpraBh287cILLzRBg39Mho0bN8qQIUPko48+kgULFgS0LXpSAQAAABFo9uzZ0rVrV8fRnps2bSqvvfaa5OXlye233x7QtggaAAAAUDfZk7yaYsTGjRtlzz33LP93YuI/jYgKCv4/21/9+vWld+/eMn369IC2RfMkIESaZKU6luXuKHaVqjSSbMpxTldaZElzmp7q/DW1yZJWNDHB+VcjNdk5DeaWUkvKVUt6VJ8ljalvu3PK1dJs53SdCY0znPelfopYWVLOlljOt9JS5/M0Mdn5XNxkSUdrk5TovM6/t+xwLGvT0DnFa6hlpSc7luXkO7/3Nm6XU00zajg3AESNzMxMKSkpqRQgqLVr18puu+1W/ryOBr1+/fqAthUdVyMAAACIrD4N8R5Nuu4Y0aZNG1m1alX5v/21Dpp+1a+4uFi+/fZbad68eUDboqYBAAAAiEC9evWSZ599VrZt22ZqGU488UTTRGnUqFGmiVK7du3k6aefNjUP5557bkDboqYBAAAAdZM9yaspRpx66qmmtmHWrFnm3y1btpQbb7xRcnNzZeTIkaZ82rRp0qBBA7nrrrsC2hY1DQAAAEAE6t+/vxmPoaKxY8fKvvvuK2+++aZs3rxZ9tprL7nqqqtMrUMgCBoAAAAQWl5mOYqdigZHp59+upmCiaABCBFbhqRsS+aZzPQkV8uFWwaVxpbsUes25Qf9dyE5wbn1ZZElQ5Its5CUWDIr+ZyLynKcswBtWFL5DlFFzZP3ciyLL8mwH5sCW/Yk50xPDeo5ZwLKK3RerrTM+QBkpTmfwwWWLE/dOjeRSLBus7vzN8lyjtoyMqlMyzEFEDv69etnmie99NJLnm+LPg0AAAAILa8yJ/mnGDFnzhwpKnKfonlXEDQAAAAAEahNmzZSWOg8ZlHImydVHBwiEHFxcbJkyZKgrAsAAAARysssRzGUPemkk06SV155RfLy8qRevXp1HzQsX748aEEDAAAAgMBppqSpU6eaTs86HkP79u3FK7XuCD1w4EC5//77XW/o2muvlXfeecf18gAAAIgSZE8KimuuuUb23ntv+fDDD6VLly7SrVs36dChg6SlpVV78/65557zPmjIyMgIKHrR5QEAAAAExwsvvFDekkc7RM+dO9dM1QlJ0HDssceaQSICocsfc8wxAa0DiGSFxc6pJZOT4l0t16S+cxrTcFNUXObq9edZ0oMmJTovl5KU4KqszLKfEm/JHWFJHeorcS5bmu/c/LNZ0e7O2yu15HhVll0ttezPlrwiV2lVky3vRbwlk0mxJf1tqiUlaThplOkuvXETSxpiW4rmSDo2gCMvsxz9b73du3eXhIQEGTFihJmi0aRJk0K2rVoFDR999FHAGxo1apSZAAAAAK/NmzdPsrKyovpADx06NGTbYnA3AAAAhBbZkyIOQQMAAAAQ4X7//Xcz2NvGjRtN5+gBAwaY58vKyqSkpESSk+0jzXseNKxevVrWrl0rBQUFjvMceeSRgW4GAAAA0UK75XjVNSfGuvysWrVKLrzwQpkxY0alZkv+oOGZZ56Ryy+/XD755BPp379/6IOGN998U26++Wb566+/rPNpT22NbgAAAAAEz+bNm6V3795mTLV99tnH3Kh//PHHK80zaNAgueKKK+SDDz4IfdDwxhtvyODBg8Xn80mjRo1MPtjMzEzXOwFEi43bnYdyz80vdpU9yJbpJzMtSSKF7TXmbnI+Npnpzq+xzOdzlXVqqyVDkK/Mlj3JuUiSnd+n+HrO2XUOad/TebnMALJjlbkbaDPBks0kMcG5rLSmbE4OkixZgJZsyHUs69QsfH5zbJ/t/ELnm2ZtGqY7li3b5lx7r5pmuMvYBIQN+jQExb333msCBh0PTf/W7/eqQUPDhg1NFtOvv/46oG25ChrGjRtnHidMmGCqOzSdFQAAAIDQef/9983N+/Hjx1tvCO22224ye/bs0Lf6WrRokRx22GHy73//m4ABAAAA7moavJpixIoVK+TAAw+UeNs4QloZnpxsmjKFPGho0KBBQKNDAwAAAAhMamqq5OY6N+X0W7lypdSvXz/0QUPfvn1lwYIFAW0YAAAAMZ49yaspRuy5557yww8/SF5enuM82dnZ8tNPP8l+++0X0LZcHdZbb71V1qxZY9pPAQAAAAi9gQMHyqZNm2TUqFFmPIbqXHfddZKfny9nnXVW6DtCa1SjuV7PPvts0wHj+OOPl3bt2jm2pxoyZEhAOwkAAIAoQvakoBgxYoS8+OKL8uyzz8r3338vp59+unl+yZIl8uCDD5ohEr777js54IAD5IILLghoW67HadAR57RDhbaR0p2xIWhArPAiBWpOvnN60FRLuspw07pxPceyxau3OZZt2+78+uMt6UFLypxTgKanOn/1xVtS3IolrWicJaVsfP00x7LEuMbOyzVwXi4urYav70Tn/YmzHLc0S+rY7QXO6UPTLcsVlzjnf02y7GekaFLfXWpcW0rZji3CJ6UsgPClfRr++9//yplnnmmuzf3dBzS9qk46PEL37t3lvffek6SkpNAHDc8//7xcc8015m9tH7X77rtLRkaGhDuNtiZOnGjadRUVFUnnzp3l3HPPlauvvjrgAwkAAIBaoqYhaFq2bGkCBA0epk2bJkuXLjVNldq2bWtaA51yyinWdKyeBg0PPfSQJCYmyjvvvCMnnXSSRIKrrrrKjCuh+92vXz8T5HzxxRdy/fXXy9SpU01zq7Q057t6AAAAQLg69thjzeQVV/XC2k5Kh6mOlIBBq2Q0YNBAYe7cuSYSe/vtt+XPP/8sHyHvlltuqevdBAAAiA1xHmZOip1hGkLKVdCgw1E3bdpUIoV/BOsxY8aYATD8mjRpUj7U9mOPPSbbtjm3qwYAAADCVWlpqWzYsMH0N3aaQt48SdtHff7556a9VE0j0NU1TQ07b9488/c555yzU3mvXr1Mm69Vq1bJ9OnTZfDgwXWwlwAAADGEPg1Bo9e5OhzCrFmzpLCw0HE+7ddQUuKc0MKToOHOO+80F9gjR4406Zx0aOpw5e9F3qhRI+nYsWO18xx88MEmaNB5CRrglextBY5lmenOHfGLip0zzxSUlkVMZqXsHOfX36Ce83dIg4wUx7Kt252/HDPTneun123e4ViWYsmEk5/inCEoLtN5P+Ms72G8LctRhvN5EZdew9e3Zdlky75uzSty9T6l2LJOueTFOkPtrzXbXJ3b4fb5BRCevv32W9NXt6CgoLw1UFZWlifbchU0PPPMM6a24YknnjC9tHWEaKdxGjSqqcv+AsuWLTOPun9OtKah4rwAAADwEDUNQTF27FgTMAwbNkzuvvtuad68uXjFVdBw2223mWBAc7+uWLFCXnjhhZ3m8ZfXddCQm/tPHux69ZxzxPvTxebk5FRbrlU9Fat7nOYDAAAAQkUT/HTp0sXc0A9GWtWgBw3absrrHQsn99xzj9x+++11vRsAAADRwZ/pyKt1x4iSkhIz2nMorstd1zREiszMf0bVzMvLc5xn+/bt5tGpDdgNN9wgo0aNqlTT4G/SBAAAANSFPffcU7Kzs0OyraiPxTp06GAetaOzE3+Zf96qUlJSTEBRcQIAAIA7emfcyylWXHLJJfLVV1+ZMdS8FvVBQ7du3czjpk2bHDs6z58/3zxWHMMBAAAACPegYfDgwXL00UebzKY6VkOdNk+aMmWKdOrUSQ499NCAOmpoFFTdWAleatOmjXTv3t3ksNXXcdNNN1Uq19GgtaZBaxNOOOGEkO4boo8tTaItrWphsfOHvGOLf5rYRTpb+sziEueUpBu3OqdHLbaknN1e4JyLOjHB+S5UfLzlDlXDNOeyQuf3MG5HsXNZkuXejSXFq2TUkOo6yzmdZ3Ka87mYZSkrK/M5luVaXmOmZZ0tG6dHfMpV2+fXrY2WdMKqqSVdKxARYjx70ltvvSWTJ0+W77//3jQv0mEBNAOSDmeQlOT8nVnVbrvtZh6XL18uJ598siQmJkrLli0dM5oGUiNRq5qG8847T5566ikJxJNPPinnn3++1IUbb7zRPI4fP15++OGH8ue19uHyyy83f19xxRVSv379Otk/AAAAxI4HHnjA3LC+7777zPAFelP95ptvluHDh+/SejRY0Elp1tLi4mIz8rP/+apTyDtCR5pTTz3VRG6PPPKI9OjRQ/r3729SsOqo1lu3bpWePXuaAesAAADgvRivaJCpU6dK06ZNy/+tY57pRb8OU6CBRG3HWwjlGGO1Dho+/vhjM+KcW3/88YfUpQkTJpjgYOLEiTJnzhwTiWmTqzFjxsjVV18d1qNaAwAAIHo0rRAw+B100EHmce3atbUOGtq3by9hFzSsX7/eTIGo697sgwYNMhMAAADquqbBm+tCt6tdtGiRfPLJJ6afgU4LFy40HYu1NcrNN99c4/JvvvmmuTn9008/SVFRkXTu3FnOPfdcc3O6Nv0UvvzyS3MTW29qh6NaBQ0zZszwfk8AAACAOvLEE0+YliluXHXVVWZZ7YisLXMyMjLkiy++kOuvv940RdJgJC3NOZnG77//bpbXbEhuUvvrGGKvvPKKaU2zceNG0xR/9OjRpmzx4sWmP8ORRx4pqamp4mnQ0Lt3b9cbAGJJgSWbz9pNzgMMpiYnuspKY8va0qahc1aaumDb11JLVp56ac7HpnSHz1UWoG35RY5lzmsUSbBkJCrd7rzOOEt2KLFl3rG8Bkm1f33HW7J12bJH5VqyTmWkOG8z0ZJ1yvber/z7n8E1q7N7m8hITtEkK9XVa2/duJ5j2W8rtli3actIZcviBoSNMBwRep999pFrr73WpOvXNPzjxo2Tl19+ucbl3nvvPXPBr4HCrFmzylP4a1YkDSA0U6f2VdDOz9XR+bT/rdZMaNKeXaUBiXak3rJli+kXoTU4rVu3rlSDout/9dVXA2pxwzcLAAAAYp5mLrr//vvNBbiOtFxd2tLqaHChtJ9sxTG/mjRpIo8//rj5+7HHHpNt27bttGxubq4cf/zxpjmT9h/WRD27QptQnXbaaWbdl112mbz++usmcKjo2GOPlfT0dHn//fclEAQNAAAACKloGRF6zZo1ZiwwVd1YZL169ZK2bdtKYWGhGXytIn3ulFNOMU2H/vvf/0qrVq12efsasBQUFJhgQQOTM888c6d5tJ/EAQccYPpaBIKgAQAAAHBhwYIF5rFRo0ZmgLbqHHzwwZXmVdrB+uyzzzYBhwYTXbp0cXX8td/x/vvvL6effnqNgx2vW7dOAhET4zQAAAAgtgZq0M7BFelgajoF07L/jZPQrl07x3m0pqHivGrEiBGmL4RmZtIA4ttvvy0v69q1a607Q2unZ63NqElJSYnk5Tn3rawNahoAAAAQdfRivX79+uXTPffcE/Rt5ObmmkdbXwTtIF01iNH+C0o7SB922GGVph9++KHW29fXpU2karJ06VJp1qyZBIKaBgAAAETdiNCrVq2qdMc+2LUMgdB+DMGgHa91fIeVK1c61nb8+uuvpj+DdpgOBEEDEES2VIeZac6jjmda0mMuW1+5erWiVpaUjeFmc26hY1leoXOaz306NnIsW7Rqq6tUtfUsqUOLLOlR8zOc38NSWwrUepbUqWWW5Sz7KVn2UeyTM51/HJMTnc9TS+ZUq3jLgilJCa7W6Xa5cPrc215Ddk6BY9ne7Ru63iaAf2jA4GbMg12RmZlpHm1Nf7Zv/ye1tBf7ohmfNOXq4MGD5e2335YWLVrslM5V59GMSvoYCIIGAAAARF9VQwh06NChvFbDib/MP28wDRw40GRM0tGodSTpnj17mudnz54tAwYMkJkzZ5qgRUem1tSrgXB1q0IHqjjmmGPMENs29957r5kXAAAAiDbdunUzj5s2barU0bmi+fPnm8eKYzgE05QpU+SGG24wf3/22Wfm8c8//5QPP/zQjP9wzTXXyAsvvBDwdlzVNGjUojlw+/TpY/LCnnDCCdXO98cff5iR8QAAAIBy8XES57Y9ZE28Wq9DKtPu3bub1Kl68X7TTTdVKtfRoLWmQftTOF0vByohIUHuvvtuM5q1pmDVTs9lZWWmI3j//v0D7gDt57pRZPv27c2gFDos9TPPPBOUnQEAAACCQS/mNX3pxIkTPT2gN954o3kcP358pcxHWvtw+eWXm7+vuOIKk+nISw0bNjTjNWjwMHr0aNPPIVgBQ0B9GrSWYdCgQaYd1aWXXiorVqyQu+66K2g7BgAAgCjmcYWA3v3flc7HesHvv8hXS5YsMY9PPfWUaerj9+6770rLli3L/6030EeOHCmPPPKI9OjRw9zd1xSsn3/+uWzdutX0M9DxGCJdQB2hjzvuONP86MQTTzS5b7X65bnnnpPERPpXIzYVlDpn3mlSP9WxLCe/yLGsYwvnL7ymGeGTPq4mSbYMM5ZsPj8v3eRYllfgnHWpqeV45+Y7Z1bKt6wz0ZLNKLGZcyarkhRLFiBLtiaxLBeXbP+ete1ruiXTU6ol248ts1Sc5WXYMlnZrNzwT8aRYJ77ts+o24xEG7cXujrXkpPcZ0Dy4nUAsU7HUZg7d+5Oz69evdpMftrSpqoJEyaY4EBrNebMmSPFxcWmY/KYMWPk6quvluRke8a7YNDt/vXXX46jUmutSyACvrrXTh06it3xxx8vr7zyiqxdu9ZEYP6BLAAAAICKtG+sTl5wu15tRaOpSd0aNGiQmbx20EEHyeLFi03/BQ0G/LS7wEsvvVTtMvvtt58sWLAgoO0GpUpA+zdodHPKKaeYqhgdznr69OnBWDUAAAAAEXOdrRf/F110UaWAwU+DHm0eVZHWkvz888/yxRdfBJTVNGjtiBo0aCCffvqpDBkyRN544w3Tpkt7bQMAAABROExDyL333numJkWbPFVHy/R6vOro09pUSgd/CyRoCGrDR22v9dprr5l8sBrVaLMlAAAAIFqzJ4XSd999Z1r47Er/BB1Ubt999zXLBsJVTUPv3r1lzz33dCy///77zQu68sorA9k3AAAAICTZkyLBkiVL5PDDD6+2zNYfY/fddzd9IEIeNNRmo5qPVicAAACgEtonuc7w5DTew6hRo8xQCNVJS0uT3NxcCQS5UYEgsqY6TEtylXLVVlZYXOpY1qZhuoQTW8rZTTkFjmU7Cp1ToLZu4pzmdMPWHeJGo0znVJ4bipyPd6o4v77iZEsa01zndJ220VJTG9nf3wRLWtXtO5yPabylMXCiZX/SLCleEyzLJVtSvKZb1umWF+lIM11+touKndOmLl6zzbrN/do1rOXeAYgmGRkZsm3bNscMSTpVR8eLSE8P7LqAoAEAAAAS6ylXI0HLli3lxx9/3OXldJmKA9K5wQgwAAAAQAQ4/PDDZc2aNfLll1/WehmdVxMU6eBzgSBoAAAAQGjFezxFqfPOO890eL788stN/4aaaD8GnVdrX84555yAth3FhxUAAACxKhpTrvbu3VuOPvpo+f33383gbtOmTXOcVwda1mOwcOFCM+Bb3759A9o2fRoAAAAQdX0aojHlqpoyZYpparR48WIZMGCANGzYUA488EBp2rSpKd+4caP88MMPsmXLFlMr0blzZ7NMoAgagBDJ3VHsajlbhpWs9GSJFLYMMwkus/LkWY6pLbNUoeWYlpQ6lyVZ9sVWZsudnWBZLt5yXBLTnY/n/zbqWJSUGO/qPI1ztznr9to2y3AsS7FkVgontmNmew22stx8d98XAKJf48aNZe7cuWZog1dffVU2b94sn332WXmw5P/NiY+Pl7PPPtvUtDRo0CDg7RI0AAAAILQYpyEgOlbDyy+/LLfffrt8+OGH8v3330t2drYpa9Kkial5OOmkk6RTp04SLAQNAAAAQATabbfdZOTIkSHZFkEDAAAAQoqKhshD9iQAAAAAVtQ0AAAAIKQYETryUNMAAACAqBON4zTUJWoagDCQV1DiWFYvNTo+ptk5BY5lyZbUkxu27nAsS7SkJM0vdD6mDTNSHMs25xY6lpVZ8ooWW1JkxiU472eqZV9KLWljfWW+GtsLO8krcN7X5ETn9yLRkjp1veV92rt9Q8eytZvyHMtSk53P/aaW4xZq9vS+pa5SJqfUj4x0s4BrXo7c/L/1Rus4DXWFmgYAAAAAVgQNAAAAqJM+DV5N0erLL780I0HXBYIGAAAAIAL06dNHxo8fX/7vfv36yX333ReSbUdHY2kAAABEDgZqcM1XoX/dzJkzpUOHDhIK1DQAAAAAESAzM1PWrVtXJ9umpgEIEVu2F1uGFZvMtCSJBpstmZVSLZmVEizZk1Isy23NK3Isi7esM9mSPSgu3fm9sOU5Kilyfu9tzXITku3Zdcos51R6ivNXf2JCvKvztGn9VMeyHMvxLi4pcyzr2qGeRALbueZWtHy2ASdUNLiz3377yRdffCG33nqrdO7c2Tz3119/yUsvvVSr5YcMGeJyywQNAAAAQEQYPXq0DBw4UO6+++7y52bPnm2m2iBoAAAAQOSgqsGVk08+Wb777jt57733ZMWKFfLCCy9Ip06dpGfPnuI1micBAAAgKkeETkhIkBEjRpgpWuy///5mUho09OrVS55//nnPt0vQAAAAgJCKi48zk1frjpURoceOHSvdunULybYIGgAAAIAIDRpChaABAAAAIaV1AV4N3By940E7KykpkbfeektmzJgha9asMc+1bt1a+vbtazpOJyYGfslP0AAEUUGpc/rIVEsqy9z8Yseyji0yHcuyLalK2zRMl3DSJMs5JWejLHfpOm3pURvUS3YsW79lh2NZaZktQaqzUkvq0BRLitOE1DhX+5JkOZ9UnCU9rE2BJQVsmiXNaz3La0yy7EtZhUGKqtqcWxgR53f2NufPYXKSu/eBlKsAauvHH380gcGyZcsqDfymnn32WbnlllvkzTfflAMOOEACQdAAAACA0CJ7UlCsXbtWjjnmGMnOzpbmzZvL2WefbbIpqaVLl8prr70mS5YskWOPPdYEFy1btnS9LYIGAAAAIALde++9JmAYPny4TJgwQdLS0iqVjxs3TkaOHGlqHO677z556KGHXG/LXb0pAAAA4FJcXJynU6z46KOPpF27dvLEE0/sFDCo1NRUefzxx80806ZNC2hbBA0AAABABFq1apUcfvjhZjwKJ9oJ+rDDDjPzBoLmSQAAAKiD9EkerjtGpKSkSE5OTo3z5ebmmnkDQdAABJEtQ5JNZnqSY9maTXmOZVnpzhmCwk3ujmJX2XWyLFmQbMut35TvWJaRluQqY1FBUYljWYplP/MLnZeLd1mNXtNittdhSVgkqZYMSalJzmWFxaWu9qVBhvOP2B6t60sksGU4s31+bRnFbMup1o3rBf17CEDk6dq1q0mzqrUIbdu2rXaelStXmnkCzZ7ENwsAAADqZERorybVvXt3c1E9ceLEqH13hwwZIjt27JCjjjpKpk+fvlP5hx9+KEcffbQUFBSYeQNBTQMAAACizrx58yQrK0ui2cUXXyxvv/22fP7553LyySdLo0aNpGPHjqZMx23YvHmzGbtBgwqdNxDUNAAAAKBOujR4NcWKhIQEkxVp9OjRUq9ePdm0aZPMnz/fTPq3Pnf99debGof4+MAu+6lpAAAAACJUcnKyjB8/Xm6//XYTLKxZs8Y837p1azn44IMD7gDtR9AAAACAOhgQ2ps6gRgapqESDQ569uwpXqF5EgAAAAArahqAEFm9xTkFqFtNLekqf165xbpsvVTnj/+GLTscy5o1THO1XLIlXeeGrc7LJf4vC0Z1dhQ5p/kssaT53JZX5FjWrqlzKkub7ZaUsj7LviQkOd+7SbC0zC0sdH7thuVOW1yqu9dRXFLmWJaY4LzBRpbztLTMeZ2zf1vvKk1xarLzuZ1kSUeau8P5vEiwtAVOT0l0t5+WfbGlVK1pWSByahq8WzeCj28dAAAAAFbUNAAAACCkqGmIPNQ0AAAAALCipgEAAAAhFfe//7xaN4KPmgYAAAAgAq1cuVJWrVoVkm1R0wCESJuG6Y5lSzbkOpYVFZe5Wm7TtgLr/uTkOd8zSLNkg1m3yV0WqPWW7FHJlkwwtixIuZZMP5lpzllr0pKdMzmt3ey8n/GWlBxJic6vwedzl+UjwZI5KsmSlUcVFjtnVyqwZJ3KsBy3Ust74XZfikudz2+bvB0ljmWlpZZzJt/5nGnR2Pkzmmc512zvvVtkR0LU8zB7UixVNHTo0EEOO+wwmT17tufboqYBAAAAiEBZWVnSsWPHkGyLmgYAAACEFNmTgqNr164ha55ETQMAAACiTvfu3c1F9cSJEyVaXXzxxaZp0rx58zzfFjUNAAAACKm4uDgzebVupRfS2nwnml144YWyYMECOeaYY+S6666TM844w/RzSElJCfq2CBoAAACACJSQ8P+JPW655RYz2YKpkhLnJBI1IWgAAABASGldAMmTAuezpecLYN7qEDQAYSAlyTkFaOvG9RzL1mzKcyxrXD/Vus16qc4f/0059nStTopLnNNnZqY6p/LMKyxxtc4WDdMcyzbnFrpKKSuWfXH7dZuY4PzTGG9Jq2pLcRpfQ480W7pW2+u3/ahYVimJlrS5NmWW12hbZ4klVWtBkfP2OrXOcvU5zMlzXmmjzBR3qW8tr8GWTlg1zQh+0wMAkaeszF3aajcIGgAAABB1fRoQXGRPAgAAAGBF0AAAAIA6GafBqynWLFmyREaPHi29evWSLl26mL/95s6dK08//bRs27YtoG3QPAkAAACIUC+++KJceumlUlhYWN48Kzs7u7w8Pz9fLrvsMklOTpYLLrjA9XaoaQAAAECdZE/yaooV3377rQwfPtwEBPfdd5+pVaia0KJ3795Sv359mTp1akDboqYBCJGN252z+djYsqgUFZe5yuhSE9t6bZl3suo534fYaslm1KBesmPZJstytrJ4S/20LfOO20w/SYnOrz3ZUmaTZMkeZMu6pHZYskAlWpa1nW+2Kv+sdOf3sMRy3FItGYtsx9SWHarY8v7aMiTZMh3ZzvsmWamujqct+5ktaxoA+GmgoEHCtGnTTNOk6sTHx8sBBxwgv//+uwSCmgYAAADUSfYkr6ZYMXv2bDnkkEMcAwa/Fi1ayLp16wLaFkEDAAAAEIG2bt0q7dq1q3G+HTt2SFGRZRCbWqB5EgAAAELKyyxHMVTRII0bN5YVK1bUON9ff/1lahsCQU0DAAAAEIF69Ogh8+fPl99++83ahEnLa2rCVBOCBgAAAIQUfRqCY8SIEVJaWipnnHGG/PjjjzuVL1y4UIYNG2aO9+WXXx7QtggaAAAAgAjUv39/GTVqlCxevFgOOugg2WOPPUyA8N///lf2228/2XfffeXPP/+U6667ztRKBCKq+zRs2LBBPv74YzPNmzdPVq1aZdJOaYeRY445xhzkDh061PVuIkY0zXBOgbp6S76r5WwpIm2pJVX2tgLHsuQk5/sJm3MKXKUBtaVAjbek5ExLTnCVOjUzLcmxbEeR83ErLnFeZ31LalhbilNbqlab/BLnddaUHcRWvL3AOQ1og4xkV+lRiyzHzZbi1fYe1ktz9xOVVGo5fy1peguKnI93Y5dpVd1+RlMt6XaBaODleAox1KXBeOCBB8wo0Lfddpvpu6A0U5JOTZo0kbFjx5oaiUBFddCgQcHkyZNNoLDPPvvIgAEDJC8vzwQQjz76qDz//PPy7rvvytFHH13XuwoAAAC4cvHFF5tB3hYsWCBLly6VsrIyadu2rXTv3l0SE4NzuR/VQUOjRo3k9ttvl4suukhat25d/vz27dvNwX3ttdfk7LPPNlFZw4YN63RfAQAAYgXZk4JPa6APPPBAM3khqoOGRx55pNrnMzIy5LnnnjOj523evNk8nnfeeSHfPwAAACBYdHToTZs2mUdNx6qtbYIlZhtNpqenm/ZfSvs6AAAAIDTixMMRoWOuV4PIp59+Kscdd5xkZmZK8+bNzZgM+rc+p52igyFmg4bi4mJZvny5+btly5Z1vTsAAAAIIm3P37VrV5k4cWJUH9frrrvOBAeffPKJ5Ofnm1oGnXQUaH3uhBNOkGuuuSbg7UR18yQbbZ6UnZ0taWlpcvzxx9f17iAGFFiyxLRpmO4qs5ItM0sgWjWu51iWmuz8tbHJkpEpKTHeVXYhW6ajdMu+lJY6rzPBks2neYM0x7Jt+UXuXp8leZIts5AtI1GZz56RqV6qu2NjW63tvWhgySxlO942ufm2LE/OWcUKCotdHRdb9qS8Aueyrdudz4v0FOftdWyR6VgGRLtQZE/SxDdZWVkSzV555RX5z3/+Y65ndRyGoUOHSseOHU2Z3hx/8cUX5fHHH5eHH35YunXrFlBz/Jisafjll19MVKZuueUWU41jU1hYKDk5OZUmAAAAoC5pNtCEhAQzvMD9999vsoXWq1fPTHvvvbfcd999pkybbT322GPRWdMwevRo+eCDD3Z5uWeffdY6TPbq1avl5JNPNhmUNAXrmDFjalznPffcY7IwAQAAIHBkTwqOX3/91Vz3HnHEEY7z+Mu15iUqg4a1a9fKokWLdnk5DQacrF+/3oyct2LFCjn22GPljTfeqHGAJHXDDTeYMR/8tKZBc98CAAAAdSU1NVVatWpV43w6T3KyczPSiA4atI2WTsEcHbpfv35mmO2jjjpK3nvvPUlJcW4TW5HOV9t5AQAAYOfPdOQFr9Ybjg466CD5+eefa5xP5zn44IMD2lZM9GnYuHGjCRgWLlxoahq02ZNGZgAAAECkuummm8z1rfZdcKJ9HXSeG2+8MTprGoJFMyRpwPDbb7+ZgGHq1KmmhzkAAADqBn0a3Pnyyy93qlW54oorTFP6N998U84///zy7EnLli0zrXa+//57GTlyZMADvcX5NJFrlNLRnvv27WuqZLRJktYwBCNg0D4N9evXl23btkV9Ki+EJuWqW7k7nFNLrtzg3L+nphShbtlSVtpss6SszEhLcizbbnn9KUkJjmUFltShpZavRFvK0WTL8bSl5LTVomdaXntNX9yJCc4rTrL8cORb3sN6lvShjbKca29Ly8pcvfe297Ce5djY0pzm7ihylYo22bIvzRu6+12xpUzu1Ix0rAiecLpu8e/LGzN/k/QMb87z/O25MqjP3mHxeoNNL/yra37lv5yvWlbxeZ1KStz9Tkd9TcPw4cNNwKAHqVGjRnLZZZdVO9+pp55qJgAAAHjvn3GbPerTEMUjQh955JF11mcjqoMGrWnwR1maKclJhw4dCBoAAAAQ1mbOnFln247qoKEuDywAAACqR5+GyBMT2ZMAAAAAuBfVNQ0AAAAIQ3H2RBCBrjvWFBQUyPz5883gyPq3kyFDhrjeBkEDECKpCfGuMivZMiTZsq80yHA/8uOmHOcvnARL5h1b9pnOres7lv267J/+R7uatSa+sMRVhqRiSzafFg3THctWWDJS2X78mjdwziyUb9lPW4akLEv2IFVmyQJVVFLmKmNRouUczslzzkpkY8u6ZMtKtGjVVlfLbd1e6FjWrXOToGcq27t9Q1ffCQBQWzoOw7hx40xmqpoQNAAAACBixEucmbxad6x47LHH5Prrrzd/77vvvrL77rtLZqY3qWypaQAAAAAiNGhITEyUt99+W04++WRPt0XQAAAAgJAie1JwLF++3Izd4HXAoGhQCQAAAESgZs2aSdOmTUOyLYIGAAAA1ElNg1dTrDj++OPlm2++kTJLgo9gIWgAAAAAItDYsWOlqKhIRo4caR69RJ8GIAxYUy9aUmvaUq7WxJZa05ZW1aaZyxSZ9dISXaXIzCtwTrnaoJ5zytmEUufbUEWWY5qWbDlmlltbtlSlyYnOqVGLLalRUy37orZaUqCmWt5723o3W96LeMvrb5yV4io18N9bdliWc16nTdtmGY5ly9bnOpYlJ8W7SvFqY0u1TDpWRLu4uDgzebXuWNGqVSv5+uuvZcCAAdKlSxfp27evtGvXTuKr+R3X43LLLbe43hZBAwAAABCBfD6fTJgwQf744w/TROmFF16oNljQ+QgaAAAAEFG0LoABoYMzsNujjz5q0q6edNJJZpyGjAznGtVAUNMAAAAARKBnn31W0tPT5auvvpJu3bp5ui2CBgAAAIQUfRqCY9WqVdKnTx/PAwZF9iQAAAAghP766y+59NJL5cADD5SkpCTp0KGDq/W0aNFCMjMzJRSoaQAiWJOsVMeyNZvyrMvaMi/ZssHYMtoUFZe52l6HFs5feH/HO2/PprTMOSuRTUGR837usJQlJzrfgym25M+2ZUiyZQCxLacS452X3ZbvnFmpzOecrcumQ3Pn9zC/0DnL1eLV2xzLWjep5+r12zKD5Vhee2Z6kqvPmttMR7bsSUC0i/URoX/77Tf58MMP5ZBDDjGdlLds2eJqPaeddpq8+uqrUlBQIKmpzt9TwUBNAwAAABBCJ598sqxevVreeecdOfTQQ12v57bbbpNGjRrJ4MGDJTs7W7xETQMAAABCKtZrGuJdjodU1VVXXWXGZ3jvvffkiy++kIMOOsg6TsNzzz3nelsEDQAAAIh5ixYtkk8++US+//57My1cuFBKS0vlzjvvlJtvvrnG4/Pmm2/KxIkT5aeffjKjM3fu3FnOPfdcufrqq02/BS/ouAz+pqy5ubkyc+ZMx3kJGgAAABBR4v73n1frduOJJ54wA6W5veM/YcIEM15Cv379zFgJeuf/+uuvl6lTp5pgJC3N3ejxNpMmTZJQoaYBAAAAMW+fffaRa6+91qQv1axG48aNk5dffrnG4/Lee++ZgEEDhVmzZplllfYx0ADi66+/lltuuUUeeOCBoB/joUOHhux9I2gAAACAxHqfhuHDh7vqdzBu3DjzOGbMmPKAQTVp0kQef/xxOeKII+Sxxx4zgUP9+vUlUhE0AGEud0exY1lmWpKrtJM1pUDdnFvoKh2rbTlbWlW3mjZw3pdN2wocy0pLLelYLYctLdm5sEG9ZMey7Zb3MD3Z+Ws4yZLG1ZY21Sxr+bFr1TjdVdrceMsv8dbtzu99br7z69+jjfMPaF6Bc6rWds0yXKVVzUpPdrVcdk6Bq89a04yUoKdqBRA+1qxZI/PmzTN/n3POOTuV9+rVS9q2bWsGYZs+fbrJchSpCBoAAAAQdSNC5+TkVHo+JSXFTMG0YMEC86hpTzt27FjtPAcffLAJGnTeYAcNw4YNq/W8dIQGAAAAqtA7/BWNHTvWjGsQTMuWLTOPmua0pv3wz6vy8/NNzYNaunSp+fdbb71l/t29e3dp3759rbMn1SaA0gHkCBoAAAAQUULRp0Hv7mdlZZU/H+xaBn+aU1WvnvMI9tpBumrNx4YNG+TMM8+sNJ//35oR6YILLpBAsieVlZXJihUrTGAyf/58k91p//33l0DQPAkAAABRRwOGikFDOOnQoYO5++919iStWRk9erQ888wz8sMPPwS0LXphAQAAoE76NHg1hUpm5j9JPvLy8hzn2b59u3msqwBGszvpft56660BrYeaBiDM2TIkuc2OVFPGl9aNnatZF6/Z5liWZ8kSZLNmo/OXbYNM5+rklRv++SKuTool81CqJQuSLSOTLUNQQZHz8S4qdc5IlJaS6CpzVnINmXds768tm5Ht9efkFbl6/Znpzufwyr+3u3qf1m3OdywrLilzlT3JljnK9pmw2Wg5Z2yZlQBEhg4dOpQ3hXLiL/PPG2o64Jymgv3ss88CWg81DQAAAAgprQvwcgqVbt26mcdNmzZV6uhckfYpUBXHcAi1HTt2yJYtWwJaB0EDAAAAoo5mIeratatMnDjRs220adPGbEdNmTJlp3IdDVprGrQT9gknnCB1YeHChWY/qmaT2lU0TwIAAEDUZU/SQddC0Y/gxhtvlNNOO03Gjx8vxx9/fHmNgtY+XH755ebvK664wpPRoF966SVrZicNGF5++WUpKCiodvC5XUHQAAAAgJin2YX8F/lqyZIl5vGpp56SDz/8sPz5d999V1q2bFn+71NPPVVGjhwpjzzyiPTo0UP69+9vUrB+/vnnsnXrVunZs6fceeednhxfTc1q6/jtz9B0yimnyM033xzQtggaAAAAEHUjQu8qHUdh7ty5Oz2/evVqM/kVFu6c4GDChAkmONCmUHPmzJHi4mLp1KmTjBkzRq6++mpJTnZOwhCIIUOGOL5e3Wbr1q3lqKOOksMPPzzgbRE0AAAAIOb16dMnoLETBg0aZKZQqmlE6GAiaADCXGoNqTXdpJasKZXrsvX/jHBZnXqpzl8bBUUljmWNLKlTbWzrTLOk5Cwrc/7ib920nqsUoEmWNK710hJdpQC17Wc9SzrWvELn46IyLPtqk2Q53xpnpTqWLf/b+ZwpsaScbWRZZ5ElbbDtPLSlm7WlIralhnX7GU0lrSrgKITDKSAIyJ4EAACAqBOK7EmxhJoGAAAAhFTc//7zat2hzJ4USrZsSbXtA+EWQQMAAAAQAS6oIVtSTQgaAAAAEDFCMU5DNOrXr98uBw3ffPON5OfnB5ytipoGAAAAIAJ89tlntZ73q6++ktGjR8uOHTvMv/fdd9+Atk3QAESppjVkbSmwZLRpUj/VVfYZW3YdmzXZeY5lHZpnOpaVljpnHmrbLMOxbHPuzjm2a5PpKNWSrSk12fnrNCGh2Hl7lvehVWPnLE+tk+x5LGxZoGzZjGz7s35Tvqv3Kd+S6WmHpcx2Pm3dXuRY1iAj2VVWMVtGsdwdzu+hWJZzm/0MiHbhOE5DtPj111/lhhtukOnTp5sUsu3atZM77rhDzj///IDWS9AAAAAARLhVq1bJLbfcIpMnT5bS0lJp3Lix3HjjjTJixIigDC7HLRAAAADUSZ8Gr6ZYSrm6ZcsWufbaa6VLly4mu1JKSoqpaViyZElQR6OmpgEAAABRJxpTrlZUUFAgDz30kNx3332Sk5MjCQkJcskll8htt90mLVq0kGAjaAAAAEBIkT3JvbKyMnn22WdNP4V169aZfgunn366jBs3TvbYYw/xCkEDAAAAEAHeeecduemmm2Tx4sUmWOjdu7fce++9csghh3i+bYIGAAAAhJR2O/BuROjoNXDgQJMdKj09Xa688ko54YQTpKSkRObMmVOr5Q8//HDX247zaZiCXaLtxurXry/btm2L6rZyiGxLNuRay20pKw/arbFj2cbtha7SsebmFwc9xevaTc6pWouKnVOHZtVz1ynMlo61yLKfBUXOZWWWr+AkS7rO+Hj7z6LtuKWn2NLDOq83Id5d7gzb9jLTk1ydM14s18RlymDSqiLchdN1i39fvvp5mWRkerMv23Nz5Ij9OobF6w22+Ph41ylldTkNMNyipgEAAAAhRZ8Gd3TMhboah4KgAQAAAIgAy5cvr7NtM04DAAAA6mREaK+mWBqnIVSoaQAAAEDUifZxGkKNoAEAAAAhRZ+GyEPzJAAAAABW1DQAUap143quy1dvyXcs25zrnHK1UWaKY1lykvM9iuxtBY5luTuKXKXWbJDhvC82tjSnmyz7aVMvzfmrdmuu8+vLTE9wLMvbYU+bZ0st2sry3q/asN2xzHJorClnG2Qku0qbm5mW7CqlrO21u02daks1LGnO2yMdK1A9HaPBu3EaonmkhrpDTQMAAAAAK2oaAAAAEFL0aYg81DQAAAAAsKKmAQAAACEVHxdnJq/WjeCjpgEAAACAFTUNQIzK3VHsKjPNHq3rO5Zl5zhnF0pJsmQCKnDOBNQ4K9WxrLTU51iWlOh8T6ReqiWb0XbnbEYtGqW7yg61YcsOx7J0y77YsgclxLu/52PLWFRcUuaqzHa83b6/bv1tOd7tmmW4WmdTl9m4ANRdnwYdETohIUFGjBhhJgSGoAEAAABRhxGhg4ugAQAAACFF9qTIQ58GAAAAAFbUNAAAACCkGBE68lDTAAAAAMCKmgYAAACEFH0aIg9BAxCDKVVrSiGZk++cdtTGlqq1qLjMVRrXxWu2udqXlpb0qLbXl2c5bray+Hh3uQOtKU5Ly1ynDs3eVuBqvanJzj8LjTKdz5nNuYWuXqMtHWtSgnNleMcWma7S+9rO0QLbcbHsCwDEAoIGAAAAhFZcnMR5PVADgopbJwAAAACsqGkAAABASNGnIfJQ0wAAAADAiqABAAAAIaX9GbycVPfu3aVr164yceJE3t0goHkSEKVs2ZFqyhSTlZ7sKouMbTlb1prsnAJXGXTqpSW5yh60fnO+Y1lqsnPmnWRLVp7SMufjadOlbQPHsnWW/bS9PpVf6JyVqMjyXrS1ZGWyZUiyvk+pia7OmZpeo5M2DZ0zZ23c7vwaAESXefPmSVZWVl3vRtQgaAAAAEBIaV2AVzmOyJ3kDZonAQAAALCipgEAAAAhVbHvgRfrRvBR0wAAAADAipoGAAAAhBTjNEQeahoAAAAAWFHTAMQoW+rUVEu6VluqVltaVZsUSypTcc6eKbn5xY5lHVtkutqXYsvrs6UOLSouc5X+NCe/yNX2apKZnuZY9veWHa7ew+IS59fYKNOe4teNJvVTHctydzi/99mW12A712yfCQDBRfakyMM3JAAAAAArahoAAAAQYnH/dGzwat0IOmoaAAAAAFhR0wAAAICQok9D5Im5mobt27fLbrvtVj6oyOrVq+t6lwAAAICwFnM1Ddddd50sX768rncDCGu2DEk2TbKcs93Y2LLWrN6S7yq7zrL1uY5lmelJrjIybbBkHWrbLMNV9qSVf293LDusa3PHsgV/ZYtNA0sGrPQU56/+Ts2cs05tTC90LMveVuDqfXKrqcsMX2RIAsID4zREnpiqafj000/lySeflBEjRtT1rgAAAMBD3bt3l65du8rEiRM5zkEQMzUNOTk5ctFFF0nHjh1l/Pjx8thjj9X1LgEAAMSkUPRpmDdvnmRlZXm0ldgTM0HDVVddZfovfPbZZ1KvXr263h0AAAAgYsRE0DBt2jSZNGmSXHLJJdKvX7+63h0AAIDYRqeGiBP1fRq2bNkiF198sbRt21buv//+ut4dAAAAIOJEfU3DFVdcIevWrZOPPvrIdbu2wsJCM1XsHwEAAAB3GKch8oRt0DB69Gj54IMPdnm5Z599Vnr16mX+fuedd2TKlCly4YUXynHHHed6X+655x65/fbbXS8PRBov0lLa0mBu3O6cyjMlKcGxrLC41LFsr9b1XaVxtenWuYljWXaOc8rRHZaUq7u3cd7PNZvyXKVUrSmt7ObcQlfvRU5+kavtuU2Pmruj2NV+2rYHAIiyoGHt2rWyaNEiV4O3qezsbLnsssukVatW8uCDDwa0LzfccIOMGjWqUk2DNncCAADArqNLQ+QJ26DhlVdeMZNbX3/9tWzYsEHatGkjp556quN8Z555pqSkpMgFF1xgpupouU4AAABALArboCFYNM2qTk6+/fZb89inT58Q7hUAAEAso1dDpInaoEFrF3w+n2N5nNaLiciqVatMbQQAAACAGAsaAAAAEJ7o0xB5CBoA7FJGGxtbtpvMNHfZddxmOrKxZQ9q2Sjd1euzrrNxuqvsULn5zttrUj9V3GqUmeIqQ1LrxvVcZY9auGabq9fhNuuSrcyLzGAAEAsIGgAAABBS9GiIPDEbNNj6OwAAAAD4fzEbNAAAAKBu0Kch8tC4EwAAAIAVQQMAAAAAK5onAQAAIMToCh1pCBoABC0tZarLFJlLNuQ6lmWlJzuWFRaXulrnHq3ru0odakuPmmQ5ZnkFJa5eX2a6c5raZetzxKZxlnMq007NMl2lR12zKc/V60ipn+AqFa9bttS4tnMUAOCMoAEAAAAhRUfoyEOfBgAAAESd7t27S9euXWXixIl1vStRgZoGAAAARF2Phnnz5klWVpZHW4k91DQAAAAAsKKmAQAAAKFF8qSIQ9AAoM61blzPVSan1VvyXWXzsbFlSLJJTop3lQXJlj3IVtbEkh2ppgxCtuPWsUWmq+xJbtneX1vGLdtyZEgCgOAjaAAAAEBIxf3vP6/WjeCjTwMAAAAAK2oaAAAAEFpx/4zV4NW6EXzUNAAAAACwoqYBAAAAIUXypMhDTQMAAAAAK2oaAISELUWmW27To9rSkTbNSHGVqtTtvtjSmNrSxubkF1nXa9sft/tqW66wuNRVelhbWlUAUSzOw04NnnWWiG3UNAAAAACwoqYBAAAAIUWfhshDTQMAAAAAK2oaAAAAEFJ0aYg81DQAAAAAsKKmAUCdC3UGHVuGJNu+eJE9yJY9ad1m52xNe7SuL25l5xQ4lmWmJbl6/bbl3GarAhC96NMQeahpAAAAAGBFTQMAAABCi04NEYeaBgAAAABW1DQAAAAgpOjTEHmoaQAAAABgRU0DAAAAQoouDZGHoAFAnUtNcK703Li90FWaTy/YtmdLHbp6i3PqVBtbWlXbMavpuNlSp9rWm+oyVS0AIPIRNAAAACDE6NUQaejTAAAAAITYX3/9JSeccIJkZGRIkyZN5PLLL5e8POcBP+saNQ0AAAAIqVjv07Bt2zbp16+ftGrVSt58803ZvHmzjBo1Sv7++295++23JRwRNAAAAAAh9NRTT8nGjRtl/vz50qxZM/NcWlqanHHGGfL999/LQQcdFHbvB82TAAAAUCc9Gryawt306dNNTYM/YFADBgwwTZU+/PBDCUfUNAAIa7asRG6FOtNPm4bprrIcZecUOJY1yUr15Li5PTa2rEu5rtYIAKG1aNEi+eSTT8ydfp0WLlwopaWlcuedd8rNN99c4/LazGjixIny008/SVFRkXTu3FnOPfdcufrqqyUpqXL2vd9//12GDBlS6bnExETZY489zHbDEUEDAAAAJNb7NDzxxBMyYcIEV8teddVVZlm98NcaBK0x+OKLL+T666+XqVOnmmBEmx/5bdmyRRo0aLDTeho2bGj6N4QjmicBAAAg5u2zzz5y7bXXyuTJk83d/vPPP79Wx+S9994zAYMGCnPnzpX//ve/pjPzn3/+Kfvuu698/fXXcsstt0T88aWmAQAAABLr4zQMHz680r/j42t3b33cuHHmccyYMXLggQeWP69pVB9//HE54ogj5LHHHjOBQ/369ctrFLZu3brTurQGYvfdd5dwRE0DAAAA4MKaNWtk3rx55u9zzjlnp/JevXpJ27ZtpbCw0HR+9ttrr7126rug/ScWL15sysIRQQMAAADqpE+DV1OoLFiwwDw2atRIOnbsWO08Bx98cKV5lQ7qNmPGDJN21U/7Pmzfvl1OPPFECUc0T3LB5/OZx5ycnGC/HwBCwIvsSUWW7EE2uZbsSYXFpY5lyVLkyf64PTa27dleY0pZ8LNjAajMf73iv34JB15eQ/nXXXUbKSkpZgqmZcuWmcd27do5zqM1DRXnVf/617/k0UcflVNOOcU0W9JmSTq4m/7bH2SEG4IGFzZt2lTpJAAAAIiE6xd/m/q6kpycLC1atJDdO7T3dDvaKbnqddrYsWPltttuC+p2cnP/SSpdr149675UDWI0c5JmVxo5cqQMHDhQUlNT5cwzz5QHHnhAwhVBgwtaBaVWrlxZ5x++cKIfBv2Arlq1SrKysup6d8ICx4TjwvnC54jvFr5z69q2bdvMnXD/9Utd0otjveOu4xh4SWtV4qq0Uwp2LUOgdEyGjz/+WCIFQYML/t70GjBwcbwzPSYcF45JbXCucFx2BecLx4RzJTC1zQYUisBBp2iQmZlpHvPy8hzn0X4KKtKvjcLj7AEAAAAiTIcOHcyjtrJw4i/zzxupCBoAAAAAF7p161beX6RiR+eK5s+fbx4rjuEQiQgaXNA2cdqZJtzaxtU1jgvHhHOFzxDfLXzf1iV+hzguodamTRvp3r27+XvKlCk7leto0FrToOemplmNZHG+cMq/BQAAAISBCy64QF588UW588475eabb3ac77333pPTTjvNZEmaNWtWeY2C1j707dtXfvnlF7nmmmvCOjNSbRA0AAAAIOb98MMPcvnll5cfhyVLlkh2drapTWjdunX58++++660bNmy0vG68sor5ZFHHpGkpCTp37+/ScH6+eefy9atW6Vnz57y6aefSlpaWkQfY4IGAAAAxLyZM2eamoGaLFu2rNpOzW+88YZMnDhRfvzxRykuLpZOnTrJeeedJ1dffbUZnyLSxXyfhunTp5uBPk4++WRp1aqVyemr0+rVq2s8eJpj+N5775X999/fRJQNGzaUPn36yFtvvRXQm/Lmm2+a9ej6dL26/vvuu8+cgHVNj5X/GNmm3XbbbZfWqx8+2/p69Ogh4a6mY3L22We7Wm9ZWZk89dRTcuihh5rUbjrp308//XRYje5ZnQ0bNshLL70k55xzjuy+++4mxV56errsueeeZkCb5cuXu1pvpJwvwf4sf//992bwn+bNm5tj2bFjR/n3v/9tjnO409esd92uu+460/5XBzbSO3I6yNOAAQNk2rRpnnwf/fHHHxLuzR9qeg0FBQUxda7o90Jtfmd0+vLLL6PqXFm0aJEZJVjPi3333VcSExPNvt111101LvvZZ5+ZNvNNmjQxd7T1e/amm24qT/fpxl9//WX2Re+0a5t8fdR/L126VKKRfl/r72pNUweHLEiDBg0yzZN0XIz8/HzTLOn666+PioBBxfw4DXoxo2/urtKT4eijj5Y5c+aYH7/jjjvOfDB1dD89Ydy2XbvqqqtkwoQJ5ouiX79+pn2crlNPuqlTp8onn3xSp9VbBxxwgAwdOtSx/IMPPjBDodcmUq/OGWecUT5yYkUarUcKp+OjF/q7qrS01HwJvfPOO+ZiW6s8/T8OOgS9Pr722mthk3u7qlGjRsnkyZPN/u2zzz7m4lBzWc+bN8/8MD7//POmmlc/S9F2vgT7s6w3IwYPHiwlJSXmolsvAjUjx2OPPWaCE+1s17lzZwlX+r3of581UOjVq5cJpH7//XdzPHS65JJL5Mknn9xpQKaaaDCm303ViZQBOLX5gtP7l5CQsEvrivRzRT8rtt8ZPWf0O0RvoBx00EFRda488cQT5ntjVz300EPm+1Y/O0cccYQJFr/66isZN26cvP322+Y912BiV8yePVuOOeYYc72z9957m8/sr7/+atr46zmmvz/hcoMGIeKLcRdeeKFv3Lhxvo8//ti3YcMGvW1rplWrVlmXu/LKK818++67r2/jxo3lz8+fP9+XkZFhyqZOnbpL+/Luu++a5XT577//vvx5Xb9uR8uuueYaX7has2aNLyEhwezn7Nmzd2nZ9u3bm+WWLVvmi1T+cyeYHnroIbPO1q1b+5YuXVr+vP7dqlUrU/boo4/6wtW///1v3+233+5bvXp1pedzc3N9Z599ttn/Ro0a+TZv3hxV50uwP8v62UpPTzfLPfXUU+XPl5SU+M477zzzfPfu3X1lZWW+cPX555/7zjjjDN+XX365U9lrr71W/t3x4osv1nqdY8eONcvoY6QaOnSoeQ2TJk0Kyvqi4VypyfHHH29ex8UXXxx158ozzzzju/baa32TJ0/2LVy40Hf++eeb/b7zzjsdl/nhhx98cXFx5jM0ffr08ufz8vJ8/fv3N8vrZ29X6LL+35gbbrihUpn+W59v27atLz8/38WrRKSK+aBhpwNSi6BBL3CSk5PNfF9//fVO5frh1rIePXrs0puhX+S63F133bVT2VdffWXKUlJSfFu3bvWFIw2+dB/33HPPXV423C8C6yJoKC0t9bVo0cKs85VXXtmp/OWXXzZl+sWu80Ya/VHKzMw0r0FfSzSdL8H+LF933XVmmaOOOmqnMg3A6tevb8r15kekuuiii8xr0IucaLsQDGXQEO3nit6AiI+PN6/h22+/jfpzxX9+2IKGM88808wzfPjwncqWL19efrw0CKmtiRMnmmX22GOPnX5f9N/6vJY/+eSTu/iKEMnCs01DBPSD0P4M7dq1M1XK1TV5Ut9++62sXbu2Vutcs2aNqW6tuHxFWi3Ytm1bKSwsNNsPR5MmTTKPF110UV3vSlT45ptvZP369aYdqTbDqUqf03aSeo7NnTtXIo02t+rSpUuNI2lGGi8+y9qEy2l92pRDm30pbcYW6QMkRdO5UBei/Vx54YUXTD8vbS7jpslntNFrEX9/oOre8/bt25dfp/jPjdrwz6t98ao2f9V/n3XWWRF9HsGdmO/T4MaCBQvM48EHH1xtuXYCbtSokWzevNn0oNcO1rVdpy6n7U+ro9vTH1SdV9urhhNtO/nnn3+ajo1DhgwJKPDQ46ZtcfW49e7dW4488kiJJA8++KDpPKZtSzWw1HbcbkaB9J8T+uOoHRmr0vbwWqbz6XTYYYdJJNGOsf6O0FVT10Xy+RLsz3Jubq45n/zLOa3v5ZdfLt92JNLvD7fngqZJHDNmjDkXtF26BiCa3ELbvEeKGTNmmE6T+n43btxYDjnkENOpdVcGEY2Fc0WDhkBuTkXDuVLR4sWLTZ+Dmt5z/Y3elfe8pusc//OReh7BHYIGF/zDhOsFoRPNMKBfSk5DirtZp96drDhvONEOreqkk06SZs2auV7PHXfcsdNz2pFPR1kM5457FWkn+Ir0B0o7yuuPnXZOq63anhP6pR2O50RNnnvuOZP/WoOf448/PmrOl2B/litmmHJaZzh/N9SG1qj5Lwarq1Wrib8jdUV6Qag50wO5iRFKmmWsKg2g9LtVvz9qI9rPFe1Mr0GR1rCef/75rtYRDedKRf73UROyOAU+u/qea/Cpg5LV5jzauHGjSW6hSQ0Q/Wie5IJ+oJTtQ+LP6JKTk1Nn6wwV3XfNyBHI3Z8TTzzRXOjpD8KOHTvMl5v+iOoXljb10DRo4Z4qUKuGdVRI/eHW16B3gDRbid41/Pjjj02Nw66kTozkc6ImekdVU2+qW265ZZeCqXA/X4L9vvnXZ1tnpJ4HSmuJNI+5ZrHTFJOaFay2NEuWZofRwFlv0uikWWL05oWuTzPwaPaucKbZfDRbjmal0ffv77//Npm1Dj/8cFm3bp1pTqS542sj2s8V/80pPSa7mgkoGs6VUF+P2NZbMWtdJJ5LiLGahtGjR5v0nrvq2WefNW2KY5FXx+z11183dxq0eUht74hVpYOhVKQ5kHXSi0NNqacX4vqF//DDD0u4HpeqPzg6LoFO2sRAq8D1QlnTSWoqzlg+X3QMFG0OoCmK9cdfa2Ii6XxBcF166aVm/AYNrjWN467kM6/ubrO239Y7yToOiKb11UGVdLyCcM2TrvtXkd4t1hsMRx11lJx22mny/vvvm+8Mbeoay/TC1D8G0rBhw3Z5+Wg4V4C6FrFBg3b+1EFQdlUgg5z4+asA9UK5pu1kZWXV2TpDdcz8d3/0Ts2u5hOvibYL1x9MnfTL3YuLQK/PJW3XfuGFF5p919dQ26AhFOdEqI+LNkPRsSZWrFghxx57rBk9c1dz8tf1+RLq961ikwNdZ3W55L08D7x05ZVXmmZqOvjdp59+KnvssUfQ1q2DeT3++OOm+YQmCtDc9ZFEPxe33367CRp++ukn0wfG3yQkFs8VHY9G2+5r01/97gimSD5XvLwesa234vd8pJ1LiMHmSa+88kqtRu2rOrm9E16RfyTAlStXOs7jH1HaadRAp3XaMof4y2q7zlAcMx1BU7P8uL37Uxt77bWXeazNKN3hei65eQ21Oc8CPSdCeVy0uZAOcqbNtvQuqjbl2pVOnuFyvoT6s6zZT/yczgUvzwMv+/5oO3Jti63NcfzZk4IZQPr7V9XVuRCsc7m2ryFaz5WKN6d0NOJgD2YZyeeK/33cunVrpWZFgbznGjToManNeaTNxOjPEDsiNmioS/5MODrCZnV0eHVtL6lq+0Pon087Hzl1VvJvz00mHq/4v8g1a41XHU/9HbIiNbuF29fgf59/++23avtCaFt+Las4b7jSO3gaMCxcuNDUNGizp+oyQkXD+RLsz7LexfN/tpy+c8Lxu6Gmpm+aZUzvhGvA4JShJRA6mrq2VY/k7w7/uVzb1xCN54p/BGitAdDaF621DbZIPlc0bbWmrw72e17TdU4knkcIHEGDC9pGXds8agSuw6xXpR00lQ6vXpt0q0qrXDXrS8XlK9IOWxrZ651Z3X64dGD0Z/zwcmwGrZZWmoIwEmlOcW2Gs6uvQVOotmjRwuTzf/vtt3cq1+c0R7eeY+Gcr1wzJGnAoAGOBgzabEgzJkXr+eLFZ1nbtjutT5sJ+LPBnH766RLutA/L/fffbwIGbZLkP1bBpoGpNmfRC00vgpJQ8J/LGgz4xzSJpXPFT5uwqb59+5qU5sEWyeeKXotoXy6n91ybgs6ZM6fSuVEb/nn1HNTfsIr039qXMdLOIwRBXY8uF4kjQqsrr7zSzLfffvv5srOzy5///vvvfRkZGaZs6tSpOy03ZswYX5cuXcxjVe+++65ZTpfX9fjp+vfdd19Tds011/jCxXvvvWf2SUcYrc1Q8v369TOv/Z133tlpPfPnz99p/pycnPLjrNOnn37qC1c6YvMff/yx0/N///237+yzzzb7n5SU5Pv99993muf88883x+XRRx/dqeyhhx4yy7Zu3dq3dOnS8uf1b31Oy6pbLlxs2rTJfEb8I9TW5jyJhvPFzWdZX6e+Xn3dVa1Zs8aXnp5ulnv66afLny8pKTHnjz6vo1CXlZX5wtlNN91k9rVBgwa+7777rlbL6Pmtx0VfZ0UrVqwwI4nv2LGj2uPfqFEjs63zzjvPF64WLFjge//9933FxcU7jbj77LPP+lJTU81ruPnmm2PuXPErKiryNWvWzOz35MmTY+5cqc2I0PodExcX50tISPB99NFH5c/n5eWZEdZ1+TPOOGOn5ebOnWuOl05V6bKtWrUyy954442VyvTf+nybNm126TsdkS/mg4Y77rjDd+ihh5ZP/guObt26lT932WWXVfuBOuyww8y8DRs2NB/I4447zlwY6nOjRo2yfgHoY3VGjhxZfoGp69P16g+sPtezZ8+w+oAOGDDA7Nell15aq/nbt29v5p80aVKl5/0Xeu3atfOdeOKJvnPPPdfXt29fc1z1+cTERN/DDz/sC2ennHKK2dfdd9/d/H3OOef4evXqVR5A6o/4G2+8Ue2yvXv3NvOMHTt2pzL9oT/ttNPK16HHXCf/RcHAgQPNBUa48u+7/qANGjTInPfVTfrDHW3ny65+lvV1apm+7uro+aMXBTqPfi+dddZZvt122838u3nz5r4///zTF8704tj//XrwwQc7ngtVgyn9XOgy+jmpesHtD8yOOOIIE5zrZ08/g/7t6HmRm5vrC1f+4FLPXb240++NE044wZzb/tcwePDgnYKKaD9XqgZI/kCzuov+aDtXNACoeE3SpEmT8gv0is+vXbu20nIPPvhg+Xdtnz59zPdty5YtzXMaFGzcuHGnbc2YMaP89Vfn66+/Lv+t2Weffcxx00f9d7169XzffPONZ8cB4Snmgwb/RbxtqvoF5FdYWOi75557zIcoLS3N3HE/8sgjHS8OaxM0qNdff92sJysry6xX1z9+/HizvXCxfv16c3Gmr6W2dwydLgL1i+uiiy4ygZr+oOlFln4h7bXXXiYg+fnnn32R8MOmd6n0vdIveT02mZmZvgMOOMBcBFWsJdiVoEFpUPDkk0+aCy09LjrpnUJ9LtzvFvpfW01Tda89Gs6XXfks13QhqLSG5fTTT/c1bdrUl5ycbOYdMWKE+TyGO//rq2mq+vqdLgS11ub66683d9v1IlvPAT0X9ELppJNO8k2ZMiWsA2ql3wtXXXWVucGgNYdas5CSkmJej94QmDZtWrXLRfu5UpG+l/paL7/88hrnjYZzpeKFvG1atmzZTstq7areoNCaEz2PNCi64YYbTC1sTdtyogHmkCFDTK2DHjN91H//9ddfQX3diAxx+r9gNHMCAAAAEJ3oCA0AAADAiqABAAAAgBVBAwAAAAArggYAAAAAVgQNAAAAAKwIGgAAAABYETQAAAAAsCJoAAAAAGBF0AAAAADAiqABAEKoQ4cOEhcXVz4dddRRIdnua6+9Vmm7Os2cOTMk2wYARL7Eut4BAIhFZ5xxhmRkZMjee+8dku117NhRhg4dav7++OOP5e+//w7JdgEA0YGgAQDqwAMPPGBqHULl0EMPNZPq06cPQQMAYJfQPAkAAACAFUEDAFRjyZIlkpCQIA0bNpT8/HzHY6TNi7R/wPTp04NyHJcvX27Wp7UQZWVl8sgjj8h+++0n6enp0rJlS7n00ktl8+bNZt7CwkK58847Zc8995S0tDRp1aqVXHnllZKXl8d7CgAIKoIGAKhGp06d5MQTT5StW7fK5MmTqz1GM2bMkN9//93Me/zxxwf9OJ533nkyZswYad26tRx77LEmiHjqqadM52kNDPRRmzl16dLF/K3BjQYZZ555Ju8pACCo6NMAAA5GjhwpU6dOlYkTJ8rFF1+8U7k+ry6//HJTOxBMK1askMTERFm4cKG0b9/ePLdp0yY57LDDZMGCBeZRaxeWLl0qjRs3NuXLli2Tgw46SD766COZPXu29OzZk/cWABAU1DQAgAO9e6/Nj3766Sf5+uuvK5WtXr1a3n//fdNsaNiwYZ4cQ6018AcMSoODyy67zPz966+/ynPPPVceMPgzJGnthPr888892ScAQGwiaACAGmob1GOPPVbpeW0mVFJSIueee640aNAg6MdQaxmOOeaYnZ7ffffdzWO7du1kn332cSxfu3Zt0PcJABC7CBoAwELv3Gtn6HfeeUfWrVtnnisqKpJnnnnG/H3FFVd4cvy007MGDlXp2A7+oKE6mZmZ5rGgoMCT/QIAxCaCBgCw0OZH2p+huLhYnn76afPc22+/bcY5OOKII0xmI0++nOPjAyoHACCY+NUBgBqMGDHCpF/VoEGDB39TJa9qGQAACDcEDQBQA20KdOqpp5p+ArfeeqvMmTPHjIlw+umnc+wAADGBoAEAakEHTVPjx483j//617+q7XMAAEA0ImgAgFrQ/gvdunUzfyclJckll1zCcQMAxAyCBgCoJX8K1IEDB0qLFi04bgCAmEHdOgDUQmlpqbz22mvm73//+9+eHbMOHTqIz+dzLO/Tp4+1/IILLjATAADBRNAAALWgmZNWrFghhx12mJkCde2115oxF3TE6euuu87z92Du3LnyxBNPmL//+OMPz7cHAIguBA0A4GDRokVy//33y/r16+Xjjz82YyM88MADQTleOtaD6t+/f0iChmXLlsmLL77o+XYAANEpzmer5waAGDZz5kzp27evJCcny5577im33XabnHbaaXW9WwAAhBxBAwAAAAArsicBAAAAsCJoAAAAAGBF0AAAAADAiqABAAAAgBVBAwAAAAArggYAAAAAVgQNAAAAAKwIGgAAAABYETQAAAAAEJv/A4KXVQem2QvjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoaUlEQVR4nO3dCVyU1foH8IdVNkEUFBFwjVwyNcPKfUvbtWzXMs0Ws2tlZXWr23bbu+22admibV5LMy1NM00tRVMzl3AHRRRE2RGQ+X+e43+4qJxn4My8A8P8vvczF+Pw7u+885457/kdH5vNZiMAAAAAAAANX10BAAAAAAAAKg0AAAAAAOAQWhoAAAAAAECESgMAAAAAAIhQaQAAAAAAABEqDQAAAAAAIEKlAQAAAAAARKg0AAAAAACAyF8uhqqUl5dTeno6NWzYkHx8fLCTAAAAoM7icXzz8vIoNjaWfH1r//vi4uJiKikpsXQZgYGBFBQUZOkyvA0qDQa4whAfH+/6owEAAABgkbS0NIqLi6v1CkOj4EZ0jI5ZupyYmBjavXs3Kg4uhEqDAW5hsL/5wsPDTysvPl5OrrYuJdNoumaRwdqyg0eKxGm7J0aTqy1Zv19bdmZchLasXczp+9nZ/R3kp/+2ZUdGrrZs3Y4sbVn3dlEuny4uOszl54Wj4yvNd9/hAqPtkM4303U5WmD2TZV0rkmkY5i1I1tbdutN52jL9mXma8tWbsoQ1+e6ge2M5isdC+n4Htmvf18M7temzhz7/OJSbVlck1Cjbb+ut377ps3drC1r3kJ/7WKDurUwukZZcd2zwsqtB42Ovem2u3s6Z6d19Tx175nCgny6etA5FfcvtYlbGLjCMJgGkr9Ft6FlVEaLM35Wy0Jrg+ug0mDA/kgSVxiqqjQEWlBpCA0rNpourGGItiy/VD78VW2bs0LC9DcdYQ3DjdYl0IKLcpj+3oFCQo8ZbYPpdOHhYS4/L07MN9xoviHFvkbbIZ1vputS4mNWaZDWUyIdw6DgY0bbFybsz+AQ/Y2/M/OVjoV0fIuDyz3i2Jf76SsNoWGhRtsurWdwiP49GhIm36RJ85WuUVZc96wQGlbo1m1393TOTuvqeTr6TKhLj1QHUiAFUIAl8/ZFl11L1P6DbQAAAAAAUKeh0gAAAAAAbuXD//Ox6EUnWlSSkpKoY8eONGXKFBxdF8DjSbWgtLSUNv35J2UfPkzHjlWvI1DK/hyjZUWGNdCWHcmXl5253ey5b8kfOw9ryw5E6R8b+Lux/jGrEsPm30Ch+Xd/tr5JfXu6/ljk7Ylw+XTREUHVPi/8fP0oNKwhtWp3JjUMd/3xAwAA8BTJycmWPGrtrVBpcKPkNWto+ofT6Ls5c+jwYf3NM4Cz/AMC6NwL+tLgS66kwZdeVaeeYwUAAOB+B1b1PUCfBmug0mCBqjow/fjjjzR8+HCVkXzbbbfR5ZdfTi1atKDgYH26EUBNlZWVUXZ2Nv3888/09dez6N8P300FB3fSf/7znxpVHI4IyTS5WfpWGErUF8UIrUVrth0iE6kp+jSj4CYhRtP5B+s75g3q2VJbltivrbYs5YA+AEASLWwDm71it7YsSUimSUk9arTMpEH6tKatafp5Du2uj3ic+sUGbdltN3Q16ig6d02qtmzzNn0iU0CI/tgv36xPsurUXr+ve7RvSpKF6/ZpyyJDA43eo9L+Nk0QkvZph/hG5GqmqUOm21cbUg/JQQc6ic3xzTnUDlQa3GDFihWqwjB06FCaNWuWGnAEwCpcMT3rrLNo4sSJ6jnOu+++m8LCwujpp5/GTgcAgDrB18dHvSyZN/dpsFkya69Wt6rd9dQbb7xBiYmJqDCA202YMIEeeOABdQ5Wt/8MAAAAwKlQabBYQUEBzZ8/n0aOHIkWBqgVt9xyC+Xm5tKiRYtwBAAAoE7wUe0B1r3A9bBXLfbrr79SUVGRejwJoDZ06tRJtXRxvxoAAAAAE+jTYLFDh0508GzZUt+BEsBqCQkJlJmp7wAKAADgTujT4HlQaXACpzRUNZx75USEvQePqJ9BQfqsfdaqVSvau3dvxX9z0k1oaChFRETQGWecQd27d6drr72WevToQd6ub9++qgXnoYceohdeeMHh399zzz305ptv0sUXX0wLFiwgbxQSEkK7D2SflIAiJbNIaSjSdBnC+BYSKQkmv6hUW9alW6zR8mK66qdLTjGrXEkJSQuX7NCWDRUSiTIPy/uztFC/bxJ6h2nLioT57tqXY3ReSMdJSsdqHK8fT2TGohRtWV/hGEr7LVZYnnRuSylIpulfjpKOTNN1pOkSmoYZJQ+ZJiRJqWkSKenINI1M2nbTfeZov5meG9L5Jm2/bn/nB5QZrQdAZXg8yQ1qEnXZq1cvGj16NN188810ySWX0JlnnkkbN25UkZnnnXce9e/fn3bt2kXe7NZbb1U/P/30Uzp+/Lj4tyUlJTRz5syTprOy7wAf648//pjqGozTAAAAdQn6NHgeVBrqmHHjxqmbTn599dVXtGTJEjUQHHem5haHZcuWUc+ePWn3bn0+e313zTXXqBEeDxw4QD/88IP4t3PnzlX7Lzo6mq644gq3rSMAAABAfYJKgwfgb4m51WHNmjWq4nDw4EFVufBW/KjN9ddfr/49ffp08W/t5aNGjaKAAP3ATQAAAOD+Pg1WvcD1UGnwII0aNaLXX39d/ZtH/F23bl2VIwJPmzZNPcbUuHFjatCgAbVu3ZrGjx9PaWlp2nnv37+fHnzwQercuTM1bNhQ9afgxB1+5GbVqlUn/S1XXiZPnqz6V8TExKgo2WbNmqlRrhcvXnzavJ944glV8bnjjju0y+d58t/wKNm8DY7YK03z5s2jrKws7TbZY0ZPfTSJW3Cuuuoqat68uVr/pk2b0pVXXkm//fZblfPidbM/4sMVkQsuuED1N+Hf7dmzR/385JNPVPmYMWMq/p5fTz755Enz4jQtftzs/PPPV8eU+7vwY2i8T7lVpLL//ve/ah7cUrJv3+kjxy5cuJD8/PzUumzfvt3hfgMAAPAWSUlJ1LFjRzXQKTgPlQYPw515uTLAfvrpp5PK8vLy6MILL6TbbrtNVSjOPvts9UgOVxzee+896tatG61fv/60efINNI8g/Morr6i0p0GDBtGll16qbmg///xz+uCDD076+3/+85/qpre4uFh10OY42bi4OPr+++/V8nkgscq4wsI35ty34OjRo1Vul/0NzRULf3//al0IuIJTWlpKn332WZV/wzfx3OeB+4Jw7KgdD3Y2ePBg9egSpwrx+rdp00b9d58+fcTWi3/84x+qwsLryPuI58039dwPpW3btif1S7G/unbtWjF9enq6mobXgW/yeTu4FYkHXnv55Zfp3HPPPalD/NVXX62WyRWjG2644aQKFVeKbrrpJiovL6epU6eqVigAAABP6dNg1f/s4zQkJyfTli1b1ECn4DxUGjwM36Cec8456t+bN28+qezOO++kX375hS677DLauXOn+vesWbNo27Zt9Nprr6lvsa+77rqTOg9z68OIESPUzfzDDz+s/nvOnDn09ddfq2//+dvtUx+Fuv/++9Xv//zzT9XXgv+WKyncIsF9DbjFgm9o7bg1gvsh8EB3Vd2Q8w0x99/gx4duv/32au8Le+uB7ibf3iG5cisD31xzhaddu3aqArV69Wq1/r///rvaX/zoE+9H3bf23Pl65cqVKr2JK1Q8Hcfp8rJ69+59Wr8UftnH6LDZbCoBa9OmTWqduIWCK37ffPMN7dixQ+1X/h23VFTGlTlu1VmxYgU99thj6ndceeBHtDhGlS+GPF8AAAAAqyBy1QkcCVdVLFzleLbGDRuQq0VFRamflR9l2bp1K33xxRcUGxurbmb5EaPK7r33XnWDypGj3HmYKxbs1VdfpZycHPVo0fPPP3/asvixHX6d2tpRFX5kh29geT78rf1dd911UuwptzS8++67al0qp/nw41T8TTt/k84VjOrifgocu8o34WvXrlXf0tvxTT3f+Ffu/8DfyNsfFfryyy9VS8ypUa6PP/64ekzo/fffVzfrp+IWAn6syAQ/SsQVDm554Jafyi0q/O+XXnpJ/c3SpUvpr7/+Uq0/jFtpuFLFlUX+G15P7hDPlQhu6eFKUHU0jQg6Kd5x4brTH3eyMkJRijKNjwo1mmdaVoHRPJdvSNeWJSY0cnkcq1XCo/THQjq+UsxpUmK00X6LbhJidJxG9jvRQleVyhHBNVmX4JAAo2hYRxG3JpHB0+ec/OXOqQb1bOny96FptKjENE65b6cYo6hSSWLzcJfHn0oRp87Ew5pG9ZpGwOrWJdfsEmupyo/9unzehD4NVkBLgwfim19W+c3GlQH+Jptv6E+tMNhxPwdWuY+CfZTgmnzDb6+w8LfufIPNj0Nx3wd+8c0s+/vvv0/6e34MhysVfCPPN8aVt4VvoNndd99do3Vo0qRJxbf4H3300Ull9v/mFg77/uCWBX48iB8j4pvt6u6jyvhxIVPcKsO4ZaeqR7B8fX1VhaCq5fM4HvaWE65c8aNM3I+BW0n48TMAAAAAK6GlwQPZO/7a+zYw+9gNH374oXpJKo8MbH9+vn379tVePj/ic99996nHjXRyc08ffGbixImqo/Hbb79NF110kfod94PgdeD+FhwlW1P8mA9/C8+tLNxqwp2K8/Pz1WNZ9vJT9xE/uuXo2w3d6Ml8827KvnxuzeBXTZfP/VP40Sfe/4z7mnBfDAAAAE9zoueBr2XzBtdDpcHDcGuCvTMzdwQ+tfWBH33p0qWLOA/uiGuK+y5wZ2VO7HnxxRfVY03cmZgfA+Ibcb6R5XJez6q+pefHe/jxKB5nglOd7B2ga9rKYMedtrlPAVc8vv32W/UtPH/7zhUaTn/ijs2n7iN+BGro0KHVegTsVMHBwUbrWXn53PfB3mlap3LH7cqtO5XHpeD+FOjLAAAAAO6ASoOH4ceQjhw5ov49ZMiQit/Hx8dXJPfwN/nVxTf8/CgRd5bmzsGO8Df4XCHgRB9+NOlUUuwnP5LDSUrcmfedd95RjzVxPwtuMeGbfRP8SA93HOa+CvxIEs/H/mjSqR2K7fuIH2uqjVGb7csfNmyYqjzVBO9zTkriDuj8SNby5ctV53Z+nAqD1gEAgKexcjwFtDRYA30aPAh3WObHghhHm1aO8rR3Tv7uu+9UFGp12R8Tsj/y4kh2drb6yd/un4qXO3v2bHF6boXgR4j4xp478PLNMD9C5Mw3+Fw54MoDj13BlRDubMwtIRx3emq/Cm5B4Pi1U5OnXIE7LDPdOBP2Y2SveNXECy+8oFoZOnToQDNmzFBxstyyw/1IKke0AgAAAFgBLQ1O4JSGwCqSGiqnHmTnHSNn8Q0md1jm1CH+Jp8HJDv1Jp/7BHAHW75p50HL+Jv8U5+/50d2OE6VxyjgwdjYpEmT1A08Vza4BYAHYqs8cjKP25CSklIRJ8o3rYxvWseOHVvRyZgrDJyWxI8dSfim/cYbb1TL5EeZ+Ga/csqSCW4t4UoUd7AeOXKk+h2PfcD7qTLeLt4+biXhgdx4HezbZcdxtNyZmx+3qmlKEo9VwXQVEm5h4IoLR9lyRYc7M/OgbZVxKxL30bCPBcG4VYH7QPA6cYWDB97j9CuOaOWEJ35EiZOUHI14XXTs+EnnZof4RkbpHDMWpRgl6BQV6lNrUlKrHr+DjRqSaJQQtHG9Pl2nTEjQWbcvR1vWXUi6kRKCpLSirWlHjZKcHG0jCcsMC9afK0tW6SuhndpHGyUISab9sM1oOmnfSOeTo33q6hScSGGfOUrkkpKlpJQg6X0hve+lhCQprck0zUhKHVq+OcPoWEipQ9I2mKZKOdpvUnqU6T6tL3wqjadgxbzB9VBpqGM4fpTHC2AcQ8qdnv/444+Kb/j5cRS+2a3qm34er4DHW+BvpHmEYe7bwP0GuNLB+f8bN26kkpISFc9qrzTwDTePOsz9DZ599lm1fE454htQ/gab+0/wTb795ppvdnnwNv49z5v7DPC3+hxxyiMdc7TqqYO7VdUh2v4IEQ+Q5kznYjtureBKg70D8akjQNtx34nU1FR1w87rzn0H+LEsbunIyMigDRs2qH3I0bA1rTTwY0NPPfUUvfnmmyoylR9H4koRPz7EL/43V9p4m7nSxfudjxEfAz4u3FGa42O54sItCFxp4O3hR674d9z/o3Jfh+eee05VFrhvAz8qxo8rAQAAAFgBlYY6hh+t4Rfjb5Q5VpM7PPMYBDwwG39TrcPf+i9atEh9U82PsHCnZb4J5gHX+Ft3/haeb15P7YTLfSP4JpfTh7hFg198w8pjPvBz9Nz3wI5HieYxEfgbe75J5woK9xHgefDv+CbWEb5R5s7IfJNu2gG6qm/xuRWDK1lcIeIbcx0e64Bv8Lk1hteXt5cfLeJ9xJUy/hafW2tqisd94JYe/vafB43jkba5wsYtEPZ+B7xP+Saf+1TwceIB8rjlgft1cBkPLMd/y49wccdpHouCY2L5USuuSFTGFTueB7cyvf7669SvX7+KCFoAAIC6zNfHV70smTdaGiyBSkMdwS0BrsDfZvM30zXtWMzfdvONZ3Xwzbk99ehU/K39qTe3p1q8eLGqMHBrCD9W5Ap806+LSa0Kx7vWJOK1un0Q+Kbd0Y07j6vAfTv45ehYVh7TQnfcKg/yBwAAAGAFVBrArfgxG26RsPensGo0SAAAAKi7eNRmq0ZuxojQ1kClAdyC+1twh15+tIkfheJHrrgjNQAAAADUfeheDm7BiUT8HD+PM8DJRTwStD0dCAAAALyzT4NVL8b9QDt27Kh9pBpqBndtTtiXmU9hxb5iXGVMk4bqeXhOx7Hn+HsjrjDUxoBqcEJhUREFNgiqdtSjJDhEjnY1ibqUogdNJSRWPao3iwwNNIoOldZTivmUomjT03KM4zqlbcw8XGgUfyvFqkoRr9K6SBGv0rqYxqNKMb1StKb4nhBiVSXSecH6do01iiuVtkOKVZUidccMP30k+urEykoRzdJ6StNJ7zUpqtV0XZwhRcBKx1CKapWYRNxK61GfJScnqzAYcA20NFisSZMTH6ScgANQW/j8i2gUiQMAAAB1wolRGqx7geuh0mCxC3r1UtGY8+bNs3pRAFXiAfc2//UXXdC7H/YQAAAAGEGlwWKRkZE0aPBg+vzzz1XuPoC78bnXICiI+g0eip0PAAB1grXtDLi9tQL2qhvcdsedarCvu+66CxUHcKtvv/2WnnzySbry2hspNFT/rC8AAACABB2h3eCSyy6j96ZOpTtvu402bdpUMTIzj0Ds5+fnjlUAL8Gd7nNzc2np0qX09ddf06xZs+jCiy+nx//9cm2vGgAAQAVfHx/1sgL6NFjDx1bdoW6hAt+URUREUE5OTpW98nUpBd/P+47efONt+m3FMiorK6sYHRjAVfi84gH02FmdO9OQy66kW8ff49J4261pR41SW6RkmvioUKM0IykFSZKWVWCU9DO0e5zR8hau22e0DY5SpebN3qQtu3xEZzKxfEO6WxOwpLQbKbHH9LyQ1tM0zUY6n5whvS+kxB7TxCKJ6Tylc196P0nTSdcZ0+uTlEjkyPLNGUbTmR5D6TzVnYuFBXl0+6XdtPcttXEPdXvQWAr0sSZVssRWQh8Uf1Qntrc+QUuDG112+RV09nkD6Uh2Nq1dvZKOZmfTsWPHKsojG5pVII7k/W8ep5LmGeAr1/B3HMg1Wp+WzRoaLfPPvdnasg7xkUbbv/dQnrasa1t9ROTWtCPasphGIUb7W1pPSU3OCz8/X2oUGUldunSlM9u3tyxiEAAAwBnc74D/ZwX0abAGKg21ILJxY/XISG1/AyRlXVv17Ym0zLlrUo2+kTLNXR/Ru7XLv+WyIiPc9LwAAAAAcBVUGgAAAADArXx8fNTLknljnAZLeGV60uTJkytO1n//+9+1vToAAAAAAHWa17U0rFq1iv7zn/+oCgP6gAMAAAC434keDdZ8d23VfL2dV+3VwsJCuuWWW1TU6bBhw2p7dQAAAAAAPIJXtTQ88sgjtH37dpo/f77KsLeKacdciRSx1rdTjLZMF//qqOMxyy8q1ZYlJUZry6xI7DGN7ZP294xFKdqy4JAAl8cLSh2opeMrlUmdzp2JH5SYTjeyX1ujczHzcKFRtKYUg1lUqD+3c7P0y1sjLE86FtJ7SdoGR9eLdj3iyZ2xqhLpPN28Tb8dndpHG8WqpqZkacuGjTpHW5YipMJJ54wUfypdD01jXB2R4mgdXRdcff2SpjPdBtN4Y9MIXylyVfoctSoYRFof6ZzSnYv5eXUv3p3DFK0bpwGs4DX79ZdffqG33nqLbr75Zrrkkktqe3UAAAAAADyGV7Q05Ofn09ixY6lZs2b0+uuv1/bqAAAAAHg1HkvBqvEUME6DNbyi0vDAAw/Q7t276dtvv6XISP0gYQAAAAAA4IWPJy1atIjef/99uv7662n48OFG8+BRm3nY88ovAAAAADDD/RmsfLGkpCTq2LEjTZkyBYfJBep1S0NOTg7deuutFB0drfozmHr++efpqaeecum6AQAAAIB1kpOTKTxc36kcaqZeVxruvfde2rdvH3311VcUFRXlVOrSpEmTKv6bWxri4+NdnnogJaVIyTPLN2doy2IahxiltjiTkiNt/8xlO40SSKQUICmtSdpv037YZpSuM3vFbqOEFSmxJrqJ/jhJHKWWSAkk0nZIx0I6T6Xtl1JNJH27xmrLlqzaqy0b1LOl0bEIEJKzpCQUaX+GBevnmZKqP7fz9uWQJFd4f0vv31Lh/JYShKRkqfAos3PYdJ/edkNXo2uiRDp/peMkJdg5Ou9NE4uka6KUEiR9JkgpX6YpUMN6JBgdJ+m6Lu1TKZFIOtekVC1HpH3q7u2wIr3QKujT4HnqdaWB+zD4+/vTO++8o16Vbdt24obxww8/pMWLF1NMTAx9+eWXVc6nQYMG6gUAAAAA4I3qdaWBlZWV0bJly7Tle/bsUa+WLfXfSgIAAACA6/j6+KqXFTAitDXqdUfoo0ePks1mq/I1evRo9TfPPPOM+m+uOAAAAAAAgBe2NAAAAABA3XJilAarRoS2Zr7erl63NAAAAAAAgPPQ0gAAAAAAbuXj46telswb34lbwmsrDR9//LF6uZsUzSdFvkllppGFUrygozg4KdJPiuaTIlClbZTiYaX1lOYZLERrmq6naayoFNknRZweSskS57tG2G+mEbdSfKgU13lEiJaUjq+0/Z3am0XDmka8SnGG0n6RmMbtOppW2n4pVlYiTSdtf7xwnKTIUUfXKJ0jBSVGsaLSNiQm6ONPi4+XG0dgSpGk0rVGimOVIoWla43pe1s6TtK+kT67JKYxpqYcXUuka6n0eWi6rtLnr+7cL8zPM1oWQGVeW2kAAAAAgNqBPg2eB30aAAAAAABAhJYGAAAAAHArHwvHaUCfBmugpQEAAAAAAERoaQAAAAAAt/L5//9ZNW9wPVQaLLB8c4bRdFKShKMEDpM0DCnJic1dk+ryxA8pSSOxebhRyoS0b6TkCmnfmCYkSesiHV8pQWZE79b65QmpHY5SP6SEGcnQ7nHasulzNusnjAoxSrSRSEkwUtrLuIvbG71/pXlmbNJP165HvLYsPS2HTKUX6qeNjY/QluVmFRqlikllUgLW5m1mCVjSOTpjUYrRekrve2kbUlL1iWIS6ZxxlFQmJSRJ16FRQxKNrjXS9mceLjQ6TlLSj/T+dTdpfzpKOTK97kv7RjpvpM+EIL+qHyDJzdV/pgFUFyoNAAAAAOBevj7cscGaedvQ0mAF9GkAAAAAAAARWhoAAAAAwL18LGxpQJ8GS6ClAQAAAAAARKg0AAAAAIBb+fj4kI+vRa//b8FISkqijh070pQpU3B0XQCPJwEAAABAvZOcnEzh4fpkRqgZVBqcwPGhgVVEiJpGrEmxbVIcqRQPKkWjSvGnjuL+pGVK6zrth23asr5dY40j70xiZaXtl46FFFkokbZBijo0jUh0FM03e8VubVmSEOUqTVcmRKfGR4UaRTY62kaT5b014w9tWUJilFFU6eUjOhtF3xYK76XARsEkaSzEqkoxttJxKiosNXqPSoQgXuMY26QBbV0ejyrtM2nbTaOdHV1npflK55S0TCkyWSLFo0rrKb2361LkqhQXPWZ4J3FaaftNI3VNI9ilz986hxsDrOrTgPAkS+DxJAAAAAAAEKGlAQAAAADcP04DvyyBpgYroKUBAAAAAABEaGkAAAAAAPdCS4PHQUsDAAAAAACI0NJgASnZwDQtYvnmDJcnBElJTo7mO3PZTnFakwQS04QoKZVI2m8S6ThJ6SPSsTdNK5LSR6SEDUfLlJKVZixK0ZaVCuk6t93Q1eWpU1K6jrRvpCSc4Cb645t5WJ+EEiukFUlpNtlpOUYpQJu36efpKOkoWtjGMCEhatfGA9qyeTsPa8si2jYx2m/pwr5p1yPe6LwIDglweYqXlJAjvQ9Nz3tH8+1hOE/pGiVdS00TkqSEIClZyDTlyXTbO7WPNv6slD4vTD/zpXWtV+M0WJSeZNV8vR1aGgAAAAAAQISWBgAAAABwL/Rp8DhoaQAAAAAAABFaGgAAAADAvbjfgWUjQqNPgxXQ0gAAAAAAACK0NAAAAACAe6FPg8dBpcEJ61IyKTSsuEZRpabRqRIpVtWq2DYpIlSK7ZPiB6XIVSmaTyJFAZpGp0qkbZdI2xcZGkimwoIDjGJVpchKKTZXiniVoi6l+EwprpSEKE9p203XRYqPnDd7k7bMt4H+Upu8VB9fHCK8JxzFqppqGKffpzlC5GpiQiOjfSpFXUqkSF0pitaUFJ0pvZdGDUkU5yvFeUoxvlJksnSdla4nprGqptdS6f3kKObUJKZWuj47cw02jQs3nQ6gtqDSAAAAAADu5eN74mXVvMHlsFcBAAAAAECElgYAAAAAcCsfXx/1smTehPQkK6ClAQAAAAAARGhpAAAAAAD3QnqSx0GlwQm9OjSj8HA53aQmyQ6mTJMyHKU1SalMEin1Qko8kZKlJFLih5TqIa2ndJymz9msLYsV0nwk0n6RjqGUVuSIlIIk7dPlG9JdPs+Mtfu1ZREdmxolK4UlRpEJaZ5bhUQmKekoQEijkuRskRNk9EdCPhel861USB4KbBRslK4j7VPTpCMplcg0/UxKeTJNsXKUAiR+JgjTStsoHV8psch0PaV1kd73UiKV6fKka6KUODWsR4LxZ5P0WSltvxV062L6eQ5QGSoNAAAAAOBmFo4IjT4NlkCfBgAAAAAAEKGlAQAAAADqT58GG9KTrICWBgAAAAAAEKHSAAAAAAD1TlJSEnXs2JGmTJlC3qioqIg2btxIhw8fdsn8UGkAAAAAALfy8fGx9MWSk5Npy5YtNGHChHp7dH/99VeaNGmSqhxU9vnnn1PTpk3pnHPOoebNm9PTTz/t9LJ8bDabzem5eJnc3FyKiIigg9lHqoxclSJQJaZReBKr4t6kqDxTptF8kuSUTG1ZUmK0y9dTip3MPFxoFB9pej45il6Mjwo1ijuc+sUGbVmXbvrIVVObt+mP4aCeLY2OU/LSndqypAFtjc5D0/N3yaq9xlGtOTsPG8WjBgsRoVJsrhS3K5FiXAv3HNGWhbSK1JaVCee2dB5K71Ep3liaTnqf5WbJ12DpHE5oGmYU5Sqtq8SKiGrp+iV95knbHuTnaxSPKq2ntH1WfN45Il1PpLj0lAO5Vf4+Py+Xup8ZTzk5OTWOirfqHurxM56lIL8gS5ZRfLyYntn+aJ3YXqvddNNN9NVXX1F6ejpFRZ2IGk9LS6MzzjiDSkpKqFGjRnT06FFVkfr555+pX79+xstCSwMAAAAA1E5HaKteXmL16tXUpUuXigoD++yzz1SF4cknn6Ts7GxatmyZ+v0777zj1LJQaQAAAAAA8EBZWVkUF3dyKyG3KAQGBqrHllifPn3o/PPPp/Xr1zu1LFQaAAAAAMC9uN+BlS8vkZ+fT8HB/3sclXsdcF+Oc889l8LC/veYX6tWrdQjTM5ApQEAAAAAwAM1btyY9uzZU/Hf3JqQl5dHPXv2POnvSktLVeuDM1BpAAAAAAD3Qp8Gl8XKrlmzhn777Tf132+88Ybq9Dxw4MCT/m779u0qRckZGBHaCUvW76eQsNwaJWmM6N3aaFlSAoWUeCHZmnZULJeSRNydCFF8vFxblnooX1sWFiynz7g6dWpYjwRt2bQfthkld0ikRCZHSThSslTait3assbxEfrpsgqMjoXpubZwyQ6j9ZQSkqS0prQofYpKkZAQJKU1SXwbyJdoKSEpIfF/neJqct5I50W0kLokyQ/R75tO7aNdngIkkbZdKpO2XUoiI6mMiBKbhxslAUmk95OUBDRbeN9Ln11SmpEp6bouJStJ16Ajhp+jptdnZxLXpKQn6fNQdz7lyqcheLB77rmHFixYQL1791apVJwY1aZNGxoyZMhJ/R42bdpE119/vVPLQksDAAAAALgXWhpcYvDgwfTRRx9Ry5YtVWISR6rOmzePfH19T0pTKi8vdypulaGlAQAAAADAQ40ePVq9dO68804aO3bsSR2jTaClAQAAAADc6kTIkVUjQnvPwVy+fDmlpKSIf8PpSocOHaKVK1c6tSxUGgAAAAAAPFD//v3pxRdfdPh3L730Eg0YMMCpZeHxJAAAAABwLytHbrZ5UVMDnRibwR3Q0gAAAAAAUI8dOXKEgoKCnJoHWhqcMKhbCwoPD69RVJxprGqH+EbaMml5UnyiM7F9plFxUlSeFC8ozVOKLJS2X4qclfa3JOXA6RG81YlslKIlpQhf0whMRxGo0vZL+1SMnhRIMYmxQnTqro0HjNYlJVV/7AuFY1i454i2LLBZmFE0qhQNm5slR+oGhOiPYWpKlrYsWDhvxGUKkbPS+STF0UrHwvT8lmJzww23wTRWU7rmObpmSKRrovRZIq2r9J6RYkelYzhqSKJRxGtSYrRRxKs0nXQspHlK+9oZ0ueoaeSsR7Fy5OZ63qkhNTX1tFGhT/2dXVlZGW3evJkWLVpEbdvq48arA5UGAAAAAAAP0apVK9Xh22727Nnq5egRplGjRjm1XFQaAAAAAMC90KfBWEJCQkWlgVsYQkJCKCqq6gE9AwMDKS4ujkaMGEHjx483XygqDQAAAAAAnmPPnj0V/+ZB3K655ho1wJvV0NIAAAAAAG5lH1PBqnl7i+nTp1O7du3csixUGgAAAAAAPNBoYSRoV0OlwQnrUjIpNKy4RukUUkLD0O5xRtNZRUrJkRIqTNOjTBMq5q6pOjGAjejd2igNREq1kJJ+pP0iHd8Zi/SjOQYbJuQ4SsAyTccyTSUyNbKfPu1hppAsJZH2ac6x40YJSVIiUc7Ow/qVEdKTCtelk6iJPpUppFWk0fq06xFvlFYV1qW50f6WEovS03KMUpCkVCnT1DDpPWGa0saG9UggE9L1S7rWSNNJpM81qcw0IUlSfLzceH+bcCatSNrf0mee9JkvJW5JaYJ1jo+F4zSUe09LQ2XHjx+nw4cPU3Hx6femlftDmEKlAQAAAADAQyUnJ9O//vUvWrZsGR07dkx8bIsjWE2h0gAAAAAA9Sc9yar51kG///47DRw4sKJ1ITIyssoxxFwBlQYAAAAAAA/0xBNPqArD2LFj6dlnn6VmzZpZtixUGgAAAADAvTAitEusXr2azjzzTJo6darlqVHu710LAAAAAABO4z4KXbt2dUvMLFoaAAAAAMC90KfBJdq3b09ZWXKSoqug0uCEZpHBFNYwxGWRZ6YRa1aRoi6lyDuJacxp304xRtGhVsS/pgkRghLTqEMp4lQqY5u3ZRpFVppGIUr7beoXG4zmuXxzhrbskBA5m7FSH8UbmKCPOaUGfmQiMUEf15m8Zp+2LGPhDv1MY+WoR98G/kbHt0yIqs0XyoKEaE3TeFTx/Susi3SOLlm1V1uWSfrrjERaT2ldlm+QY3NnLttpFBktRYtK1z0pHlUiXZ8l0jVK+qyUPmOka6l0nJyJTpVI+1v67JKYfubrrpcF+XlG84O67/bbb6eJEyfSzp07qW1b/X2bK+DxJAAAAAColRGhrXp5U6XhhhtuoAsvvJAWLFigxmqwCloaAAAAAAA8UJs2bdTPPXv20OWXX07+/v7UvHlz8vU9vV2AK1PcImEKlQYAAAAAcC/0aXAJrizY2Ww2Ki0tpdTUqh/PdbYFBpUGAAAAAKh3kpKSyM/PjyZMmKBe9dHu3Wb9LE2g0gAAAAAA9W6chuTkZMtGR64rWrZs6bZlodLghHYx4VWejFLqgZTeIKUnSdNJSRKmSRnOpDdI6yqtT3JKplGCTkrqUaM0H2l5JOzTsOAAo3lKSSjSfpFSSxwd3yPx+pSgDvGNjBJfopvolzn/+63asjZdmhsl9kjbOH5skrZs4Tp9YlGqkLokJRL5C8d+nZDYE3KW2QidUsoRKzlapC0rKiw1mm+2kIIULBz7vl1jtWULl+gTojLW7teWJV2UaDRP430qbF9aVoHR8kqF4+AodUs6h01J1+cZi1KM1lNKCJKu3VKZ9L43vV6aJiCZztOZhChpurlrUmt8Xc8PKNNOA1BdqDQAAAAAgHuhT4NL5ebm0owZM2jVqlWUmZlJgwYNosmTJ6uylJQU1fehb9++FBQUZLwMVBoAAAAAADzUokWL6MYbb6QjR46oztDc4blFixYV5X///TcNHz6cvvjiC7r22muNl4NxGgAAAADAvXwsfnmJrVu30pVXXkk5OTk0fvx4+uqrr1TFobKhQ4dSSEgIzZ0716lloaUBAAAAAMADPffcc1RcXEyzZs2iq666Sv3uuuuuO+lvAgMDqWvXrrRx40anloWWBgAAAAConfQkq15eYunSpdSlS5eKCoNOXFwcHThwwKllodIAAAAAAOCBMjMzKTFRnzRnV1ZWRgUFZilwdng8yQkclxZYRWSaFGknmblsp1FcpxQrKpEiXh3FukkRmdL2m5ZJ0YOjhiQaxeglJUYbRadKkauSqV9s0JY1FqJRpWM/e4U8qEvGJn2koSQ4xGwbmyZGacvShShPSTJlGh0nKXJUUp57TFtWLE23Rb8usTecrS3btVH/zU95ep6wRDnKNWe9fr6BCRFGMa7SeSrF9EpRtQl9WhnFnHbppo94lUgRzZL4qFCjeXZqr7/OsCMFJS6PRY4MDSQT4y5ubxSPOu2HbUZRvKaxosN6JJAJKZ7c9HOUbU07arTfpKhaKY5VOi90n6O5Qfr51RYfXx/1smre3iIiIoL279dHV9vt2rWLmjY1P88ZWhoAAAAAADzQOeecQ+vWraPUVH1F+6+//lL9Gc477zynloVKAwAAAAC4F9KTXGLcuHGqI/QNN9xAGRmnt2xlZWWpv+FEJf7pDFQaAAAAAAA80NVXX03XXHMN/fbbb9S2bVsaMmSI+v3KlSvpiiuuoDZt2tCaNWvUOA4cveoM9GkAAAAAADezMuXIe/o0sM8//5zatWtHr7/+Oi1evFj9bvv27erFcav3338/vfDCC+QsVBoAAAAAADyUn58fPfvss/TAAw+oCFbu9FxeXk7x8fE0aNAgpztA26HS4GZSeoNpKo9ESg9yREpoWLJqr8u3XyKlgUgpUFIi04xFKdqyxAT9tsc0DjFK85GSZ6QkJyk5Skp0UeUD2pIJKR1LOhY71qRpy2I6xxhtv5QSIx2nzdsyjdJ8gjvqL65Fhwu1ZdRdnxKz44s/9dNFC8cwTE7BKc7Wr09Et+ZGyUoxvfTJNNlCApZ0fuft008XKaQLpaZkactyswqN9kv3ni3JhPS+l1KepDJn0tGkc7GHkCgnXfdMRTfR7xuJlCwkXWekZCHpmi+lHDlKE5RI6yolJKUcyDXaDil1Sto3dQ4nHFmVcuRF6UmVRUZGOhyvwRno0wAAAAAA4IHeeustOnLkiFuWhUoDAAAAALgX0pNc4p577qHY2Fi67rrr6Mcff1QpSVap95WG0tJSWrJkCT344IOUlJREjRo1ooCAAIqJiVG9yufPn1/bqwgAAAAAUGP8OBJXFGbNmkWXXnqp6sfw6KOPqk7QrlbvKw3Lli2jwYMH0yuvvEL79u2j3r17qx0cHR1N8+bNo8suu4zuuOMOS2tmAAAAAFAJJydZ+fIS//3vfyk9PV0lJ5199tnq35yU1L59e+rbty9Nnz6dCgrkvlXVVe8rDb6+vjRixAhavnw5HThwgL7//nv66quvaNOmTfTll1+qHucffPABffbZZ7W9qgAAAAAANdK4cWOaOHEirV+/Xr3uvvtuatKkCa1YsUIN6MZP14wdO1bdCzuj3lcaBg4cqGphffr0Oa2Mn/+65ZZb1L8//fTTWlg7AAAAAC/ka/HLS3Xp0oXeeOMN1eLA97+XXHIJHTt2jD7++GN1T+wMr49c7datm9oRaWn6qEiddSmZFBpWXKNperRvahT5Zhqj5kw0mxTXGhASYEnMqwnT2Lq+XWONovmOFJQYxeZmChGJUlSrM4Z2j9OWvftRsrYsSIiXPCJsY0TbJmRCilUtLdTHv64Ton/Lc4/pF3i4SFsUIkSnlhzVT0fp+vPet2O00b6WokNZ+Rb9eZOz4aB+wg5mx0na/gyhLEmI/k1eulNbFiJcvwYJ0anS+0mKTs0Q9rd0TXAmLluKVJZIEbfuvgZL1xmJdH2WmG6fFCMuxb9Kn9uOzhvp80mazvRzXXcfUeJEpCx4Jn9/f/U4fo8ePejFF1+kKVOmOP0ovtdXGuwdRZo312eaAwAAAICr05Ms6nvgPV0aqsQtC99++63qz/Dzzz+rgd5Yp06dyBleXWnIyMhQzTWM+z0AAAAAAHii1atXq/ta7rubk5OjWhYiIiLo+uuvpzFjxqhWB2d4baWhrKyMRo0apXZq586dVYKSVGPjl11urr65EQAAAABkPj4+6mUFq+ZbF3HID4f5fPLJJ7Rt2zZVUeDtHzBggKoo8JfiQUFBLlmW11Ya7rzzTjV+A/cu544igYH6YeCff/55euqpp9y6fgAAAAAAkoSEBPX4EVcWWrZsSaNHj1aVBf63q3llpYFHz/vwww8pMjKSfvrpJ0pMTBT//pFHHqFJkyad1NLAg2cAAAAAgBMjQlvBx/s6PI8dO5YGDRpk7bLIy9x///305ptvqpGhFy1aVJGeJGnQoIF6napXh2YUHh5eo7QEKSFp7ppUo9QHKYFCSkiS1sXRfCVSIoSUXCKlk0jbLyWlSNsgLS8yVN/yJNm4Xp8C1KVbrFE6x5pth7RlaVmuGbDlVJ3aRxsdw/S0HG1ZkZAeNXRQO23ZvOnrtGWXj+lulMgkCRaSwQrXCfNs4Ge0PCkh6fhy/TWB+XSI0pZFdNOHO+TsPKwtO5SSZZSOlbP+gNH7ol0P/Rcw+UWlRteZbOE8nLdSv0+ThnUwWpf4qFCjtDVHqWrRTUKMEouka4Zpapx0DZaWJ0lJ1S9v1JBEl6cCSqlL0nVt9ordJElK1F8vJdJ1f8aiFJduv2kCI3hG/9yICH2amit5VaVh8uTJ9Oqrr6qdyxWGc889t7ZXCQAAAMD7+PqceFk1by8R4aYKA/Oa4N6HH36YXn75ZbVz+ZGkpKSk2l4lAAAAAIBqe/rpp+m7776rsuzPP/+kffuqHvvlrbfeUo8xOcMrKg2PPfaYGtiCH0lChQEAAACglnHCkZWveurJJ5+kOXPmVFnGj9w/8cQTVZb98ccfNHfuXKeWXe8fT+La2LPPPqv+3a5dOzUiXlWioqLolVdecfPaAQAAAAA4jxOUnB312asrDdnZ2RX/Xrt2rXpVhaOpUGkAAAAAcAOkJ3mcev940i233FJR85Jee/bsqe1VBQAAAACok+p9S4OV5q9No5CwhjWKwlu+OUNbJk0nRcVJZVLkqLQujuLgpChAK0ixqkWF+ijEheuq7hDkKOpQOhYSKbZPioiUIv2kOD9peY62v02X5kZRrlJ8ZuN4fYrDiN6ttWXvfpRsFB26cMkObVnJ0SJtWWCjYG1Zznp9XCc10U8nKd+tj5YM7Kg/vuXNHcQehwcaRdzSsePaIn9h30hxtEUJ+mMfLFwvpPehtDzpPExI1EfRklAmvZ+k94RV0cdShDEJ1yhpO5as2qstixXev1IcqxRHGxasP4alwrVb+lyT1kW6dkufh9LypGuXI1K0ufQZLEXO1pv4VKQneZx639IAAAAAAADOQUsDAAAAALgX+jR4HFQaAAAAAAA8xIYNG9R4DTUp4987C5UGAAAAAHAvK8dTqMfjNLCNGzeqV03KOPTHx8n9gkoDAAAAAIAH6Nu3r9M3/6ZQaXDCmXERFNYw/LTfr9l2SDtN304x2rK5a1K1ZcN6JBisoZyy4EzyjrQ+0nZIyzRNLDIlHScpScPUkYISl6dzSKlLjkipTFLCSpdusdqy5KU7tWULhRSVIOG8yNunT5BpGKdPeyk5mG+0DVV/d+OYlNZkO6hP1ynJOaYt8+3aTFymtP0536doywIv0L/XyoQkHCmpTNp+aZ7+wnlBFOLy8zCk+enX7OqQtl1KARrUs6U4X9M0I+m9Hx8Vqi0bM7yT0TVRunZLqURSelBxd7MUICmJTtoGKRHQKtJnsLQ+0udvh/hGRseiruEbXx9OULJo3vXVL7/8UmvLRnoSAAAAAACI0NIAAAAAAO6F9CSPg5YGAAAAAAAQoaUBAAAAANwL6UkeBy0NAAAAAAAgQqUBAAAAANyLk5OsfHFKYFISdezYkaZMmYKj6wJ4PMkJ7WLCKTz89Pi+RCHSb9oP27Rlo4YkastSDuQarCFRckqmccynNK20PpGhgUZReaakiDkpljBMiHpMST2qLUtM0MfdSfKF2EkpJlCKapViUx3t7+Ub0o0iMtOy9PGhgY2CtWWpKVlG8Zmbt+nPw5ydh/Xr0kx/XiTP3aotCzkzSltWuOcIGSk5ri9rG6ktKt+i33aWI5WH6s/vkj8PGk1XKsRuxnTWx0lLstNyjOJ29YGy8rrkZrn+GhQQEmB0HWWd2kcbxZxuTTtqFOUpXROlWFnTeUrXWdOYbWm/SNc80xhTZyK4TeNoTT9HPSly1R2Sk5OrvE8DM6g0AAAAAIB7IT3J4+DxJAAAAAAAEKGlAQAAAADcC+lJHgeVBgAAAAAAD+Dn52c8rY+PD5WVlRlPj0oDAAAAALj/AXmrHpKvxw/f22y2WpmWodJggZnLdholJEnJDsN6JJCrOUqEkNKVpLQfiZTAIc1TSsuQpjNN7pDmKSUrSaRjLx0LKT3JESl5aFDPlkbJLFLKyEIhCadxfIS2bON6fZJTyUHhPD2oT3LyF1LMSkqPmyUk7dLvF1u+/jjZysq1Zcd/2ast8+8lp8uU/6U/vr5nCclaTYKNErCKhdQWqaw8U18W08v11zbp2jVjUYpRwpdk6KB2liTGmb4PpeuX6XXd3QlJ0+dsdnnilJT8JqUOOfq8kz7XpGu76fGVzildIlOJkNQEnqW8/PTPkwceeIDeeecduuOOO2j06NHUuvWJ9/mePXvok08+offff5/Gjx9Pr7zyilPLRqUBAAAAANwLfRpcYvr06fT666/TTz/9RAMGDDiprEuXLvTqq6/SFVdcQYMHD6YOHTrQrbfearwsVD0BAAAAADzQO++8Q7169TqtwlBZ//79qXfv3vTuu+86tSxUGgAAAADArbhTrpUvb7Ft2zaKj493+HctWrSgv//+26llodIAAAAAAOCB/P39adOmTQ7/7q+//lJ/6wxUGgAAAACgdtKTrHp5ifPPP19VCN58803t37z11luqYnHBBRc4tSx0hAYAAAAA8ED/+te/aPHixXTffffR119/TTfeeONJ6UkzZ86k3377TbUyPPbYY04tC5UGJxQfL6fA4+Uui7STItZqg2kE7PLNGUbzNI2Yk+LupOWZRrxKZVKEnhS9t2SVPnYzVogqdSQgJMBoXXdtPGB0nBISo7Rl6UIcq78Q2VgW3kBb1rCj/tjnbDGLBaZ9ufqyQP3XVz5t9Pul7Kdd2jJbcal+ecf00bCOYlXLtx3WT9dYH6safJk+GrjosP59WFak347ABP05nG0Y0yuRYlWDhfdEcEiEUayo9F6KDA0k01hkSaZwLPp2jTWKTpU+u3oI6yJdZ6XlSaRI6OSUTKPPA4kuqrQ6sdemnyXSuZEoREZL55su8r2wII/qHKQnuQS3Hnz++ec0btw4WrVqlaognDo2Q1hYGE2dOpV69uzp1LJQaQAAAAAA8FDXXHMN9e3bl6ZNm0bLli2jffv2VXR+7tevn4pZbd68udPLQaUBAAAAANwLLQ0u1axZM3r00UfVyype1FUEAAAAAABMoKUBAAAAANzLypQjL/xKPDc3l2bMmKH6NWRmZtKgQYNo8uTJqiwlJUV1iuZHmIKCgoyXgUoDAAAAAICHWrRokUpNOnLkiOr4zIPbcX8GOx7Ubfjw4fTFF1/Qtddea7wcVBosIKUwmCY7SIlEUjpDQtMwozQfR8kOKQdyjZImpHlK6yolSUz7YZtRUoqjVBOTJCcpVeqtGX8YpQ5J6ymlLjlKtEkv1Jd1F5JLJDsWV53cwWJ66fdNxsId+pnGhhml+dDhIm1RYEd96lDJzmxtmW2XPrXEtlf/nvAJ0p+HtoJjRtvgaN/4thbS2Br4Ge1TKc0oN0s/XeGeI9qywGb6bZBIywuP0l8Ti4TzXpKUGG2UZuNMSpBEWqZ0XZD2jZQCJF3XrUi+kz6fpJQnaTppXaTPmKHd48iU6T6VPvOlzwTdscjP06fQ1Rr0aXCJrVu30pVXXkklJSU0fvx41fH5uuuuO+lvhg4dSiEhITR37lxUGgAAAAAAvM1zzz1HxcXFNGvWLLrqqqvU706tNAQGBlLXrl1p48aNTi3LC5/6AgAAAIDa5fO/1gZXv3jeXmLp0qXUpUuXigqDTlxcHB04oB+DqTpQaQAAAAAA8ECZmZmUmKgflNOurKyMCgoKnFoW+jQAAAAAgHshPcklIiIiaP/+/Q7/bteuXdS0qVm/Wju0NAAAAAAAeKBzzjmH1q1bR6mpqdq/+euvv1R/hvPOO8+pZaHSAAAAAADuZVV/BitTmeqgcePGqY7QN9xwA2VknJ66lZWVpf6Go1j5pzPweJKT0apSvKorSdF00joUHy83iphjyzekG8W8SvF0C9ftc3k0nRSrGh8VarQNpjGB0v6WYlXT03K0ZSTEXErxiSwsWL9vMoVozY3r9cf+iLAdl4/pri2b//1WbVlEn5ZGx1eK3SwRYkWP/bRLW+YTpo8zbHBhG21Z4ad/asvK9uljXAPaN9NPl3KYJD4H9fGSft1i9BMW6GNHS7ZkassyhDjaiB76971vuD7usUu3WG1Z8lz9OROYEGH0vk9J1UeVJiY0MroeStOlZcnPEEvl0nZIxgzvZHSdlUixqlL8q2lcqbS/+3bVnzMS6ZovXbtnLEoR5ysdf4kzUa41lRuk3z7wbFdffTVdc801Kj2pbdu21KtXL/X7lStX0hVXXEG//PIL5efn08iRI1X0qjNQaQAAAAAA98I4DS7z+eefU7t27ej111+nxYsXq99t375dvThu9f7776cXXnjB6eWg0gAAAAAA4KH8/Pzo2WefpQceeEBFsHKn5/LycoqPj6dBgwY53QHaDpUGAAAAAHAvpCe5XGRkpMPxGpyBjtAAAAAAAB5o4MCB9NJLLzn8u1deeUX9rTPQ0gAAAAAA7oU+DS7BHZ1btWrl8O/+/vtvWrZsmVPLQqXBAikHcrVlCU3DjFKQlm8+PUarOokQEmldnEmoMCVth5SelJQYbZSCZJqQNHvFbqN1kdKKOrWPNk5fMU08SU3J0pY1FhKb8otKjfZp+bEybVmRsG/y9umXJzparC3yObOJfrr9eWapS4H6tCa/SH0KTtl2fVqRT6B8ifYL1Sc92XbpE20kUnoURehTkHLWHzBKOlq3aq9+eeGBRqlL0ntGSrqRrjPRTfTXp83b9MfQkVjhvSaRrifSNUoipTVJCUnSupim4o0a4niE26qkHtIniply5rPQ0eesyf3Au7M3acvGj+hc5e9L3JT0CHVXaWkp+fo6dx6g0gAAAAAA7sVDKVg1noL3DNNQbZs2baImTYQvzKoBlQYAAAAAAA8xduzYk/57xYoVp/3OrqysjLZs2UIbNmxQ4zY4A5UGAAAAAHAvpCcZ+/jjjyv+7ePjQzt27FAvSWxsrIpldQYqDQAAAAAAHmL69Onqp81mUy0MvXv3pltvvbXKv+XB3eLi4uj888+ngIAAp5aLSgMAAAAAuBfSk4yNHj264t9PPvmkqhBU/p1VUGkAAAAAAPBAe/bscduyUGmoQ4qPlxtFgC5ct88sctNBNJ0UsTe0e5xRVJw0nSQ5JdNoPSOFSEpTI3q3NjoWEil6sKiw1DgKUIpATUiMMopjNRXYKNgoPnPj+nRtWcnObG2ZLVuIXC3Rv9eoqT5a03ZIH+VZfrRIX5arL7OVHteWHT+sj39lfi0j9fMt0c/XJ0Room7R0CiOlqSoVkF5ZqFRVKsUcxogbJ8U7SxFtUpxpEOHdzKOP5WuUdK6SmXS+z4l9ajLY6+leFQpclX6PJA+n0yv+dL2SdduR59b0rpKn4fSZ74U3T6oZ8saT5efp59f7aYnWThvcDlUGgAAAAAAPNixY8do6dKlahC33Nxc1d/hVNxp+vHHHzdeBioNAAAAAOBevj4nXlbN24t8++23dMcdd9Dhw4e1f8OVCFQaAAAAAAC80Nq1a+m6665T/77++utp8+bNaiC3hx9+mLZv304//fSTanngdCVOUXIGWhoAAAAAwL2QnuQSr7zyCh0/fly1NvDgbWPGjFGVBvuYDJmZmXTzzTfTDz/8QOvXr3dqWfoeOgAAAAAAUGetXLmSOnbsqB3tOTo6mr788ksqKCigp556yqllodIAAAAAALWTnmTVy0tkZmZS+/btK/7b3//EQ0TFxf9LEIyIiKB+/frRggULnFoWHk9ywo6MXAorqFncnWmMqRTpll+kj+RMaBpmHAWYlBhtNG1YcIBRBKy0b6SYU2nfSFGtpvOUpKflaMs6tdfvT4kz8adSxGDfTjHasneF7QiPCjE69iNHnaMte2vGH9oyf2GeZbH6eNDyY/rIUdtBfbSmzyH9+9eWr4+dPH5IH2lYflS/vPwi/b4OC9W/X9Qy9+mnDejUTFvm00wfH0pCBCx1aKIvO6yPlS3586C2LOQ8/XWvWLiWlhwU3qMN/LRFS4QIY2l5UvSx9D6TpnMU8yrFnEqk2FFHMc0m125TzsScmnyOSNc8Z0jLlO4HpOMrbb8UY6tTkK9/f4Jna9iwIZWVlZ1UQWDp6enUpk2bit/zaNAZGRlOLQstDQAAAADg/j4Nvha9eN5eIi4ujtLS0ir+297qwPGrdqWlpfT7779Ts2b6L5OqAy0NAAAAAAAeqHfv3jRt2jTKyclRrQyXXnqpekRp0qRJ6hGlhIQE+uCDD1TLw8iRI51aFloaAAAAAKB20pOsenmJ4cOHq9aGZcuWqf9u3rw5/fOf/6S8vDyaOHGiKp8/fz41atSI/v3vfzu1LLQ0AAAAAAB4oEGDBqnxGCp74oknqHPnzjRr1izKzs6mDh060L333qtaHZyBSgMAAAAAuJeVKUfe09CgddVVV6mXK6HS4ISDR4oov9S/1hMoRvZrqy0rPl5ulI7kiDStlNgkpT5I+0ZK2ZBIaT6mqUuSMcM7acumz9msLYuNP5F2UJWhg9oZr2d8lD4lZ8mqvdqygJAAozSYbCF1SUpkkhKSCtela8sCO+rPw5ImwUafJ1Kykk3Y9nIhnaSgKE9btjU/RVsWUyp3Wkvw0z9h6tswSF8mbIdvN33CTEjzcG1ZYa4+Ccb3jIZG51pxtraIIjo21Zbl7TNLMUtJ1afgRDcJMbrmBQvb5+gaJSXjSe9tU9L1RFpPKSHI3Z+HpqlLEkdpesN6JBh9BpuS0rp052Jurv56AJ5t4MCB6vGkTz/91PJloU8DAAAAALiXVclJ9peXWLVqFZWUmMUz1xQqDQAAAAAAHiguLo6OHTvmlmVV69mayoNDOMPHx4d27tzpknkBAAAAgIeyMuXIi9KTLrvsMpoxYwYVFBRQaKjrH1uscaVhz549Lqs0AAAAAACA8zgpad68earTM4/H0LJlS7JKtXvxXn311fTyyy8bL+iBBx6gb775xnh6AAAAAKgnkJ7kEvfffz916tSJvv/+ezrzzDOpW7du1KpVKwoODq7yy/sPP/zQ+kpDWFiYU7UXnh4AAAAAAFzj448/rniShztEr169Wr2q4pZKw9ChQ9UgEc7g6YcMGUL1Sa8OzSg8/PQIwpQDudpptqYdNYq7G9G7tbZs+eYMcnVsmyNSxKCkR/umRnGsUoyeNJ20vCAhrlIiHcOpX2zQlnXpFqstS8sqMIozdBSbK51TUvSkdG4s36CPQC0TIiKlsvJMIbKxgZ+2qGSnPpPTN1Yf81l+WB+PSiXHyUi5TT/LcrNki8gAfRSvw9U5qt+n/kJUrW3nEf1Mz4wyOk6SosNmcZ1SrKpEeq+VClG01ERfNHvFbqMYYlYkRLmOGpJIJqyIqJbiX6Xrs7RvJIlCvK/0+SNd16XPZmmepvvT0XZIn93SZ5c0TysiXi1jZcqRF6UnTZ8+3W3Lqlal4YcffnB6QZMmTVIvAAAAAABw3ujRo8ldMLgbAAAAALgX0pM8DioNAAAAAAAebsuWLWqwt8zMTNU5+oorrlC/Ly8vp7KyMgoMDKzdSsO+ffsoPT2diouLtX/Tt29fZxcDAAAAAPWFr4VDDHvZ0MVpaWk0ZswYWrp06UmPLdkrDVOnTqW77rqLFi1aRIMGDXJ/pWHWrFn02GOP0Y4dO8S/457aXLsBAAAAAADXyc7Opn79+qkx1c466yz1Rf0777xz0t9ce+21dPfdd9N3333n/krD119/TTfccAPZbDZq3LixyoNt2FCfVFJfcUpBYBVJBVIKg5SEExkaaJQIIaWBjOzX1jh1SUrQST2U7/JkJdPlSdNJyR1S8pCUkNQhvhGZkNIwUhalGM1zyaq9YrmUkCRZuET/ZUBCoj5BJ1pIgklNydKWlUXrpyvPPaYto2P6pKPy9Dz9dEISjJS6YSsx+wKknPSJJg189e/7sCB9SopaH5s+sckntIF+wkD99cQnQj+iaOFfB43SqoKE96iUquUvpPmUbNEngwUK6VBSQlDGHn1yVKTwXpKShRrHmydgSak9ptchibQd0vVSuj5L01mRLCQlJEmfvxIpHcrR9kvbIX12SZ/5UkKSbroSw7RAS6FPg0u8+OKLqsLA46Hxv/nL+lMrDZGRkSrFdMWKFU4ty6jS8Nxzz6mfb7zxhmru8PMzi9oDAAAAAAAzc+fOVV/ev/DCCxXjNVSlTZs2tHLlSnKGUdXz77//pgsuuID+8Y9/oMIAAAAAAGYtDVa96rgdO3bQnXfeSeeccw4FBASoG38Te/fuVfPw9ZVv6bkTND/K5PaWhkaNGjk1OjQAAAAAgLfavHkzff/999SjRw/1qOmRI8LAmoKgoCDKyxMex/1/qampFBFh/rikcUvDgAEDaP369U4tGAAAAAC8PD3Jqlcdd/nll6sE0m+++YbOO+884/m0b9+e/vjjDyoo0PdvzcrKoo0bN9LZZ59NzjDarf/6179o//796vkpAAAAAACoPkePE1XX1VdfTYcPH6ZJkyap8Riq8uCDD1JhYSFdd9117n88iWs1nPV6/fXXqw4YF198MSUkJGh3wM033+zUSgIAAABAPVIH05O4zy7f365bt069tm7dSsePH6dnnnlGDTNQneEIpkyZor7VLykpoXbt2tHIkSPpvvvuU/0WrDBhwgT65JNPaNq0aWqdr7rqKvX7nTt30quvvqrWac2aNdS1a1e65ZZbnFqW8TgNPOIcd6jgZ6R4ZST1tdLA0WZSLFpV+naKMYqKkyLWpAhB07g3R9Gpa7YdMprONKpVmk6K0YuP0sdHSqT4W9M41qlfbDCKMd24Pt0orpKtEyJZ23RpbhQTKcUySueiRIrW9BfO08J1+n1DDYRUt0ZB+rKsIm2Rb6NgbZl/XBNtWdQB/XUiivTXBHJwffEN1+8bnyDhWAQI+6ZJsFnE7bEy4/PU5LwgIVZVej9J0b8RHfVRnpu36SNexwzvpC2bPmczWRGLbBrfLZHev8kpmUaxqqYxp6akGFeJM+spLdM0gtw0clZ3ryDdQ8D/vPvuuyoZ1MS9996rpvX396eBAwdSWFgY/fzzz/TQQw/RvHnzVGUkOFi4vhriPg0LFy6ka665Rt2b27sPcLwqv7i/RFJSEs2ZM8fpiotRpeGjjz6i+++/X/2bn48644wz1M6p62qjBggAAAAAdb+lgQdH4/EOunXrphKJeIiBzz77zOF0c+bMURUGvhdetmyZmtbel4ArEHzz/vjjj9Mrr7xCVmjevLlaBlce5s+fT7t27VKPKsXHx6ungYYNGybGsVpaaXjttddUTYo7b1x22WXkCWqrBggAAAAAdd+4ceOM+h089//jlz388MMVFQYWFRWlBlrr06cPvf3226ri4GyCkWTo0KHqZRWjXhj8nBQPU+0pFYbKNcDVq1ermtjs2bNp+/btFSPk8YEEAAAAADfwsTA5yY3DNOzfv5+Sk5PVv2+88cbTynv37q2+8T927BgtWLCAPJlRpYGHo46ONnsOszY4qgEyrgHm5OTU2joCAAAAgOvk5uae9OIbd1db//99CBo3bkytW7eu8m/OPffck/7WKtxp+9ChQ6q/se7l9seT+PmoJUuWqOelXBUZVds1wLS0NFUDvOGGG2phLQEAAAC8iBv6NPD9XWVPPPEEPfnkky5d1O7du9VPThHVsa+H/W8ZR6DaWx64DwL/93//+1/139xxuSaDKPN9Lg+HwP0ppIoR92soK9OHVlhSaeDoKd7QiRMnqjgnHpq6rqpuDZArDfy3Nak0rNx6kELDapa4IKUemKY+DO0eZzSdlIDkTJqElHRkOp2UQCGVLVy3zygNZVBP/Zs1LavA6BgubxJidAzXCEkojhKwlm/QpwtlHjY7vjlbDhmlz0gJOk2FtJuiQiF5J0y49hwt1peF6oMPbAWlRmlGxw/rz1/fRvoUr/I8fVqTX5OG+nVxkJBUnquf7/FN+mPoR/pjSP767Q85U38MC/cII50e1q+nf/dYo/Np18YD+nkKCUFFwntCSmSSrjMBIXLIhnQdkpKVpM8SaX1Mk5WkhCQpUU4iXb9SUo8abbuUOiTNs2/XWOPPZtNkIkefwa7+rPRGfG8XHv6/49egQQOXLyPv/0djDg3VX+ftYUHc2mHHLQKceFSZ/b+nT59e7XjU33//XfXVLS4urngaqPI2u5JRpWHq1KmqtYGjqbiXNo8QrRungWs1tdlfwLQGCAAAAACe29LAN89W3UA7q1WrVioO1VncesIVhrFjx9Kzzz5LzZo1I6sYVRq4aYcrA7yxe/fupY8//vi0v7GX13alwbQGWBk39VRu7tH9HQAAAAB4j4YNT7QIFxTon0LIzz/ROmRFBYYDfs4880z1hb4rYlVdXmng56asXrG65Pnnn6ennnqqtlcDAAAAoH6wJx1ZNW83thjYH4XSsZfZ/9aVuI8Cj/bsjvty45YGb6oBPvLIIzRp0qSTWhpO7VwDAAAAAN6lW7du6ufhw4fVY+5V9Z9du3at+lk5wdNV2rdvrwaRc4e6HX1UR2qA3HHG/lxcXX4+DgAAAMAT8DfjVr7cJS4uTqUdsc8///y0ch4LjO8z+V7ykksucfnyb7/9dvr111/VGGpW8/W2GmBVrKwBAgAAAED99c9//lP9fOGFF+iPP/6o+D3fe951113q33fffbclo0FzpYGTPy+88EKVbMpjNdTq40lcc2rbti2dd955TnXU4FpQVWMluKMGyBm2vB2PPvqoy2qA3ROjq2x1kOLQpDIp1m3umlSjCL0jBSVG0zmKwzONdZu9Qp9QFR+l76yenKKPJRzZr63RukhxhtL2SfGC037Ypi1LTGikLZv6xQZt2dBB7Yz2CwsW4h6lCMX532/VlrXro38mMzVF30QaJJxPGWv3G0Vy+rbW79PycP35bVutj6L1bRepLSv9da+2jKQLtfCtl29j/blWXqR//6ppA/y0ZX5N9XGtvpFB+pk2EsoEYrSocAwj+ujjjUuFuN2GcRFG00lxylJEsRTj2l2YZ4d4/TnqiLQ+UuxovhBHK133TeNYpelMo2GjhYhqibQ8UykHco3jyU1jZaUIWOnzKUgTC10ixEXX5/SkmuIbfvtNPrN/e//+++/T999/X/H7b7/9lpo3b17x38OHD1fDELz55pt0/vnn06BBg1QAD49pdvToUerVq5carsAKbdq0UT/37NlDl19+Ofn7+6t10yWaOtMiUa1Kw6hRo1RerDOVhvfee48+/fRTt1ca7DXAK6+8UtUAOSrW3qLgjhogAAAAANR93GeVv+Q+1b59+9TLrqoB1N544w1VOZgyZQqtWrWKSktL1RfuDz/8MN13332WjWnGlQU7Ti3l5epGfnb2sS2jjtCepjZrgAAAAABQ5xsaqH///k6NnXDttdeqlzu5c4yxalcafvzxRzXinKlt2/SPbbhDbdUAAQAAAACs0LKl/vHIWqs0ZGRkqJczantsh9qoAQIAAABAVS0N1twX2mfLfVr9/PxowoQJ6gVuqDQsXbrUycUAAAAAALgPh+B4S0x+bm4uzZgxQz1Nk5mZqR7Fnzx5sipLSUlRfR/69u1LQUFmYRfVrjT069fPeAHeSEo2kNIipPQk01SLYT0SjBMhpJQgibQdUmKPaSLGzGU7jRKZpFQL6Tilp+Voy2Lj9Z3p07L0Aww2FqaTElSklBhH6yMdX/9gfRJO5mF9UkjJ0SKjeQY2079nShroE4LKj5VpyyhXnzzk01xI//LXp4z4J0Zpy2zHy7VlvqENtGXlecX6dXFwbQ/oHKOfr3CcxO3P1J+nJBzDImF5SSO7aMuS5+qTunyj9e/RsqIAo8SxeR+s0ZZF9IgzSkhyhpS8IyUISdcoK1LxpOVJnzPS9VlKvpM+n6QUQilRbkTv0wfdqg5peY72qXT9Nk1IkhRrrkO639eqejIidF2waNEiFTR05MgR1SeDW3BatGhRUf7333+r/r1ffPGFU0/ceNluBQAAAACoH7Zu3aoSQnNycmj8+PH01VdfndaZe+jQoRQSEkJz5851allekZ4EAAAAAHWHlSM313YfWnd67rnnqLi4mGbNmkVXXXWV+t1111130t9w2E/Xrl1p48aNTi0LLQ0AAAAAAB5o6dKl1KVLl4oKgzTY8YED+kEqqwOVBgAAAAConYEarHp5iczMTEpMTHT4d2VlZVRQIPRZqwZUGgAAAAAAPFBERATt37/f4d/t2rWLmjbVh8pUByoNAAAAAOBWaGhwjXPOOYfWrVtHqamp2r/566+/VH+G8847z6lloSO0BaR4tqHd9ZF+yzc7N3heTWPWHEWqSuu6ZtshowhBKTpV2m/S8qQYV2ldJFKs6JjhnYzWs0N8I6NjkS1EvHbppo/sY0cK9LGjO37doy2LOfd/UW010rYJuVPJQTkKUauRPsu0fJP+GPqG66NT/Zro431JiI31j9FHK5an5+nnSUTH9+rPDT8pVjVUH1dKTfSRySFCnHJAiH6eyT+maMsCEyKMYnqlOOElq/Zqy9pdrG/Gzy8qNbp2zV6x22g6RxGhRUKk8riL2xvFlUrXRKlMuiZKsarS9Vn6fDKNf5WW5yg61WRdHDE9TkF++u9062R8KtSacePGqcjVG264gWbPnk0xMSdHcWdlZam/4UQl/ukMVBoAAAAAwL2s7HvgRX0arr76arrmmmtUelLbtm2pV69e6vcrV66kK664gn755RfKz8+nkSNHquhVtz+eNHDgQBoyZIhqDpG8+OKL6m8BAAAAAMD1Pv/8c3rkkUfUvxcvXqx+bt++nb7//nsqKSmh+++/nz7++GOnl2PU0sC1Fs7A7d+/vxpE4pJLLqny77Zt20bLli1zdh0BAAAAoD7x9SEfX4taBKyabx3l5+dHzz77LD3wwAMqgpU7PZeXl1N8fDwNGjTI6Q7QTj+e1LJlS9q3b58alnrKlCl02223uWSFAAAAAACgZiIjIx2O11Ar6UncyvDdd99RgwYN6M4776THHnvMtWsGAAAAAPWXj0Wv/5eUlEQdO3ZUX26D85zqCH3RRRepx48uvfRSev755yktLY0+/PBD8vf3jv7V+zLzKazY12XpFBIpgUNK7JFIaT6OxDQOIVdbviHdKIHCitSpxIRGRkkpYULaS0qqPiEpb58+Bad7z5ZG82RFQuJJ0kWOB4OpSlqWfnCY6Cb68yJdSIEqXKc/9hF99NtfsjNbW0YFpUbpSb6Ng7VlZdv1yyvP1Ccd2UrK9MsL1y/Pp6F+PVV5iP5aaxO23+dosX6mx47ry4T0JOkcNj3XpNSlXcK1NEi4PqWmZGnLGguJTDMW6dclWEiOcnR9jo8KNUo/kxKLJCN6tzZaV+m9LX2WSMlDUpqRaWJRonCOSmlFziQkWZFgKKVqmR5fb5ScnEzh4fpzor5ZtWoV7dixo8qyc889V1WgnOHvinzY33//nS6++GKaMWMGpaen07fffkthYda8AQEAAADAs3HfWH5ZNe/6rHv37pSSkqL6L3BlwG7q1Kn06aefVjnN2WefTevXr3dquS5pEuD+DVy7GTZsGC1ZsoR69+5NCxYscMWsAQAAAACASN1n883/rbfeelKFwY7HY+DOz5VxH+Q///yTfv75Z6dSTV32HFGjRo3op59+optvvpm+/vprOv/881WvbQAAAACAyjBMg5k5c+aolpT77ruvynIu4/vxyvbs2aPGcODB3+pEpYEFBgbSl19+qSoL//nPf2j//v2unD0AAAAAgNdas2aNesKnJv0TWrVqRZ07d1bTuj09qV+/ftS+vb5j6ssvv0xvvvmmM+sFAAAAAACV7Ny5k8466yyqCj+apHPGGWfQ7t36IBfLWhq444Ujd999t3oBAAAAAJwEzycZyc3NpYiIqpPeJk2aRNdcc02VZcHBwZSXp0/5qw7vyEZ1s76dYowi3yRSNJ1pHKs0HQvy8zWKiosMDTSKwxs1RB/LOHdNqlHcn7Q8ibR9UkSiFEU7rEeCW2Nj2dBB7Yy20TSOd/M2fUxgsRCRGdI91ijKM6JHnLYsZ80+bRll6mNjqUVDbZF/mT4+sbyJPjq1/HCRtswn0E9bZivWR7Uy34YN9PMVYkApWn8OUwP9+kjKj5UZxfRmfL1ZWxZzbSdtWW6W/nwKELZdOg+LCkuNYlWl6RyRrhnSfktKjDZ6b0uR0dI8pfhXU9J6ShGo0vXJ9LPCmc9K030qfSZI9wrS55oU8Qr1Q1hYGOXk5GgTkvhVlaNHj1JIiHNx+ag0AAAAAIBbIXLVTPPmzWnDhg01no6n4WlrZURoAAAAAABwn549e6qgoeXLl1d7Gv5bjl3t1auXU8tGpQEAAAAA3MvX4lc9NWrUKNXh+a677lL9Gxzhfgz8t9yyc+ONNzq17Hq8WwEAAAAA6o9+/frRhRdeSFu2bFGDu82fP1/7tzzQclJSEm3dulUN+DZgwACnlo0+DQAAAADgVujTYO7zzz9XjxqlpKTQFVdcQZGRkXTOOedQdPSJjveZmZn0xx9/0JEjR1SrRLt27dQ0zkKlwQntYsIpPDzcZQlJySmZRgkMEin1QUp8YCN6tzZKSJKWOXPZTqNUoszDhS5P0pC2Ib+o1Gg6KQ0kQ0ht2bg+XVuWkBhFpqT1kbZx4ZId2jL/YH2KTHiUWTJD4Tr99rcb3kFblp6mT1YiIc2o3cX6pK4dX/ypn2fLqmPuHDXb+u4V1jNEfxku3yfH4/m0i9QXBuhTkAIT9NtR8udB/Sw7Cikyx45rizJ+Ea41bfTv30MpWdqy8kz9+ymim76zX8O4CKOEJCmtSUpkOtJEfk84SuYxSReSPktMDe0eZ5Q8ZJq0J1m+QX+9GHexfgwp6bPZNIXQ0WeXdJxMSQlJuqTF/Dx9AiN4niZNmtDq1avV0AZffPEFZWdn0+LFi1VFrPJ4Db6+vnT99dfTlClTqFEjs1TEylBpAAAAAIB6N04DP5rj5+dHEyZMUK/6JCIigj777DN66qmn6Pvvv6d169ZRVtaJL1qioqJUy8Nll11Gbdu2ddkyUWkAAAAAgHonOTm5yidC6pM2bdrQxIkT3bIsVBoAAAAAwK0wILTnQXoSAAAAAACI0NIAAAAAAG6F9CTPg5YGAAAAAAAQoaXBCTsycimsoGbTmMavmU6ni19zFKnKgvz0dcqYxiFGyxzZr61RHJ60PIkUxypFoErrKcXdTf1ig7YsslusUayqtA2ODOuRoC2b9sM2o/VJFWIwMzZlaMt8G+gvNxF9WhrF7Uqk5Ulxs4HdY43iZgtX7NWvjL/+vXR8+xFtmU+gPjZVCRMiK/NLtEUlB/ON1jVnqRCdmqDvbBjYrLG2rHG8PgJVktvY7LwYNSTR6NqVEaVfXlpWgXGs6MJ1+4zOUynKNEw4T6XriRTVahrfLMWRmsbN9u0aa3R9lj5HpVhVR58/0nylz1HTeHZHEbBVKcgvojrHypGb8ZW4JbBbAQAAAABAhEoDAAAAANRKnwarXvXV8uXL1UjQtQGVBgAAAAAAD9C/f3964YUXKv574MCB9NJLL7ll2ejTAAAAAADuhYEajNlstop///LLL9SqVStyB7Q0AAAAAAB4gIYNG9KBAwdqZdloaXBCXHQYhYeH1SiBw4qEJClJQUqnmL1CSEJxkHohkZY5d02qccqISbKFlJAkMV1PKV1HSlgpKiy1JD3prRl/GKXWSIlFwU3MkqwkpcL2Swr36JOH6NhxbVFRnH55Jak5+rJS/TwpTp8eRLv0yTN+F7XRT5fu4FpyUIhvaxZqtG+kRCbfaP2xbxgXYXR8s9NyjM7RMiGxp1P7aG3ZjEX6Z4ETE/TvtSMF+jQqq1hxDZZI6UlSQlJSYrTRNdj0s0v6rJTSqIZ2j7PkcySxuf69v3xzhtE2mu4bXVpTbq7rr9vOQkODmbPPPpt+/vln+te//kXt2rVTv9uxYwd9+umn1Zr+5ptvNlwyKg0AAAAAAB5h8uTJdPXVV9Ozzz5b8buVK1eqV3Wg0gAAAAAAngNNDUYuv/xyWrNmDc2ZM4f27t1LH3/8MbVt25Z69epFVsPjSQAAAAAAHqJLly7qxbjS0Lt3b/roo48sXy4qDQAAAADgVj6+Pupl1by9xRNPPEHdunVzy7JQaQAAAACAeicpKYn8/PxowoQJ6lVfKw3ugkoDAAAAALgVtwVYNXCzfbbJyckUHi4k29UjZWVl9N///peWLl1K+/fvV79r0aIFDRgwQHWc9vd3/pYflQYLSPFsUlScaVSrabyeFJPniBQxJ5HiSvt2ijGaZ8qBXH1Z6lGjeEXT+NdBPVtqy7am6dclN0t/zsybvUlb1q5HvLg+UmRlmBAPK8VgJiRGact2rNdnRycN66At27xNH/UYEKJfT9/wBkbxt3n79NsXmKDfZ0VfbtaW+fXUxzlSG/25ZkvW7zOfsx28t/fpz306XKQvyzmmL+vQRFtUvlt/DhcJ+9v0PNy1Ub9vyo+VacuS//uXtizkrGZGscjSe1QS48R1ViJd20w/E0b2a2sUHSoxjRXVRYc6uuZLpM9Y03huZ9bHiv2mi47Nz3P9OkLdsWHDBlUx2L1790kDv7Fp06bR448/TrNmzaKuXbs6tRxUGgAAAADAvZCe5BLp6ek0ZMgQysrKombNmtH111+v0pTYrl276Msvv6SdO3fS0KFDVeWiefPmxstCpQEAAAAAwAO9+OKLqsIwbtw4euONNyg4OPik8ueee44mTpyoWhxeeukleu2114yXpW//AwAAAACwgI+Pj6Uvb/HDDz9QQkICvfvuu6dVGFhQUBC988476m/mz5/v1LJQaQAAAAAA8EBpaWnUs2dPlRKlw52gL7jgAvW3zsDjSQAAAABQC/FJFs7bSzRo0IBycx13dM/Ly1N/6wxUGpywLzOfwopr1lgjpR5IaQmmSRJSypGU5ORoXaX5Fh8vJxPvCilBUiqRtB3BQvKOLmXCUdKR5EhBibasQ7w+QSe/qFRbNmZ4J23Z7BW7xfWREl/i2+tTXfKFtBtpO2hwW6O0lzJh+6X0pPJcfQqQPltHVpKqT1Zq8WBPbVnGylRtWcy5LbRl2c3k96Gk5KA+7YdizeYbIry3pXwZKSFJSuPKFdKTpASshC76znzpwvI6Cef9ulV7tWWXXtbB6BrkzHt0/IjORklPC9ftM3r/LhG2PzwqxOi6J5GuwVJak7TtUiqgdF0f2j3O5cmGjj7XrUhM1H1uF+QLaWrg0Tp27KhiVrkVIT6+6kTF1NRU9TfOpifh8SQAAAAAqJURoa16eYubb76ZioqKaPDgwbRgwYLTyr///nu68MILqbi4WP2tM9DSAAAAAADggW677TaaPXs2LVmyhC6//HJq3LgxtW7dWpXxuA3Z2dlq7AauVPDfOgMtDQAAAABQK10arHp5Cz8/P5WKNHnyZAoNDaXDhw/T2rVr1Yv/zb976KGHVIuDr69zt/1oaQAAAAAA8FCBgYH0wgsv0FNPPaUqC/v371e/b9GiBZ177rlOd4C2Q6UBAAAAAGphQGhr2gS8aJiGk3DloFevXmQVPJ4EAAAAAAAitDRYQIqRMyXFqkpxf9J0prGijuLwpO2XynoI0aJSNJ0UaTii94nOQDWNlJXi96Q4w8zD+vjEyNBAbVlRYanR8uKjQkkklEsRqNFNhCjEDelkQoq/LS2UyvT7JqKjPnowZ+dhbVlgo9NHzbRr3CtBW5YxP0Vb5ntGY6PjW7IlU1sW0j2WJGXCMsuF+VLbSG1RrBCduitbf34fSsnSljWM088zb1+OUeSq9F6TtkGK62wjxLhmCNuenJJpdOwdrevcNalG85WuC9J2SHG0UsynRLrOmn5WhgnnhbR9Yly0wJl4cmlaqUz6zHMmArbutTRYN29wPbQ0AAAAAACACC0NAAAAAOBWaGnwPGhpAAAAAAAAEVoaAAAAAMCtfP7/f1bNG1wPLQ0AAAAAAB4oNTWV0tLS3LIstDQ44eCRIsov9a9RykSQn6/LE5KkeUrTSSkTjpItTFMfHKVQmJCSQqRUCylFhYTppAQOKXVp+pzN2rJBPVsa7TMpOcrRvpHSjNLT9Ik2xcJ5U36sTFtW2jycXG3UkERt2ZR3fzNK5cnNKjRKSCrP1E9XJCyPYvXHt/BvfSKRWp9oIX2mURCZ2LFG+PBJ17+3AztGG6VxSeehdCxytujfoySkahUJqUu5wnHKj9JvQ7bwfgkWtt2ZpLbEhEYuTyWSPhOkdZG2wfRzJFG4XkipUhLTzy1HSYPDeiQYfa5L+/tIQYlREp/u/iM31+x6YCkL05PsDQ1JSUlqxOQJEyaoV33UqlUruuCCC2jlypWWLwuVBgAAAACod5KTkyk83PVfWNUlvH2tW+vj5V0JlQYAAAAAcCukJ7lGx44d3fZ4Evo0AAAAAAB4oNtuu009msStKlZDSwMAAAAAuJWPj496WTVvbzFmzBhav349DRkyhB588EEaMWKE6ufQoEEDly8LlQYAAAAAAA/k5+dX8e/HH39cvaTKVFmZPrDEEVQaAAAAAMCtuC3A4vAkr2Cz2Sz526qg0uCE7onRVfbKN41VlVgxT0exfFLMnBSHJ5Ut35yhLevbKcYomk6KuJUiV6U4Uom0LlKkX6f2+khKiRQFWFRYanyMU1L1xzdciJeUSNGxySmZ2rJDKfpo0YZxEdqyGYtStGWBjYKNYmOlOFYpVpXy9RGJkhDh/VLcQI5FFtcnTB/LWP7zXm2Z78CWRvGwJUeLtGWZQsxp3j59XKkk6SJ93O66Vfrta9OluVF0qHQtkd6HUiywo/d3fpH8/nY105hP0+ulaayqSeSoo4jqEb1bG0eFS59r0nVWOjek88JRXDp4l/LycrctC5UGAAAAAHAr9GnwPEhPAgAAAAAAESoNAAAAAFAr4zRY9fI2O3fupMmTJ1Pv3r3pzDPPVP+2W716NX3wwQeUk2P2OKgdHk8CAAAAAPBQn3zyCd1555107Nixike/srL+11ewsLCQxo8fT4GBgXTLLbcYLwctDQAAAABQK+lJVr28xe+//07jxo1TFYKXXnpJtSqcmpLUr18/ioiIoHnz5jm1LLQ0WKD4eLlRCoOUliClMzhKQTIlJVRI22jKimSptKwCbVlSolmakZQqtXDdPqP9KaVhSIkmjjhK/TAhpUAt35CuLSsVEmakhKToJmbnd36IPgUpN8swfSRBv54SKVlIUr5bf645SjOSBF3VXltWkqpvvo7opk8eSkxopC1LXrrTLD3KMCVGSsCS3odSuk6YME+JlLrk6PotpTJJ6yNdMzrENzJKsDO9PkvrIn2OSOtpmtA3sl9bo+1zlFZk+hksfeZbce2G+umll15SlYT58+erR5Oq4uvrS127dqUtW7Y4tSy0NAAAAABAraQnWfXyFitXrqQePXpoKwx2MTExdODAAaeWhUoDAAAAAIAHOnr0KCUkJDj8u6KiIiopMX9ygeHxJAAAAABwKytTjryooYGaNGlCe/fqB7S027Fjh2ptcAZaGgAAAAAAPND5559Pa9eupc2bN4uPMHG5o0eYHEGlAQAAAADcCn0aXGPChAl0/PhxGjFiBG3YsOG08q1bt9LYsWPV/r7rrrucWhYqDQAAAAAAHmjQoEE0adIkSklJoe7du1NiYqKqICxcuJDOPvts6ty5M23fvp0efPBB1SrhjHrdp+HQoUP0448/qldycjKlpaWp2CnuMDJkyBC1k1u1auXy5ZrGqFkRsSbNU4oHdRR5J22jKSlGLzkl0yi2T4oldBSjZ2LXRn0yQfeeLY3mmV9UahxHOmNRirYsZ4s+CjLxokRtWUrqUaP1SS/UR3n27Rrr8hjX8CizGMQyYX+XHNSf94HN9O+1wEbBRvGgJWH6eFDl2HFtUUirSKN9c0jYfknyj/pzLcnwfCrcc2KgopoKFs5DKQJUiuKNF6KGpWulo+uMdG2TYmylOGnTaNG5a1K1ZZmHC43e91LErfQ5IkVbS/tU2i9SHKt0XgztHkemsbpSHKt07E0/K62IQ7eKleMpeFGXBuWVV15Ro0A/+eSTqu8C46QkfkVFRdETTzyhWiScVa8rDVwpmDlzpqoonHXWWXTFFVdQQUGBqkC89dZb9NFHH9G3335LF154YW2vKgAAAACAkdtuu00N8rZ+/XratWsXlZeXU3x8PCUlJZG/v2tu9+t1paFx48b01FNP0a233kotWrSo+H1+fr7auV9++SVdf/31qlYWGan/Vg4AAAAAXAfpSa7HjyWdc8456mWFel1pePPNN6v8fVhYGH344Ydq9Lzs7Gz1c9SoUW5fPwAAAAAAV+HRoQ8fPqx+chwrP23jKl7bETokJEQ9/8W4rwMAAAAAuIcPWTgitNf1aiD66aef6KKLLqKGDRtSs2bN1JgM/G/+HXeKdgWvrTSUlpbSnj171L+bN29e26sDAAAAAC7Ez/N37NiRpkyZUq/364MPPqgqB4sWLaLCwkLVysAvHgWaf3fJJZfQ/fff7/Ry6vXjSRJ+PCkrK4uCg4Pp4osvNprHvsx8Civ2dVmygZTAIOnRvqm2LMjP1zgRwjTZQpqvNJ0kKTHaKAVKSu6QUjak5UlpL226NDeaTiIlqDgibX+MYWJR3r4co3VNFVJ5Fi45kfbgSkVCspKUkCSlGTU+9399o06VsVKfPEPhgUbrEpgQoZ8npysdLSIT2Wn6YyiRErekhKSN6/Xnk0RKgJLSbqQ0LulcS0iMMnr/SuuSmpJFki7d9OsqkZLhpIQk09S4UUP0x3f2it1GyVJSup+0ntL+jo8KJROmKU+OPoOlz3Up5UriSQlJtZ2exME34eH6e7L6YMaMGfSf//xH3c/yOAyjR4+m1q1bqzL+cvyTTz6hd955h15//XXq1q2bU4/je2VLw6ZNm1StjD3++OOqGUdy7Ngxys3NPekFAAAAAFCbOA3Uz89PDS/w8ssvq7TQ0NBQ9erUqRO99NJLqowf23r77bfrZ0vD5MmT6bvvvqvxdNOmTROHyd63bx9dfvnlKkGJI1gffvhhh/N8/vnnVQoTAAAAADgP6Umu8ddff6n73j59+mj/xl7OLS/1stKQnp5Of//9d42n48qATkZGhho5b+/evTR06FD6+uuvVc3LkUceeUSN+WDHLQ2cfQsAAAAAUFuCgoIoNtbxY478N4GBDgYM9dRKAz+jxS9Xjg49cOBANcz24MGDac6cOdSgQYNqTct/V92/BQAAAACZPenIClbNty7q3r07/fnnnw7/jv/m3HPPdWpZXtGnITMzU1UYtm7dqloa+LEnrpkBAAAAAHiqRx99VN3fct8FHe7rwH/zz3/+s362NLgKJyRxhWHz5s2qwjBv3jzVwxwAAAAAagf6NJhZvnz5aa0qd999t3qUftasWXTTTTdVpCft3r1bPbWzbt06mjhxotMDvfnYOMi1nuLRngcMGKCaZPiRJG5hcEWFgfs0RERE0MHsI1VGeUkxp6ZRaY4i33SSUzKNIvscyRdiIkf0PnGy1nQ7pKhaKUJQiu2T4lhN4/ckUhSg6f505jhJMg/rIw2jm4QYTSdFXUpxu7s2HjCKsZXWRYqGbRinjzLNWa9fl4huzY2WJ5HWxdE8yzOF+MwGftoi33D945bde7bUliUv3akti2jbxGg7ghrrz7WAENef+1ac29J1VopvdhQt2rdTjLZs7ppUl1+/TGOopW2IEY6vdO2WPiuk6aSIU2l/Sp/NUqSso31juo3SPpUiXnXzzM/Lpe5nxlNOTk6tR5Da76G+/mUzhYQ1tGQZhfl5dG3/TnVie12Nb/yrevzKfjt/alnl3/OrrKzMeNn1uqVh3LhxqsLAO6lx48Y0fvz4Kv9u+PDh6gUAAAAA1jsxbrNFfRrq8YjQffv2rbU+G/W60sAtDfZaFicl6bRq1QqVBgAAAACo03755ZdaW3a9rjTU5o4FAAAAgKqhT4Pn8Yr0JAAAAAAAMFevWxoAAAAAoA7yOdHaYNW8vU1xcTGtXbtWDY7M/9a5+eabjZeBSoMT1qVkUmhYsUuSDZxJ0ZCSheKjQo1SLRytz9DucS5Pr5C2QyIlJEkpItJxktIypKQMKT3JNNFESnQpLdSnLjmjQ9dG2rIda9K0ZVuFZJodv+7RliVdlGi0T6VEm3k7D2vLcrYccnlCUvn2E32oqhJyXpxRWhOFy+dMTK8EbVmRcG5I2yElJFFuicsTkkwlJjQySgHqEK+fTrJk1V6jlCcpWcmRmcuEY2FBuh0J125p+wcJiVsS6bNCuj5L05nuT+mzUipzJiFJSgw0pVuX3CCz5EbwDC+//DI999xzKpnKEVQaAAAAAMBj+JKPelk1b2/x9ttv00MPPaT+3blzZzrjjDOoYUNromzR0gAAAAAA4KGVBn9/f5o9ezZdfvnlli4LlQYAAAAAcCukJ7nGnj171NgNVlcYGNKTAAAAAAA8UNOmTSk6Wh553lVQaQAAAACAWmlpsOrlLS6++GL67bffqLzc+s7uqDQAAAAAAHigJ554gkpKSmjixInqp5XQp8EJvTo0o/DwmkWmbU07qi0b1iPBKI5UinuTypxZV9OYU4lp5KzpNkixfVLEnrRPpW2QokMlo4YkGkXDsuw0fQzmbTd0NYoJDBFiAsU4yz6ttEUpqfrjFCzEWc77fIO2LLCZ8L5IjNKWpaeZRYcWJpSRicCECKP1dBStKUW5+kbrtyOms9l7LSw4wGg9TW3elmkUASpFoEpxytJ1Tbo+Tfthm7bMUWyw6bVN2t/Se1vSqX200XVP4ij229XTSTGuQX7m36EWH3f9N7zSPpWiWq1YF6v4+Piol1Xz9haxsbG0YsUKuuKKK+jMM8+kAQMGUEJCAvn6+la5Xx5//HHjZaHSAAAAAADggWw2G73xxhu0bds29YjSxx9/XGVlgf8OlQYAAAAA8CjcFoABoV0zsNtbb72lYlcvu+wyNU5DWJj5UyYStDQAAAAAAHigadOmUUhICP3666/UrVs3S5eFSgMAAAAAuBX6NLhGWloa9e/f3/IKA0N6EgAAAACAB4qJiaGGDRu6ZVloaXACpxQE1jCpQErgkFIPTNMpnElZkNY1LavAKEFn+eYMo3Qh030jrYtpspSUuiRtg7QuUhLK9DmbtWUBQrKQo/Qd0wSs2Hh92s/yDenasugmZoknUpJVmJDIJG3DulV7tWVNhX0mJQRlCsdCSoCS5iklObHwKP0+jejWXJzWZH2kfSqlGZUJaT7+wvKKhff2+LFJRqliRYX6dZk3e5O2LGlAW6Prk3TsHZGuC6YpdVaQ0oxMP4Ok66xpQpJ0XozsZ3Z8Ha2rtG+k+UqJcib7u8SJdCirYERo17jyyivpiy++oOLiYgoKCiIr1b2zCAAAAAAAHHryySepcePGdMMNN1BWVhZZCS0NAAAAAOBWaGlwjXvvvVeNzzBnzhz6+eefqXv37uI4DR9++KHxslBpAAAAAADwQB9//HHFYHZ5eXn0yy+/aP8WlQYAAAAA8Cg+//8/q+btLaZPn+62ZaGlAQAAAADAA40ePdpty0JHaAAAAAColT4NVr1YUlISdezYkaZMmYKj6wJoaXBCkJ+vetUkVlSKSqtqXnZ9O8Voy6TlJadkGkVZOoquizmUbxRlKkUISpGkUjyoKWldJPlCfGRSYrTLj8WwEZ3JVMqBXKPjJEUTSpGcOTsPk6tJ8b5SfOaujQeMlifN81CKPpmiYZw+ijZjk/49GiJEUkrxtizzcKFRxK00XaqwjSTE0XZqL5z7S3caRa5K+1S6Jpi+DxOFWNWN69ONopal94tVMcWm8c7DeiQYfc5IZi7TH/sRvVsbfVaaxp9K54XE0efP0O5xRvMVP/O7xhrNUxfj6ig2tr5KTk6m8HD9NRZqBpUGAAAAAHArjAjtGmPHjq3236IjNAAAAACAl6YnSezJSjabDZUGAAAAAPAsGKfB2vSk8vJy2rt3Ly1YsIDWrl2rxnPo0qWLU8vC40kAAAAAAPUwPenJJ5+kyZMn09SpU+mPP/5wallITwIAAACAWunTYNUL/ue5556jhg0b0r/+9S9yBloanMBpBIFVJBJIqQ+JQlKKabqBlNzhDCkxIjI00CidREoSkdJ8pDLTbZCSQuauSTVKOsrILjRKCpHWU1oXKSXFqoQkab+9m5ajLSsVUomk5B0ptaaxkC6Uc6xMW9auR7xRelBTIT1I1LaJUeLULuF8YkHCtSaT9NPm7dMfp/JM/XSZQppPunDsk4RUIimlTTpHpWuQlBAkvQ+l5Q0d1M5oeY7eo1KSlTSt9Fky7Ydt2rJRQxJd/hlkeu2Wko6kxECJ6WeslA7lKB1JSkGSliml25nSrUuJsI5Q//n7+9M555xDixcvdm4+LlsjAAAAAIBq4LYAq9oD0M5wuqKiIjpy5Ag5A1VPAAAAAIB6auvWrbRixQqKj9e3slcHWhoAAAAAwK2QnuQan376qbYsLy9PVRg+++wzKi4uphtvvNGpZaHSAAAAAADggW655Rax4zePz8CGDRtGjz32mFPLQqUBAAAAANwKI0K7xs0336ytNAQGBlKLFi1o8ODB1LNnT6eXhUoDAAAAAEA9HBHalVBpcDLaTIpaq2n8mhQ/J8W4OoqD00k9lC+WS8uUYvRihPlK0YQ13ZfVia2T4gylYyFFHUrbIB0L6fhKHEU2SqQISYm036RoQik6VYoGls61dUX6qNZDQjxqiBC9KG2fvxA3Ky1PIkW1BnfWR0tmbNLvaxYrRM5KkaQpwjxLpcjoBP25uHmbPmo5JfWo0bGX4o2l5QWEBLg8anjJqr3asvCoEKMYZhYsrKs0rRQtKsWqmkZpS9G4ptduaZ7SdSYtq8DoGErbJ52Hjq7dpp+VplHiEt3nmmmcrtUwnIJnQXoSAAAAAACI0NIAAAAAAG7l8///s2re3piWVN0+EKZQaQAAAAAAqAdpSY6g0gAAAAAAHgPjNJgZOHBgjSsNv/32GxUWFjpV2WBoaQAAAAAA8ACLFy+u9t/++uuvNHnyZCoqKlL/3blzZ6eWjUqDEziNILCGiQRSykTfTjHG62EF02QHKdVDSh6auWyntmxE79ZG6xLdRJ9qYboNpolU0vGduybVKEFFSu1gSYnRRsdCmk4izTM9LceoTEoekpgm70ikZCWJlOgibXtE2ybifHdtPKAt696zpVFij5S8M2NRilGCUFFhqdE5ky8kZ0nLyxb26biLzzG6ls4QErekc01K+nG0b6TEMemaYZrGJl33pH0jJdgtXLJDW5Zg+N6WPg+kpCPpGixtg6PrrMQ0WUpSV5OQagrjNFjnr7/+okceeYQWLFigBndLSEigp59+mm666San5otKAwAAAACAh0tLS6PHH3+cZs6cScePH6cmTZrQP//5T5owYYIa6M1ZqDQAAAAAgFuhT4PrHDlyhJ599ll65513qLi4mEJCQuiee+6hhx56iMLDzZ6cqAoqDQAAAAAAHqa4uJhee+01eumllyg3N5f8/Pzo9ttvpyeffJJiYsweeZeg0gAAAAAAboWWBnPl5eU0bdo01U/hwIEDqt/CVVddRc899xwlJur7pTkLlQYAAAAAAA/wzTff0KOPPkopKSmqstCvXz968cUXqUePHpYvG5UGAAAAAHArHjHAuhGh66+rr75aJU/Z+y1ccsklVFZWRqtWrarW9D179jReto+NqylQI/zcWEREBB3MPlJlBxMpdtM0xtQ0tk2KkXOGtB1S5J0UP2ga82nKNMrUdNul+ERTQ7vHieUL1+0zirOUSHGWQwe1c/mxSF6qj+K9fERno+M0e8VuMiHFY+bt0+8XSfmxMm1ZiIPo39j4CG1ZZGig0bkoRcCaKhPOtcbCNkj7W4qNlaYrFcrGDO9k9F6S9rUzpOMkvX9NI6ql65d0TZTev1LMqRQdKn2Oml67nYmvlkjz7dG+KbmayT0G37c0axxJOTk5Lu0Y68w91K9/7qawhtasS35eLvU5u3Wd2F5X8/X1NR6kjafjCoYptDQAAAAAgFuhT4MZHnPB2ZGdTaHSAAAAAADgAfbs2VNry0alAQAAAADcCiNCex7Xj28OAAAAAAD1CloaAAAAAMCt0KfB86ClAQAAAAAARGhpsIAU9ShFpy7fnGEU2ybFR8ZHhRpHzG1NO0ompHU1HXrEiv0mbZ8UDWsamyvpEN/IaD2lGEhnoiAzD+sjBCVLVu01mk6KDpViR6V9M//7rdqypolRRpGyUnRo954tXR63a1WUp2SQsB3S8Q2PCjGKU5aOoRQdOvWLDdqyLt1itWWbt2W6PKLYmeMkXaNMY0el7XAU02xy3ZPWRYpVdfd6SmXOROqaHsNE4dom7Tdpf+vmWWIY224lHqPBunEa6vNIDbWn7p1FAAAAAABQp6ClAQAAAADcCn0aPA9aGgAAAAAAQISWBgAAAABwK18fH/Wyat7gemhpAAAAAAAAEVoanLAuJZNCw4prlEokJYVICQ1rth3Slo3s11ZblnIgl0yZpldIaRFWpFc4SoEySSySUi2ktCZpXfp2itGWzV2T6vL1dJTAMWNRirYsOCRAKNMnHRUV6hNmEhP02yFJN0x5CjI8LxoLSU5SGpmUuBUWHGD0Pnv3o2SStOnS3Gjf5KzRv9fSz2pmlB4lJSQlp+gTiyTSdU9KSJLSqjq116+n6bVbYnp9crRM08QmKYnO9FhI6UES6domLU/ap9L2mX4eOto+04Qk0+Q/aft113zps6C2oE+D50FLAwAAAAAAiNDSAAAAAABuhZYGz4OWBgAAAAAAEKGlAQAAAADcCiNCex60NAAAAAAAgAiVBgAAAAColT4NVr1YUlISdezYkaZMmYKj6wJ4PMkJvTo0o/BwOfKyJpGjEil+ToqRM404tWo7pGg6iWlcqSnTeDppv0jHSYoelObpzLaPGpJodL5J0aJ9u8a6PHZzzPBORudwfkipUTRsqVCWpi2R41hTUo8a7evyY2XCEonyhQjUnC36+Ub0MItTliJXFy7ZoS0rOVqkLWvXI95ov0kRvsN6JBi9t2ev2G0UbS1FZy7fIIUGy+8Z6fhK1wwpclbafinKU7oOSdf1jOxCo2uJ9H4yvc5KpHPGKtLnmunnOpwsOTm5xvdpoIdKAwAAAAC4l48P+Vg1cjNGhLYEHk8CAAAAAAARWhoAAAAAwK0wToPnQUsDAAAAAACI0NIAAAAAAG7lY2GfBsv6Sng5H5vNZqvtlfA0ubm5FBERQTk5OVX2yq9LqQdBfuaNSVIiiBWk5A4pgaNH+6Zm6TpCMokkLDjAKIFDOi+k7ZNI6SOOEkg2rtenugQ3CTFKrZHWZ0Tv1kbHKfOwft9EC+sZGRpodK5tTTtqdM5IiUzBIQFGx8jR8ZVI6yPtN2kbpXN/18YD2rIgYX93ah/t8u2X1lM6L6TUIdPzydF72/Q9I5ESuSTStVRKSJI+16R1kZYnTScdJ+kabPqZJq2no30jXU+kc0papvS5rtvGgvw8uuT8RO19S23cQ23YuZ8aNrRmXfLycqlr2xZ1YnvrE7Q0AAAAAIBbcVuAVe0BaGewBvo0AAAAAACACC0NAAAAAOBW6NPgedDSAAAAAAAAIrQ0AAAAAIBbYZwGz4OWBgAAAAAAEKGlwQk7MnIprKBmEXuJzcPdGslpGi3pjKHd44xi9Eyj6aS4uw7xjVy+vL6dYoyOoSQl9ahRPGZSoj6u0lEUonRuLN+QbhQRKUVdSsdJilWVIl6T527VlsX0SjCKmx06qJ22bMmqvWSiVIg/TROmc3R8peMk7Tdp+xvHR2jL0tNytGX+wrEPECJnpfPQlHSOStcEKeZy9ordRusixYOy3KxCoyhi6Tpruk+l5UnXRNPrjOn2mUbKmka1ml7XHW2HaST63DWpNT6/8wPKqK5BepLnQUsDAAAAAACI0NIAAAAAAG7mc6Jjg1XzBpdDSwMAAAAAAIjQ0gAAAAAAboU+DZ7H61oa8vPzqU2bNhWDiuzbp++IBQAAAAAAXtjS8OCDD9KePXtcMq+DR4oov9S/RmkRxcfLjZYlzdM0WUlKdXCUUCGljJgmQpgmHZkmhTjafpMkDdNEqlFDEo1Sh6T0HNa3a6xR4omUvGN6LkrrGiyk60hJOO0GtzVKe5FSniSxQrLQjl/115WQVpHasiIhWWnhkh3i+nTpFmu03xISo4wSkqQUpMK/s4yWZ5p2IyVuSYljEum9lrEpQ1tW1LaJ0XuJdejZ0ug9Kq6r8D50lOZkQloXaRtM5yldg6RkIasSkkyPk0Q6htJnpW5dcoPM7j2shHEaPI9XtTT89NNP9N5779GECRNqe1UAAAAAADyG11QacnNz6dZbb6XWrVvTCy+8UNurAwAAAEDe3qfBqhe4ntc8nnTvvfeq/guLFy+m0NDQ2l4dAAAAAACP4RWVhvnz59P06dPp9ttvp4EDB9b26gAAAAB4N3Rq8Dj1/vGkI0eO0G233Ubx8fH08ssv1/bqAAAAAAB4nHrf0nD33XfTgQMH6IcffqDw8HCjeRw7dky9KvePAAAAAAAzGKfB89TZSsPkyZPpu+++q/F006ZNo969e6t/f/PNN/T555/TmDFj6KKLLjJel+eff56eeuqp037fPTG6yoqIFLEmxZFKEWtSxJwUoSdNJ0WqOpqvNK20TCmq1QpWROFJMZi33dBVWzZ7xW6j80LaBilS1ZGF68zGKJGOb0rqUaMYzPwifexofFSoUayoqeSUTKN1adenlVGMqXQM53+/lUwlJUYbbeOY4Z2MlpcqbIe0PFPSfpOij00jqn0b+BtFJjt6n0nvJ9MoU6lMunZL13wrrt3StbSxEG8sndtSHKkUq5rYXP+l4vLN+rhdqz6DTGPNdZGzhfl52mkAPL7SkJ6eTn///bfR4G0sKyuLxo8fT7GxsfTqq686tS6PPPIITZo06aSWBn7cCQAAAABqDl0aPE+drTTMmDFDvUytWLGCDh06RHFxcTR8+HDt311zzTXUoEEDuuWWW9SrKlzOLwAAAAAAb1RnKw2uwjGr/NL5/fff1c/+/fu7ca0AAAAAvBl6NXiaeltp4NYFm82mLffhdjF+JjotTbVGAAAAAACAl1UaAAAAAKBuQp8Gz4NKgxPWpWRSaFjxab/v2ynGKL1BSkuQEi8iQwONkhuktAhHpDQJ07QIaX1M17X4eDm5mpTqIZESP6TzQkqCkY69o2QWaVopRWX5hnRtWXBIALmalJBkmqyUsUl//rbrEW+0XzIP61N5OrWPNjq+3Xu2JMnG9fpjETOoHZmQ0n6kc0a67kmJRUtW7dWWxQrvNSmRKSw4wOg9Ibn0sg5G00lpPo72jbRPZy7bqS0b0bs1mZDOYSmxR/o8kN6HUtqc6WeFtC7SZ6y0P4sK9eluzpxTVtCdb/l59X5YLnADVBoAAAAAwK3Qo8HzeG2lQervAAAAAAAA/+O1lQYAAAAAqB3o0+B58JAbAAAAAACIUGkAAAAAAAARHk8CAAAAADdDV2hPg0qDE7onRlN4eHiNYj6lqDhpOil6b+6aVG3Z7BW7yZQU22dFxJxpVJ4URytFZEqG9UgwikicPmeztmzM8E5GcYamEbaOppUiK0f2a6ste3f2Jm1ZYkIjo+hFKdKwb9dYo2MhRdwma0uIhnaPMzrXpLjKzdsyjeJYpelYcJMQoyhXad9I00kRrymp+umihfUMMIzplWJVpWMoRcrmF+nPw+y0HP3yhHhb6X3m6FhI10SJtI3SvpGu66bX5x7aEvNYVemzUrrmS+9fKb7Z0eeddJ2Vru2mpIhu3X7L1W8eQLWh0gAAAAAAboWO0J4HfRoAAAAAAECElgYAAAAAcCv0aPA8aGkAAAAAAAARWhoAAAAAwL3Q1OBxUGlwAqciVJWMYJJs4EziRWRooFEKkLSejpImTJMkJKaJTFJyh2k6h+l6xvRsaTRPKQFLOr6O0nXCo0KM0rGkdBIp7UZKSJLSSaTppIQkKSlFKpPWRUrAGiQcXyk9SCKtZ2x8hDitlNgkXTNmLErRlpUKSVaNhfWRUoCkYyglFknnvkS6lpomMpGw7dL2Seeao+ulaTqYNE/TfWOaKmZ67psmEnWIb+TyRCZH2yetq/Q5a5qMZ/oZC+AsVBoAAAAAwK18/v9/Vs0bXA99GgAAAAAAQISWBgAAAABwL58TYzVYNW9wPbQ0AAAAAACACC0NAAAAAOBWCE/yPGhpAAAAAAAAEVoaLCDF5ElM41FNo0odRY66O9bNdHmm0XSmEXtSxKs0nXReSNGSUixhp/b62EVHUaZSbKG0b/p2jTXaRimS1HSe6Wk5ZGLHniPasnZ9WhnNM1iIos3bl2MU5SnFkbIiIXJVio4dM7yTtmz2it1GkaTJKfr439ysQuNYWRNS7KbpOSodX+ka7OjzQLpmSJHKR4T9Jl3bTfeNFNUqXb/6dooxus6YXtelbTeNQ3f0GStdS6V9ahr7LZ0zunXNz5Mj1muFj4WdGizrLOHd0NIAAAAAAAAitDQAAAAAgFuhT4PnQUsDAAAAAACI0NIAAAAAAG6FLg2eBy0NAAAAAAAgQkuDE3Zk5FJYgevSjCSmiRBSmSNS6oO0jVvTjholREmWb84wSueQtl9K4DA9hlKykpQ+IiWaSAkqHXq2FNdH2g4puUQipeRIopuEuDw564gTyUMmpHNb4i+kDknJM1KZM6RkmqREfSLXklV7jZK8jgjbLyVgSee3dCykxLGh3eOM3i/LN6Qbnb+Ozhnpmihth+n1UtpGKz67pGuwadKgaSqeKUfXJ9N0Q2ldpX1jkuBXkF9EdQ36NHgetDQAAAAAAIAILQ0AAAAA4F7o1OBx0NIAAAAAAAAitDQAAAAAgFuhT4PnQUsDAAAAAACI0NIAAAAAAG6FLg2eB5UGC0jxbFLUoWmEnhS/Zro8Z+L3pEhDKZpOjJVNPery9Qzy83V5xK1EilWV4vXGDO9U43g9u7SsKjKBq3GeSvONjwo1Oham8YpSZKUU1xke5fr4SOkYSlG0CYlRRud2366x4vpI0yYmNDLap1LMq7RPpXWR4naleUrrmZqSpS0LFpYnndvS+2Xcxe21ZdN+2Ga07Wzmsp0uf6+ZRgNLEa9ShHGYEKkrkfb3iN6tjeYpHV/ps7KufeabfnbptjE3N8jl6wHeB5UGAAAAAHAz9GrwNOjTAAAAAADgZjt27KBLLrmEwsLCKCoqiu666y4qKNC3wNU2tDQAAAAAgFt5e5+GnJwcGjhwIMXGxtKsWbMoOzubJk2aRAcPHqTZs2dTXYRKAwAAAACAG73//vuUmZlJa9eupaZNT/RFCQ4OphEjRtC6deuoe/fude544PEkAAAAAKiVHg1Wveq6BQsWqJYGe4WBXXHFFepRpe+//57qIrQ0OCEuOozCw8NqlJYgpfJYkZAkpTo4YjpfaTop1UPaN8EhZukckuLj5eQJZq/YrS1LSowWpzVNlrLifJPSk6Q0ECnNZ6hhslQauZ6UICNtg5RK4+j9KyUkScdeSsmRjOzXVls2d02qy5N3pLQqqWz5hnSjbZfSisTkN+E4mO5rq5LxpHlK7xkpFU+azvQaJJG2Xdo+6Tpjmuzn6LNEeg9L62PFfgPH/v77b1q0aJH6pp9fW7dupePHj9MzzzxDjz32mMPp+TGjKVOm0MaNG6mkpITatWtHI0eOpPvuu48CAk6+1m3ZsoVuvvnmk37n7+9PiYmJarl1ESoNAAAAAEDe3qfh3XffpTfeeMNo2nvvvVdNyzf+3ILALQY///wzPfTQQzRv3jxVGeHHj+yOHDlCjRqd/oVDZGSk6t9QF+HxJAAAAADwemeddRY98MADNHPmTPVt/0033VStfTJnzhxVYeCKwurVq2nhwoWqM/P27dupc+fOtGLFCnr88cc9fv+ipQEAAAAAyNvHaRg3btxJ/+3rW73v1p977jn18+GHH6Zzzjmn4vcco/rOO+9Qnz596O2331YVh4iIiIoWhaNHT39km1sgzjjjDKqL0NIAAAAAAGBg//79lJycrP594403nlbeu3dvio+Pp2PHjqnOz3YdOnQ4re8C959ISUlRZXURKg0AAAAAUCt9Gqx6ucv69evVz8aNG1Pr1q2r/Jtzzz33pL9lPKjb0qVLVeyqHfd9yM/Pp0svvZTqIjyeZMBms6mfeblVpy3k5+mTHXL14RxUkJ+nny43SFsmLi/IPCHIdL7SdIXiNurTKwoL9NPl5zUgE6b7Rto+UwX5RdqyQmF0SNNtt2r7pXnK53eIy98X0nTSPvU9rk/zyc/zNTq3A22BRusivSccbWN+QJnL11U6TtI8C4tLXb6/JUWFwjWowXGjbZf2p/z+ldOTpH0jHX8rrrNWvNdM95sVn3klQlpRfl6u0ee2M0l8VqyPbl3s9yv2+5e6wNH1zRXzPnUZDRo0UC9X2r37RMJhQkKC9m+4paHy37I77riD3nrrLRo2bJh6bIkfS+LB3fi/7ZWMugaVBgOHDx9WP9u1aunq4wEAUOF27AuvhuMPVty/2J+pry2BgYEUExNDZ1h8D8Wdku0363ZPPPEEPfnkky5dTl7eiUpzaGiouC6nVmI4OYnTlSZOnEhXX301BQUF0TXXXEOvvPIK1VWoNBjgJiiWmppa62++uoTfDPwGTUtLo/BwOdfaW2CfYL/gfMH7CNcWXHNrW05Ojvom3H7/Upv45pi/cedxDKzErSo+pzyn5OpWBmfxmAw//vgjeQpUGgzYe9NzhQE3x6fjfYL9gn1SHThXsF9qAucL9gnOFedUNw3IHRUHftUHDRs2VD8LpEeJ8088Uufp90Z14+wBAAAAAPAwrVq1Uj/5KQsde5n9bz0VKg0AAAAAAAa6detW0V+kckfnytauXat+Vh7DwROh0mCAn4njzjR17dm42ob9gn2CcwXvIVxbcL2tTfgcwn5xt7i4OEpKSlL//vzzz08r59GguaWBz02OWfVkPra6lL8FAAAAAFAH3HLLLfTJJ5/QM888Q4899pj27+bMmUNXXnmlSklatmxZRYsCtz4MGDCANm3aRPfff3+dTkaqDlQaAAAAAMDr/fHHH3TXXXdV7IedO3dSVlaWak1o0aJFxe+//fZbat68+Un765577qE333yTAgICaNCgQSqCdcmSJXT06FHq1asX/fTTTxQcHOzR+xiVBgAAAADwer/88otqGXBk9+7dVXZq/vrrr2nKlCm0YcMGKi0tpbZt29KoUaPovvvuU+NTeDqv79OwYMECNdDH5ZdfTrGxsSrTl1/79u1zuPM4Y/jFF1+kLl26qBplZGQk9e/fn/773/86dVBmzZql5sPz4/ny/F966SV1AtY23lf2fSS92rRpU6P58ptPmt/5559PdZ2jfXL99dcbzbe8vJzef/99Ou+881S0G7/43x988EGdGt2zKocOHaJPP/2UbrzxRjrjjDNUxF5ISAi1b99eDWizZ88eo/l6yvni6vfyunXr1OA/zZo1U/uydevW9I9//EPt57qOt5m/dXvwwQfV8788sBF/I8eDPF1xxRU0f/58S65H27Zto7r++IOjbSguLvaqc4WvC9X5nOHX8uXL69258vfff6uRgvnc6Ny5M/n7+6v1+/e//+1w2sWLF6vn5qOiotS32nytffTRRysiP03s2LFDrQt/287P5fNP/u9du3ZRfcPXa/5cdfRqpUlBuvbaa9XjSTwuRmFhoXos6aGHHqoXFQbm9eM08M0MH9ya4pPhwgsvpFWrVqkPv4suuki9KXl0Pz5hTJ9du/fee+mNN95QF4mBAweq5+N4nnzSzZs3jxYtWlSrzVtdu3al0aNHa8u/++47NRR6dWrqVRkxYkTFyImVcW3dU+j2D9/o19Tx48fVReibb75RN9vc5Gn/YOAh6Pnnl19+WWeyt081adIkmjlzplq/s846S90ccpZ1cnKy+lD86KOPVDMvv5fq2/ni6vcyfxlxww03UFlZmbrp5ptATuR4++23VeWEO9u1a9eO6iq+LtqPM1cUevfurSpSW7ZsUfuDX7fffju99957pw3I5AhXxvjaVBVPGYCTH1/QHT8/P78azcvTzxV+r0ifM3zO8DWEv0Dp3r17vTtX3n33XXXtqKnXXntNXXP5/dOnTx9VYfz111/pueeeo9mzZ6vjzpWJmli5ciUNGTJE3fN06tRJvW//+usv9Zw/n2f8GVRXvqQBN7B5uTFjxtiee+45248//mg7dOgQf22rXmlpaeJ099xzj/q7zp072zIzMyt+v3btWltYWJgqmzdvXo3W5dtvv1XT8fTr1q2r+D3Pn5fDZffff7+trtq/f7/Nz89PrefKlStrNG3Lli3VdLt377Z5Kvu540qvvfaammeLFi1su3btqvg9/zs2NlaVvfXWW7a66h//+Iftqaeesu3bt++k3+fl5dmuv/56tf6NGze2ZWdn16vzxdXvZX5vhYSEqOnef//9it+XlZXZRo0apX6flJRkKy8vt9VVS5YssY0YMcK2fPny08q+/PLLimvHJ598Uu15PvHEE2oa/umpRo8erbZh+vTpLplffThXHLn44ovVdtx222318lyZOnWq7YEHHrDNnDnTtnXrVttNN92k1v2ZZ57RTvPHH3/YfHx81PtowYIFFb8vKCiwDRo0SE3P77+a4GntnzOPPPLISWX83/z7+Ph4W2FhocFWgify+krDaTukGpUGvsEJDAxUf7dixYrTyvmNzWXnn39+jQ4GX8h5un//+9+nlf3666+qrEGDBrajR4/a6iKufPE6tm/fvsbT1vWbwNqoNBw/ftwWExOj5jljxozTyj/77DNVxhd1/ltPwx9IDRs2VNvA21KfzhdXv5cffPBBNc3gwYNPK+MKWEREhCrnLz881a233qq2gW9w6uONoLsqDfX9XOEvIHx9fdU2/P77715xrtjPEanScM0116i/GTdu3Glle/bsqdhnXAmprilTpqhpEhMTT/uM4f/m33P5e++9V8MtAk9VN59p8IB+ENyfISEhQTUpV/XIE/v9998pPT29WvPcv3+/am6tPH1l3CQYHx9Px44dU8uvi6ZPn65+3nrrrbW9KvXCb7/9RhkZGeoZUn4M51T8O35Oks+x1atXk6fhx63OPPNMhyNpehor3sv8CJdufvwoBz/2xfgxNk8fIKk+nQu1ob6fKx9//LHq58WPypg88lkf8f2IvU9QVce9ZcuWFfcq9vOjOux/y/3xTn0Elv/7uuuu8+hzCWrO6/s0mFi/fr36ee6551ZZzp2AGzduTNnZ2aoHPXewru48eTp+/rQqvDz+QOW/5edV6xJ+bnL79u2qY+PNN9/sVMWD9xs/i8v7rV+/ftS3b1/yJK+++qrqOMbPlXLFkp/jNhkF0n5O8Icjd2Q8FT8Pz2X8d/y64IILyJNwx1h7R+hTo+s8+Xxx9Xs5Ly9PnU/26XTz++yzzyqW7Yn4+mF6LnBM4sMPP6zOBX4unSsgHG7Bz7x7iqVLl6pOk3y8mzRpQj169FAdWmsyiKg3nCtcaXDmy6n6cK6cKiUlRfU5cHTc+XO6Jsfd0b2O/feeei5BzaHSYMA+TDjfEOpwugBflHRDipvMk7+drPy3dQl3aGWXXXYZNW3a1Hg+Tz/99Gm/4458PMpiXe64Vxl3gq+MP6C4ozx/2HHHtOqq7jnBF+y6eE448uGHH6r8a678XHzxxfXmfHH1e7lywpRunnX52lAd3KJmvxmsqlXNEXtH6sr4hpAz0535EsOdOGXsVFyB4msrXz+qo76fK9yZnitF3MJ60003Gc2jPpwrp7IfSw5l0VV+anrcuQLKA5NV51zKzMxUARccbAD1Gx5PMsBvJia9QeyJLrm5ubU2T3fhdedEDme+/bn00kvVjR5/IBQVFakLG3+I8sWKH/XgGLS6HhXIzcI8KiR/cPM28Lc/nFbC3xr++OOPqsWhJtGJnnxOOMLfqHL0Jnv88cdrVJmq6+eLq4+bfX7SPD31PGDcSsQ55pxix/GSnApWXZySxckwXHHmL2n4xQkx/OUFz48TeDi9qy7jNB9OyuFEGj5+Bw8eVMlaPXv2pAMHDqjHiTg7vjrq+7li/3KK90lNU4Dqw7lSG/ck0nwrJ9d54vkEXtTSMHnyZBXvWVPTpk1TzxR7I6v22VdffaW+ZeDHQ6r7jdipeDCUyjgDmV98c8iRenwjzhf8119/nerqfjn1A4fHJeAXP2LATeB8o8xxkhzF6c3nC4+Bwo8DcEQxf/hzS4wnnS/gWnfeeacav4Er1xzhWJM886q+beZnt/mbZB4HhGN9eVAlHq+gruak8/pVxt8U8xcMgwcPpiuvvJLmzp2rrhn8qKs345tS+xhIY8eOrfH09eFcAahtHltp4M6fPABKTTkzwImdvfmPb5QdLSc8PLzW5umufWb/9oe/qalpnrgj/Fw4f2Dyiy/uVtwEWn0u8XPtY8aMUevO21DdSoM7zgl37xd+DIXHmti7dy8NHTpUjZ5Z00z+2j5f3H3cKj9uwPOsKkveyvPASvfcc496TI0Hv/vpp58oMTHRZfPmwbzeeecd9egEBwVwbr0n4ffFU089pSoNGzduVH1g7I+DeOO5wuPR8HP7/OgvXztcydPPFSvvSaT5Vr7We9r5BF72eNKMGTOqNWrfqS/Tb8Irs48EmJqaqv0b+4jSulEDdfOUkkPsZdWdpzv2GY+gySk/pt/+VEeHDh3Uz+qM0l1XzyWTbajOeebsOeHO/cKPC/EgZ/zYFn+Lyo9y1aSTZ105X9z9XubkEzvduWDleWBl3x9+jpyfw+bHcezpSa6sQNr7V9XWueCqc7m621Bfz5XKX07xSMSuHszS088V+7E8evToSY8VOXPcudLA+6U65xI/Kob+DN7BYysNtcmehMMjbFaFh1bn5yVZdT8I7X/HHY90HZXsyzNJ4rGK/ULOqTVWdTy1d8by5HQLk22wH+fNmzdX2ReCn+Xnssp/W1fxN3hcYdi6datqaeDHnqpKhKoP54ur38v8DZ79vaW75tTFa4OjR984ZYy/CecKgy6dxRk8mjo/q+7J1w77uVzdbaiP54p9BGhuAeDWF261dTVPP1c4upojrF193B3d63jiuQTOQaXBAD+jzs88cu2bh1g/FXfQZDy0enXiVhk3uXLqS+XpK+MOW1yr529mefl1pQOjPfHDyrEZuFmacQShJ+JMcX4Mp6bbwBGqMTExKs9/9uzZp5Xz7zifm8+xupxXzglJXGHgCg5XGPixIU5Mqq/nixXvZX62XTc/fkTAngZz1VVXUV3HfVhefvllVWHgR5Ls+8rVuGLKj7PwjaYVlRJ3sJ/LXBmwj2niTeeKHT/CxgYMGKAizV3N088Vvh/h/ly6486Pg65ateqk86M67H/L5yF/jlXG/839GT3tXAIn1fbocp44IjS755571N+dffbZtqysrIrfr1u3zhYWFqbK5s2bd9p0Dz/8sO3MM89UP0/17bffqul4ep6PHc+/c+fOquz++++31RVz5sxR68QjjFZnGPmBAweqbf/mm29Om8/atWtP+/vc3NyK/cyvn376yVZX8YjN27ZtO+33Bw8etF1//fVq/QMCAmxbtmw57W9uuukmtV/eeuut08pee+01NW2LFi1su3btqvg9/5t/x2VVTVdXHD58WL1H7CPUVuc8qQ/ni8l7mbeTt5e3+1T79++3hYSEqOk++OCDit+XlZWp84d/z6NQl5eX2+qyRx99VK1ro0aNbGvWrKnWNHx+837h7axs7969aiTxoqKiKvd/48aN1bJGjRplq6vWr19vmzt3rq20tPS00XanTZtmCwoKUtvw2GOPed25YldSUmJr2rSpWu+ZM2d65blSnRGh+Trj4+Nj8/Pzs/3www8Vvy8oKFCjrPP0I0aMOG261atXq33Gr1PxtLGxsWraf/7znyeV8X/z7+Pi4mp0XQfP5vWVhqefftp23nnnVbzsNxzdunWr+N348eOrfDNdcMEF6m8jIyPVm/Giiy5SN4b8u0mTJolvfv5ZlYkTJ1bcYPL8eL78Acu/69WrV516c15xxRVqve68885q/X3Lli3V30+fPv2k39tv9BISEmyXXnqpbeTIkbYBAwao/cq/9/f3t73++uu2umzYsGFqXc844wz17xtvvNHWu3fvigokf4h//fXXVU7br18/9TdPPPHEaWX8QX/llVdWzIP3Ob/sNwVXX321usGoq+zrzh9m1157rTrvq3rxB3d9O19q+l7m7eQy3u6q8PnDNwT8N3xduu6662xt2rRR/92sWTPb9u3bbXUZ3xzbr6/nnnuu9lw4tTLF7wueht8np95w2ytmffr0UZVzfu/xe9C+HD4v8vLybHWVvXLJ5y7f2PF145JLLlHntn0bbrjhhtMqFfX9XDm1gmSvaFZ1018fzxWuAFS+L4mKiqq4Qa/8+/T09JOme/XVVyuut/3791fX3ObNm6vfcaUgMzPztGUtXbq0Yh9UZcWKFRWfN2eddZbad/yT/zs0NNT222+/WbYfoO7x+kqD/SZeep16AbI7duyY7fnnn1dvoODgYPWNe9++fbU3h9WpNLCvvvpKzSc8PFzNl+f/wgsvqOXVFRkZGermjLelut8Y6m4C+aJ16623qooaf6DxTRZfjDp06KAqJH/++afNEz7Y+FsqPlZ8ged907BhQ1vXrl3VTVDlVoKaVBoYVwree+89daPF+4Vf/E0h/66uf1to3zZHr6q2vT6cLzV5Lzu6EWTcwnLVVVfZoqOjbYGBgepvJ0yYoN6PdZ19+xy9Tt1+3Y0gt9o89NBD6tt2vsnmc4DPBb5Juuyyy2yff/55na5QM74u3HvvveoLBm455JaFBg0aqO3hLwTmz59f5XT1/VypjI8lb+tdd93l8G/ry7lS+UZeeu3evfu0abmFlb+k4NYTPpe4YvTII4+ollhHy9LhSubNN9+sWh14v/FP/u8dO3a4dLuh7vPh/3P2EScAAAAAAKi/0BEaAAAAAABEqDQAAAAAAIAIlQYAAAAAABCh0gAAAAAAACJUGgAAAAAAQIRKAwAAAAAAiFBpAAAAAAAAESoNAAAAAAAgQqUBAAAAAABEqDQAALhRq1atyMfHp+I1ePBgtyz3yy+/PGm5/Prll1/csmwAAPB8/rW9AgAA3mjEiBEUFhZGnTp1csvyWrduTaNHj1b//vHHH+ngwYNuWS4AANQPqDQAANSCV155RbU6uMt5552nXqx///6oNAAAQI3g8SQAAAAAABCh0gAAUIWdO3eSn58fRUZGUmFhoXYf8eNF3D9gwYIFLtmPe/bsUfPjVojy8nJ688036eyzz6aQkBBq3rw53XnnnZSdna3+9tixY/TMM89Q+/btKTg4mGJjY+mee+6hgoICHFMAAHApVBoAAKrQtm1buvTSS+no0aM0c+bMKvfR0qVLacuWLepvL774Ypfvx1GjRtHDDz9MLVq0oKFDh6pKxPvvv686T3PFgH/yY05nnnmm+jdXbriScc011+CYAgCAS6FPAwCAxsSJE2nevHk0ZcoUuu22204r59+zu+66S7UOuNLevXvJ39+ftm7dSi1btlS/O3z4MF1wwQW0fv169ZNbF3bt2kVNmjRR5bt376bu3bvTDz/8QCtXrqRevXrh2AIAgEugpQEAQIO/vefHjzZu3EgrVqw4qWzfvn00d+5c9djQ2LFjLdmH3GpgrzAwrhyMHz9e/fuvv/6iDz/8sKLCYE9I4tYJtmTJEkvWCQAAvBMqDQAADlob2Ntvv33S7/kxobKyMho5ciQ1atTI5fuQWxmGDBly2u/POOMM9TMhIYHOOussbXl6errL1wkAALwXKg0AAAL+5p47Q3/zzTd04MAB9buSkhKaOnWq+vfdd99tyf7jTs9ccTgVj+1grzRUpWHDhupncXGxJesFAADeCZUGAAABP37E/RlKS0vpgw8+UL+bPXu2GuegT58+KtnIkouzr69T5QAAAK6ETx0AAAcmTJig4le50sCVB/ujSla1MgAAANQ1qDQAADjAjwINHz5c9RP417/+RatWrVJjIlx11VXYdwAA4BVQaQAAqAYeNI298MIL6ucdd9xRZZ8DAACA+giVBgCAauD+C926dVP/DggIoNtvvx37DQAAvAYqDQAA1WSPQL366qspJiYG+w0AALwG2tYBAKrh+PHj9OWXX6p//+Mf/7Bsn7Vq1YpsNpu2vH///mL5Lbfcol4AAACuhEoDAEA1cHLS3r176YILLlAvZz3wwANqzAUecfrBBx+0/BisXr2a3n33XfXvbdu2Wb48AACoX1BpAADQ+Pvvv+nll1+mjIwM+vHHH9XYCK+88opL9heP9cAGDRrklkrD7t276ZNPPrF8OQAAUD/52KR2bgAAL/bLL7/QgAEDKDAwkNq3b09PPvkkXXnllbW9WgAAAG6HSgMAAAAAAIiQngQAAAAAACJUGgAAAAAAQIRKAwAAAAAAiFBpAAAAAAAAESoNAAAAAAAgQqUBAAAAAABEqDQAAAAAAIAIlQYAAAAAABCh0gAAAAAAACT5P8KrXdtpVImxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABp2UlEQVR4nO3dCZxN9f/48feMXYwl2fctKVkiyr5ECtlDQmhBX4SkRWhB8m2zlKWokJIoUaFQluwp2fe97ESW4f4f78/3d+Y/Zubembn3nnO317PH6Y57zj3n3HPPnTnv8/68P58ol8vlEgAAAABwI9rdDAAAAAAgaAAAAACQLDINAAAAADwiaAAAAADgEUEDAAAAAI8IGgAAAAB4RNAAAAAAwCOCBgAAAAAepfU8G0m5fv26HDlyRLJmzSpRUVEcJAAAELR0HN/z589L/vz5JTo68PeLL126JFeuXLF1G+nTp5eMGTPauo1IQ9DgBQ0YChUq5P9PAwAAwCYHDx6UggULBjxgyJ4pu1yWy7ZuJ2/evLJ3714CBz8iaPCCZhisL19MTIw/Pw8AAAC/OnfunLnZaV2/BJJmGDRgaCD1JK1Nl6GxEiuLj/1ktkW2wX8IGrxgNUnSgIGgAQAAhIJgalKdXtJLOklny7qjKdm1ReAbtgEAAAAIamQaAAAA4Kgo/c+mzEeUK3gyKuGEoCEArl69Kr///rucPHlSLl+2txAIQHDLkiWLaWtcsmTJQO8KAABuETQ4aM2aNTJp0iSZM2eOCRgAwFK2bFlp27at9OjRQ3Lnzs2BARDWtO7ArtoDahrsQdDgkO+//16aN29u+kh+/PHHpWnTplKgQAHJlCmTU7sAIEj7Tv/zzz/lyy+/lNGjR8vMmTNlyZIlprtAAACCBUGDA5YvX24ChkaNGsmsWbPMgCMAoPLkyWOaJj300EOyc+dOqVOnjtStW1fWrl1rmi4BQDiKjooyky3rligRly2rjmj0nuSAd999V0qXLk3AAMCjUqVKyQ8//CDbtm2Tb7/9lqMFAAgaBA02u3DhgsyfP18eeeQRMgwAknXHHXdIlSpVzE0GAAhXUSYfYN8E/+Oo2uyXX36Rf//91zRPAoCUaNGihamD0poHAACCATUNNvv777/NY5EiRezeFIAwUbhwYbl48aK54ZA5c+ZA7w4A+B01DaGHTIPNLl26ZB4zZszocbmiRYuaQU6sKTo6WrJmzSoFCxY0RZEDBgwwXbZCpFatWuYYDRo0KEWHo0+fPmb5Bx54gMOXxB1t7cHr0KFDNzyvxbjxz8ekpr59+5plu3TpYv49derUVB1fXV5fp68PFOt7t2/fPr+szzo28V27dk3KlCljbhxoEJASVqCQ0uUBALAbmQYHpGbEw+rVq8cN8qQXDCdOnJCNGzfK0qVL5b///a/Url1bPvroIylevLhEqm7duplmX5988om8/vrrkiZNGrfLXrlyRaZPnx73Ojvpxe/HH38sU6ZMCeiFcEotXrxY5s6dawJSDU6TUr58ealQoUKS8+6++26b9zA86Pn52muvSZs2bWTUqFEyZMiQZF9j1yipABAs7Kw9oKbBHgQNQaZ79+6JLji1XfN3331n7uwuW7ZM7r33Xlm1apUUK1ZMIpFefPXu3VuOHj1qjkuTJk3cLvv111+bgfRuueUWadasmaP7GeyeeeYZkwHzlLHRWpyhQ4d6XM+IESPMOvLlyyeh5scffzQjtOuYKXZq3bq1lCtXTt544w158sknGYMBABByaJ4UAqymNdo8Sbtk/Ouvv0xwEam06Ua7du3Mz3pX3xNrfseOHSVdunSO7F8oWLRokWzevNkEBTfffLNP69JgQZvfZMuWTUJNiRIlzL47cW507drVZA8nTpxo+7YAIFRqGuya4H8EDSEke/bs8s4775iff/rpJ1m/fn2iZWJjY2Xy5MmmTXrOnDklQ4YMJiPRo0cPOXjwoNt1Hz58WJ599llzN1RrKW666SYztoRmPVauXHnDshq8DBw40DRP0VFrdbA6HaBKR7nWJi8JaXMMDXz0Dqs7uk5dRu/46ntIjhU0zZs3zzThcveeFi5cmGTTJL3D3LJlS3PBq/ufO3du075fMzjJtVXXQOSee+4xF8lWe3h91KZJ6rHHHruh7X/CO/V64ahNzapVq2Y+U73bf+utt5pjqlmR+HSUYF2HZkoS1h0o7dNfm7/ovujAYCk1duxY8+iPZlSeahr0s9RzVs8rfZ/6Plq1aiV//PGH2/Xp8UrquFm0qZ7O13Pc13PZXU3D/v37TVagXr16pihZv0f6WdWoUUMmTJgg169fl9TSbpfTpk1rXp+ScxwAgGBC0BBiGjdubIIB625xfOfPn5f77rtPHn/8cRNQ3HnnnaZJjl7wfPDBB1KxYkVTH5GQXkBr3/CjR482vT3Vr19fHnzwQXORNGPGjER3Rl944QVz0atF3nfddZe5W61t4nUwKt2+DmYXnwYsemGutQVnzpxJ8n2NGzfOPGpgoRdWydF+7PWiUJuWfPrpp0kuoxfxWoRatWpVuf322+Oe1zb8DRo0ME2X9IJQ919rRPTfNWvW9Ji9+M9//mMCFt1HPUa6br3o7Ny5s7lrbdWl6L+tKX5NwJEjR8xrdB/0Il/fh2aRLl++LG+++aZUrlzZXLDGb9ai29TAqH379jdcbOrF8aOPPmouYCdNmmSyUCmhn5sGG3p3XYvK7aL7pU3JtBnUjh07TD2OnlsbNmwwAaeOeOxvqT2X3dFzSptcaTChAYcGmPo56j4/9dRT5n2ltjtUDZh0HXoO2PHeASCUaN2BXf9R02ATF1Lt7NmzerVgHpMzYcIEV1RUVLLLFSlSxKxzypQpyS7boEEDs2zHjh1veL5Dhw7m+SZNmrj++uuvG+a9/fbbZl6pUqVcsbGxcc8fOHDAlS1bNjNv0KBBrsuXL9/wOl3PL7/8csNzCxYscB05ciTRfq1cudIVExPjSpcunevQoUM3zHvkkUfMNt56661Erzt+/LgrQ4YM5nVHjx51pdQ777xj1lmuXLkk5+t71fkTJ06Me05/1udKlizp2rRp0w3LL1u2zJU1a1ZX+vTpXTt27Lhhnr5GJ31/q1atSnJ7nTt39vgZXr9+3VW9enWzTLdu3Vznzp2Lm3f16lVX//79zby6deve8Dr9TO6++24z77nnnotbvkaNGua5Xr16uVJj8eLF5nVVqlRxu0zt2rXNMkOGDEl2fe7e99ixY83zefLkcW3ZsuWG99qjR4+4Y6qvj0+36WnbS5YsMfN1H+Pz5ly2vnd79+694fk1a9a4/vjjj0TbPnz4sKt8+fLmNV988UWi+dZ7cqd3795m/quvvuryZM6cOWa5EydOeFwOAPx93eLUvrRN09rVMW17WyZdd7C833BCpiEE5cqVyzzGb8qydetW+eyzzyR//vzmjqo2t4lPi6j1jrbe3dbiYctbb70lZ8+eNU2LtKBVMwLx6Xq0SUbCbEdSRa/aZKdXr17m7r/etU/Y7al6//33E92h1eZUeqdd76prc6eU0joFzaJoU5d169bdME97V9L3Gr/+Qe98W01eZs6caTIx8eld98GDB5sel7QJSVI0Q6DNiryhd/dXrFhh7jZr5kebzlg0c6E96+hd8iVLlph6A4t+Jp9//rnkyJHDLLNgwQJ58cUXZfny5SbTo1mf1LCyTbfddluyyw4bNizJ7la1WU9yrKZ0eszjb0vfq553qfmsU8Kbc9kdzQDpZ5GQfr/0M1DejNhsZbw02wIAkSy5br19neB/9J4Ugqz21PG/FHohqRfjekEf/2I0Pm0Drstpu26rxyEddVY98cQTqdoHDVjmz59vLm5Pnz5tAgVltavfvn17ooswDSq0ZkAvnu+///6496IX0Orpp59O1T5oAa82LdILau2GVpv2WPTfSpuRWMdDL5a1aYg2I9KL7aRY7eQTtn23aGDjLT1eStv0J9UES8fm0MBFj6luP/5Fq16ka82Avl9tpqRN0bSO4YsvvjCBU2poIb1KSQG0uy5XrcDVHW06tWvXrrjgLiGtb2jbtq289957qdhzz7w9l93RQFZrYrQpkTZ10n/rd0yPfVLneEpYx9z6DAAACBUEDSHIKvy1ahvUnj17zOOHH35oJk+OHz8e97PVfl57kEkpbT+v7dQvXLjgdplz584lek67SdWgQYtwraBB6yB0H7TeQruSTS0tcNagQbMseqdZL0b/+eefuLvA8QugrWO0e/fuZO9CxD9G8aXkDrs71vY1m6FTarev9SlaT6HHX2n7fG/G69C78SomJibZZVPS5WpSrKJtDS6yZMmS5DL+7jLYm3PZnV9//VUefvhhOXDgQKrO8eRYx1wDbQCIZP+rPIi2bd3wP4KGEKN3Oq3mJVoInDD7oHeF9e6wJ1qI6y0tsNZiZe2xR3uX0aYgWkyszYD0QlwvZHV+UkWiepdem/do86i9e/eai0arADq1WQaLFrrqSLt6wThnzhxzF17vvmtAowWsWtic8Bhps5hGjRp5XK+7O+k6erK3rO1rExmraNqd+IXb8bM78ZuW6YWt3q1PLS0K9vaiNxh403NRaly8eNEES5oN0J6wtJBfB1zUC34977WoW3u7Sm0hdPyATZuaAQAQSggaQow2L7LuUjZs2DDu+UKFCsX13GN1p5kSesGvzSy2bdsWNxK1J3oHXy+WtEcf7SI0IU/dfmqTHL0Ae+mll2T8+PGmlyftAUozJnqx7w1t0qMXdno3XJsk6Xqspkn6fHzWMdImIkl1D2o3a/sPPfSQCZ5SQ4+59pSkd/D1gvbnn3+Wt99+2zSnSu2gdVa9S8LuXf3JGixNs2Ka+Ukq25Cwm1OLVYtgNQNKKH7vUr6cy+7osdWAoVKlSnHnUnyp6do2IeuYaxfFABDJ7BxPgUyDPSiEDiF6l1KbBSnt2jR+W3OtZVDffPON6VIzpaxmQlaTl+ScOnXKPOrd/YR0u7Nnz/b4es1CaBMivRjTAl69GNYmRL7cwdfgQIMHHbtCgxAtNtY7wtrdacK6Cs0gbNmyRf7880/xN+ti110f/NZnZAVeqTFy5EiTZdCC4mnTppnuZDWzo2MPuLuIdkcvhpUeB7toF7xW0yktzE9I6wPcFRJbAYcW93uqDfH1XE7uHNcgJCl6/L1lFbi7q6kBACBYETSEAL3A1AtG7dte73Jqz0UJL4y0JkALbHUAN+1TPqm7uNpkR8dKiF+E2a9fP1MorMGGZgCsgmaLFoBqLz0WqxccvWiNfydYA4aePXuaZkee6EV7hw4dzIWZNmXSi319nS/04k6DKG22ogNoKe0pKmEPTzougQ40p8dTB3KL/74sOq6DBh/a9MebC2XlLiDRDIMGLjqQnQY6SdUtaBZJC8PjBx5651trILQJmF5o62BlWsjev39/s7w2UUr4uXmitSNaPL1p0yYz0JxdtMcupVkgvfsf/xhrpkWL0pOiA6rpeaEF88uWLYt7Xj83LZx2F5im9lx2xzrHdcyHhIGVnrNaQ+Mtq8Be3yMARDKtaLBzgv9xVIOMdj+qd4910qY2ejGsF9p6EaxtqbU5it5JT+pOvw5Kpm38NcDQNtcaZGgxp15U6s/aDEh7solfhKkX3DrqsF5svf7666YJjV5Q62u09kEvhHWfLHqxq9vWugqtSdBltVZBn9P1WF2reqIF0RYdeMuX4mKLVfBsXYgnHAHaorUTOlqwBl9a76A9FFk9EtWtW9ccaz2Gv/32W6r3QdejF7t6YaufW9euXU3hsl7EKp03d+5ckyHSoEuPnzYn021rwKeBnw4Apk24rKBB34/O1wttrf+IX+swfPhw0/2rNUJ3SmmmR2s69KJaR1e2i3a/qzUvR48eNXU2mgnQ96KD0Ok5pe8zKXoOavM3DQL1s9DPRY+Pvk6DDR10LSmpPZfd0c9BAzwNivVnPVa63xpM6MBuOrihN/Sz/P333023rRo8AgAQSggagowGBHpBqdO8efPMnU4teNa7ynpxqH34u+t1Ri+WtItIbQ6iIx5rzy9aHKx3zvWOst6F138nLMLV2ghtNqEX/Fokq11XauChozdrO3q9ULLofB0TQbMD+rMupz0i6Tq07/mkuudMSC8grT76vS2ATkgv8qziZW0vrsGIO9rPvh5nPR7a3l7frzZ50TvfGpTphaUGW6ml4z7oXXDtWnb16tWmbkJ7sorfJ79eMGoWQ7MJGshpG3y90LXugOux1jvsemGvF80a5Ol+aVMrDSQTZk70rrcGgzomggYkKWUddztrOzRI+uqrr0wzNK0x0ABFm4/pcdJjoO/fHa3X0NdpMbvendfXli1b1rzOUxF7as5lTzSjoyN0a/Ctn41+rzQo0c9GA0FvaLMmDQZTOuo5AISz6KhoWyf4nxmq2Ib1hjXtdUb7yNcag+S6rdTmDHqhYnePL6Fk8eLF5k68XpBpu3UGYXGefu314l0zLlpcndy4C/D9eGuwrGNXaNe7yQ1spwGgZkm0kDwl42kAgL+uW5zal07pH5H0UTcOwukvV1xX5JMr04Pi/YYTQjE4SpvZaF2B1QadgCEw9LjruBZakKxF1rCXZpN05PLnnnvO7yNhA0AoirL5P/gfQQMcofUWWg+hzZe0uYk2udI2/wgczfZoHYbWSliDscGeQFkL2bV5U2pqTwAACCY0rIUjtBccrdPQduba7ELb4NOuO/C0xgX20u5/4/ceBQD4/zUNdrBrpOlIR9BgM+27X9szX7lyJa4f/0ikBbeBGFANCEVWV7jaNS4AAMGAUMxmVoGpuz7pASAh/X2hNxl0TA4ACEf2jtJATYMdCBpspv3wa9eY2n0qAKSE/r7QAeDoKAAAECwIGmyWI0cOU3CqYyfQ7SqA5Oj4KjoKeJs2bThYAMIWI0KHHoIGB+jItzrYl46QS+AAwJ2//vpLGjdubLpl1Z6tAAAIFhRCO6BJkyZmZOBu3brJ77//bkYibtasmeTLl8/0rAIgculYGTryu45C/emnn5ouWnXkdx3pGwDCVXRUlJlsWTc1DbYgaHCIjlGgI7uOHz9e+vTpY7IOit5RgMhl9axmNWXU7ogHDRokpUqVCvSuAQBwA4IGB2l2QaeTJ0+aNsv6eOnSJSd3AUCQyZo1qxQqVEhq1qxpOk0AgEipabBrPAVdN/yPoCEANOOgdxQBAACAUEDQAAAAAEdpl9J2dSsdRU2DLSIyfzNw4MC4k/W1114L9O4AAAAAQS3iMg0rV66U//73vyZg0CJEAAAAOOt/FQ323Lu2a72RLqKO6sWLF6VLly6mq9OHHnoo0LsDAAAAhISIChqef/552blzp0ycOFGyZcsW6N0BAACISNFR/3+sBv9PgX534SligoalS5fKmDFjpFOnTvLAAw8EencAAACAkBERNQ3//POPdO3aVfLkySPvvPNOoHcHAAAgoulYCnaNp8A4DfaIiKBhwIABsnfvXpkzZ44ZdRUAAABAyoV90LBw4UKZMGGCtGvXTpo3b+7VOi5fvmwmy7lz5/y4hwAAAJHFqj+wZd2M02CLsK5pOHv2rHTr1k1uueUWU8/grREjRpjCaWsqVKiQX/cTAAAACGZhHTT07dtXDh06JGPHjpVcuXL51OuSBiDWdPDgQb/uJwAAQCSxahrsmuB/Yd08SWsY0qZNK+PHjzdTfNu2bTOPH374oSxevFjy5s0rM2fOTHI9GTJkMBMAAAAQicI6aFCxsbGybNkyt/P37dtnpiJFiji6XwAAAJEqOiraTLasm0yDLcI6f3PmzBlxuVxJTp07dzbLvPrqq+bfGjgAAAAAiMBMAwAAAIKLVX1g17rhf2GdaQAAAADgOzINAAAAcFRUVLSZbFk398RtEbFBw9SpU80EAAAAwLOIDRoAAAAQGNQ0hB5qGgAAAAB4RKYBAAAAjoqycZwGahrsQaYBAAAAgEdkGgAAAOCoqP/7z651w//INAAAAADwiEwDAAAAnBUdpYUN9qzbRabBDmQaAAAAAHhEpgEAAADOirIx00BNgy3INAAAAADwiEwDAAAAHBUVFSVRWtdgx7qvU9NgBzINAAAAADwi0wAAAABnaTLArpoGEg22INMAAAAAwCMyDQAAAHCW1jPYVNNAqsEeZBoAAAAAeESmAQAAAM4i0xByyDQAAAAA8IhMAwAAAJwfp8Gm3pPsWm+kI9MAAAAAwCMyDQAAAHAWNQ0hh0wDAAAAAI/INAAAAMBZWndg24jQ1DTYgUwDAAAAAI/INAAAAMBZ1DSEHDINAAAAADwi0wAAAABnRUX/b7Jr3fA7jioAAAAAj8g0AAAAwFFR0VFmsmXdQu9JdiDTAAAAAMAjMg0AAABwFr0nhRwyDQAAAAA8ItMAAAAAh9k4IjQ1DbYg0wAAAADAI4IGAAAABKamwa4pyO3atUueeuopqVSpkqRLl06KFi0qwY7mSQAAAICD/vzzT/n222/l7rvvFpfLJadPnw7640+mAQAAAHBQ06ZN5dChQ/LVV19J1apVbdnGv//+K5s2bZKTJ0/6ZX0EDQAAAHBUVFSUrVOwi472zyX4L7/8Iv369TPBQXwzZsyQ3Llzm+ZP+fLlk1deecXnbRE0AAAAIOJt375dxowZI126dJFy5cpJ2rRpTQDy2muvpejYzJo1S+rUqSM5cuSQm266ScqXLy+jRo2Sq1ev2nZsJ06cKGPHjpUCBQrEPXfw4EHp2rWrXLhwQbJlyyaxsbEybNgwWbZsmU/bImgAAACARHoh9Pvvvy+9e/eWjz/+WDZv3izXrl1L8Wv79u0rbdu2lRUrVpg6hfvvv18OHDggzz33nNSrV880FbLD6tWrTXCSK1euuOc+/fRTuXLligwdOlROnToVFyyMHz/ep20RNAAAACDi3XHHHTJgwACZPn26bN26VR599NEUHZO5c+fKu+++K1myZDEX8T/88IPMnj1bdu7caTIWy5cvl8GDB9tyfE+cOCEFCxa84bmffvpJ0qdPb5otqZo1a0q1atVk48aNPm2L3pMAAADgLK07sKv2wMv1du/e3au6g+HDh5vHQYMGmRoCi97917v7etGuTYg0cNDmQv70zz//SKZMmeL+rT0xrV27VipXrmyCGIt26Zqw7iG1yDQAAAAAXjh8+LC5SFcdOnRINL9GjRpSqFAhuXz5sixYsMDvxzhnzpyyb9++uH9rNuH8+fNy77333rCc1lVo9sEXBA0AAACQSK9p8MbG/2vyoxfvxYoVS3IZvesff1l/qlKliqxZs0ZWrVpl/q3NpLR4W+so4tOmUtqLki9ongQAAICwc+7cuRv+nSFDBjP50969e81j4cKF3S6jmYb4y6qLFy/GZR727Nlj/v3ll1/GBQJFihRJ0fb79Olj1qMZDW36dPbsWSlevLg0bNjwhrqHP/74Q9q1aye+INMAAACAsMs06MW6Xkhb04gRI/z+Ns6fP28etYtVd6zagvhBzN9//y1t2rQx06JFi+T48eNx/16yZEmKt9+gQQP56KOPTJChPSbVrl1b5s2bd0M9hvamdP36dTPPF2QaAAAAEHZ0vIKYmJi4f/s7y+ALLUzWomV/6Ny5s5nceeqpp8y4DfELo71BpgEAAAAB6DzJrhGh/7cNDRjiT3YEDVmzZjWPOpCapx6OrP3xt59//ll27NjhcRntXUkzGzqGhC8IGgAAAAAvMwZWVsMda561rD/pCNRvvPFGssvpyNR169b1aVsEDQAAAHBWmPSeVLFiRfN48uTJGwqd41u3bp15jD+Ggz/5q5lTcggaAAAAAC8ULFjQ9HakZsyYkWi+jgatmQZtGvXAAw8E7BifPn1aMmbM6NM6KIQGAACARPqI0N564YUXpEWLFjJy5Ehp3LhxXEZBsw89e/Y0Pz/99NN+Gw36wIEDiWomEj5niY2NlT///FMWLlwoJUqU8Gm7BA0AAACIeBs2bIi7yFe7d+82jxMmTJBvv/027vk5c+bcMFBa8+bNpXfv3vLee+9JtWrVpH79+qYL1h9//FHOnDkj1atXl1dffdVvx1drI7Tg2zJ79mwzJdeEqWPHjj5tl6ABAAAAzrKz9sDl3Xp1HIXVq1cnev7QoUNmsly+fDnRMjoSswYH48aNk5UrV8rVq1fNnf1BgwbJM888I+nTpxd/0YHkrKBBMwyZM2eWXLlyJbmsblebULVq1Up69Ojh03YJGgAAABDxtCciX4qK27Ztaya77du3L+5nHcRNB4TTAd7sRtAAAAAAR1ljKti17kgxZcoUKVmypCPbImgAAAAAQlBnDyNB+xtBAwAAAJwVZWNNw/XIyTTEd+3aNdNj06VLl8RTPYS3CBoAAACAELV27Vp5+eWXZdmyZUkWacdvtqVdsHqLoAEAAADh03uSgyNCB9qvv/4q9erVi8su5MiRQ2JiYmzZFkEDAAAAEIKGDBliAoauXbvK66+/Lnny5LFtWwQNAAAAcFYYjQgdSDquxK233iqTJk2yvdeoaFvXDgAAAMAWWqNQoUIFR7qZJWgAAABAYGoa7JpEpEqVKlK2bFkzSnO4KlOmjJw4ccKRbdE8CQAAAGHZq5BdRcHB4oknnpDevXvL7t27pUSJErZui0wDAAAAAjIitF1TpHjiiSekffv2ct9998mCBQvMWA12IdMAAAAAhKDixYubx3379knTpk0lbdq0ki9fPomOTpwX0GBKMxLeImgAAACAsxinwS80WLC4XC65evWqHDhwIMllfc3AEDQAAAAAIWjv3r2ObYugAQAAAM5inAa/KFKkiDiFQmgAAAAAHpFpAAAAgLOoafCrc+fOybRp02TlypVy/PhxqV+/vgwcONDM27Fjh6l9qFWrlmTMmNHrbRA0AAAAACFq4cKF0qFDBzl9+rQphtaC5wIFCsTN3759uzRv3lw+++wzadu2rdfboXkSAAAAnBVl8xQhtm7dKi1atJCzZ89Kjx495PPPPzeBQ3yNGjWSzJkzy9dff+3Ttsg0AAAAACFo+PDhcunSJZk1a5a0bNnSPPfwww/fsEz69OmlQoUKsmnTJp+2RaYBAAAAgek9ya4pQixZskTKly8fFzC4U7BgQTl69KhP2yJoAAAAAELQ8ePHpXTp0skuFxsbKxcuXPBpWzRPAgAAgKOioqPMZNe6I0W2bNnk8OHDyS63Z88eyZ07t0/bItMAAAAAhKBKlSrJ+vXr5cCBA26X2bx5s6lnqFq1qk/bImgAAACAs+g9yS+6d+9uCqHbt28vx44dSzT/xIkTZhntUUkffUHQAAAAAISg1q1bS5s2bWTVqlVSokQJadiwoXl+xYoV0qxZMylevLisWbPGjOOgXa/6gpoGAAAAOMzOXo4ip6ZBzZgxQ0qWLCnvvPOOLF682Dy3c+dOM2l3q/3795eRI0eKrwgaAAAAgBCVJk0aef3112XAgAGmC1Yter5+/boUKlRI6tev73MBtIWgAQAAAM7SHo7s6uUognpPii9HjhzJjtfgC2oaAAAAEHaqVKkiZcuWlXHjxkm4GjNmjJw+fdqRbRE0AAAAIOx6T1q7dq1s2bJFevXqFbafbp8+fSR//vzy8MMPy/fff296SbJL2AcNV69elR9//FGeffZZE3Fmz55d0qVLJ3nz5jVV5fPnzw/0LgIAAACpps2RNFCYNWuWPPjgg6aO4cUXXzRF0P4W9kHDsmXLpEGDBjJ69Gg5dOiQ1KhRwxzgW265RebNmydNmjSRJ5980tbIDAAAAPFoz0l2ThHiyy+/lCNHjpiek+68807zs/aUVKZMGalVq5ZMmTJFLly44JdthX3QEB0dLa1atZKff/5Zjh49Kt9++618/vnn8scff8jMmTNNxfnEiRPl008/DfSuAgAAAKmSM2dO6d27t2zcuNFMTz/9tNx8882yfPlyM6Cbtq7p2rWruRb2RZQrwm+x68H88MMPTZdUVt+2yTl37pxky5ZNzp49KzExMbbvIwAAgLeC6brF2pdhD0yUjOky2bKNS1f/lSELngiK9xsosbGx8s0335hMww8//GD+rTfS9dFbYZ9pSE7FihXN48GDBwO9KwAAAIDP0qZNa5rjv//++6YZvvI1TxDx4zRYhSL58uXz/RMCAABA8kwvRzbVHkROSUOSLl++LHPmzDFZhp9++skM9KZuv/128UVEBw3Hjh2TqVOnmp+17gEAAAAIRatXrzbXtVq7q02zNLOgTcHatWsnjz32mNx9990+rT9igwZt09WxY0dzUMuVKxeXunEXsekUvz0eAAAAvBMVFWUmO9i13mCknfxoZz4ff/yxbNu2zQQK+v7r1q1rAgW9KZ4xY0a/bCtig4annnrKjN+g1eXaXVX69OndLjtixAgZNmyYo/sHAAAAeFK4cGHT/EiDhSJFikjnzp1NsKA/+1tEBg06ep72mJQjRw5ZtGiRlC5d2uPyzz//vPTr1++GTIMOngEAAAAvxBu52e+iIq/guWvXrqYnUFu3JRGmf//+8t5775mRoRcuXBjXe5InGTJkMBMAAAAQTPW5WrfghIgKGgYOHChvvfWWObgaMFSuXDnQuwQAABB5oqP+N9m17giRzaGAIaLGaRg0aJC8+eab5uBqk6QqVaoEepcAAACAFHvllVfMoG1J+f333+XQoUNJzhszZoxpxuSLiAgaXnrpJXnjjTdMkyQCBgAAgADTHo7snMLU0KFDZe7cuUnO0yb3Q4YMSXLehg0b5Ouvv/Zp22HfPEmjsddff938XLJkSRk3blySy+XKlUtGjx7t8N4BAAAAvtMelHwd9Tmig4ZTp07F/bxu3TozJUW7piJoAAAAcAC9J4WcsG+e1KVLl7jIy9O0b9++QO8qAAAAEJTCPtMAAACAIEPvSSEn7DMNAAAAAHxDpgEAAADOoqYh5BA0AAAAACHit99+M+M1pGaePu8rggYAAAA4y87xFMJ4nAa1adMmM6Vmnnb6E+XjcSFoAAAAQNipUqWKpEmTRnr16mWmcFCrVi2fL/69RdAAAAAAR+mFb5T2oGTTutXatWslJiZGwsnSpUsDtm16TwIAAADgEZkGAAAAOIvek0IOmQYAAAAAHpFpAAAAgLPoPSnkkGkAAAAA4BGZBgAAADhLe06yqfck29Yb4cg0AAAAAPCITAMAAACcRe9JIYdMAwAAAACPyDQAAADAWfSeFHIIGgAAAIAQkCZNGq9fGxUVJbGxsV6/nqABAAAAzjeQt6uRfBg3vne5XAF5bZgfVgAAACB8XL9+PdHUr18/yZgxo/Tp00c2bNggp0+fNtPGjRulb9++kilTJrOMLusLMg0AAABwFjUNfjFlyhR55513ZNGiRVK3bt0b5pUvX17eeustadasmTRo0EBuu+026datm9fbItMAAAAAhKDx48dL9erVEwUM8dWpU0dq1Kgh77//vk/bImgAAACAo7Qo184pUmzbtk0KFSqU7HIFChSQ7du3+7QtggYAAAAgBKVNm1b++OOPZJfbvHmzWdYXBA0AAAAITO9Jdk0Rolq1aiYgeO+999wuM2bMGBNY3HPPPT5ti0JoAAAAIAS9/PLLsnjxYnnmmWfkiy++kA4dOkixYsXMvH379sn06dNl1apVJsvw0ksv+bQtggYAAAA4i96T/EKzBzNmzJDu3bvLypUrTYCQcGyGLFmyyKRJk+Tee+/1aVsEDQAAAECIatOmjdSqVUsmT54sy5Ytk0OHDsUVP9euXdt0s5ovXz6ft0PQAAAAAGeRafCrPHnyyIsvvmgmu0RQqQgAAAAAb5BpAAAAgLPs7OUoAm+Jnzt3TqZNm2bqGo4fPy7169eXgQMHmnk7duwwRdHahCljxoxeb4OgAQAAAAhRCxcuNL0mnT592hQ+6+B2Ws9g0UHdmjdvLp999pm0bdvW6+1EYCwGAACAoKhpsGuKEFu3bpUWLVrI2bNnpUePHvL555+bwCG+Ro0aSebMmeXrr7/2aVsEDQAAAAg7VapUkbJly8q4ceMkXA0fPlwuXbpkgoWxY8eanpQSSp8+vVSoUEE2bdrk07ZongQAAACH2ZkR+N96165dKzExMRLOlixZIuXLl5eWLVt6XK5gwYKyZcsWn7ZFpgEAAAAIQcePH5fSpUsnu1xsbKxcuHDBp22RaQAAAICz6D3JL7JlyyaHDx9Odrk9e/ZI7ty5fdoWmQYAAAAgBFWqVEnWr18vBw4ccLvM5s2bTT1D1apVfdoWQQMAAACcRe9JftG9e3dTCN2+fXs5duxYovknTpwwy2iPSvroC4IGAAAAIAS1bt3a9Ji0atUqKVGihDRs2NA8v2LFCmnWrJkUL15c1qxZY8Zx0K5XfUFNAwAAAJxl53gKETROg5oxY4aULFlS3nnnHVm8eLF5bufOnWbS7lb79+8vI0eOFF8RNAAAAAAhKk2aNPL666/LgAEDTBesWvR8/fp1KVSokNSvX9/nAmgLQQMAAACcRe9JfpcjR45kx2vwBTUNAAAAQAiqV6+ejBo1KtnlRo8ebZb1BZkGAAAAOIuaBr9YunSpFC1aNNnltm/fLsuWLfNpW2QaAAAAgDB29epViY727bKfTAMAAACcpR0c2dZ7kj2rDWV//PGH3HzzzT6tg6ABAAAACBFdu3a94d/Lly9P9JwlNjZWtmzZIr/99psZt8EXBA0AAABwFr0neW3q1KlxP0dFRcmuXbvM5En+/PlNt6y+IGgAAAAAQsSUKVPMo8vlMhmGGjVqSLdu3ZJcVgd3K1iwoFSrVk3SpUvn03YJGgAAAOAsek/yWufOneN+Hjp0qAkI4j9nF4IGAAAAIATt27fPsW0RNAAAACAAvSfZuG74HUEDAAAAEMIuX74sS5YsMYO4nTt3ztQ7JKRF04MHD/Z6GwQNAAAAcFZ01P8mu9YdQebMmSNPPvmknDx50u0yGkQQNAAAAAARaN26dfLwww+bn9u1ayd//vmnGcht0KBBsnPnTlm0aJHJPGjvStqLki/INAAAAMBZ9J7kF6NHj5Zr166ZbIMO3vbYY4+ZoMEak+H48ePSqVMn+e6772Tjxo0+D60BAAAAIMSsWLFCypYt63a051tuuUVmzpwpFy5ckGHDhvm0LYIGAAAABKb3JLumCHH8+HEpU6ZM3L/Tpv1fI6JLly7FPZctWzapXbu2LFiwwKdt0TwJAOK5dO262+Mx7pn5fj9W1/accTsv9tBpj6+tOaOt23k7D59zO6/rfaVTuHcAgGCWNWtWiY2NvSFAUEeOHJHixYvHPa+jQR87dsynbZFpAAAAgPM1DdE2TbruCFGwYEE5ePBg3L+trIN2v2q5evWq/Prrr5InTx6ftkWmAQAAAAhBNWrUkMmTJ8vZs2dNluHBBx80TZT69etnmigVLlxYJk6caDIPjzzyiE/bItMAAACAwPSeZNcUIZo3b26yDcuWLTP/zpcvn7zwwgty/vx56d27t5k/f/58yZ49u7z22ms+bYtMAwAAABCC6tevb8ZjiG/IkCFSrlw5mTVrlpw6dUpuu+026du3r8k6+IKgAQAAAM6ys5ejyEk0uNWyZUsz+RNBAwDEs3b7326Px+mpy93Oy1KhpNt5V7cedjvv8D/u5xW+tZzHz2b6XYPdziuQpYDbeb8se8rtvJpl83rcJgCEiipVqkiaNGmkV69eZgpH9erVM82TPvnkE9u3RdAAAAAAZ1k9Hdm1br0JtHatxMTESDhbuXKlqVtwAoXQAAAAQAgqWLCgXL582ZFtpSjTEH9wCF9ERUXJ7t27/bIuAAAAhCg7ezmKoN6TmjRpItOmTZMLFy7ITTfdFPigYd++fX4LGgAAAAD4TntKmjdvnil61vEYihQpIgGvaWjdurW8+eabXm9owIAB8tVXX3n9egAAAIQJek/yi/79+8vtt98u3377rdx6661SsWJFKVq0qGTKlCnJm/cffvih/UFDlixZfIpe9PUAAAAA/GPq1KlxLXmuXLkiq1evNlNSHAkaGjVqZAaJ8IW+vmHDhj6tAwDsVuXW3G7nrXnW/e+wa6uPeLW9Uo83czvv6m/HPL62YF733bxm6lrZq/cIAOHSe1IkmDJlimPbSlHQ8N133/m8oX79+pkJAAAAgO86d+4sTmGcBgAAADiL3pNCDkEDAAAAEOK2bNliBns7fvy4KY5u1ux/zV+vX78usbGxkj59+sAGDYcOHZIjR47IpUuX3C5Tq1YtXzcDAACAcBFt4xDDETZ08cGDB+Wxxx6TJUuW3NBsyQoaJk2aJD179pSFCxdK/fr1nQ8aZs2aJS+99JLs2rXL43Jaqa3RDQAAAAD/OXXqlNSuXduMqXbHHXeYG/Xjx4+/YZm2bdvK008/Ld98843zQcMXX3wh7du3F5fLJTlz5jT9wWbNmtXrnQCAYLF2+99evS720Gm387K+8YDbedcOn3c7L2OX8h63eWnqJvczj190O2vGT+5v9nS9r7THbQKAX1DT4BdvvPGGCRh0PDT9WW/WJwwacuTIYXoxXb58uU/b8ipoGD58uHl89913TbojTZo0Pu0EAAAAgNT5+uuvzc37kSNHxo3XkJTixYvLihUrxPFWX9u3b5d77rlH/vOf/xAwAAAAwLtMg11ThNi/f79UqlRJoqM9X9JrEbQ2ZXI8aMiePbtPo0MDAAAA8E3GjBnl/Hn3zVwtBw4ckGzZsjkfNNStW1c2btzo04YBAAAQ4b0n2TVFiDJlysiGDRvkwoULbpc5ceKEbNq0Se68806ftuXVYX355Zfl8OHDpv0UAAAAAOe1bt1aTp48Kf369TPjMSTl2WeflYsXL8rDDz/sfCG0RjXa12u7du1MAUbjxo2lcOHCbttTderUyaedBAAAQBih9yS/6NWrl3z88ccyefJkWb9+vbRs2dI8v3v3bnnrrbfMEAlr1qyRChUqSJcuXXzaltfjNOiIc1pQoW2kdGc8IWgAECp2Hj7n1esy967mdt6Vr7a7nZeman6382IKZfe4zfNbD7tfbyH3bVc71Cvpcb0AgNCpafjhhx+kTZs25trcKh/Q7lV10uERqlSpInPnzpV06dI5HzR89NFH0r9/f/Ozto8qVaqUZMmSRYKdRlvjxo0z7bquXLkiJUuWlEceeUSeeeYZnw8kAAAAUohMg9/ky5fPBAgaPMyfP1/27NljmioVKlTItAZ66KGHPHbHamvQ8Pbbb0vatGnlq6++kiZNmkgo6Nu3rxlXQve7Xr16Jsj56aef5LnnnpN58+aZ5laZMmUK9G4CAAAAqdaoUSMz2cWrQmhtJ6XDVIdKwKApGQ0YNFBYvXq1icRmz54tO3fujBshb/DgwYHeTQAAgMgQZWPPSZEzTIOjvAoadDjqW265RUKFNYL1oEGDzAAYlly5csUNtT127Fg5e/ZswPYRAAAA8Na1a9fk77//NvXG7ibHmydp+6gff/zRtJdKbgS6QNOuYdeuXWt+7tChQ6L5NWrUMG2+Dh48KAsWLJD27dsHYC8BAAAiCDUNfqPXuTocwrJly+Ty5ctul9O6htjYWGeDhldffdVcYPfu3dt056RDUwcrq4o8Z86cUqxYsSSXqVy5sgkadFmCBiCylSoQ43beso/WuZ2XqWlZr7Z3efafbued3HbS42szNnS/TddZ9384MqYJ7ps9AICU+fXXX02t7qVLl+JaA8XEuP875guvgoZJkyaZbMP7779vqrR1hGh34zRoVBPIeoG9e/eaR90/dzTTEH9ZAAAA2IhMg18MGTLEBAxdu3aV119/XfLkySN28SpoGDp0qAkGtO/X/fv3y9SpUxMtY80PdNBw/vx583jTTTe5XcbqLvbcuaT7Z9dUT/x0j7vlAAAAAKdoBz+33nqruaHvj25V/R40aLspu3csmIwYMUKGDRsW6N0AAAAID1ZPR3atO0LExsaa0Z6duC73OtMQKrJmzWoeL1y44HaZf/75xzy6awP2/PPPS79+/W7INFhNmgAAAIBAKFOmjJw4ccKRbYV9LFa0aFHzqIXO7ljzrGUTypAhgwko4k8AAADwjt4Zt3OKFE888YT88ssvZgw1u4V90FCxYkXzePLkSbeFzuvW/a9HlPhjOAAAAADBHjS0b99e7rvvPtOzqY7VENDmSTNmzJASJUpI1apVfSrU0CgoqbES7FSwYEGpUqWK6cNW38eLL754w3wdDVozDZpNeOCBBxzdNwDBp2bZvG7nrela2auuUy/uOex2Xramd3nVbaqKPXTa7by0BXO4nffRoh1u53W9r7THbQKAX9B7kl8UL17cPO7bt0+aNm0qadOmlXz58rnt0dSXjESKMg0dO3aUCRMmiC8++OADefTRRyUQXnjhBfM4cuRI2bBhQ9zzmn3o2bOn+fnpp5+WbNmyBWT/AAAAgNTSYEEnpb2WXr161Yz8bD2fcHK8EDrUNG/e3AxE995770m1atWkfv36pgtWHdX6zJkzUr16dTNgHQAAAOxHosE/nBxjLMVBw/fff29GnPPWtm3bJJDeffddExyMGzdOVq5caSIxbXI1aNAgeeaZZ4J6VGsAAAAgoSJFikjQBQ3Hjh0zky8CXc3etm1bMwEAACDQmQZ7rgsjqPMkR6UoaFiyZIn9ewIAAAAg1XQMsWnTppnWNMePHzdN8QcOHGjm7dixw9Qz1KpVSzJmzCi2Bg21a9f2egMAEEouXbvudt71bSfdzstQq5jbedcOn3I77+qf7jO427asFk/KD+7q1b6eO3jG43oBwHaMCO03CxcuNL2Tnj592hRDawanQIECcfO3b99u6ns/++wzn1rchP04DQAAAIg82uV+2bJlTT1ruNq6dau0aNFCzp49Kz169JDPP//cBA7xNWrUSDJnzixff/21T9uKiN6TAAAAEDzsHLnZWq+O0RUTEyPhbPjw4XLp0iWZNWuWtGzZ0jz38MMP37CMdvZToUIF2bRpk0/bItMAAAAAhKAlS5ZI+fLl4wIGT4MdHz161KdtETQAAAAgMAM12DVFiOPHj0vp0qWTXS42NlYuXLjg07YIGgAAAIAQlC1bNjl8+HCyy+3Zs0dy587t07YIGgAAAOAoEg3+UalSJVm/fr0cOHDA7TKbN2829QxVq1b1aVsUQgNAPDN+2uX2eNzcpYLbeSfedd89aoaqJdzOi8qWwe28crc/5PGzubb6iNt5aarmdzuvb9e7Pa4XABAaunfvbrpcbd++vcyePVvy5s17w/wTJ06YZbRHJX30BUEDAAAAnGVn7UEE1TS0bt1a2rRpY3pPKlGihFSvXt08v2LFCmnWrJksXbpU/vnnH3nkkUdM16uON0+qV6+eNGzY0KRDPHnjjTfMsgAAAAD8b8aMGfL888+bnxcvXmwed+7cKd9++61cuXJF+vfvL1OnTvV5O15lGjRq0T5w69SpYwaReOCBB5Jcbtu2bbJs2TJf9xEAAADhJDpKoqJtygjYtd4glSZNGnn99ddlwIABpgtWLXq+fv26FCpUSOrXr+9zAbTPzZOKFCkihw4dMsNS60h7jz/+uF92CAAAAEDq5MiRI9nxGgLSe5JmGb755hvJkCGDPPXUU/LSSy/5d88AAAAQvqJsmmALnwqh77//ftP86MEHH5QRI0bIwYMH5cMPP5S0aamvBhCaut7nfpCc14q94Xbemn2/eLW9kpmLu52XI3NOj69NU8D9/Ct/uu9Z6ZdWt7udV7PsjT1vAABCw8qVK2XXrqR7AKxcubKULVvWp/Wn9Uf/sL/++qs0btxYpk2bJkeOHJE5c+ZIlixZfF01AAAAwpDWxupk17rD2V133SU7duww9QsaDFgmTZokn3zySZKvufPOO2Xjxo0+bdcvKQGtb9Do5qGHHpIff/xRatSoIQsWLPDHqgEAAACImOtsvfjv1q3bDQGDRcdj0OLn+LQG+ffff5effvrJp15N/daOKHv27LJo0SLp1KmTfPHFF1KtWjVTtQ0AAADExzAN3pk7d67JpDzzzDNJztd5ej0e3759+8wYDjr4W1AEDSp9+vQyc+ZMEyz897//lcOHD/tz9QAAAEDEWrNmjWnhk5r6hKJFi0q5cuXMax3vPal27dpSpkwZt/PffPNNee+993zZLwAAAADx7N69W+644w5JijZNcqdUqVKyd+9e8YVXmQYtvEjO008/bSYAAADgBrRP8sq5c+ckW7ZsSc7r16+ftGnTJsl5mTJlkvPnz4sv6BsVAOL5Zcsxt8cj/e353c6reW8nt/NcZy+7nXd59W638zI29L57vJu7VPD6tQCA4JQlSxY5e/as2x6SdErKmTNnJHPmzD5tm6ABAAAAjqLLVe/ky5dPfvvtt1S/Tl+jrw3IiNAAAAAAnHPvvfeajoZ+/vnnFL9Gl9VuV6tXr+7TtgkaAAAA4Kxom6cw1bFjR1Pw3LNnT1PfkBytY9BlNbPToUMHn7YdxocVAAAACB+1a9eW++67T7Zs2WIGd5s/f77bZXWg5SpVqsjWrVvNgG9169b1advUNAAAAMBR1DR4b8aMGaap0Y4dO6RZs2aSI0cOqVSpktxyyy1m/vHjx2XDhg1y+vRpk5UoWbKkeY2vCBoAIJ6aZfO6PR41v32UYwUACKibb75ZVq9ebYY2+Oyzz+TUqVOyePFiE4jFH68hOjpa2rVrJ+PGjZPs2bP7vF2CBgAAADiLcRp8omM1fPrppzJs2DD59ttvZf369XLixAkzL1euXCbz0KRJEylRooT4C0EDAAAAEIKKFy8uvXv3dmRbBA0AAABwFImG0EPvSQAAAAA8ItMAAAAAR9F7Uugh0wAAAADAIzINAAAAcJadIzdzS9wWHFYAAAAAHhE0AAAAICA1DXZN4ernn382I0EHAkEDAAAAEALq1KkjI0eOjPt3vXr1ZNSoUY5sm5oGAAAAOIuBGrzmcrnifl66dKkULVpUnECmAQAAAAgBWbNmlaNHjwZk22QaAAAA4CgSDd6588475aeffpKXX35ZSpYsaZ7btWuXfPLJJyl6fadOnbzcskiUK36OAyly7tw5yZYtm5w9e1ZiYmI4agAAIGgF03WLtS/vfr5aMmXOYss2/r34j/R5uGpQvF9/mzdvnrRu3VpiY2PNv/UyPjWF39euXfN622QaAAAA4CxSDV5p2rSprFmzRubOnSv79++XqVOnSokSJaR69epiN4IGAAAAIESUL1/eTEqDhho1ashHH31k+3YJGgAAAOCoqOgoM9m17kgxZMgQqVixoiPbImgAAAAAQjRocApBAwAAAByluQC7Bm6OnDzD/6eF0V9++aUsWbJEDh8+bJ4rUKCA1K1b1xROp03r+yU/QQMAAAAQon777TcTGOzdu/eGgd/U5MmTZfDgwTJr1iypUKGCT9shaAAAAICz6D3JL44cOSINGzaUEydOSJ48eaRdu3amNyW1Z88emTlzpuzevVsaNWpkgot8+fJ5vS2CBgAAACAEvfHGGyZg6N69u7z77ruSKVOmG+YPHz5cevfubTIOo0aNkrffftvrbUX7YX8BAACAFNMByeycIsV3330nhQsXlvfffz9RwKAyZswo48ePN8vMnz/fp20RNAAAAAAh6ODBg3LvvfdKmjRp3C6jRdD33HOPWdYXNE8CAABAALpPsnHdESJDhgxy7ty5ZJc7f/68WdYXZBoAAAAQdqpUqSJly5aVcePGSbgqW7as6WbVUxbhwIEDZpnbb7/dp20RNAAAACAgI0LbNam1a9fKli1bpFevXmH76Xbq1En+/fdfadCggSxYsCDR/G+//Vbuu+8+uXTpklnWFzRPAgAAAELQ448/LrNnz5Yff/xRmjZtKjlz5pRixYqZeTpuw6lTp8zYDRpU6LK+INMAAACAgJQ02DVFijRp0phekQYOHCg33XSTnDx5UtatW2cm/Vmfe+6550zGITrat8t+Mg0AAABAiEqfPr2MHDlShg0bZoKFw4cPm+cLFCgglStX9rkA2kLQAAAAgAAMCG1PTiCChmm4gQYH1atXF7vQPAkAAACAR2QaAAAAEIBMg33rhv+RaQAAAADgEZkGAAAAOIpMQ+gh0wAAAADAIzINAAAAcFTU//1n17rhf2QaAAAAgBB04MABOXjwoCPbImgAAACAs/6v9yQ7pkhKNBQtWlTatWvnyLYIGgAAAIAQFBMTI8WKFXNkW9Q0AAAAwFH0nuQfZcuWpXkSAAAAAPcef/xxWbFihaxdu9b2w0SmAQAAAI6Kiooyk13rjhSPPfaYbNy4URo2bCjPPvustGrVytQ5ZMiQwe/bImgAAAAAQlCaNGnifh48eLCZPAVTsbGxXm+LoAEAAACOsrOTo8jJM4i4XC5blk0KQQMAAAAQgq5fv+7YtggaAAAA4ChqGkIP4zQAAAAA8IigAQAAAI6yazRoO8d/CGa7d++WgQMHSo0aNeTWW281P1tWr14tEydOlLNnz/q0DZonAQAAACHq448/lqeeekouX74c1/TrxIkTcfMvXrwoPXr0kPTp00uXLl283g6ZBgAAAASk9yS7pkjx66+/Svfu3U1AMGrUKJNVSNhLUu3atSVbtmwyb948n7ZFpgEAAAAIQaNGjTJBwvz5803TpKRER0dLhQoVZMuWLT5ti0wDAAAAAtJ7kl1TpFixYoXcfffdbgMGS968eeXo0aM+bYugAQAAAAhBZ86ckcKFCye73L///itXrlzxaVs0TwIAAICj7OzlKIISDXLzzTfL/v37k11u165dJtvgCzINAAAAQAiqVq2arFu3Tv7880+PTZh0fnJNmJJD0AAAAABHUdPgH7169ZJr165Jq1at5Lfffks0f+vWrdK1a1dzvHv27OnTtggaAAAAgBBUv3596devn+zYsUPuuusuKV26tAkQfvjhB7nzzjulXLlysnPnTnn22WdNVsIXYR00/P333/LJJ59Ihw4dpFSpUpIxY0bJnDmzlClTRnr37i379u0L9C4CAABEHMZp8J/Ro0fLhAkTTM2C1i5oF6zaU9LmzZslZ86cMmbMGBk5cqTP24lyJRwBIox07NhRpk+fbvqnveOOO8yw2hcuXJC1a9fK8ePH5aabbpI5c+bIfffdl6r1njt3zgySocNxx8TE2Lb/AAAAvgqm6xZrX6Yt/kMy35TVlm1cvHBeOjYoFxTv10l6Sb9x40bZs2ePXL9+XQoVKiRVqlSRtGn90+9RWPeepNHVsGHDpFu3blKgQIG45//55x95/PHHZebMmdKuXTsTleXIkSOg+woAABAp6D3J/7RZUqVKlcxkh7AOGt57770kn8+SJYt8+OGHZvS8U6dOmUfNSgAAAAChnG04efKkedTuWLW1jb+EdU2DJ1rboM2V1MGDBwO9OwAAABEjSmwcEdpUTESWRYsWyf333y9Zs2aVPHnymPoG/Vmf06Jof4jYoOHq1atxhdD58uUL9O4AAAAAqaY9I2lwsHDhQrl48aLJMuiko0Drcw888ID0799ffBWxQYM2Tzpx4oRkypRJGjduHOjdAQAAiBj0nuQf06ZNk//+97+mh1ANDH7//Xc5f/68mf744w8ZMGCAudZ95513zLK+iMigQQ+iRmVq8ODBJo3jyeXLl021f/wJAAAACCTtTjVNmjTy/fffy5tvvml6C9XeQXW6/fbbZdSoUWaeNtsaO3ZseBZCDxw4UL755ptUv27y5Mkeh8k+dOiQNG3a1PSg1KxZMxk0aFCy6xwxYoTphQkAAAC+o/ck/9CxGPS6t2bNmm6XsebrkANhGTQcOXJEtm/fnurXaTDgzrFjx8zIefv375dGjRrJF198YSKv5Dz//PNmtD2LZhq071sAAAAgULRZUv78+ZNdTpdJnz59eAYN2u7K17ZXCUeHrlevnhlmu0GDBjJ37lzJkCFDil6ry6V0WQAAAHhm9XRkB7vWG4zuuusuU8eQHF2mcuXKPm0rImoadPRnDRi2bt1qMg3a7EkjMwAAACBUvfjii+b6VmsX3NFaB13mhRdeCM9Mg79oD0kaMPz5558mYJg3b56pIgcAAEBgUNPgnZ9//jlRVuXpp582TelnzZoljz76qBQrVszM27t3r2m1s379eundu7fPA71FubQj1zCloz3XrVvXpGS0SZJmGPwRMGhNQ7Zs2eTs2bMSExPjl30FAACwQzBdt1j78sXSPyVzlqy2bOPiP+elbZ3bg+L9+pte+CfV/Mq6nE84L/7zOsXGxnq97bDONHTv3t0EDHqQcubMKT169EhyuebNm5sJAAAA9vvfuM021TSE8YjQtWrVCljNRlgHDZppsKIs7SnJnaJFixI0AAAAIKgtXbo0YNsO66AhkAcWAAAASaOmIfRERO9JAAAAALwX1pkGAAAABKGo/2Ub7Fp3pLl06ZKsW7fODI6sP7vTqVMnr7dB0AAAAACEqDfffFOGDx9ueqZKDkEDAAAAQka0RJnJrnVHirFjx8pzzz1nfi5XrpyUKlVKsma1pytbMg0AAABAiAYNadOmldmzZ0vTpk1t3RZBAwAAABxF70n+sW/fPjN2g90Bg6L3JAAAACAE5c6dW2655RZHtkXQAAAAgIBkGuyaIkXjxo1l1apVcv36ddu3RdAAAAAAhKAhQ4bIlStXpHfv3ubRTtQ0AAAAwFFRUVFmsmvdkSJ//vyyfPlyadasmdx6661St25dKVy4sERHRyd5XAYPHuz1tggaAAAAgBDkcrnk3XfflW3btpkmSlOnTk0yWNDlCBoAAAAQUjQXwIDQ/hnYbcyYMabb1SZNmphxGrJkySJ2INMAAAAAhKDJkydL5syZ5ZdffpGKFSvaui2CBgAAADiKmgb/OHjwoNSpU8f2gEHRexIAAAAQgvLmzStZs2Z1ZFsEDQAAAHAU4zT4R4sWLUzTpEuXLondCBoAAACAEDR06FDJmTOntG/fXk6cOGHrtqhpAAAAgKPsHLk5goZpkL59+5rxGebOnSs//fST3HXXXR7Hafjwww+93hZBAwAAABCCpk6dGjeY3fnz52Xp0qVulyVoAAAAQEiJ+r//7Fp3pJgyZYpj2yLTAAAAAISgzp07O7YtggYAAAA4ipqG0EPvSQAAAAg7VapUkbJly8q4ceMCvSthgUwDAAAAwm5E6LVr10pMTIyEs65du6Z4WQqhAQAAgAjtPSklAZTL5SJoAAAAQGihpsHe3pOuX78u+/fvlwULFsi6devMeA7ly5f3aVs0TwIAAADCsPekoUOHysCBA2XSpEmyYcMGn7ZFITQAAAACUtNg14T/b/jw4ZI1a1Z5+eWXxRcEDQAAAECYSps2rVSqVEkWL17s23r8tkcAAABACmguwK58AHmGxP799185ffq0+IJMAwAAABCmtm7dKsuXL5dChQr5tB4yDQAAAHAUvSf5xyeffOJ23vnz503A8Omnn8qlS5ekQ4cOPm2LoAEAAAAIQV26dPFY+K3jM6iHHnpIXnrpJZ+2RdAAAACAsBsROhJ06tTJ7ftNnz69FChQQBo0aCD33nuvz9siaAAAAADCcERofyJoAAAAgOMiKCEQFug9CQAAAIBHZBoAAADgqKj/+8+udUdib0kprYHwFkEDAAAAEAa9JSWHoAEAAAAhg3EavFOvXr1UBw2rVq2Sixcv+tyrFJkGAAAAIAQsXrw4xcv+8ssvMnDgQPn333/Nv8uVK+fTtimEBgAAQEDGabBrimSbN2+Wpk2bSp06dWT16tVSqFAh0zXrxo0bfVovmQYAAAAgxB08eFAGDx4s06dPl2vXrsnNN98sL7zwgvTq1csM9OYrggYAAAA4ipoG/zl9+rS8/vrrMn78eLl06ZJkzpxZ+vTpI88995zExMT4bTsEDQAAAECIuXTpkrz99tsyatQoOXfunKRJk0aeeOIJGTp0qOTNm9fv2yNoAAAAgKPINHjv+vXrMnnyZHnllVfk6NGj4nK5pGXLljJ8+HApXbq02IWgAQAAAAgBX331lbz44ouyY8cOEyzUrl1b3njjDbn77rtt3zZBAwAAAByl/RvZNyJ0+GrdurXpHcqqW3jggQckNjZWVq5cmaLX33vvvV5vm6ABAAAACCEXL16UESNGmCmlNNjQAMNbBA0AAABwFDUN3ilcuHDAxqEgaAAAAABCwL59+wK2bYIGAAAAOMrOkZsjfURou0TbtmYAAAAAYYFMAwAAABxFTUPoIdMAAAAAwCMyDQAAAHCUjtFg3zgN1DTYgUwDAAAAAI/INAAAAMBR1DSEHjINAAAAADwi0wAAAABHRUdFmcmudcP/yDQAAAAA8IhMAwAAABxFTUPoIdMAAAAAwCMyDQAAAHAUmYbQQ6YBAAAAgEdkGgAAAOAoRoQOPWQaAAAAAHhEpgEAAACOoqYh9JBpAAAAAOARmQYAAAA4KypKouwauZkRoW1BpgEAAACAR2QaAAAA4ChqGkIPmQYAAAAAHpFpAAAAgKOibKxpsK1WIsKRaQAAAADgEZkGAAAAOEpzAXblA8gz2INMAwAAAACPyDQAAADAUdQ0hB4yDQAAAAA8ItMAAAAARzFOQ+gh0wAAAADAIzINAAAAcBS9J4UeMg0AAAAAPCLTAAAAAIdF/a+wwa51w+/INAAAAADwiEwDAAAAHEVNQ+iJuEzDP//8I8WLF48bVOTQoUOB3iUAAAAgqEVcpuHZZ5+Vffv2BXo3AAAAIhbjNISeiMo0LFq0SD744APp1atXoHcFAAAACBkREzScO3dOunXrJsWKFZORI0cGencAAAAk0msa7JrgfxHTPKlv376mfmHx4sVy0003BXp3AAAAgJAREUHD/PnzZcqUKfLEE09IvXr1Ar07AAAAkY2ihpAT9s2TTp8+LY8//rgUKlRI3nzzzUDvDgAAABBywj7T8PTTT8vRo0flu+++k5iYGK/WcfnyZTPFr48AAACAdxinIfQEbdAwcOBA+eabb1L9usmTJ0uNGjXMz1999ZXMmDFDHnvsMbn//vu93pcRI0bIsGHDvH49AAAAEMqCNmg4cuSIbN++3avB29SJEyekR48ekj9/fnnrrbd82pfnn39e+vXrd0OmQZs7AQAAIPUoaQg9QRs0TJs2zUzeWr58ufz9999SsGBBad68udvl2rRpIxkyZJAuXbqYKSk6XycAAAAgEgVt0OAv2s2qTu78+uuv5rFOnToO7hUAAEAko6oh1IRt0KDZBZfL5XZ+lObFROTgwYMmGwEAAAAgwoIGAAAABCdqGkJP2I/TAAAAAMA3ZBoAAADgKCoaQk/EBg2e6h0AAAAA/H8RGzQAAAAgMKhpCD3UNAAAAADwiKABAAAAgEc0TwIAAIDDKIUONWQaAAAAAHhEpgEAAACOohA69JBpAAAAAOARmQYAAAA4ioqG0EOmAQAAAIBHZBoAAADgLFINIYdMAwAAAACPyDQAAADAUVH/959d64b/kWkAAAAA4BGZBgAAADgr6n9jNdi1bvgfmQYAAAAAHpFpAAAAgKPoPCn0kGkAAAAA4BGZBgAAADgrysaiBtuKJSIbmQYAAAAAHpFpAAAAgKOoaQg9ZBoAAAAAeESmAQAAAI6ipCH0kGkAAAAA4BGZBgAAADiKmobQQ6YBAAAAgEdkGgAAAOAsihpCDpkGAAAAAB6RaQAAAICjqGkIPWQaAAAAAHhEpgEAAACOoqQh9JBpAAAAAOARmQYAAAA4jKqGUEOmAQAAAHDYrl275IEHHpAsWbJIrly5pGfPnnLhwoWg/RzINAAAAMBRkV7TcPbsWalXr57kz59fZs2aJadOnZJ+/frJX3/9JbNnz5ZgRNAAAAAAOGjChAly/PhxWbduneTOnds8lylTJmnVqpWsX79e7rrrrqD7PGieBAAAgIBUNNg1BbsFCxaYTIMVMKhmzZqZpkrffvutBCOCBgAAAES87du3y5gxY6RLly5Srlw5SZs2rURFRclrr72WomOjzYzq1KkjOXLkkJtuuknKly8vo0aNkqtXryZadsuWLXLbbbfd8Jxur3Tp0rJ169ag/CxongQAAACJ9JqG999/X959912vXtu3b1/zWr3w1wyCZgx++uknee6552TevHmycOFC0/zIcvr0acmePXui9WjAofUNwYhMAwAAACLeHXfcIQMGDJDp06ebu/2PPvpoio7J3LlzTcCggcLq1avlhx9+MMXMO3fuNBmL5cuXy+DBg0P++JJpAAAAgET6OA3du3e/4d/R0Sm7tz58+HDzOGjQIKlUqVLc89qN6vjx46VmzZoyduxYEzhky5YtLqNw5syZROvSDESpUqUkGJFpAAAAALxw+PBhWbt2rfm5Q4cOiebXqFFDChUqJJcvXzbFzxatZ0hYu3Dt2jXZsWNHolqHYEHQAAAAgIDUNNg1OWXjxo3mMWfOnFKsWLEkl6lcufINyyod1G3JkiWm21WL1j78888/8uCDD0owonmSF1wul3k8d+6cvz8PAAAAv7KuV6zrl2Bg5zWUte6E28iQIYOZ/Gnv3r3msXDhwm6X0UxD/GXVk08+aXpqeuihh0yzJW2WpIO76b+tICPYEDR44eTJkzecBAAAAKFw/WK1qQ+U9OnTS968eaVU0SK2bkeLkhNepw0ZMkSGDh3q1+2cP3/ePGoXq572JWEQoz0nae9KvXv3ltatW0vGjBmlTZs2Mnr0aAlWBA1e0BSUOnDgQMC/fMFEvwz6BT148KDExMQEeneCAseE48L5wveI3y38zg20s2fPmjvh1vVLIOnFsd5xv3Lliq3b0ayKjrEQn7+zDL7SMRm+//57CRUEDV6wquk1YODiODE9JhwXjklKcK5wXFKD84Vjwrnim5T2BuRE4KBTOMiaNat5vHDhgttltE5Bhfq1UXCcPQAAAECIKVq0qHnUVhbuWPOsZUMVQQMAAADghYoVK8bVi8QvdI5v3bp15jH+GA6hiKDBC9omTotpgq1tXKBxXDgmnCt8h/jdwu/bQOLvEMfFaQULFpQqVaqYn2fMmJFovo4GrZkGPTe1m9VQFuUKpv63AAAAgCDQpUsX+fjjj+XVV1+Vl156ye1yc+fOlRYtWphekpYtWxaXUdDsQ926deWPP/6Q/v37B3XPSClB0AAAAICIt2HDBunZs2fccdi9e7ecOHHCZBMKFCgQ9/ycOXMkX758NxyvPn36yHvvvSfp0qWT+vXrmy5Yf/zxRzlz5oxUr15dFi1aJJkyZQrpY0zQAAAAgIi3dOlSkxlIzt69e5Msav7iiy9k3Lhx8ttvv8nVq1elRIkS0rFjR3nmmWfM+BShLuJrGhYsWGAG+mjatKnkz5/f9Omr06FDh5I9eNrH8BtvvCHly5c3EWWOHDmkTp068uWXX/r0ocyaNcusR9en69X1jxo1ypyAgabHyjpGnqbixYunar365fO0vmrVqkmwS+6YtGvXzqv1Xr9+XSZMmCBVq1Y1XbvppD9PnDgxqEb3TMrff/8tn3zyiXTo0EFKlSplutjLnDmzlClTxgxos2/fPq/WGyrni7+/y+vXrzeD/+TJk8ccy2LFisl//vMfc5yDnb5nvev27LPPmva/OrCR3pHTQZ6aNWsm8+fPt+X30bZt2yTYmz8k9x4uXboUUeeK/l5Iyd8ZnX7++eewO1e2b99uRgrWc6NcuXKSNm1as3+vvfZasq9dvHixaTefK1cuc1dbf9e++OKLcV1+emPXrl1mX/Ruu7bL10f99549eyTc6O9r/bua3FTUTS9Ibdu2Nc2TdFyMixcvmmZJzz33XFgEDCrix2nQixn9cFNLT4b77rtPVq5caf743X///eZLqaP76Qnjbdu1vn37yrvvvmt+SdSrV8+0j9N16kk3b948WbhwYUDTWxUqVJDOnTu7nf/NN9+YodBTEqknpVWrVnEjJ8an0XqocHd89EI/ta5du2Z+CX311VfmYltTntYfBh2CXh9nzpwZNH1vJ9SvXz+ZPn262b877rjDXBxqX9Zr1641fxQ/+ugjk+bV71K4nS/+/i7rzYj27dtLbGysuejWi0DtkWPs2LEmONFiu5IlS0qw0t+L1uesgUKNGjVMILVlyxZzPHR64okn5IMPPkg0IFNyNBjT301JCZUBOLX5grvPL02aNKlaV6ifK/pd8fR3Rs8Z/R2iN1DuuuuusDtX3n//ffO7I7Xefvtt8ztXvz81a9Y0AeMvv/wiw4cPl9mzZ5vPXYOJ1FixYoU0bNjQXPPcfvvt5nu7efNm085fzzP9GxQsN2ngAFeEe+yxx1zDhw93ff/9966///5bb9ua6eDBgx5f16dPH7NcuXLlXMePH497ft26da4sWbKYefPmzUvVvsyZM8e8Tl+/fv36uOd1/bodnde/f39XsDp8+LArTZo0Zj9XrFiRqtcWKVLEvG7v3r2uUGWdO/709ttvm3UWKFDAtWfPnrjn9ef8+fObeWPGjHEFq//85z+uYcOGuQ4dOnTD8+fPn3e1a9fO7H/OnDldp06dCqvzxd/fZf1uZc6c2bxuwoQJcc/Hxsa6OnbsaJ6vUqWK6/r1665g9eOPP7patWrl+vnnnxPNmzlzZtzvjo8//jjF6xwyZIh5jT6Gqs6dO5v3MGXKFL+sLxzOleQ0btzYvI/HH388LM+VSZMmuQYMGOCaPn26a+vWra5HH33U7Purr77q9jUbNmxwRUVFme/RggUL4p6/cOGCq379+ub1+v1LDX2t9Xfm+eefv2Ge/lufL1SokOvixYtevEuEoogPGhIdkBQEDXqBkz59erPc8uXLE83XL7bOq1atWqo+DP1Frq977bXXEs375ZdfzLwMGTK4zpw54wpGGnzpPpYpUybVrw32i8BABA3Xrl1z5c2b16xz2rRpieZ/+umnZp7+UtdlQ43+QcqaNat5D/pewul88fd3+dlnnzWvadCgQaJ5GoBly5bNzNebH6GqW7du5j3oBU44Xgg6FTSE+7miNyCio6PNe/j1118j4lyxzhFPQUObNm3MMt27d080b9++fXHHTIOQlBo3bpx5TenSpRP9jdF/6/M6/4MPPkjlO0KoCs42DSFQB6H1DIULFzYp5aSaPKlff/1Vjhw5kqJ1Hj582KRb478+Pk0JFipUSC5fvmy2H4ymTJliHrt16xboXQkLq1atkmPHjpk2pNoMJyF9TttJ6jm2evVqCTXa3OrWW29NdiTNUGPHd1mbcLlbnzbl0GZfSpuxhfoASeF0LgRCuJ8rU6dONXVe2lTGmyaf4UivR6yaoKQ+9yJFisRdq1jnR0pYy2o9XsImsPrvhx9+OKTPJaRexNc0eGPjxo3msXLlyknO1yLgnDlzyqlTp0wFvRZYp3Sd+jptf5oU3Z7+QdVltb1qMNF2kzt37jSFjZ06dfIp8NDjpm1x9bjVrl1batWqJaHkrbfeMoVj2q5UA0ttx+3NKJDWOaF/HLWQMSFtD6/zdDmd7rnnHgklWhhrFUIn7LoulM8Xf3+Xz58/b84n63Xu1vfpp5/GbTsU6e8Pb88F7SZx0KBB5lzQdukagGjnFtrmPVQsWbLEFE3q533zzTfL3XffbQpaUzOIaCScKxo0+HJzKhzOlYR27Nhhag6S+9z173RqPvfkrnWs50P1XELqETR4wRomXC8I3dHeBfSXkrshxb1Zp96djL9sMNGCVtWkSRPJnTu31+t55ZVXEj2nhXw6ymIwF+7Fp0Xw8ekfKC2U1z92WpiWUik9J/QXdjCeE8n58MMPTf/XGvw0btw4bM4Xf3+X4/cw5W6dwfy7ISU0o2ZdDCaVVUuOVUgdn14Qap/pvtzEcJL2MpaQBlD6u1V/f6REuJ8rWkyvQZFmWB999FGv1hEO50pC1mepnbK4C35S+7lrAKoDk6XkXDp+/Ljp4EI7NkB4o3mSF/TLpDx9QaweXc6dOxewdTpF91175PDl7s+DDz5oLvT0D8K///5rfrHpH1H9ZaVNPbQbtGDvKlDTwjoqpP7h1vegd3+0txK9a/j999+bjENquk4M5XMiOXpHVbveVIMHD05VMBXs54u/PzdrfZ7WGarngdIskfZjrr3YafeS2itYSmkvWdozjAbOepNGJ+0hRm9e6Pq0Bx7tvSuYaW8+2lOO9kijn99ff/1leta699575ejRo6Y5kfYdnxLhfq5YN6f0mKS2F6BwOFcCcU3iab3xe64LxfMJEZRpGDhwoOneM7UmT55s2hRHIruO2eeff27uMmjzkJTeEUtIB0OJT/tA1kkvDrVLPb0Q11/477zzjgTrcUn4B0fHJdBJmxhoClwvlLU7Se2KM5LPFx0DRZsDaBfF+sdfMzGhdL7Av5566ikzfoMG19qFY2r6M0/qbrO23dY7yToOiHbrq4Mq6XgFwdpPuu5ffHqnWG8wNGjQQFq0aCFff/21+Z2hTV0jmV6UWmMgde3aNdWvD4dzBQi0kA0atPhTB0BJLV8GOLFY6T+9UE5uOzExMQFbp1PHzLr7o3dqUtufeHK0Xbj+wdRJf7nbcRFo97mk7dofe+wxs+/6HlIaNDhxTjh9XLQZio41sX//fmnUqJEZPTO1ffIH+nxx+nOL39xA15lUX/J2ngd26tOnj2mmpoPfLVq0SEqXLu23detgXuPHjzdNJ7SjAO23PpTo92LYsGEmaNi0aZOpgbGag0TiuaLj0Wi7fW36q787/CnUzxU7r0k8rTf+7/pQO58QYc2Tpk2blqJR+xJO3t4Jj88aCfDAgQNul7FGlHY3aqC7dXrqOcSal9J1OnHMdARN7eXH27s/KXHbbbeZx5SM0h2s55I37yEl55mv54STx0WbC+kgZ9psS++ialOu1BR5Bsv54vR3WXs+sbg7F+w8D+ys/dF25NoOW5vjWL0n+TOAtOqrAnUu+OtcTul7CNdzJf7NKR2J2N+DWYb6uWJ9lmfOnLmhWZEvn7sGDXpcUnIuaVMx6hkiQ8gGDYFk9YSjI2wmRYdW1/aSKqV/CK3ltPDIXaGStT1veuKxi/WLXHutsavw1CrGCuXeLbx5D9bn/OeffyZZC6Ft+XVe/GWDld7B04Bh69atJtOgzZ6S6hEqHM4Xf3+X9Q6e9d1y9zsnGH83JNf0TXsZ0zvhGjC4653FFzqaurZVD+XfHda5nNL3EI7nijUCtGYANPuiWVt/C/VzRbuu1i6s/f25J3etE4rnEnxD0OAFbaOubR41+tYh1hPSAk2lQ6unpLtVpSlX7fUl/uvj04Itjer1zqxuP1gKGK0eP+wcm0HT0kq7IAxF2qe4NsNJ7XvQLlTz5s1r+vOfPXt2ovn6nPbPredYMPdXrj0kacCgAY4GDNpsSHtMCtfzxY7vsrZtd7c+bSJg9QbTsmVLCXZaw/Lmm2+agEGbJFnHyt80MNXmLHqhaUdQ4gTrXNZgwBrTJJLOFYs2YVN169Y1XZr7W6ifK3o9ovVc7j53bQ66cuXKG86PlLCW1fNQ/47Fp//WesZQO5fgo0CPLheKI0KrPn36mOXuvPNO14kTJ+KeX79+vStLlixm3rx58xK9btCgQa5bb73VPCY0Z84c8zp9va7HousvV66cmde/f39XsJg7d67ZJx1hNCXDyNerV8+896+++irRetatW5do+XPnzsUdZ50WLVrkClY6YvO2bdsSPf/XX3+52rVrZ/Y/Xbp0ri1btiRa5tFHHzXHZcyYMYnmvf322+a1BQoUcO3Zsyfuef1Zn9N5Sb0uWJw8edJ8R6wRalNynoTD+eLNd1nfp75ffd8JHT582JU5c2bzuokTJ8Y9Hxsba84ffV5Hob5+/bormL344otmX7Nnz+5as2ZNil6j57ceF32f8e3fv9+MJP7vv/8mefxz5sxpttWxY0dXsNq4caPr66+/dl29ejXRaLuTJ092ZcyY0byHl156KeLOFcuVK1dcuXPnNvs9ffr0iDxXUjIitP6eiYqKcqVJk8b13XffxT1/4cIFM8q6vr5Vq1aJXrd69WpzzHRKSF+bP39+89oXXnjhhnn6b32+YMGCqfq9jtAW8UHDK6+84qpatWrcZF1wVKxYMe65Hj16JPlluueee8yyOXLkMF/G+++/31wY6nP9+vXz+OXXx6T07t077gJT16fr1T+w+lz16tWD6svZrFkzs19PPfVUipYvUqSIWX7KlCk3PG9d6BUuXNj14IMPuh555BFX3bp1zXHV59OmTet65513XMHsoYceMvtaqlQp83OHDh1cNWrUiAsg9Y/4F198keRra9eubZYZMmRIonn6h75FixZx69BjrpN1UdC6dWtzgRGsrH3XP2Zt27Y1531Sk/7hDrfzJbXfZX2fOk/fd1L0/NELAl1Gfy89/PDDruLFi5t/58mTx7Vz505XMNOLY+v3a+XKld2eCwmDKf1e6Gv0e5LwgtsKzGrWrGmCc/3u6XfQ2o6eF+fPn3cFKyu41HNXL+z098YDDzxgzm3rPbRv3z5RUBHu50rCAMkKNJO66A/Hc0UDgPjXJbly5Yq7QI///JEjR2543VtvvRX3+7ZOnTrmd26+fPnMcxoUHD9+PNG2lixZEncMkrJ8+fK4vzd33HGHOXb6qP++6aabXKtWrbLtOCD4RHzQYF3Ee5oS/gKyXL582TVixAjzBcqUKZO5416rVi23F4cpCRrU559/btYTExNj1qvrHzlypNlesDh27Ji5ONP3ktI7hu4uAvWXVrdu3Uygpn/Q9CJLfxnddtttJiD5/fffXaHwh03vUulnpb/g9dhkzZrVVaFCBXMRFD9LkJqgQWlQ8MEHH5gLLT0uOumdQn0u2O8WWu8tuSmp9x4O50tqvsvJXQgqzbC0bNnSdcstt7jSp09vlu3Vq5f5PgY76/0lNyV8/+4uBDVr89xzz5m77XqRreeAngt6kdSkSRPXjBkzgjqgVvp7oW/fvuYGg2YONbOQIUMG8370hsD8+fOTfF24nyvx6Wep77Vnz57JLhsu50r8C3lP0969exO9VjOsepNCsyd6Lmlg9Pzzz5tMbHLbckeDzE6dOpmsgx43fdR/79q1y6/vG8EvSv/naxMnAAAAAOGLQmgAAAAAHhE0AAAAAPCIoAEAAACARwQNAAAAADwiaAAAAADgEUEDAAAAAI8IGgAAAAB4RNAAAAAAwCOCBgAAAAAeETQAgIOKFi0qUVFRcVODBg0c2e7MmTNv2K5OS5cudWTbAIDQlzbQOwAAkahVq1aSJUsWuf322x3ZXrFixaRz587m5++//17++usvR7YLAAgPBA0AEACjR482WQenVK1a1UyqTp06BA0AgFSheRIAAAAAjwgaACAJu3fvljRp0kiOHDnk4sWLbo+RNi/S+oAFCxb45Tju27fPrE+zENevX5f33ntP7rzzTsmcObPky5dPnnrqKTl16pRZ9vLly/Lqq69KmTJlJFOmTJI/f37p06ePXLhwgc8UAOBXBA0AkIQSJUrIgw8+KGfOnJHp06cneYyWLFkiW7ZsMcs2btzY78exY8eOMmjQIClQoIA0atTIBBETJkwwxdMaGOijNnO69dZbzc8a3GiQ0aZNGz5TAIBfUdMAAG707t1b5s2bJ+PGjZPHH3880Xx9XvXs2dNkB/xp//79kjZtWtm6dasUKVLEPHfy5Em55557ZOPGjeZRswt79uyRm2++2czfu3ev3HXXXfLdd9/JihUrpHr16ny2AAC/INMAAG7o3XttfrRp0yZZvnz5DfMOHTokX3/9tWk21LVrV1uOoWYNrIBBaXDQo0cP8/PmzZvlww8/jAsYrB6SNDuhfvzxR1v2CQAQmQgaACCZbIMaO3bsDc9rM6HY2Fh55JFHJHv27H4/hpplaNiwYaLnS5UqZR4LFy4sd9xxh9v5R44c8fs+AQAiF0EDAHigd+61GPqrr76So0ePmueuXLkikyZNMj8//fTTthw/LXrWwCEhHdvBChqSkjVrVvN46dIlW/YLABCZCBoAwANtfqT1DFevXpWJEyea52bPnm3GOahZs6bp2ciWX87R0T7NBwDAn/irAwDJ6NWrl+l+VYMGDR6spkp2ZRkAAAg2BA0AkAxtCtS8eXNTJ/Dyyy/LypUrzZgILVu25NgBACICQQMApIAOmqZGjhxpHp988skkaw4AAAhHBA0AkAJav1CxYkXzc7p06eSJJ57guAEAIgZBAwCkkNUFauvWrSVv3rwcNwBAxCC3DgApcO3aNZk5c6b5+T//+Y9tx6xo0aLicrnczq9Tp47H+V26dDETAAD+RNAAACmgPSft379f7rnnHjP5asCAAWbMBR1x+tlnn7X9M1i9erW8//775udt27bZvj0AQHghaAAAN7Zv3y5vvvmmHDt2TL7//nszNsLo0aP9crx0rAdVv359R4KGvXv3yscff2z7dgAA4SnK5SnPDQARbOnSpVK3bl1Jnz69lClTRoYOHSotWrQI9G4BAOA4ggYAAAAAHtF7EgAAAACPCBoAAAAAeETQAAAAAMAjggYAAAAAHhE0AAAAAPCIoAEAAACARwQNAAAAADwiaAAAAADgEUEDAAAAAPHk/wGxkBQoHk/25gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9JUlEQVR4nO3dB3xUVdrH8Se9kELovdtQRBAUBQXBsvbeFewr6lpAEbuuit21gWvv6CsqKohdQUFFUHQtCCK9SYD03t7Pc9zJBsg5gTslmZnf18+YkDMz986dzOQ+c875n5iampoaAQAAAACLWFsDAAAAAFA0AAAAAGgQPQ0AAAAAnCgaAAAAADhRNAAAAABwomgAAAAA4ETRAAAAAMCJogEAAACAU7y7GfWprq6WtWvXSnp6usTExHCQAABAk6Xr+BYUFEiHDh0kNrbxPy8uLS2V8vLyoG4jMTFRkpOTg7qNaEPR4IEWDJ07dw78swEAABAkq1atkk6dOjV6wdA8pbmUSVlQt9OuXTtZtmwZhUMAUTR4oD0MvhdfRkZGIJ8PAACAgMrPzzcfdvrOXxqT9jBowXCwDJf4IJ2GVkqlfLL+M7MtehsCh6LBA9+QJC0YKBoAAEA4aEpDqhMlURIkISj3HcuU3aBo/IFtAAAAAJo0ehoAAAAQUjH6X5B6PmJqmk6PSiShaGiiNOXgp59+ktzcXKmqqmrs3QGiiqZuZGVlSd++fSUpKamxdwcAgEZH0dDEvPXWW/LSSy/J+++/L2VlwU0WAOCWmZkpxx57rJx//vly4IEHcrgAIIDzDoI194A5DcFB0dCE3H777XLzzTfLPvvsI3fccYcccsgh0qpVK0lICM5EIQD104J93bp1Mn36dHn99dfllVdeMZdTTz2VQwYAYWLgwIESFxcnl156qbnAPxQNTcRDDz1kCgYtHG688cbG3h0g6mk8oRbwt9xyi5xzzjly5plnmrjCI444IuqPDQD4KzYmxlyCIVZiRGpE5s2bR8plAJGe1ERWmL7vvvvkvPPOo2AAmhj9lOr555+XfffdVx588MHG3h0AABoFRUMT8NVXX5lVps8999zG3hUAlsJh1KhR8vnnn0t2djbHCAD8FGP6A4J3QeBxVJuADz/8UFq3bi37779/Y+8KAIvjjjvO9Ap+8sknHCMAQNRhTkMTsGHDBunSpYvExlLDAU1VmzZtJDk5mZ4GAAiTOQ0ILM5Sm4DS0lJJSUlxXmf58uVmERS96Pcu3bp1M9fTcdhoPDp5tik/Dxohqvs3fvz47br+FVdcYa4fzROBU1NTpaSkpLF3AwCAkKNoaCKCtSpiJPMVUTYzZ8407cOGDQvpfoULXXtAvfjiiw0uIFheXm4iR+veLhqLLV6nABCg91PmNIQdigYgSO666y5ZuHChHH/88U3yGJ988skmik7XI9DFBF3eeecd2bRpk5l7c8wxx4RsHwEAQNNA0QAESfv27WXXXXc1qwo31aE2p512mvn+ueeec17X137WWWex2CAAIGBzGoJ1QeBRNEQRHaajwyt02M6sWbPk0EMPlRYtWpiTR13E6qWXXrKujqvrSOy9995mcavExERp166dWWlx3Lhxsnnz5m1uU1xcbBasGzJkiGRlZUlSUpJ07dpVjj76aJk8efIW112xYoXcc889Mnz4cDMhXK/bvHlzc9snnnjCJNbUdeutt24xTMQ3TKnunA99rAcddJBp18dat13nfGzt008/lRNOOMGc6Ovj00mv2kPw9ddfNzg0Sk+o99tvP1Mc1J1zYhtm49t//arxnbpKpS4kptvVr//4xz8kNze33u3W1NTIs88+KwMGDDDPW8uWLeXwww83sb1ehmNdcMEF5uu0adNk48aN9V5nzZo18tFHH9U7NCnQx02/vvDCC6ZdI4jrPm96vOrSuQUPPPCADBo0yPy+6CTlXXbZxfxOaq9IXW+88Ya5D+0pWb16db0JZhqrqvvy+++/b/fxAwAgWpCeFIWmTp0qjz32mPkU/LDDDjNrRMyePVtGjhwpP/zwgzkR89ET9iOPPNKcHOpQlgMOOMCcoOnJrp5caTFxxhlnmOLDZ9WqVfK3v/1Nfv31V3NiO3jwYHNyqyefX375pfz000/mNj5arNx0003SvXt32Xnnnc31dciMnnjOmTPHnLD6TvrUXnvtZTLzfSeX+n1daWlpZvt6Eqkng23btjX/9mnVqtUW17/66qvNY9b0Kj0Z18e4cuVKMyRHT6afeuop6xoaeoI/adIkE5erx2np0qXbPe5dj1P//v2loqLCPGadEK+PV5+buXPnmu8TEhK2uI0WGI8//rjZV91PPVnX46mTmq+88krZUVr49enTx9yHPg9XXXXVNtfR46xzHnRxs9133z2ox02fS/1d/OOPP8wx6dWrV+1t9Hn30d9ZfU51v/V3Tx+HFrTff/+9+Z2cMmWKKaK0UFUnnXSS2eajjz4qp59+ullvIT7+r7c//b08++yzze+67vNOO+20w8cRALDjcxr0v2DwrdOgfxv0AyH926kX+KkGOywvL0+DvMzXQBg5cmTNAQcc4LzOsmXLzDb1ot+7dO3a1Vzvueee2+LnQ4cOrb2PCRMmbNE2c+bMmpSUFNP2wQcf1P581qxZ5mf9+vWryc/P32Zb8+bNq9m4cWPtv6uqqmoGDBhgbnPooYfWbNiwYYvrl5SU1Lz33ntb/Ozbb7+t+emnn7a57zVr1tT07dvX3Nfrr7++Tbvvsdh8/vnnpl0ft82TTz5prtOrV6+aH3/8cYs2fezp6ek1iYmJNYsXL6532xkZGTVff/11vfc9atSoep+HW265pfb255xzTk1paWlt28qVK2s6duxo2iZPnrzF7d555x3z87S0tJo5c+Zs0fbAAw/U3qfr8dbnoYceMrfr06dPve077bSTaddj1ZjHzae6urpm8ODB5jrnn3/+Fr+XFRUVNWPHjjVtBx100Ba3Kysrq9lnn31M27XXXlt7/SFDhpifXXrppQ0eq5YtW9bcfffdDV4PACL5vCUQ+3JK3Ek1Z8WfHpSL3ndTebyRhOFJUahfv35y3XXXbfGzoUOHyiWXXGK+r9vT8Oeff5qv+imyfpK7Nf2EWXsRfPQT5vnz55tPwN98800zHKQu/fR/68hO/SRgjz322Oa+O3ToIPfee6/5Xj85DjT9ZNk35OW1116TPffcc4t2/fRee0A0OUiHSdVHP23X4TFedOrUSSZOnGiGY/n4hieprRcRe/jhh81Xbd96IcAxY8aY4+iFzlPQfdBP7fW5q0t7hrRHqe78h8Y+btp7pL0w2vPw73//e4vfS+090N8Z/X3S3oSff/65tk2HT/3f//2fGS6n15kxY4bccMMNpmdDh97V/b0HAATX1kOLA31B4DE8KQrpMKT66NAQPXHSkygdjqJdejp8Rr/qOHodOuQbv27zwQcfmK86/EiHCW0vnTehw5DmzZtnFrvTf+sH0wUFBaZ90aJFEmgLFiwww1x69uxpThrr45sfoHMG6qPDXrwaMWKEORnf2m677VY7bMansrKydh/OPPPMeu9Pj7kevx2lRZ+udqwn1L75Ej76b1/Sku/kvLGP23vvvWe+nnjiibVDjOrS4VJauGjBoNuvW5DqfBadY6KPV4cp6e+XzmN4/fXXtyjeAADAligawkTdqvmvUR52vnZbpa1zB1w/1wmmOpFUJ7XqieG//vUvueaaa+Syyy4zFx0nrhNYjzrqKHMyqZ/g1p3UrHS+xPb65ptv5NRTTzXj4W3y8/Ml0HQcvdLx8w19KqFzOOpT36Tq7aWTvuujc0eUznHw0UnKvn/btunPvugEZy0aXn31VXnwwQdNj1BhYWFtD0/dCdCNfdx829feDL3s6PY1MlYngOv8BfXkk09Kjx49PO8PAMDbqs3BmtNgVoRGwFE0hIlmzZrVfl9UVOS8rp7sqR35pH9rdQsTHQ5zyimnyLvvvmt6IfSiw1L0csstt5ghLK7eBxdNWdJPfXUYlE6aHT16tJn8qifO2sOxePFik4jTUKHkhS+VSZOgdEK4y9aTp30aWsnbRT8RDyR/umO110OLQS36dKK8fgqvn77r75r2MOnwtKZy3Hzb13QtLWpd6k7c9tGCuO66FFq06u83AACwo2gIE5oQo0WAFgRLliypdw6A0vhTXwSq7ZPsZcuW1ftzX1Sofspcd56C0gSiCy+80FzUb7/9Juedd55JOBo/fnxtkpFvm9q+Pb744gtTMOgwKN9QmLqCGX+p8weUPtamuPpwXbqPOnxGh23piX3v3r2tz5/XAkaLNp2roM+DFg2+52PrBKTGPm6+7R977LFmbsSO0OJTk5I0dlWLVf390540HU7FonUAEDrBXE+BnobgYCJ0mNCTOp2srHSCsY1Gkyqd7Fk3orKul19+ud6fv/jii7Wf4NY3VrwuHX507bXXmu81ptXHF22qw1wa6hFRDRU4tn1VvjhSHe9fH9+wKVu7ThzWT8I1GvaXX36Rpkwfqw4JU1uvc+Gjx9wfWhzo79lnn30mH3/8sZlsrL09W0faBvu4NfS86boUSodO7WgP1N133216GXTeiP5uabGrPTS6poZvaB0AANgWRUMY0UWr9ATnlVdekWeeeWabdv3U//rrrzffjx071rpy73fffVebSuSjQ440yUfVzerXE0hNmdG1BOrSk7Xp06eb731Z+Eo/rdV0Jp0oq/Mdtl5kS8fl1x0a4pv0q+tA6EloXTrWXMfZu9KHlO3E1deuvRVb77/S46PDq/Sx6IJkegy2phPC9RjoEJbGdvnll5uvjzzyyDb7o8lKuraDP7RwO+SQQ8zwH99ka0262nroWbCPW0PPq/YwaOHy7bffmkKnvnkLOTk5JlmpbuGhvQo6B0Inn2vBoUP+dF6Ovlb0+jpEqb7fEwBA4OmMhmBeEHgMTwojmgijqyxrvKZO5JwwYYIZ1qO9AjpkSYsBPZHTaEwdMuQ6+dTIVe1Z0LhMPcHXeQl6snjFFVdsEYn6n//8xxQROsdAt6UxqDpRWhfR0k9mNXnmn//8Z+319ZNqHROvY921ONATUe258C3u9uOPP5rF4XxDabTA0JNAXRBMv9dhIjoUS3svNDFJi6A777yz3seh6Tn333+/HHzwwWY1aV+6j64urdvTbWsSkMaI6gJm+r0OvdJPyfUTZ6UTu3UCti4IpuP2dQy8zqnQMffr1683+6GrM+uCal4jQgNFT9AvuugiU0zpMa27uNvChQvN86RDbepOTN9ROuFZI019J+JbrwDtE8zjpsOGbrvtNlMcaQKSDkfS3ystSPWi37/99ttmUTjtKdDetb59+5rnW2NedaK0HhMtXLQHQV8f+nh0yJX+TIvjunMd9HWkhY8WOFqY6zEEAABbomgIM3rCr8WDrhqsn5xqL4B+mqrrIejJt37y2tDYbD351OvqyZLeXk+0tCDQE8Gth6IcffTRkpeXV5vXrydWemKoJ3JamOgKi75Phn2050FP1HXFXz2h0x4Q3YZOnNUhVnVXg1b6qa9+Uq5FjJ686Ym9nuDrSaOuzmsrGm6//XZzAvnWW2+Zk0jdhrrxxhtr52ToUC4tkDSzX3st9Fjp/vmKBqW9Lnqiqvur29fYWD3x1hNyLWL002iNmm0K9NNz/ZRdT8b1udBjtc8++5h99xVitsnH20N/L/T2mtak81j0xNwmWMdNC1l93rQg1N4T7YXSYlh/z3y/21q86uPXORX6vGpxqz0PWnBq28UXX2yuq8dHi2Fdi0KLY/391kJi654TvQ8tWrUo199RfVwAgOCJjYk1l6DcNz0NQRGjK7wF564jl8Z/6ifsejLti8f0h57I6ORkLQKCSU/kZs2aZU6gfTn6iBw6Mf25554za21obxQCTwsqjR/2zecBgGg8bwnEvoxMPFMSY7z3jLuU15TLi+WvNInHG0kY9AWEER3nv/UEc/0kXdcc0E/d9ZN1HYYDAEBTFhPk/xB4DE8CwojOIdD1E3QoTceOHU0BoRPIdWiSJh3pUCGva2YAABBJdDiv/m3UodR6gX8oGoAwoitna9euTnrXycY6R0NX7tafX3nllY0+WRsAgKYyp2HevHkMTwogioYmQCePahRpsM2cOTPo20Bw6RoFvnUKEHqaHKaL7AEAEG0oGpoATfrRZBedk67rMABoenRCXXFxsUloAgD4x7eiQjCwInRwMBG6CdA1BnQNg7orKwNoWqZNm2a+HnTQQY29KwAAhBxFQxOgJyH66eXLL7/c2LsCoB7aC6grse+3335mjRIAgH9YETr8UDQ0Abq41N///nezEq3GZgJoWgWDrkyui9ddcskljb07AAA0CuY0NBF33HGHbNq0ySzQNX36dDnllFPkkEMOkebNmzPPAQgxXftiw4YN5rX46quvymeffSYPPvigWVkaAOC/2JgYcwkG5jQEB0VDExEbGyuPP/647LbbbmaYkkZo+n6uPREAQqe8vNz0MOjrb+jQoaZwOO2003gKAABRi6KhCdETFM3a18vSpUtNvnBOTo7J4gcQ2hhkTTUbMmSItG3blkMPAEGY0+BbTyEY943Ao2hoonr06GEuAAAAQGOjaAAAAEBI6bpUwVqbKiZI6z9Eu6jsvxk3blztL6tOQAYAAABgF3U9DV999ZU88MADpmDQiY4AAAAIrb9mNATns+tg3W+0i6qjWlxcLOecc460b99ejj322MbeHQAAACAsRFXRcN1118nvv/8uTz75pGRmZjb27gAAAESl2Jj/rdUQ+EtjP7rIFDVFw8yZM+XRRx+VkSNHyhFHHNHYuwMAAACEjagoGgoLC81Ky5q3/tBDDzX27gAAAEQ1XUshmBc1cOBA6d27t0ycOLGxH25EiIqJ0FdffbUsW7ZMpk6dKllZWY29OwAAAAgyXSQ3IyOD4xwgEV80fPTRR/LEE0/IaaedJscdd5yn+ygrKzMXn/z8/ADuIQAAQHTxzT8Iyn2zTkNQRPTwpLy8PDn//POldevWZj6DV3fddZeZOO27dO7cOaD7CQAAADRlEV00XHnllbJ69Wp57LHHpFWrVn6lLmkB4rusWrUqoPsJAAAQTUIxpwGBFdHDk3QOQ3x8vEyaNMlc6vrtt9/M12eeeUY++eQTadeunbz22mv13k9SUpK5AAAAANEooosGVVlZKbNmzbK2L1++3Fy6du0a0v0CAACIVrExseYSlPumpyEoIrr/Jjc3V2pqauq9jBo1ylzn9ttvN//WwgEAAABAFPY0AAAAoGnxzT4I1n0j8CK6pwEAAACA/+hpAAAAQEjFxMSaS1Dum8/EgyJqi4bnn3/eXAAAAAC4RW3RAAAAgMbBnIbww5wGAAAAAE70NAAAACCkYoK4TgNzGoKDngYAAAAATvQ0AAAAIKRi/vtfsO4bgUdPAwAAAAAnehoAAAAQWrExOrEhOPddQ09DMNDTAAAAAMCJngYAAACEVkwQexqY0xAU9DQAAAAAcKKnAQAAACEVExMjMTqvIRj3Xc2chmCgpwEAAAARZ+DAgdK7d2+ZOHFiY+9KRKCnAQAAAKGlnQHBmtPw37udN2+eZGRkBGcbUYieBgAAAABO9DQAAAAgtHQ+Q5DmNJCeFBz0NAAAAABwoqcBAAAAoUVPQ9ihpwEAAACAEz0NAAAACP06DUFKTwrW/UY7ehoAAAAAONHTAAAAgNBiTkPYoacBAAAAgBM9DQAAAAgtnXcQtBWhmdMQDPQ0AAAAAHCipwEAAAChxZyGsENPAwAAAAAnehoAAAAQWjGxf12Cdd8IOI4qAAAAACd6GgAAABBSMbEx5hKU+xbSk4KBngYAAAAATvQ0AAAAILRITwo79DQAAAAAcKKnAQAAACEWxBWhmdMQFPQ0AAAAAHCipwEAAACRM6ehhvSkYKCnAQAAAIATRQMAAAAQYUpKSuTHH3+UTZs2BeT+KBoAAAAQUjExMUG9RIsvv/xSxowZY4qDuiZPnixt2rSR/v37S/v27eWf//yn39uiaAAAAADC0JNPPimPPfaYdOzYsfZnq1atkvPOO0+KiookMzNTKisr5bbbbpNZs2b5tS2KBgAAADTOROhgXaLE3LlzpW/fvtKqVavan7300ktSXl4ut956q2zevLm2WJg0aZJf26JoAAAAAMLQxo0bpVOnTlv87LPPPpPExEQzbEkdcMABMmjQIFmwYIFf26JoAAAAQGjpvINgXpq4t956S4YMGWJ6CJKSkqRHjx7mJD8nJ2eH7qewsFBSUlJq/11TUyPz5s2TAQMGSFpaWu3Pu3XrJmvXrvVrn1mnAQAAAAihzZs3y7Bhw+Saa64x8w5++uknM+9AJzR/+umn230/LVq0kOXLl9f+W3sTCgoKZP/999/iehUVFab3wR8UDQAAAAitKF/c7YILLtji31pAJCcny0UXXSQrV66ULl26bNf9DBw4UN5//335+uuvZb/99pOHH37YpEcNHz58i+v9/vvvJkXJHwxPAgBAREqrqq0XAAg27TXw9QpsryuuuMIMSdKhTnr7l19+2Qx1OvTQQ7eY96A9Gf369fNr/ygaAAAAINGenrRo0SJ59NFH5ZxzzpE+ffpIfHy8+dT+jjvu2K7bT5kyxfQYZGVlSbNmzUyq0b333ussAqqqqqS0tFTmz59vhicdccQR0rNnz+3e54MPPlieffZZ6dq1q0lMGjp0qEybNk1iY2O3SFOqrq42bf5geBIAAACi3uOPP26G93hx5ZVXmttqoaFDg3QSsqYYXXvtteYk/qOPPtpiwrJPy5YtJS8vz3yvvQOvv/76Dm971KhR5mJz8cUXm3Ub6k6M9oKeBgAAAITUXyFHwVoR2ts+7bHHHnL11VfLK6+8IgsXLpSzzz57u2739ttvm4JBT8p13YQPP/xQ3nzzTTOPQHssZs+eLTfddFO9t505c6bMmTNH/v3vf8uvv/4qRx99tOl92F5ffPGFLF682HkdLVY2bNhgtuMPehoAAAAQ9baenFx3iI/LhAkTzNfx48dL//79a3+ucaq6oJquk6CrNmvhoElJde21117mq6Yd6fe6nsLUqVPlpJNOku2hw6HOPfdceeaZZ5zX02FSOoxpRwqSrdHTAAAAAIn2OQ1erFmzxqyLoM4444xt2nWCcufOnaWsrExmzJjhvC8tOLSnZMmSJTu0DzoROhQoGgAAAAAPFvx3lWVNLurevXu919GF1upe10aHD2kBoOlHgaaLxmmkqz8YngQAgIgkx/E5Wii5omx5LqJAMFdu/u/95ufnb/FjXXlZL4G0bNky89W1roL2NNS9rjrssMNkxIgRsvvuu5t90oLivvvukz333FOOO+445zZ1HYetV4Xe+mc+lZWV8ssvv5iJ2DuSylQfigYAAABEHN/Jus8tt9wit956a0C3UVBQYL5qxKqNL7WobhGzzz77mDUVfIVEt27d5JJLLpExY8Y0uHKzXleHMfnopGu9uGgPxllnnSX+oGgAAABAxK0IvWrVKsnIyKj9caB7Gfxx++23m4sX2qvhKxq0hyE1NdVMuq6PFiCdOnWSE088UUaPHu3XPlM0AAAAIOJowVC3aAiG9PR087WoqMh6HR0+5NufQFi+fPkWCU8nn3yySUYKNooGAAAAhJRvTYVg3XeodOvWrbZXw8bX5rtuID333HPSq1cvCQWKBgAAAMCDfv36ma+bNm0y8xPqS1CaP3+++Vp3DYdAca0EHWgUDQAAIORISIpyMUGc01Adup6GTp06ycCBA81aDZMnT5Ybbrhhi3ZdDVp7GnQ+xRFHHBHUfdGF27R4KS0ttV7HlfLUEPLlAAAAEHH0ZL53794yceLEoG7n+uuvN1/vvvtu+f7772t/rifwmoikLrvssm1Wgw4ULVgOP/xwM7+iffv2prejvou/6z/Q0wAAAIDISU/67/3qyfSOTD7WE37fSb76448/zNcnnnhCpk+fXvvzqVOnmpNzH11X4fLLL5dHHnlEBg0aZNZf0AjWTz/9VHJzc2Xw4MGek5Ia8s0338jw4cNrexeysrKCNvmbogEAAABRT9dRmDt37jbHYfXq1ebiU1ZWts11Hn74YVMcaK/GV199JRUVFWYxtfHjx8tVV13V4NoLXunaE1ownHfeeXLnnXdK27Ztg/Y8UjQAAAAg4laE3lHDhg0zi6B5dcopp5hLKGmRs8suu8hTTz0V9NQo5jQAAAAAYaiyslL22muvkMTM0tMAAACAiJvTEA123XVX2bhxY0i2RU8DAAAAEIYuuugi+fLLL2snbQcTRQMAAAAaZUXoYF1CGbna2EXD6aefLocccojMmDHDrNUQLAxPAgAAQMTZ0cjVcNTjv2svLF++XI4++miJj483cbCxsdv2C2gx5U+PBEUDAAAAQos5DQGhxYKPJj9p1OvKlSvrva6/k6UpGgAAAIAwtGzZspBti6IBAAAAEu3rNISjrl27hmxbFA0AAESJ0qpqa1tyHNkoAOwoGgAAABBazGkIqPz8fHn55Zflq6++kuzsbBkxYoSMGzfOtC1evNjMfTjwwAMlOTnZ8zYoGgAAABBxNHI1Li5OLr30UnOJVB999JGcccYZkpOTYyZD64Tnjh071rYvWrRIjjvuOHn11VfllFNO8bwdigYAAACElk47CNbUg5joiVxduHChHH/88VJeXi6jR4+WoUOHyqmnnrrFdQ477DBJTU2Vd955h6IBAAAAiDYTJkyQ0tJSmTJlipxwwgnmZ1sXDYmJibLXXnvJjz/+6Ne2mPUEAACAxklPCtYlSnz++efSt2/f2oLBplOnTrJu3Tq/tkXRAAAAAISh7Oxs2XnnnRu8XmVlpRQVFfm1LeY0AAAQJYhVRVMRExtjLsG672iRmZkpa9asafB6S5culTZt2vi1LXoaAAAAgDDUv39/+e6772TlypXW6/z8889mPsO+++7r17YoGgAAANA46UnBukSJCy64wEyEPv3002X9+vXbtG/cuNFcR6NY9as/KBoAAACAMHTSSSfJySefLF9//bX07NlTDj30UPPzOXPmyDHHHCM9evSQb7/91qzjoNGr/qBoAAAAQIgFMzkppnZxt969e8vEiRMj+tmdPHmyXHfddeb7Tz75xHz9/fffZfr06Wb9hrFjx8rzzz/v93aYCA0AAICIEw2Luyld9frOO++Uq6++2kSw6qTn6upq6dy5s4wYMcLvCdA+FA0AUEdpVbX1eJA8AwABoglHwUo5iqL0pLqysrIaXK/BHwxPAgAAAMLQo48+Kjk5OSHZFkUDAAAAQov0pIC44oorpEOHDnLqqafKBx98YFKSgiXii4aKigr59NNP5ZprrjETYpo3by4JCQnSrl07M6v8vffea+xdBAAAAHaYDkfSQmHKlCly5JFHmnkMN9xwg5kIHWgRXzTMmjVLDj74YLn//vtl9erVMmTIEHOAW7duLdOmTZOjjjpK/v73vwe1MgMAAEAdwUpOqk1Qig5vvPGGrF27Vh566CHZc889zfd333237LrrrnLggQfKc889J0VFRQHZVsQXDbGxsXLiiSfKF198IevWrTPxU//3f/8nP/30k7z22mtmxvmTTz4pL730UmPvKgAAALBDWrRoIZdffrksWLDAXC677DJp2bKlzJ492yzopqNrzjvvPHMu7I+Ymij/iF0P5jPPPGMiqXzZtg3Jz8+XzMxMycvLi4ooLyCakJ4EINI0pfMW377cdsSTkpyQEpRtlFaUyC0zLmoSj7exVFZWyrvvvmt6Gj788EPzb/0gXb96FfE9DQ3p16+f+bpq1arG3hUATYDGqtouiPyC0XYBgHASHx9vhuM//vjjZhi+8refIOrXafBNFGnfvn1AniQAAABsT3pSkOYeRM+UhnqVlZXJ1KlTTS/DZ599ZhZ6U7vvvrv4I6o/Olu/fn3tsto67wEAAACRQVMze/fuLRMnTpRoMHfuXBk9erT5IPzMM8+Ujz/+WNLS0uSiiy6Sb775Rv7zn//4df9R29OgY7rOOussM96tT58+tV03topNL3XH4wEAAMCbmJgYcwkG3/3Omzcv4uc0rFu3zoT5vPDCC/Lbb7+ZIUj6+A866CA599xzzYfiycnJAdlW1BYNF198sVm/QWeXa1xVYmKi9bp33XWX3HbbbSHdPwAAAMClS5cuZviRFgtdu3aVUaNGmWJBvw+0qCwadPU8TUzKysoyXTc777yz8/rXXXedjBkzZoueBl08AwAAAH6sCB0MMdE34fm8884zSaBB3ZZEmbFjx8ojjzxiVob+6KOPatOTXJKSkswFABC5SMgCEI7zczMzM0OyragqGsaNGycPPvigObhaMAwYMKCxdwkAACD6xMb8dQnWfUeJzBAVDFGVnjR+/Hi57777zMHVIUk6ox4AAAAIF//85z/Nom310XSk1atX19v26KOPmmFM/oiKouHGG2+Ue+65xwxJomAAAABoZJpwFMxLhLr11lvl7bffrrdNh9zfcsst9bZ9//338s477/i17YgfnqTV2J133mm+79WrlzWrt1WrVnL//feHeO8AAAAA/2mCkr+rPkd10bB58+ba7+fPn28u9dFoKooGAACAECA9KexE/PCkc845p7bycl2WL1/e2LsKAAAANEkR39MAAJGqtKra2kZ8KIAmjfSksBPxPQ0AAAAA/EPRAAAAgMaZ0xCsi4iJ1+/du7c1BAc7huFJAAAAiDjz5s2TjIwMiTQ//PCDWa9hR9r05/6iaAAAAEBoBXM9hQhep0H9+OOP5rIjbRr6E+PncaFoAAAAAMLAgQce6PfJv1cUDQAQpkhIavre+Mod551fWG5ti0+wTzvs2qaZta17O/twjJLySmtbYYm9rXVmsrUtOTHO2paRmiiBll9sP2brc0qsbXt2yQpKEtmidXnWtq5t0j3fb6TTE98YTVAK0n1HqpkzZzbatqP7NxYAAABAg+hpAAAAQGixInTYoacBAAAAgBM9DQAAAAgt0pPCDj0NAAAAAJzoaQAAAEBoaXJSkNKTgna/UY6iAUDA+BNbCESizRuLnO2VjpjTasfraaXjnKiqqsba1qtjpqfI1ZUbCq1tJWX22/Xt2VICrbS8ytq2s+Pxud6fXL5busnZ3rm1Pf52Q649ArZLS/vtgKaIogEAAAChRXpS2OGjPwAAAABO9DQAAAAgtEhPCjsUDQAAAEAYiIuL83zbmJgYqay0z0FqCEUDAAAAQj9APliD5CN48H1NTU2j3FZRNAA7yJXA8ebsZda2M4f2jPhjTUISsGNKHek6CWmJnhKS4uLs0UrZeaX27cXbz7QKS+zve4kJsZ6Sjto0TxEvSsvtxyy/uNzjfVZ5Skdq6La5Rfb9IT0p+AYOHGg+mb/00kvNJRJUV2/7Wrz66qtl0qRJ8ve//11GjRol3bt3Nz9fvny5vPDCC/LEE0/I6NGj5f777/dr2xQNAAAAiLg5DfPmzZOMjAyJZM8995w89NBD8vHHH8tBBx20RVvfvn3lwQcflGOOOUYOPvhg2W233eT888/3vK0I7sABAAAAItekSZNk8ODB2xQMdQ0bNkyGDBkijz/+uF/bomgAAABASOmk3GBeosVvv/0mnTt3bvB6HTt2lEWLFvm1LYoGAAAAIAzFx8fLTz/91OD1fv75Z3Ndf1A0AAAAoHHSk4J1iRKDBg0yBcEjjzxivc6jjz5qCov99tvPr20xERoAAAAIQzfffLN88sknctVVV8nrr78uZ5xxxhbpSa+88op8/fXXppfhxhtv9GtbFA1APZ6a/qv1uOQvWGc/ZpX2WEKJgsjVYMTYEuOKcNZQLrorVrW6otpTPKpXazYWeYpHrai0R44mJ8Z5ikddvDrP2lZVT+SkT1qK/XhuzrfHzZY73oMS49zH2hU5265FqvO2UY0VoQNCew8mT54sF1xwgXz11VemQNj6PSgtLU2eeuop2X///f3aFkUDAAAAEKZOPvlkOfDAA+Xpp5+WWbNmyerVq2snPw8dOtTErLZv397v7VA0AAAAILToaQiotm3byg033GAuwRJFU0UAAAAAeEFPAwAAAEIrmClHUfiReH5+vrz88stmXkN2draMGDFCxo0bZ9oWL15sJkXrEKbk5GTP26BoAAAAAMLURx99ZFKTcnJyzMRnXdxO5zP46KJuxx13nLz66qtyyimneN4ORQMi2jMf/GZty/1qlf2GufaUDSmzJ4VIswRr06tfLrW2ZaTab+dSXe1OZlm1NMfatutura1tw/fsIIE26xd76tRuXbKsbcnp3j8VARpbTKz7I8+aKvtr2LWobYUjqS3L8ZrJKbC/t6UmxXlKSHLJSE30lJ7kUlha6el2cbH2A1peaj+eLdOTnPdbUFxhbStzJGBFPeY0BMTChQvl+OOPl/Lychk9erSZ+HzqqaducZ3DDjtMUlNT5Z133qFoAAAAAKLNhAkTpLS0VKZMmSInnHCC+dnWRUNiYqLstdde8uOPP/q1rSgc9QUAAIDGFfO/BKVAX/S+o8Tnn38uffv2rS0YbDp16iTr1jnWmdoOFA0AAABAGMrOzpadd965wetVVlZKUZF9AcftwZwGAAAAhBbpSQGRmZkpa9asafB6S5culTZt2vi1LXoaAAAAgDDUv39/+e6772TlypXW6/z8889mPsO+++7r17YoGgAAABBawZrPEMxUpiboggsuMBOhTz/9dFm/fv027Rs3bjTX0ShW/eoPhichLLz4+RJrW/bny6xtNesKPEWnOmMQ4+xvRjGOMvzPRRutbdmJ9qjDZm2aWduqHbGLquSPzda2JY6Y11bNU6xtezriUV0WOfYl3xFZePTALp62BzQFsfHuz+Zc7ycpLeyv/cQE+/3mF9mjTNNS7BGohSX221U63hPLK+zvpRtyS6xtuY79zGhm3894xzFzSU23v+clJtjfg7MaiFxNiLffdueOmda20ir7+3dyHJ/pYvucdNJJcvLJJ5v0pJ49e8rgwYPNz+fMmSPHHHOMzJw5UwoLC+XMM8800av+oGgAAABAaLFOQ8BMnjxZevXqJQ899JB88skn5me///67uWjc6tixY+Xuu+/2ezsUDQAAAECYiouLkzvvvFOuvvpqE8Gqk56rq6ulc+fOMmLECL8nQPtQNAAAACC0SE8KuKysrAbXa/AHg+YAAAAQcQYOHCi9e/eWiRMnSqQaPny43HvvvQ1e7/777zfX9Qc9DQAAAIi4OQ3z5s2TjIwMiWQzZ86Ubt26NXi9RYsWyaxZs/zaFkUDQuqdb+05wkum/Gxtq1lvX8WwxpGCJDX2xA8nxxtZTaXjZs2TrW2xjoSkBEeSkeshVDvSN4yG2i2SHMksXsW5EqKSeCtCZKpp4DVYVWZ/QylzJA+lNrO/Z5Q47tPFlazk4kpPauNIYnNZtj7f034mxHtLlerSJs3TvqgkR/KSKz2qS0t7OhYQaBUVFRIb69/fdv5SAwAAILT0s7mg9TQE527D2U8//SQtW7b06z4oGgAAAIAwcd55523x79mzZ2/zM5/Kykr59ddf5YcffjDrNviDogEAAAChRXqSZ88//3zt9zExMbJkyRJzcenQoYOJZfUHRQMAAAAQJp577jnztaamxvQwDBkyRM4///x6r6uLu3Xq1EkGDRokCQn2uVDbg6IBAAAAocWK0J6NGjWq9vtbb73VFAR1fxYsFA0AAABAGFq+fHnItkXRAE9m/bLO2jb/me+tbVVLc+x3Wm6PJqyptLfFOCL2JM4RoeC4nfM+XWkPjujBpMwka1t1RbWnzcXG26P+DI8xr4Ul3iIbXaqr7Nmxqcm8FSFCNZAOk5Bifx1WV9tfM4kNvfYtMprZ40pzCkqtbXGOqMb9d29nbUuO8xbxWOV4v3DZ6IqpdbzPrNxQ6ClS9a/7tT+HuY6YV1ccrdfjFn7pSUG8bwQcf6kBAACAMFZWViaff/65WcQtPz/fzHfYmk6avummmzxvg6IBAAAAoRUb89clWPcdRaZOnSp///vfZdOmTdbraBFB0QAAAABEofnz58upp55qvj/ttNPkl19+MQu5jR8/Xn7//Xf5+OOPTc+DpitpipI/6GkAAABAaJGeFBD333+/VFVVmd4GXbzt3HPPNUWDb02G7OxsGTlypLz//vuyYMECv7YVBTNtAAAAgMgzZ84c6d27t3W159atW8trr70mRUVFctttt/m1LYoGAAAANE56UrAuUSI7O1t23XXX2n/Hx/81iKi09H9paJmZmTJ06FCZMWOGX9tieFIUK62yx3yqx0a/Y22r/G2jp9hR1+SkmETHr6MrArWehID/tcV4u51rEpWrzRGvWFVqPy7xKfbHHu86Ln4oLyyztnVu3Szg20twxB0WFFd4+j2NilhChLWKQnvkZkNRxDWOyNU4x/tQYoL9dVHhiK9OS7HHsbp8+ZM9grtvz5bWtmRHJPQe3VtY2zJS7fu5eE2ep0jZrPRkT8esofYEx98u3r8QCOnp6VJZWblFgaDWrl0rPXr0qP25rga9fv16v7bFX1wAAACEln7IFhukSwPro0SSTp06yapVq2r/7et10PhVn4qKCvnmm2+kbdu2fm2LngYAAAAgDA0ZMkSefvppycvLM70MRx55pBmiNGbMGDNEqUuXLvLkk0+anoczzzzTr23R0wAAAIDGSU8K1iVKHHfccaa3YdasWebf7du3l+uvv14KCgrk8ssvN+3vvfeeNG/eXO644w6/tkVPAwAAABCGRowYYdZjqOuWW26RPn36yJQpU2Tz5s2y2267yZVXXml6HfxB0QAAAIDQCmbKUfR0NFidcMIJ5hJIFA0R7p8tb7G2VVS6Uz0Sm6Va22Iz7G0xyQn22yXZ2yTekWbk6mp0JSu5budqc+yKONJOJMGeBlJVaU9PiqmwP4YqR3pQVbkjqUrF2R9jnCOVyZVOEgyVjpQYEkYQzuJTE9wpZtn2FLPE9CRrW6kjpS7J8T5UUva/lJWtVVXb32vatbC/5yfE29sWr7anGe3c6a+Ul/osXZdvbUt1/I1xqXK8dyc5Eqfyi9x/K7u0SbO2LVqV67hhlvN+ge0xfPhwMzzpxRdflGBjTgMAAABCK1jJSb5LlPjqq6+kvNxd2AYKRQMAAAAQhjp16iRlZfYey5APT6q7OIQ/YmJi5I8//gjIfQEAACBMBTPlKIrSk4466ih5+eWXpaioSJo1C/zCrDtcNCxfvjxgRQMAAAAA/2lS0rRp08ykZ12PoWvXrhIs2z0R+qSTTpL77rvP84auvvpqeeuttzzfHgAAABGC9KSAGDt2rOy+++4yffp02WWXXaRfv37SrVs3SUlJqffD+2eeeSb4RUNaWppf1YveHgAAAEBgPP/887UjeXRC9Ny5c82lPiEpGg477DCzSIQ/9PaHHnqoX/eB+l2UfL710Kwv+9Pa1japjfOQdknpZm90RGQ6h6E5Eg1qahz36dieVFR7ymqOSXLEinodSVdujzOMS7THIKY0T7a2VZTa7zMxpYHowXL7sYl1RNX+siLH2rZ3j5biRaIj0hCIVDWOGFMVE+uIWy6zx6rGehzu64pcbZFhfx9KcUQ05xQUWdsG7Nza2rYht8Ta1qGlfWz2kjX2GNdeHe0xrjkFpda2rLQkT21qfY79cXRpywemVsFMOQqD9KQ33nhDXnnlFfnuu+9k48aN0r17dznvvPPMKs4JCdsfK/zcc89JqGxX0fD+++/7vaExY8aYCwAAABDN7r//fjOM6N5775W2bdua6NQbb7xR/vOf/8gLL7yw3fczatQoCRUWdwMAAEBoRXl60rRp06R16//1xB100EFmxMVNN91UW0g0NRQNAAAAQAi1rlMw+Oy9997m69q1az0VDb/++qvpscjOzjaTo4855hjz8+rqaqmsrJTERMew7FAUDatXrzYPrrTUPlbwwAMP9HczAAAAiBQ6nSdYU9083u+iRYvko48+MvMM9LJw4UKpqqqS22+/3QwdasiUKVNk4sSJ8uOPP5pJyb169ZIzzzxTrrrqqu2ap/DFF1+YE/uePXvu0H6vWrVKzj33XPn888+3GLbkKxqeeuopueSSS8xjGzFihIS8aNADowdwyZIlzuvppFitbgAAAICm6vHHH5eHH37Y022vvPJKc9v4+HgZPny4SQ397LPP5NprrzVDkfSEvb4Y1Lq9BHr7iy66SDIyMrZ7u5s3b5ahQ4eaNdX22GMP80H9pEmTtrjOKaecIpdddpm8++67oS8aXn/9dTn99NPN2KsWLVqYiRzp6emedwL+ebLUHp/10LPfWtvKXvrJeb9V2QX2RkfyTowjZcOVaBAT5/hoIMZjSoIrranCnkwSk2BPOhJXCpDjsddU2ROgSnJLPaUuJcQ3MG4zyX7bqnL7409LCfzIxTJHytXmgrKAby8SlFa5k3eSXa8ZNAlJDSTvlOXZf/dj4+yv7/JK++vXq7xC+76s3mhPSGrrSH/zKjvP/p7YsXXgV7398Y9N1raUJPf7YUYz+5CPwpJKT6/vqHhtN8E5DXrSreuK6VoH/fv3lwkTJshLL73U4O3efvttc8KvhcKsWbPMbZWmImkBMXv2bDNXQSc/10evd9xxx5meibvvvnuH9vmee+4xBYPut36vH9ZvXTRkZWWZFFPdD394OjPQg6j0AGl3R1yc4wQLAAAAaOIuuOCCLf4d64hEru+8ePz48bUFg2rVqpU5gT/ggAPkscceM4VDZuaWscAFBQVy+OGHm+FMM2fOlGbNdqwofuedd8yH91psuCLve/ToIXPmzBF/xHod87XffvvJP/7xDwoGAAAAeOtpCNYlRNasWSPz5s0z359xxhnbtA8ZMkQ6d+4sZWVlMmPGjC3a9GfHHnus6Sn48MMPpUOHDju8/RUrVphCpaECR+dK6FCmkBcNzZs392t1aAAAACDcLViwwHzV4fq6QFt9BgwYsMV1lU6wPu2000zBocXELrvs4mn7ycnJpreiIStXrtymlyMkw5M0S7buAwcAAACaUnpSfn7+Fj9OSkoyl0BatmyZ+dqlSxfrdbSnoe511aWXXmrmQmgykxYQ33zzTW1b7969t3sy9K677irff/+9FBUVWYc26ZwJTXTad999xR+enq6bb77ZdMfs6GQNAAAAIBT0ZF0/Xfdd7rrrroBvo+C/n/K75iLoBOmti5gPPvjAfNV5Djrkv+5Fi4DtddJJJ8mmTZtkzJgxZj2G+lxzzTVSXFwsp556qoS8p0GrGo2O0m4VnYChEzi0wrKNpxo5cqRfOwkAAIAIEoL0JF2/oO4n9oHuZfCHzmMIBO2xeOGFF+Tpp582a0uccMIJ5ud//PGHPPjgg2aJhG+//Vb22msvOeecc/zaludcRV1xTidU6Bgp3RkXiobGc+V5+9gbXW0i8sAj9ln21bNX2dsc8aExjghBsSeSuiNXE731b8ZsZyrCNhzRqVJuj9dzpRqkZtmzm4s22aMOazK8vwHGOmJzU1yxuR65Il4z/HgckSwqYhcjXFm+O044xhELHZ9sXwyqVYa3mNNix+vQFZ0a53jv/tPxnt+UtGuRam3LccQ+Z6W735+yGojVteH1HXxaMOzImgdepP93yQEdHmRTWFhYuz+BpnMadBL1ySefbM7NfdMHNF5VL7o8wsCBA81QqO1ZYM7F05nBs88+K2PHjjXf77nnnrLTTjvVdr00Zf6u1AcAAIDIXKfBi27dutX2atj42nzXDbT27dubAkGLh/fee0+WLl1qhirp8CwdDaQJTa4PLoNaNPzrX/8yK9699dZbctRRR0k48HelPgAAAKAuXQhO6bwCnehcX4LS/Pnzzde6azgEw2GHHWYuweKp71vHSeky1eFSMNRdqW/u3LmmEnvzzTfl999/r10hTyeiAAAAIARi6iQoBfoSuo4G6dSpkxn+oyZPnrxNu55jak+Dzqc44ogjJJx5Khp0OerWrVtLuGhopT6lK/Xl5eU12j4CAAAgcPRkXuNLdWh6MF1//fXmq6aK1k0+0t6HSy65xHx/2WWX+b1OQkM0unXDhg1mvrHtEvLhSTo+6tNPPzXjpbZ3ie3Gsr0r9WkVqItrnH766Y2wlwAAAFEkBHMa9PxvRyYf6wm/7yTfN7JGPfHEEzJ9+vTan0+dOtXMI/A57rjj5PLLL5dHHnlEBg0aJCNGjDARrHqunJubK4MHDzbrMQSLPk5dDmHWrFlmlWkbnddQWWkPbAlK0aAPXE+w9QBpnJMuTR3uK/Vp0aDXpWj4n7GXD7Ye1++O2mRtm/nMX2P36lO93NGbU+NIJap0tFXVn0tsJMbZ26pdcU0OjtQhcRTRccn2fSkrKre2pTgSP6oaeAwxaYme0oxKHClQXlWV2u+zWVLg05qApiDFkUikyhypPa7XaLXj/bLSkfDmSkhy6d7OW+pLfrH9vc2rsgr7e35hibckp4R4+/tzYUml5/2pqLS3ZaTa359JVmocuo6CDmPf2urVq83Fp74Tcx0Gr8WB9mpoilFFRYX07NnTjHLRwJ1gnSvronA6V7e0tLR2NFCwEqM8/aV+6qmnTG/D448/bmZp6wrRtnUatKppzPkCXlfqAwAAQPSkJw0bNsxElHp1yimnmEso3XLLLaZgOO+88+TOO++Utm3bBm1bnoqGW2+91RQDemBXrFghzz///DbX8bU3dtHgdaW+urSirFtV2q4HAAAAhIr2jOyyyy7mA/1AxKoGvGjQcVPB3rGmRJcdv+222xp7NwAAACKDL+koWPcdJSorK81qz6E4L/fc0xAuArFS33XXXSdjxozZoqfBN6QJAAAAaAy77rqrbNy4MSTbivhaLBAr9Wm2rm8p8lAsSQ4AABDJ9JPxYF5CGbnamC666CL58ssva5OeginiI0ua0kp9AAAACI0djVwN16Lh66+/lkMOOcSsOaYrQsfFOZIjg1006Ap3Ghu17777+jVRQ6ug+tZKCMVKffqLo4/jhhtuiNiV+kJp7x4t7W132pcwf+7T361tm2fY22pySuw744i7c4p1jP+Lc7TFeLtdfHKCta3GEZ1a44hPTE52v4RrCu1xh3EJ9o7Grm3+GtYXqn7NorLAR7wCTUGlI3KzoddhVaU9cnWzI6q1ZXqSta1Dy2aeopZzHbHQrljRzq3t20t2RGIXlti3l5XuLTbWZXO+Paq1RYZ7e+2yUqxtpY7Y3KiPVW2C6UnhqEePHubr8uXL5eijj5b4+HizhoQt0dSfHontGp501llnmYUt/PHvf/9bzj77bGkMTWWlPgAAACBQtFjQi9LUUl0fQld+9v1864s/In54UlNYqQ8AAAD/Q0dDYIRyjbHtLho++OADs+KcV7/99ps0psZaqQ8AAAAIhq5du0qTKxrWr19vLv5o7LUdGmOlPgAAANTX0xCc88IomtIQUttVNHz++efB3xMAAAAAO0zXEHv55ZfNaJrs7GwzFH/cuHGmbfHixWY+w4EHHijJycnBLRqGDh3qeQNAXeeO2Ml6QEqH9bS2TXxirv1ALs+1txVVeHsCXIknrviAJHsaSJUrIcjxsUhSiv1lmp9vT1AxauzJS1WO1KkVGwqsbbu09xYYEJ9kfxzFZfaEEXhTWmV/fqM+tSWEXMloDb0OXclKqY7XU44jNS0h3v4elVdofz/JTLMnMrlkpCZ6ep+pcqTGNW9mv8+VG/5arLU+KY5jlp6a4CnJSa3PsT9PxaX2v0FdHElWUSEEK0JreqbGj1566aXmEqk++ugjk06ak5NjJkNrD07Hjh1r2xctWmTm97766qt+jbiJ+MXdAAAAEH00bv/XX3+N6IJh4cKFcvzxx0teXp6MHj1a/u///s8UDnXp2g2pqanyzjvv+LWtqEhPAgAAQNNRd+XmYNx3tJgwYYKUlpbKlClT5IQTTjA/O/XUU7e4job97LXXXvLjjz/6tS16GgAAAIAw9Pnnn0vfvn1rCwbXYsfr1q3za1sUDQAAAGichRqCdYkS2dnZsvPOOzd4vcrKSikqKvJrWxQNAAAAQBjKzMyUNWvWNHi9pUuXSps2bfzaFkUDAAAAQoqOhsDo37+/fPfdd7Jy5UrrdX7++Wczn2Hffff1a1tMhEaT4YqBHHvJfta2979fbW379eMl9g1uLLa3ORJXpdQRnZpgjzOMibV3l8Y5ogAryu07U+OI1TTiYz3FOZY5YiC9ckVLtkhjRfZAI1a1aaiucMcJx8R5G0YR6xh+keV4PW3OL7W2xTneoyoq7Y8jK90ex5pfXO4pvjk7176fLlXV9veZEkfstSuOtUf7DOc2v/t9o7XtoL4dnLcF/HXBBReYyNXTTz9d3nzzTWnXrt0W7Rs3bjTX0UQl/eoPigYAAACEVjDnHkTRnIaTTjpJTj75ZJOe1LNnTxk8eLD5+Zw5c+SYY46RmTNnSmFhoZx55pkmejXkw5OGDx8uhx56qOkOcbnnnnvMdQEAAIBQ0sXdevfuLRMnTozoAz958mS57rrrzPeffPKJ+fr777/L9OnTpby8XMaOHSvPP/+839vx1NOgVYtm4A4bNswsInHEEUfUe73ffvtNZs2a5e8+AgAAIJLExjiH7fp7377F3TIy3MPLIkFcXJzceeedcvXVV5sIVp30XF1dLZ07d5YRI0b4PQHa7+FJXbt2ldWrV5tlqbWCu/DCCwOyQwAAAAB2TFZWVoPrNTRKepL2Mrz77ruSlJQkF198sdx4442B3TMAAABErpggXRAUfk2E/tvf/maGHx155JFy1113yapVq+SZZ56R+HjmVyN0Du/fyVPbk9N+tbYVLMq2b3CzI9XDkUgUl2h/XVSWVFjb4lMSvE/2coQgVVfVSCg1y0jylNoSaqWORKpQJxK59kWRkBTYYxqM41lZ1kB6kuM1XFVuv22xIwnIxZUSVOB4H0p13Kcr6ahrm3TxIqOZPQFq5YbCgD/2BEfS3MKVOc77TXe8R6/YUOApPQrw4quvvpIlS+pPjRwwYICZ3+GP+EDkw37zzTdy+OGHy8svvyxr166VqVOnSlpamr93DQAAgAikBbOraPb3viPZ3nvvLYsXLzbzF7QY8HnqqafkxRdfrPc2e+65pyxYsMCv7QakS0DnN2h1c+yxx8qnn34qQ4YMkRkzZgTirgEAAACImPNsPfk///zztygYfHQ9Bp38XJfOQf7Pf/4jn332mV+ppgEbR9S8eXP5+OOPZeTIkfL666/LoEGDzKxtAAAAoC6WafDm7bffNj0pV111Vb3t2qbn43UtX77crOGgi781iaJBJSYmymuvvWaKhQceeEDWrFkTyLsHAAAAota3335rRvjsyPyEbt26SZ8+fcxt/eFp1tfQoUNl1113tbbfd9998sgjj/izXwAAAADq+OOPP2SPPfaQ+ujQJJuddtpJli1bJiEvGnTixbhx45zXueyyy6SqqspcAAAAgG3GJwXrEqErQufn50tmZv3JW2PGjDHLIdQnJSVFCgrsaV7bg2xURK2LjrZ37X2zywZ72+zl1raqdfYowJpqe9RjoiNeMCvdHlW6MadEnBzbzMpKkVAqdcQ5JrZpOmlrTSnGtCntS6QI9TGNbSBOuNrRXFNd4+l+Kx1xyq4oU5cOLZtZ20rKvcW//scRZZpTYI9xTUqIs7blFdv3JS3F/tjzi8qtbbt1yRKvcgrLPN8W/ovEFaHT0tIkLy/PmpCkl/rk5uZKaqorPLlhFA0AAAAIKSJXvWnfvr388MMPO3w7vY3e1h98jAUAAACEgf33398EDX3xxRfbfRu9rsauDh482K9tUzQAAAAgtGKDfIlQZ511lpnwfMkll5j5DQ3ReQx6Xe3ZOeOMM/zadgQfVgAAACByDB06VA455BD59ddfzeJu7733nvW6utCyTgZfuHChWfDtoIMO8mvbzGkAAABASDGnwbvJkyeboUaLFy+WY445RrKysqR///7SunVr056dnS3ff/+95OTkmF6JXr16mdv4i6IBqMegndt4avu/2fYM5BZp9uSOHEdyR2m599ji5I721IgqRzLLb6tyrW3L1tsj28oq7PuamZFsbftjnf0+NxXY00dyC+3HrXMre0pEoiN9paTMnr5SWGpv69nBfqz39CN9BeEtJt7doR+baP8zHP/f2Mj6pCXbb5eSFO8plciVLrRkTf1pLSouzr6fWWn29DeXdi3sr9/CEvvrMMXx2k5LsR+X3bvaX6Nf/bJeXDq2tidLAcHQsmVLmTt3rlne4NVXX5XNmzfLJ598Ygqxuus1xMbGymmnnWYiZ5s3b+73dikaAAAAEFp11lMIyn1HuMzMTHnppZfktttuk+nTp8t3330nGzduNG2tWrUyPQ9HHXWU9OzZM2DbpGgAAAAAwlCPHj3k8ssvD8m2KBoAAAAQUnQ0hB/SkwAAAAA40dMAAACAkCI9KfzQ0wAAAICIo2sU9O7d26QHwX/0NAABdOqQ7p5uN+uXdda23KIKa1tMjD0iUaU1s7cXOmJe4x2xhcWO2FFX1GOM4yMKXzxcfQpL7I8/IT7GU4ytK2421mPqxsbcEnsjkatRq6ay2tlelmf/vUlISbC2bcq3RxHv3CnT2lZRaY9Fziss8/Sa6dXRvj2Xdlkp1rZV2UWeolNdkckuix2Rsg3JccRCpybbn8OoF8yVm/97v/PmzZOMDHscNnYMPQ0AAAAAnCgaAAAA0ChzGoJ1iVRffPGFWQm6MVA0AAAAAGFg2LBhcvfdd9f+e/jw4XLvvfeGZNvMaQAAAEBosVCDZ3XnAc6cOVO6desmoUBPAwAAABAG0tPTZd06e3hKMNHTADQBQ3dvb237bukmT0koKjuv1NoWH5dkbSsoticWJSXak5Vcw0iTHbdzbS8+zv7ZRlW1PZmm3JFaU15hb6t2JDk1S44PeIIMIltMnHtsdWy8/XVR7Ur5irXfb2FJpac0n5xCe+JYapJ9P1duKLS2Ddi5tbVtxYYCTwlJXdukS6BVON4vOrZu5rztLu3tr/1F67ynMkU6Ohq82XPPPeWzzz6Tm2++WXr16mV+tmTJEnnxxRe36/YjR470uGWKBgAAACAsjBs3Tk466SS58847a382Z84cc9keFA0AAAAIH3Q1eHL00UfLt99+K2+//basWLFCnn/+eenZs6cMHjxYgo3hSQAAAECY6Nu3r7koLRqGDBkizz77bNC3S9EAAACAkIqJjTGXYN13tLjlllukX79+IdkWRQMAAAAQpkVDqFA0AAAAIKS0LyBYCzdHTz/D/1RWVsobb7whn3/+uaxZs8b8rGPHjnLQQQeZidPx8f6f8lM0AE3c3j1aer7tyk1F1raflm+2tjlSRyUpwR6BWlBij06Ndfx16NUhw9q2amORp/10/TFyxTm6Il7LKtwRt8DWqhzxvg39EsfGxXmK/3XJKbDHMGelJXqKanXJL7bHuJY5js2KP+1xrCv/tEe8llfZ7zMz1f74/DHrF3tmfvd29ve2Use+Jjveh4Ct/fDDD6YwWLZs2RYLv6mnn35abrrpJpkyZYrstdde4g+KBgAAAIQW6UkBsXbtWjn00ENl48aN0rZtWznttNNMmpJaunSpvPbaa/LHH3/IYYcdZoqL9u3t60I1hKIBAAAACEP33HOPKRguuOACefjhhyUlJWWL9gkTJsjll19uehzuvfde+de//uV5W/R/AQAAIKRiYmKCelEDBw6U3r17y8SJEyP22X3//felS5cu8vjjj29TMKjk5GSZNGmSuc57773n17boaQAAAEDEmTdvnmRk2OeVRIJVq1bJ8ccfL3GOOVA6CXq//fYzC8L5g6IBAAAAjRCfFMT7jhJJSUmSn5/f4PUKCgrMdf1B0QBEsC4tm3m63ZI1eda2nCJ7Gkp6ij1hJddxu/JKe4rI1kkQdWWk2rdX7UhWio+z/0UpLKm0tqUm2T/JWbY+P+DPA8JffAMpR1Vl9t+3hGb2tJ8qxy94RaU95SstxX6fJY59yXe8fls3T7a2tUm3t5WW2/dzjSM9KM6xcFdKrP01WlVtf5+pqnK8zzieh4aOqQsJSQgEHX6lMava49C5c+d6r7Ny5UpzHX/Tk5jTAAAAgEZZETpYl2gxcuRIKSkpkYMPPlhmzJixTfv06dPlkEMOkdLSUnNdf9DTAAAAAIShCy+8UN5880359NNP5eijj5YWLVpI9+7dTZuu27B582bTY69FhV7XH/Q0AAAAoFGmNATrEi3i4uJMKtK4ceOkWbNmsmnTJpk/f7656Pf6s2uvvdb0OMTG+nfaT08DAAAAEKYSExPl7rvvlttuu80UC2vWrDE/79ixowwYMMDvCdA+FA0AAABohAWhg9MnEKS7bfK0OBg8eHDQ7p/hSQAAAACc6GkAopQrBjQ50R5buD6nxNpWXFphbYuNLbO2lVfYoxB7tEu3tq3bbN+XknJ7fGS8I87RFavqioZdn1NqbZs2b6W1LTnBvj1/lFZUeXr8lVX2x9i1rf25WLOxyNNxq3ZEh7Zvse3qpj7FpZWe4khTkuI9RY4WOraX6Yj+zXTEkaqElqnWtgrHc9HWcb8FxfbXYWFpiaco4qw0+/CGxavtEc3rNxdb24rLHL+jHtNvXM+9S6ojGtf1vqbKHK+19Tn2x5+dZ3/P2LtHS4mOnobg3TcCj54GAAAAAE70NAAAACCk6GkIP/Q0AAAAAHCipwEAAAAhFfPf/4J13wg8ehoAAACAMLRy5UpZtWpVSLZFTwOAbbRJT/bU5rJonT1hZU12kaeEEVfKkyvR5k/HfVZW2dNXYh2RHMmJ9s9gYh1JMMXl9uSVhgJkXIk+ifGxntKTMhzH7fc19uewVYY9XafU8RhdCUHL/iwUL1yPIc+R/uX6nXH9ruU50oqaOVJ5/tpmorXtz1z7vlY5fk9dvxct0hM93WdBif0xugKL4hwr0MbH2p/7csfvRXlpdcAf35+5pZ5SpVSiM43Mvs0Njuc3KgQxPSmaOhq6desm++23n8yZMyfo26KnAQAAAAhDGRkZ0r1795Bsi54GAAAAhBTpSYHRu3fvkA1PoqcBAAAACEMXXnihGZo0b968oG+LngYAAACEVExMjLkE676jxbnnnisLFiyQQw89VK655ho58cQTzTyHpCT7PDOvKBoAAACAMBQX97+QhptuuslcXMVUZaU9KKEhFA0AAAAIKe0LIDzJfzU1NUG5bn0oGgCExC7tM61tXdukW9t++GOjtS2nsNzaVuXIgWybmezpdnGODFRX7Ga14y9jqiPK0xXHqtIccZ6umNd4VwRsmX2brr83uUX2x5+YEOspytQlNSnOU3ymKwLVFVXqOp6ux+eK6VXrHRGwXkdYuPYn3/F7mpxgP6bVjie/U6tm1rbFjphe1++vKza3KsG+L9l5Zda21plJniKK01Ps+6JSkuyPo9IRq9rQ/QLbo7raHkEcaEyEBgAAQKPMaQjWRQ0cONCkC02cOJFnNwDoaQAAAEDE0UQhXccAgUFPAwAAABplnYZgXaLNH3/8IePGjZMhQ4bILrvsYr73mTt3rjz55JOSl2cfLrg96GkAAAAAwtQLL7wgF198sZSV/TWnR4dnbdz4v/mAxcXFMnr0aElMTJRzzjnH83boaQAAAECjpCcF6xItvvnmG7ngggtMQXDvvfeaXoWtU5KGDh0qmZmZMm3aNL+2RU8DgEaXHGf//GKvnq2sbfnF9vSkVdlFnvZlfU6xtS0twVtakUtOUbmntKaGEl+qHSlQpdX2hKTySnsSR4ojsajEkboUXydHfEe49sXVltUs0VOyUHGM/TFUVjmOiyN1qKTCnYDVLivF2lbuuG1mmj0JqMTxO+xKJXKlR3l9zbgSmbIcj2FTQZmn58Lr8Sx1JJUlOV5nDe1r2+b2pLaEeG+vC6AuLRS0SHjvvffM0KT6xMbGyl577SW//vqr+IOeBgAAAERcelI0mDNnjuyzzz7WgsGnXbt2sm7dOr+2RdEAAAAAhKHc3Fzp0qVLg9crKSmR8nJ7z/b2YHgSAAAAQiqYKUdR1NEgLVu2lBUrVjR4vSVLlpjeBn/Q0wAAAACEoUGDBsn8+fPll19+cQ5h0vaGhjA1hKIBAAAAIcWchsC49NJLpaqqSk488UT54YcftmlfuHChnHfeeeZ4X3LJJX5ti6IBAAAACEMjRoyQMWPGyOLFi2XvvfeWnXfe2RQIH374oey5557Sp08f+f333+Waa64xvRL+iOg5DRs2bJAPPvjAXHQp8VWrVpnYKZ0wcuihh5qD3K1bt8beTQAe41iT0+1xhhmp9tjNX1bkWNs6t06ztq3ZaI9xTU20xye2yLDv52rHfTbEFfPqigGNi7PfLr+4wtqW6TimmanWJqmqtkdkVlXZo2Gz0uzbW7PJHvPpSOKVUkfsZqVjX1qkJ3qKKnU9Dyo7r9TaVuGIFs1zPE9pyfY/7blF9tt5TA12ap1p/92Pd/weuuKEKxxxuyVl9uei3HE8XfvSkJbpSZ5+Tw/Yw7/x5eEumOspRNGUBuP+++83q0DfeuutZu6C0qQkvbRq1UpuueUW0yPhr4guGrQoeOWVV0yhsMcee8gxxxwjRUVFpoB49NFH5dlnn5WpU6fKIYcc0ti7CgAAAHhy4YUXmkXeFixYIEuXLpXq6mrp3LmzDBw4UOLjA3O6H9FFQ4sWLeS2226T888/Xzp27Fj788LCQnNwX3vtNTnttNNMVZaVldWo+woAABAtSE8KPB2W1L9/f3MJhoguGh555JF6f56WlibPPPOMWT1v8+bN5utZZ50V8v0DAAAAAkVXh960aZP5qnGsOtomUKJ2InRqaqoZ/6V0rgMAAABCI0aCuCJ01M1qEPn444/lb3/7m6Snp0vbtm3Nmgz6vf5MJ0UHQtQWDRUVFbJ8+XLzffv27Rt7dwAAAIAdpslIWhx89NFHUlxcbHoZ9KKrQOvPjjjiCBk7dqz4K6KHJ7no8KSNGzdKSkqKHH744Y29OwBCmLrUuXUza9vi1XnWto6t7LfLL7JH9qzdVOQpJaZH+3RxySkos7b9mVvqKe0lIzXB2lbuSB7KTLPf5+b8Uk/JUn+sy7e2pTjSqrIc+5LniFaqKK/ylDrkTAFqID3JlTpV4jjerlSmMke6kCshyWsaV1W1PXUqJcl+mlFRaX98pY7nopkjHarYcTvX770r4ashrue/Y0v7E7wq2/6+0MaRDBcpSE8KjJdfflkeeOABcz6r6zCMGjVKunfvbtr0w/EXXnhBJk2aJA899JD069fPr+H4UdnT8NNPP5mqTN10002mG8elrKxM8vPzt7gAAAAAjUnTQOPi4szyAvfdd59JC23WrJm57L777nLvvfeaNh229dhjj0VmT8O4cePk3Xff3eHbPf30085lslevXi1HH320SVDSCNbx48c3eJ933XWXSWECAACA/0hPCoyff/7ZnPcecMAB1uv42nXJgYgsGtauXSuLFi3a4dtpMWCzfv16s3LeihUr5LDDDpPXX3/dVF4Nue6668yaDz7a06DZtwAAAEBjSU5Olg4dOjR4Pb1OYqJ9kcqwLhp0jJZeArk69PDhw80y2wcffLC8/fbbkpRkH99Yl15ve68LAAAAN1/SUTAE636bor333lv+85//NHg9vc6AAQP82lZUzGnIzs42BcPChQtNT4MOe9LKDAAAAAhXN9xwgzm/1bkLNjrXQa9z/fXXR2ZPQ6BoQpIWDL/88ospGKZNm2ZmmAMAAKBxMKfBmy+++GKbXpXLLrvMDKWfMmWKnH322bXpScuWLTOjdr777ju5/PLL/V7oLaZGg1wjlK72fNBBB5kuGR2SpD0MgSgYdE5DZmam5OXlSUZGRkD2FUDTUFplj17ckFtibct1RK4Wl1Z4ikZ1RTmqyir723e6I5Yy1RVZWVopgRbneBzFZfaIzCRHHK3rPssr7M9huiNS1qXMEX9a6Dhm7bIcmaoisnKDfR5e60xvPeKuWNlqRzyqV66I24xm9jHUq7ILPf1uux6D65hl53l7rSU3EJtb7njPiHUMk3FFKu/SPlMCqSmdt/j25fWZv0hqmjtW2qviwgI5ZdjuTeLxBpqe+Nc3/Mp3Or91W92f66Wy0vt7fET3NFxwwQWmYNCD1KJFCxk9enS91zvuuOPMBQAAAMH317rNQZrTEMErQh944IGNNmcjoosG7WnwVVmalGTTrVs3igYAAAA0aTNnzmy0bUd00dCYBxYAAAD1Y05D+ImK9CQAAAAA3kV0TwMAAACaoJi/ehuCdd9N3ZIlS+T++++Xb7/9Vn766Sfp2LGjLF++3PP9lZaWyvz5883iyPq9zciRIz1vg6IBAOpIjrN3wHZp2cxT28pNRZ5SYlo3d6fnZDuSl0rK7AkZBcX2NKeUJPufhapqe0pMnCPKz5VMU+V4/FWOlBxXApRLQnycp2OWW2Q/ZhWV1Z7uU7VvkeLpd8PFldi0Ob/U03OfU1hmbSt3JEu5jk3L9KSgpIrZJCfGeUrqSmwgPanUcWx6dYqs5B4Eji4FMH36dNlnn33M3NucnBzP96XrMEyYMMEkUzWEogEAAABhI1ZizCVY993UHX300XLsscea7y+++GL54IMPPN3PY489Jtdee635vk+fPrLTTjtJenpwomzpaQAAAABCKNbPhdbqFg3x8fHy5ptvmkIkmJgIDQAAgEZJTwrWxYtFixbJo48+Kuecc4751F5PxnVNhDvuuGO7bq8rMg8bNkyysrKkWbNm0rdvX7n33nulosI+vNFfOg9C124IdsGg6GkAAABA1Hv88cfl4Ycf9nQcrrzySnNbLTSGDx8uaWlp8tlnn5mhQ9OmTZOPPvpIUlLsc5i8atOmjbRu3VpCgZ4GAAAASLT3NOyxxx5y9dVXyyuvvCILFy6Us88+e7tu9/bbb5uCQQuFuXPnyocffmiGC/3++++mx2L27Nly0003STAcfvjh8vXXX0u1I6giUCgaAAAAEPUuuOACk0R0xhlnyK677rrd8w4mTJhgvo4fP1769+9f+/NWrVrJpEmTauce5OXlBfwY33LLLVJeXi6XX365+RpMDE8CgCBzxbG2aW7vrl6xocB5v64I1MQE+x+7JEeEpCuOtW0Le5TnxtwSa1tecZWneND1OcXWtjJHzKcr/rWissrT8XTFg7puV1DiHsuclZbo6X5dUbWuCFRXrGp2nj3mtGcHe3RoToH9dhscvxeumNN0R6RuQxGoXl5rrv1sSEZqgrWtrML+HO7cMVOimc4V0Euw7jtU1qxZI/PmzTPfa7GxtSFDhkjnzp1l1apVMmPGDDn99NMDuv0OHTqYnoxjjjlGdtllFznooIOkS5cu9RY8elz86fGgaAAAAEDE2XrdgqSkJHMJpAULFpivLVq0kO7du9d7nQEDBpiiQa8b6KJB13jQoVG//fabGaL0/PPP11ss6PUoGgAAABBWtC8g2AtC6yf8Ww/lufXWWwO6rWXLlpmv+um+jW8/fNdVxcXFpudBLV261Pz7jTfeMP8eOHCgdO3adbu2r8OpNPFJJ2AfddRRZp0GnVsRDPQ0AAAAIOLop/sZGf8bWhfoXgZVUPDXMFKNWLXxncTX7fnYsGGDnHzyyVtcz/fv5557zsS+bo+nn35aUlNT5csvv5R+/fpJMFE0AAAAIOLmNGjBULdoaEq6detmhgwFojDStSGCXTAo0pMAAAAAD9LT083XoqIi63UKCwvN12AUMO3atavdh2CjpwEAGlFynP2zm13au9NVsnPtqTVd2tjHtC5bv+XkwLpaZCRb2yoq7UkwJY7Enupq+6dpJWWV1rY0R4JOuSOVpkWGPZEor7DM2lbk2JfWmcmePn9Lind/kphTaI9ILC2v8vT8uo6pK1kpOdFbKlFxmf0+K6vsz1PHVs08JTK5EqBc6Vib80s9HevUpDjPjz8uttxTOlpDr/1I4M96Cttz36HsMfB94m/ja/NdN5COP/54efXVV6W0tFSSk13vU/6jpwEAAADwoN9/hwVt2rRpi4nOdc2fP998rbuGQ6DoxG5NbtJUpo0bN0ow0dMAAACAkIqUnoZOnTqZtCNdq2Hy5Mlyww03bNGuayhoT4NOwj7iiCMCvv0rr7zSrM+gq1J/9tlnsvfeezvXaXjmmWc8b4uiAQAAABFHT+bj4uLk0ksvNZdguf76680wobvvvlsOP/zw2h4F7X245JJLzPeXXXaZZGYGftiZrsvgm/itSU4zZ860XpeiAQAAAGEl5r//Beu+lX76vyOTj7///vvak3z1xx9/mK9PPPGETJ8+vfbnU6dOlfbt29f++7jjjpPLL79cHnnkERk0aJCMGDHCRLB++umnkpubK4MHD5bbb79dgkHjWUOFngYAAABEPV1HYe7cudsch9WrV5uLT1nZtoEKuiqzFgcTJ06Ur776SioqKqRnz54yfvx4ueqqqyQx0R7Q4I9Ro0aF7HmjaAAAAIBE+5wGXe/An7UTTjnlFHOJVBQNABCmhuzW1tpW6oi6XLupyFNkZVa6fTXVdpIqXhSW2CMp01Lsn8wVSrmnaE2XDi3tEaAJ8fawwTUb7cczPSXBuc1UR6xsarL9tsWlFda2jGb247biT3vMZ0aqfXursv/Kma9P59b2+Nf8IvvztDG3xNNxcf2OupQ7XhOuCNuGfp+SHL8bruciKy3wqxMDwUTRAAAAgIhbEToanHfeedt9XSZCAwAAAI2UntSYND1pewooHXZF0QAAAICwEoo5DTuanhSOnrOkJ1VXV8uKFStkxowZZnE5Xc+hb9++fm2L4UkAAABAGBrVQHqSrhg9btw4eeqpp0ykrD/ss3cAAACAIM5pCNYF/zNhwgRJT0+Xm2++WfxBTwMARKDkOPtnQj3a27vr1+fYE22yc+0pMvFxMZ5SgJIS4qxtJWWV1ra4WPvji4ut8ZTKk5YS7+mx92ifbm0rLLE/BpVXuG3eu09CvP3YFJfa77eyyv74W2cme9peeYU9eSinwFtaVYHjMcQ5fp9c++KSmWpPMlqfU2xtKy13pzUlOtKTShypU0kJ9tu1Sbc/T8COio+PN6tUf/LJJ/7dj1+3BgAAAHaQloXB6g+gn2FbJSUlkpOTI/5geBIAAAAQoRYuXCizZ8+Wzp07+3U/9DQAAABAon1F6HD04osvWtsKCgpMwfDSSy9JaWmpnHHGGX5ti6IBAAAAESca1mk455xznBO/dX0Gdeyxx8qNN97o17YoGgAAABBxK0JHwzoNI0eOtB7HxMRE6dixoxx88MGy//77+70tigYAAAAgAleEDiSKBgCIMq44R69Rj/9Z6V8qx46qqq72FNdZUFzhqa2y2h5jWl5R5WlfGoqAdcWxlji26bpPV6yqS1ys/XHkO45bVlqStS01Mc5TFG+W43fUFWPqir91PYedW6eJS35RubWtdXOiU12iae5BJCA9CQAAAIATPQ0AAAAIqZj//hes+47GtKTtnQPhFUUDAAAAEAFpSQ2haAAAAEDYYJ0Gb4YPH77DRcPXX38txcXFfqdV0dMAAAAAhIFPPvlku6/75Zdfyrhx46SkpMT8u0+fPn5tm6IBAOC3PbtkWdtKq+xJRxty//pjVp9kR7rO+pwST2k2u3S2Z7av3FBobYt3pCDlFNq3F1/t/mQvLSXR0WpP+2mXlerpmHZs1czTcatypEfFx8V6Om7pqQnWth7t7c/T3N82WNtaZ9rTiopL7ccz05HylFNQKi6uNKf1m4utbbs5XjPRIBTrNETD4m71+fnnn+W6666TGTNmmMXdunTpIv/85z/l7LPPFn9QNAAAACDiRMPibnWtWrVKbrrpJnnllVekqqpKWrZsKddff70pmHShN39RNAAAACCkmNMQODk5OXLnnXfKpEmTpLS0VFJTU+WKK66Qa6+9NqBFE0UDAAAAEGZKS0vlX//6l9x7772Sn59vhmJddNFFcuutt0q7du0Cvj2KBgAAAIQUPQ3eVVdXy9NPP23mKaxbt87MWzjhhBNkwoQJsvPOO0uwUDQAAAAAYeCtt96SG264QRYvXmyKhaFDh8o999wj++yzT9C3TdEAAACAkNJ8o+CtCB25TjrpJJMO5Zu3cMQRR0hlZaV89dVX23X7/fff3/O2KRoAAEGV7IjkbNM8xVN0aLss++0qKu0Rr7mOWFFXPGhWuj2S06Wyyh5VqvIKy6xtcY79KSmzx4cmxcd6OjYpSfGejk1ZRZW1LSHeHpvrsnh1nmNf7I/PxevxLK+wHzNVXFrhKY41I9X/NBtEr+LiYrnrrrvMZXtpsaEFhlcUDQAAAAgp5jR4o2suBGt9i4ZQNAAAAABhYPny5Y22bYoGAAAARNyK0AgsbwMDAQAAgCZs4MCB0rt3b5k4cWJj70pEoKcBAAAAETenYd68eQFdETna0dMAAAAAwImeBgBA2MWx5hfbo1P37tHS2vbN4g2e4kFX/llobevSNs3aVljijjd0xZyuzym2tnVubd/mmo1F1rbN+aXiRWKC/XmKi7W3tc60R45m55V6inj1GtOblZboKTa2vModueriei527pgp0UzXaAjeOg3MaQgGehoAAAAAONHTAAAAgJBinYbwQ08DAAAAACd6GgAAABBSsTEx5hKs+0bg0dMAAAAAwImeBgBA2CUrJafbU3lcOrRs5inNp0WGt+0lxLs/m8spsG8zMzXR0+1275plbVu7yZ7mU1xqT3rKchxvV0LQkjV51rY4R0KSK5FJxJ50lOQ43qnJCZ6Ss1yPXVVUVntKbHIlPXVx/J5GCuY0hB96GgAAAAA40dMAAACAkKKnIfzQ0wAAAADAiaIBAAAAjbIidLD+UwMHDpTevXvLxIkTeXYDgOFJAAAAiDjz5s2TjIyMxt6NiEHRAAAAgJBiTkP4oWgAAESNUEdZFpbYo1EbihZt3dwe9VlWYY/5LCm3R6f2aG//1HVVtiuOtcLalppkjystdMS4xlbaI1eT4musbSJxnmJc/9xcHPBI3YaiUzu2sv++tWme4nmbQGOgaAAAAEBoxcRITLBWbmZF6KBgIjQAAAAAJ3oaAAAAEFLMaQg/9DQAAAAAcKKnAQAAACEVE8Q5DUGbKxHlKBoAAGggWam0qtpTek5DurRJs7YlJ9pTgpauy3fca4LH29mlJtvvs7LKnnRUXW1v69XJnuSUkmg/PcktKre2bXQ8FylJ9vssLLHfZ5Xj8amstETxIjmOwR4ILxQNAAAACCntCwhWfwD9DMFBmQsAAADAiZ4GAAAAhBRzGsIPPQ0AAAAAnOhpAAAAQEixTkP4oacBAAAAgBM9DQAA+BGP6YpqdbWpRevyrG1rNxV5el527phpbVuxocBTzOmy9fao1nYtUiXQSsorPd0uMy3J2lZRWWVtS0myx6YmxLs/X01KsLfnFJQ5bxvNSE8KP/Q0AAAAIOIMHDhQevfuLRMnTmzsXYkI9DQAAAAgxGL+mtgQrPsWkXnz5klGhn0RQewYehoAAAAAONHTAAAAgJBiTkP4ibqehsLCQunRo0ftoiKrV69u7F0CAAAAmrSo62m45pprZPny5Y29GwCAKFBaVe1s36W9PeloQ1qp/X7L7UlAi9fYE5kqKu37U1hiTyxKS7GnC5VV2O8zJSne0/ZaZyZb27JzC+23a26/XU5BlafteU1yUgnxcda2DQX257dNun1/IgXrNISfqOpp+Pjjj+Xf//63XHrppY29KwAAAEDYiJqiIT8/X84//3zp3r273H333Y29OwAAABLtcxqCdUHgRc3wpCuvvNLMX/jkk0+kWTP3YjsAAAAAoqxoeO+99+S5556Tiy66SIYPH97YuwMAABDdmNQQdiJ+eFJOTo5ceOGF0rlzZ7nvvvsae3cAAACAsBPxPQ2XXXaZrFu3Tt5//33PqwKWlZWZS935EQAAAPCGdRrCT5MtGsaNGyfvvvvuDt/u6aefliFDhpjv33rrLZk8ebKce+658re//c3zvtx1111y2223eb49ACA6Jcd579B3xW664jqlyN6UEG/fn6SEWE/xqO2yUsSLnML/fRi3tey8Uk8xrq7416z0JGtbblG558eXkWqPo/1lRU5Ux6oisjTZomHt2rWyaNEiT4u3qY0bN8ro0aOlQ4cO8uCDD/q1L9ddd52MGTNmi54GHe4EAACAHceUhvDTZIuGl19+2Vy8mj17tmzYsEE6deokxx13nPV6J598siQlJck555xjLvXRdr0AAAAA0ajJFg2BojGrerH55ptvzNdhw4aFcK8AAACiGbMawk3EFg3au1BTU2Ntj9F+MRFZtWqV6Y0AAAAAEGVFAwAAAJom5jSEH4oGAADCjCt5x5Xm49WKDQXWtlXZ9rimisoqa1tqcoK1rXWm/fElJ8Z5SmRyJStVVFZ7uk+1cKU9Ialdi1TnbYFwQtEAAACAkGJGQ/iJ2qLBNd8BAAAAwP9EbdEAAACAxsGchvDjfalKAAAAAFGBogEAAAARZ+DAgdK7d2+ZOHFiY+9KRGB4EgAAACJuKvS8efMkIyMjSNuIPhQNAABEkOQ4b4MIFq3Ls7Z1bZNubduQW2JtKymvtLZlpSWJF14jTotLK6xtZRVVnuJfVVWVPVglp8AR19reebdAk0PRAAAAgJBiInT4YU4DAAAAACd6GgAAABBSLO4WfuhpAAAAAOBETwMAAABCi66GsEPRAAAAZJf2mZ6OQpeWzaxtKzcVebrP0nJ7mlFWuj3NqLDEntbUwbGfrpQnV5vq2Np+vymJnGYhcvDbDAAAgJCK+e9/wbpvBB5zGgAAAAA40dMAAACA0Ir5a62GYN03Ao+eBgAAAABO9DQAAAAgpAhPCj/0NAAAAABwoqcBAAAERXJinLWtjSM69bulm6xtaSn2U5ekBPtnoblF5Z5utybbHRvbq2Omp8cf9WKCOKkhaJMlohs9DQAAAACc6GkAAABASDGnIfzQ0wAAAADAiZ4GAAAAhBRTGsIPPQ0AAAAAnOhpAAAAQeFKSCqtqra2tc5M9pRIVFpeZW3LSrPfbn1OibUtMy1JXNZusqcrpSYneDo20YA5DeGHngYAAAAATvQ0AAAAILSY1BB26GkAAAAA4ERPAwAAAEKKOQ3hh54GAAAAAE70NAAAACCkmNIQfigaAABAyCXH2Qc7dGnZzNq2oaA04PvSvFmip4jXhuJakxIY0IHIQdEAAACAEGNWQ7ihBAYAAABCbMmSJXLEEUdIWlqatGrVSi655BIpKrIvFtjY6GkAAABASEX7nIa8vDwZPny4dOjQQaZMmSKbN2+WMWPGyJ9//ilvvvmmNEUUDQAAAEAIPfHEE5KdnS3z58+XNm3amJ+lpKTIiSeeKN99953svffeTe75YHgSAAAAGmVGQ7AuTd2MGTNMT4OvYFDHHHOMGao0ffp0aYroaQAAAGGjTXqyp9uVVlU7Wsvttyuv8py8VFJeuV37hqZh0aJF8tFHH5lP+vWycOFCqaqqkttvv11uvPHGBm+vw4wmTpwoP/74o5SXl0uvXr3kzDPPlKuuukoSEhK2uO6vv/4qI0eO3OJn8fHxsvPOO5vtNkUUDQAAAJBon9Pw+OOPy8MPP+zptldeeaW5rZ74aw+C9hh89tlncu2118q0adNMMaLDj3xycnKkefPm29xPVlaWmd/QFDE8CQAAAFFvjz32kKuvvlpeeeUV82n/2WefvV3H5O233zYFgxYKc+fOlQ8//NBMZv7999+lT58+Mnv2bLnpppvC/vjS0wAAAACJ9nUaLrjggi3+HRu7fZ+tT5gwwXwdP3689O/fv/bnGqM6adIkOeCAA+Sxxx4zhUNmZmZtj0Jubu4296U9EDvttJM0RfQ0AAAAAB6sWbNG5s2bZ74/44wztmkfMmSIdO7cWcrKyszkZ5/ddtttm7kLOn9i8eLFpq0pomgAAABAo8xpCNYlVBYsWGC+tmjRQrp3717vdQYMGLDFdZUu6vb555+b2FUfnftQWFgoRx55pDRFDE/yoKamxnzNz88P9PMBAACCwJWeVFDsSE+qqPK+TUd6Un6z0J3Z+s5XfOcvTUEwz6F89731NpKSkswlkJYtW2a+dunSxXod7Wmoe13197//XR599FE59thjzbAlHZaki7vpv31FRlND0eDBpk2btvglAAAAaOoKCgpqx9Q3lsTERGnXrp3s1K1rULejk5K3Pk+75ZZb5NZbbw34MVXNmjUT175sXcRocpKmK11++eVy0kknSXJyspx88sly//33S1NF0eCBdkGplStXNvqLD3+9CPWNYdWqVZKRkcEhaUQ8F00Lz0fTwXPRtETb86E9DHpy26FDh8beFXNyrJ+46zoGwX7MMVuNUwp0L4O/dE2GDz74QMIFRYMHvtn0WjBEw5tNuNDnguejaeC5aFp4PpoOnoumJZqej6b0IacWDnqJBOnp6eZrUVGR9To6T0GF++8aE6EBAAAAD7p162a+aq+Vja/Nd91wRdEAAAAAeNCvX7/a+a51JzrXNX/+fPO17hoO4YiiwQMdE6eTaZra2LhoxfPRdPBcNC08H00Hz0XTwvOBQOnUqZMMHDjQfD958uRt2nU1aO1p0N85jVkNZzE1TSl/CwAAAGgCzjnnHHnhhRfk9ttvlxtvvNF6vbfffluOP/54k5I0a9as2h4F7X046KCD5KeffpKxY8c26WSk7UHRAAAAgKj3/fffyyWXXFJ7HP744w/ZuHGj6U3o2LFj7c+nTp0q7du33+J4XXHFFfLII49IQkKCjBgxwkSwfvrpp5KbmyuDBw+Wjz/+WFJSUsL6GFM0AAAAIOrNnDnT9Aw0ZNmyZfVOan799ddl4sSJ8sMPP0hFRYX07NlTzjrrLLnqqqvM+hThjjkN22nDhg3y4osvyhlnnCE77bSTiQpLTU2VXXfd1SzMsXz5cutt9RdLs4Jtl0GDBgXq+Ywa/jwfSvOh77nnHunbt6/5NCArK0uGDRsmb7zxRsgeQySZMWOGWTDn6KOPNjngvt/t1atXO2/Ha6NpPR+K10bouP4u6OW0004L4d5EhylTppj3en3P1/d+/Rtw7733mhM8QH83dNR+Q5dulhSkU045xQxPysvLk+LiYjMs6dprr42IgkHR07CdtFJ85ZVXzBoNe+yxh+yyyy4mk3fevHmSnZ1t3ny0u+qQQw7Z5rb6y7VixQo58cQTa1cFrEsrUV1CHKF5PvSFrD//6quvzIqMw4cPNxnKujJjZWVlRIw7DDU9jvomuTWd/KXduja8NprW88FrI7R8C0+NGjWq3vZ9991XRo8eHeK9ilxXXnmlPPzwwxIfH2/e9/Xvsb7v6/CRIUOGyEcffRT2w0eAoNKJ0GjYP/7xj5rbbrutZvXq1Vv8vKCgoOa0007TyeQ1LVq0qNm8efM2t+3atatpX7ZsGYe6CTwfV1xxhWnv06dPTXZ2du3P58+fX5OWlmbapk2bxnO1A84999yaCRMm1HzwwQc1GzZsMMdQL6tWrXLejtdG03o+eG2Elu95QfBNnTrVHGt9j//uu+9qf65/A/RvgbaNHTuWpwJw4N0qAIqKimrS09PNm85LL720TTsnRk3n+dAiIjEx0bTNnj17m9vefvvtpm3QoEEh3OPIQ9EQfs8Hr43Qo2gInYEDB5rjfccdd2zT9uWXX5q2pKSkmtzc3BDuFRBemNMQADqWXofHNLQiIBr/+dCx3jpmu0uXLibNYGs6R0J98803snbt2hDtMdD4eG0gUq1Zs8YMXa37Hl+XDk3q3LmzlJWVmdcBgPrFW36OHaATqHwTb7eO4Krrueeek82bN5tx8zo5cejQoXLggQdyrEP4fCxYsMB8HTBgQL237dGjh7Ro0cI8T5p+oM8Tgo/XRuPjtdF4HnzwQVmyZImZ46AfaOicq3BfObYp/m7re3v37t3rvY7+TdAPmfS6p59+eoj3EAgPFA0B8Mwzz5gcX51Adfjhh1uv989//nObn+kqgrqCYK9evQKxK2jg+fAt8a5/mG10oqgWDbbl4BF4vDYaH6+NxqPhC3WNHz9e/va3v8nzzz8vbdu2bbT9iqbfbe1pqHtdANtieJKfNE7rmmuuMd9rAlJ9b/BHHnmkKQz0k6SSkhLzpqRxofoGpl2mGvGlEaII/vNRUFBgvmq6ko0v4So/P5+nJMh4bTQdvDZCT4fK6Eqy2jOqfxsWL14sjz32mLRs2VI++OAD0+NQWlraCHsWWfjdBgIjKnoaxo0bJ+++++4O3+7pp582Yx1tNPNcc9A1rvOYY44xnw7VRxf62DpmUi96wrT33nubPxgTJkyQhx56SKJBYz8fCP5zsb14bTSt5wOhfZ40NrouXXNGL0cccYT069fPfAjy73//20SFAkBji4qiQSe0Llq0aIdvpyefNuvXrzfLhOv6C4cddphZBdCXub29dHyl/jHQy7Rp06KmaGjM5yM9Pd181TUdGtpORkaGRLpgPBeBwGsj9M8Hr42m87rRcffnnnuu+ZugfxsoGvzD7zYQGFExPOnll1/erhX+tr7omNL66FAiXRhGu5IPPvhg072clJTkad92220383V7VmqNFI35fPhWcVy5cqV1/3zPhW3Fx0gS6OcikHhthPb54LXRtF430fj7Hyy+321XuqGvLRre9wGvoqJoCCRdbVhPUBcuXGg+2dYu6uTkZM/3t2nTpi0+CUFwnw9fIsn8+fPrbV+6dKmZBK10eAAaD6+N0OK10bTw+x84vvdyPaa2ic6+vwmkVgF2FA07QBN59AT1l19+MSeo2m3s75Lzr732mvm6zz77+HU/0cjL86FjhRMTE01Pw5w5c7Zp1wnratCgQcStNjJeG6HFa6PpqK6uNkMsFX8b/KeJeJpUWPc9vq7Zs2ebngbtodbXAQCLxl5dLlxs2rSpZs899zSrRh588ME1xcXF23W7t99+u2b+/Pnb/Dw/P7/miiuuqF0R9OOPPw7CXkcur8+H8h13vf3GjRtrf/7dd9/VpKWlmbZp06YFac+jw/asQMxro2k9H4rXRui8/PLLNb/99ts2P//zzz9rTjvtNPN8JSQk1Pz6668h3KvINXXqVHNM9T1e3+t99G9Anz59TNvYsWMbdR+Bpi5G/2crKPA/J5xwgkydOtVMrj355JOtn2gfd9xx5uKjE9gefvhhE6/ap08fad68uZlEpwuH5eTkSHx8vNx///1yxRVXcLhD8Hyo4uJiM/fh66+/lqysLNNboROjP/30U7Mw3JgxY+SBBx7g+dgBt99+u7z33nu1/547d27tsADt2fF1+0+aNInXRhN9PhSvjdDR96V33nnHpCX17t3bxEBrD6j+bdAJ07qyva7ToO9vCAz9O/vII49IQkKC6Z3WY67v+7m5uTJ48GD5+OOP/R49AESyqEhPCgTfOHetsXzdxvXRSVR1T1L1e/0D8P3335sxk3o/+kdbi4hTTz1VLrnkElNMIDTPh9I/xjNnzjSrsGrk4YwZM8xzst9++8lll13GH2kP/vjjj9oT0/pWYlVbzzXhtdG0ng/FayN0Ro0aZeayaZGgQyX1xFVPWHWhTz2hvfTSS62rF8Mb/QBPiwONev7qq6/Mh0Q9e/Y08dxXXXVVbUENoH70NAAAAABwYiI0AAAAACeKBgAAAABOFA0AAAAAnCgaAAAAADhRNAAAAABwomgAAAAA4ETRAAAAAMCJogEAAACAE0UDAAAAACeKBgAIoW7duklMTEzt5eCDDw7Jdl977bUttquXmTNnhmTbAIDwF9/YOwAA0ejEE0+UtLQ02X333UOyve7du8uoUaPM9x988IH8+eefIdkuACAyUDQAQCO4//77Ta9DqOy7777mooYNG0bRAADYIQxPAgAAAOBE0QAAFv/4xz/M2P8DDjhAKisrt2m/4YYbTHv//v2ltLQ0IMdx+fLl5j61F6K6uloeeeQR2XPPPSU1NVXat28vF198sWzevNlct6ysTG6//XbZddddJSUlRTp06CBXXHGFFBUV8ZwCAAKKogEALB544AEZMGCAzJ49W2688cYt2nRewF133SUZGRny+uuvS3JycsCP41lnnSXjx4+Xjh07ymGHHWaKiCeeeMJMntbCQL/qMKdddtnFfF9cXGyKjJNPPpnnFAAQUMxpAACLxMREUxBoT8K9994rQ4cOlcMPP1xWr14tZ599ttTU1MjTTz8tvXr1CvgxXLFihcTHx8vChQula9eu5mebNm2S/fbbTxYsWGC+au/C0qVLpWXLlqZ92bJlsvfee8v7778vc+bMkcGDB/PcAgACgp4GAGggdej55583BYIWCnpiftppp8nGjRvlsssuC+qn+tpr4CsYlBYHo0ePNt///PPP8swzz9QWDL591d4J9emnn/K8AgAChqIBABpw7LHHypgxY8wn/f369TOf4uuwJR2+FCzay3DooYdu8/OddtrJfO3SpYvsscce1va1a9cGbd8AANGHogEAtsM999wjvXv3lry8PGnWrJkZtqTDl4JFJz1r4bA1XdvBVzTUJz093XwN1MRsAAAURQMAbIe5c+fK4sWLzfc6Cfmnn34K6nGLjY31qx0AgEDirw4ANEDnL+g8Bo1dPffcc00k6jnnnGMmKwMAEA0oGgDAwTcBWhOTRo4cKc8++6yMHTtWcnJy5NRTT5WKigqOHwAg4lE0AICDrsWgazLofIZJkybV/kwjT3XI0rhx4zh+AICIR9EAABZffPGF3HzzzWY15ilTppgJ0EonKL/22mvSokULeeihh+Sdd97hGAIAIhpFAwDUIzs7W04//XSpqqqSiRMnmp6GujS9SNdv0PkNOs9h+fLlHEcAQMSKqdEBuwCAkOjWrZuZQK2LxOn3jWHYsGEya9Ys+fzzz833AAA0ZNsQcABA0F199dVmzYXdd99drrnmmqBvT+dfPP744+b73377LejbAwBEFooGAGgEb775pvk6YsSIkBQN2rPxwgsvBH07AIDIxPAkAAAAAE5MhAYAAADgRNEAAAAAwImiAQAAAIATRQMAAAAAJ4oGAAAAAE4UDQAAAACcKBoAAAAAOFE0AAAAAHCiaAAAAADgRNEAAAAAQFz+H2ZCar9DFCuzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACi4UlEQVR4nO3dB3yV1f3H8V8ChCSsEEBkJERGRGRrKiIiEHFQUSuiYBUURwtYRVEcddZtteIAtSq4KlYEURQHRBARxSBDUDEMAwEchBDCSICQ/F/n8R/KyPldOHckN/fz7us2mJNnj3vPPc/5nqjS0tJSAQAAAACLaFsBAAAAAFBpAAAAAOATLQ0AAAAAVFQaAAAAAKioNAAAAABQUWkAAAAAoKLSAAAAAEBFpQEAAACAqrpejPKUlJTIxo0bpU6dOhIVFcVOAgAAlZYZx3fbtm3StGlTiY6u+O+Li4qKZPfu3UFdRkxMjMTGxgZ1GZGGSoMDU2FISkoK/NEAAAAIkpycHGnevHmFVxgS4hJkl+wK6nLq1q0rTZo08SpJI0eO9F7wD5UGB6aFwViVvVbq1K17SHnW+nzrtB1bJLosUor2lljLYqsF51uDD7/JsZadfYK90vTt2jxrWWrzBKft0LZ/9pIN1rL16+zH4uo/dbCWvfDOMmvZZece77QN2v5s1rCWtWxD7g5rWe/OzUTz9uc/Wcs6HlNfndblHNaOvebbn7Y4TXfhqcc4nRebt9m/4SrcstNaFlc/PuDrsmr+OmtZbPND7y/7O6lrM6d92qBOjNM5pd3btPPUla/z20Uw7jOu55OvY6jR9rd2TrXunuy0HRptG7X7pev5pN0vXWnvTZWNtt9sdmzfJmd177jv80tFMi0MpsJwuvSR6kH6GFosxTKr4FOvkmQqDwgMKg0Oyh5JMhWG8k7G2nXsbzyuJ29MBVQa4mvXcdqO2nWKnabTtkPb/vjaBdayuHi3dYmLrx3wbdD2Z+069uXFF0U7n09xtezzrV3H7Vx0PfaauFp7Ar4u2nmxs0T5hmuXfX/H1YoP+LrExtZyOg99HUNtn8bXrul4fEuczlNXwXizD8Z9xvV88uc61Pa3dk5p9yF1OzTKNgbjfNLul67C6YOltt98qUyPVMdIjNSQGkGZdzRddoOi4h9sAwAAAFCp0dIAAACAkIoy/wtSy0dUaeVpUalKqDRUUiblYNmyZZKfny979+6V3UqzeUyQHk/6euUme+EvjaxFa37dZi1brTyLqm2Htv1L1my2luX+ut1aNj3W/tzvsoX2vgAf1Mh22gZtf66pa094yC0ospbt3tBANEuW/3LI76pXryHxderK8c1PkZia9sdUAAAAylBpqGSmTp0qr732mnz44Yeya1dwkwUi3XOPOk4nVcOTdevJaaefJedfdKmccFL3il4dAEAEMf0OgtX3gD4NwUGlIQjaJrmlMNx97z/kH/fcLX/4wx/k/vvvl759+0rDhg2lRo3gdBRCZDKV0Z9//lnef/99efO//5Vr3n1brrn1MflD7z/u+5vBvVpZp5+eaW+hyS2wV3Qb1rW3anRpZW8xWbza3pLkSlueKGWzZ660lq1Qpuvb1R5xuGrJz9ayYRfYE76MCVPtKV/d05KctkM7hl0ct3FFTr7T8dU6LU/MsG+DRtuG+Zk5TvtTpZz3vmRMWW4tGz26p7VsujJP7fi67re2yv1CO/bae6VWNnPRenGhbbt2Hqr3CxNjusneop3UqLbTMrV7sLZvbNdMQQEf9+A/zqJKYuzYsV6F4b777pM77rijolcHVZwZZ8RUTu+++24ZOvRy+ffDN0lsfC3peFKvil41AEAEiI6K8l5BmbdEiZQGZdYRjfSkSjLC9D//+U8ZNmwYFQaEVLVq1eSVV16Wk/5wknwy5WX2PgAAKBeVhkpg/vz53ijTV1xxRUWvCiK04nD55UNlxZKvpCDfbXA2AACORJTXHhC8FwKPvVoJfPzxx9KoUSPp3p3OqKgY559/vtfi9f2i+RwCAABwCPo0VAK//fabJCcnS3Q0dThUjKOOOkpqxsbKtq20NAAAgo8+DeGHSoMfTEpBeUkFS7KP7IPXxtytEhsb5/PvUlJSZO3atfv+2wyKUqtWLalXr560adNGTjjhBLnooou8Dq6RrmfPnvL555/LLbfcIg8//LDPv7/++uvlqaeekrPPPltmzJghkSg+Ll5ipNhLOXJNJ/GVMuKiMG+nUzKLlkoknZtYi3Kyt4gLLXlHS8FJH9DeWubrOCSl1HdKdGmtbL9ruo6W5KSlQGn77fHH5zrtt2Ck22mJUzUT7OOs+JI11z7uS2rPFGtZkTJ2Tf+0ZKfpNNq1pp2nWqqWNp12HWrnk5a4pSW/aes5ac5q0WjJcK7TafvbJeVr+7aCI1w74FB8tV1JREUffoLAKaecIkOHDpUhQ4ZIv3795Nhjj5WlS5fK448/LieddJL06tVL1qxZI5Hsyiuv9H6++uqr3uB4mt27d8t//vOfA6YLlssvv9yr7L38cuXrdByskTkBADjkPYc+DWGHSkMYuuqqq7wPneb13//+VzIyMmTz5s3ywQcfeC0On332mdc/4qef7KMaV3UDBw6UunXreuMRmIHyNO+++663/0y/knPPPTdk6wgAABAuqDRUEeZbYtPq8PXXX3sVh19//dWrXESq+Ph4GTRokPfviRMnqn9bVn7ppZcykB4AACHs0xCsFwKPSkMVk5CQ4A0UZ3z66afyzTffHPI3xcXF8uKLL3qPMSUmJkrNmjXlmGOOkeHDh0tOjv1ZyQ0bNsjNN98sHTp0kDp16nj9KVJTU71Hbkxs7P5M5WXMmDFe/4qjjz5aYmJipHHjxtK/f3+ZNWvWIfM2g4yZis9f/vIX6/LNPM3fNGvWzNsGX8oqTdOnT5fc3FzrNn3yySflPppkWnAuuOACadKkibf+prPwn/70J/nyyy/LnZdZt7JHfExF5OSTT/b6m5jfZWdnez9feeUVr9zE65b9vXndc889B8yrsLDQe9ysW7du3jGNjY31HkMz+9S0iuzv7bff9uZhWkrWr19fbjqXiVU167JypdsougAAILJRaaiCTGdeUxkwZs6ceUDZtm3bpG/fvnL11Vd7FYqOHTt6j+SYisNzzz0nXbp0kcWLFx8yT/MBun379vLYY495aU/p6enyxz/+0ftA+8Ybb8i///3vA/7+9ttv9z70FhUVeR20TaRn8+bN5f333/eW/+STTx7w96bCYj6Ym74F+fnldwAbN26c99NULKpX992HPy0tzavg7NmzR1577bVy/8Z8iDd9HkxfkOOPP37f72+66SY5/fTTvUeXTLKVWf+WLVt6/33qqaeqrRd/+9vfvAqLWUezj8y8zYd60w+lVatWB/RLKXt17tx53/RmzA4zjVkH8yHfbIdpRdq1a5c3COCJJ554QIf4Cy+80FumqRgNHjz4gAqVqRRddtllXpzqCy+84LVCAQBQGfo0BOt/jNMQHFQaqiDzAbVr167ev7/77rsDyv7617/KnDlz5JxzzpHVq1d7/548ebKsWLFCnnjiCe9b7IsvvviAzsOm9WHAgAHeh/lbb73V++9p06bJW2+95X37b77dPvhRqNGjR3u///bbb72+FuZvTSXFtEiYvgamxcJ8oC1jWiNMP4QdO3aU+4HcfCA2/Tdq1Kgh11xzzWHvi7LWA9uH/LIOyfu3MpgP16bC07p1a68CtWDBAm/9v/rqK29/mUefzH60fWtvOl9/8cUXXnqTqVCZ6Vq0aOEtq0ePHof0SzEvUykxSktLvQSsZcuWeetkWihMxW/q1KmyatUqb7+a3x08EKCpzJlWnXnz5u0bVdxUHswjWps2bZKRI0d68wUAAHBB5KofTHRdTDnxdVqknxajFkgNGzb0fu7/KMsPP/wgkyZNkqZNm3ofZs0jRvsbNWqU9wHVRI6azsOmYmH861//kq1bt3qPFj300EOHLMs8tmNeB7d2lMc8smM+wJr5mG/tR4wYcUDsqWlpePbZZ7112T/NxzxOZb5pN9+kmwrG4TL9FEzsqvkQvnDhQu9b+jLmQ7354L9//wfzjXzZo0Jvvvmm1xJzcJTrnXfe6T0m9Pzzz3sf1g9mWgjMY0UuzKNEpsJhWh5My8/+LSrm348++qj3N7Nnz5bly5d7rT+GaaUxlSpTWTR/Y9bTdIg3lQjT0mMqQYGSNfnAiuj+cs9sLYEWlxjvFCs6fFiaU4Tizo/sZaff2ctatnj1gY+NHU4MotE55fdWwSPdPl/HIn3ESdayWffNsZbFn/V7a1h5Dm2DPLwYzHFj5zlFp+YokbJaBGrvvoFvUdNiav2J69Ric7XYYC2SVJtnUqPa1jLtvUs7F7Xt197ztHhf7ZrRTMywnxeDe7Vyin/1Fanquv2ux0K7Z9gUFFS+j3v7P9Ib8HkLfRqCgZaGKsp8+DX2vyBNZcB8k20+0B9cYShj+jkY+/dR+Oijj7yfR/INf1mFxXzrbj5gm8ehTN8H8zIfZo0ff/zxgL83j+GYSoX5IG8+GO+/LeYDtHHttdce0To0aNBg37f4EyZMOKCs7L9NC0fZ/jAtC+bxIPMYkfmwfbj7aH/mcSFXplXGMC075T2CZQYANBWC8pZvxvEoazkxlSvzKJPpx2BaSczjZwAAAK4qX9UTAVHW8besb4NRNnbDSy+95L005pGWMmXPz7dt2/awl28e8bnhhhu8x41sCgoOHWzmuuuu8zoaP/PMM3LWWWd5vzP9IMw6mP4WJkr2SJnHfMy38KaVxbSamE7F27dv9x7LKis/eB+ZR7d8fQOy/z46+MO7q7Llm9YM8zrS5Zv+KebRJ7P/DdPXxPTFAACgMvm950F00OaNwKPSUAWZ1oSyzsymI/DBrQ/m0ZdOnTqp8zAdcV2Zvgums7JJ7HnkkUe8x5pMZ2LzGJD5IG4+yJpys57lfUtvHu8xj0eZcSZMqlNZB+gjbWUoYzptmz4FpuLxzjvveN/Cm2/fTYXGpD+Zjs0H7yPzCNSZZ555WI+AHSwuzvfo3jZlyzd9H8o6Tdvs33F7/9ad/celMP0p6MsAAAD8RaWhCjKPIW3Z8vvzrmeccca+3yclJe1L7jHf5B8u84HfPEpkOkubzsG+mG/wTYXAJPqYR5MOpsV+mkdyTJKS6cw7fvx477Em08/CtJiYD/suzCM9puOw6atgHkky8yl7NOngDsVl+8g81lQRozaXLf+8887zKk9Hwuxzk5RkOqCbR7Lmzp3rdW43j1MxaB0AoDIJ5ngKtDQEB30aqhjTYdk8FmSYaNP9ozzLOie/9957XhTq4Sp7TKjskRdf8vLyvJ/m2/2DmeVOmTJFnd60QphHiMwHe9OB13wYNo8Q+fMNvqkcmMqDGbvCVEJMZ2PTEmLiTg/uV2FaEL7//vtDkqcCwXRYNmzjTJQdo7KK15F4+OGHvVaG4447Tl5//XUvTta07Jh+JPtHtAIAABwpWhqCILZa9BGlHiTWrilby388/rCZD5imw7JJHTLf5JsByQ7+kG/6BJgOtuZDuxm0zHyTf/Dz9+aRHROnasYoMIOxGTfeeKP3Ad5UNkwLgBmIzUSfljHjNmRlZe2LEzUfWg3zoXXYsGH7OhmbCoNJSzKPHWnMh/ZLLrnEW6Z5lMl82N8/ZcmFaS0xlSjTwfrPf/6z9zsz9oHZT/sz22W2z7SSmIHczDqUbVcZE0drOnObx62ONCXJjFVh2CokpoXBVFxMlK2p6JjOzGbQtv2ZViTTR6NsLAjDtCqYPhBmnUyFwwy8Z9KvTESrSXgyjyiZJKX9j5tGS/XIalzLWlaYt9Mp0UVLUclfk2dfXkKstWyFsg1dWjWwlomSkOQrzchmfmaOUwqQlthjxKU1dVrXBpd0cEqKcU0JSlS2Q9v+hJaJTvtG29/aftHOQ+3cPnA0nMOfzlumUlZTOb+1dCHX81Q7hto1oyUEuST9+DqGWrKQr6Qjl6QqX2lc2va7pk75Sm4MxTTBFhXE8RQYpyE4qDSEIRM/asYLMEwMqen0vGjRon3f8JvHUcyH3fK+6TfjFZjxFsw30maEYdO3wfQbMJUOk/+/dOlS2b17txfPWlZpMB+4zajDpr/BAw884C3fpByZD6DmG2zTf8J8yC/7cG0+7JrB28zvzbxNnwHzrb6JODUjHZto1YMHdyuvQ3TZI0RmgDR/OheXMa0VptJQ1oH44BGgy5i+E+vWrfM+sJt1N30HzGNZpqXjl19+kSVLlnj70ETDHmmlwTw2dO+998pTTz3lRaaax5FMpcg8PmRe5t+m0ma22VS6zH43x8gcA3NcTEdpEx9rKi6mBcFUGsz2mEeuzO9M/4/9+zo8+OCDXmXB9G0wj4qZx5UAAACOFJWGMGQerTEvw3yjbGI1TYdnMwaBGZjNfFNtY771/+STT7xvqs0jLKbTsvkQbAZcM9+6m2/hzYfXgzvhmr4R5kOuSR8yLRrmZT6wmjEfzHP0pu9BGTNKtBkTwXxjbz6kmwqK6SNg5mF+Zz7E+mI+KJvOyOZDumsH6PK+xTetGKaSZSpE5oO5jRnrwHzAN60xZn3N9ppHi8w+MpUy8y2+aa05UmbcB9PSY779N4PGmZG2TYXNtECU9Tsw+9R8yDd9KsxxMgPkmZYH06/DlJmB5czfmke4TMdpMxaFiYk1j1qZisT+TMXOzMO0Mo0dO1ZOO+20fRG0AABUlOioaO8VlHnz9H1QUGkII6YlIBDMt9nmm+kj7Vhsvu02HzwPh/lwXpZ6dDDzrf3BH24PNmvWLK/CYFpDzGNFgWA+9NtiUstj4l2PJOL1cPsgmA/tvj64m3EVTN8O8/J1LPcf08J23PYf5A8AAOBIUWlApWMeszEtEmX9KYI1YiQAAKgYZtTmYI3czIjQwUGlAZWG6W9hOvSaR5vMo1DmkSvTkRoAAAAVi0oDKg2TSGQ6/5o+ESa5yDwKVZYOBAAAqg76NIQfPpGFWHmxZ9Vq1DiicROqKtPxtyIGVMPviooKpfr/jyORMWW5U3ymFi+pxVnmKXGHqT1TnCILJ0xdZi0r/N7etyW1X6rbNsyzj4UR1+7A2NzDjQ7Vom+NnOwtTmVa/K22TC2SUzO4lzK6uVI2c9F6p4hMbZ9qx1CNm1XWU43cVI6DryjTDGUbRYlc7Z+WbC2bnrnO6Thpx0I7ZyZmrHQ7LxTata1F0WrT+Yo31mixqtqx0CzJznOKnLVdo4U73GJ4gf1RaagEEhMbeOk3piMtz++jogYF3Llzp9Spa38zAgAgUH4fpYERocMJI0JXAr1695YNGzZ40adARZg+fbr3s8OJJ3MAAADAIag0VAKn9e7tZfCbcROAUDMtXK+//h85ruMJ0qixfYRhAAACPSJ0sF4IPPZqJWAG4Lry6mu80Xp5ph+hrjDcfvvt8vHHH8lZAy5l5wMAgHLRp6GSuOe++2TrljwvYvT999+Xiy66yBvUzCQJ0c8BgWRGkf7tt9+88+yNNybJ7NmfypWj7pTeZx/5CNcAALiIjoryXsEQrL4SkY5Kgx+y1udL7TqHpiF1Tkm0ThNbzdK4Uy1annhmnLQ+tq28+cZ/5OKLL9434q9piQACZffu3V4Lgzm3Tjipuzz01AtyVv8DKwxJA9pbp1+82j66dFxivNM6aQlJmmcnZFrLElrar0NR0oy0RCYtJWe+khxVuG6rtSxX2We+0pN25Re5bb9i9kx72k3NhFin1BqNlmgzYmAna9l4JZXIOSFJOfYa7ZrQkqp8TTtyVA+nc7G8lL7DoaVjaftNS/PRyrRtCMY8h13QwWk6LR3J13kzfvJSceF6PdkSqQoKCmSk0xyB/6HSUImYD3F/u/567/XTmjWycGGm5G/ZIsXFe+XXLfYPJM0b1LKW7SkptZbViNZr4q7TatO5bsfcxRusZS2T3RJ/tOWt37zDaZ6N69s/AH6z0h7z2e3Yo6xlX/34m7g6oc2hH45jYmpIYoMGclRKB2nQyL5cAACCxfQ7MP8L1ryNtLQ0qVatmowcOdJ7wT9UGiqpY1q29F6H8y2I1rKhfeNkbfXwc1ptOtftiFa+rXH9RkZbnpaRrXHJzzauSG9jLaul5Jz7ouWga8cCAIBwl5mZKXXr1q3o1agyqDQAAAAgpEx/zWD12YyiT0NQRGR60pgxY/adrPfff39Frw4AAABQqUVcS8P8+fPl8ccf9yoMpjMoAAAAQuv3Hg3B+e46WPONdBG1V3fu3CmXX365NGnSRM4777yKXh0AAAAgLERUS8Ntt90mK1eulA8++EDeeustv+fXsUViuR1sXOPutM7Frp2dXTvf+hOH57rM6ZnrnGMLXTz++FynqEPXfdalVQOnbc9b8rO1LFqJQfTWR1nm/Mwcp+jUQsdoUS1W1TXq0jVaM0nZL1oEqHYeamVarKpr/KkxfFia03WYo8SVtu7cxGl/a7GUWqyoRgsk0M41LVpz5qL1AQ8H0K5tX3Gd2nnqStuOVcr9RIvp1Y699t7lGiqh0c5t7f6kHQttv2jXma/10YI6tPVxjZW1fVbY7SP4pCKYEMbgjdOAYIiY/Tpnzhx5+umnZciQIdKvX7+KXh0AAAAgbERES8P27du9kZYbN24sY8eOrejVAQAAiGhmLIWy8RSCMW8EXkRUGm666Sb56aef5J133pH69QP/mAsAAABQlVX5SsMnn3wizz//vAwaNEjOP/98p3ns2rXLe+0/HDsAAADcmP4MwevTEJz5Rroq3X6zdetWufLKK6VRo0ZefwZXDz30kNSrV2/fKynJbQRiAAAAIBxV6ZaGUaNGyfr16+W///2vNGzY0K/UpRtvvPGAlgZTcTCpRTGOSUlHSktI0pIUBvdq5bxM1/QGLQ3ENVlKS9dxTTxJH9A+4Okchd9vspbFtWskLhKVNJu8eWud03dqJsRay/LX2BNPeve1J2DlKAlCWmLPBKVMo6U8actLalRbAk1bnmuqVEPl2PtKAtJSt+KS60mgaek62jXjmi6jJYc9OyEz4AlB2n1NO/ZakpOvtK4Vjueptt+0JCDtfHJNONO4pgepaVWOaVTaeeGLtj7admjbrx0L7Ty1Lc/1vTeY6NMQfqp0pcH0YahevbqMHz/ee+1vxYoV3s+XXnpJZs2aJUcffbS8+eab5c6nZs2a3gsAAACIRFW60mAUFxfLZ599Zi3Pzs72Xi1atAjpegEAAESq6Kho7xWUeVftp+8rTJXeq/n5+VJaWlrua+jQod7f3Hfffd5/m4oDAAAAgAhsaQAAAEDl8vsoDaQnhZMq3dIAAAAAwH+0NAAAACCkoqKivVdQ5s134kERsZWGl19+2Xv5Y/aSDRJf+9CB3vqnJVun0WLPlmTbYy41WmybP9NpEXtajJwrbb9Nz1wX8Hk+/vhca9no0T2djlNbJV5x3Nh5TrGqWlxlar9UcaXF9o0Y2Mla9sQLC6xlJco8tW10jbPUIoW12Fzt3N+VX+S0z5KUuNlcJRpWo227ryhXLVK4c4o9XnJixkqnKN7WyvHNtZaILF69WVxoy9Oue+36nZ+ZY1+gco5qUctygai0yFlx3G/adaFFebpGEWv7VFtPLapUi9LWrl/t2I+fvNTpOPiK9XaNjnXd39p0sdXK/xC+2/J74EhEbKUBAAAAFYM+DeGHqicAAAAAFS0NAAAACKmoII7TQJ+G4KClAQAAAICKlgYAAACEVNT//y9Y80bgUWnwQ+/OzaRu3boSCloCg2sSipaw4SsxwjW5Q0u00abTUmSGKYlFWupSas8Up+m0BJ2MVxZZy9KHdnVKbdFSeXyl67gms2jnjSYuuZ61LG/Jz9ayLkrST9aMLGvZBFlmLSvM3GgtG/zQmU7JJNp5rx0L7RiuUvaLlkblKyFJO6e0tBc1eUdJEHJNgtFS2tQELGV/j1fKtGtCSw3TEoL63tHHOXnHNV3IOXlI2TfasXBNM9LWc/bMlU7pWBrXpD3XFEJf575rWpX2nq/N03Y+Fe5w3z6gDJUGAAAAhFZ0lOnYEJx5l9LSEAz0aQAAAACgoqUBAAAAoRUVxJYG+jQEBS0NAAAAAFS0NAAAACCkoqKiJMr0awjGvEvo0xAMtDQAAAAAUNHS4IfYatHeK1C06NSivSVO89TiE31FAWqRb1qZpqES2ajFK2qRldp2aPGo2rpoMZi9+7axluUo89QiMLXYWG2/+BMjqO2bK9Lt2zg+b6m1LC4x3lpWuG6r076RHXuclhd3Zmtr2bMTMsVFQkv7Nborv8gp5lKbZ2HeTud7hrZPsyZ/5xQDqZ0zOY4xp9r1q8X0jhzVwymSUqPFqmrXklbmK4pWuw9p8+2flhzwyGTt/Uy752uxsVpkcmq/VKd7sGscq3af1c5D9f7k47rQImfVCGfHc8p2XhQUFMhIqWRMY0Cw+jTQ0BAUtDQAAAAAUNHSAAAAgNAy/RmC1KeBpobgoKUBAAAAgIqWBgAAAIQWLQ1hh5YGAAAAACpaGoJAS+BwTR3SuCYraekMwUpzckl98LVPM6Yst5YlKikbfbs2d0uJ0VJUHBNktDSfmgmxTvM8nNQPm+mZ66xlhd9vspbF9WhhLUvtmeK0v7uPOMlalvHKIqdklkJln7oqUbZh2LA0a9m4sfOsZekD2qvLHD95qVPi2Cot6Uk5v7UkmLZKUptGSzrSzhltOu061Mq0feYrBcn1PutKuwdriUy5jsvzlbZnM/ru061ljz8+1+nerdFSl7RjryWxaeeFr/uXc3KWsq4utm8rkEo5TkOQ0pOCNd9IR0sDAAAAABUtDQAAAAgt+jSEHVoaAAAAAKhoaQAAAEBomX4HQRsRmj4NwUBLAwAAAAAVLQ0AAAAILfo0hB0qDUGgxarGVosOeFSrFj2oxZhqZb5o26FZvHqz03Ta9s9Pruc0Ty3qMk6ZZ5ISO6nF/c2eudIprlOUeFDX/ekrYlCdrl0ja1lh3k5rWY5SpsW4LlbWRYtVzZqb7RTnqMUgZs3IclqXCVOXOcWK+orM1aIgtRjI3n3bOEWEaudwjrJPXaMuBysxrpPmrBYXWkyx67Zr+1OLdvZ1bowY2MlaNjFjpVM0rrY+2nuQaxSvFt+s3Wdd40iHK/HG2r7WlufrGGrvwdo9Wlumdp5q74eu0bjA4aDSAAAAgNCKiv79Fax5I+DYqwAAAABUtDQAAAAgpKKio7xXUOYtpCcFAy0NAAAAAFS0NAAAACC0SE8KO1QaqkDqkq9kB5uivSVquZZOoqVluNJSJrR9o8mb9oO1LHVIZ6fkGS3RpmTjNqd0HS11adgFHZzSQIzCdVudkneyXl3itN+0xCL5dYe40BKZVq3JC2kyi3YMtem0JBQtlccX14QoLQlH246aSpKXdh+apFxP2rHQEs5Gj+5pLRs/eanTtmvXfWtlf2p8pdlo16F2j85T7hmd09s4JST5k8Zmk9SodsDfu0SZTrsnavfScfd/6rYuPrZDe+/WkqVc05q0/Q34i0oDAAAAQiyII0LTpyEo6NMAAAAAQEVLAwAAAKpOn4ZS0pOCgZYGAAAAACoqDQAAAEAVU1hYKEuXLpXNmwMTckClAQAAACEVFRUV1JeRlpYm7dq1k3HjxlXZo/v555/LjTfe6FUO9vfGG2/IUUcdJV27dpUmTZrIP/7xD7+XFVVaWlrq91wiTEFBgdSrV0+2bt0qdevWPeIoU5doNo3r8nxFAbpGwGqRfq5xh1osoxYxp8WjavF7rpF2GVOWiwstHlSjbYOvGMHopnWsZQktEwMejxqXGG8ty/t4lbUsuk2i03rmzVtrLZMde6xFcWlNrWW78oucIjm1GFPXefq6ZrRjodHiYbV7gnbNuEbDatHOrjHMWpT04F6tQh5B7Rpzqq2rK+0YaueaRjsPtXPNlXbPd12er2MUjG3U3iv7pyUf8fvv9m0FcmrHY6yfWyriM9SdbR6Q2Gr2GGd/FO0tkvtW/r1SbG+wXXbZZfLf//5XNm7cKA0bNvR+l5OTI23atJHdu3dLQkKC5OfnexWpTz/9VE477TTnZdHSAAAAgIrpCB2sV4RYsGCBdOrUaV+FwXjttde8CsM999wjeXl58tlnn3m/Hz9+vF/LotIAAAAAhKHc3Fxp3vzAAQZNi0JMTIz32JJx6qmnSrdu3WTx4sV+LYtKAwAAAELL9DsI5itCbN++XeLi4vb9t+l1kJmZKSeeeKLUrv2/x6lTUlK8R5j8QaUBAAAACEOJiYmSnf2/fmOmNWHbtm3SvXv3A/5uz549XuuDP6g0AAAAILTo0xAQJiHq66+/li+//NL77yeffNLr9NynT58D/m7lypVeipI/GBE6xLR0ir5dD3wmLRApSJ1T3FJwfCUkTc9c55SyoSV+PDsh074yjmk+wTgW2v5OH9DeaV0yxi9wmm7c95vU8pF3HHjTONzt0FKgUnumWMtylXXJX2NP1UodeLy1bNWSn51StfKVdKiSb3+1lhUq+zS1X2pIE5K0bfelZOM2p+QsLbUlGLTkIe3+pd2DNK4JSdq5piX2JKXUV9fHn+QlF64pUFoClnZPEGW/uR5fLcFOu9Y02j1v5KgefiURutDeR133Daqm66+/XmbMmCE9evTYl+zZsmVLOeOMMw7o97Bs2TIZNGiQX8uipQEAAAChRUtDQJx++ukyYcIEadGihZeYZCJVp0+fLtHR0QekKZWUlPgVt2rQ0gAAAACEqaFDh3ovm7/+9a8ybNiwAzpGu6ClAQAAACH1e8hRsEaEjpyDOXfuXMnKylL/xqQr/fbbb/LFF1/4tSwqDQAAAEAY6tWrlzzyyCM+/+7RRx+V3r17+7UsHk8CAABAaAVz5ObSCGpqkN/HZggFWhoAAACAKmzLli0SGxvr1zxoaQgxLcpTi8K7Ir2NU2xd0d4Sp+l8TavFurlGvg0fluYUj6pFAWpRec9cM82+Mn8Vp2hNLa4zrl0ja1l0G/uxqJkQ6xwvqMXYliiRftFKTKJr9KIWSqidM7lK3K62LolKlKkW4avFTmpxpHGJ8U7nRZYSjZrYo4W4aqhsv3YOa/s0J7me07monRdtkxKsZU+8sMDp/NWij10jR7Vjr8WqavvTo+wb7bpwjfl03UbtetLWUzu+4ycvddqnWsStdr/Uts81LtsXbZmu9y/t+rV9xigoqITfEQdz5OYq3qlh3bp1h4wKffDvyhQXF8t3330nn3zyibRqZY+cPhxUGgAAAIAwkZKS4nX4LjNlyhTv5esRpksvvdSv5VJpAAAAQGjRp8FZcnLyvkqDaWGIj4+Xhg0blvu3MTEx0rx5cxkwYIAMHz7cfaFUGgAAAIDwkZ39v0fbzCBuAwcO9AZ4CzZaGgAAABBSZWMqBGvekWLixInSunXrkCyLSgMAAAAQhoYqI0EHGpWGEIutFu2UauGacqQlbGipFr4Si1wtXr3ZWlaYt9MpmUZLSNKSUqLalf/8n5GrJLMUZm50SkEadkEHp5SjwnVbrWVxSpqNr/2WvybPWlbimOjjMynGYvbMlU7TaSlPrueTlnainRd5S362lkntGOdjqGmobL+2rloyTa7jOaOl1mgmTF3mNM9hStqadt/T9pl2T3S+d/k4vqu080ZJ0NGS+LT3mYkZK522Q7t/afvb9X1ES2TStt01VUo79r62QVsf18Qm7Z7Yu2+bI76eCnfa16PCRAVxnIaSyGlp2N/evXtl8+bNUlRUpPaHcEWlAQAAAAhTmZmZctddd8lnn30mu3btUh/bMhGsrqg0AAAAoOqkJwVrvpXQV199JX369NnXulC/fn2pW7duUJZFpQEAAAAIQ3fffbdXYRg2bJg88MAD0rhx46Ati0oDAAAAQosRoQNiwYIFcuyxx8oLL7wQ9NSoSjiuOAAAAABfTB+Fzp07hyRmlpYGAAAAhBZ9GgKibdu2kpubK6FApcEP367Nk9p1Du2F3jnFHru5JNseWRgM2rpoUa2+YuS0KFMt0nBwr1ZO0Yt589Zay2Yqy9NiMBOVOMO8aT9YyyQlwSmqdNzYeU6xjHEtE91iPkVk50dukbNarKoWu+kaH6rFyrrGEmqxqtr51LBfasDPJy1OWYtkzHp1ibXMm+/oHm5Rnso5pV2/eSvtx777iJOsZRmP28/9dGUbXKN4telaK8dJi9bU4kg1WlSpr2VqsaPa/US7ZrTj21e5P7ve8zVa9K92XWjmZ+ZYy7qnJTltn/a+5SviVo0+Vo5vgnKNau/r1mjgmvr7PcLXNddcI9ddd52sXr1aWrXSz1V/8XgSAAAAKmRE6GC9IqnSMHjwYOnbt6/MmDHDG6shWGhpAAAAAMJQy5YtvZ/Z2dnSv39/qV69ujRp0kSiow9tFzCVKdMi4YpKAwAAAEKLPg0BYSoLZUpLS2XPnj2ybt26cv/W3xYYKg0AAABAGPrpp59CtiwqDQAAAAgtxmkIiBYt7MElgUalwQ+pzROOeKhuf9KMXGhpTb7SKfqnJQc8LUOjpd0kKYk2WgJFkpIioqVsSEP7ukQr264ewV932MuU1CEt6Se6aR1tiVISr1zi2fn2ZSrz1La/8PtN1rK4do2c9k3G+AXWstSBx1vLsiZ/Z19e41pOqUOpPVOcpltsXxM1jWr00+cqU4qMn7zUWta7bxtr2az75ljL8pRUreg2iU7XU+qQztaytkn2NLIMJXlGS7vRtt013U67H07McEt58pWuo5VpSWXaPnVNpLoivY3Teajd17X3kZzsLU73/BEDOzm9x2rvhyty7PdKX9NqyWnacdKupydeWOCUugT4i0oDAAAAQos+DQFVUFAgr7/+usyfP182bdok6enpMmbMGK8sKyvL6/vQs2dPiY2NdV4GlQYAAAAgTH3yySdyySWXyJYtW7zO0KbDc7NmzfaV//jjj3L++efLpEmT5KKLLnJeDuM0AAAAILSigvyKED/88IP86U9/kq1bt8rw4cPlv//9r1dx2N+ZZ54p8fHx8u677/q1LFoaAAAAgDD04IMPSlFRkUyePFkuuOAC73cXX3zxAX8TExMjnTt3lqVL7f2PDgctDQAAAKiY9KRgvSLE7NmzpVOnTvsqDDbNmzeXn3+2B3YcDioNAAAAQBjatGmTpKbaEybLFBcXy44dSorjYeDxJD/EVov2XoGizUuLipu5aL1TZJ8WoedL367NnbZDi+ZLSqnvFGeZkxDrFPenxYOmKhGvrpGcPz630L4uc+2xqhJXw1pUsnGbfToRSTz/OGtZnrIdsn23fZlKVKu2rjum/Wgtq97LnjNdopzDWXP/NxLmwRLPbG0ty5v2g7Ws9+geTnGVw4elWcsmTF3mdAx9RXkWrttqLZuvTBd/Viun61C7n2jRwEq4scxUytIdI5O1iFtfUdMu8ZgaLRrWV+yodp/VaOebdp5q7yXTM8sfYdbonpbkdJySlDhS7VzTjqF2nLRjoUUf5/qIMXWNVdVo+1Sbpy0edvs2+725okRFR3mvYM07UtSrV082bNjg8+/WrFkjRx11lF/LoqUBAAAACENdu3aVb775Rtats1fsly9f7vVnOOmkk/xaFpUGAAAAhBbpSQFx1VVXeR2hBw8eLL/88ssh5bm5ud7fmEQl89MfVBoAAACAMHThhRfKwIED5csvv5RWrVrJGWec4f3+iy++kHPPPVdatmwpX3/9tTeOg4le9Qd9GgAAABBiwUw5ipw+DcYbb7whrVu3lrFjx8qsWbO8361cudJ7mbjV0aNHy8MPPyz+otIAAAAAhKlq1arJAw88IDfddJMXwWo6PZeUlEhSUpKkp6f73QG6DJWGINCSjjSuSUz905KdpluSbU+LMDKmLHdKCdJSL0YM7GQte/zeWU5pRjnZW5wSMTRZM7KsZXHtGtmne3WJtSwqua61LLppHWvZ3q82OH+XoiXaqHJ3uiUyfbzKWlbr/GOdUoBES2tqGO+UStNFSUjKeGWR03FyTUJZrCR8+Tp+2rnommijXb/a9aSty678IqflaelBi1dvtpYV5tnPX1HOC+1esqJRbaf0nM4pic73YS3NSDPsgg4SStr5pF3b2rmv0c4ZbZ8N7mVPDZvpeF4Y85XzzfU81Y6hLSEp7JiEo2ClHEVQetL+6tev73O8Bn/QpwEAAAAIQ08//bRs2aJXbAOFSgMAAABCi/SkgLj++uuladOmcvHFF8tHH33kpSQFS5WvNOzZs0cyMjLk5ptvlrS0NElISJAaNWrI0Ucf7fUq/+CDDyp6FQEAAIAjZh5HMhWFyZMnyx//+EevH8Pf//53rxN0oFX5SsNnn30mp59+ujz22GOyfv166dGjh7eDGzVqJNOnT5dzzjlH/vKXvwS1ZgYAAID9mOSkYL4ixNtvvy0bN270kpM6duzo/dskJbVt21Z69uwpEydOlB07dgRkWVW+0hAdHS0DBgyQuXPnys8//yzvv/++/Pe//5Vly5bJm2++6fU4//e//y2vvfZaRa8qAAAAcEQSExPluuuuk8WLF3uva6+9Vho0aCDz5s3zBnQzT9cMGzbM+yzsjypfaejTp49XCzv11FMPKTPPf11++eXev1999dUKWDsAAIAIFB3kV4Tq1KmTPPnkk16Lg/n8269fP9m1a5e8/PLL3mdif0R85GqXLl28HZGTY4+Ms/l2bZ7UrlN8yO/bJiU4xaq6RrVqkX1a3J+2nkaGUrZqyc/WshIlDm+iMs/0oV2tZbNn2p/Nu+Hqk6xlj4/50FqWOvB4p0g/NQYzroZTJOXOj1Zby6Lilcu0cI+9TERKNxday6p1a2Yt2/PlBqeYwOg29vMtTolXLPx+k7VMUuznaVxyPafY3BzlWMgOfZ/aPDsh02m6hJaJTteEr1jktkpkoxqRqRzfmgmxTsdXK9PiSidMXeYU5ZnYuYlTjOsk5brXaPenxcrx9UWLCNXOtyQlHtaVNk/tfqlFh2rboF0XanSqErk6aY79PqtRI6HNdTqgvVPkqmusqna+9e7bxlqGyFK9enXvcfw//OEP8sgjj8i4ceP8fhQ/4isNZR1FmjSxv8kAAAAg0OlJQep7EDldGsplWhbeeecdrz/Dp59+6g30Zhx/vP3L0sMR0ZWGX375xWuuMUy/BwAAACAcLViwwPtca/rubt261WtZqFevngwaNEiuuOIKr9XBHxFbaSguLpZLL73U26kdOnTwEpS0Gpt5lSkoKAjRWgIAAFQ9UVFR3itY844UP//8sxfm88orr8iKFSu8ioLZ/t69e3sVBfOleGys/dHSIxGxlYa//vWv3vgNpne56SgSExNj/duHHnpI7r333pCuHwAAAKBJTk72Hj8ylYUWLVrI0KFDvcqC+XegRWSlwYye99JLL0n9+vVl5syZkpqaqv79bbfdJjfeeOMBLQ1m8AwAAAD4MSJ0MERFXofnYcOGSXp6enCXJRFm9OjR8tRTT3kjQ3/yySf70pM0NWvW9F4VSUtd0tIZNFqykq9EiJxN252WmTX5O2tZRuOfndJQpmeusy+wVg2ndJ2SLHsiVXRqolMi04qxX1nLomKrO6UH7Z2jJDmZhKQT7futZOM2+3R9j7GWFWZudEpz2vyVPZEp/qxWTsklSSn1rWVZynpq04lSpqWGuboi3Z528tiVU9VpG1zSIeBJMd3TkgJ+r2lYt6ZTApSaSqMkMmnL0+6lWpKTdr/UEpK0NCpfCTpaepSWLqTdn7WkI1/rGuj9rW2DNk9tv2jnr6suynnoK41sxMBOTu9dWsqXdr7ZkpWKCgMzuBcqZ/9c028hFCKq0jBmzBj517/+5e1cU2E48cQTK3qVAAAAIk901O+vYM07QtQLUYVBImn4i1tvvVX++c9/ejvXPJKUlpZW0asEAAAAHLZ//OMf8t5775Vb9u2338r69eWPVfL00097jzH5IyIqDXfccYc3sIV5JIkKAwAAQAUzCUfBfFVR99xzj0ybNq3cMvPI/d13311u2aJFi+Tdd9/1a9lV/vEkUxt74IEHvH+3bt3aGxGvPA0bNpTHHnssxGsHAAAA+M8kKPk76nNEVxry8v7XoXXhwoXeqzwmmopKAwAAQAiQnhR2qvzjSZdffvm+mpf2ys7OruhVBQAAACqlKt/SEEwdWyRK3bp1D/l90d4Sp4i1/mnJAY9snJhRfvya0TbJHuXpK7ZPW9fxk5day+LSmlrLCr/fJC606FTZsccpjlWLQI1r18i+LnPtlc/SzYX2dWkQZy2qpkQPynEN7WVmmevso5dHtVOm3b7bab9pqnVsbC0rnLvWKXJWi4+UxrWcjlNqzxRrWYmyvJGjejjFn2r3BPUYmZbUecp+qx3jtI0aLQZTOxZambYuWpSlFq2p3dsef3yutWz06J5u9zUl/tUfu/KLnGKDtbjOZydkOkWganKyt1jLljSq7TRPdRsco4+19dTOJ1/x5FoUsXZ9a+szTrlHqXHolmt053Z7xHaFIT0p7FT5lgYAAAAA/qGlAQAAAKFFn4awQ6UBAAAACBNLlizxxms4kjLze39RaQAAAEBoBXM8hSo8ToOxdOlS73UkZSb0J8rP/UKlAQAAAAgDPXv29PvDvysqDX4wKUkxSlJSeZKUJAktZcF1nl1aNbCWrcjJd06v0NZVSxLJm/aDtSzx/OOsZYN7tbKWjdMSZLSkn9yd1qKo+OoBT/qpfWVnp3mWOCYEGaUb7IkZUUpCUmKPFtaywjz7fivM3ChOGtrPmcTOTaxl+WvynKbTzkOxB+hItJIe9PSQt61lbUd1c7p+s7QUK7M+TetYy1or26+mTim0tBctzUebLldZnmtC0sxF661lccn1rGVPvLDAWjZ8WJpTOpa2X3zdh7VjqJ032vpoCUna+8XsmSud9o12LDTaNmjL0/andj5pCUi+aPehLn3bBP46VJINw4n54BtlEpSCNO+qas6cORW2bNKTAAAAAKhoaQAAAEBokZ4UdmhpAAAAAKCipQEAAAChRXpS2KGlAQAAAICKlgYAAACElklOClJ6UtDmG+GoNISYFpWmRei5zrMiNFRiKQePPcda9sw106xlzyqRdiXf/mYti25ljzssySuyllXvZY8cLZ5jj0eNFnvc3/aZP1nLqnU8ylpWMt8eWRiVEGst89an69H2MuU45U5YbJ8u1R7ZWLq50FpWUsse/yq1Y5ziDEs2KvNUoiWjOza2lq1a8rO1bO9XG6xltc4/1ilaUSvTom990bZDi910jYHUIponKfPMU9YzQylbrMSRarHAWiS0VvbshMyAR6ManVPsxyJjynJrWdavO6xl6SNOcooW1d5Lair3mglTl1nLduUXOe03LaZXi1XVtk97b9LOGVGiaH3GYiu0iNvFQYg+BvxFpQEAAAChRXpS2KFPAwAAAAAVLQ0AAAAILdKTwg6VBgAAACAMVKtWzXnaqKgoKS4udp6eSgMAAABC/4B8sB6Sr8IP35eWllbItAaVBj/EVov2Xkeif1qy07KK9pZYy9omJTilTPhKXdJSKLSkicJ1W61lWZO/s5ZFJde1lhV/tNpaFt20tlOaj5YCpC1v9xJ7mlFsv7b2ddllr92XrLanYWii4n1cwtn241/SMD7gqUslufbzIrppHacUlR+fW+h0zrimncQl17OXXdLBKZkla2620/K05BlfiTZaQtLgXq2cknC0dCGNlpCUqBx7bZ9qqUTzlfuTtu3q/VJZF42v+6yWkJTaM8UpQUejpZHlKddFMNZFS+rSzjVtn2qJRPMzc5yuNV/HUDuHtWW60vaNbZ8W7tgd8PVAxSgpOfTz4E033STjx4+Xv/zlLzJ06FA55phjvN9nZ2fLK6+8Is8//7wMHz5cHnvsMb+WTaUBAAAAoRXhfRpWrVrlfYj/+uuvZdmyZdKsWTPvQ/6RmjhxoowdO1ZmzpwpvXv3PqCsU6dO8q9//UvOPfdcOf300+W4446TK6+80nmdq3ADDgAAAFD5fPfdd/L+++9LSkqKtG/f3nk+poXhlFNOOaTCsL9evXpJjx495NlnnxV/UGkAAABASJlOucF8VXb9+/eX9evXy9SpU+Wkk+wDMvqyYsUKSUpK8vl3piXjxx9/FH9QaQAAAABCKDo6MB/Bq1ev7j3e5Mvy5cu9v/UHlQYAAABUTHpSsF4OzDfxTz/9tFx++eXSoUMH70O2abW4//77D2v6yZMne48C1a9fX2rVquX1KXj00Udlz549EizdunXzKgRPPfWU9W/MNpmKxcknn+zXsugIDQAAgIhnnvl/8sknnfbDqFGjvGlNRaNPnz5Su3Zt+fTTT+WWW26R6dOnyyeffCJxcXEB38d33XWXzJo1S2644QZ566235JJLLjkgPek///mPfPnll9563XHHHX4ti0qDH75dmye167gPkhEoWuSqVqZF/fmK1nS154t11rIap9jjaKOUaElRokOjlAjQkm9/s5fl2aNaa7RpbJ9uoz2aLzoxzml51VrWd9p2o3Rdgb1QK1OUaDGvKfbzrWTjNmtZllKmxaom9mjhFAvsT8ypTZIS9ZirRDJq66lF0frSt2tzp2hRjRaB6jpP10hOrUw7hjMXrXeap3o+KRGYWsSpr7jOVUpUbe++bZxiPrW4YdfzaabjdFpk+fjJS61lWcp+ESUa1jW+WNsGn+e+YwSsdk65RBFv31ZDKp1KmJ5kOiSb+NIuXbpI165d5cEHH5TXXnvN53TTpk3zKgymovDZZ5950xq5ubleBWLevHly5513+h15Wh7TevDGG2/IVVddJfPnz/cqCAePzWDW64UXXpDu3bv7tSwqDQAAAIh45oO3S7+DBx980Pt566237qswGA0bNvTSjU499VR55plnvIpDvXr2L61cDRw4UHr27CkvvviiV2kxHazLOj+fdtppXsxqkybuX0KVodIAAAAAifSWBhcbNmyQzMxM79/m0aCDmahTk26Uk5MjM2bMkMGDBwdlPRo3bix///vfvVew0BEaAAAAVU5BQcEBr1273B7P0yxevNj7mZiYuK8vwcFOPPHEA/42XNHSAAAAgNDyI+XosOZt+ngcNH7B3XffLffcc09AF/XTTz95P5OT7f0yy9aj7G+NnTt3ei0Pxpo1a7z/fvvtt73/TktLkxYt7H32ymMqRa+//rrXr2HTpk2Snp4uY8aM8cqysrK8TtHmEabYWKWPqA9UGgAAAFDlmEeC6tb9X5hGzZqBD3jZtu33IA8TsWpjOiKXfbAv89tvv3l9EfZX9t8TJ070Yl8Pl0lmMo9Gbdmyxev4bGJiTX+G/aNkzz//fJk0aZJcdNFF4opKQxB0Tkl0mq5ob4lTOoNWlrPJnuYzclQPdX20+WY8Ps8pQad620bWsug29v22480Ma1ncoC7WspI8JQkntrpbYpFi15xV1rLqyfYUjb2/bLWWRTetY59uzlp1fbRpo5TtL1XSZ0qL7NNFa8EltWPEhZZ05CuZxoWW8hTX0u3a1pJ3tKQfX6ktz074/Tna8mTNyLKWjbyjj7jQ0tgmzVntdAxdkmB83WeLetnvpROm2gdBGnZBB6d9Xbhuq9O2G12UdB0teUdLv9MSmQozN1rLUgce75Q6pR0n7bzQrl8tzUh779LWs3ua71FzjzTlyVcKknZOzZ650ml9RLlmbO/5O7fvkEjs02AqDPtXGiqTlJQU7wO+v3744Qf505/+JLt375bhw4d7HZ8vvvjiA/7mzDPPlPj4eHn33XepNAAAAAChVqfO71/O7dhhr5ht3/57ZS4YFRiT3FRUVOQNLHfBBRd4vzu40hATEyOdO3eWpUvtUcaHg47QAAAACLH/b2kIxsvMO4QtBmWPQtmUlZX9bSDNnj3bG3m6rMJg07x5c/n5Z2WMk8NApQEAAABw0KXL749Ib968+YCOzvtbuHCh93P/MRwCxXR6Tk1N9fl3xcXFamvI4aDSAAAAgIpJTwrWK0SaN2/upR0ZZmTmg5nRoE1Lg+mE3a9fv4Av3wwWZ8aK8MUkNB111FF+LYtKAwAAAODo9ttv934+/PDDsmjRon2/N60PI0aM8P597bXXBmU0aNN68c0338i6deusf7N8+XKvP8NJJ53k17KoNAAAACC0gtWfwY9UJvOBv1u3bvteH3zwgff7559//oDfH9w3wMSZXnfddV6HZ1N+9tlny4UXXiitW7eWZcuWySmnnCL33XefBMNVV13ldYQ2I03/8ssvh5Tn5uZ6f2OSmsxPfxC5WolosW5avODEDHtsW948eyTnqiV6h5iSlfY4vL3Z9ojB4s/Kf6bPiFEi7/a8Z4+IrJlm7zxUurnQWhadat9vu6Z8Zy2r3sI+XfGqTfZ12VNsLYtSIkdrDupoLZNce1ynFNmXZxT/aF/XmMH2KMAGSmTjprFfOcVLFn5vX5e4dvYo3qQUe/xt1qtLrGWJ5x8nLjZNWWEtK1TWM8PH9eQSH6nFfBqtleMkWplCu9eMn7zUKVpSiznVYmW12OfpmeucIkA12v5OUOJ2tfusdv76isXW7tGpPVOc4nbj0po6LU+T1LeNtWxwr1bWsklOS3OPf128erPTemrvsb6iXLV1dZ2nds7AP2YchQULFhzy+/Xr13uvMuWNLP3kk096lYNx48Z5A6zt2bNHWrVqJbfeeqvccMMNXoJRMJjKiRnfwaQnmeWZdTC++OILOffcc2XOnDleZebPf/6zF73qDyoNAAAAqHLjNBypXr16+TV2wkUXXeTXOAiuTF8K06oxduxYmTVrlve7lStXei9TWRk9erT36JS/qDQAAAAAYapatWrywAMPyE033eRFsJpOzyUlJZKUlCTp6el+d4AuQ6UBAAAAoRXMlKMI7bFbv359n+M1+CNCdysAAAAQ3vr06SOPPvqoz7977LHHvL/1By0NAAAAkEjv0xCO5syZc1gjTf/444/y2Wef+bUsKg1+6NgiUerWrXtE0xTtLXFKCnE18o4+zsks0W3saSElG7Y5JSQVr7An6JRsK5JA2/thgbUs5lh7ikj2rM+tZbWq1bKW1Uu0p+sUr7WnUWmqnWhPwYmOq6FOW2/Q8dayAiUFKXe+PfGjWq8W1rKdH622T9etmdN0WfHKbUrZ/vw1eW6pQzd3txYV5ilJVtt3O6VDTZpj3/aSgkMTOvaXq5Rr67pCSZiZn5njlASkbYdm3Nh51rLoujWd5pmrJB1p25DkuF/Sh3Z1SuzxdZy0xCYtdSone4u1LC4x3lq2K9/tHqxto7bfXCW1amAta5uU4DRP7f1QvV/40D8t2Vq2xDHlyyVxbHus/bNHVWYGXTPP+48cOdJ7RbI9e/ZIdLR/DxhRaQAAAEBomcaAoLU0/P4jMzPziL/craqWLVsmDRrYK9yHg0oDAAAAECaGDRt2wH/PmzfvkN+VKS4ulu+//16WLFnijdvgDyoNAAAACC3Sk5y9/PLL+/4dFRUlq1at8l6apk2berGs/qDSAAAAAISJiRMnej/NQHSmhaFHjx5y5ZVXlvu3ZnC35s2bS7du3aRGDb0fpC9UGgAAABBapCc5Gzp06L5/33PPPV6FYP/fBQuVBgAAACAMZWdnh2xZVBr8YOJTY8qJUI2tFu0Uq9o5xR6vp9Ei7bTl7X5juTrf6kq0ZslGe+RqtZb1nWJVV/+42FrWIs4e4xpVo5p9XRraUxN2/7jRWpbc9QT78mLsl82vXy+1ljVMaGUtK9GiPL/cYC+rocenbf8h1z5pVyVGsGG8U7SoRj1nlDjWkpVKVG0te1Nr775trGUZU5RzP9t+zaQO6Wwty1WiLDV5H9ufQ41Ls8cCG12U6Mn5yjk1e+ZKp/2mRWtq69I53T7PiRn2dRncq5VTxKsWt9vQMT5Ti2rVYj59RY5q89VMmLrMKVbV9RpN7ZfqNE9RYnNXLfnZKeY0Z9N2pzIt/rTtsDRr2cxF9ghqX9eFr8hdl+tJO/dt10xBQXQlTU8K4rwRcFQaAAAAgDC2a9cumT17tjeIW0FBgdff4WCm0/Sdd97pvAwqDQAAAAit6KjfX8GadwR555135C9/+Yts3mxv2TKVCCoNAAAAQARauHChXHzxxd6/Bw0aJN999503kNutt94qK1eulJkzZ3otDyZdyaQo+YOWBgAAAIQW6UkB8dhjj8nevXu91gYzeNsVV1zhVRrKxmTYtGmTDBkyRD788ENZvNjed/RwVMKeMQAAAAB8+eKLL6Rdu3bW0Z4bNWokb775puzYsUPuvfde8QeVBgAAAFRMelKwXhFi06ZN0rZt233/Xb367w8RFRX9L62yXr16ctppp8mMGTP8WhaPJwXBkuw8p2g+X/GuLpF9Ga8sspZF1dQPf/GcteKiaOYKa1ls3/+d2AdrtWevtSx3nT2H+OhuJzhFkkbn1XKKVd272R7pV6u6fZ41TzvGWlY0w77PqinHNzrVR0xvrhLlmpLgFKtakmU/v6Ob1bHPc8ce+zy//dVaFtezhVO0pBZ1majEOeYp2541+TtrWerA452iJaPb2I9h4bqtokpLcpo2fUB7pzjauOR61rIcJVpTi53MU/bNTGWeWiSlti4a7ZzpruxrLQLTl6RGtZ3u39FNlWtNoV0zce0aSaD17Wp/hjone4u1LLdgl7Xst/vnOkV+//jcQnERlWyP7jZG3tHHKRpXO6dc2SLfdytR8AhvderUkeLi4gMqCMbGjRulZcuW+35vRoP+5Zdf/FoWZxEAAABC36chOkgvM+8I0bx5c8nJ+d8XHmWtDiZ+tcyePXvkq6++ksaNG/u1LFoaAAAAgDDUo0cPefHFF2Xr1q1eK8Mf//hH7xGlG2+80XtEKTk5Wf797397LQ9//vOf/VoWLQ0AAAComPSkYL3ME5xpaV4n4XHjxlXZo3v++ed7rQ2fffaZ999NmjSR22+/XbZt2ybXXXedV/7BBx9IQkKC3H///X4ti5YGAAAAVDmZmZlSt67eJyXcpaene+Mx7O/uu++WDh06yOTJkyUvL0+OO+44GTVqlNfq4A8qDQAAAAitYKYcRU6XBqsLLrjAewUSlYYg6JyS6JSC5JKIYGTNzXZKQFr95Xx1mbtL7CkyrRqmWsuq1bMnCG19O9NaVrOePQ2k0XHHWst2ffOTfV0a2r9h2LJfx6GDJbZtbS2r3tSeOlSnhf3Y75q1yloWO6Sr0zGMitUv4dL8/0WuHcmziSV5RU4JSYln2vebJu/jVU4pQLuU7StZaU952rm50C0ppXEtpyQYTUJLJT0pT0m/8kVJgdLSjLRkJW06zeBeraxl45T0JI22Ltp+09KDhl3QwVo2c9H6oCQ5aYl6i3u0CPg2aus6X5mnlvLkmgqoJf9piWO7f9xoLSvItKd/1Uu0p0PFdEpyfo573Nh5Ab+eGirnjXbsbemN27cVWKdBeOvTp4/3eNKrr74a9GXRpwEAAAChFazkpLJXhJg/f77s3m3/kiiQqDQAAAAAYah58+aya5d9XJOQP560/+AQ/oiKipLVq90HwQEAAEAVsF/KUVDmHSHOOeccef3112XHjh1Sq5b9EdqQVRqys+3PzB9ppQEAAACA/0xS0vTp071Oz2Y8hhYt7H2hQtYR+sILL5R//vOfzgu66aabZOrUqc7TAwAAoIogPSkgRo8eLccff7y8//77cuyxx0qXLl0kJSVF4uLiyv3y/qWXXgp+paF27dp+1V7M9AAAAAAC4+WXX973JI/pEL1gwQLvVZ6QVBrOPPNMb5AIf5jpzzjjDKlKTAyqFoVqm8bFxIwDB+7YX1xyPWvZ5uX2WNFfdv2qLjOt4YnWsoICe5ylNoxKrfYp9nkus/d3qVXDfqpGxcVYy/Zu3WEti60Way0r2bLDqax0T7G1LDqhllOsqmukqlFr0PHWsoKxX1nLqh1dxyl2dJM2z16BbzJt3bmJtSxXiTLNm2ff36n9Up1iVbWYSy0aVosjnTRH7wM2P9N+fce1a+S0/aJEcmpRj30dtyNROYZa7Gbvvm2sZbPX2O9P3dOSnGJVcwvcOhr6mm7C1GVOkaSiRHJqy5w9c6XT9ZQxxR5lmmEt0Y+vRluXFb3tEdwxG7dZy6qnNbWW7f50jbUsykdsbpQSb5yzabtT/K1Gi7+13RMKd9rXo8IEM+UogtKTJk6cGLJlHVal4cMPP/R7QTfeeKP3AgAAAOC/oUOHSqgwuBsAAABCi/SksEOlAQAAAAhz33//vTfY26ZNm7zO0eeee673+5KSEikuLpaYGPvj3CGpNKxfv142btwoRUX2Z3Z79uzp72IAAABQVUQHcYjhCBu6OCcnR6644gqZPXv2AY8tlVUaXnjhBRkxYoR88sknkp6eHvpKw+TJk+WOO+6QVatWqX9nemqb2g0AAACAwMnLy5PTTjvNG1Otffv23hf148ePP+BvLrroIrn22mvlvffeC32l4a233pLBgwdLaWmpJCYmenmwdeooaSsRpmhvidN0WnKHlrCiTbf9hGOsZS3m6ulJ3+Quspa1q9PWWlatoT0/ad2ib6xlScd3spZty7KnvdRudrS1LHedfWDCxAb26Wq0syd3FK/aZC2LirFfUqU77IkmJcp0MSfb016Kl9vXxdg2fqG1rEZX+zaW5CmpTL/a06OqHdfQKeVrx6JfrGXRhXusZVliP76pPe1JXfZsHZGsGVlOiURaslDNhFjnhCSNltikJbNkzF3rlK7juh0NlfQZLQkmx0dqjU2Ckpyl0dZF0z8t2Vr2xAvlRx8eTgqUmo6lHPt8JT1KSyXS0sFGjuoR8GOv6du1ubUsd1gXa9nGa96xllVraU+jiq5jP7dLfSRgaYlrmrZJCU7TrcjJt5aNGFj++2hBQYHcdLlULvRpCIhHHnnEqzCY8dDMv82X9QdXGurXr++lmM6bN8+vZTlVGh588EHv55NPPuk1d1SrVs2vlQAAAABwZN59913vy/uHH35433gN5WnZsqV88cUXEvKnvn788Uc5+eST5W9/+xsVBgAAALi1NATrZcabSkuTdu3aybhx46rs0Vm7dq107dpVoqP1j/SmE7R5lCnkLQ0JCQl+jQ4NAAAABFNmZqbUrasNORv+YmNjZds2+6CGZdatWyf16tkfEw5aS0Pv3r1l8eLFfi0YAAAAEZ6eFKxXhGjbtq0sWrRIduyw9zfMzc2VpUuXSseOHf1altNuveuuu2TDhg3e81MAAAAAQu/CCy+UzZs3y4033uiNx1Cem2++WXbu3CkXX3xx6B9PMrUak/U6aNAgrwPG2WefLcnJydbnqYYMGeLXSgIAAKAKIT0pIEaOHCmvvPKKvPjii/LNN9/IBRdc4P1+9erV8q9//csbIuHrr7+Wzp07y+WX+xehFVVqclMdPPHEE3LPPffI9u3bff7t3r17pSox0WXmubCtW7dWimfllmS7dWyZ+fdZanlUrL1OuVuJAizJtzeRlRbbz4XqTROd4kqrt7bHYJYoMZi/LfnOKY41OqGWtWxvboG1LLb3seKidHOhtazayc30adfZ16e0qNjp2Ec1iLMvUIlHdZV4/nHWsrx59uhQqW0f+TJ9QHtrWcZ4e0Rm6sDjnaJatXVJVCIwtdhUXzKmLHfa/sWrNwc8PlONVd1kfw/JVaIutX2jxcaWrLTfL9NHnOS0X/xxRbo9cnX85KXWsqSU+k7nYmKPFm4xvcr5FK2cF1r8rXY+acc+72NlfKhaNaxFez5Z7RRBLXH2eRrRbRKdIm6160I737T7XnTT8uPviwp3yO3Xp1eKzy1ln6Huf/gjiY21v5/6o6hoh9xx61mVYntD4eeff5aBAwd6o0GbBCXz0b4sScn823QInzZtmjRpopznwWppmDBhgowePdr7t3k+qk2bNlK7tlu+dSiZ2pbpQW+e69q9e7e0bt1a/vznP8sNN9wgNWroNwUAAAAECC0NAWMqA2YMho8//lg++OADWbNmjfeoUlJSkvc00HnnnafGsQa10mBaGapXry5Tp06Vc845R8LBqFGjvHElzHr36dPHq+R8+umncsstt8j06dO9x63i4pRvUAEAAIBK6swzz/ReweLUEdo8J2WGqQ6XCoNpkjEVBlNRWLBggVcTmzJliqxcuXLfCHl33nlnRa8mAABAZIgKYnKS/1+qI1CVBjMcdaNG9ufIK5uyEaxvvfVWbwCMMg0bNtw31PYzzzzjPfsGAAAAhJu9e/fKb7/95o3JYHuF/PEk83xURkaG97yUrxHoKpqJhjWDexiXXHLJIeU9evTwnvnKycmRGTNmyODBgytgLQEAACIIfRoCxnzONcMhfPbZZ7Jrlz1EwPRrKC62h6AEpdJw3333eR+wr7vuOi/OyQxNXVmVDUKXmJgoxxxzTLl/c+KJJ3qVBvO3R1JpKNpbIjF7D83Eja0W+IqUWZYLLQlGlPQcQ4vVqt7CnhahzbV60wRr2Z6Vv1rLarSz9/jf+7M9IWjPql+sZUf3SbOW5X+2zFoWby0RqdawrlMKktSwnzOlu4qd0kCM6m0bOa1PdBt7MotKSRnREkb2frXBWpY37Qf7PDs2tpaVbLSPkJnxyiKnBB1tOltqiVEzIdZalr/GnubTtlcr0Uyas9oplUmjJdqsWvKzU0qONp22b7SEoPlKglvvvvZEosUtNzslObkmWflKXZqeuc4tIWlutn2mO+wpZoVKopx2vs1WzgvtGGrL66ssb0VOvrXskx++spbJnhKn++HelVvElZaqpqVA9e3a3G2BjslhqJq++uorr69uUVHRvqeBgpUY5VRpeOGFF7zWhmeffdbrpW1GiLaN02BqNRXZX+Cnn37yfpr1szEtDfv/LQAAAIKIloaAuPvuu70Kw7Bhw+SBBx6Qxo3tX6ZVSKXBjM9QlgO7du1aefnllw/5m/1zYiuy0rBt2+/fNtaqZc8CLouLNdnB5TFNPfs399j+DgAAAAgVE/Bz7LHHel/oByJWNeCVBvPcVLBXrDJ56KGH5N57763o1QAAAKgaypKOgjXvCFFcXOyN9hyKz+XOLQ3hok6d358z3rHDPkpx2ajWtmfAbrvtNrnxxhsPaGkoe6QJAAAAqAht27aV3NzckCyrytfFUlJSvJ+mo7NNWVnZ3x6sZs2aXoVi/xcAAADcmG/Gg/mKFNdcc418/vnn3hhqwVblKw1dunTxfm7evNna0XnhwoXez/3HcAAAAAAqe6Vh8ODB0rdvXy/Z1IzVUKGPJ73xxhvSqlUrOekkexTh4XTUMLWg8sZKCKbmzZtLWlqal2FrtuPvf//7AeVmNGjT0mBaE/r163dE8zbRqkcar6pFp2oRc1oUoBbbNluJufQlLq2ptWznR/Yabdy5qdaywn99YS2L7dfWWlY0Y4VTHGvx2k3WspyM+dayoxLs2x7Trpm1LKqWPXK06Ev7Pou/9ERrWcmGbU6xol75bzucYl73ZtsHOow+yh4qEBVf3SmW0R7KaJoAE5yiNTOmLLeWRSvxkdp0qf1SnWJFd+X/HoV3pPtFi1T1FWepma3EvJYoEZGpPctvjfUVAapNl9To9yCKIz0Wkm2/X0qa/fHRwUrM57MTfh/TpzxJyrmmxb9qx95QtkKVPqB9wN8vZi5aH/BoXI2v89umeJX9vl5D2b5dc1ZZy2K62c/R6FT9fdR1n2plOdn2CNjCdfb7c1xyvXJ/XxLjns0fNKQnBUTLli29n9nZ2dK/f3+pXr26NGnSxJpo6k+LxGF94r300kvl+eefF38899xzctlll0lFuP32272fDz/8sCxa9L+cddP6MGLECO/f1157rdSrV/7FBgAAAFQ2prJgXoZJLd2zZ4838nPZ7w9+hbwjdLg5//zzvYHonnrqKenWrZukp6d7EaxmVOv8/Hw55ZRTvAHrAAAAEHw0NARGKMcYO+xKw0cffeSNOOdqxQr74yWh8OSTT3qVg3Hjxsn8+fO9mph55OrWW2+VG264oVKPag0AAAAcrEWLFlLpKg2//PKL9/JHRfdmv+iii7wXAAAAKrqlITifC8tma/q0VqtWTUaOHOm9EIJKw+zZs/1cDAAAABA6JgQnUmLyCwoK5PXXX/eeptm0aZP3KP6YMWO8sqysLK8/Q8+ePSU21h5qEJBKw2mnnea8ABxIS1tqm2RPidFoqUsJLROdUzu0hIaoBnFOKRsl/Y+zlpVuLrSWxY7oZi3bPWmZtax6i0bWssa/2R9Ji+lkT1+JiqnmlJAUe3Irp4SkUiXNplpLPbVkz1J7ok9UTfvlX+MC+3HSlH5vH2Cm8Ht74kn8Wa2cpssYv8BaljrweGtZrrJPGyrJSlmvLrGWle60p5NU62ZP3IpLjHdaFyPHMT2pdecmTkkwWrpQojJPLQlGS0+yJcF40ymJTItXbxYXWhqXlkjkOk9fyUuutPN7wtRlTklP2nuJtrx8JanLdX/nKueopijXfh5W39jAWlb8o/0eZEzqYX88pEsr+3w7p9j36RLlurDn/in3k5r25MYKw4jQAfPJJ5946aRbtmzxOkObFpxmzf73vvPjjz96/XsnTZrk1xM3VX6cBgAAAKAq+uGHH+RPf/qTbN26VYYPHy7//e9/vYrD/s4880yJj4+Xd999169lRUR6EgAAACqPYI7cXNF9aEPpwQcflKKiIpk8ebJccMEF3u8uvvjiA/7GhP107txZli5d6teyaGkAAAAAwtDs2bOlU6dO+yoM2mDHP/9sf2T5cFBpAAAAQMUM1BCsV4TYtGmTpKam+vy74uJi2bFjh1/LotIAAAAAhKF69erJhg0bfP7dmjVr5KijjvJrWVQaAAAAEFI0NARG165d5ZtvvpF169ZZ/2b58uVef4aTTjrJr2XRETrEivaWOEWnqtFs2XlOcXdahJ6Rt8T+7Ft0G/u0hXPX2meaYo+VLV1tj8OL+tXepBZzsj0edW+2PTa2dLc9IlP22I9TqVJWval9v0QpUbSlRfZ1qXGuvdmxeI6yr820newxmFHJdZ3iM/M+XuW0HVG5O51iVROVOENN1uTv7PM8s7V9urnZ1rLojo2d1kWLlsx4fJ61rLCn+0ifWnymFoE6SYnP1O4ZajysUqbFo2pxtFpUq0aLtp40Z7VTdKa2P31FtXZPSwr4umrXaFxaU3Ghbb8WfTzyoTOtZePG2s99Ue750Yn2e+nelfZjUadnO6co7eimdcSVa/yvdt5o14XtOG3fVsNpPVD5XXXVVV7k6uDBg2XKlCly9NFHH1Cem5vr/Y1JVDI//UGlAQAAAKEVzL4HEdSn4cILL5SBAwd66UmtWrWSU045xfv9F198Ieeee67MmTNHtm/fLn/+85+96NWQP57Up08fOeOMM7zmEM0jjzzi/S0AAACAwHvjjTfktttu8/49a9Ys7+fKlSvl/fffl927d8vo0aPl5Zdf9ns5Ti0NptZiMnB79erlDSLRr1+/cv9uxYoV8tlnn/m7jgAAAKhKoqMkKjpILQLBmm8lVa1aNXnggQfkpptu8iJYTafnkpISSUpKkvT0dL87QPv9eFKLFi1k/fr13rDU48aNk6uvvjogKwQAAADgyNSvX9/neA0Vkp5kWhnee+89qVmzpvz1r3+VO+64I7BrBgAAgKorKkgvBIVfHaHPOuss7/GjP/7xj/LQQw9JTk6OvPTSS1K9evWISUKKUdKQjjQhSUvK0BKStJQFLbXFV6pD+oD21rKZoz+ylkV3VJrBsvOd0oW0xA8teScqz54gE6OkluxZ6jZqopbIVKqk2WjbvvNh+yN+sf3aqutTomx/aZb9nMpVyqKb2ZNEGg7r4pTGtVdJgcpXkktKNm6zlknjWk6pYqXf51rLap7Vylo27IIOTikx6aN7WMvmZ+aIRktR0coK8+xJVhotIUlLENKu0dR+qU4JSdq+0Y6FljqkbZ92f9b4Sk/SkvG0tL3Bvezn4rh59uspKaW+0zHU3i/SR9hjHGOr2b+bTO2ZYi1bpdwvNo2eYi2rndLMWrY3t8Ap+W7vb/YUPqPhqG5O25GjJY4ptPtX5/Ty3/MLCiLjc1mkmz9/vqxaVX562oknnijt2tkTxA5H9UDkw3711Vdy9tlny+uvvy4bN26Ud955R2rXdovDAwAAQNVm+saaV7DmXZWdcMIJkpWV5fVfMJWBMi+88IK8+uqr5U7TsWNHWbx4sV/LDUjV0/RvMLWb8847TzIyMqRHjx4yY8aMQMwaAAAAgIj3Odt8+L/yyisPqDCUMeMxmM7P+zN9kL/99lv59NNP/Uo1DVh7VUJCgsycOVOGDBkib731lnTr1s3rtQ0AAADsj2Ea3EybNs1rSbnhhhvKLTdl5vP4/rKzs70xHMzgb5Wi0mDExMTIm2++6VUWHn/8cdmwYUMgZw8AAABErK+//tp7wudI+iekpKRIhw4dvGlDnp502mmnSdu29g6Y//znP+Wpp57yZ70AAAAA7Gf16tXSvn35QTXm0SSbNm3ayE8//ST+cGppMB0vfLn22mu9FwAAAHAAnk9yUlBQIPXq1Su37MYbb5SBAweWWxYXFyfbtimJg4eBDC4/mCi58uLktJg8LbZPi2PVYvv6dm1uLZu5aL0EQ9/Hz7KWZTxuj5eM69nCaXmFc+0RgonnH2efrl0jt+W1a2gt2zvTXlOPahBnn06JM9y7xH6carRpbC2TFD0GMjpuh7Vs96drrGUxJyv9kWrVsBblTfvBPl2cfbraQzpaywrX6XGHNomdmzhFFja4pINTbOyzEzKtZSWLfrGWLVbWs7sSC+wrdlSL1lylbP8uJRq4oeu6+tgOl/ulFgE6Yeoyp/XUlqfdS7PmZlvLRo6yR+oa0zPXiQstjjZaiSlW56mcM67nofbepW1D1kr7ORqfYD9ONU87xlq26zP7vbv6sfb3ipg+LUWTW7Ar4LHnWqSuZmLGynJ/X7hDj/5F+Khdu7Zs3brVmpBkXuXJz8+X+Hh7FPfhoNIAAACAkCJy1U2TJk1kyZIlRzydmcZMWyEjQgMAAAAIne7du3tBQ3Pnzj3saczfmtjVU045xa9lU2kAAABAaEUH+WWejExL81KGxo0bV2WO7qWXXup1eB4xYoTXv8EX04/B/K1p2bnkkkv8WjaVBgAAAFQ5mZmZ8v3338vIkSOlqjjttNOkb9++3naZwd0++OAD69+agZZNxemHH37wBnzr3bu3X8umTwMAAABCij4N7t544w3vUaOsrCw599xzpX79+tK1a1dp1Oj3Dv2bNm2SRYsWyZYtW7xWidatW3vT+ItKgx9MSlJMOUlJWgqSls6hlXVOSVTXwyVZadKc1aLRkh0K83Zay6I7NnZKwomuW1NcaEk4JRvt8WKl6+zNelHJda1l0c3sySQlv9nTikp3FVvLYrqlWMukqNh5n+1+f6VTIoiarKRMt3flFqf95npelGTnOyUdpQ8oP+Pa13X4rHKu1UyItZaVJNrLurRqYC3LmLJcXBOismZkWcvilFQx1wQd7X6RN2+t07po82yonBe51hJ9nhot6aevkpA07v5P9Rnv2GMtSjyztbXsx+cWOiWAae8JWupUXGJ8wPeblqwkjWtZizpNudTpvK95Vqq40I6Dr3NR20btvWuSsjztnmE7vuYxlqrzXTsaNGggCxYs8IY2mDRpkuTl5cmsWbO8itj+4zVER0fLoEGDvMezEpTUscNFpQEAAAChxTgNfjFjNbz22mty7733yvvvvy/ffPON5Ob+/pVJw4YNvZaHc845R1q1covvLQ+VBgAAACAMtWzZUq677rqQLItKAwAAAEKKhobwQ3oSAAAAABUtDQAAAAgp0pPCDy0NAAAAAFS0NPhh9pINEl/70NjO/mnJTvGorlGtWnTqFeltnGJTfUUvapGGu/KLnCIitVhGTfEc+3TVe7WwlpXk7nSKQYxq19BaVrrGHjla/dhGTnGkpZsLrWV73rPHCxpRtWPERczJSdayktX2bawxoK21bO9XG9xiVQt2WcsSzz/O6fzWYhC1SM7efds4zTPHWiKS8coip1hgozC5nrUsfWhXa9n8TPsa5Sr7W4uxTe2pxAb3aOF0nLT71/TMddaywb3saSEzF613Ovau80ztp8d8avtb2zdarKrm2QmZ1rLWyv1ZW0/tvWL2zJVOMcVxyrmtxrgqEb7d05KcYs0nZti3wRdtvyW0THQ637RoXFtMc1GRPQ68wuw3cnNQ5o2AY7cCAAAAUFFpAAAAQIX0aQjWq6qaO3euNxJ0RaDSAAAAAISBXr16ycMPP7zvv/v06SOPPvpoSJZNnwYAAACEFgM1OCstLd337zlz5khKitKnLIBoaQAAAADCQJ06deTnn+2hFMFES0MQaAlJWsqGlrrkakl2nlOShK80mC6tGljLFivz1KbLUNKTXFNytr/6rbWs2olNnNKTJNueclW9vT25o3RnsbWsZMM2a1nDYV2sZflr7MfXm++3v4oLbV2juze3L2+jfTui4qs7pYhox7ehkrokSllOtj0BqnCu/TycmWdPBotOtW9DdNM6TmWilfmQMX6BvbBxLackHC2taZWSrKSlTmn3Cy21RruXaPdZjXY9rVCWp6X5aElV/qTUaduv3btFudZck5y09dTSz0RJT9L2i5ZyVZi50T5dYry40Pa1L9p1oaVVaWmKccp22Pbbzu32e3NFoaHBTceOHeXTTz+Vu+66S1q3bu39btWqVfLqq68e1vRDhgxxXDKVBgAAACAsjBkzRi688EJ54IEH9v3uiy++8F6Hg0oDAAAAwgdNDU769+8vX3/9tUybNk3Wrl0rL7/8srRq1UpOOeUUCTYeTwIAAADCRKdOnbyXYSoNPXr0kAkTJgR9uVQaAAAAEFJR0VHeK1jzjhR33323dOli7/sYSFQaAAAAgDCtNIQKlQYAAACElGkLCNbAzZHTzvA/xcXF8vbbb8vs2bNlw4YN3u+aNWsmvXv39jpOV6/u/0f+qNL9R4jAYSkoKJB69erJ59/+JLXr1D2kvG1SgnXa2GrRAY9O7ZyS6DSdGsvnI35vcK9W1rJxY+c5xZWmDulsLcuam20ti1aiNUtW5jnFnGqiE+0xgXsW2eP1al5u377iOfaYz+iuR4szZX9Liv08jVOiNXe8+Z21LLrjUU4xtqWbC8VFVIM4p3lq02lxpJrUnvbBdbIm2/dZXFpTp9hJX3GOWtRlohL1qEVranbl2+NoNVrcrmusaN+u9ljgCVOXOe1vLaZXi6/W7s/G+MlLnear8XVvDzQtclaLR9Vox372zJVO55P2vuV6Xvh6r7wivU3A35+16374sDTr55bGifVl69atUrfuoZ9bKuIz1NNvZ0pcLfu544/CHdvlbxemVYrtDYUlS5Z4FYOffvrpgIHfjKioKGnZsqVMnjxZOne2fw45HLQ0AAAAILRITwqIjRs3yhlnnCG5ubnSuHFjGTRokJemZKxZs0befPNNWb16tZx55ple5aJJE2WMKh+oNAAAAABh6JFHHvEqDFdddZU8+eSTEhd3YEv6gw8+KNddd528+OKL8uijj8oTTzzhvCy3Z2UAAAAAR+axmWC+IsWHH34oycnJ8uyzzx5SYTBiY2Nl/Pjx3t988MEHfi2LSgMAAAAQhnJycqR79+5SrVo169+YTtAnn3yy97f+4PEkAAAAVEB8UhDnHSFq1qzpdS73Zdu2bd7f+oNKgx9SmyeU2yvfNSGpaG+JUwKHNp1GSxjxZeai9U7JLPlK0pFGm6cmT0m1qN5GTzWxKdloT12qcUYrp+mCpmG8U+pU4feb7NM1VdIucnc6pTVFaYlF23cr61LHWlZSy76/E3u0CHhij5bw5ZrIlDUjSy1P7ZfqlLCSp5RpyVlxifbzqXDdVqdkKS15R0vJ0dKhtGMxclQPa9mKnHyn9dRoCTm+aMlD2jFMH9DeeZku66Ltm/w1eU5JR5rWyvuBdt7P1O55yvkrPtKTgnH8tX2a67jfUDW1a9fOi1k1rQhJSeUnrq1bt877G3/Tk3g8CQAAABUyInSwXpFiyJAhUlhYKKeffrrMmDHjkPL3339f+vbtK0VFRd7f+oOWBgAAAFQ5aWlp3rP+I0eO9F5V0dVXXy1TpkyRjIwM6d+/vyQmJsoxxxzjlZlxG/Ly8ryxG0ylwvytP6g0AAAAoMp1acjMzKzyg7tVq1bNS0W66667vJSkzZs3e68ytWvX9ipM9957r0RH+/eAEZUGAAAAIEzFxMTIww8/7FUMFi5cKBs2bPB+36xZMznxxBP97gBdhkoDAAAAKmBA6OC0NUTQMA0HMJWDU045RYKFjtAAAAAAVLQ0BIEWgeoax6rFtrVNSnCKiNTK/DG4lz12dJJjBOyEqcucovK0WFEtAlWL8lRjPlfaj1O0EvFauk7JWM62x0BGd2xsn86sz687rGV73rPHeVY7rqFTjKtrBKjrsdBiN7V10c61SXNWW8sK83Y6RZVqEbba+atFw/rap1qcpXOs7OTvrGWpA4+3luUqx8k1ytQ1xlWLi9bWs6FyL9GWp92ffcXKJilRn3lKFLHr8oYPS7OWzc+0DwqVo+yb3n3bWMsyxi+wlrV9qJXTumjnvT8x487vecr9RDuncrK3WMu6pyUd8fIKdwTn/d7/lobgzRuBR0sDAAAAABUtDQAAAAgpWhrCDy0NAAAAAFS0NAAAACCkov7/f8GaNwKPlgYAAAAgDK1bt05ycuzhAIFES0MQaAlJwUhWWpGT75TqkTFluTpfLQ1m2AUdnJKOtDSQcfd/Ki7i2jWylhXOXWufrmcLp/XMmmFPHYpLa+q0LlEN4pxSl3wp3VxoLavWq4VTMo2W2JP16hL7PId0ts/TWqInJEU7po9MUMrUYz/PfgxLvv3NWtb21h5O1+ji1f8b1bM8NRNirWV5ynHS0m402vmt0dKatDQfjet+0xJrXBOStHtpjnIt+UoX0rZDS9bSErC05Wn37rjEeKdUrdwzWzslbml25Rc5radrkpE/rki37+8nXljglALlkuRUUFAgI6WSCWJ6UiQ1NKSkpMjJJ58sX3zxRdCXRUsDAAAAEIbq1q0rxxxzTEiWRUsDAAAAQor0pMBo165dyB5PoqUBAAAACENXX32192hSZmZm0JdFSwMAAABCKioqynsFa96R4oorrpDFixfLGWecITfffLMMGDDA6+dQs2bg++lQaQAAAADCULVq1fb9+8477/ReWmWquLjYeVlUGgAAABBSpi2A8CT/lZaWBuVvy0OlwQ8mIrW8mFQtVlXjOl3nFHs02/jJS61lI0fZYyB9xe9p8bBaHOvMRevtC6wdYy1KH9DeWpbxyiJr2cix5zhF1WoRiqn9Up2iB6VhvFN8Yt7HSiBp4R79G4huzaxle7/aYC1bpcQPlqzMc4tVVSJASzZus5ZFN61jn+7bX61lhcr+1uapRbVq02nRv9o8Nb5iIFetyXOKo81VYmy1ZWpRl1okqRarqkWAzs/McYoV1bhuu7a8xM5NnPaL0TYpwek+5LpMbZ92T0tyOoaJSqyqFv1rP3uDI0+JTM5T3n+0fe0rytU1Mtk1Ata2LoU73K4XVH4lJW6fHV1QaQAAAEBI0ach/JCeBAAAAEBFpQEAAAAVMk5DsF6RZvXq1TJmzBjp0aOHHHvssd6/yyxYsED+/e9/y9atW/1aBo8nAQAAAGHqlVdekb/+9a+ya9eufY9+5ebm7ivfuXOnDB8+XGJiYuTyyy93Xg4tDQAAAKiQ9KRgvSLFV199JVdddZVXIXj00Ue9VoWDU5JOO+00qVevnkyfPt2vZdHSUIloiURaQpKWujRiYCdr2ZJsPbtCS9KYmGFP0rgi3Z6GotESkjRampGW1qQljGhpGVr6SnSbRKekHy3Vo2SDPVmo4bAu1jJfyUtR7Ro6pXoUKsvT9mmOMk/RlrfO3pwa19OeOhWXGO+0vwuV46sZNizNKV1F3Wc+EoK046QlHWm081tbnsZ1Om0b+nZt7pSMtnj1Zqd5ascwX0mxWiw67Rin9kxxSiPLcUze0dZFvSfk7Qz4NmjnYUJL+322S6sG1rK2vVpZy8aNnec0T18JfloynvYe65q4ZbN9Ww2nZaHye/TRR71KwgcffOA9mlSe6Oho6dy5s3z//fd+LYuWBgAAAFRIelKwXpHiiy++kD/84Q/WCkOZo48+Wn7+2V5RPxxUGgAAAIAwlJ+fL8nJyT7/rrCwUHbv3u3Xsng8CQAAACEVzJSjCGpokAYNGsjatfZHbsusWrXKa23wBy0NAAAAQBjq1q2bLFy4UL777jv1ESZT7usRJl+oNAAAACCk6NMQGCNHjpS9e/fKgAEDZMmSJYeU//DDDzJs2DBvf48YMcKvZVFpAAAAAMJQenq63HjjjZKVlSUnnHCCpKamehWEjz/+WDp27CgdOnSQlStXys033+y1SvgjqvTgMNcq5LfffpOPPvrIe2VmZkpOTo4XO2U6jJxxxhneTk5JscfB2RQUFHh5t2Zkvbp160plpsWq+opt0yIGByvRda4xp1rcX9bcbGvZyFE9nNYlJ3uLtWzYBR1Cun0/PrfQWhaV7Mc5VjvGXrbdrUNU6boCa1lUgzj7hLXskX9x7RpZywozNzrNU4s61CIiNdp5Me7+T52OgxZJuWLsV+r6RHe1P58al1zPKcpUi9ZMSqnvFJ8ZjDhWjRY1PT1zndN9RrtetNhn7Z7gKwK2oRKdqt2/tLhhLT5Uu0dpywtGdKh2PaUP7eq0P7VoXC3GVXu/8/Veqe3v+Zk5TteaxhYbbD63NE6sXyk+t5R9hnp91jKJr1UnKMvYuWObXHp6h0qxvaHywgsvyD333HNIQlLDhg3l7rvv9lok/FWlO0KbSsF//vMfr6LQvn17Offcc2XHjh1eBeLpp5+WCRMmyDvvvCN9+/at6FUFAAAAnFx99dXeIG+LFy+WNWvWSElJiSQlJUlaWppUrx6Yj/tVutKQmJgo9957r1x55ZXSrFmzfb/fvn27t3PffPNNGTRokNejvH59t1o9AAAAjgzpSYFnHkvq2rWr9wqGKl1peOqpp8r9fe3ateWll17yRs/Ly8vzfl566aUhXz8AAAAgUEyvg82bN3s/TRyredomUCK2I3R8fLwce+yx3r9NXwcAAACERpQEcURoiaCBGv7fzJkz5ayzzpI6depI48aNvTEZzL/N70yn6ECI2ErDnj17JDv7905vTZo0qejVAQAAAI6YSUYylYNPPvlEdu7c6bUymJcZBdr8rl+/fjJ69GjxV5VOT9I899xzMnz4cImLi5OffvrJq5Udac//X/O2lNsrf0VOvlNaRGy1aKcUpM4p9tSHor0l4mrC1GVOKTLa9mu05A5NbsEup5QcLWHENbVES6Vp3blJwLdBW56vRJC8eWvdUpcUico2asklJRu3OS1PW8+S+faUq+iORwU8dUlLO9HOmcK59uMQ19O+Lr6WqXFN3tGuC9flack7rslCWpKTdk1oXFOH1EQmH+lZ2n1B45oO5pq6lDFlubUsfUB7t/022T5QVeKZrQN+v9RSvLT94muZheu2Ot0vNdq99IarT6r0qY9l6zIpY7nE1w5SetL2bTI4vX2l2N5ge/3112XIkCHe51kzDsPQoUPlmGOO8crMl+OvvPKKjB8/3qtAmH/78zh+RLY0LFu2zKuVGXfeeafPCsOuXbu8k3z/FwAAAFCRTBpotWrVvOEF/vnPf3ppobVq1fJexx9/vDz66KNemXls65lnnqmaHaHHjBkj77333hFP9+KLL6rDZK9fv1769+/vJSiZCNZbb73V5zwfeughL4UJAAAA/iM9KTCWL1/ufe499dRTrX9TVm6GHKiSlYaNGzfKjz/+eMTTmcqAzS+//OKNnLd27Vo588wz5a233vJqXr7cdttt3pgPZUxLg8m+BQAAQOVkxigw38Kbgc0CMbhZZRQbGytNmzb1+Xfmb2Ji3B49rvSVBvOMlnkFcnToPn36eMNsn3766TJt2jSpWfPwns81f3e4fwsAAABdWdJRMJTN13yzXtX7NJxwwgny7bff+vw78zcnnniiX8uKiD4NmzZt8ioMP/zwg9fSYB57MjUzAAAAIFz9/e9/9z7fmr4LNqavg/mb22+/vWq2NARKbm6uV2H47rvvvArD9OnTvR7mAAAAqBj0aXAzd+7cQ1pVrr32Wu9R+smTJ8tll122Lz3JpIOap3a++eYbue666/we6K1KR66a0Z579+7tNcmYR5JMC0MgKgy+osu0mFMtVlUzPXOdtaxv1+YSDNq6jp+81CmOddzYeU7xc65Rj64xkFqUpba/te2LVrZBjUZV4iN90ZapxZzGtWvkFFtYstIeBSiNazmtpyttn7rGMpYoEZhadKZ2rmn8idQd3KuVtWzmInscrSstHlSLiNSiLl2PxchRPZy2Xbu2tQhq7X6R1Ki2BCNqWoskTR9RfuymMT8zxylaVLsPxSXXc5qnRot41aLLtchvLRpWu377pyWL6/uz6zWjbb8WRWxTuGO7jDyva6WIIC37DPXWnO+CGrl6Ua/jK8X2Bpr54F/eY11lH+cPLtv/9+ZVXFzsvOwq3dJw1VVXeRUGs5MSExO9cRnKc/7553svAAAABN/v4zYHqU9DFR4RumfPnkHrCxLRlQbT0lBWyzJJSTYpKSlUGgAAAFCpzZkzp8KWXaUrDRW5YwEAAFA++jSEn4hITwIAAADgrkq3NAAAAKASivq9tSFY8440RUVFsnDhQm9wZPNvmyFDhjgvo0qnJwW75//n3/4ktesc2iu/c4o90cSVlsikpYFoqS1aypGv9CQtLcJXWkggEyF80VJytMQTjbZ9WjqHbN9tLUrs0cIpBWfc/Z/qTYlN6zglHcWl+R5dMpAKv9/klOS086PV1rL4s1oFPNElb95aa1lJln1/Vu/VwikFyK90LGW+wUi7caWlxGgyXlnkdD1pSWxamo1r4lZrJRXO1zK1xCLXhKhVyjy1RDXXfardL4OR5KSlIGlcE878Sc/SkrO0dKzUgccf8fK2byuQUzseUynShMo+Q70993upFaT0pB3bt8mFPdtViu0NBTMOw4MPPujtW1/27t3rvBxaGgAAABBS0RLlvYI170jxzDPPyC233OL9u0OHDtKmTRupUyc4lTEqDQAAAECYVhqqV68uU6ZMkf79+wd1WVQaAAAAEFKkJwVGdna2N3ZDsCsMBulJAAAAQBg66qijpFEje9+/QKLSAAAAgAppaQjWK1KcffbZ8uWXX0pJiT0wJ1CoNAAAAABh6O6775bdu3fLdddd5/0MJvo0+KFji8Ryo7y0eFTXiFNN367NrWUTlBg5X8tbkp3ntMxg0OJY1chGpUybpxrVqkToaVGW3dOSnKL3xo2d5xSD6DNesmWi03RqZKNjzKcWDavFWUYlu0XpuUY2Firxr3HKsVDjOq0l/sWxJipRn9r2a+dp26SEgMd85ijnmkaL4tXO36y52U77bMTATuJCu4/62jdarOqkOfa4YU2Cdt0r269Fw2pl2vZp66Ld12evse/TrBlZ1rKRd/Sxls20lviOEdfu366xqtFtEp3ef1fk5Eu4iIqK8l7BmnekaNq0qcybN0/OPfdcOfbYY6V3796SnJws0dHR5e6XO++803lZVBoAAACAMFRaWipPPvmkrFixwntE6eWXXy63smD+jkoDAAAAwoppC2BA6MAM7Pb00097savnnHOON05D7dpug+z6QksDAAAAEIZefPFFiY+Pl88//1y6dOkS1GVRaQAAAEBI0achMHJycqRXr15BrzAYpCcBAAAAYejoo4+WOnXsYSKBREtDELimIPlK2bDpnGJPWfCHa1JK/7Rkp23UlqfRptOSJAb3auU0nZa6pMkYv8Balj7iJGtZrpJo4kuOkp5V+P0me5mSTFMzIdY+nZKioqUgqfNct9VaJjv2OC1PS3LSJKXUd9rXcYnxTtunJTn5SqbR0mcWK/PUzm/XFLMc5fhq+01LctLuM9Mz1zklJGmpS+MnL3U6L7RkIV/nvnafVRPeHNfH9d49PzPHWtZa2d9aKpGWOtS7bxtr2eyZKwOeLKSti680Iy3lKi6tqdMx1OaZb0mWKircIZUNI0IHxp/+9CeZNGmSFBUVSWys/X4SCLQ0AAAAAGHonnvukcTERBk8eLDk5uYGdVm0NAAAACCkaGkIjFGjRnnjM0ybNk0+/fRTOeGEE9RxGl566SXnZVFpAAAAAMLQyy+/vG8wu23btsmcOXOsf0ulAQAAAGEl6v//F6x5R4qJEyeGbFm0NAAAAABhaOjQoSFbFpUGAAAAhBR9GsIPlYZKRItO1eLuivaWWMtGDOzkNJ0vWsScFneoTadxjTnV4vfaDktzihBUYzeVGERpXMtalDFlubVs5KgeTtF7vmJHU/ulOsVgatufpcSHJrRMdIqP1CIybfGCvqIsNdq2D7ugg7Vs3Iwsa1n3oV2tZRlKbGrW3GzRaNGxWkxknrJMTbQSSTpbORbDlWtNixXVrkPtnqBtnxZjq8WRavGv2npq03mUqFptvsGgxcpq0cDaeaHeS5TIVV9RtS73GW1/qtf2bR+ry9S2MRgRztp0DS33y53btx3h2gGHotIAAACAkGJE6MAYNmzYYf8tHaEBAACACE1P0pQlK5WWllJpAAAAQHihT0Nw05NKSkpk7dq1MmPGDFm4cKE3nkOnTvZH1g8HjycBAAAAVTA96Z577pExY8bICy+8IIsWLfJrWYcOFwcAAACEoE9DsF74nwcffFDq1Kkjd911l/iDlgY/mPShGD8SiAKVrBQsK3LynabTEjG0tJ+GSgJHFyVhREuJueHqk5xSnly3T0uH0vanlp40YeoycaUlCGnpJFpSipaQlD6gvVPajbY8NX1GOS80WopKXGK80zy1NCpteVryTO++bdRlauf+KiVBSFuma8pV4febnK77wb1aWctWKNeaJkfZPo22LuPGznNKZNKOka97RtukBKf7ifZ+8cQLC9wSx7bvthYlKAln2n1d2zfadNq9S3uvyJj2g7VsgrVEJPHM1kqp+/uTdo1q176WCthaORaIXNWrV5euXbvKrFmz/JtPwNYIAAAAOAymLSBY7QG0MxyqsLBQtmxxiwcuw+NJAAAAQBX1ww8/yLx58yQpyce4MT7Q0gAAAICQIj0pMF599VVr2bZt27wKw2uvvSZFRUVyySWX+LUsKg0AAABAGLr88svVjt9mfAbjvPPOkzvuuMOvZVFpAAAAQEgxInRgDBkyxFppiImJkWbNmsnpp58u3bt393tZVBoAAACAKjgidCBRaYhgviJVtdi+Jdl5TsvUYvS06MHYatFOUZ6usaojBtpHTZyYYY+702ixm1pkoxYvmL9GPw5afKbGdX20eME8JV4wUYkJ1GInx41631qWOqSzhDJ2U4uk1OJYtdhFbdt97W8tslG7ZrRrNEmLs1QiV7Wo1mBEh2rnvXbNaPegkaN6SDBo2+8a15mjXE8lyvUrSuRqYo8WTueMtp7aumjxzVkzsqxli60lIonnH+d03T87IVOZqx79rEV05yj7W4vh1iKTbedwQUGBVEYMpxBeSE8CAAAAoKKlAQAAACEV9f//C9a8IzEt6XD7QLii0gAAAABUgbQkX6g0AAAAIGwwToObPn36HHGl4csvv5SdO3f6VdkwaGkAAAAAwsCsWbMO+28///xzGTNmjBQWFnr/3aFDB7+WTaUhCLSkn6K9JU7TaYIxT1/z1VJNNFpqy8xF650SKK5Ib+OU8jR7pj0Fabq1RE8K0Qy7oINTKo+W2jJJ3GmJNquUhBktmSYne4tTIpOWsDJOKYvu2NgpCedZZZ6T5qx22gbtHNWSs2oqCSq+Ulu09JlcJUFHS7LK185vZZ6uCVFaQpBrOpQ23eBhaU73IC01TE2cUs4LX+vqmryjXYdaUpnrvVSzSinTEpK05LDZTes4rYu2fVrSnnau+bq+tSS+YCTqhRPGaQie5cuXy2233SYzZszwBndLTk6Wf/zjH3LZZZf5NV8qDQAAAECYy8nJkTvvvFP+85//yN69e6VBgwZy++23y8iRI72B3vxFpQEAAAAhRZ+GwNmyZYs88MADMn78eCkqKpL4+Hi5/vrr5ZZbbpG6desGbDlUGgAAAIAwU1RUJE888YQ8+uij3gB+1apVk2uuuUbuueceOfroowO+PCoNAAAACClaGtyVlJTIiy++6PVT+Pnnn71+CxdccIE8+OCDkppq71/mLyoNAAAAQBiYOnWq/P3vf5esrCyvsnDaaafJI488In/4wx+CvmwqDQAAAAgpM2JA8EaErrouvPBCL3mqrN9Cv379pLi4WObPn39Y03fv3t152VQaQsyfCFSXeWoxeb5iU7XIVdeYVy2aUIvIXJGTH/BtbKtEL2pRl1pEpkaL19NoMZBahKAxMcMeK6tprcQyqtGiSoyr6/K0+MjCdVud9pt2DF3jM7UIXy2mtkurBuJKizDWtqOhY3RsxiuLnCJXNVmTv7OWpY84yWnbtX2q3UtcI4qTlOVp6+nrOGlxrIXfb7KWRSuRpN3TkpzupdqxTx/a1ena1mJVteOkXb/asde2T4sFzvIRcarF2Gr34LjEeOeo3iN97yoq3OE0P1ReO3fulIceesh7HS5T2TAVDFdUGgAAAFDl+jSkpaV5nYNN5Kh5VQXJycl+j+zsikoDAAAAqpzMzMyARo5WBtnZ2RW2bCoNAAAACClGhA4/gX/AHgAAAECVQksDAAAAQopxGsIPLQ0AAAAAVLQ0+MFEiwYjQvVII061aDotclSLn/MVITlciSsdP3mptWzEwE4SymhJLbJQi3jVIjIH92rldCy0SL+Ro3pYyyZMXWYtm+gjClCLidRo67rKaY76/tZMUCJXU5XoUG0bevdt43TOaNeENk9XvmKRfcV5BjwauHaMtShrbrZTJGWecg5rxyJ/jf3+tdhaol+/WgToTGWeGVOWW8vSB7RXpnSP6tViTrX95nrsnSN1lfNCixXVzu2klPpO66LtF+09bdzYeep8tZhX9ZxSYqG16bTtsN2Htm8rkMrGjNEQvHEaqvJIDRWHlgYAAAAAKloaAAAAEFL0aQg/tDQAAAAAUNHSAAAAgJCKjoryXsGaNwKPlgYAAAAAKloa/PDt2jypXaf4iBNPXBKSgpHS5Gs9c5TEEy0lSEtIct3GK9LbOM1z0pzVTtugJTK5uuHqk6xljz8+1yl9RUteMWomxFrLduUXOU3nmlyi7e+MVxZZy6Kb1nFanpaGoiVSxSXGO+0XLe3k2QmZ1rLWynWmpfL4Oje09BntepquLG+Vcs5oST95SpKVRkvXSVLSqrRt1+4JGi2tSUs/82W2BJ6WVKad+9q1rR0LTbRjup12D3ZdF206LclIS2nzde1r+7t7WpK4yNUSxyxpc4U73RK1gok+DeGHlgYAAAAAKloaAAAAEFK0NIQfWhoAAAAAqGhpAAAAQEgxInT4oaUBAAAAgIqWBgAAAIQUfRrCD5UGP3RskSh169Y9omm0eNBQW5JtjxD0RYuYc41V1dZHW542z4aOcX/BiLHVtk+LzpyfmeMU1+mLa2yhtj5ahKDr/ta2MWtuttM8tVhVLR40UVkX7TzU4ki1+ERfUY/asdC28YkXFjjFyrrG2Gr7LRhRltq2D+7VyikaVzuGrtP52t9qVG2rBk7xxq4xn9q5Vvj9JmtZar9Up3O/i7J92rpokd/jJy91ipvNmpElrrRz0fWeqEaCW8p2bufjHvzHWQQAAIDQioqSqGCN3MyI0EFBnwYAAAAAKloaAAAAEFL0aQg/tDQAAAAAUNHSAAAAgJCKCmKfhqD1lYhwVBqCIBgpQFoikZbY4zrd4ZS7bL+WFtG3a3Nr2aQ5q53SUFwTgrTjpNH2t+s8NVqKiDHsgg5OCSvBWB9tXbTjtHj1ZmtZtJIioiWz5K9RksN+3eF0rj1+76yAJ8ho14QxTkmP0vb3hLydTmkvMxetd0qf0Y7v7JkrrWWTgnBua9ugJXXlZG9xmk47vr72t7ZPtXvpKiV1SUtz0lJ5tHXJ1RKClP0WjGShiRkrnbZBk9ijhbjSErDytXQ/JVVL2w7bPaOgoMA6DXC4qDQAAAAgpExbQLDaA2hnCA76NAAAAABQ0dIAAACAkKJPQ/ihpQEAAACAipYGAAAAhBTjNIQfWhoAAAAAqGhp8IOJ14wpJ2LTNapUi+t0nU6LcdWiUX1th2usrBafqa1rl1YNAh4d6hqBqsW/auupLU/bBm2fabGTvmjrM27sPGvZyFE9nPaNVqZFPWqGD0tzWl6JFoPZuJbTcYpr18halqVEo6b2THGKB/Xl2QmZ1rKSjdusZbua1rGWaVdaTSUi0lfsqMv1pJ2j6QPaOy3PNR5U2z5f57Zr5O6EqcsCHgGrRbVq89SO02wl3ljbp9q2x6YlO0Wu+oowdtnX3nyVKGaNtr/VOFrlPH3WMs+iQnuUdEUhPSn80NIAAAAAQEVLAwAAAEIs6veODcGaNwKOlgYAAAAAKloaAAAAEFL0aQg/EdfSsH37dmnZsuW+QUXWr3fvaAgAAABEgohrabj55pslO9ueZHIkstbnS+06JQFL5dFoyUKuqUu+BGO+g5WUiemZ6wKeeqHtN42WDqVtg8Y15UlLX9ESgnxNqyVwuCYkudJSRLRUHteEoMQeLaxl+Urai3Zt52zabi+zlohkzciylqUP7apMKSJK8pKWkpOn7BstWSouuZ61LCmlvtO6aAlY2vHVUqe0Y6Gda737tnE69lrKlbY8X9uv3b+6pyVZy+Zn5jgdpy7K9mv7VEt4065DaZkY8HQs7fp9VinT7jO78otE43pPTFC2X9sOLckqqVHtcn+/fVuBVDaM0xB+IqqlYebMmfLcc8/JyJEjK3pVAAAAgLARMZWGgoICufLKK+WYY46Rhx9+uKJXBwAAQCK9T0OwXgi8iHk8adSoUV7/hVmzZkmtWvbBmwAAAABEYKXhgw8+kIkTJ8o111wjffr0qejVAQAAiGx0agg7Vf7xpC1btsjVV18tSUlJ8s9//rOiVwcAAAAIO1W+peHaa6+Vn3/+WT788EOpW7eu0zx27drlvfbvHwEAAAA3jNMQfiptpWHMmDHy3nvvHfF0L774ovTo8Xtc5NSpU+WNN96QK664Qs466yzndXnooYfk3nvvPeT3HVskHnFFRIsx1eL1tAhQTecUe6Sbr2hYbX20iD1tvlrsqC0qztd02ja6xsa6boMWdTjsgg5OkY2aLq0aSKhpkbPj7v/UWpbaL9U+TyV2UtvfGa8sspbFtWvktt+UMi0CVIvr7J+WbC2bmLHSKebSV5SpxmeUq8P5rcUia/ttphILrEVLatuunaPafcbX/nahbYM/Ucyhvtdo0bHaNnZxPNdmK5Gj2rZrkcFaVKv2njZiYCfRPPHCgoCfw1oU74Spy454noU7An9uI/JU2krDxo0b5ccff3QavM3Izc2V4cOHS9OmTeVf//qXX+ty2223yY033nhAS4N53AkAAABHji4N4afSVhpef/117+Vq3rx58ttvv0nz5s3l/PPPt/7dwIEDpWbNmnL55Zd7r/KYcvMCAAAAIlGlrTQEiolZNS+br776yvvZq1evEK4VAABAJKNXQ7ipspUG07pQWlpqLY8y7WLmGdacHK81AgAAAECEVRoAAABQOdGnIfxQafCDSeaJKSedR0sd0so0WkKQxjU9yJieuc4pnUTjmnTkmjCicU0R0dJX4hLjrWWT5qx2SvPR9plrqpavRB9tvlpyiZaQpCWFuCZSacvTaEkp+UpqS8lKZb8k2NczY8pyp0QXf2jnqUbb393TkpyOoZYspe2bkaN6OC1Pu7a1lCdt23Oytzhd977ula7rqp3DrrR5asfQdV20faqlB40bO8/pnNH2tXYP9nWfveHqk6xl4ycvlUBzOd9MgMvIgK8JIg2VBgAAAIQUPRrCT8RWGrT+DgAAAAD+J2IrDQAAAKgY9GkIP24P2AMAAACIGFQaAAAAAKh4PAkAAAAhRlfocEOloRJxjRxtm5TgNJ2vGFct7k8TjHXVpnPdb9r2adF82rrkbNoe8OVptHXxtf0TM1Y6xURq8YpazKcWuTp75kqn6EVtv2lxjq7xiY/fO8tatiu/yFoWXbemU8ynFq3oKyZSOzeenZBpLUtomeh0fmtWLfnZKXLW9f6lrac2z2EXdHA617Imf2ctE8d4al/HqUS5np5VYoO181uL2XaNVXWN/tW2PbFzE6fj5Louvmj30qSU+k7XhbYdV6S3OeJjuHP7Nus0wOGi0gAAAICQoiN0+KFPAwAAAAAVLQ0AAAAIKXo0hB9aGgAAAACoaGkAAABAaNHUEHaoNPghtlq096rMCUmuqUPGkW7b4SxTm6drOofrumj7TUv60VIttISkSXNWO6UVadNpqUO+kodc03VaK8klrklAvfu2cTpOWTOyrGUj7+gjLrQEmeimdZz29YSpy6xl3dOSnPansVgrU66nmgmx1rI8JdGlMLmeU/KQxvWc0c5fLSVH2y9aWWHeTmtZ6sDjnZPRtJQvLclKu2do14x2frsmdWlpVa7HV7ueNNr9UjsvXJPBfOmflmwtm65Mp72XaO/dtkSmosIdytKAw0OlAQAAACEV9f//C9a8EXj0aQAAAACgoqUBAAAAoRX1+1gNwZo3Ao+WBgAAAAAqWhoAAAAQUoQnhR9aGgAAAACoaGnwg4k9iykn+kyLu+uckuhUFoyI0yXZeep8XddHo0XFXZFuj93UuEYIavGKDevWdIrt0469RotlVKMVlRhEf9ZHi1XVtj9rbrZTtGjGK4usZXHtGlnLUvulOkUvavGZheu2WsvSB7R3Wp4WR6rFsfqinaeaLCVWNU6JVXU9h7VYUe280K5R1+PrujxXWnSmMU6JDU5Szu9g0NbVNYJbu19otOtCu560Yy/K/VKL2fZ1nWn36CdeWOAUK6vdu7Xz1BZfvX1bgVQ6UUHs1BC0zhKRjZYGAAAAACpaGgAAABBS9GkIP7Q0AAAAAFDR0gAAAICQoktD+KGlAQAAAICKlgY/mDSJ8hIltNQhLT3INelIS0/SuE7nK7FIS+DQElZckzu06bQEii5KkoZ2DLVjkbNpe8ATmbSUmGDR0kC0Y6ilC2n7JrFHC3GhJZ5ox1dLUVmcGG8tmz1zpVPilHYeamk+vq5Rbb7q/lbW1fW60FJibIkuvpJg8tfYr7US5din9kwRF+o1quwX7bzwlR408o4+AU8/c+V6f9a4JlJpCUnaemrXk3ZN+JWANXae07Xmut+0hKjFtml2uG17MNGnIfzQ0gAAAABARUsDAAAAQotODWGHlgYAAAAAKloaAAAAEFL0aQg/tDQAAAAAUNHSAAAAgJCiS0P4iSotLS2t6JUINwUFBVKvXj3ZunWr1K1bN2CxqsGYToum65+WbC2riHhYbZ6uEa8aLc7QNY5Wi0fVYvLilJhPf2jxmdo2aueNFnOqRbWOG/W+tSzx/OOcYjC1ddFo89S4Ls+V63oaOdlbnKbTzkXtHE5KqR/4aFyFa7T1hKnLAr5fXOOU/YkB1Wj3di0at2ZCrFMEqnYvdY2v1szPzLGW7covcto+f2gxr8GI73a57gt3bpebLu9h/dxSEZ+hNmzaHLR1Mcto1qhBpdjeqoSWBgAAAIQYvRrCDX0aAAAAgBBbtWqV9OvXT2rXri0NGzaUESNGyI4dOyrtcaClAQAAACEV6X0atm7dKn369JGmTZvK5MmTJS8vT2688Ub59ddfZcqUKVIZUWkAAAAAQuj555+XTZs2ycKFC+Woo47yfhcXFycDBgyQb775Rk444YRKdzx4PAkAAAAV0qMhWK/KbsaMGV5LQ1mFwTj33HO9R5Xef98eHFKRaGkIAi0FKNTTaclCWsKIP+lCrglJ2vpo2xGMFCQtYUVLyrgivU1IU6X8OYZa0pOWaON6LEaOPcdpXVzTmlyPr5YSo9ESp7QkI+188kVLWAlG2k9bZX9r268tT9sGbV0mZqx0On+14+uarKTxlYKzasnP1rLefe33E42WNpfQMtHpetKubdekH9f78+yZ9mM/fFhawLfBV2qath3asdDOb9fEMdv5tLswtMlv4erHH3+UTz75xPum37x++OEH2bt3r9x3331yxx13+JzePGY0btw4Wbp0qezevVtat24tf/7zn+WGG26QGjVqHPC333//vQwZMuSA31WvXl1SU1O95VZGVBoAAAAgkd6n4dlnn5Unn3zSadpRo0Z505oP/qYFwbQYfPrpp3LLLbfI9OnTvcqIefyozJYtWyQh4dAKZ/369b3+DZURjycBAAAg4rVv315uuukm+c9//uN923/ZZZcd1j6ZNm2aV2EwFYUFCxbIxx9/7HVmXrlypXTo0EHmzZsnd955Z9jvX1oaAAAAIJE+TsNVV111wH9HRx/ed+sPPvig9/PWW2+Vrl277vu9iVEdP368nHrqqfLMM894FQczsF1Zi0J+/qGPzJkWiDZt3B5NDDZaGgAAAAAHGzZskMzMTO/fl1xyySHlPXr0kKSkJNm1a5fX+bnMcccdd0jfBdN/IisryyurjKg0AAAAoEL6NATrFSqLFy/2fiYmJsoxxxxT7t+ceOKJB/ytYQZ1mz17the7Wsb0fdi+fbv88Y9/lMqIx5MclJaWej8LCgqksvOVrqPZvs2+fQUFbvXN3X4kAQV6PbXpCndud1xe9YCvpz/7TN3GHdo2HpjyEIh9qk2nrYvG9RrUjq/rPHdu3+a0PG2f+V6mfeTQwh277dNF28u2x5Y4HUNt+11p6xKM81c7TlKzxGl/+lJUuCPg54breaGd+9q6aMtzPZ9c91kwtkHbZ76WqV0XwTi/bfumqGjHAZ9fKoNgfoYqm/fBy6hZs6b3CqSffvrJ+5mcnGz9G9PSsP/fGn/5y1/k6aeflvPOO897bMk8lmQGdzP/XVbJqGyoNDjYvHnzAScBgIoxMgjzvCkI8wQi9XoKtduvD/0yw2m/bdu2bd8z9RUlJiZGjj76aGmT0iKoyzGdkg/+nHb33XfLPffcE/B9atSqVUu0dTm4EmOSk0y60nXXXScXXnihxMbGysCBA+Wxxx6TyopKgwPTBGWsW7euwi8+/H4RmhtDTk6O1K1bl11SgTgWlQvHo/LgWFQukXY8TAuD+XDbtGnTil4V78Ox+cbdjGMQ7G2OOug5pUC3MvjLjMnw0UcfSbig0uCgrDe9qTBEws0mXJhjwfGoHDgWlQvHo/LgWFQukXQ8KtOXnKbiYF5VQZ06dbyfO3Yoj+lt//1xs3A/1+gIDQAAADhISUnxfppWK5uysrK/DVdUGgAAAAAHXbp02dffdf+OzvtbuHCh93P/MRzCEZUGB+aZONOZprI9GxepOB6VB8eicuF4VB4ci8qF44FAad68uaSlpXn/fuONNw4pN6NBm5YGc86ZmNVwFlVamfK3AAAAgErg8ssvl1deeUXuu+8+ueOOO6x/N23aNPnTn/7kpSR99tln+1oUTOtD7969ZdmyZTJ69OhKnYx0OKg0AAAAIOItWrRIRowYsW8/rF69WnJzc73WhGbNmu37/TvvvCNNmjQ5YH9df/318tRTT0mNGjUkPT3di2DNyMiQ/Px8OeWUU2TmzJkSFxcX1vuYSgMAAAAi3pw5c7yWAV9++umncjs1v/XWWzJu3DhZsmSJ7NmzR1q1aiWXXnqp3HDDDd74FOGOPg2H6bfffpNXX31VLrnkEmnTpo0XFRYfHy9t27b1BubIzs62TmtOLJMVbHt169YtUMczYvhzPAyTD/3II49Ip06dvG8D6tevL7169ZK33347ZNtQlcyYMcMbMKd///5eDnjZub1+/Xp1Oq6NynU8DK6N0NHeF8xr0KBBIVybyDB58mTvXm/u+ebeb94DHn30Ue8DHmDODfPUvq9XiiUF6aKLLvIeT9q6davs3LnTeyzplltuqRIVBoOWhsNkaor/+c9/vDEa2rdvL8cee6yXyZuZmSmbNm3ybj6muapv376HTGtOrrVr18qAAQP2jQq4P1MTNUOIIzTHw1zI5vfz58/3RmTs06ePl6FsRmYsLi6uEs8dhprZj+YmeTDT+cs069pwbVSu48G1EVplA08NHTq03PKTTjpJhg8fHuK1qrpGjRolTz75pFSvXt2775v3Y3PfN4+P9OjRQz755JOwf3wECCrTERq+/e1vfyu99957S9evX3/A77dt21Y6aNAg05m8NDExsTQvL++QaVu0aOGV//TTT+zqSnA8rr/+eq+8Q4cOpZs2bdr3+4ULF5bWrl3bK5s+fTrH6ghcccUVpQ8++GDpRx99VPrbb795+9C8cnJy1Om4NirX8eDaCK2y44Lge+edd7x9be7x33zzzb7fm/cA815gykaPHs2hABTcrQJgx44dpXXq1PFuOq+99toh5XwwqjzHw1QiYmJivLJ58+YdMu19993nlXXr1i2Ea1z1UGkIv+PBtRF6VBpCJy0tzdvf999//yFln3/+uVdWs2bN0vz8/BCuFRBe6NMQAOZZevN4jK8RAVHxx8M8622e2U5OTvbSDA5m+kgYX331lWzcuDFEawxUPK4NVFUbNmzwHl3d/x6/P/NoUlJSkuzatcu7DgCUr7rl9zgCpgNVWcfbgyO49jdx4kTJy8vznps3nRNPO+006dmzJ/s6hMdj8eLF3s8TTzyx3GlbtmwpiYmJ3nEy6QfmOCH4uDYqHtdGxfnXv/4lq1at8vo4mC80TJ+rcB85tjKe2+befswxx5T7N+Y9wXzJZP528ODBIV5DIDxQaQiAl156ycvxNR2ozj77bOvf/eMf/zjkd2YUQTOCYOvWrQOxKvBxPMqGeDdvzDamo6ipNNiGg0fgcW1UPK6NimPCF/Z36623yllnnSUvv/yyNG7cuMLWK5LObdPSsP/fAjgUjyf5ycRp3Xzzzd6/TQJSeTf4P/7xj17FwHyTVFhY6N2UTFyouYGZJlMT8WUiRBH847Ft2zbvp0lXsilLuCooKOCQBBnXRuXBtRF65lEZM5KsaRk17w1ZWVnyzDPPSIMGDeSjjz7yWhyKiooqYM2qFs5tIDAioqVhzJgx8t577x3xdC+++KL3rKONyTw3OegmrvPcc8/1vh0qjxno4+CYSfMyH5hOOOEE7w3jwQcflLFjx0okqOjjgeAfi8PFtVG5jgdCe5xMbPT+zJgz5tWvXz/p0qWL9yXIc88950WFAkBFi4hKg+nQ+uOPPx7xdObDp80vv/ziDRNuxl8488wzvVEAyzK3D5d5vtK8GZjX9OnTI6bSUJHHo06dOt5PM6aDr+XUrVtXqrpgHItA4NoI/fHg2qg814157v6KK67w3hPMewOVBv9wbgOBERGPJ73++uuHNcLfwS/zTGl5zKNEZmAY05R8+umne83LNWvWdFq34447zvt5OCO1VhUVeTzKRnFct26ddf3KjoVtxMeqJNDHIpC4NkJ7PLg2Ktd1E4nnf7CUndtaumFZWSTc9wFXEVFpCCQz2rD5gPrDDz9432ybJurY2Fjn+W3evPmAb0IQ3ONRlkiycOHCcsvXrFnjdYI2zOMBqDhcG6HFtVG5cP4HTtm93OxTW0fnsvcEUqsAOyoNR8Ak8pgPqN999533AdU0G/s75Pybb77p/fzDH/7g13wikcvxMM8Kx8TEeC0NX3zxxSHlpsO60a1bN+JWKxjXRmhxbVQeJSUl3iOWBu8N/jOJeCapcP97/P7mzZvntTSYFmpzHQCwqOjR5cLF5s2bSzt27OiNGnn66aeX7ty587CmmzZtWunChQsP+X1BQUHp9ddfv29E0JkzZwZhrasu1+NhlO13M31ubu6+33/zzTeltWvX9sqmT58epDWPDIczAjHXRuU6HgbXRui8/vrrpStWrDjk97/++mvpoEGDvONVo0aN0u+//z6Ea1V1vfPOO94+Nfd4c68vY94DOnTo4JWNHj26QtcRqOyizP/ZKhT4nwsuuEDeeecdr3PtwIEDrd9on3/++d6rjOnA9uSTT3rxqh06dJCEhASvE50ZOGzLli1SvXp1eeyxx+T6669nd4fgeBg7d+70+j58+eWXUr9+fa+1wnSMzsjI8AaGu/HGG+Xxxx/neByB++67Tz744IN9/71gwYJ9jwWYlp2yZv/x48dzbVTS42FwbYSOuS+9++67XlpSu3btvBho0wJq3htMh2kzsr0Zp8Hc3xAY5n32qaeekho1anit02afm/t+fn6+nHLKKTJz5ky/nx4AqrKISE8KhLLn3E0dq6zZuDymE9X+H1LNv80bwKJFi7xnJs18zJu2qURcfPHFMmLECK8ygdAcD8O8Gc+ZM8cbhdVEHs6YMcM7JieffLJce+21vEk7WL169b4PpuWNxGoc3NeEa6NyHQ+DayN0hg4d6vVlM5UE86ik+eBqPrCagT7NB9qRI0daRy+GG/MFnqkcmKjn+fPne18StWrVyovnvuGGG/ZVqAGUj5YGAAAAACo6QgMAAABQUWkAAAAAoKLSAAAAAEBFpQEAAACAikoDAAAAABWVBgAAAAAqKg0AAAAAVFQaAAAAAKioNAAAAABQUWkAgBBKSUmRqKiofa/TTz89JMt98803D1iuec2ZMyckywYAhL/qFb0CABCJBgwYILVr15bjjz8+JMs75phjZOjQod6/P/roI/n1119DslwAQNVApQEAKsBjjz3mtTqEykknneS9jF69elFpAAAcER5PAgAAAKCi0gAAFn/729+8Z/9PPfVUKS4uPqT873//u1fetWtXKSoqCsh+zM7O9uZpWiFKSkrkqaeeko4dO0p8fLw0adJE/vrXv0peXp73t7t27ZL77rtP2rZtK3FxcdK0aVO5/vrrZceOHRxTAEBAUWkAAIvHH39cTjzxRJk3b57ccccdB5SZfgEPPfSQ1K1bV9566y2JjY0N+H689NJL5dZbb5VmzZrJmWee6VUinn/+ea/ztKkYmJ/mMadjjz3W+/fOnTu9SsbAgQM5pgCAgKJPAwBYxMTEeBUC05Lw6KOPymmnnSZnn322rF+/Xi677DIpLS2VF198UVq3bh3wfbh27VqpXr26/PDDD9KiRQvvd5s3b5aTTz5ZFi9e7P00rQtr1qyRBg0aeOU//fSTnHDCCfLhhx/KF198IaeccgrHFgAQELQ0AICP1KGXX37ZqyCYioL5YD5o0CDJzc2Va6+9Nqjf6ptWg7IKg2EqB8OHD/f+vXz5cnnppZf2VRjK1tW0ThgZGRkcVwBAwFBpAAAfzjvvPLnxxhu9b/q7dOnifYtvHlsyjy8Fi2llOOOMMw75fZs2bbyfycnJ0r59e2v5xo0bg7ZuAIDIQ6UBAA7DI488Iu3atZOtW7dKrVq1vMeWzONLwWI6PZuKw8HM2A5llYby1KlTx/sZqI7ZAAAYVBoA4DAsWLBAsrKyvH+bTsjLli0L6n6Ljo72qxwAgEDiXQcAfDD9F0w/BhO7esUVV3iRqJdffrnXWRkAgEhApQEAFGUdoE1i0pAhQ2TChAkyevRo2bJli1x88cWyZ88e9h8AoMqj0gAACjMWgxmTwfRnGD9+/L7fmchT88jSmDFj2H8AgCqPSgMAWMydO1fuuusubzTmyZMnex2gDdNB+c0335TExEQZO3asvPvuu+xDAECVRqUBAMqxadMmGTx4sOzdu1fGjRvntTTsz6QXmfEbTP8G088hOzub/QgAqLKiSs0DuwCAkEhJSfE6UJtB4sy/K0KvXr3ks88+k9mzZ3v/BgDAl0NDwAEAQXfTTTd5Yy4cf/zxcvPNNwd9eab/xbPPPuv9e8WKFUFfHgCgaqHSAAAVYMqUKd7P9PT0kFQaTMvGK6+8EvTlAACqJh5PAgAAAKCiIzQAAAAAFZUGAAAAACoqDQAAAABUVBoAAAAAqKg0AAAAAFBRaQAAAACgotIAAAAAQEWlAQAAAICKSgMAAAAAFZUGAAAAAKL5P41v/+VrYMJaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAJOCAYAAAD1WuuWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgG0lEQVR4nO3dB3gU5dbA8ZMQQk+o0jsIooggKArSBUUpKl2kiV4pFxAQUEHgIlVUQMCrgqAiIlwERVABBZQiXS5KL6GroYYiJZDvOa9384WQ3SS7O7Pt//MZN9mZ3ZnsbsKcOe85b1hCQkKCAAAAAIAT4c5WAAAAAABBAwAAAIBUkWkAAAAA4BJBAwAAAACXCBoAAAAAuETQAAAAAMAlggYAAAAALhE0AAAAAHApwvVqpOTGjRty/PhxyZEjh4SFhfEiAQAAv6Xz+J4/f14KFSok4eG+v158+fJluXr1qqX7iIyMlMyZM1u6j1BD0OAGDRiKFi3q/XcDAADAIkeOHJEiRYr4PGDImSWnXJErlu6nQIECcvDgQQIHLyJocINmGBy/fFFRUd58PwAAALwqLi7OXOx0nL/4kmYYNGBoIPUkwqLT0HiJl+W//2D2RbbBewga3OAYkqQBA0EDAAAIBP40pDpSIiWjZLTkucMp2bWE7we2AQAAAPBrZBoAAABgqzD9z6LMR1iC/2RUgglBg5/SLgfbt2+Xs2fPyvXr1319OAB8RP9RjY6OlrJly5rCPgAAfIGgwc988cUX8sknn8g333wjV65Y21kAQGAFDw899JC0atVKnn/+ecmY0ZqxwABgB607sKr2gJoGaxA0+JERI0bIa6+9Jvfdd5+8/vrr8vDDD0vevHk5OQBCmGYaNeO4bt06mTdvnvTu3Vu+//57+fzzz/nbAACwDUGDn5gwYYIJGDRwGDx4sK8PB4AfKViwoNxxxx3SpUsX+frrr+XJJ5+Ujh07yuzZs319aADglvCwMLNYIVzCRBIseeqQRvckP5lh+o033jAnBAQMAFx5/PHH5Z133pHPPvvMzBUDAIAdCBr8wNq1a80s0507d/b1oQAIAG3btpVMmTLJf/7zH18fCgC4JczkA6xb4H28qn7gu+++k3z58smDDz7o60MBEAB0Usn69evLt99+6+tDAQCECIIGP/Dnn39KsWLFJDyctwNA2ujfjNjYWF4uAAFd02DVAu/jLNUPXL58WbJkyZLqdiVKlDBtFx2LBhk5cuSQIkWKSN26daV///6yYcMGW47Z39WqVcu8RoMGDUrT9tqRRrdv3Lix5ccWaJ544gnz+Tx69OhN99epU+emz2NKS58+fcy2nTp1Mt/PnDkzXfvW7fVx+nhfcfzexcTEeOX5HK9N8g5J5cuXl+LFi8tff/2VpufJmjVrmrcFAMBTdE/yE+mZFbFGjRpSpkwZ87WeNJw8eVK2bt0qK1eulDfffFNq164tH374oZQqVUpC1bPPPis//fSTfPzxxzJy5EjJkCGD022vXr0qn376aeLjrKQnvx999JHMmDHDpyfCabV8+XJZuHChCUg1OE1JpUqV5J577klxnbYPRur086ltllu2bCnjxo2ToUOHpvoYq2ZSBQA7WFl7QE2DNQgaAlDXrl1vOeFMSEgwE8Lpld1Vq1aZ+gjt616yZEkJRXry1atXLzlx4oR5XbTjjDNffvmlnDp1ytSVNG3a1Nbj9HcvvviiZM6c2WXGpnnz5jJs2DCXzzN69GjzHNo6NNDonAjXrl2TwoULW7qfFi1aSMWKFWXs2LHyj3/8g9mfAQB+heFJQcIxtEaHJ5UtW1b++OMPE1yEKh260aZNG/O1XtV3xbG+ffv2TJaVxLJly+TXX381QUGePHk8ej80WNDhN9HR0RJoSpcubY7djhmYte2yZg/ff/99y/cFAL5ETUPgIWgIMjlz5jQTxakffvhBNm/efMs28fHxMm3aNDMmPXfu3KZ1o2YkunXr5rLv+7Fjx+Sll14yV0O1liJbtmxy++23m6yHto1NSoOXAQMGmOEpBQoUkMjISMmfP780adLEDHlJTodjaOCjV1id0efUbfSKr/4MqXEETYsWLTJDuJz9TEuXLk1xaJJeYdZJtPSEV4//tttuM+P7NYOT2lh1DUQeeOABc5LsGA+vtzo0SWl73aRj/5NfqdcTRx1qVr16dfOe6tX+cuXKmddUsyJJadtNfQ7NlCSvO3B059LhL3ose/fulbSaPHmyufXGMCpXNQ36XupnVj9X+nPqz/HUU0/J9u3bnT6fvl4pvW4OOlRP1+tn3NPPsrOahkOHDpmsQL169UxRsv4e6XtVs2ZNee+998z8K+n19NNPS0REhHl8Wj7jAADYhaAhCD366KMmGHBcLU7q/Pnz8vDDD8tzzz1nAoq7777bDMnRE55///vfUrlyZVMfkZyeQN91110yfvx40+1J2z0+9thj5iRJZ6VNfmX0lVdeMSe9WuR97733mqvVOiZeZ7PV/U+cOPGm7TVg0RNzrS04e/Zsij/XlClTzK0GFnpilZpq1aqZk0IdWvLJJ5+kuI2exGsR6v333y933nln4v06hr9BgwZm6JKeEOrxa42Ifv/QQw+5zF7885//NAGLHqO+RvrcetKpM/jqVWtHXYp+71iS1gTonB36GD0GPcnXn0OzSFeuXDGTAFatWtWcsCYd1qL71MBI+/cnPdnUk+NnnnnGnMB+8MEHJguVFvq+abChV9e1qNwqelw6lEyHQe3Zs8fU4+hna8uWLSbg3Lhxo9f3md7PsjP6mdIhVxpMaMChAaa+j3rML7zwgvm5dNhgemjApM+hnwErfnYA8Bdad2DVf9Q0WCQB6Xbu3Dk9EzC33tChQ4eEhx56KNXtihcvbvY7Y8aMVLdt0KCB2bZ9+/Y33d+uXTtz/+OPP57wxx9/3LTu7bffNuvKli2bEB8fn3j/4cOHE6Kjo826QYMGJVy5cuWmx+nz/PTTTzfdt2TJkoTjx4/fclxr165NiIqKSsiYMWPC0aNHb1r39NNPm3289dZbtzwuNjY2IVOmTOZxJ06cSEirCRMmmOesWLFiiuv1Z9X177//fuJ9+rXeV6ZMmYRt27bdtP2qVasScuTIkRAZGZmwZ8+em9bpY3TRn2/dunUp7q9jx44u38MbN24k1KhRw2zz7LPPJsTFxSWuu3btWkK/fv3Murp16970OH1P7rvvPrNu4MCBidvXrFnT3NejR4+E9Fi+fLl5XLVq1ZxuU7t2bbPN0KFDU30+Zz/35MmTzf358+dP2LFjx00/a7du3RJfU318UrpPV/tesWKFWa/HmJQ7n2XH793Bgwdvun/Dhg0J27dvv2Xfx44dS6hUqZJ5zNy5c29Z7/iZnOnVq5dZP2LEiARX9LNQvnx5l9sAgBXnLd44llYZWiS0j2hryaLP7S8/bzAh0xCk8ubNa26TDmXZuXOnfPbZZ1KoUCFzRVWH2ySlRdR6RVuvbmvxsMNbb70l586dM0OLtKBVMwJJ6fPokIzk2Y6Uil51yE6PHj3M1X+9ap+87al69913b7lCq8Op9Eq7XlXX4U5ppXUKmkXRoS6bNm26aZ12V9KfNWn9g175dgx5mTNnjsnEJKVX3YcMGWI6LukQkpRohkCHFblDr+6vWbPGXG3WzI8OnXHQzIV21tGr5CtWrDD1Bg76nnz++eeSK1cus82SJUvk1VdfldWrV5tMj2Z90sORbbrjjjtS3Xb48OEptlvVYT2pcQyl09c86b70Z9XPXXre67Rw57PsjGaA9L1ITn+/9D1Q8+bNS/cxOjJemm0BgGCVWstuTxd4H92TgpRjPHXSXxw9kdSTcT2hT3oympSOAdftdFy3o+OQY9bZ559/Pl3HoAHL4sWLzcntmTNnTKCgHOPqd+/efctJmAYVWjOgJ8+PPPJI4s+iJ9CqZ8+e6ToGLeDVoUV6Qq1taHVoj4N+r3QYieP10JNlHRqiw4j0ZDsljnHyyce+O2hg4y59vZSO6U9pCJbOzaGBi76muv+kJ616kq41A/rz6jAlHYqmdQxz5841gVN6aCG9SksBtLOWq47A1RkdOrVv377E4C45rW9o1aqVTJo0SbzF3c+yMxrIak2MDiXSoU76vf6O6Wuf0mc8LRyvueM9AADAHxA0BClH4a+jtkEdOHDA3E6fPt0sriSdadYxfl47yKSVjp/XceoXL150uk1cXNwt92mbVA0atAjXETRoHYQeg9ZbaCvZ9NICZw0aNMuiV5r1ZPTChQuJV4GTFkA7XqP9+/eneqXC2Wy8abnC7oxj/5rN0CW9+9f6FK2n0Ndf6fh8d+br0KvxKioqKtVt09JyNSWOom0NLrJnz57iNt5uGezOZ9mZn3/+WVq3bi2HDx9O12c8NY7XXANtAAhWf1cehFv23PA+goYgpFc6HcNLtBA4efZBrwrr1WFXtBDXXVpgrcXK2rFHu8voUBAtJtZhQHoirieyuj6lIlG9Sq/De3R41MGDB81Jo6MAOr1ZBgctdNWZdvWEccGCBeYqvF5914BGC1i1sDn5a6TDYho1auTyeZ1dSU/L7N7OOPavQ2QcRdPOJC3cTprdSTq0TE9s9Wp9emlRsLsnvf7Anc5F6XHp0iUTLGk2QDthaSG/TrioJ/z6udeibu12ld5C6KQBmw41AwDAXxA0BCEdXuS4StmwYcPE+4sWLZrYucfRTjMt9IRfh1ns2rUrcSZqV/QKvp4saUcfbRGanKu2nzokR0/ABg8eLFOnTjVdnrQDlGZM9GTfHTqkR0/s9Gq4DknS53EMTdL7k3K8RjpEJKX2oFZz7L9Zs2YmeEoPfc21U5JewdcT2h9//FHefvttM5wqvZPWOepdkrd39SbHZGmaFdPMT0rZhuRtTh0ctQiOYUDJJe0u5cln2Rl9bTVgqFKlSuJnKan0tLZNzvGaa4tiAAj2eRoseW4yDZagEDrI6FVKHRaktLVp0rHmWsugvvrqK9NSM60cw4QcQ15Sc/r0aXOrV/eT0/3Onz/f5eM1C6FDiPRkTAt49WRYhxB5cgVfgwMNHnTuCg1CtNhYrwhru9PkdRWaQdixY4f89ttv4m2Ok11nPfgd75Ej8EqPMWPGmCyDFhTPmjXLtJPVzI7OPeDsJNoZPRlW+jpYRVvwOoZOaWF+clof4KyQ2BFwaHG/q9oQTz/LqX3GNQhJib7+7nIUuDurqQEAwBcIGoKEnmDqCaP2tternNq5KPmJkdYEaIGtTuCmPeVTuoqrQ3Z0roSkRZh9+/Y1hcIabGgGwFHQ7KAFoNqlx8HRBUdPWpNeCdaAoXv37mbYkSt60t6uXTtzYqZDmfRkXx/nCT250yBKh63oBFpKO0Ul7/Ck8xLoRHP6eupEbkl/Lged10GDDx36486JsnIWkGiGQQMXnchOA52U6hY0i6SF4UkDD73yrTUQOgRMT7R1sjItZO/Xr5/ZXocoJX/fXNHaES2e3rZtm5lozirasUtpFkiv/id9jTXTokXpKdEJ1fRzoQXzq1atSrxf3zctnHYWmKb3s+yM4zOucz4kD6z0M6s1NO5yFNjrzwgAwUorGqxc4H28qgFI24/q1WNddKiNngzribaeBOtYah2OolfSU7rSr5OS6Rh/DTB0zLUGGVrMqSeV+rUOA9JONkmLMPWEW2cd1pOtkSNHmiE0ekKtj9HaBz0R1mNy0JNd3bfWVWhNgm6rtQp6nz6Po7WqK1oQ7aATb3lSXOzgKHh2nIgnnwHaQWsndLZgDb603kE7FDk6EtWtW9e81voa/vLLL+k+Bn0ePdnVE1t937p06WIKl/UkVum6hQsXmgyRBl36+ulwMt23Bnwa+OkEYDqEyxE06M+j6/VEW+s/ktY6jBo1yrR/dczQnVaa6dGaDj2p1tmVraLtd7Xm5cSJE6bORjMB+rPoJHT6mdKfMyX6GdThbxoE6nuh74u+Pvo4DTZ00rWUpPez7Iy+DxrgaVCsX+trpcetwYRO7KaTG7pD38v//ve/pm2rBo8AAPgLgoYApAGBnlDqsmjRInOlUwue9aqynhxqD39nXWf0ZElbROpwEJ3xWDu/aHGwXjnXK8p6FV6/T16Eq7UROmxCT/i1SFZbV2rgobM36zh6PVFy0PU6J4JmB/Rr3U47IulzaO/5lNpzJqcnkI4e/e4WQCenJ3mO4mUdL67BiDPaZ19fZ309dLy9/rw65EWvfGtQpieWGmyll877oFfBtbXs+vXrTd2EdrJK2pNfTxg1i6HZBA3kdAy+nug6roDra61X2PXEXk+aNcjT49KhVhpIJs+c6FVvDQZ1TgQNSNLK8bpbWduhQdIXX3xhhqFpjYEGKDp8TF8nfQ3053dG6zX0cVrMrlfn9bEVKlQwj3NVxJ6ez7IrmtHRGbo1+Nb3Rn+vNCjR90YDQXfosCYNBtM66zkABKrwsHBLF3hfmM7wZsHzBjXtKKP977V+IC0tKVOjJ3s6ZEeHmOBvy5cvN1fi9YRMx60zUYv99E+DnrxrxkWLq1ObdwGev94aLOvcFdp6N7WJ7TSjooGss7oOALDqvMUbx9Ih8mmJDLt5gk1vuZpwVT6++qlf/LzBhFAMfkeH2WhdgWMMOgGDb+jrrvNaaEGyFlnDWppN0pnLBw4c6PWZsAHA34RZ/B+8j6ABfkPrLbQeQocv6XATHXKlY/7hO5rt0ToMrZVwTMYGawJlLWTX4U3pqT0BAMAuDJqF39AuOFqnoePMtThVx+Azrtv3tMYF1tL2v0m7RwFAsLOy9sCqmaZDHUGDH9De/emZNyFYacGtLyZUAwKRNi7QtrgAANiBoMEP6OzD2v1GCyEZvw8gLfRvhnbFAoBA5JhRwarnhveRv/EDOonTsWPH3Or7DyA0swzamlbnqAAAwA4EDX5AJ6bSK4baox0AUqOTAers7S1btuTFAhCQmBE68BA0+AGdgEsnc9LJqhjTD8AVnRTw+eefN5Mz6sR2AADYgZoGP/H666/LqVOnTIvRr7/+Wlq1amXaXWonIeocgNCltU6XLl0ys6rPnTtXPvvsMzMJnM6kDQCBKjwszCyWPDc1DZYgaPAT4eHh8u6778odd9xhhim1bt068X7NRAAI3Tkc4uPjzdclS5aUHj16yKuvvio5cuTw9aEBAEIIQYMf0QChT58+Zjlw4IBs3LhRzpw5k3jCACA0/y5ER0dL+fLlpUqVKmQeAQRNTYNV8ynoc8P7CBr8VKlSpcwCAACA9KtWrZqZPFMztLrAMwQNAAAAsJXWa1pVsxn2v5oGHbERFRVlyT5CUUjmbwYMGJD4YdUCZAAAAADOhVymYe3atfLmm2+agEG7kgAAAMBef1c0WHPt2qrnDXUh9apq28JOnTpJwYIFpVmzZr4+HAAAACAghFTQ8PLLL8vevXvl/fffN91IAAAAYL/wsP+fq8H7C++oFUImaFi5cqW888470qFDB2ncuLGvDwcAAAAIGCFR03DhwgUz03L+/PllwoQJvj4cAACAkKZzKVg1nwLzNFgjJIKG/v37y8GDB2XBggWSK1cuXx8OAAAAEFCCPmhYunSpvPfee9KmTRtp3ry5W89x5coVszjExcV58QgBAABCi6P+wJLn/t88DfCuoK5pOHfunDz77LOSL18+U8/grtGjR5vCacdStGhRrx4nAAAA4M+COmjo06ePHD16VCZPnix58+b1qOuSBiCO5ciRI149TgAAgFDiqGmwaoH3BfXwJK1hiIiIkKlTp5olqV27dpnb6dOny/Lly6VAgQIyZ86cFJ8nU6ZMZgEAAABCUVAHDSo+Pl5WrVrldH1MTIxZihcvbutxAQAAhKrwsHCzWPLcZBosEdT5m7Nnz0pCQkKKS8eOHc02I0aMMN9r4AAAAAAgBDMNAAAA8C+O6gOrnhveF9SZBgAAAACeI9MAAAAAW4WFhZvFkufmmrglQjZomDlzplkAAAAAuBayQQMAAAB8g5qGwENNAwAAAACXyDQAAADAVmEWztNATYM1yDQAAAAAcIlMAwAAAGwV9r//rHpueB+ZBgAAAAAukWkAAACAvcLDtLDBmudOINNgBTINAAAAAFwi0wAAAAB7hVmYaaCmwRJkGgAAAAC4RKYBAAAAtgoLC5MwrWuw4rlvUNNgBTINAAAAAFwi0wAAAAB7aTLAqpoGEg2WINMAAAAAwCUyDQAAALCX1jNYVNNAqsEaZBoAAAAAuESmAQAAAPYi0xBwyDQAAAAAcIlMAwAAAOyfp8Gi7klWPW+oI9MAAAAAwCUyDQAAALAXNQ0Bh0wDAAAAAJfINAAAAMBeWndg2YzQ1DRYgUwDAAAAAJfINAAAAMBe1DQEHDINAAAAAFwi0wAAAAB7hYX/vVj13PA6XlUAAAAALpFpAAAAgK3CwsPMYslzC92TrECmAQAAAIBLZBoAAABgL7onBRwyDQAAAABcItMAAAAAm1k4IzQ1DZYg0wAAAADAJTINAAAACJ6ahgS6J1mBTAMAAAAAlwgaAAAAgCDz119/ybZt2+TUqVNeeT6CBgAAANgqLCzM0iVU/PTTT9K3b18THCQ1e/Zsue2226RKlSpSsGBB+de//uXxvggaAAAAgAD0/vvvy+TJk6Vw4cKJ9x05ckS6dOkiFy9elOjoaImPj5fhw4fLqlWrPNoXQQMAAAB8Uwht1RIi1q9fL5UqVZK8efMm3vfJJ5/I1atXZdiwYXL69OnEYGHq1Kke7YugAQAAAAhAJ0+elCJFitx03w8//CCRkZFm2JJ66KGHpHr16rJ161aP9kXQAAAAAHtp3YGVS4i4cOGCZMmSJfH7hIQE2bhxo1StWlWyZ8+eeH+JEiXk+PHjHu2LoAEAAAAIQLlz55aYmJjE7zWbcP78eXnwwQdv2u7atWsm++AJggYAAADYi5oGr6hWrZps2LBB1q1bZ76fOHGi6R5Vr169m7bbu3ev6aLkCYIGAAAAIAD17t3bDEmqWbOmyTrMmjVLSpUqJQ0bNryp7mH79u1SuXJlj/ZF0AAAAAB7kWnwigYNGsiHH34oxYsXNx2TateuLYsWLZLw8PCbuinduHHDrPNEhBeOFwAAAIAPdOzY0SzOvPDCC2behqSF0e4g0wAAAABb/d3kyKoZoUPnzfzxxx9lz549LrfR7kp//vmnrFmzxqN9ETQAAAAAAahOnToyduzYVLcbN26c1K1b16N9MTwJAAAA9rJy5uaEEEo1yN9zM9iBTAMAAAAQxM6cOSOZM2f26DnINAAAAMBeVs7cHORFDYcPH75lVujk9znEx8fLb7/9JkuXLpXSpUt7tF+CBgAAACBAlChRwhR8O8yfP98sqQ1hat++vUf7JWgAAACAvahpcFuxYsUSgwbNMGTNmlXy5s2b4raRkZFSpEgReeqpp6Rbt27u75SgAQAAAAgcMTExiV/rJG4tW7Y0E7xZjUwDAAAAbOWYU8Gq5w4VM2bMkDJlytiyL4IGAAAAIAB1dDETtLcRNAAAAMBeYRbO03AjdDINSV2/fl1OnTolly9fFlf1EO4iaAAAAAAC1MaNG+W1116TVatWyZUrV1wO29IWrO4iaAAAAEDwdE+y6nn90M8//yz16tVLzC7kypVLoqKiLNkXQQMAAAAQgIYOHWoChi5dusjIkSMlf/78lu2LoAEAAAD2YkZor1i/fr2UK1dOPvjgA8u7RoVb+uwAAAAALKE1Cvfcc48tbWbJNAAAAMBe1DR4Rfny5eXkyZNiBzINAAAAQAB6/vnn5aeffpL9+/dbvi+CBgAAAPhkRmirllAKGtq2bSsPP/ywLFmyxMzVYBWGJwEAAAABqFSpUuY2JiZGmjRpIhEREVKwYEEJD781L6DBlCcZCYIGAAAA2IuaBq/QYMEhISFBrl27JocPH05xW08zMAQNAAAAQAA6ePCgbfsiaAAAAIC9mKfBK4oXLy52oRAaAAAAgEtkGgAAAGAvahq8Ki4uTmbNmiVr166V2NhYqV+/vgwYMMCs27Nnj6l9qFWrlmTOnNntfRA0AAAAAAFq6dKl0q5dOzlz5owphtaC58KFCyeu3717tzRv3lw+++wzadWqldv7YXgSAAAA7BVm8RIidu7cKU888YScO3dOunXrJp9//rkJHJJq1KiRZM2aVb788kuP9kWmAQAAAAhAo0aNksuXL8u8efPkySefNPe1bt36pm0iIyPlnnvukW3btnm0LzINAAAA8E33JKuWELFixQqpVKlSYsDgTJEiReTEiRMe7YugAQAAAAhAsbGxcvvtt6e6XXx8vFy8eNGjfTE8CQAAALYKCw8zi1XPHSqio6Pl2LFjqW534MABue222zzaF5kGAAAAIABVqVJFNm/eLIcPH3a6za+//mrqGe6//36P9kXQAAAAAHvRPckrunbtagqh27ZtK7///vst60+ePGm20Y5KeusJggYAAADARvv27ZMXXnjBZAoyZswoJUqUcOt5WrRoIS1btpR169ZJ6dKlpWHDhub+NWvWSNOmTaVUqVKyYcMGM4+Dtl71BDUNAAAAsJmVXY78v6bht99+k6+//lruu+8+kwXQidncNXv2bClTpoxMmDBBli9fbu7bu3evWbTdar9+/WTMmDEeHzNBAwAAAGCjJk2aSLNmzczXmnH49ttv3X6uDBkyyMiRI6V///6mBasWPd+4cUOKFi0q9evX97gA2oGgAQAAAPbSDkdWdTkKgO5J4eHerxDIlStXqvM1eIKaBgAAAIS83bt3yzvvvCOdOnWSihUrSkREhISFhcnrr7+eptdGZ2WuU6eOOXnPli2bmXRt3Lhxcu3aNcteWz1eT4Y2pQdBAwAAACTUuye9++670qtXL/noo49Mm9Lr16+n+bF9+vSRVq1amQJkrVN45JFHTBvUgQMHSr169eSvv/4SK/Tu3VsKFSokrVu3NkOctD7CKkEfNGh09/3338tLL70k1apVk5w5c5oq9QIFCpiq8sWLF/v6EAEAAOBjd911l6kL+PTTT2Xnzp3yzDPPpOlxCxculIkTJ0r27Nll/fr18t1338n8+fNNIbJmLFavXi1Dhgyx5Jh1OJIGCprleOyxx0wdw6uvvmr27W1BHzSsWrVKGjRoIOPHj5ejR49KzZo1zQucL18+WbRokTz++OPyj3/8w9LIDAAAAElo5yQrFzfoPAZvvPGGaU9avnz5NNcdjBo1ytwOGjTItFB1yJs3r0ydOtV8PXnyZDl37pzXPwL/+c9/5Pjx46Zz0t13322+1k5Jevy1atWSGTNmyMWLF72yr6APGvQNf+qpp+THH3+UEydOmPZWn3/+uWzfvl3mzJljKs7ff/99+eSTT3x9qAAAAAggx44dk40bN5qvNdhITi9W69X/K1euyJIlSyw5hty5c5thVVu3bjVLz549JU+ePCbDoYGQjq7p0qWLORf2RNAHDTqOTKOwhx566JZ1Ov5Li13Uxx9/7IOjAwAACEHhFi822bp1a+KJe8mSJVPcpmrVqjdtayUtvtahUppx0PPfxo0bm4Bl5syZ5pzYEyHfcrVy5crmhThy5IiX3i4AAAD4Wlxc3E3fZ8qUySzedPDgQXNbrFgxp9topiHpturSpUuJmQedV0G/15N8pTW4xYsX9+i4tPOTDsfXouyxY8fKlClTPB6KH/JBg6NQpGDBgh69kAAAAEgj0+XIovkUwm4+WXcYOnSoDBs2zKu7On/+vLnVFqvOaIF08iDmzz//lJYtW960neN7rUNwjIRxh2YWFixYYJ7nhx9+MBO9qTvvvFM8EdJBw++//27SNUrrHgAAABAcdBRJVFRU4vfezjJ4okSJEl5vwqOdm/S8Vmt3tehanz86OlratGkjnTt3NlkHT4Rs0BAfHy/t27c3L6q2w9IOSq4iNl2cpbsAAACQdjppmi5WcDyvBgxJgwYr5MiRw9y66lB04cKFxOPxNm3yo818dG6JXbt2mUBBf/66deuaQEEvimfOnNkr+wrZoOGFF14w8zdodbmOIYuMjHS67ejRo2X48OG2Hh8AAAD8W4kSJVKtjXWsc2zrTVpLocOPNFjQOoiOHTuaYMHTmoiQ7J7kbPa86dOnm2m+ly1bJrfffrvL7V9++WWTkXAsFE0DAAAE14zQnjTUOXXq1E2Fzklt2rTJ3Cadw8FbtOBZhx/p+azuX2s2rAgYzL4kxPTr108mTZpkZoZeunRp4pvtihXV9gAAAAhsRYoUMd2OdK6G2bNnm9mYk9K5EvRis55HavtTK+pztW7BDiGVaRgwYIC89dZb5sXVgMHRNxcAAAA2Cg+zdrHRK6+8Ym51JuYtW7Yk3q/Zh+7du5uvdcI1K07u7QoYQipo0Km9dWpwfXE1haNRIQAAAKD0hL969eqJy+LFi83977333k33a/FxUs2bNzczMmvBs65/9NFHpUWLFlKmTBnZvn271KhRQ0aMGOGVF/lf//qXfPXVVymu++9//ytHjx5Ncd0777xj5m3wREgMTxo8eLCZ2MIxJImAAQAAwIe0w5Fl8zS497zaHVPblianJ+JHk5yMJ+2o6aCzMGtwoJOorV27Vq5duyalS5c2F61ffPFFlw130kNrFnQOh6ZNm96yTofc6zqt200pIPryyy892nfQBw0ajY0cOdJ8rRGfvpkpyZs3r4wfP97mowMAAIA/qFOnjkdzJ7Rq1cosvqLH7u25H0IqaDh9+vRN1euOCvbktNKcoAEAAMAGVnY5srekIWQEfU2DpmkckZerJSYmxteHCgAAAPiloM80AAAAwM9Y2eXI5u5JoSLoMw0AAAAAPEOmAQAAAPaipiHgEDQAAAAAAeKXX34x8zWkZ53e7ymCBgAAAEioz9MQKLZt22aW9KzTpj9hHr4uBA0AAAAIOjqZb4YMGaRHjx5mCQa1atXy+OTfXQQNAAAAsJWe+IZZ1OXIcVK9ceNGiYqKkmCycuVKn+2b7kkAAAAAXCLTAAAAAHvRPSngkGkAAAAA4BKZBgAAANiL7kkBh0wDAAAAAJfINAAAAMBe2jnJou5Jlj1viCPTAAAAAMAlMg0AAACwF92TAg6ZBgAAAAAukWkAAACAveieFHAIGgAAAIAAkCFDBrcfGxYWJvHx8W4/nqABAAAA9g+Qt2qQfBAPvk9ISPDJY4P8ZQUAAACCx40bN25Z+vbtK5kzZ5bevXvLli1b5MyZM2bZunWr9OnTR7JkyWK20W09QaYBAAAA9qKmwStmzJghEyZMkGXLlkndunVvWlepUiV56623pGnTptKgQQO544475Nlnn3V7X2QaAAAAgAA0depUqVGjxi0BQ1J16tSRmjVryrvvvuvRvggaAAAAYCstyrVyCRW7du2SokWLprpd4cKFZffu3R7ti6ABAAAAQadatWpSoUIFmTJligSriIgI2b59e6rb/frrr2ZbTxA0AAAAwDfdk6xaRGTjxo2yY8cO6dGjR9C+u9WrVzcBwaRJk5xu884775jA4oEHHvBoXxRCAwAAAAHotddek+XLl8uLL74oc+fOlXbt2knJkiXNupiYGPn0009l3bp1JsswePBgj/ZF0AAAAAB70T3JKzR7MHv2bOnatausXbvWBAjJ52bInj27fPDBB/Lggw96tC+CBgAAACBAtWzZUmrVqiXTpk2TVatWydGjRxOLn2vXrm3arBYsWNDj/RA0AAAAwF5kGrwqf/788uqrr5rFKhRCAwAAAHCJTAMAAADslaTLkSXPHWLi4uJk1qxZpq4hNjZW6tevLwMGDDDr9uzZY4qidQhT5syZ3d4HQQMAAAAQoJYuXWq6Jp05c8YUPuvkdlrP4KCTujVv3lw+++wzadWqldv7CcFYDAAAAH5R02DVEiJ27twpTzzxhJw7d066desmn3/+uQkckmrUqJFkzZpVvvzyS4/2RaYBAAAACECjRo2Sy5cvy7x58+TJJ58097Vu3fqmbSIjI+Wee+6Rbdu2ebQvMg0AAACwmZVZhtDJNKxYsUIqVaqUGDA4U6RIETlx4oRH+yJoAAAAAAJQbGys3H777aluFx8fLxcvXvRoXwxPAgAAgL3onuQV0dHRcuzYsVS3O3DggNx2220e7YtMAwAAABCAqlSpIps3b5bDhw873ebXX3819Qz333+/R/siaAAAAIC96J7kFV27djWF0G3btpXff//9lvUnT54022hHJb31BEEDAAAAEIBatGghLVu2lHXr1knp0qWlYcOG5v41a9ZI06ZNpVSpUrJhwwYzj4O2XvUENQ0AAACwl5XzKYTQPA1q9uzZUqZMGZkwYYIsX77c3Ld3716zaLvVfv36yZgxY8RTBA0AAABAgMqQIYOMHDlS+vfvb1qwatHzjRs3pGjRolK/fn2PC6AdCBoAAABgL7oneV2uXLlSna/BE9Q0AAAAAAGoXr16Mm7cuFS3Gz9+vNnWEwQNAAAACLruSdWqVZMKFSrIlClTgvbdXblypezatSvV7Xbv3i2rVq3yaF8MTwIAAEDQ2bhxo0RFRfn6MPzCtWvXJDzcs1wBQQMAAADspckAy7onWfO0gWz79u2SJ08ej56DoAEAAAAIEF26dLnp+9WrV99yn0N8fLzs2LFDfvnlFzNvgycIGgAAAGAvuie5bebMmYlfh4WFyb59+8ziSqFChUxbVk8QNAAAAAABYsaMGeY2ISHBZBhq1qwpzz77bIrb6uRuRYoUkerVq0vGjBk92i9BAwAAAOzFjNBu69ixY+LXw4YNMwFB0vusQtAAAAAABKCYmBjb9kXQAAAAAB90T7LwueF1BA0AAABAALty5YqsWLHCTOIWFxdn6h2S06LpIUOGuL0PggYAAADYKzzs78Wq5w4hCxYskH/84x9y6tQpp9toEEHQAAAAAISgTZs2SevWrc3Xbdq0kd9++81M5DZo0CDZu3evLFu2zGQetLuSdlHyBJkGAAAA2IvuSV4xfvx4uX79usk26ORtnTt3NkGDY06G2NhY6dChg3zzzTeydetWj6fWAAAAABBg1qxZIxUqVHA623O+fPlkzpw5cvHiRRk+fLhH+yJoAAAAgG+6J1m1hIjY2FgpX7584vcREX8PIrp8+XLifdHR0VK7dm1ZsmSJR/tieBIAAPArl6/fcLru7fumOl0XWdXFmO3oTO4dTM7MLlf3e6Wue88LeEGOHDkkPj7+pgBBHT9+XEqVKpV4v84G/fvvv3u0LzINAAAAsL+mIdyiRZ87RBQpUkSOHDmS+L0j66DtVx2uXbsmP//8s+TPn9+jfZFpAAAAAAJQzZo1Zdq0aXLu3DmTZXjsscfMEKW+ffuaIUrFihWT999/32Qenn76aY/2RaYBAAAAvumeZNUSIpo3b26yDatWrTLfFyxYUF555RU5f/689OrVy6xfvHix5MyZU15//XWP9kWmAQAAAAhA9evXN/MxJDV06FCpWLGizJs3T06fPi133HGH9OnTx2QdPEHQAAAAAHtZ2eUodBINTj355JNm8SaCBgAA4Fe+XHfI6brTu/c7Xbd7y7dO1+WLzOt0XdlqDzpdl/HO25yuA3ytXr16ZnjSxx9/bPm+qGkAAACAvazqnORYQsTatWvl6tWrtuyLoAEAAAAIQEWKFJErV67Ysq80DU9KOjmEJ8LCwmT/fudpRQAAAIQAK7schVD3pMcff1xmzZolFy9elGzZsvk+aIiJifFa0AAAAABYrVq1apIhQwbp0aOHWYLR0KFDZdGiRaboWedjKF68uGX7SnMhdIsWLeSNN95we0f9+/eXL774wu3HAwAAIEjY0D1p48aNEhUVJcGsX79+cuedd8rXX38t5cqVk8qVK0uJEiUkS5YsKV68nz59uvVBQ/bs2T2KXvTxAAAAALxj5syZiSN5tCB6/fr1ZkmJLUFDo0aNzCQRntDHN2zY0KPnAAAAwa91zZJO1x0oV9rpugez3OFW69QrPx5wuu7GhZziyoZ9sU7X3Vcmn8vHhjQruxyFUPekGTNm2LavNAUN33zzjcc76tu3r1kAAAAAeK5jx45iFyZ3AwAAgL3onhRwCBoAAACAALdjxw4z2VtsbKwpjm7atKm5/8aNGxIfHy+RkZG+DRqOHj0qx48fl8uXLzvdplatWp7uBgAAAMEi3MIphkNs6uIjR45I586dZcWKFTcNW3IEDR988IF0795dli5dKvXr17c/aJg3b54MHjxY9u3b53I7rdTW6AYAAACA95w+fVpq165t5lS76667zIX6qVOn3rRNq1atpGfPnvLVV1/ZHzTMnTtX2rZtKwkJCZI7d27TDzZHjhxuHwQAAEBa1P+8tdN13973jtN14fmcz5Ybnsd5W/jwwq7Pb+iQ5CZqGrxi7NixJmDQ+dD0a71YnzxoyJUrl+liunr1ao/25VbQMGrUKHM7ceJEk+7Q2fYAAAAA2OfLL780F+/HjBmTOF9DSkqVKiVr1qyxf9TX7t275YEHHpB//vOfBAwAAABwL9Ng1RIiDh06JFWqVJHwcNen9FoErUOZbA8acubM6dHs0AAAAAA8kzlzZjl//nyq2x0+fFiio6PtDxrq1q0rW7du9WjHAAAACPHuSVYtIaJ8+fKyZcsWuXjxotNtTp48Kdu2bZO7777bo3259bK+9tprcuzYMTN+CgAAAID9WrRoIadOnZK+ffua+RhS8tJLL8mlS5ekdWvnTQQsK4TWqEZ7vbZp08YUYDz66KNSrFgxp+OpOnTo4NFBAgAAIIjQPckrevToIR999JFMmzZNNm/eLE8++aS5f//+/fLWW2+ZKRI2bNgg99xzj3Tq1Mmjfbk9T4POOKcFFTpGSg/GFYIGAADgDT+94bwDTOba5Zyui9/1h9N1mWqVcr7DnJldHs+GfbFO19GOFXbUNHz33XfSsmVLc27uKB/Q9qq66PQI1apVk4ULF0rGjBntDxo+/PBD6devn/lax0eVLVtWsmd33uPYX2i0NWXKFDOu6+rVq1KmTBl5+umn5cUXX/T4hQQAAEAakWnwmoIFC5oAQYOHxYsXy4EDB8xQpaJFi5rRQM2aNXPZjtXSoOHtt9+WiIgI+eKLL+Txxx+XQNCnTx8zr4Qed7169UyQ88MPP8jAgQNl0aJFZrhVlixZfH2YAAAAQLo1atTILFZxqxBax0npNNWBEjBoSkYDBg0U1q9fbyKx+fPny969exNnyBsyZIivDxMAACA0hFnYOSl0pmmwlVtBg05HnS9fPgkUjhmsBw0aZCbAcMibN2/iVNuTJ0+Wc+fO+ewYAQAAAHddv35d/vzzT1Nv7GyxfXiSjo/6/vvvzXip1Gag8zVtDbtx40bzdbt27W5ZX7NmTTPm68iRI7JkyRJp27atD44SAAAghFDT4DV6nqvTIaxatUquXLnidDuta4iPj7c3aBgxYoQ5we7Vq5dp56RTU/srRxV57ty5pWTJkiluU7VqVRM06LYEDQAA+K/rf150q0NSxipFnK67uumo8x26Wqcdkl6p63I9YKWff/7Z1Opevnw5cTRQVFSUJftyK2j44IMPTLbh3XffNVXaOkO0s3kaNKrxZb3AwYMHza0enzOaaUi6LQAAACxEpsErhg4dagKGLl26yMiRIyV//vxiFbeChmHDhplgQHu/Hjp0SGbOnHnLNo71vg4azp8/b26zZcvmdBtHu9i4uLgU12uqJ2m6x9l2AAAAgF20wU+5cuXMBX1vtFX1etCg46asPjB/Mnr0aBk+fLivDwMAACA4ODodWfXcISI+Pt7M9mzHebnbmYZAkSNHDnN78aLzMZAXLlwwt87GgL388svSt2/fmzINjiFNAAAAgC+UL19eTp48acu+gj4WK1GihLnVQmdnHOsc2yaXKVMmE1AkXQAAAOAevTJu5RIqnn/+efnpp5/MHGpWC/qgoXLlyub21KlTTgudN23aZG6TzuEAAACAwFWtWjWpUKGCTJkyRYI5aGjbtq08/PDDprOpztXg0+FJs2fPltKlS8v999/vUaGGRkEpzZVgpSJFipgPjfaw1Z/j1VdfvWm9zgatmQbNJjRu3NjWYwMAALe6fP2GW21VI8o77xzz55frnK7Lc88dTtdlvPM23qIA7Z6k537BPjqkVKlS5jYmJkaaNGkiERERUrBgQacdTT3JSKQp09C+fXt57733xBP//ve/5ZlnnhFfeOWVV8ztmDFjZMuWLYn3a/ahe/fu5uuePXtKdHS0T44PAAAASC8NFnRR2rX02rVrZuZnx/3JF9sLoQNN8+bNzUR0kyZNkurVq0v9+vVNC1ad1frs2bNSo0YNM2EdAAAArMc0Dd5h5xxjaQ4avv32WzPjnLt27dolvjRx4kQTHOi4trVr15pITIdcDRo0SF588UW/ntUaAAAASK548eLid0HD77//bhZP+LqavVWrVmYBAACArzMN1pwXhlDzJFulKWhYsWKF9UcCAAAAIN10DrFZs2aZ0TSxsbFmKP6AAQPMuj179ph6hlq1aknmzJnF0qChdu3abu8AAADAW1x1SEq4eM3pukzhzochh2V1vu6vpbtdHs+GfbFO191XJp/Lx4Y0ZoT2mqVLl5rupGfOnDHF0JrBKVy4cOL63bt3m/rezz77zKMRN0E/TwMAAAAQjHbu3ClPPPGEnDt3Trp16yaff/65CRySatSokWTNmlW+/PJLj/YVEt2TAAAA4D+snLnZ1zW0dho1apRcvnxZ5s2bJ08++aS5r3Xr1jdto81+7rnnHtm2bZtH+yLTAAAAAASgFStWSKVKlRIDBleTHZ84ccKjfRE0AAAAwDcTNVi1hIjY2Fi5/fbbU90uPj5eLl686NG+CBoAAACAABQdHS3Hjh1LdbsDBw7Ibbfd5tG+CBoAAABgKxIN3lGlShXZvHmzHD582Ok2v/76q6lnuP/++z3aF4XQAAAgYGQom9vpuqvf73e6LrrJvW7tL1O+ki7X310yj1vPC3hD165dTcvVtm3byvz586VAgQI3rT958qTZRjsq6a0nCBoAAABgLytrD0KopqFFixbSsmVL0z2pdOnSUqNGDXP/mjVrpGnTprJy5Uq5cOGCPP3006b1qu3Dk+rVqycNGzY06RBXxo4da7YFAAAA4H2zZ8+Wl19+2Xy9fPlyc7t37175+uuv5erVq9KvXz+ZOXOmx/txK9OgUYv2wK1Tp46ZRKJx48Ypbrdr1y5ZtWqVp8cIAACAYBIeJmHhFmUErHpeP5UhQwYZOXKk9O/f37Rg1aLnGzduSNGiRaV+/foeF0B7PDypePHicvToUTMt9ZQpU+S5557zygEBAAAASJ9cuXKlOl+DT7onaZbhq6++kkyZMskLL7wggwcP9u6RAQAAIHiFWbTAEh4VQj/yyCNm+NFjjz0mo0ePliNHjsj06dMlIoL6agAA4H0b3/rQ6bpsGbI5XZd7dy6n6/Lcc4fTdVd3HE3liFqksh6wx9q1a2Xfvn0prqtatapUqFDBo+eP8EZ/2J9//lkeffRRmTVrlhw/flwWLFgg2bNn9/SpAQAAEIS0NlYXq547mN17772yZ88eU7+gwYDDBx98IB9//HGKj7n77rtl69atHu3XKykBrW/Q6KZZs2by/fffS82aNWXJkiXeeGoAAAAAIuY8W0/+n3322ZsCBgedj0GLn5PSGuT//ve/8sMPP3jU1dRr44hy5swpy5Ytkw4dOsjcuXOlevXqpmobAAAASIppGtyzcOFCk0l58cUXU1yv6/R8PKmYmBgzh4NO/uYXQYOKjIyUOXPmmGDhzTfflGPHjnnz6QEAAICQtWHDBjPCJz31CSVKlJCKFSuax9rePal27dpSvnx5p+vfeOMNmTRpkifHBQAAACCJ/fv3y1133SUp0aFJzpQtW1YOHjwonnAr06CFF6np2bOnWQAAAICbMD7JLXFxcRIdHZ3iur59+0rLli1TXJclSxY5f/68eILeqAAAwK/89+App+sqRDlvj5q5djmn664fPuN0XYbiOZ2uu63vA07XAXbT7qTnzp1z2iFJl5ScPXtWsmbN6tG+CRoAAABgK1quuqdgwYLyyy+/pPtx+hh9rE9mhAYAAABgnwcffNA0Gvrxxx/T/BjdVtuu1qhRw6N9EzQAAADAXuEWL0Gqffv2puC5e/fupr4hNVrHoNtqZqddu3Ye7TuIX1YAAAAgeNSuXVsefvhh2bFjh5ncbfHixU631YmWq1WrJjt37jQTvtWtW9ejfVPTAAAAAFtR0+C+2bNnm6FGe/bskaZNm0quXLmkSpUqki9fPrM+NjZWtmzZImfOnDFZiTJlypjHeIqgAQAA+JX7yuRzvu70v2w9FsDf5MmTR9avX2+mNvjss8/k9OnTsnz5chOIJZ2vITw8XNq0aSNTpkyRnDmddwhLK4IGAAAA2It5GjyiczV88sknMnz4cPn6669l8+bNcvLkSbMub968JvPw+OOPS+nSpcVbCBoAAACAAFSqVCnp1auXLfuiEBoAAAA+STRYtSgtAq5QoYIZngPPkWkAAABA0Nm4caNERUX5+jCCBkEDAAAAbEX3pMDD8CQAAAAALpFpAAAAgL2snLmZS+KW4GUFAAAA4BJBAwAAAHxS02DVEqx+/PFHMxO0LxA0AAAAAAGgTp06MmbMmMTv69WrJ+PGjbNl39Q0AAAAwF7MCO22hISExK9XrlwpJUqUEDuQaQAAAAACQI4cOeTEiRM+2TeZBgAAANiKRIN77r77bvnhhx/ktddekzJlypj79u3bJx9//HGaHt+hQwc39ywSlpA0x4E0iYuLk+joaDl37hwzDQIAAL/mT+ctjmOZ+Pl6yZI1uyX7+OvSBend+n6/+Hm9bdGiRdKiRQuJj4833+tpfHoKv69fv+72vsk0AAAAwF6kGtzSpEkT2bBhgyxcuFAOHTokM2fOlNKlS0uNGjXEagQNAAAAQICoVKmSWZQGDTVr1pQPP/zQ8v0SNAAAAMBWYeFhZrHquUPF0KFDpXLlyrbsi6ABAAAACNCgwS4EDQAAALCV5gKsmrg5dPIM/08Lo//zn//IihUr5NixY+a+woULS926dU3hdESE56f8BA0AAABAgPrll19MYHDw4MGbJn5T06ZNkyFDhsi8efPknnvu8Wg/BA0AAACwF92TvOL48ePSsGFDOXnypOTPn1/atGljuimpAwcOyJw5c2T//v3SqFEjE1wULFjQ7X0RNAAAAAABaOzYsSZg6Nq1q0ycOFGyZMly0/pRo0ZJr169TMZh3Lhx8vbbb7u9r3AvHC8AAACQZjohmZVLqPjmm2+kWLFi8u67794SMKjMmTPL1KlTzTaLFy/2aF8EDQAAAEAAOnLkiDz44IOSIUMGp9toEfQDDzxgtvUEw5MAAADgg/ZJFj53iMiUKZPExcWlut358+fNtp4g0wAAAAAEoAoVKpg2q66yCIcPHzbb3HnnnR7ti6ABAAAAPpkR2qolVHTo0EH++usvadCggSxZsuSW9V9//bU8/PDDcvnyZbOtJxieBAAAAASg5557TubPny/ff/+9NGnSRHLnzi0lS5Y063TehtOnT5u5GzSo0G09QaYBAAAAPilpsGoJFRkyZDBdkQYMGCDZsmWTU6dOyaZNm8yiX+t9AwcONBmH8HDPTvvJNAAAAAABKjIyUsaMGSPDhw83wcKxY8fM/YULF5aqVat6XADtQNAAAAAAH0wIbU1OIISmabiJBgc1atQQqzA8CQAAAIBLZBoAAADgg0yDdc8N7yPTAAAAAMAlMg0AAACwFZmGwEOmAQAAAIBLZBoAAABgq7D//WfVc8P7yDQAAAAAAejw4cNy5MgRW/ZF0AAAAAB7/a97khVLKCUaSpQoIW3atLFlXwQNAAAAQACKioqSkiVL2rIvahoAAABgK7oneUeFChUYngQAAADAueeee07WrFkjGzdutPxlItMAAAAAW4WFhZnFqucOFZ07d5atW7dKw4YN5aWXXpKnnnrK1DlkypTJ6/siaAAAAAACUIYMGRK/HjJkiFlcBVPx8fFu74ugAQAAALaysslR6OQZRBISEizZNiUEDQAAAEAAunHjhm37ImgAAACArahpCDzM0wAAAICgU61aNdOSdMqUKb4+lKBApgEAAABBN0+DtiHVyc9Cwf79++W9996TtWvXSmxsrDRr1kzGjRtn1q1fv162bdsmrVu3lujoaLf3QdAAAAAABKiPPvpIXnjhBbly5Uri0K+TJ08mrr906ZJ069ZNIiMjpVOnTm7vh+FJAAAA8En3JKuWUPHzzz9L165dTUCgmQXNKiTvklS7dm2TYVi0aJFH+yLTAAAAAASgcePGmSBh8eLFUrNmzRS3CQ8Pl3vuuUd27Njh0b7INAAAAMAn3ZOsWkLFmjVr5L777nMaMDgUKFBATpw44dG+CBoAAACAAHT27FkpVqxYqtv99ddfcvXqVY/2xfAkAAAABF33pFCQJ08eOXToUKrb7du3z2QbPEGmAQAAAAhA1atXl02bNslvv/3mcgiTrk9tCFNqCBoAAABgK2oavKNHjx5y/fp1eeqpp+SXX365Zf3OnTulS5cu5vXu3r27R/siaAAAAAACUP369aVv376yZ88euffee+X22283AcJ3330nd999t1SsWFH27t0rL730kslKeCKog4Y///xTPv74Y2nXrp2ULVtWMmfOLFmzZpXy5ctLr169JCYmxteHCAAAEHKYp8F7xo8fb2aD1poFrV3QFqzaKenXX3+V3LlzyzvvvCNjxozxeD9hCclngAgi7du3l08//dT0p73rrrukXLlycvHiRTOtuE6xnS1bNlmwYIE8/PDD6XreuLg4M0nGuXPnQmZ6cgAAEJj86bzFcSyzlm+XrNlyWLKPSxfPS/sGFf3i57WTntJv3bpVDhw4IDdu3JCiRYtKtWrVJCLCO32Pgrp7kkZXw4cPl2effVYKFy6ceP+FCxfkueeekzlz5kibNm1MVJYrVy6fHisAAECooHuS9+mwpCpVqpjFCkEdNEyaNCnF+7Nnzy7Tp083s+edPn3a3GpWAgAAAAjkbMOpU6fMrbZj1dE23hLUNQ2uaG2DDldSR44c8fXhAAAAhIwwsXBGaFMxEVqWLVsmjzzyiOTIkUPy589v6hv0a71Pi6K9IWSDhmvXriUWQhcsWNDXhwMAAACkm3ZG0uBg6dKlcunSJZNl0EVngdb7GjduLP369RNPhWzQoMOTTp48KVmyZJFHH33U14cDAAAQMuie5B2zZs2SN99803QI1cDgv//9r5w/f94s27dvl/79+5tz3QkTJphtPRGSQYO+iBqVqSFDhpg0jitXrlwx1f5JFwAAAMCXtJ1qhgwZ5Ntvv5U33njDdAvV7qC63HnnnTJu3DizTodtTZ48OTgLoQcMGCBfffVVuh83bdo0l9NkHz16VJo0aWI6KDVt2lQGDRqU6nOOHj3adGECAACA5+ie5B06F4Oe9z700ENOt3Gs1ykHgjJoOH78uOzevTvdj9NgwJnff//dzJx36NAhadSokcydO9dEXql5+eWXzWx7Dppp0N63AAAAgK/osKRChQqlup1uExkZGZxBg4678nTsVfLZoevVq2em2W7QoIEsXLhQMmXKlKbH6nZp3RYAAACuOTodWcGq5/VH9957r6ljSI1uU7VqVY/2FRI1DTr7swYMO3fuNJkGHfakkRkAAAAQqF599VVzfqu1C85orYNu88orrwRnpsFbtEOSBgy//fabCRgWLVpkqsgBAADgG9Q0uOfHH3+8JavSs2dPM5R+3rx58swzz0jJkiXNuoMHD5pRO5s3b5ZevXp5PNFbWII2cg1SOttz3bp1TUpGhyRphsEbAYPWNERHR8u5c+ckKirKK8cKAABgBX86b3Ecy9yVv0nW7Dks2celC+elVZ07/eLn9TY98U9p+JXjdD75uqT36xIfH+/2voM609C1a1cTMOiLlDt3bunWrVuK2zVv3twsAAAAsN7f8zZbVNMQxDNC16pVy2c1G0EdNGimwRFlaackZ0qUKEHQAAAAAL+2cuVKn+07qIMGX76wAAAASBk1DYEnJLonAQAAAHBfUGcaAAAA4IfC/s42WPXcoeby5cuyadMmMzmyfu1Mhw4d3N4HQQMAAAAQoN544w0ZNWqU6UyVGoIGAAAABIxwCTOLVc8dKiZPniwDBw40X1esWFHKli0rOXJY08qWTAMAAAAQoEFDRESEzJ8/X5o0aWLpvggaAAAAYCu6J3lHTEyMmbvB6oBB0T0JAAAACEC33Xab5MuXz5Z9ETQAAADAJ5kGq5ZQ8eijj8q6devkxo0blu+LoAEAAAAIQEOHDpWrV69Kr169zK2VqGkAAACArcLCwsxi1XOHikKFCsnq1auladOmUq5cOalbt64UK1ZMwsPDU3xdhgwZ4va+CBoAAACAAJSQkCATJ06UXbt2mSFKM2fOTDFY0O0IGgAAABBQNBfAhNDemdjtnXfeMW1XH3/8cTNPQ/bs2cUKZBoAAACAADRt2jTJmjWr/PTTT1K5cmVL90XQAAAAAFtR0+AdR44ckTp16lgeMCi6JwEAAAABqECBApIjRw5b9kXQAAAAAFsxT4N3PPHEE2Zo0uXLl8VqBA0AAABAABo2bJjkzp1b2rZtKydPnrR0X9Q0AAAAwFZWztwcQtM0SJ8+fcz8DAsXLpQffvhB7r33XpfzNEyfPt3tfRE0AAAAAAFo5syZiZPZnT9/XlauXOl0W4IGAAAABJSw//1n1XOHihkzZti2LzINAAAAQADq2LGjbfsiaAAAAICtqGkIPHRPAgAAAOASmQYAAADYihmhvaNLly5p3pZCaAAAACBEuye54uislJCQQNAAAACAwEJNg7Xdk27cuCGHDh2SJUuWyKZNm8x8DpUqVfJoXwxPAgAAAIKwe9KwYcNkwIAB8sEHH8iWLVs82heF0AAAAPBJTYNVC/7fqFGjJEeOHPLaa6+JJwgaAAAAgCAVEREhVapUkeXLl3v2PF47IgAAACANNBdgVT6APMOt/vrrLzlz5ox4gkwDAAAAEKR27twpq1evlqJFi3r0PGQaAAAAYCu6J3nHxx9/7HTd+fPnTcDwySefyOXLl6Vdu3Ye7YugAQAAAAhAnTp1cln4rfMzqGbNmsngwYM92hdBAwAAAGzFjNDe0aFDB6dBQ2RkpBQuXFgaNGggDz74oMf7ImgAAAAAgnBGaG8iaAAAAIDtmE4hsNA9CQAAAEGnWrVqUqFCBZkyZYqvDyUokGkAAACArcL+959Vz602btwoUVFREirdktJaA+EuggYAAAAgCLolpYagAQAAAAGDeRrcU69evXQHDevWrZNLly55FGwoMg0AAABAAFi+fHmat/3pp59kwIAB8tdff5nvK1as6NG+KYQGAACAT+ZpsGoJZb/++qs0adJE6tSpI+vXr5eiRYua1qxbt2716HnJNAAAAAAB7siRIzJkyBD59NNP5fr165InTx555ZVXpEePHmaiN08RNAAAAMBW1DR4z5kzZ2TkyJEydepUuXz5smTNmlV69+4tAwcO9Gr3KIIGAAAAIMBcvnxZ3n77bRk3bpzExcVJhgwZ5Pnnn5dhw4ZJgQIFvL4/ggYAAADYikyD+27cuCHTpk2Tf/3rX3LixAlJSEiQJ598UkaNGiW33367WIWgAQAAAAgAX3zxhbz66quyZ88eEyzUrl1bxo4dK/fdd5/l+yZoAAAAgK20v5F1M0IHrxYtWpjuUI66hcaNG0t8fLysXbs2TY9/8MEH3d43QQMAAAAQQC5duiSjR482S1ppsKEBhrsIGgAAAGArahrcU6xYMZ/NQ0HQAAAAAASAmJgYn+2boAEAAAC2snLm5lCfEdoq4ZY9MwAAAICgQKYBAAAAtqKmIfCQaQAAAADgEpkGAAAA2ErnaLBungZqGqxApgEAAACAS2QaAAAAYCtqGgIPmQYAAAAALpFpAAAAgK3Cw8LMYtVzw/vINAAAAABwiUwDAAAAbEVNQ+Ah0wAAAADAJTINAAAAsBWZhsBDpgEAAACAS2QaAAAAYCtmhA48ZBoAAAAAuESmAQAAALaipiHwkGkAAAAA4BKZBgAAANgrLEzCrJq5mRmhLUGmAQAAAIBLZBoAAABgK2oaAg+ZBgAAAAAukWkAAACArcIsrGmwrFYixJFpAAAAAOASmQYAAADYSnMBVuUDyDNYg0wDAAAAAJfINAAAAMBW1DQEHjINAAAAAFwi0wAAAABbMU9D4CHTAAAAAMAlMg0AAACwFd2TAg+ZBgAAAAAukWkAAACAzcL+Lmyw6rnhdWQaAAAAALhEpgEAAAC2oqYh8IRcpuHChQtSqlSpxElFjh496utDAgAAAPxayGUaXnrpJYmJifH1YQAAAIQs5mkIPCGVaVi2bJn8+9//lh49evj6UAAAAICAETJBQ1xcnDz77LNSsmRJGTNmjK8PBwAAQEK9psGqBd4XMsOT+vTpY+oXli9fLtmyZfP14QAAAAABIySChsWLF8uMGTPk+eefl3r16vn6cAAAAEIbRQ0BJ+iHJ505c0aee+45KVq0qLzxxhu+PhwAAAAg4AR9pqFnz55y4sQJ+eabbyQqKsqt57hy5YpZktZHAAAAwD3M0xB4/DZoGDBggHz11Vfpfty0adOkZs2a5usvvvhCZs+eLZ07d5ZHHnnE7WMZPXq0DB8+3O3HAwAAAIHMb4OG48ePy+7du92avE2dPHlSunXrJoUKFZK33nrLo2N5+eWXpW/fvjdlGnS4EwAAANKPkobA47dBw6xZs8zirtWrV8uff/4pRYoUkebNmzvdrmXLlpIpUybp1KmTWVKi63UBAAAAQpHfBg3eom1WdXHm559/Nrd16tSx8agAAABCGVUNgSZogwbNLiQkJDhdH6Z5MRE5cuSIyUYAAAAACLGgAQAAAP6JmobAE/TzNAAAAADwDJkGAAAA2IqKhsATskGDq3oHAAAAAP8vZIMGAAAA+AY1DYGHmgYAAAAALhE0AAAAAHCJ4UkAAACwGaXQgYZMAwAAAACXyDQAAADAVhRCBx4yDQAAAABcItMAAAAAW1HREHjINAAAAABwiUwDAAAA7EWqIeCQaQAAAADgEpkGAAAA2Crsf/9Z9dzwPjINAAAAAFwi0wAAAAB7hf09V4NVzw3vI9MAAAAAwCUyDQAAALAVzZMCD5kGAAAAAC6RaQAAAIC9wiwsarCsWCK0kWkAAAAA4BKZBgAAANiKmobAQ6YBAAAAgEtkGgAAAGArShoCD5kGAAAAAC6RaQAAAICtqGkIPGQaAAAAALhEpgEAAAD2oqgh4JBpAAAAAOASmQYAAADYipqGwEOmAQAAAIBLZBoAAABgK0oaAg+ZBgAAAAAukWkAAACAzahqCDRkGgAAAACb7du3Txo3bizZs2eXvHnzSvfu3eXixYt++z6QaQAAAICtQr2m4dy5c1KvXj0pVKiQzJs3T06fPi19+/aVP/74Q+bPny/+iKABAAAAsNF7770nsbGxsmnTJrntttvMfVmyZJGnnnpKNm/eLPfee6/fvR8MTwIAAIBPKhqsWvzdkiVLTKbBETCopk2bmqFKX3/9tfgjggYAAACEvN27d8s777wjnTp1kooVK0pERISEhYXJ66+/nqbXRocZ1alTR3LlyiXZsmWTSpUqybhx4+TatWu3bLtjxw654447brpP93f77bfLzp07/fK9YHgSAAAAJNRrGt59912ZOHGiW4/t06ePeaye+GsGQTMGP/zwgwwcOFAWLVokS5cuNcOPHM6cOSM5c+a85Xk04ND6Bn9EpgEAAAAh76677pL+/fvLp59+aq72P/PMM2l6TRYuXGgCBg0U1q9fL999950pZt67d6/JWKxevVqGDBkS8K8vmQYAAABIqM/T0LVr15u+Dw9P27X1UaNGmdtBgwZJlSpVEu/XNqpTp06Vhx56SCZPnmwCh+jo6MSMwtmzZ295Ls1AlC1bVvwRmQYAAADADceOHZONGzear9u1a3fL+po1a0rRokXlypUrpvjZQesZktcuXL9+Xfbs2XNLrYO/IGgAAACAT2oarFrssnXrVnObO3duKVmyZIrbVK1a9aZtlU7qtmLFCtN21UFrHy5cuCCPPfaY+COGJ7khISHB3MbFxXn7/QAAAPAqx/mK4/zFH1h5DuV47uT7yJQpk1m86eDBg+a2WLFiTrfRTEPSbdU//vEP06mpWbNmZtiSDkvSyd30e0eQ4W8IGtxw6tSpmz4EAAAA/u78+fOJY+p9JTIyUgoUKCBlSxS3dD9alJz8PG3o0KEybNgwr7+mSlusujqW5EGMdk7S7kq9evWSFi1aSObMmaVly5Yyfvx48VcEDW7QFJQ6fPiwz3/58Pcvof5hOHLkiERFRfGS+BDvhX/h/fAfvBf+JdTeD80w6MltoUKFfH0o5uRYr7hfvXrV8p9Z51hIyttZBk/pnAzffvutBAqCBjc4quk1YAiFPzaBQt8L3g//wHvhX3g//AfvhX8JpffDny5yauCgSzDIkSOHub148aLTbbROQQX6Z41CaAAAAMANJUqUMLeatXLGsc6xbaAiaAAAAADcULly5cR616SFzklt2rTJ3CadwyEQETS4QcfEaTGNv42NC1W8H/6D98K/8H74D94L/8L7AW8pUqSIVKtWzXw9e/bsW9brbNCaadDPnLZZDWRhCf7UfwsAAADwA506dZKPPvpIRowYIYMHD3a63cKFC+WJJ54wXZJWrVqVmFHQ7EPdunVl+/bt0q9fP7/ujJQWBA0AAAAIeVu2bJHu3bsnvg779++XkydPmmxC4cKFE+9fsGCBFCxY8KbXq3fv3jJp0iTJmDGj1K9f37Rg/f777+Xs2bNSo0YNWbZsmWTJkiWgX2OCBgAAAIS8lStXmsxAag4ePJhiUfPcuXNlypQp8ssvv8i1a9ekdOnS0r59e3nxxRfN/BSBjpqGNPrzzz/l448/lnbt2knZsmVNq7CsWbNK+fLlzcQcMTExTh+rHyztFexsqV69urfez5DhyfuhtD/02LFjpVKlSuZqQK5cuaROnTryn//8x7afIZgsWbLETJjTpEkT0wfc8dk+evSoy8fxu+Ff74fid8M+rv5d0KVNmzY2Hk1omDdvnvlbr3/z9W+//hswbtw4c4IH6GdDR+2ntpRw0gWpVatWZnjSuXPn5NKlS2ZY0sCBA4MiYFBkGtJII8VPP/3UzNFw1113Sbly5UxP3o0bN0psbKz546PpqocffviWx+qH69ChQ/LUU08lzgqYlEaiOoU47Hk/9BdZ71+7dq2ZkbFevXqmh7LOzBgfHx8U4w7tpq+j/pFMTou/NK3rDL8b/vV+8LthL8fEUx07dkxx/f333y/dunWz+aiCV58+fWTixIkSERFh/u7rv8f6d1+Hj9SsWVOWLl0a8MNHAEtpITRS989//jNh+PDhCUePHr3p/vPnzye0adNGi8kTcufOnXD69OlbHlu8eHGz/uDBg7zUfvB+9O7d26yvWLFiQmxsbOL9mzZtSsiePbtZt2jRIt6rdOjcuXPCqFGjEr799tuEP//807yGuhw5csTl4/jd8K/3g98NezneF1hvwYIF5rXWv/GbN29OvF//DdB/C3Rdv379eCsAF/hr5QUXL15MyJEjh/mj88knn9yynhMj/3k/NIiIjIw061avXn3LY0eMGGHWVa9e3cYjDj4EDYH3fvC7YT+CBvtUq1bNvN6vv/76Let++uknsy5TpkwJZ8+etfGogMBCTYMX6Fh6HR6T2oyA8P37oWO9dcx2sWLFTDeD5LRGQv38889y/Phxm44Y8D1+NxCsjh07ZoauJv0bn5QOTSpatKhcuXLF/B4ASFmEk/uRDlpA5Si8Td6CK6kZM2bI6dOnzbh5LU6sXbu21KpVi9faxvdj69at5rZq1aopPrZUqVKSO3du8z5p9wN9n2A9fjd8j98N33nrrbdk3759psZBL2hozVWgzxzrj59t/dtesmTJFLfRfxP0IpNu27ZtW5uPEAgMBA1eMH36dNPHVwuoHn30Uafb/etf/7rlPp1FUGcQLFOmjDcOBam8H44p3vUfZme0UFSDBmfTwcP7+N3wPX43fEebLyQ1aNAgeeSRR2TmzJmSP39+nx1XKH22NdOQdFsAt2J4koe0ndZLL71kvtYOSCn9gX/sscdMYKBXkv766y/zR0nbheofME2ZaosvbSEK69+P8+fPm1vtruSMo8NVXFwcb4nF+N3wH/xu2E+HyuhMspoZ1X8b9uzZI5MnT5Y8efLIt99+azIOly9f9sGRBRc+24B3hESmYcCAAfLVV1+l+3HTpk0zYx2d0Z7n2gdd23U2bdrUXB1KiU70kbzNpC56wnTvvfeafzBGjRolEyZMkFDg6/cD1r8XacXvhn+9H7D3fdK20UnpnDO6NG7cWCpXrmwugvz73/82rUIBwNdCImjQgtbdu3en+3F68unM77//bqYJ1/kXGjVqZGYBdPTcTisdX6n/GOiyaNGikAkafPl+5MiRw9zqnA6p7ScqKkqCnRXvhTfwu2H/+8Hvhv/83ui4+86dO5t/E/TfBoIGz/DZBrwjJIYnzZo1K00z/CVfdExpSnQokU4Mo6nkBg0amPRypkyZ3Dq2O+64w9ymZabWYOHL98Mxi+Phw4edHp/jvXA242Mw8fZ74U38btj7fvC74V+/N6H4+beK47PtqruhY10o/N0H3BUSQYM36WzDeoK6c+dOc2VbU9SZM2d2+/lOnTp105UQWPt+ODqSbNq0KcX1Bw4cMEXQSocHwHf43bAXvxv+hc+/9zj+lutr6qzQ2fFvAl2rAOcIGtJBO/LoCepvv/1mTlA1bezplPNz5swxt/fdd59HzxOK3Hk/dKxwZGSkyTSsWbPmlvVasK6qV69Ou1Uf43fDXvxu+I8bN26YIZaKfxs8px3xtFNh0r/xSa1evdpkGjRDrb8HAJzw9exygeLUqVMJd999t5k1skGDBgmXLl1K0+MWLlyYsGnTplvuj4uLS+jdu3fijKDLli2z4KiDl7vvh3K87vr4kydPJt6/efPmhOzZs5t1ixYtsujIQ0NaZiDmd8O/3g/F74Z9Zs2albBr165b7v/jjz8S2rRpY96vjBkzJuzYscPGowpeCxYsMK+p/o3Xv/UO+m9AxYoVzbp+/fr59BgBfxem/3MWUOD/Pfnkk7JgwQJTXNuyZUunV7SbN29uFgctYJs4caJpr1qxYkXJmTOnKaLTicPOnDkjERERMn78eOnduzcvtw3vh7p06ZKpfVi3bp3kypXLZCu0MPr77783E8P17dtX3nzzTd6PdBgxYoQsXrw48fv169cnDgvQzI4j7T916lR+N/z0/VD8bthH/y59+eWXpltShQoVTBtozYDqvw1aMK0z2+s8Dfr3Dd6h/85OmjRJMmbMaLLT+prr3/2zZ89KjRo1ZNmyZR6PHgCCWUh0T/IGxzh3jbEcaeOUaBFV0pNU/Vr/AdiyZYsZM6nPo/9oaxDRunVr6d69uwkmYM/7ofQf45UrV5pZWLXl4ZIlS8x78sADD0jPnj35R9oN+/fvTzwxTWkmVpW81oTfDf96PxS/G/bp2LGjqWXTIEGHSuqJq56w6kSfekLbo0cPp7MXwz16AU+DA231vHbtWnORqHTp0qY994svvpgYUANIGZkGAAAAAC5RCA0AAADAJYIGAAAAAC4RNAAAAABwiaABAAAAgEsEDQAAAABcImgAAAAA4BJBAwAAAACXCBoAAAAAuETQAAAAAMAlggYAsFGJEiUkLCwscWnQoIEt+50zZ85N+9Vl5cqVtuwbABD4Inx9AAAQip566inJnj273Hnnnbbsr2TJktKxY0fz9bfffit//PGHLfsFAAQHggYA8IHx48ebrINd7r//frOoOnXqEDQAANKF4UkAAAAAXCJoAAAn/vnPf5qx/w899JDEx8ffsv7VV18166tUqSKXL1/2yusYExNjnlOzEDdu3JBJkybJ3XffLVmzZpWCBQvKCy+8IKdPnzbbXrlyRUaMGCHly5eXLFmySKFChaR3795y8eJF3lMAgFcRNACAE2+++aZUrVpVVq9eLYMHD75pndYFjB49WqKiomTu3LmSOXNmr7+O7du3l0GDBknhwoWlUaNGJoh47733TPG0BgZ6q8OcypUrZ76+dOmSCTJatmzJewoA8CpqGgDAicjISBMQaCZh3LhxUrt2bXn00Ufl6NGj8swzz0hCQoJMmzZNypQp4/XX8NChQxIRESE7d+6U4sWLm/tOnTolDzzwgGzdutXcanbhwIEDkidPHrP+4MGDcu+998o333wja9askRo1avDeAgC8gkwDAKTSdWjmzJkmQNBAQU/M27RpIydPnpSePXtaelVfswaOgEFpcNCtWzfz9a+//irTp09PDBgcx6rZCfX999/zvgIAvIagAQBS0axZM+nbt6+50l+5cmVzFV+HLenwJatolqFhw4a33F+2bFlzW6xYMbnrrrucrj9+/LhlxwYACD0EDQCQBmPHjpUKFSrIuXPnJFu2bGbYkg5fsooWPWvgkJzO7eAIGlKSI0cOc+utwmwAABRBAwCkwfr162XPnj3may1C3r59u6WvW3h4uEfrAQDwJv7VAYBUaP2C1jFo29XOnTublqidOnUyxcoAAIQCggYAcMFRAK0dkzp06CAffvih9OvXT86cOSOtW7eWa9eu8foBAIIeQQMAuKBzMeicDFrPMHXq1MT7tOWpDlkaMGAArx8AIOgRNACAEz/++KO89tprZjbmefPmmQJopQXKc+bMkdy5c8uECRPkyy+/5DUEAAQ1ggYASEFsbKy0bdtWrl+/LlOmTDGZhqS0e5HO36D1DVrnEBMTw+sIAAhaYQk6YBcAYIsSJUqYAmqdJE6/9oU6derIqlWrZMWKFeZrAABSc2sTcACA5fr372/mXLjzzjvlpZdesnx/Wn/x7rvvmq937dpl+f4AAMGFoAEAfGD+/Pnmtn79+rYEDZrZ+OijjyzfDwAgODE8CQAAAIBLFEIDAAAAcImgAQAAAIBLBA0AAAAAXCJoAAAAAOASQQMAAAAAlwgaAAAAALhE0AAAAADAJYIGAAAAAC4RNAAAAABwiaABAAAAgLjyf2OWyDS2zvh+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in filename.keys():\n", - " #if k!=\"MiniBooNE\": continue\n", + " if k==\"MINERvA\": continue\n", " data = awk.from_parquet(\"output/\"+filename[k])\n", " plot_kinematics(data,POT[k],Emax[k],axis[k],ylim_E[k],ylim_C[k],savestr=\"figures/%s\"%k)\n", " plot_positions(data,xrange[k],yrange[k],savestr=\"figures/%s\"%k)\n", " if k==\"CCM\":\n", " plot_positions(data,yrange[k],zrange[k],\"y\",\"z\",savestr=\"figures/%s\"%k)\n", + " plot_positions(data,xrange[k],zrange[k],\"x\",\"z\",savestr=\"figures/%s\"%k)\n", " else:\n", " plot_positions(data,zrange[k],yrange[k],\"z\",\"y\",savestr=\"figures/%s\"%k)\n", " " ] }, + { + "cell_type": "code", + "execution_count": 6, + "id": "08fbdf79-1ef7-4e93-9840-29d492b12b95", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.97^{+ 0.04}_{- 0.07} \\times 10^{-3}\n", + "4.72^{+ 5.93}_{- 1.12} \\times 10^{-3}\n", + "3.83^{+ 0.05}_{- 0.07} \\times 10^{-3}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAIiCAYAAADRge6vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsSUlEQVR4nO3dCZyNdf//8Y89e7akrFHKEpJSVNKuhRYtSkna8BdRlrs9N9JGSMsdSmlR0U2iEqlEQnVbEkVZStZsxcT8H+/v777mPjNznZkzc66Zs8zr+Xhczsx1ruuc61xnzHyuz/l8P99CqampqQYAAAAgncLpvwUAAABAoAwAAACEQUYZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAICPon4rkXuHDh2yTZs2WdmyZa1QoUKcSgAAgDij+fZ2795tRx11lBUuHD5vTKD8X3PnzrWzzz470wlq2LChLVu2LOITryC5Ro0auXnPAAAAkI/Wr19v1atXD3s/gXIG//rXv1xw7ClVqlSOTrgyyd6JL1euXM7eLQAAAOS5Xbt2ucSmF7eFQ6CcgYLkli1b5vrEe+UWCpIJlAEAAOJXdmWyDOYDAAAAEi1QXrVqlY0aNcq6dOlijRs3tqJFi7rIf/DgwRHtP3nyZGvTpo1VqFDBSpcubU2aNLHhw4dbSkpK2H3at29vRYoUsapVq9ptt91m27dvD/AVAQAAIFHEdenF2LFjbeTIkbnat3fv3m5fBddt27a1MmXK2CeffGL9+/e3adOm2YcffmglS5ZM2758+fLWt29fF1hr24ULF9rQoUPtyy+/tK+//tpKlCgR4CsDAABAvIvrQLlRo0bWr18/a9asmZ100kk2ZMgQmzhxYrb7TZ061QXJCng//fRTt69s3brVBc2ff/653X///fbEE0+k7aPn0OJRwKz9zj//fHv99dddVhsAAAAFR1yXXnTr1s0ef/xx69Spkx1//PFZ9rkLpYBaBgwYkBYkS+XKle3ZZ591X48ePdr++OOPLB/nvPPOs4oVK9qiRYuieh0AAABIPHEdKOfGxo0b0wJbBdgZtW7d2rUD2b9/v82YMSOix2TiEAAAgIIn6QLlpUuXultlguvUqeO7zcknn5xu23BmzZrlBvOdcsopYbdRwK1efKELAAAAEl9c1yjnxtq1a91tzZo1w27jzZznbSs33HCDC6ybN2/umk9rMN9jjz1mTZs2tWuvvTbsY2nA38MPPxzoawAAAEDsJV1GWfN2i9rBhaNBfhKa/dVEIxoEeOONN9qFF15oL774ot1yyy1uauvixYuHfayBAwe6Wmdv0Yx8AAAASHxJl1HOLQW8WnJKbeNoHQcAAJB8ki6j7M3ZvXfv3rDb7Nmzx90yxTQAAAAKTKBcu3Ztd5tVCYR3n7dtEMaMGWMNGjSwFi1aBPaYAAAAiJ2kC5S9SUO2bduWbrBeKM20J6E9lqPVo0cPW7FiBT2XAQAAkkTSBcrVq1dPy+pOmjQp0/2alU8ZZdUVt2vXLgZHCAAAgESQdIGyDBo0yN0OGzbMlixZkrZeWebu3bu7r3v27Gnly5eP2TECABCNCRMmuAmxdBuNLl26uMdZt24dbwiQSIGygtyWLVumLe+//75b//zzz6db/+uvv6bbr0OHDtarVy83aE/3X3TRRXbVVVdZvXr17D//+Y+1atXKHn300Ri9KgAAzAWmClC1HHnkkfb333/7npaVK1embRfk2JpIjy10UevVE0880c0f4A2Mz09t2rRxx3HYYYfZzz//7LvN8ccfn2lGXbV69Xs9oYseG0io9nDqc6yJPzLasGGDW0Jnx8to5MiRLiDWILv58+dbSkqK1a1b1wYMGGB9+vTJsjdybuh5tBw8eDDQxwUAJLeiRYva5s2bbcaMGXbZZZdluv+ll16ywoUz57Uuv/xylwyqVq1aVM+vibP0t/Hoo4/OdJ/+bmpCLklNTbUtW7bYBx98YA899JDNnDnTlTMWKVLE8pv+7t933302ceLEHO2nScUuueQS3/vy6yIEiaVQqn7yEWhwr5IOTT5C+zkAQFZZW80Ie+aZZ9q3337rMpqa+CqUsswae9OkSRP79NNPXeY5P0okvGO74IILXECcMUg97bTTbOnSpTZ79mxr27at5RedI50HBfAasK9jUIY7Y0Z51apVLrAPzSifffbZdvvtt9tzzz2Xb8eLxI/X4rr0AkhG274b4bsAKJhKlixp1157rSsv/P3339PdN336dJdt7tq1a8Q1yl4Zgfa76aabrHLlyu45lH1WwBhtjbIGwyvolK1bt2a6f9myZXb11VfbEUcc4bZVwN27d283TshPTreXwYMH26FDh6x///4RHTOQWwTKAADEmAJhZY8zlhKMGzfOKlas6Mbe5MTOnTutdevWtnz5cuvcubNdccUVrjWqMsQKTKNx4MCBtJrfpk2bprtPpRinnnqqTZkyxc455xy7++67rVatWq4cUuszBtY53d6jCwGNP1K2e86cOVG9HiBha5QBACgITjnlFGvUqJGNHz/e+vbt69b99ttvrh74zjvvdJnWnFAph7o8jRo1Kq2+WSUS3bp1s9GjR0dcfrBmzRpXjywqZVDgOmvWLNu4caMNHz7cjjvuuLRtleFVdnrfvn0ugFVQ7rn33nvt8ccfdxlg1VznZvuM1NlKx6JtNJ4p4wA+P7pY8F5PRhdeeKHLugOhCJQDwmA+AEC0WWVlVBX0KZv68ssvuyyzX9lFdtSd4rHHHks3CFBlGHfccUeOJsb68ccfXYeLjDQg7txzz0237osvvnDbK9MbGvTKAw884AJezW8wduxYN6A+p9tnpNpkDTR85ZVXbPLkya58IzuLFy92i5/DDz+cQBmZUHoREGbmAwBEQ0FfsWLFXLmFKLus2WYzljdEQpneMmXKZOquUbVqVVeWESkFsMoke4syyu+9954r31BnqdDOVBpYJ35t1nQsJ598sv31119uoF1utvejVq/KtqsDRrj2eqE0mC/09YQuqosGMiJQBgAgDlSpUsUuvfRSe+ONN+zjjz92AWJusskSbhS/guVo2phWqlTJtbB78cUXXcmEAtTQLgKiYNyP18bO2y6n2/upWbOmS1StXr3aXnjhhVy/LiAcSi+AAmr98Hm+62vce2a+HwuA/3PLLbfYu+++62p3NanG9ddfH5enRqUhElrG4QXn6rbhRzXXodvldPtw/vGPf7gs/COPPGI33nhjLl4NEB4ZZQAA4oRKHTTxhwbLqdNFhQoVLB7t2LEjbUCeR2Ui4teCbu/evW4gndrU1a9fP1fbh6OuIBrQp4D7ySefjPKVAekRKAc4mK9BgwbWokWLoB4SAFDAaJY7TTqidmmaMS9ePfXUU+5Wk6V4VLOsiUDUqUOlIxn7Hqsv8nXXXZc2MC+n22flrrvuchcYCpRzUoMNZIfSi4CoRkqLN9MLAAC5oUFsWuJBaHs42b59u+tWsWTJEpftVmcNjzpsaPITZcXbtWtnHTt2dD2Rv/zyS5c1VlCslm653T4ryjzrOG+99VbbvXt3rtrDqdRFU3kDoQiUAQBARO3h1GFCU2qrt7OCSg2mC6VJThYsWODqhT/88EM3PfBRRx3lMr4a+KdZAqPZPis333yzy3SvXLkyV+3hlOQiUEZGhVJDJ0NHvs0djoIr3HTVlU7M39ZEDOYDABRUuyKM16hRBgAAAHwQKAMAAAA+CJQBAAAAHwzmC7A9nJZoZjwCAGRfzx8P8ntMAYDYIKMcELWGW7FiRbpZigAAAJC4CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAkvZEjR1qtWrXssMMOc1Nnf/vtt4Huo2m9CxUqZKNHj7aC7umnn7aGDRtamTJl7PDDD7e2bdvawoULLRERKAMAgITXpk0bmzBhgu99kyZNsv79+9ujjz5qixcvtnr16tkFF1zgpjEOJyf7TJ8+3b788ks76qijAn1NiapWrVr21FNPuQuL+fPnp527bdu2WaIhUA6Ieig3aNDAWrRoEdRDAgCAgDKcd9xxh914440u0/mvf/3L/v77bxcMR7vP5s2bXTZ54sSJVqxYMd4vM7viiitcYFy3bl0XGz3xxBP2xx9/2LJlyxLu/BAoB4Q+ygCARLZx40YbMWKEnX/++VazZk0rXry4HXnkkXbllVfm6mPzQ4cOuTKEk046yUqVKmXlypWzM8880/79739n2laZYJUtZLWcc845uXpdBw4csKVLl9q5556btq5o0aIuA60scLT73HzzzdarVy9r3Lixxcqrr75qt99+u5188slWokQJd77CZddDae6Hdu3aufKI0qVLW8uWLe2tt94K9NgOHDhgL7zwglWoUCGm5yi3mJkPAADYqFGj7LHHHnNZQAXLVapUsdWrV9vUqVPdokzqNddcE9GZSk1Ntauvvtreeecd93i33HKL7d+/39577z1r3769e66ePXumbd+0aVN78MEHfR/r7bfftuXLl7sMZW5s3brVzZpbtWrVdOuPOOII+/HHH6PaRxcCe/futb59+1os3Xffffbzzz9b5cqVrVq1au7r7MyZM8edU9VfX3vttVa2bFn3fuk9Xr9+fdSv6bPPPrOLLrrI/vzzT3fB9dFHH1nFihUt0RAoAwAAO+WUU2zu3Ll21llnZQp4lM1VeUGHDh1cxjI7Cri0tGrVygVIJUuWdOuHDBnisp79+vWzSy65xGrXrp0WKGvxy0YqGFU296abbkp3nx5Li0cB2YIFC9IF4Hv27Mmzd/b777939cvKthcunPMP6FWqoQy76nn9KFDXYEK9HmX3s6KykGOPPdY91rBhw2zgwIFZbq8SkltvvdUd97x589LO/QMPPOB+DgYNGmRXXXVV2rENGDDAXURld3EUSu/zN9984+qSX3zxRXfhpHOlYD6RUHoBAECMrF27NtuSAy36eDw/6kozBslyxhln2Nlnn207duyw//znPxE9ljLHooDLC5JFQVKfPn1cdnn8+PHZPo4y2Qq0FFRnzO6qfliBmLcoMHvkkUfSrfOes0iRIq6WONTvv//uMp1+ItlHQfmWLVvcQDUF8lqUyb3rrrt8g/5QGzZscIGqSjn8sr8qW9GFgbK6KlvIjkpEwgXcfj755BOXGe/UqVO6Yy1fvrx7z3SB8vLLL6et13GsXLkyyyUjve86N6eeeqoL5BWUR/Keiy6y9LOoDL4y3hokqdeo9fmNjDIAADGSkpKSruRgyZIlNm3aNLv44otd4OdRZjaWvEFqCgYj8dtvv7nbOnXqZLrPW6dg7eGHH87ycRRgSbdu3TLdp4/xQz/KV2CmwErBWShlY5s1a2azZ892AbeXUVX2fPDgwb7PG8k+yq6HvkeiUoYuXbq4uuWsVK9e3V5//XWXZdVFiB5XdeGhQfJrr73mBhJ2797dgqbnE5XYZOSVuHz66adp61SGoyUayjjrAik7Y8eOda9ZJSSXX365VapUyf08ffXVVzZlyhRXM5+fCJQBAHGp0om9Ldkdd9xx9tBDD6V9r4/MFSj37t073UCycDT4bufOnRE/n4K77LKdGf3yyy/28ccfu8Al0sFY3sfrypifcMIJ6e7TOvnhhx+yfAxlWhWoKqi88MILLRrKYqtOunnz5m5wobowKOhXRtWjEg8FYnrOSPbRADgtGS8odJ4yBut+FAQqWL7uuutcZlnBq16rAm0Nzrv++utdBjY3ZR3ZUe25qFwjI2XM1f/Y2yY31Fbvsssuc69n+/bt9uyzz7oseiRBri6OdKGiTwR04RMqFu3lCJQBAIgT3oQWJ554YkTbK1COZOCWRzXBOQmUlfHu3LmzywSqRlXlCJHQIK433njD1ctqsgl9fO4FOjpmyS7AV5Co7KoCx0ifNxwFtyqTUFmByimUCZ41a5brxBE6gC90oF4k+0RLdcCqRVZQrMyynkNdJzS4TqUPeREki1q1eaUWfvQavW1yY9OmTe41qFRFWX+1zlWte8aLpnB0weHXak/Z5fxWKDVj9TWiokbk+sHTD1iQ/5mQPLZ9939/JGKdPVs/fJ7v+hr3npmvxwHgf44++mgXHP76668xPy06DgXJ6nahetpIamU9KlPQx/rqrKDsqjLCCrpVc6xa4++++84FzxqAF+65VaKh7gsKXv1KOJKJyixuuOGGtKy/On3k9uLAG8ynCw1dZPjRe6NBlsoa+2W/9XOogZB/RBEs59bjjz9u9957r6tL1sWKLiA0K2LQMVWk8RqD+QAAiAPKaCoT16RJk1gfigtUu3bt6oJkBXDPPfdcjvZXicIHH3zgykqUFVWQ/e6777rWcAoCJePH6qFU6qGSD2Wjkz1IVr5S9doetcLLOIgwaF4mOVwg7AWRsaCOKC+99JILlJ988klXr69Msi4gvLKd/ETpBQAAcUBZVslJoJwXNcoKkjUY7ZVXXnH1s5q4IjclAGojp4GKGfsjewPJMg6Ei3QQX7IFybfddpuNGzfO9S++9NJL3UA+ZVGVjc+rKbG92mRllFWDHUoD55RNVpu4WFCXF12kaVGpjko2VMutkhQdr/6fRFuKkxMEygFOYa1FtUYAAOTUqlWr3K2m/I1U0DXKoUGyAjf1+g06KFGZgaiG1Y+CI7WXU22rBrwFRT2Jn3rqqbR6Y/3Nzu6iJLt9dD79zv/w4cPtnnvuyTZI1mx6uihQ9wudF51rXZSo5MXrhqHBgUFT67WhQ4fahx9+mOl9UB22t02seZlkLfrERZn3NWvWWP369fPtGCi9CAhTWAMAoqGPu0UzpEVq3bp1LuCKdAlXsxpabqEguWPHjq7zQiRBsmqINfmGapD9Xk8olV0oe6rBXerb7EfBufr4quQjkslNIqESEnVi0AQhixcvdnW5aoPmd4w52UdTQKue3Fu0j4R7bR69F5rAxZuIwwuSRVl8nQOdVwXLXqu9IGkCmWOOOcYdr9dv2ivF0CQu6jqh1nSxoIuDjMPn9LOl7hniDQzNLwzmCxiD+ZAdBvMB8KPWZAqwFJCpjZYmGdHMbflF9cTqa6zWYJo0w69nsl/phpdVVf2oN9OeqMNBjRo13K2CG/XBVRCkAE2ZwXATZKgF3bJly9xH7JG2o8uOAnP1ovY6bmiwodqgqSeyJi4Jah91r1AbtNAexH42btzoWs4pa6tg1e9ca72CVZW+eAP9wlFW+vPPP3dfa1IY9ePWsXsD9TQYLmMZS7gprPVeqhVerKblPvzww93gupYtW7qfEQXJGni4YsUK1yVk8uTJ+RqvUXoBFADhOlwAiB/qO6tPJxUgqRVbTvsdR0vZaVF96j//+c+o28updEMD+DSDnYIdDcq77777XElCuMBEwbSCZNXHBhUkKzu9dOnSdLXSCkzVu/jLL7/0DXpzs48CLl3sqGdwdtRVQo+jSUbCTeKijg8q91Cv7ewoSA6dSU+++OILt3gyBsrKVms/vcY333zTvUc65/rZ03sXK0OHDrWZM2e6nwX1FC9durTVrVvXTUSivtb5jYxywMgoIx4zyjkJlGkPByCZqJOIAlMFXsoSezT7m8obvJrcaPdRZxBdBKhUQsEd4hvt4QAAQNIaMGCA65CQ1ZKfVHutemOC5ORC6QUAAEg4qqHNanBi6HTaGiiXsTexZo1TzXEQ+6j3sQb2qUMGkguBMgAASDhVqlRxS3bUwaFZs2Y2e/Zsu+SSS9IG5mlgoQbmBbGPssnqTaxBc0gutIcDAABJrU+fPq6GWC3v1D1Bk3xoEJ0GzHlGjx7t2qblZB8vgNY26j+N5ENGGQAAJDUFt1u2bLFBgwalTR6iAXmh3Tc0oYUG6uVkH3n//ffdvrHqO4y8RdeLgNH1Atmh6wUAALFF1wsAAAAgCtQoAwAAAD4IlAEAAAAfBMoAAACADwLlgIwZM8YaNGiQbqpLAAAAJC7awwWkR48ebvFGUQLhulsAAIDEQEYZAAAA8EGgDAAAAPggUAYAAAB8UKMMFAALt23JtO7USlViciwAACQKMsoAAACADwJlAAAAwAeBMgAAAOCDQBkAgBhYt26dFSpUyC1HHnmk/f33377brVy5Mm272rVrp62fMGGCWzds2LB027dp08atP+yww+znn3/2fczjjz/ebRNq7ty5ac8TbtFjh8p4f9GiRa1q1ap2ySWX2Mcff2xBe+SRR9zzFCtWzH777bfAHx/IiMF8AADEkILLzZs324wZM+yyyy7LdP9LL71khQvnPK+1f/9+u++++2zixIk52q958+Yu0PUTGqh7KlWqZD179nRf//XXX7Z8+XJ7//333TJp0iS77rrrLAipqak2fvx4FyjrouLll1+2/v37B/LYQDgEygAAxNDpp59u3377rY0bNy5ToKyA8NVXX7Vzzz3XPv300xw9bt26dV2ges8999iJJ54Y8X4nn3yyPfTQQxFvX7ly5Uzbv/HGGy5AHjhwYGCB8uzZs10W/rbbbnOPr/NFoIy8RukFkERGrFruuwCIXyVLlrRrr73WZWB///33dPdNnz7dZZu7du2a48cdPHiwHTp0KCbB5DXXXGOlS5d2pR9bt25NW3/LLbe4jPC8efN893vqqafc/S+++KJvZl0UKHfs2NF++OEH++yzz/LwVQAEygAAxJwCYWWPM5ZJKGtasWJF69ChQ44fU/XEF110kc2cOdPmzJljsSwt8XTu3NndKkvuR6+/RIkSLhAOtX37dpsyZYo1aNDAlYbceOON6YJnIK9QegEAQIydcsop1qhRI1eD27dvX7dOg9U++OADu/POO13wmBsa6Ddr1iyXVV64cGGmAXx+vv7667ClFxdeeKG1bNky28dQacTevXutYcOGdvjhh6etP+uss6xmzZr29ttv26hRo9K9rmXLltk333xjV111Vbp95LXXXnM1116gfcYZZ7h66cmTJ9szzzxj5cqVy/aYgNwgUAYAIE6yynfffbcLaE899VQ3WE1Z5tyUXXhUm3zDDTfYK6+84oLKq6++Ott9Fi9e7BY/CmAzBsoqrfAC69DBfGXKlLGxY8em21aB+vXXX29Dhw5121xxxRVp93nZdB1vuAGN3n16HH2t8hIF5SrHAPICNco+9ItJv1z0H1H/AQEAyGsK/NT2TOUWouxys2bNrGnTplE97qOPPuoyt+qAEa4FXajbb7/ddZjwW3r37p1p+23bttnDDz/slscee8zVVas++aOPPnKZ34y8rHBomYlqqTXwUB002rVrlynDrcGOZ599tlWvXj1tPeUXyA8Eyj5GjhxpW7ZsyZc3AAAAqVKlil166aUuQaMexKtWrYoqm+xRqUOPHj1s9erV9sILLwR+suvXr58WSO/YscMF+ArIL7/8ctu4cWOm7U844QRXZ6x2eNre6+G8YcMGNwhQFwuhvDpkLzD2HHvssS67/dVXX7ksNpAXCJQz0H9U76oYAID8pK4Qu3btsi5durgJQ1SmEIR//OMfrmxCE3bs2bPH8oqeQ8c+evRoV2OtAN2PssoHDhywt956K1122cs2e/788097/fXX3dc33XRTpglOFixY4O5jUB/yCoFyBvpYSX0szzzzzDw76QAA+Lngggvs6KOPdplYdbqoUKFCICdKnTM0oE+t5p588sk8P/nKhJ900kn23nvv2fz58zPdr97K6oah7hcKht99912rV69epvpnDfr7448/XPmJLiL8Fl1QKNBW4A0UqMF8+tjpww8/TBtYoGk8Dx486OqtVGuVHQ1cGDNmjKtt0n8g/SfU1XmfPn0yfbQjaqGj59PzanQtAAD5qUiRIjZ16lT36Wa0tckZ3XXXXS7Tq0C5VKlSlpeU7X3wwQetffv2dv/997vJQkIdccQRdv7557uuHiNGjHBZdA1kzMjLFKu/smqU/ezbt89lnf/973+7jhlAgQmUNVpW9cK5zQxrX12xtm3b1o2+/eSTT9wV9bRp01xArCbvHo3U1RSc+o9drVo1N/sPAAD5TTPjaQma/uapO8Wtt95qu3fvzlV7OGVvBwwYENHz6dNZ1SLrb69mFVRruFAqs1Cdsv7u+nW7WLNmjZuYRG3g1BM6nJtvvtkFygqqCZRRoAJl9ZTs16+fG/Wrj3CGDBkS0Zz1uhpXkKzgWP85ta/XwkZB8+eff+6ucJ944om0ffTYxYsXt169euXpawIAIFYUVCo7q09oc9Mernz58hEHyqKAWwMU9Tc342x8yjar/7GyyaeddpqbcjuUun9ogKBXmxzOOeecYzVq1HAJsPXr17uvgaAUStVPYYLQAAH1lcyu9EKN2xctWuT6K2oAQygFyWpXo1Y5qtXSf3pNsalRu2porv9w8ssvv1iTJk3cFeqVV17ptouE/sNrW9VU0QC9YNv23YgcbV/pxMxtl3Iq3HTV1cd9n2ndqZWq+G5b417q8wEAyS3SeC3pBvNpAISCZOnUqVOm+1u3bu2uNlWDrI98ZO3ate57fWSjgRNaFCSLBgpoYAUAAAAKlrguvciNpUuXpo3wrVOnju82qv3SxzPaViNvNWBizpw56bZRWxvdp4+LzjvvvLDPpwA7dOCfrlAAAACQ+JIuUFZ22GuwHo5Xv+Rtq76PGQcKeIP5GjRo4DuzkEfTcKrvMgAgWOFKieJB7/oNY30IAPJB0pVeeCN5NX1mOBrkF1T2d+DAga6+xVuUqQYAAEDiS7qMclDUjiaScY4aFKgFAAAAySXpMsply5Z1t3v37g27jTd9J10pAAAAUGACZWWCJasSCO8+b9sgaAZA1TO3aNEisMcEAABA7CRdoKzJSWTbtm1pg/X8Zh0SbyKSIPTo0cNWrFiR1poOAAAAiS3pAuXq1aunZXUnTZqU6X5NOKKMsuqK27VrF4MjBAAA+UWzA2pmv9AluynCNdi/Z8+erktWqVKl3GRk33//v4mbnn76aWvYsKFrDqDOWZr1d+HChVbQPZ2E5yXpAmUZNGiQux02bJgtWbIkbb2yzN27d3df6z9ApLPtAQCA+KT2rhMmTMhyG00i9uuvv6Yts2bNynL7bt26ucTam2++ad98840df/zxbk4Fb4xTrVq13FTg3377rc2fP9/q1atnF1xwgYszCrJaSXhe4rrrhYJcL7CVH3/80d0+//zzNn369LT1U6ZMsWrVqqV936FDB+vVq5c988wz1rJlS3clqHZxs2fPtp07d1qrVq3cNNgAACD5FS1a1I488siItv3zzz/t3Xfftffff99OP/10t27UqFH29ttv2+uvv2633nqrXXHFFen2eeKJJ+zFF1+0ZcuW2VlnnWUF1RVJeF7iOqOsjz6UsveWrVu3uvUbNmxItz50ZjzPyJEj3ZXgaaed5q5qNF21yjKUZf7kk0+sZMmSgR4rg/kAAMnmscceSytXWLBgQbbbK7Obscwh46LkVaiNGzfaiBEj7Pzzz3eThRUvXtwFtVdeeWVgH9uvXLnSJdSU4bz55pvd7Lvh/P3333bw4MF0cULhwoXdcX3xxReZtj9w4IC98MILVqFCBWvcuLHlt1dffdVuv/12V06islKd4+wy7BpPpfJTlUcokaik4ltvvRXocR2I8XkpEBllfZwSSS/jcK6++mq35AcN5tOi4J6SDgBAolMW8MEHH3SBVFYtV0M1bdrU7eNHGdnly5e7j+JDKVurgLxu3bouWK5SpYqtXr3apk6d6haNN7rmmmty/TpOPfVUFziqfEJB+QMPPOBqZ5cuXeo7D4LazGqfRx55xD23Aj0l35SkU9mG57PPPrOLLrrIZaAV2H/00UdWsWJFy2/33Xef/fzzz1a5cmV3MaCvszJnzhz3Hhx22GF27bXXutf7zjvvuHOsMVx9+/aN6ng+i5PzEpRCqdFEosjEC5Q1Sx99mgu2bd+NyNH2lU7snWdT/lYf979BKJ5TK1Xx3bbGvWdGfRxAEJjCOnZSUlJclrFYsWJ27LHHuqzll19+6dblNrt41FFHub+NCjirVq2adp/KHCpVqpTpo3kFXMo+a2CYAlQvqB0yZIhbPArIdJwqr/B4tcR+tmzZ4jLXek3KWvtZs2aN3XTTTe4T6SJFirjEnZ5DPvjgg7TnVeCt+luVFygAVQZcAWtWJk6caGeeeaar5/WjbLYCc42lUhY7Ox9//LF7j/R4+tRcMwaPHz/eunTp4pst1wWD3gN9QqALG9H7csopp9i6devshx9+SHdsAwYMcBcyWQkNJXN7XuI1Xovr0gsAAJKZ2phmV6qgJb+7NP3zn/902d9x48a5QDFaygwrcLrkkkvSBcleXatf/eoZZ5xhZ599tu3YscP+85//pK2/44473AA7b1HJgbK/oeuyooy15lEI10JWVKKhMgsFU5s2bXLBqI6jTp06aduoNEPbKfv8r3/9y5VnKEDNigJU1Tgr8PbL/B46dMgF6MrqqmwhEueee27YoDsjlZ5qvFenTp3SgmRRwKhGCLqgefnll9Pt07dvX1e6ktUSKjfnxaPMtn4WjjjiCJfx1sWVXp/Wx0pcl14AAJDsmdvQUgUNYp82bZpdfPHF6VqYaRB6ftExKFBW8KmJtIKggMnrJpETXhY3NFusj/FDP8pXYKbASsFZJBTwKkiNZNIxlSVo+emnn9wcDGo1l1VW1W/MVCiNldKAQJWF6iJg7ty5LrsdGiS/9tprduONN6ZrZhAUPZ+oxCUjryTm008/zXRhUaWK/yeQkYjkvMjYsWPda1b5yOWXX+4+ZVAt+VdffeWaNoTL/uc1AuUAB/Np0UcmAIDo9a7fMOlP43HHHZcu+NLH5gqUe/fu7TJp2dEgOHVzipS6QoVmEjNSQKMgTdvce++9FgQFpeo6pSDxwgsvjHi/X375xWVyFThFMxjsnnvusUsvvdQFpMroKnN69NFHp2XpR48e7QIxHaNn5syZLhOq4FuTid11113u4sU7/v79+9tll13mXtP27dvt2WefdY8dSTCnIFDB8nXXXecyywpe9TgqlVA5yPXXX+8ysHr+oKn2W1SqkZHqiVXm4m2TG/2jOC+6mFKpiT4R0IVPqFi2lyNQDgiD+QAA0VL/WTnxxBMj2l6BcnaDt0Ipi5pVoKyBbgqUFi9eHEjJhSjoU7ZUgWCkj6lMe+fOnV3grvrYaI5FA9Q0aE2ds1T2oY/2VSesiURE6732s6FZZwXUqrVV0HbDDTeku6BROYYe8/fff3fZbU10pprqE044IaJjuuqqq1xiTUGxMsv69EBdJ/SYKn3IiyBZVI8r4ZoOqFbX2yY3NkV5XvQJgvcpQihll2OFQBkAgDgKlJXZy5hRC0eDr4KiwXrqe6uAsFGjRoE8pgJkBcqqs+7atWvE+yionjdvnqvnVcAcSTlBOG+88UaW9+v1ZiypULZXSzgKtKOlLhMaXKcgXKUdyvYroxzUBUosTIzivCjA1qcY+tlTDbUuIFq3bh3zxggEygDSWT98nu8ZoRsGkLeU2VRGLmP7tPyggE31scpkq8tBUFQ6oRIKda8IHQiXVZCsgFpt2RRAPvfcc5asVLurwXUeDZ7cvHmzG8CWV7xMcrissQYvqh1eLPTr189ljlWr/OSTT7qLNtWmq+RFU2NH8vOTFwiUAQCIA999913adMuRCqpGWe3UvNrUcC3JNIGXqJ5XjxP0ID4FyZoM5JVXXnHZXPU+zqsShHgIkm+77TbXVUSZZdVQ60JFWVS1U8urYNmrTdZ73bx583T3aeCcfg7UJi4WCv33UwctqklWyYZquVWSouPV/49YZNsJlAPCYD4AQDRWrVrlbnPSaSKoGmX1KL7lllt891EJhAIVDdLyWqtFQsHOe++952pVNYAt0iBZgaM+wg8qKFKfZmUpVXet2mO1hcvuNWS3z9ChQ13LMr1nqnVW3fPw4cMjOjcKkjWTni4i1P1CXS70WnVRoDITrxuGBjEGTcepY//www9dqUOoWbNmpW0Ta5UqVXIXY1r0SYsy7+ptXb9+/Xw/FgLlgDCYDwAQDX3sLWpHFqmgapTVYs3L/makemEFyurI4TfhiAbCafCdZtYLHYilYFd9eVVC4TcDXsZyCwXJHTt2DLxOV7MKaoKP9u3b2//7f/8vkH3UQk3rNVhNAw7VWUOz0anfc2grO78g+c4773QTcYQGyeLVRIcGy6pXD5JKYI455hhX2tKrV690E45oEhd9mqCuJ7Ewd+5cF6Qrs+zRz5W6Z4j6KscCgTIAAHHSKs5rsaXesWpfpmAt3in4UlY7Y9b1pZdeiqjsQv2a1elBrcl0DgYPHpzjtnZZ8QYDakruoPZR+7hQCnwVgKqVXFYdS1SDrtIVXRAoSM4YVCtYVjCtYFX13brIyI4ucD7//HP3tTcxi9Z5gxw1IM57D/R8uk918PrZCp3CWu+h6oIj/cQgaHqPNXBPF2OaQEVBsqa/1jlVl5BIJ1UJGoEykIDieWpfALmj0gZ9Oqlsn1qi5TYwjAcK9BVkqt41ux7IXlZc9bGa6CQ3be1izRscFzoRih/1b1Z3EfV0Dpd5VscHtYvzLpyyoyA542x6mlVQiyf0YkXZau2jiW7efPNNF5DqPdLPnMpeYmXo0KHuAkQ/O+olXrp0afcphUpgwpUF5YdCqaETdCPf5g5H8tv23YgcbV/pxN55FihXH/d9pnWnVsrZTEt0vQCQyBS4KyCMpEY5J/uoH7IytCovef/99wM+asQ6XkvO4aQAACApqX2d6lizWvKLco133HGHa4GnLh1IPpReAACAhNG3b183wDDWFCR3797d1RKrM4g6giD5ECgHhPZwAADkPQWksQ5KFSSrnlylFuqAUaNGjZgeD/IOpRcB0X8YjcxctGhRUA8JAACipPZi33zzTVqfav2t1vde27HRo0e7zh052Ud/8zUZhgZeqrWeJuvQonZ4SC5klAEELtxgw971G3K2AeSrf//7324yE4+mRJbx48e7Eg5NaKFe0DnZR50Y5Iwzzki3n2bVa9OmTZ6+HuQvul4EjK4X8BTkrhcEygCAeEbXCwAAACAK1CgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4FygBOONGjQwFq0aBHUQwIAACCGCJQDwoQjAAAAyYUJR4ACauG2Lb7rc9pfGQCAZEVGGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAMTY4sWL7ZZbbrFjjz3WSpcubSVLlrS6deta586d7aOPPsq0/d9//23jx4+3du3a2ZFHHmnFixe38uXLu17+9913n/3888/ptq9du7YVKlTILcuWLfM9hoMHD9rRRx+dtt26devy7PUCiYL2cABybcSq5Zw9IAqHDh2yfv362dNPP21Fixa1tm3b2mWXXWbFihWzn376yd5//3179dVX7ZFHHrH777/f7aMguH379vbtt99a1apV7bzzzrMaNWrY3r17bcmSJTZs2DB74oknXEBcr169tOcqXPj/cmPjxo2zp556KtOxfPDBB7Zp0yZ3HArEARAoBzoznxZdkQMAEAllfxUkN23a1N5++22XRQ71559/2ujRo23btm3u+927d9sFF1xgq1atsnvuucceffRRK1GiRLp91qxZY3fffbft2bMn3XoF32eeeaYLvB977DH3fSgF0MpKN2nSxObNm8cbCFB6ERxm5gMA5IQC2uHDh1ulSpVs5syZmYJkUQmGAuKHH37Yfa9MsYLkG264we2bMUgWZZH//e9/W4MGDTLd17VrV9uyZYtNmzYt3Xqtmz59ul133XXuOQH8H2qUAQCIgQkTJrhPIW+//XZXQpEVLyBW1lceeOCBbB9fdcsZXX755VahQgVX3xxq4sSJlpKS4gJpAP9DoAwAQAx88cUX7lZ1yZFQbfKGDRusevXqbtBfbijgvv76610G+7fffktbrwC8cePGbjAggP8hUAYAIAa8QFWBb15sH46yxhqs9/LLL7vvFy5caMuXLyebDPig6wUAFKCOJL3rN8z3Y0F8adasmRs8qPKL/v37u2yyyjRU9wwgPQJlAChActLSj6A6b6n/8ffff28bN260+vXrR7S9aPtoKavcq1cv+/jjj+2NN96wSy+91CpXrhz14wLJhkAZQEIpqJnSgvq6k1mrVq1s7ty5Nnv27IjqlGvVquUmBFm/fr2tXr0613XKojplddPo0qWL7dq1y012AiAzapQBAGGDc78FwVCQWqRIEXvhhRdce7as7N+/3916Ae3gwYOzffwDBw6Eva9ixYrWoUMHl51W8K3ezAAyI1AGACAG1O/43nvvta1bt9pFF11ka9euzbTNX3/95WbRe+ihh9z3msVPZRqvvPKKDRo0KC2ADqXHURC8YsWKLJ9fM/hNmTLFpk6dmjZrH4D0KL0AgBhJ1HIKv+OO92OOV8oMKxjW7HwKgFWC0ahRIzdrngJe1RBrVj4vg1y2bFmbNWuWm8J66NChbkDe+eef7zph7Nu3z5YuXerazmkaak1OkpXatWu7BUB4BMoAkMAohUhsyuQqY9ypUycbO3asmzpay6FDh6xatWquJOLmm2+2c889N12t8qJFi9xU1G+99ZYLnLdv326HHXaYq1tWlvqOO+6wGjVqxPS1AcmAQBlIItXHfR/rQwCQCyeffLK99NJLEW+vjLMCaC2RWLduXcSPrclIAPwfipIAAAAAH2SUASDOJGI5RaLWWwNAVgiUAzJmzBi3HDx4MKiHBIACbf3weRavatx7ZqwPAUA+IFAOSI8ePdyixu3ly5cP6mEB5CO6OQAAQhEoA0AelxokYikFAIBAGQACRVAMAMmDjDKAAodgFgAQCdrDAQAAAATKQPza9t2ITAuQDNl7vwXIbyNHjnSzGmoGw9atW9u3334b1T4PPfSQFSpUKN2iiWMKuqefftoaNmxoZcqUscMPP9xNy75w4UJLVGSUAeQbAiYAeaFNmzY2YcKEsPdPmjTJ+vfvb48++qgtXrzY6tWr56YHV6eqaPZp0qSJ/frrr2mLphMv6GrVquWmZddFxfz589PO27Zt2ywRESgDAICkz3LecccdduONN7ps57/+9S/7+++/XTAczT5Fixa1I488Mm2pVKmSFXRXXHGFC4zr1q1rDRo0sCeeeML++OMPW7ZsmSUiAmUAAGB//fWX3X333XbmmWfaUUcd5coNFPy1atXKxo8fbykpKRGfpdTUVHv33Xft7LPPtmrVqlmpUqWsfv36dvvtt9tPP/2Up8+d0YEDB2zp0qV27rnnpgtwlYX+8ssvo9pn5cqV7vUpa3rzzTfbb7/9ZrHw6quvunOr0o8SJUq4MpCsMuyyaNEia9eunSuPKF26tLVs2dLeeuutQI/rwIED9sILL1iFChWscePGlojoegEAyHdM7hJ/9uzZY2PHjrVTTjnFLr74YqtSpYrt2LHDPvjgA+vatau98cYb7uvChbPPsfXr1899/K4gskOHDlauXDn3UfyLL75or7/+uvtIvlGjRnny3Blt3brVzZpbtWrVdOuPOOII+/HHH3O9z6mnnuqC0eOPP942btxoDzzwgKvHVYCtYDU/3Xffffbzzz9b5cqV3TnX11mZM2eOy/rqguTaa6+1smXL2jvvvGPXXHONrV+/3vr27RvV8Xz22Wd20UUX2Z9//ukueD766COrWLGiJSICZQAA4AIZfURevHjxdGdD5QbnnXeeffjhhy5YVSCbFWVVR4wY4WpVFRyHzlarcgZljhVEjxs3LtfPPWTIELd4FJAtWLDAevbsmS74zksKBD3KljZv3txq1qxp06dPtyuvvDLLfSdOnOiy5zpHfhSkayChXk/Gc+JHZSHHHnuse7xhw4bZwIEDw26rc3rrrbe6i4558+ZZ06ZN3XoF+rpQGTRokF111VXpjm3AgAH22GOPZfspgkeZ7W+++cbVJevi6Oqrr3YD+hTIJxpKLwAAiJG1a9dm6pzgt+gj8rymwMkvKFPJweWXX+6+XrNmTbaPs27dOjt06JArmwgNkuWSSy5xt1u2bInquVU7rEDMWxSYPfLII+nWeRScFSlSxDZv3pzusX///XeX7fSTm32UBa9du7Z7T7OyYcMGF6iqjMMv86tzd9NNN7msrsoWIqESkXBBd0affPKJy4p36tQpLUgWvVcKklUu8fLLL6fbp2/fvq7MJKslVMmSJV05irLuCuL1/qqEJhLKbJ911lkue6+Mt0px9Pq0PhbIKAMAECOqvX3wwQfTvl+yZIlNmzbNZU5DW40p6IwVBW4zZ850X4eWS4SjzKaC3i+++MJ1iFDZhUfZVjnnnHOiem5loEM/yldgpsBKwVlGOpZmzZrZ7Nmz0wJ1ZVXnzp1rgwcP9n3e3OyjUhEFvgqWs1K9enVXfqIsq2q49ZjKRIcGya+99pobRNi9e3cLmp5Pzj///Ez3qRxDPv3000wXAVWqVMn1cyrbvH///my3U/mNXrPKR3SBpMGR+oTiq6++silTpmSbqc8LBMoAgLhU494zLdkdd9xxrh+vRx+ZK1Du3bt3uoFk4ajEYefOnRE/n+qFQ7OIfpRRVFmDght9dK5g8fvvv3eD1SIJcBXc6ON/ZSFVv9u+ffu0GmVlMxUIhZZIBPnc4fTp08duueUWVx5x0kknuU4MylYrqyqjR492gZieL9J97rnnHrv00ktdkKsssbKxRx99dETZfwWBCpavu+46l1lW8KoAukuXLm5g3vXXX+8ysLmpyc7O6tWr0y5oMlK2XP2PvW1yQy31LrvsMvd6tm/fbs8++6w7P5EEuco+6yJFnwjowidUrNrLESgDSAoMDkMy8Ca0OPHEEyPaXoFydgO3QinbGUmg/PDDD6d9r9IPDc4bOnRoxM+jIFNBY7du3ey5555LW69JOxRoKuDMq+f2o+dUuYeCWZVTKFuvnsdetluD9zIO7MtuHw1600A47atBfyoXUO2xOnxEQnXAqkVWUKzMsh5fXSf0mCp9yIsgWVQLLhnLYjx6fd42ubFp0yb3GlSmoqx/ixYt3OC+E044IaL9ixUr5paMYtV6j0D5v9TGRoMLdOW6e/du9x9cV97333+/a2sCAMhb4Wbs612/YYEKlJXVy5hNy6oeOGjKKCqjqzIABT3KcCtYVFu0GTNmpCulCEf1wipR0O0NN9zgWpApS6gAWhlU1Zsq6xjUc3vlBFm566673OJHWf3QzH4k+6gTR7TUZUIlHTpHapunuEMZZdVHJ6qJEyfmel8F2Pfee68rs9GFii4gdHEVyc9cXmEw33/p4wH9533ppZfcFaP+M7/yyivuig8AgLymzKSCQ832Fg+U0dTH53feeacbVKaa43/+85/Z7vfxxx+7umuVV6hbgh5DAbACHgW+yhZm134st8+daHRRoHIUz/LlyzMNIAyal0kOlzVWXXm4bHNe06cHisM0gO/JJ590tfrKJOsCIrtBknmFjPJ/6eOhUAqaNdrytttus19++SWt0B5AbLOLQLL67rvv3G1OAuW8qFH24w38iiRzqzZuomxgRsqWq25ZvYbVvk0BdJDPnWhBsmIMtclTZln1zhrIp/OmPscKFvOCV5usOmTVX4fSwDm9L2oTFwuFChVyfbO1qCZZJRuq5VZJio5X/0fyO9tOoJwFb0RtNDMCAUhsBOzIL6tWrXK3mvY3UnlRo+xHmW7xqx31qzP2awHn0XpljCN5rJw+d1bUl1glll698ZgxY7K9KMlqH51Lv3M/fPhwN9AvuyBZM+lp8Jq6X6jLhQJAnZfOnTundcNQ94egqZZaNd/qTa1Sh1D6RN3bJtYq/TeTrEWftijzrhaBmuExPxWO918ao0aNcqNA1cxbxf+62gjXmiWjyZMnu8ywaow1PaN+uPUDnFXgq8J6TaX59ddfuwEFGr2q+coBAMhL+shbNEtapFSjrKAr0kV/T8NZsWKF7du3L9N6rdMkIeLX0UGD4DS+x/vb6rWyU4CZ8eN9DexTB4TTTjst3ex1uX3uSE2aNMl1Y3j00Udt8eLFro2cWqF55zw3+2gK6F9//TVt0fZyxRVXZHkseh9UUuJNxOEFyaIuGKrx1TlVsJwXU2Kre8gxxxzjjje037TeK3UcUdcJtaaLhblz56abuET0c6XyWNEn/fktrjPK6qenq7ncUGsd7avgWlNK6uMdXY3oh141UrqSUt9FvysY7z+2Pu4Jet5zAADCtYoT/Z1S31gFhpq9Lb/o752CW9USK1uqAVSamlmlFPoY/IwzznDjd/wCL2VWVUOq/Tp27Oj+fmvWN70mDdrTYD71iNbfYf3t1fME8dyR0oyAmqTECwCVyVUZiIJFrc/NPhn7CqtHtN6v7JJrypCrFZ3Ok4LkjB1AFCwrWNTzqt5bA/2yo2P7/PPP3df/+c9/0tZ55So6r16JqZ5P9yno1/GGTmGt91Ft8LLrBZ1XvOnOW7Zs6SZQUZCs6a91IZVxtsD8EteBskY9qrBbTb/Vw1BXOpGMppw6daoLkhUcq2m29hWl7hU064dJ3Sz0w5CRfqh0BasfNGWuVTOkNymRR6ACAOKfAsoePXq4QEzTBeemRCIamlhDQdz8+fNdlwnVqmpQl1rVKZhS3Wi4tm6h9PdSySgFmgqA9XpUjqEWagr61MUiY6uwoJ7bj55bNdGhE7vosfSJs57LL1DO6T5KsCn4Vc/g7Kirlh5DY5/CvSZ1fFCph3fxlB3FNRln09MASC1+Y7GUrdY+en1vvvmmC0j1yb1+7lQvHStDhw51E8zoQlFJTVUD6MJDF17qaR0LRRNpgF2kPQW9+d812tYLkr0pKfVDrCtTNRdXsJxxZKf3i+n00093X+uqRj/8dL8AAOQlBZj626QlFhSYhc4GGCm/FnUqq9DfYC15+dyRUJJMZZUK1EOpBV/G3sm53UcDzvT+KUscCZU+ZCfSIFkmTJjglpzQgD1v4GW8uPPOO90ST+K6Rjk39FGN6obEmz0nlD5+qFGjhptKUT0Zs6IgWzXRkcxtDwAA8ocCcP19zmrJT+pcoXpjZUCRXOI6o5wb+qjE61hRp04d32101aoZdbStaoHC0UcWqhPK6spPAXfo/OVZDQwAAADRUx/mrAYmhtKnycr2ZuxPrJnjVHMc7T7qfawEXca6aySHpAuUvYbUWfU9VkY5dFtRUbsGJDRs2NB9ZKQg+vHHH3f1USouz6qeJnS6TQAAkLc0kC7jYLpw1MVBY51mz57taqFFs+FpTFK4Llo52UfZZPUm1ifWSD5JFyhr+mnJ6uMPr8F5aPZXtTqaNtILnjXis3v37q4tjf7DhDNw4MC01jXeY3qBOAAAiD11zNBgME2wobJKDebXQDqvRFN14RqPpMA40n284FmxgzptITklXaCcW+qTqCWnlH0O7QUJAADii4JbTXSijhve5CGaXEOtyLzBexkH6WW3j7z//vtu31j1HUbeS7rBfF6j9r1794bdRm1nJPSHHQAAJK+77rrLfvnlFzeuSGOQQmfle+ihh3y7d2S1j7Rv3951x1DLNySnpMsoe02yNVgvHO++IBtqa1pLLfoPAwDI+2nEe9dvyGkGkKeSLqOs4nvRTD6hg/VCaXpqCe2xHC01idfMMV5rOgAAACS2pAuUq1evbi1atHBfe/Ouh9JMNMooq644mnnjAQAAkNySLlAWFd7LsGHD3NzyHmWZ1clCevbsmWlWPgAAACAhapQV5HqBrXgjUp9//nmbPn162nq1dKlWrVra9+p73KtXL3vmmWfcFNTqj6x2cWr7snPnTmvVqlWuOlwAAACg4IjrQFk9iRcuXJhp/YYNG9ziCZ0ZzzNy5EgXEGuA3fz58y0lJcXq1q3rpr1Ub8SseiPnBoP5AAAAkktcB8pt2rRxU0jnluZd15IfNJhPi4J7SjoAAAASX1LWKAMAAADRIlAGAAAAEq30AgDyYqIKJO/7yyQkAIJEoBwQBvMh0aTs+d+A2HQqVcnvQwEAIC5RehEQZuYDAABILnkaKP/xxx9Rda0AAAAAEjJQXrZsmZvU44cffki3fs6cOVanTh2rWLGiHXHEETZhwoRojxMAAABInEBZQfLdd99tJUuWTDdNtGbG+/nnn102Wd9369bNli5dGsTxAgAAAPEfKH/xxRfWsGFDq1GjRtq6iRMn2u7du+32229300W/8sordujQIRs1apQl+2C+Bg0aWIsWLWJ9KAAAAIh1oLx582arWbNmunUfffSRFSlSxAYPHmzlypWzG264wZo1a2ZffvmlJTMG8wEAACSXqAJlv+maFy5caE2bNrVKlSqlrTv22GNt48aN0TwVAAAAkDiBsjLGoQHwypUrbfv27Xb66adn2rZQoULRPBUAAACQOIGyMsfz58+3NWvWuO9feuklFxCfddZZ6bZbu3atVatWLbojBQAAABIlUNaAvZSUFGvevLmrQ3766addO7iLL744bRsN7Pvmm2+sUaNGQRwvAAAAEP+BcseOHe2hhx6yv//+27799lurVauWTZ482UqUKJG2zVtvveWC6YxZZgAAACCeFY32AR544AEbMGCAG9hXuXLlTPefd955rody3bp1Ldnbw2k5ePBgrA8FAAAAsc4o//LLL27wXvHixX2DZFH7OC3aLpnRHg4AACC5RBUoa5rqe+65J9vt7r33XjvmmGOieSoAAAAgcUovNEW1lki3BQAgL41Ytdx3fe/6DTnxAPI3oxwpdb5QeQYAAABQYAbzZeXQoUO2fPly++STTzJNdQ0ge9u+G+F/R4nzOH0AAMRbRrlIkSJpi7z88svp1oUuxYoVc5OSbNu2za644oq8OH4AAAAgPjLKobXGmoUvq9pjBcrVq1e3K6+80h5++OHcHyUAAAAQ74Gyyik8hQsXti5duti4ceOCPi4AAAAgcWuUH3zwQTd1NZhwBAAAINlEHSjjfxOOaNEMheXLl+e0AAAAJLh8aQ8HAAAAFLhAWdNY33nnnXbsscdaqVKlwnbAKFo0TzvRAQAAAIGKKnr9/vvvrVWrVrZz585sZ95jZj4AAAAUmIzyP/7xD9uxY4edf/75tmDBAvvjjz9cV4xwCwAAAFAgMsqffvqpm3HvvffeY4pqAAAAJJWoAuV9+/ZZ27ZtCZKBJPLn5gW+60esqpTvxwIAQMIGysccc4zt3bs3uKMBACAPjFi13Hd97/oNOd8A8qZGuXPnzjZv3jzbsmVLNA8DII+l7NmQaQEAAHkYKPft29dOO+00u+iii2zZsmVWkI0ZM8YaNGhgLVq0iPWhAAAAINalF+p2kZKSYkuWLLGmTZu6gX1aChfOHH8XKlTIZs+ebcmKmfkAAACSS1SB8ty5c9O+Vvu3devWucWPAmUAAACgQATKc+bMCe5IAAAAgGQJlM8666zgjgQAAABIlsF8AAAAQLKKKqPsSU1NtQ8++MDmz5/vWsWdeuqp1rVrV3efvtc013Xr1rUiRYoE8XQAAABA/AfK3377rV1zzTW2evVqFzBr0J46YXiB8kcffeT6LU+dOtUuvfTSII4ZAAAAiO/Siw0bNti5555rP/zwg+ulPHz4cBcsh+rQoYMVK1bM3nvvvWiPFUA+WPxXCd8FAICCJqpAeciQIbZt2zYbMWKETZ8+3fr165dpm1KlSlmTJk1s0aJF0TwVAAAAkDilFzNnzrTjjz/eevXqleV2tWvXppUcAF8jVi3nzAAAki+jvGnTJmvcuHG226luedeuXdE8FQAAAJA4gXLp0qVdV4vsrF271ipWrBjNUwEAAACJEygrm7x48WLbunVr2G1+/vln1xmjefPm0TwVAAAAkDiB8g033GC7d++2bt262b59+zLdf+DAAevevbtrF6dtAQAAgAIRKN98881uGut///vfblDfbbfd5tYrg6wBfscdd5ybiOScc85xvZaT2ZgxY6xBgwbWokWLWB8KAAAAAlAoNWPj4xzas2eP3X777fbGG29k6qEsV155pY0fP97KlCljBYEGLZYvX97++OMPK1euXKwPBzG07bsRefbYE0uc57u++rjvfden7NkQ9XNu7nVu1I8BxJve9RvG+hAAxHG8FvXMfAqAX3vtNbv//vttxowZ9tNPP9mhQ4esRo0abhKSpk2bRvsUACIMiAEAQHCiDpQ9Kr3QAgAAAFhBr1GeNm2ayx4DAAAAySaqQLl9+/auxKJ///62cuXK4I4KAAAASORA+aSTTrJff/3VHn/8cWvUqJGdfvrp9uKLLzILHwAAAAp2jfLXX39ty5Yts3HjxrkBfQsWLLCFCxda7969XbeLLl26WNu2bYM7WgAAAjRi1XLf9XTDABB1RlmUSX7qqads48aN9u6779oll1ziJhh59dVX7bzzzrM6derYI4884mboAwAAAApMoOwpWrSodejQwd577z0XND/xxBNuAg4FyA8//LDVq1cvqKcCAAAAEidQDlWlShW7++677auvvrK77rrLTURCdwwAAAAUyD7KoVSrrNn43nrrrbSBfRUrVsyLpwIAAADiO1BW94tXXnnFJkyYYD/88IPLIhcuXNjOP/98u/nmm11ZBgAAAFAgAuUDBw7Y1KlTXXD80UcfufIKBch169Z1HS+0HH300cEdLQAAAJAIgXK1atVs586dLjguVaqUXXXVVda1a1c788wzgztCAAAAINEC5R07dthpp53mguNrrrnGypQpE9yRAbDnd5b1PQvHcW4AAIjvQFnTVtevX9+Swdtvv+0mTVm8eLFt3brV9X/WBUCvXr2sWLFisT48IKHs27zAd32pqi3z/VgAAMiX9nAarDd//vy070ODZHW3+Ouvv3z3e/311127uHimvs8lSpSw4cOH2/vvv2+dOnWy++67z7p16xbrQwMAAEC8Z5S9AXqnn356pvsqVKjg7nvppZcy3ffhhx+6IFsz+MWradOmuf7PnrPPPtvVXt9///0ueK5atWpMjw8AAAAJOuGIgkotiSo0SPY0b97c3W7atCkGRwQAAICkm5kvKKtWrbJRo0a5THXjxo3dNNmFChWywYMHR7T/5MmTrU2bNi7bXbp0aWvSpInLDqekpES0/7x586x48eKu3R0AAAAKljyZmS8oY8eOtZEjR+Zq3969e7t9FVy3bdvWdeT45JNPrH///q7MQuUgJUuWDLv/ihUr3P633XablStXLopXASCrQX4M8AMAxKu4zig3atTI+vXr57pRqMNG586dI9pPk6AoyFVwvHDhQps1a5a98847tnr1apeZ/vzzz13tcTjqeqGZBOvVq2fDhg0L8BUBAAAgUcR1RjljxwlNiR2JIUOGuNsBAwbYSSedlLa+cuXK9uyzz9oZZ5xho0ePdsFy+fLl0+27e/duu+iii9ysg3PnznUlGwCAgmXEquWZ1vWu3zAmxwIgduI6o5wbGzdutEWLFrmv1eIto9atW1uNGjVs//79NmPGjHT3aV379u1t3bp1Lgt91FFH5dtxAwAAIMEzymvWrHGt3nJyn9bnl6VLl7rbihUruklD/Jx88sm2fv16t+11113n1h08eNCuvfZaF2SrljnSiVQUXGsJ7ScNAACAAhgof/HFF27JSN0owt2ntnG6Pz+sXbvW3dasWTPsNsooh24rPXr0cLXNjz76qAuaFyz436CjBg0ahB3QN3ToUHv44YcDfAUAAABIuEBZwWd+Bby5pRpjyaq2WIP8MmZ/Z86c6W5Vt5xxoN+cOXNcmzk/AwcOTDfroB7TC8QBAABQQAJl1e4mq9y+Nk17rQUAAADJJekG85UtW9bd7t27N+w2e/bscbf0RwYAAECBCZRr167tbjVYLxzvPm/bIIwZM8bVMrdo0SKwxwQAAEDsJF2g3KxZM3e7bdu2dIP1Qn399dfuNrTHcrQ0GFCz+Xmt6QAAAJDYki5Qrl69elpWd9KkSZnu16x8yiirrrhdu3YxOEIAAAAkgqQLlGXQoEHuVtNPL1myJG29sszdu3d3X/fs2TPTrHwAAABAQkxhrSDXC2zlxx9/dLfPP/+8TZ8+PW39lClTrFq1amnfd+jQwXr16mXPPPOMtWzZ0s455xzXLm727Nm2c+dOa9WqleuXDCB57Nv8v97nnlJVW8bkWAAAySGuA2X1JF64cGGm9Rs2bHCLJ3RmPM/IkSNdQKxBdvPnz7eUlBSrW7euDRgwwPr06WPFixcP9Fj1PFo0WQkAAAASX1wHyprkQ7P65dbVV1/tlvygwXxaFNxT0gEAAJD4krJGGQAAAIgWgTIAAADgg0AZAAAA8EGgHBBm5gMAAEguBMoBYWY+AACA5EKgDAAAAPggUAYAAAB8ECgDAAAAPgiUA8JgPgAAgORCoBwQBvMBAAAkFwJlAAAAwAeBMgAAAOCjqN9KAIhX+zYviPUhAAAKCAJlAMgiCC9VtSXnBwAKKEovAAAAAB8EygGhPRwAAEByIVAOCO3hAAAAkgs1ygAARGDEquW+63vXb8j5A5IUGWUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAPChCMAAADJhT7KAU44omXXrl1Wvnz5oB4WCWLbdyNifQgAACBgZJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUA8LMfAAAAMmFQDkgmpVvxYoVtmjRoqAeEgAAADHEFNYAYmrf5gW+60tVbZnvxwIAQCgyygAAAIAPMsoAAs8GAwCQDMgoAwAAAD7IKAOISPVx32da98PFnDwAQPIiUAaSSMqeDbE+BAAAkgalFwAAAIAPMspAAiJznFgDHGl1BwCJiUAZAHKBjh8AkPwovQAAAAB8ECgDAAAAPgiUAQAAAB/UKAMAEIURq5b7ru9dvyHnFUhwZJQBAAAAH2SUAzJmzBi3HDx4MKiHBBAH6G4BAAUXGeWA9OjRw1asWGGLFi0K6iEBAAAQQwTKAAAAgA8CZQAAAMAHgTIAAABAoAwAAABEhq4XAJJWvHesCHd8paq2zPdjAQBkRukFAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAftIcDEJGUPRt81pbh7AEAkhYZZQAAAMAHgfJ/rVmzxu644w476aSTrFixYla7dm2/8wUAAIACgtKL/1q+fLlNnz7dTjnlFEtNTbUdO3bE9p0BAABATJFR/q9LL73UNmzYYO+++66deuqpsX1XAAAAEHMEyt6JKMypAAAAwP/EdXS4atUqGzVqlHXp0sUaN25sRYsWtUKFCtngwYMj2n/y5MnWpk0bq1ChgpUuXdqaNGliw4cPt5SUlDw/dgAAACS2uK5RHjt2rI0cOTJX+/bu3dvtq+C6bdu2VqZMGfvkk0+sf//+Nm3aNPvwww+tZMmSgR8zAAAAkkNcZ5QbNWpk/fr1s9dee81WrlxpnTt3jmi/qVOnuiBZwfHChQtt1qxZ9s4779jq1atdZvrzzz+3+++/P8+PHwAAAIkrrjPK3bp1y1Ud8ZAhQ9ztgAEDXLs3T+XKle3ZZ5+1M844w0aPHu2C5fLlywd81ACARFF93Pe+6zd0PT7qxx6xanmmdb3rN4z6cQHkn7jOKOfGxo0bbdGiRe7rTp06Zbq/devWVqNGDdu/f7/NmDEjBkcIAACARJB0gfLSpUvdbcWKFa1OnTq+25x88snpto2GAu5du3alWwAAAJD44rr0IjfWrl3rbmvWrBl2G2WUQ7eVffv2pWWYf/rpJ/f922+/7b5v0aKF1apVy/exhg4dag8//HCgrwEAAACxl3SB8u7du92t2sGFo0F+Epr9/f33361jx47ptvO+Hz9+vGtR52fgwIF29913p32vx/QCcQAAACSupAuUc6t27dpu6uqcKlGihFsAAACQXJKuRrls2bLudu/evWG32bNnj7stV65cvh0XAAAAEkvRZMwMy/r168Nu493nbRuEMWPGuOXgwYOBPSZQkO3bvMAK6mvx275U1ZYBHhEAoEBmlJs1a+Zut23blm6wXqivv/7a3Yb2WI5Wjx49bMWKFWmt6QAAAJDYki5Qrl69uutSIZMmTcp0v2blU0ZZdcXt2rWLwRECAAAgESRdoCyDBg1yt8OGDbMlS5akrVeWuXv37u7rnj17MisfAAAAErNGWUGuF9jKjz/+6G6ff/55mz59etr6KVOmWLVq1dK+79Chg/Xq1cueeeYZa9mypZ1zzjmuXdzs2bNt586d1qpVK3v00Ufz+dUAAAAgkcR1oKyexAsXLsy0fsOGDW4JnR0vo5EjR7qAWAPs5s+fbykpKVa3bl0bMGCA9enTx4oXLx7osTKYDwVRnTf/r4NMRmuv+b9e5UCiqj7u+0zrNnQ9PibHAiB24jpQbtOmTa56G3uuvvpqt+QHDebTouC+fPny+fKcAAAAyDtJWaMMAAAARItAGQAAAPBBoAwAAAAkWo1yImEwHwAUvAF+wiA/IHmRUQ4IM/MBAAAkFwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+KDrRUDoegEEi+mxI7Nv8wLf9aWqtgz0/QCAgoiMckDoegEAAJBcCJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg64XAaHrBYB4QjcMAIgeGeWA0PUCAAAguRAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+GDCkYAw4QjwP3Xe3ON7OtZeUybibRHZBCIAgLxDRjkgTDgCAACQXAiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD6YmS8gzMyHaD2/sywnEXE161+pqi3z/ViS3YhVy3O0fe/6DfPsWABkj4xyQJiZDwAAILkQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBR1G8lcm7MmDFuOXjwIKcPyEN13twT8bZrrykT9WPn9DGSyb7NC3zXl6raMt+PBQBigYxyQHr06GErVqywRYsWBfWQAAAAiCECZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoh1izZo21a9fOypQpY5UrV7bu3bvb3r17/c4bAAAAklzRWB9AvPjjjz+sbdu2dtRRR9nkyZNt+/btdvfdd9vmzZvtnXfeifXhAQAAIJ8RKP/X888/b1u2bLGvv/7ajjjiCLeuZMmSduWVV9rixYutefPm+f3eAAAAIIYovfivGTNmuIyyFyTLZZdd5sowpk+fHqv3BwAAADES14HyqlWrbNSoUdalSxdr3LixFS1a1AoVKmSDBw+OaH+VULRp08YqVKhgpUuXtiZNmtjw4cMtJSUl07YrVqywE044Id06Pd9xxx1nK1euDOw1AQAAIDHEdenF2LFjbeTIkbnat3fv3m5fBbvKFCsz/Mknn1j//v1t2rRp9uGHH7rSCs+OHTvs8MMPz/Q4CrJVrwwAAICCJa4zyo0aNbJ+/frZa6+95rK6nTt3jmi/qVOnuiBZwfHChQtt1qxZbkDe6tWrXWb6888/t/vvvz/Pjx8AAACJK64zyt26dUv3feHCkcX1Q4YMcbcDBgywk046KW29Wr49++yzdsYZZ9jo0aNdsFy+fPm0zPHOnTszPZYyzccee2yUrwQAAACJJq4zyrmxceNGW7Rokfu6U6dOme5v3bq11ahRw/bv3+8G8HlUn5yxFvngwYP2ww8/ZKpdBgAAQPJLukB56dKl7rZixYpWp04d321OPvnkdNuKJhqZM2eOaxHnUS3znj177OKLL87z4wYAAEB8SbpAee3ate62Zs2aYbdRRjl0W7n99ttdcN2+fXv74IMPbNKkSXbHHXe4773A2o8y07t27Uq3AAAAIPHFdY1ybuzevdvdqh1cOBrkJ6FBrTpeqCtGr1697KqrrrLDDjvMOnbsaE888USWzzd06FB7+OGHAzt+IJnVeXNPUj8fIrdv84JM60pVbZknjxvUY+dU9XHfZ1q3oevxOXqM9cPnZVpX494zozouFFzbvhuRaV2lE3vH5FgSRdIFytFQz+SZM2fmaJ+BAwe6qa49Cr69jDUAAAASV9IFymXLlnW3e/fuDbuN6o6lXLlyUT9fiRIl3AIAAIDkknQ1yrVr13a369evD7uNd5+3bRDGjBljDRo0sBYtWgT2mAAAAIidpAuUmzVr5m63bduWbrBeqK+//trdhvZYjlaPHj3cNNheazoAAAAktqQLlKtXr56W1VXniow0K58yyiqXUEs4AAAAoEAEyjJo0CB3O2zYMFuyZEnaemWZu3fv7r7u2bNn2qx8AAAAQEIN5lOQ6wW28uOPP7rb559/3qZPn562fsqUKVatWrW07zt06ODavD3zzDPWsmVLO+ecc1y7uNmzZ7tpqlu1amWPPvpoPr8aAAAAJJK4DpTVam3hwoWZ1m/YsMEtoZN+ZDRy5EgXEGuQ3fz58y0lJcXq1q1rAwYMsD59+ljx4sUDPVY9jxZNew0AAIDEF9eBcps2bSw1NTXX+1999dVuyQ8azKdFwT0lHQAAAIkvKWuUAQAAgGgRKAMAAAA+CJQBAAAAHwTKAWFmPgAAgORCoBwQZuYDAABILgTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgHBC6XgAAACSXuJ7COpF4U1j/8ccfdvjhh7uprFFw7N7zV9SP8dfeyP877jsQ/fMhMn/tLZJUp6rwnj2Z1v2198+oHyOn/J4zrx43q8fet39f9M+Zg8cOt204u//am2kdf18Q5N+qYgU0Xtn139edmpqa5XaFUrPbAjmyYcMGq1GjBmcNAAAgzq1fv96qV68e9n4C5YAdOnTINm3aZGXLlrVChQoF/fAwsxYtWtiiRYuS5lzE4+uJxTHl5XMG/dhBPF40j5GbfZU90UW8/iiUK1cuV8+LvHlv4lm8vp78Pq68fj5+R1m+/45Snnj37t121FFHWeHC4SuRKb0ImE52VlcmiF6RIkWS6g99PL6eWBxTXj5n0I8dxONF8xjR7Kv94u3nLZnE4//nZHw9+X1cef18/I6Kze+o8uXLZ7sNg/mQcFQLnkzi8fXE4pjy8jmDfuwgHi+ax4jHnxkk53sTr68nv48rr5+P31Hxi9ILACgA9LGmsicacByPGUIABduuOP0dRUYZAAqAEiVK2IMPPuhuASDelIjT31FklAEAAAAfZJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAIGJvv/22XX755VazZk0rVaqUNWzY0J588klLSUnhLAKIuTVr1tgdd9xhJ510khUrVsxq164d1eMx4QgAIGJPPPGE+8MzfPhwq1q1qs2fP9/uu+8+++677+zll1/mTAKIqeXLl9v06dPtlFNOcbPv7dixI6rHo+sFACBiW7ZssSpVqqRbN3jwYLv//vvtt99+c8EzAMTKoUOH0qakVmZ55syZtm7dulw/HqUXAICIZQySpXnz5u5206ZNnEkAMeUFyYE9XqCPBgCIyqpVq2zUqFHWpUsXa9y4sRUtWtQKFSrksraRmDx5srVp08YqVKhgpUuXtiZNmrgyibysIZ43b54VL17c6tatm2fPASA+rErA31HRoEYZAOLI2LFjbeTIkbnat3fv3m5f/eFq27atlSlTxj755BPr37+/TZs2zT788EMrWbJkoMe7YsUK95y33XZbXE07CyBvjE2w31HRIqMMAHGkUaNG1q9fP3vttdds5cqV1rlz54j2mzp1qvsDpD88CxcutFmzZtk777xjq1evdlmfzz//3NURh5owYYLLBGW3qNOFn61bt1qHDh2sXr16NmzYsEBeP4D41iiBfkcFgYwyAMSRbt265arebsiQIe52wIABri2Sp3Llyvbss8/aGWecYaNHj3Z/iMqXL+/uU5u3li1bZvvYRx99dKZ1u3fvtosuusgOHDhgc+fOdR+hAkh+3RLkd1RQCJQBIMFt3LjRFi1a5L7u1KlTpvtbt25tNWrUsPXr19uMGTPsuuuuc+v1x8j7g5QT+/fvt/bt27uR5MoCHXXUUQG8CgDJamM+/44KEqUXAJDgli5d6m4rVqxoderU8d3m5JNPTrdtbh08eNCuvfZa90dPf9Dq168f1eMBSH5L8/F3VNDIKANAglu7dq271Wx54ShbE7ptbvXo0cPVGj766KMuaF6wYEHafQ0aNGBAH4CY/o7at2+fu4iXn376yX3v1TC3aNHCatWqlaPHI1AGgASnemHJqk5YA2hk165dUT2XmveL6ggzDryZM2eOa/sEALH6HfX7779bx44d063zvh8/frxra5cTBMoAgIhFM8MVAOS12rVru6mrg0KNMgAkuLJly7rbvXv3ht1mz5497pZexwDyW9kE/h1FoAwASZBBEY0YD8e7z9sWAPJL7QT+HUWgDAAJrlmzZu5227ZtYQfCfP311+42tH8pAOSHZgn8O4pAGQASXPXq1d1obpk0aVKm+9XrWNmaEiVKWLt27WJwhAAKsuoJ/DuKQBkAksCgQYPcraaSXrJkSdp6ZXC6d+/uvu7Zs2fMm/cDKJgGJejvqEKpQQ4NBABERX9AvD8a8uOPP9rWrVtdRiZ0mtYpU6ZYtWrV0u1711132TPPPGPFihWzc845x7Vimj17tu3cudNatWplH330kZUsWZJ3CAC/oyJEoAwAcWTu3Ll29tlnZ7ud6vz8Br289dZbNmbMGPvmm28sJSXF6tatazfccIP16dPHihcvnkdHDaCgmFvAfkcRKAMAAAA+qFEGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJQBAAAAHwTKQJKpXbu2FSpUKNtlwoQJsT5UJNnP3Lp16yyRJcvrCIrOQ8bfG4MHD47qMY8//vh0j9emTZvAjhfIC0Xz5FEBxFyrVq2sXr16Ye/P6r54DmR+/vlnW7t2rfsanHd+dvJe6dKl7aqrrnJfN2nSJKrHuvzyy+3XX3+13377zWbNmhXQEQJ5h0AZSFLdunWzLl26xPowUADMnj3bUlJS7Oijj7ZEliyvI2iVK1cO7BOooUOHutu5c+cSKCMhECgDAKJSt27dpDiDyfI6AASHGmWggPv+++9drWCFChXsr7/+CrvdySef7LZ777330q3/888/7cknn7SWLVva4YcfbocddpjVr1/f7r33Xtu2bVumx/FqE+Wdd96x1q1bW7ly5dzHuyoXmTFjRqZ9lM3SPiq7kDp16qSrc1R2KhLLli2zK6+80mXISpUqZY0bN7YRI0bYoUOHsqxPzelrzO3rDOr5xo8fb6eddpqVL18+3Wv66quv3GOccsopduSRR1rx4sWtatWqdumll9rHH3+c6/OeXW3vhg0b7P/9v/9nxx57rHstOi6dg+eff94OHjwY6LnL7WvI6nWEHs+rr77qzl+ZMmWsSpUqdt1119kvv/zi7ktNTbXRo0db06ZN3bHq50yf6vz++++BvtdZ0TmOZIyCFv2cBGH16tXWtWtXd25LlCjhzk2tWrXs4osvDuw5gJhJBZBUatWqlar/2uPHj494n9NOO83t8/rrr/ve/91337n7q1atmpqSkpK2fuPGjamNGzd291WsWDH13HPPTb388svTjqF27dqp69atS/dYWq/lgQceSC1UqFBqq1atUq+55prUJk2auPVa9+6776bb57PPPku96aabUkuXLu22ufLKK9333rJy5cpsX+PcuXNTS5Ys6favW7du6rXXXpt63nnnpRYvXtw9v3fMa9euTbdfbl5jbl9nEM/Xs2fP1MKFC6e2bt069brrrks99dRT07Y/55xz3H16/Hbt2qV27Ngx9aSTTkrbd8SIEbk67+HOnXz11Vfudej+mjVrunNw4YUXph522GFu3QUXXJC6f//+QM6dn5z87IR7Hd7xDBgwILVo0aKpbdu2Tb3qqqvc69H6GjVqpG7fvj316quvdq9Lr0/v2RFHHOHuP/HEEzO9xmje63D+/PPP1C5duqR7ffXr13eP1bx583Trtfzyyy9ZPp7Og/bV8YTzn//8J7VcuXJuOz3XFVdc4X6u9DulTJky7j3zM2fOHLfPWWedFfHrA2KBQBlIMrkJlF988cW0oMVPnz593P19+/ZNW3fo0CEXwGj9Lbfckrpr1660+xRMa1vdd/bZZ/sGHYcffnjqggUL0t334IMPuvuOO+64LF+bX0CWlX379qUeffTRaa/h4MGDafctX77cXQB4xxX62Ll9jbl9nUE8n4KWL7/80vc8zJgxI3XTpk2Z1s+fP9/tV6xYsdQNGzbk+LyHu/+vv/5Ku++OO+5IPXDgQNp9P/74owsEdd+gQYMC+xkJJ5KfnewC5UqVKqV+88036X6udEGi+xTw6gIsNLDdsmVLar169dz9r776amDvdU4oaNfjTJ48Ocf7RhIo33zzzW6bwYMHZ7pP5+fTTz/13Y9AGYmCQBlIMt4f++yWHTt2pO2jP9KlSpVy2caMgZKCmypVqrh9li1blrb+gw8+cOuaNm2aLsvsUTDaqFEjt42yTh7v+Z955plM+yiwKl++vLvfL9uV20D5lVdeSfuDHxqseUaPHu0bKOf2Neb2dQbxfI888khqbgwcONDtP2bMmMAC5YkTJ7r1Rx11lHvNGb399tvu/rJly7psaBA/I3kZKPudG2W2vfvff//9TPc/+eST7j4FlKGiea9zwrsIXL16dZ4EyvpkQtssWbIkR49NoIxEQY0ykKRUy3nTTTeFXVSf6ilbtqxr/6Ra3VdeeSXd47z//vu2ZcsWV5fZsGHDdOtFNb9Fi2YeF1y4cGE788wz3dfz58/PdL/qYjNSfeMxxxzjvt64caMF5dNPP3W3HTt2tGLFimW6//rrr/fdL9rXmNPXGcTzeW28wlHdq95j1cDeeuutroZWi3eOVq1aZUHx6n+vvfZa95ozuuKKK1xt/O7du23x4sUx/RmJRLt27XxrgkXv1/nnnx/2/k2bNqVbH8R7nR21Ydu8ebP7/51XAxX1e0HuvPNO18Uiq3EOQCKi6wWQpHLaHk6DcRRAafDTwIED09Z7g3FuvvnmdNv/9NNP7vb+++93S1YUaGdUs2ZN3201aEuC/IOrwWQSrveyBlFpgNkff/wR6GvM6esM4vmy6i/94osvWp8+fWzv3r1ht9m1a5cFxQtkNcjLjwaU6b4dO3b4Br35+TMSCb/j0cA1qVatmm/AqyDV71iDeK+zs2TJEnerwYXeYMSg3XPPPfb555+7waAXXnihuxBVr2UF+bpAatGiRZ48L5BfCJQBOPrDpqzTDz/84DJYp59+uhutrw4DGomvP3qhlH0WdSTILlsVmokOzZjlt6yCBb/7on2NOX2dQTxfyZIlfdcrY3v77bdbkSJF7LHHHnPZWgV+6v6h1/7CCy+4+/+v0iA+xOJnJLfHk9NjDeK9zs7SpUvdbbNmzSyv6Ofno48+skWLFtnMmTPd7w4tX3/9tT311FPWvXt3GzNmTJ49P5DXCJQBOAqWlIFWdktZZAXKaoX1999/29VXX+2yrqFq1Kjhbtu3b2/9+vWL67PoTSARrn2ZMsk7d+7MtD6/X2NePt/kyZNdEKw2bSq78GvxlVfn3cue+tEsi6HbFhT58bP17bffpmWU85oyx172WL8zpk6dajfeeKM9++yzrhzo7LPPzvNjAPJCfF2uA4gpBcrKjL311lu2b9++sGUXctFFF6ULwPKDV1etP8Q54dV66lj99p00aZLvfvn9GvPy+bZv3+5u1d82I5UFqF9x0Oe9TZs27vbNN9/0LZOYMmWKK7tQeULz5s0tL+X2NeSV/PjZ+vHHH93tcccdZ/lJJSgKji+44AL3/TfffJOvzw8EiUAZQJrq1avbeeed5+pUBw0a5Cbo0Mfzbdu2zXSWlAlTBkmTWCiQ9qujVBD03HPPBRac6Phk+fLlOdpPg/hUQ6qM8j/+8Y+0j729CVceeeQR3/3y+zXm5fOdcMIJ7vbll192g+c8CmD18biX2Q36vOvnRwPZ7r777nTHrOfr27ev+1pZbpX35KXcvoa8kh8/W95++/fvt7yijLHfANDffvvNlV+EuzgDEkas224ACJbX4ko9WjNOMBC6vPbaa777v/HGG+nayGnSh3A0YYLaW2k7Tehw+umnu4k8NOmA1hcpUsTd59f6KxxNQKD71T4qXBs3TWSg51D/WS3ff/99tudl9uzZaZNcqLetjvP88893E45oggRv8gi9pmhfYzSvM6+eT+0AvZ8N9QPu0KGDm3xDk2KoPdtdd93l7tPPRk7Pe6QTjmg7TRyilmKRTDiS03OXlUh+drJrD5ebFmpZtUHL7Xsdqa5du7r9K1eu7H7GdQ6Cbg/nTQJTp06d1EsvvTT1+uuvd/+vvMl9NDmLX/s72sMhURAoAwW0j7ICIz/qU+sFNpoB7aeffsry+bT9c8895yZGUACmmcsUfOkPfY8ePVJnzZoVWBCk3rJDhw5NbdiwYVqglZOA6dtvv3Uzn+n1af8GDRqkPv744y5QU8CsPtJ+QUlOX2O0rzMvns+bAKN79+5uYowSJUq4/sY33HCD67GrCWrCBcrZnffsehSr37GO+5hjjnHnWYG5Zm4bO3asbxCVF4FyJD87+R0o5/a9jpTebwXImrglu4ve3AbK06dPT73zzjtTmzVr5vqt6/2tXr16aps2bVJffvll377lQqCMRFFI/8Q6qw0AsTRv3jw766yzrHHjxvbdd9/xZgD/Hfyq9n0qnQg3EDaaHtsa4Kf/d16/bSAe0fUCQIGgGtA9e/Zk6umrOmxNvBFu0CJQ0G3dujWtJ7smSPGbCCZS6tGuiVBUwwwkAgJlAAWCBnEpg9WgQQM3s5v6DWtAmSZl0OA+DWLUoDIA6WmCGg0ClXr16kUVKKvTSZCzPwJ5jdILAAWCOi8MGTLETdWsWeDU+UFtyTSZQ6dOnVxW2W9mNQBAwUWgDAAAAPigjzIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAAIlAEAAIDIkFEGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAGCZ/X/I67/mNBe0+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.07^{+ 0.03}_{- 0.25} \\times 10^{-3}\n", + "4.00^{+ 1.91}_{- 0.42} \\times 10^{-3}\n", + "4.25^{+ 0.08}_{- 0.13} \\times 10^{-3}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAImCAYAAABKEKy5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuGElEQVR4nO3dCbyM9fv/8cuefU8KkUpZspciiTbatJc2SRu+IUK+beJra0OWdqR9o5JIllQiomRJiLJ8K2u2Qpz/4/35f+/zm3POPefMmZlzZjmv5+NxG+eee+65556zXPc11+f65EtJSUkxAAAAAGnkT/slAAAAAAJlAAAAIAgyygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlP9n7ty5li9fvgxL3bp1/c4bAAAAklzBWB9AvHnxxRetTp06qV8XK1YspscDAACA2CBQTkdBcrNmzWLzbgAAACBuEChH2ZEjR2zLli1WsmRJV7oBAACA+JKSkmJ79uyxY4891vLnz6QSOSWO/fjjjymjRo1KufXWW1Pq1q2bUqBAgRQd8sCBA0N6/Ntvv51yzjnnpJQpUyalWLFiKaeddlrKsGHDUg4ePJhh2zlz5rh9H3300Sn58+d3t3fccUfK9u3bs3XMGzdudPth4RzwPcD3AN8DfA/wPcD3AN8DFtfnQHFbZuI6ozxu3DgbOXJkWI/t0aOHe2zBggWtdevWVqJECZs9e7b17dvXPvroI/v000+taNGiqduXLl3aevXqZa1atXLbLly40IYMGWJff/21LV682IoUKRLS8yqTLBs3brRSpUqFdewAAADIObt377aqVaumxm3BxHWgrI4TvXv3toYNG1qjRo1s8ODBNmnSpCwfN2XKFBckK+D9/PPP3WNl27ZtLmj+8ssv7aGHHrInnngi9TF6Di0eBcx63AUXXGBvvPGGdezYMaRj9sotFCQTKAMAAMSvrMpk47o9XOfOne3xxx+3Dh062CmnnJJ5DUkABdTSr1+/1CBZKlSoYGPHjnX/Hz16tP3555+Z7uf888+3cuXK2aJFiyJ6HQAAAEg8cR0oh2Pz5s2pga0C7PRatGjhUu0HDhywadOmhbRPBuUBAADkPUkXKC9dutTdKhNco0YN322aNGmSZttgZsyYYTt27LDTTz896DYKuFXnErgAAAAg8cV1jXI41q9f726rVasWdBtllAO3lZtuuskF1o0bN3aF3RrMN2zYMGvQoIFdf/31QfelAX8DBgyI6msAAABA7CVdRlk98aR48eJBt9EgPwnM/mqiEQ0CvOWWW+yiiy6yF154wW6//XY3tXXhwoWD7uuBBx5wtc7eom4XAAAASHxJl1EOlwJeLdmltnGhto4DAABA4ki6jLLXD2/fvn1Bt9m7d6+7pX0bAAAA8kygXL16dXebWQmEd5+3bTSMGTPGateubU2bNo3aPgEAABA7SRcoe5OGbN++Pc1gvUCaaU8CeyxHqmvXrrZy5Up6LgMAACSJpAuUq1SpkprVff311zPcr1n5lFFWXXG7du1icIQAAABIBEkXKEv//v3d7dChQ23JkiWp65Vl7tKli/t/t27drHTp0jE7RgAAAMS3fCkpKSkWpxTkeoGtrFu3zrZt2+ayxscdd1zq+smTJ1vlypXTPLZ79+42atQoK1SokLVp08a1i5s1a5bt2rXLmjdvbjNnzrSiRYtGtUZZy+HDh+2nn35yreIYLAgAABB/1CJYCdOs4rW4DpTVw/jcc8/NcjvVIvsNzHv77bdd8Prdd9/ZoUOHrGbNmm5ikZ49e2baGzk3TjwAAABiIykC5UREoAwAAJAc8VpS1igDAAAAkSJQBgAgAU2YMMHy5cvnbiPRsWNHt58NGzZE7diAZEGgHCVMOAIAyA4FpgpQtRxzzDH2zz//+G63atWq1O2iOVFWqMcWuGhg/GmnnWYDBgxIneU2N7Vq1codx1FHHWW//PKL7zannHKK2yb9mCe/1xO4aN9AegUzrEHYE45o8WpeAAAIRcGCBe3333+3adOm2WWXXZbh/pdeesny58+Y17riiiusWbNmGbo+ZdeQIUOsX79+abpJebxB8KIhTVu3brVPPvnEHn30UZs+fbqbm6BAgQKW2w4cOGAPPvigTZo0KVuPa9y4sV1yySW+9+XWRQgSC4EygJBsHD4vw7qqfVpy9oAInXXWWfb999/byy+/nCFQVpb51VdftfPOO88+//zzNPcpKRONxIwC7WDB9oknnuiC4vRB6plnnmkLFixwx9S6dWvLbQrgNanY/fff7zLcoWrSpEmG1wNkhtILAABiSD39r7/+evv444/tjz/+SHPf1KlTXba5U6dOIdcoe2UEetytt95qFSpUcM+h7LNKECKtUdbMtl7rVs1tkN7y5cvt2muvtaOPPtptW6NGDevRo4eb9MtPdreXQYMG2ZEjR6xv374hHTMQLgJlAABiTIGwssfpSwmUZS5Xrpy1b98+W/vT5FotWrSwFStW2M0332xXXnmlLV682C688EIXmEbi4MGDqTW/DRo0SHOfSjHOOOMMNxGYJvu677777Pjjj7eRI0e69ekD6+xu79GFQNu2bV35x5w5cyJ6PUBmKL1AQtu+bESGdeVP6xGTYwGAcJ1++ulWt25dGz9+vPXq1cut++2331w98D333OMyrdmhUg7NbPvMM8+k1jerRKJz5842evRoe/bZZ0Paz9q1a1NLFVSjrMB1xowZtnnzZhs+fLidfPLJqdsqw6vs9P79+10Aq6Dc06dPH3v88cddBlg11+Fsn97QoUPdsWibhQsXZhjA50cXC8FKLy666CKXdQcCESjnwBTWAACEk1VWRlVBn7KpEydOdFlmv7KLrKg7xbBhw9IMAlQZxt13322LFi0KeT/r1q1zHS7S04A41U0H+uqrr9z2yvQGBr3y8MMPu4BXdcXjxo1zs+Nmd/v0VJusgYavvPKKvfPOO658IyvffvutW/yUKVOGQBkZUHoRJep4sXLlymz9AgIAwKOgr1ChQq7cQpRdbtiwYYbyhlAo01uiRIkM3TUqVarkyjJCpQBWmWRvUUb5gw8+cOUbzZs3d0G9Z+nSpe7Wr82ajkUD6f7++29bvXp1WNv7GThwoMu2qwNGsPZ6ge666640rydwUV00kB6BMgAAcaBixYp26aWX2ptvvmmfffaZCxDDySZLsCl5FSxH8sln+fLlXWeOF154wZVMKED1qD2qKBj343XW8LbL7vZ+qlWr5hJVa9asseeffz7s1wUEQ6AMAECcuP32211gqNpdTapx4403WjxSaYgEforqBefqtuFHNdeB22V3+2D+/e9/u7KJxx57LCaToCC5ESgDABAnVOqgiT80WE6dLsqWLWvxaOfOnakD8jwqExG/FnT79u1zA+nUpq5WrVphbR+MuoJoQJ8C7ieffDLCVwakRaAMAECc0Cx3U6ZMce3SNGNevHrqqafcbcuW/zfpkGqWNRGIOnWodCR932P1Rb7hhhtSB+Zld/vMdO/e3V1gKFDOTg02kBW6XgAAEEc0iE1LPAhsDyc7duxw3SqWLFnist3qrOFRhw1NfqKseLt27eyaa65xPZG//vprlzVWUKyWbuFunxllnnWcd9xxh+3Zsyes9nAqddFU3kAgAuUooT0cACDZpG8Ppw4TVapUcb2dFVRqMF0gTXKiqa1VL/zpp5/an3/+accee6zL+Grgn2YJjGT7zNx2220u071q1aqw2sNpOnACZaSXL0U9URA1GoShHzb9sGc1AAGRY8KR3LNx+LwM66r2+b+PXQEASLZ4jRplAAAAwAeBMgAAAOCDGmUAQMKUVsWL8qcxixuQF5BRBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8C5ShOOFK7dm1r2rRptHYJAACAGCJQjpKuXbvaypUrbdGiRdHaJQAAiJKRI0e6KbI1VbVmBPz+++8jfszTTz9tderUsRIlSliZMmWsdevWtnDhwjz/nj2dROeFQBkAACS8Vq1a2YQJE3zve/31161v3742cOBAN4X1iSeeaBdeeKGbnS2YUB6jIFrTZiuAnj9/fuo227dvt7zs+CQ6LwTKAAAg6TOcd999t91yyy0u0/niiy/aP//844LhSB5z5ZVXugCwZs2arvzyiSeecFMiL1++3PKyK5PovBAoAwAA27x5s40YMcIuuOACq1atmhUuXNiOOeYYu+qqq8L+2FzliO3atXMfvxcvXtyaNWtmb7/9dobtlAnOly9fpkubNm3COoaDBw/a0qVL7bzzzktdV7BgQZeB/vrrr6P6mOeff97Kli1r9erVs9z06quv2l133WVNmjSxIkWKuPMVLLsezvsTiViel2hgZj4AAGDPPPOMDRs2zGUBFSxXrFjR1qxZY1OmTHGLMqnXXXddyGdqzpw5Lquo+t7rr7/eSpYsae+9957bx8aNG61Xr16p2zZo0MAeeeQR3/28++67tmLFCrevcGzbts0OHz5slSpVSrP+6KOPtnXr1kX8mC+++MLatm1rf/31l7uwmDlzppUrV85y04MPPmi//PKLVahQwSpXruz+H833JxzxcF6igUAZAADY6aefbnPnzrVzzjknQ8CjbO4999xj7du3dxnLrKhE4Y477rD8+fPbvHnzXCAsDz/8sHue/v3729VXX+1qWUX3e9ukz0aOHj3aZXNvvfXWNPcNHjzYLR4FZAsWLLBu3bqlrtu7d2+Ov7PK4n733Xeu/vaFF16wa6+91mXgFbRmZtKkSdayZcvUc5CeAnUNJtTrUXY/MyoLOemkk9y+hg4dag888EBU359+/fq5i6jMpKSkROW8xBtKLwAAiJH169dnWXKgRR+P50ZdafogWc4++2w799xzbefOnfbDDz+EtK/Zs2e7zGuHDh3SBMClS5d2QZgC4IkTJ2a5H2WyFWhdcsklGbK7qh9WIOYtCswee+yxNOtEgVmBAgXs999/T/P4P/74w2U6/WTnMUWLFnWD1c444wwXsCr4HD9+fKava9OmTS5QVSmHX/b3yJEj7sJAWV2VLWRFJSLBAu5ovD+9evWyVatWZbqkF8558Sizre9FZfCV8T722GPda9T63EZGGQCAGDl06FCakoMlS5bYRx99ZBdffLEL/DzNmze3WCpUqJC7VWY3FMpMi0o40vNKKD7//PMs96MASzp37pzhPn2MH/hRvgIzBVYKzgIpG9uwYUObNWuWC7i9jKqOcdCgQb7PG85jAjOrBw4cyHSbKlWq2BtvvOGyrLoI0X5VFx4YJL/22mtuIGGXLl0s2rL7/lSsWNEtkQjlvMi4cePca1YJyRVXXGHly5e33377zb755hubPHmyq5nPTQTKAIC4VP60HpbsTj75ZHv00UdTv9ZH5gqUe/TokWYgWTAafLdr166Qn0+lE34lDpn59ddf7bPPPnOBS6iDsVTbLCoHSE8ZWfXX9bYJRplWBaoKKi+66CKLRM+ePe3222+3xo0bW6NGjVwXBgX9yqh6VOKhQEzPGepj1D7usssuc8e4Y8cOGzt2rMsWhxLMKQhUsHzDDTe4zLKCV+2nY8eObnDejTfe6DKwysRGWzTen8xEcl50caQLFX0ioAufQLFoL0egHMWZ+bSopggAgHB4E1qcdtppIW2vQDmUgVue6tWrZytQVsb75ptvdplA1aiqHCEUagXmfZTvp1SpUqnbBKMgUdlVBY6hPm8wCm63bt3qygpUTqFs/YwZM9xxBA7gCxyoF8pjtmzZ4gbCqSRD2W3Nzqua7lNPPTWk41IdsOIGBcXKLOs51HVC+1TpQ04EydF6fzIT6XnRJxjepxiBlF3ObQTKUZyZT4sakQf7xgMAIKtAWRm99Jm0YDZs2JBjJ9QLUjXYS/W0Cphzi55bgbLqszt16pStcoJgunfv7pZglNkPzO6H8hgNyIuUukyorOOmm26yn3/+2WX9lVGO9OIgliZFcF4UYPfp08fq1q3rLlZ0AaFZEQMvUHITg/kAAIgDymgqE1e/fv1YH4oLVBWgqiWcArhnn302W4/3EkbBspJZJZVU6qGSD019XKNGDUtmqt3V4DqPWuGlH0QYbZG+Pzmpd+/e9tJLL7kBfE8++aSr11cmWRcQGvya28goAwAQB5YtW+ZusxMo50SNsoLk2267zV555RVXP6uJK7JbAuDVvqrOVTW+gTQwS23b1IYsnEF8yRYk33nnnfbyyy+7zPKll17qBvIpi6o+xwoWc0Kk709O8j5F0KKaZJVsqJZbJSk6Xv2c5Ga2nUAZAIA4sHr1anerKX9DFe0a5cAgWYGbPkIPJyhRa68hQ4bYp59+6j5KD6Q6X28bPwqOPvjgA1fbqgFv0aKexE899VRqvbHGFQW7KNGxqxWZ3pNixYq5Yx0+fLg7fx6VaQwYMCDN4xR0Ll68OOQgWbPp6aJA3S/U5ULnWhclKnPxumFoEGW0RfL+5CYvk6xFn7go87527VqrVatWrh0DpRcAAMQBfdwtmiEtVKpRVsAV6qKa46zKLRQkX3PNNSHXyWoA3I8//ugG/nk0QckJJ5zgSje8fsbeR/2aJERdDdT6zI+Cc/XxVclHKJObhELHoU4MAwcOtG+//da1kFMbNO+cp6fWaP/617/cBBnTp093nRs0y5xqiQMp0P7vf/+bunhBZlb0XmgCF28iDi9IFmXxdQ50XhUsK8MbbZG8PzlNFwfpJy/R95beA1Ff5dxERhkAgDhpFScK6NQzVpOMaOa23KLJOtRpQa3BdCx+/YL9SjcUdCmrrfpRL+OqNmrKlCoY1WsInCJZ26rVWmB2NpDqU6NddvH000+7CUq84E/HpkGTChS1Pj0Fx4EU0CqwXLlyZZqOJHqdwSYtyYxq0dWKThckCpLT96dWsKxgUcerem1dNGRGr+fLL790//cmhdE6b4CjBsMFns9I3p+cpu8xDdxr1qyZm0RFQbKmv9a5D5wtMLcQKAMAEAfUd1bdkxS8qRVbdvsdR8rroKH61P/85z8Rt5dTNlTBmyZUeeutt1zAoz7Mem0q6/CjC4Tly5e7+thQezZnRdnppUuXppnYRYGiehd//fXXvoFyet6gt8AJTkQz0qk0onjx4m4GQ5UzhBI4H3fcce65NclIsElc1PFBJSLeBVRmdJ7Tz3T41VdfucWT/sIjnPcnN+gc6kJF3wvqKa5zW7NmTTcRifpa57Z8Kenz24iIN1JUP1SxamWSl2xfNiJPTlIQCxuHz8uwrmqf3Mt2AUA4lL1VYKrAS/18PZr9TeUNWZVLqM+xMq8qA/n4449T13/yySfuouKUU06xzZs328MPP+y+VlAerZIRxD5eI6MMAAASTr9+/Vz2MzOR5gL1eGWc1aouMDsrqln2KBOrgXzKEE+dOjXXp1lGziFQBgAACadXr16ZDk70VKhQwQ2US9+bWLPGZVYmoSBZWWfVCGvSlYoVK2b6PLpfpSmx6PWLnEOgDAAAEo4C06yCV1EHh4YNG9qsWbPskksucevUvUID3fwGLHpBsurFVWqhDhhVq1bN8nl27tzpBsLFahAccgbt4QAAQFLr2bOnm11QLe/UPUGTfGgQnQbMeUaPHu06eIiCZE1yoYGVRYsWdS3atGhgoOf+++93mWYNgtSguMsvv9zVQqtbCZIHGWUAAJDUFBBv3brV+vfvnzrhiAbxBQ7i0oQWGtwn6rAg6mQRSLPlqVuGbNy40bVV0+MqVarkJuhQ/2NNUILkQdeLKKPrRe6i60XuoesFACCvxWuUXgAAAAA+CJSjRHPG165dO02PRgAAACQuAuUoUeG/BggsWrQoWrsEAABADBEoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAcTjgB5wIjVKzKs61GrTkyOBQCAREFGGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMqIie3LRvguAJBXbNiwwfLly+eWY445xv755x/f7VatWpW6XfXq1VPXT5gwwa0bOnRomu1btWrl1h911FH2yy+/+O7zlFNOcdsEmjt3burzBFu070Dp7y9YsKBVqlTJLrnkEvvss88s2h577DH3PIUKFbLffvst6vsH0qM9HAAAMaTg8vfff7dp06bZZZddluH+l156yfLnz35e68CBA/bggw/apEmTsvW4xo0bu0DXT2Cg7ilfvrx169bN/f/vv/+2FStW2Mcff+yW119/3W644QaLhpSUFBs/frwLlHVRMXHiROvbt29U9g0EQ6AMAEAMnXXWWfb999/byy+/nCFQVkD46quv2nnnnWeff/55tvZbs2ZNF6jef//9dtppp4X8uCZNmtijjz4a8vYVKlTIsP2bb77pAuQHHnggaoHyrFmzXBb+zjvvdPvX+SJQRk6j9AIAgBgqWrSoXX/99S4D+8cff6S5b+rUqS7b3KlTp2zvd9CgQXbkyJGYBJPXXXedFS9e3JV+bNu2LXX97bff7jLC8+bN833cU0895e5/4YUXfDProkD5mmuusZ9++sm++OKLHHwVAIGyL13B6+pbP6y6agUAICcpENbfnvRlEsqalitXztq3b5/tfaqeuG3btjZ9+nSbM2eOxbK0xHPzzTe7W2XJ/ej1FylSxAXCgXbs2GGTJ0+22rVru9KQW265JU3wDOQUSi98jBw50rZu3ZpjJx2IZxuH+2d6kmXqbmH6bsSb008/3erWretqcHv16uXWabDaJ598Yvfcc48LHsOhgX4zZsxwWeWFCxdmGMDnZ/HixUFLLy666CJr1qxZlvtQkmnfvn1Wp04dK1OmTOr6c845x6pVq2bvvvuuPfPMM2le1/Lly+27776zq6++Os1j5LXXXnM1116gffbZZ7t66XfeecdGjRplpUqVyvKYgHAQKKezadMmGzBggI0ePdpuvfXWsE4qAADhZJXvu+8+F9CeccYZbrCasszhlF149OnoTTfdZK+88ooLKq+99tosH/Ptt9+6xY8C2PSBskorvMA6cDBfiRIlbNy4cWm2VaB+44032pAhQ9w2V155Zep9XjZdxxtsQKN3n/aj/6u8REG5yjGAnECNcjo9evRwgylatmyZIyccQM5lj9MvQCJR4Ke2Zyq3EGWXGzZsaA0aNIhovwMHDnSZW3XACNaCLtBdd93lOkz4Lfobmd727dtdgknLsGHDXF216pNnzpzpMr/peVnhwDIT1VJr4KE6aLRr1y5DhluDHc8991yrUqVK6nrKL2B5PVBevXq1+2imY8eOVq9ePVfnpKtIXUGGQlfPqtEqW7as+6GtX7++DR8+3A4dOuS7veq4Pv30U3v88cej/EoAAMhcxYoV7dJLL3UZUvUg1t/ASLLJHpU6dO3a1dasWWPPP/981N+GWrVqpQbSO3fudAG+AvIrrrjCNm/enGH7U0891dUZqx2etvd6OOsTXQ0C1MVCIK8O2QuMPSeddJLLbn/zzTcuiw3kuUBZH9nce++97uMn1S4dPnw45MfqqlcfMX311Veu9kt1Vb/++qur02rdurX99ddfabbXx0XqA/nII49Y5cqVc+DVAACQOXWF2L17t0sQacIQlSlEw7///W9XNqEJO/bu3Ztjb4OeQ8eu8kXVWCtA96Os8sGDB+3tt99Ok132ss0e/a1+44033P9VDpl+gpMFCxa4+xjUhzxZo6yBDb1793YfPTVq1MgGDx4cUuP0KVOmuAF5qo9S30k91qujUpD85Zdf2kMPPWRPPPFE6mO078KFC7vAHJkLNoNe+dMyfiQHAAjdhRdeaMcdd5zLxKplnD4RjQZ1zlCiSH2Nn3zyyRx/S5QJHzt2rH3wwQc2f/581ys6kHor6++7ul8oU/z+++/biSeemKH+WYP+/vzzT1d+oiy0Hw30U2yggYv6Ow7kmUC5c+fOab4OdWYiBb3Sr1+/1CDZa4quH1zVTOlqV8Fy6dKlXZ9HlWToh02jdEVX9LJ//373Q6rtAETWOaNqH2r/gcwUKFDAJXtUhhBpbXJ63bt3d3/7FCgXK1YsR98IZXv1Ce3ll1/u/tZqspBARx99tF1wwQWuq8eIESPc31wNZEzPyxSrv7JqlP3o77Syzh9++KHrmAHkmUA5HLoKX7Rokft/hw4dMtzfokULq1q1qm3cuNHVR+mqdv369a7tjN8PmD4GU5Y5Jz+qAgAgcGY8LTkxsYm6U9xxxx22Z8+esNrDqRxESahQaGC8ssCzZ892n+6qNVwglVno77ACar9uF2vXrnUTk6gNnMYbBXPbbbe5QFlBNYEyoi3pAuWlS5emfsxUo0YN3230C0iBsrZVoKyr9vTN2FVbpft0JXz++ecHfT4F2Fo8XiYaAIB4o6BS2dlVq1aF1R5On66GGiiLAm4NUNTf0vSz8SnbrP7H+rt55plnuim3A6n7hwYIerXJwbRp08YlwDQYX3/b9X8gWpIuUFZ22BvlG4z3Q+Rtq8EH6a9WNZ+8aBYgv/Y2HvWCVEscINEEa592Va4fCZA3KVOqQDBUGnQeSIPmtKSnDhKZlXasXLnS9z79HczO8UhW219yySVBt1GGW6WNmZVReqWUmVFZpgbrAzkh6QJl7+MktYMLRoP8opX91cCIwLoq7ZOrWeQ0ZpwDACDnJV2gnNtX+mriHu7UokA8Wrjdf/r2M8pXzPVjAQAglpIuUC5ZsqS79bpX+PEG5jE3PADEr3ieXbFHrTqxPgQAeX3CkXAzwaKC/mC8+7xto2HMmDGunrlp06ZR2ycAAABiJ+kCZU1O4s097w3W82t9I4E9liOl2Yc0QMJrTQcAAIDElnSBcpUqVVKzuq+//nqG+zUrnzLKqitu165dDI4QAAAAiSDpAmXp37+/u9V0lkuWLEldryxzly5d3P+7devGbHsAAABIzMF8CnK9wFbWrVvnbp977jmbOnVq6vrJkydb5cqVU79u3769m01v1KhRbt54NSNXuzhNoblr1y5r3ry5DRw4MKrHqhplLYcPH47qfgEAABAbcZ1RVk/ihQsXpi7btm1z6zdt2pRmfeDMeJ6RI0faW2+95Wb7mT9/vpsmU2UZyjJrOk01Oo8mapQBAIhP77//vptlV7P2apY/b1KxrGIQffqsuRGKFSvmkm4//vhjxPvNC55++mmrU6eOm7dCk7q1bt3axWuJKK4DZW+WoKyWYN0rrr32Wje/vGb+2b9/v/3www/Wt29fK1y4cK6/FgAAkLMxw4QJE3zvU8vYli1b2mOPPRby/jp37uzGNSnp9t1339kpp5zigmKvxWy4+80Ljj/+eDdV+vfff++SlSeeeKJdeOGFrgQ20cR16QUAAECkbr75Zne7fPnykLb/66+/XLb4448/trPOOsute+aZZ+zdd9+1N954w+64446w9ptXXHnllWm+fuKJJ+yFF15w5+mcc86xRBLXGWUAABA7w4YNcyUFWhYsWJDtx6tlqjpM6eN3jRXSuKG33347atvnlH/++ceNOQos08yfP7/7RPqrr76yePPqq6/aXXfdZU2aNHFdvfR+Bcuu5/b5PnjwoD3//PNWtmxZq1evniUaMspRwmA+xIN4nskMQGJR9u+RRx5xAVRms90GM2fOHPdx+1FHHWXXX3+9mzn3vffes+uuu861ae3Vq1dE2+ckPfcZZ5zhSirUalZBnsY+aYzUf//7X4s3Dz74oP3yyy9WoUIF19xA/89KTp/vL774wtq2beuy88ccc4zNnDnT1XInGjLKUcJgPiD6Qb/fAiDnHTp0yG699VZr0KCBXXHFFWFlZFWeoCzsvHnzXEbxySefdDWrJ598smvjGhjMZXd7GTx4sBss5i0KzO6+++406yLN0irIq1SpksssT58+3S666CJ3jNEwadKkTANaZbRV56uMbFZefPFFN5Bw69at7hxkJbvnu1+/fqmfLARb0lN2W7XdqlFWwKxxY15ThkRCoIyEsH3ZCN8FABKZZpDNKgDRktsTZP3nP/+xFStW2Msvv2wFChTI9uPVXUotXTt06OCCbU/p0qVdEKbgb+LEiWFvLwoIFYh5iwIzZYAD10VCA9BUZqHuF1u2bLHPPvvMdu7caTVq1LBIKTOtQFUDEP2C5SNHjrgLFWV1FcRm5bzzznMD6EKV3fPdq1cvW7VqVaZLerq40DlUZl6BvILy8ePHh3R8ymyrlvnoo492Ge9jjz3WvUatz22UXgAAEMPMrcobAucP+Oijj+ziiy92gZ9H/f9zi45BgbKCztq1a4e1j7lz57rbCy64IMN9+rhf1JUq3O1FH+MHfpSvwEyBlYKzaFJJgpaff/7ZFi9ebI8++mjE+1S7Wg0KVJb13HPPda+/WrVqaYLk1157zW655ZY080lES3bPd8WKFd0SCXUp82vnm964cePca1YJiT7NKF++vP3222/2zTffuHkzrrrqKstNBMoAgLjUo1YdS3b6mDsw8HrggQdcoNyjRw+XQcvKiBEj3ERaodKEXIEZxPQUyCg40zZ9+vSxcK1Zs8bdnnTSSRnuU72qyiK8bcLZPrt27Nhhv/76a+rEZStXrnTnTcGpF2yPHj3aBWKanExUaqEsqAJvbd+9e3d3AaPyi+zsNxgFgQqWb7jhBpdZVvCqALpjx46u7OPGG290GdholXoEyunz3bdvX7vsssvc69E5Gjt2rMuihxLkKvusQZP6REAXPoFi0V6OQBkAgDihGlE57bTTQtpegXIoA7c8mncgs0D54YcfdgHSt99+G1bJhUfzF3gf5fspVapU6jbhbJ9dH374od12222pXyvgFQWiCkxF9bNewCsqs1AZwubNm13AdtNNN2XIJoey38xcffXVrhZZQbEyy/oUQV0nNLhOpQ85ESTnxvnesmWLew1//PGHu2Bo2rSpqyE/9dRTQ3p8oUKF3JKessu5jUA5Suh6AQCIRqCsjF76TFow0ZwJ7uuvv3b9bhUM1q1b1xKNV07gR0FrVoGrXndgIKxMr5bMhLLfrKjLhAbXKRBXeYey/sooR3KhEmuTJk0K+7EKsPVphr4HVUOtC4gWLVq44D0WCJSj2PVCi4r+g12hAYgcnS+QrJTRVCbOqxHNTQrUVBerTLY6HETK+zsYLCupv5VquRbu9slEtbsaXOfRIMrff//dDWDLKfF8vnv37u0yx6pVVicOXbwVLFjQZes1NXY0BlNmB4EyAABxYNmyZe62fv36IT8mWjXKmpbZq0lVfaifM888092qjlf7yYxX+6p9Nm7cOM19Gpil5zv99NPD3j6ZguQ777zTdRdRZvnSSy91FyzKoqrPcU4Fy/F8vvPly2edOnVyi2qSVbKhWm6VpOh49XOSm9l2AmUAAOLA6tWr3W12Ok1Eq0ZZs7ndfvvtvo9Rn10FKBqcpc4H2kdW1NpryJAh9umnn7qP0gPNmDEjdZtwtw+HJgxRX2Jla1ULrJLJUC9K7rnnHnv22WfdNNbdunVLXa9jVssyvXfFihVzxzh8+PCQzpGCZM2mp8Fr6n6hLhcKAFWXrKmxvW4Y6v4QbblxvqNBmWVdlGnRJy7KvK9du9Zq1apluYVAGQCAOKCPu0WtyEIVrRpltVZTwOZHNbgKlNWRQ1Mcp6cBcGpzV7NmzdQBWG3atLETTjjBzWp37733pgbn+qhfE4Uoa63uGp7sbp9d2q86MagnsTKojz/+uCtx+emnn7KsfZ06daqr3/bL7qqF2r/+9S83WE0dQ+6//343ucYPP/zgygUyC5IVfL/wwgtpgmTx6qIDg2XVrUdTTp/vSOj1KkgPnMRE31/qniHqq5ybCJQBAIiTVnGigE49YzXJSMuWLS3eKehSVluTp3iZVAWJCrwVjOo1BE6RrG1VdxqYdc3u9tml2lZNUOIFf3ouBZ8KFDObyU7ZZwW006ZNc2UR6amFXCAFvgpA1SYus84lqkVXCcs111zjguT0QbWCZQXTOl5NdKKBfpnR6/nyyy/d/xWke+u8AY4aDNe5c+dcO9+RUPZYFy+6KNMkKgqSNf21zqm6hGRnYpVoIFAGACAOqLRBg8IVvA0bNizTNm6JQNlQBW+aUOWtt95yAU+9evXca1M9bqTbh0qzzC1dujTNxC4KFNW7WJnizAJltX5TxlXHEQpvcFxWPZSPO+4499zqtxws86yODyoR8S6gMqPzln7mQs0qqMUTGCjn5PmOlEpCdAGii0X1FC9evLj7tEKD+4KVB+UkAuUooT0cACAS+uhdk15oiScTJkxwSzjlHxoQ9sknn4T8XNndPhSqbVWv4kqVKqVZrxZ8gX2T09P7sG/fPjd9cyj0HOrYoE8CNNFGVpR5zkooQXIo71Funu9IKYOvJV7kTCfrPEhZAH0ssGjRolgfCgAASU9t7FTHmtkSrh9//NEGDhwY8qQfKpNQZlqz9IUTsCJ+kVEGELaNw+dx9gDEhDK9oUz2UaFCBZetV71xIM0aF2yQ3IIFC2zr1q1u+urAjLGmsVZtr6ZXDgySu3Tp4mqJ1SFEnUGQPAiUAQBAwlFAGkpQqg4ODRs2tFmzZtkll1ySOsGKBroNGjQo6IAy1QcH0sA3BeaBU1YrSNYnyh9//LHrgFG1atWIXxfiC4EyAABIaj179nQDwdQarlGjRqmzvWnAXGBNsjpRKKAuU6aMWwKp9Z16GgdmmRUkazIMDTpTiz1N1uEN5gs2cQsSC4EyAABIagqIVUrRv3//1AlHNLFGYA9lDfrLbHCfH3VikLPPPjvNes2qp64aSHwEygAAIOmpvlhLMI8++qhbstPdQ6UXSG50vQAAAAB8EChHsY9y7dq13TSWAAAASHyUXkSJCvq17N6920qXLh2t3QI5psrLP3J2AQDIBBllAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+aA8HIM8ZsXqF7/oeterk+rEAAOIXGWUAAADAB4EyAAAA4INAOUqYwhoAACC5EChHiaavXrlypS1atChauwQA5BHffvut3X777XbSSSdZ8eLFrWjRolazZk27+eabbebMmRm2/+eff2z8+PHWrl07O+aYY6xw4cJWunRpa9q0qT344IP2yy+/pNm+evXqli9fPrcsX77c9xgOHz5sxx13XOp2GzZsyLHXCyQKAmUAAGLkyJEjdt9991mTJk3slVdesRNOOMHuvvtu6969uzVu3Ng+/vhju+CCC2zgwIGpj1EQrO07depkS5YssfPPP9969+5tHTt2tKOOOsqGDh1qtWrVsrVr16Z5rvz587vl5Zdf9j2WTz75xLZs2WIFCzLOH/Dw0wAkYHcGAMlB2d+nn37aGjRoYO+++67LIgf666+/bPTo0bZ9+3b39Z49e+zCCy+01atX2/333+8C6CJFiqR5jAJkBd979+5Ns75QoULWsmVLe/XVV23YsGHu60AKoJWVrl+/vs2bNy/HXjOQSMgoAwAQAwpohw8fbuXLl7fp06dnCJJFJRgKiAcMGOC+fuKJJ1yQfNNNN7nHpg+S5cQTT7QPP/zQateuneE+ZaG3bt1qH330UZr1Wjd16lS74YYb3HMC+P8IlAEAiIEJEya4uuC77rrLKlWqlOm2XkDslU08/PDDWe5fdcvpXXHFFVa2bFlX3xxo0qRJdujQIRdIA/g/BMoAAMTAV1995W5bt24d0vaqTd60aZNVqVLFDfoLhwLuG2+80WWwf/vtt9T1CsDr1avnBgMC+D8EygAAxIAXqCrwzYntg1HWWF0zJk6c6L5euHChrVixgmwy4INAGQCAPKRhw4Zu8KBXfqFssso0VPcMIC0CZQAAYkD9j2Xz5s05sn1WWWUNCvzss8/szTfftEsvvdQqVKgQ8X6BZEOgDABADDRv3tzdzpo1K6Ttjz/+eDchyMaNG23NmjURPbfqlFWvrN7Lu3fvdpOdAMiIQBkAgBhQkFqgQAF7/vnnXXu2zBw4cMDdegHtoEGDstz/wYMHg95Xrlw5a9++vctOK/hWb2YAGREoAwAQA+p33KdPH9u2bZu1bdvW1q9fn2Gbv//+25566il79NFH3deagU+z7mkWv/79+6cG0IG0HwXBK1euzPT5NYPf5MmTbcqUKW7GPgAZMTMfAAAxosywgmHNzqcAWK3i6tat62bNU8CrGmLNyudlkEuWLGkzZsywyy+/3IYMGeIG5GmKa3XC2L9/vy1dutS1ndM01JqcJDPVq1d3C4DgCJQBAIgRZXKVMe7QoYONGzfOTR2t5ciRI1a5cmVXEnHbbbfZeeedl6ZWedGiRW4q6rffftsFzjt27LCjjjrK9VdWlvruu++2qlWr8r4CESJQBgAgxpo0aWIvvfRSyNsr46wAWksoNmzYEPK+NRkJgP+PQDlKxowZ4xZNR4rY2r5shO/68qf1yPVjAQAAiYvq/Sjp2rWrGzihj8MAAACQ+MgoAwjJwu0Z21edUb4iZw85ZuPweXF7dqv2aRnrQwCQC8goAwAAAATKAAAAQGjIKAMAAAA+qFEGEFMjVq/gHQAAxCUyygAAAIAPAmUAAJDURo4c6WY01OyFLVq0sO+//z7ix+zZs8fNgHjsscda8eLFrWHDhvbuu+9aXvb0009bnTp1rESJElamTBk3JfvChQstkREoAwCAhNaqVSubMGGC732vv/669e3b1wYOHGjffvutnXjiiW5q8N27dwfdXyiP6dmzp82dO9dNI/7DDz/Ytddea9dff70tW7bM8qrjjz/eTcmui4r58+ennrft27dboiJQBgAASZ3lVOb3lltucdnOF1980f755x8XDEfymAULFljHjh1dtvmEE06wBx54wEqXLm1LliyxvOrKK690gXHNmjWtdu3a9sQTT9iff/5py5cvt0RFoAwAAHwNGzbM8uXL5xYFhqHYvHmzjRgxwi644AKrVq2aFS5c2I455hi76qqrgn4MX7169dTnSb8oWxyugwcP2tKlS+28885LXVewYEG3z6+//jqix5x11ln2wQcf2G+//WYpKSn2zjvv2IEDB+ycc86x3PTqq6/aXXfdZU2aNLEiRYq4cxYsu+7RLMLt2rVz5REqG2nWrJnLjEfTwYMH7fnnn7eyZctavXr1LFHR9QIAAGSgLOAjjzziAql9+/aFfIaeeeYZF2Arq6hguWLFirZmzRqbMmWKW5SVve666zI8TtnYHj16+AbR4dq2bZsdPnzYKlWqlGb90UcfbevWrYvoMaNGjbJOnTpZ5cqVXSBdrFgxe//9961GjRqWmx588EH75ZdfrEKFCu5Y9P/MzJkzx2V9VXutUpGSJUvae++9596TjRs3Wq9evSI6ni+++MLatm1rf/31l7tAmjlzppUrV84SFYEyomb7shG+68uflvEXHwAgfh06dMhuvfVWa9CggZ100kkuaxmq008/3dXups+sKoBq06aN3XPPPda+fXuX/Qyk7Oajjz4a0nMMHjzYLR4FZcp4d+vWLXXd3r17LSdpsJ9qcT/55BMXoH700Ucu2Pzqq69c2UFmJk2aZC1btnQ1vX4UqGv/ej3KyGdGZSF6j7SvoUOHuhKQYFQ+cscdd1j+/Plt3rx57v2Vhx9+2L1v/fv3t6uvvjrNcfXr189d+GRGGXWPMtvfffedq0t+4YUXXO22PklQIJ+IKL0AACBG1q9fH7TkIHDRx+S56T//+Y+tWLHCXn75ZStQoEC261T9yg/OPvtsO/fcc23nzp1u8FskVD+sYMxbFJw99thjadaJgjMd/++//57m8X/88YfLdvoJ5TEKzB966CE3cO2iiy6y+vXru8yujmPs2LGZHvumTZtcsKpSDr/s75EjR9xFijK7Kl3IikpEggXc6c2ePdtlxTt06JAaJHvZfAXJKpeYOHFimsf06tXLVq1alekSqGjRom4Q3xlnnOGCeAXl48ePt1Apu63vH2XwlfVWVxG9Rq2PBTLKAADEMHOr8gaPBoIpM3nxxRe7oMvTvHnzXDsmHYMCZQWeWWVGs6tQoULuVqUK6am+V7W1W7ZssVKlSlnTpk1dsOVHH+UHfpyv4EyBlQK0QMrGqm3brFmz7JJLLknNqirjPWjQIN99h/IYvW9a0l9E6GsFupmpUqWKvfHGGy7TqgsH7Ve13IFB8muvveYGEnbp0sWiSc8lKolJT+UY8vnnn6dZX7FiRbeES9lmvbehGDdunHvNytBfccUVVr58eVcD/s0339jkyZNdnXtuI1D+H9UV6crwxx9/dL0RjzvuOPfRkK4YVYgOAMhdVfu0TPpTfvLJJ6cpN9DH5gqUVasbOJgsGA2a27VrV8jPp79rgZnE9BTQKEDTNn369LFo+vXXX+2zzz5zQZDf4C4FRLfddluadQqWFVSq3jlcauN2++23W+PGja1Ro0auE4MCdWVVPaNHj3aBmILjUB6jQF4Z8t69e7vHKuv54YcfunrcadOmZXlMCgL1um644QaXWVYAqwBaXTRU5nLjjTe6LKyysdGkWnFRqUZ6ypar/7G3TTj69u1rl112mXstO3bscNl1ZdBDDXCVgdaFij4R0IVPoFi1mCNQ/h+9ofpmvf/++91HEPpYaMCAAa7+yPvBAQAgJ3mTWpx22mkhba9AOavBW+kHxmUWKKtWVYGSegdnt+QiM8q+3nzzzS4QV71r+n0rQFbgWbduXRes/fTTTy55pVpe1TXrb7IGnYVDwe3WrVtdaYHKKZSpnzFjhgt2AwfwBQ7UC+Uxb775pgsMr7nmGtcCTdlsZcS9zGxWVAusWmQFxcos6znUeUID7FT+EO0gWXScojjHj16ft004tmzZ4o5fZSrK+OtCR7Xpp556arY+dfA+eQik7HIsECj/T+fOndOcGAXNqo2588473VWw97EIAAA5GSgrs5c+mxbMhg0bovbcan2mzKky3ApYo0XlBMqUavCYanMVMKcXWH4iCuZfeeUV938FyxoUdt9992VZUhBM9+7d3RKMXnP6gYRZPUZZZB1bJDT4T2UdN910k/38888u46+McjQvUnLTpAjPh4JsfZKh7z9drOgCQn2qAy9QchuD+TLh1T/pShgAgJykrKYychoYltsUrKk2VplsdTmIZpCsFmpqCadg8Nlnn83W49UfWNRJIhmpflcD7DwaQJl+EGE0eZnkYFljzTwYLNucG1TK8tJLL7mLkCeffNLV6iuTrAsIDXyNhbjOKK9evdo+/fRT9xGQFo2s1McUmlJSo0uzoubfY8aMcVfoGsmpj0X0EYdqj/zS+qL9KzBW/0iVXmikcSS1UQAAhMKb+jg7gXK0apTVSs2rTQ3WjuzMM890t6rl1X5CCZJVUqHMsGpxVZaQ3XICr6VYdvo4J1KQrE+t1VlEmeVLL73UXawoi6pexwoWo82rTdZ7rfrr9DXi+j5Qm7hYyZcvn7uw0qKaZJVtqJZbJSk6Zv2M5Ha2Pa4DZY1+VB/BcGgghB6r4vvWrVu7middtameSAMlFIBrlGx6unLxrrQ0KjTaM9UAABAsOSTZ6TQRrRpl9TTW4DU/KplQkKJBWup+EMoEIIFBsoJAfSQfToDjzeQXyaQjonhANc9evbGSaJldkGiAv2IQJenUzk7ZzPTHoGmuNfhM51+xhgb9DRkyJGinjvRBsrLlery6X6jLhc6PLiRUmuJ1w9DAx2hS2zUdo2IglTkEUg22t008KP+/TLIWfdqiGG7t2rVWq1atXD2OuA6UVaOiNLzatOgbUM3FQ6l/0cw/+qFQcKw2J3qs6EQraP7yyy9dNwvVYqWnb8z9+/e7gQNqA6MrPI1iTdR6IQBAYtDH3pKdQWvRqlFW4khBmx/VFytQVkcOTXWcngbB6ZNYffqqT2u9cgsFyRrollXNrbpNaRyQZrZLv17JLQnsUJFdKvvQftSTWFnUxx9/3A2404DBYLWvymBrQpDLL7/c/vWvf/luo97FCr71abUGKeqiRfvV+chs4JmCZE264k3G4QXJosy7BAbLwfo9h0MDI0844QR3Tu69997UiyYlCBVj6dMEdT2Jlbn/m6hGmWWPvrfUcEE0diy3FUykAXahfmTjzdajOisvSPY+wlGrEo2sVTsXBcvpa3G8bxrN4a7/65eCPmbS6FQAAHKyVZwoqFPfWJX+KViLdwq+lFX1sq7qv6yuDUpW6TX59SsOLAFR9wgFnN5MdZoyW0Gs2qwpSFKAHsl5UOZXE5R4AaAuCBR8KljUej/egEOVYWY2sUogJd8U/OoxmWVlVYeuuEIXEQqS0/eUVrCsYFrHq3Z6qu3OjF6PEoDiTeSidd4ARw2G8+IpPZfuU0Cvcxo4hbXeQ72GSLP3kdD3hS5eFHvpe0Hvv5KVK1euzDBjYG6J60A5HJs3b7ZFixYFvQLVN0zVqlXdfOb6IfSu3vwoyNZVjVL9AADkJJU2dO3a1QVwaqGWWRu3eOZluVXvqolLsioBUeZUY5CWLl3qalL1qa4SW7pQ0OQTfpNjhErjk7TfwK4aChbV2UpdPoIFyuE8jzLWmnfBr0d0IM3ToOdWFt1v4hUvflGJiHfxlBkFyeln09Pgx8ABkIGJR51vPUbn5K233nLBqI5Z33Mqk4mlIUOG2PTp092FospkddGkTypUBhOsNCinJV2grB8Ir2NFjRo1fLfRN58CZW2bWaCsbzJd1eljimD0cUvgjDPeR2cAAGSHPn7Xp51a4okG4WkJtfwjq+3TU/Y1p+piVXKpQfqVKlVKs17t9wL7JodLgX3btm3dlNbKUiv7GThjYDCZxRWeUILkcM63aMDeJ598YvHmnnvucUs8Sbr2cF77kMz6HiujHLit6GOI4cOH28cff+w+6lANk2qH1Cons9G9uvpR+Ya3ePsGAAA5Q6WV+sQ3syU3KPGmWeTmz5/vAmbFDQrOkTySLqOs6adF6fpgVDeVPvurqysNOPCCZ30spI981OA8WKscUe1UYBN07ZNgGQCAnNOrVy83yDArKuFQpj59b2LNHBeNQXIaBKnBfFrU7ULt1zT1tGb5RXJIukA5XOrNrCW71FJHCwAAyB1qU6clK0p0qXPWrFmz7JJLLkmdXEUD3fwGGUZK5ZqB5ZhIfElXeuG11cmsObkGGEgsp0QEAAA5T5OMaUZAfWqs7gma5EOD6AIH/KsuXN07PGpHppIKr7e1HqevvTZlXncSjWVStwiNedL03Js2bbKrrrqKtzWJJF1G2WtrosF6wXj3RbMFipqXa9GgAQAAEB8UEG/dutX69++fOuGIJtcITJaprjhwcN+HH37oJkzxaCplUVmFV/KhNm9qr6YyDg3ga9q0qRvcd+qpp+bq60POSrpAWR+xiKY+VL2xX+eLxYsXu9vAHsuRUksfLbGeJx0AAKTVvXt3twTz6KOPusWjYDirGuhQJkBD4ku60osqVaq4qzpRL8r01DtQGWXVFatHIwAAAJAnAmXRxysydOhQW7JkSep6ZZnVyUK6detG5hcAAACJWXqhINcLbMWrH3ruueds6tSpqes1FWTlypVTv1bfY81hPmrUKDcNogr01S5Oo1537dplzZs3D6vDRWaoUQYAAEgucR0oq9534cKFGdZrVKkWj18rlpEjR7qAWAGsGoFrikZNg6gm5RoBm1lv5HAka43y9mUjYn0IAAAAMRHXgbLmYldPwnBphhwtAAAAQHYlZY0yAAAAECkCZQAAAMAHgXKUqBa6du3aqa3pAAAAkNgIlKNEA/k0xeWiRYuitUsAAADEEIEyAAAA4INAGQAAAPBBoAwAAADkdh/lP//800qVKmX58uXLyadBEmGCEwAAkBQZ5eXLl7tpon/66ac06+fMmWM1atSwcuXK2dFHH20TJkywZEfXCwAAgOQSUaCsIPm+++6zokWLpq7bvn27tW/f3n755Rc3q56+7ty5sy1dutSSGV0vAAAAkktEgfJXX31lderUsapVq6aumzRpku3Zs8fuuusu27Vrl73yyit25MgRe+aZZ6JxvAAAAED8B8q///67VatWLc26mTNnWoECBWzQoEGuPvmmm26yhg0b2tdffx3psQIAAACJESjv3r3bSpcunWbdwoULrUGDBla+fPnUdSeddJJt3rw5kqcCAAAAEidQVsY4MABetWqV7dixw84666wM29L5AgAAAHkmUFbmeP78+bZ27Vr39UsvveQC4nPOOSfNduvXr7fKlStHdqQAAABAogTKGrB36NAha9y4satDfvrpp107uIsvvjh1Gw3s++6776xu3bqWzGgPBwAAkFwiCpSvueYae/TRR+2ff/6x77//3o4//nh75513rEiRIqnbvP322y6YTp9lTja0hwMAAEguEc/M9/DDD1u/fv3cwL4KFSpkuP/88893PZRr1qwZ6VMBAAAAiZFR/vXXX93gvcKFC/sGyaL2cVq0HQAAAJAnAmVNU33//fdnuV2fPn3shBNOiOSpAAAAgMQJlDVFtZZQtwUAAADyRKAcKnW+UHkGAAAAkGcG82XmyJEjtmLFCps9e3aGqa4BAACApMooFyhQIHWRiRMnplkXuBQqVMhNSrJ9+3a78sorLZnRRxkAACCPZ5QDa401C19mtccKlKtUqWJXXXWVDRgwwJK9j7IWtckrXbp0rA8HAAAAuR0oq5zCkz9/fuvYsaO9/PLLkR4HAAAAkDw1yo888oibuhoAAABINhEHygAAAEAyypX2cAAAAECeC5Q1jfU999xjJ510khUrVixoB4yCBXO0Ex0AAAAQVRFFrz/++KM1b97cdu3aleXMe8zMBwAAgDyTUf73v/9tO3futAsuuMAWLFhgf/75p+uKEWwBAAAA8kRG+fPPP3cz7n3wwQdMUQ0AAICkElFGef/+/Xb66acTJAMAACDpRBQon3DCCbZv377oHU0CYwprAACA5BJRoHzzzTfbvHnzbOvWrZbXafrqlStX2qJFi2J9KAAAAIh1oNyrVy8788wzrW3btrZ8+fJoHA8AAACQ+IP51O3i0KFDtmTJEmvQoIEb2Kclf/6M8Xe+fPls1qxZkTwdAAAAkBiB8ty5c1P/r/ZvGzZscIsfBcoAAABAngiU58yZE70jAQAAAJIlUD7nnHOidyQAAABAsgzmAwAAAJJVRBllT0pKin3yySc2f/581yrujDPOsE6dOrn79LWmua5Zs6YVKFAgGk8HAAAAxH+g/P3339t1111na9ascQGzBu2pE4YXKM+cOdP1W54yZYpdeuml0ThmAAAAIL5LLzZt2mTnnXee/fTTT66X8vDhw12wHKh9+/ZWqFAh++CDDyI9VgAAACAxMsqDBw+27du324gRI+zee+916/r06ZNmm2LFiln9+vWZsQ6AjVi9grMAAMgbGeXp06fbKaeckhokB1O9enX773//G8lTAQAAAIkTKG/ZssXq1auX5XaqW969e3ckTwUAAAAkTqBcvHhx19UiK+vXr7dy5cpF8lQAAABA4gTKyiZ/++23tm3btqDb/PLLL64zRuPGjSN5KgAAACBxAuWbbrrJ9uzZY507d7b9+/dnuP/gwYPWpUsX1y5O2yazMWPGWO3ata1p06axPhQAAADEOlC+7bbb3DTWH374oRvUd+edd7r1yiBrgN/JJ5/sJiJp06aN67WczLp27WorV66kuwcAAECSiChQ1kx7H330kd1www22efNme/HFF936pUuX2ujRo+3XX3+1q666yt5///1oHS8AAACQGDPzlShRwl577TV76KGHbNq0afbzzz/bkSNHrGrVqm4SkgYNGkTnSAEAAIBECpQ9Kr3QAgAAAFheL71Q2YWyxwASz6G9m3wXAAAQhUD58ssvdyUWffv2tVWrVkWyKwAAACB5AuVGjRq5qakff/xxq1u3rp111ln2wgsvMAsfAAAA8nagvHjxYlu2bJn16NHDKlSoYAsWLLC7777bKleubLfccovNnj07ekcKAAAAJEqgLMokP/XUU649nNrAXXLJJW6CkVdffdXOP/98q1Gjhj322GNuhj4AAAAgzwTKnoIFC1r79u3tgw8+cEHzE0884WaqU4A8YMAAO/HEE6P1VAAAAEDiBMqBKlasaPfdd59988031r17d0tJSaE7BgAAAPJmH+VAqlUeP368vf3226kD+8qVK5cTTwUAAADEd6Cs7hevvPKKTZgwwX766SeXRc6fP79dcMEFdtttt7myDAAAACBPBMoHDx60KVOmuOB45syZrrxCAXLNmjWtY8eObjnuuOOid7QAAABAIgTKagO3a9cuFxwXK1bMrr76auvUqZO1bNkyekcIAAAAJNpgvp07d1qzZs3cJCO//fabyywnapD87rvv2hVXXGHVqlVzQX+dOnXsySefdK3uAAAAkPdElFHWtNW1atWyZKB2dtWrV7fhw4dbpUqVbP78+fbggw+6CVUmTpwY68NDHjBi9YpYHwIAAAg3UNZgPfVD1lTVEhgkq7tF4cKF7aijjsrwuDfeeMMWLVrkJiaJVx999JFra+c599xzXUnJQw89lBo8AwAAIO/IVumFBue9+OKLvveVLVvWunbt6nvfp59+aiNHjrR4Fhgkexo3buxut2zZEoMjAgAAQFJMOKLsq5ZoWr16tT3zzDMuQK9Xr56b/S9fvnw2aNCgkB7/zjvvWKtWrVwQX7x4catfv77LDodadzxv3jyXJVcXDwAAAOQtOTLhSLSMGzcu7Ex0jx493GMVXLdu3dpKlChhs2fPtr59+7oyC2W5ixYtGvTxK1eudI+/8847rVSpUhG8CgAAACSiHJnCOlrq1q1rvXv3ttdee80NHLz55ptDepx6OyvIVXC8cOFCmzFjhr333nu2Zs0al5n+8ssvXe1xMNu2bXMTpKgee+jQoVF8RQAAAEgUcZ1R7ty5c5qvNdNfKAYPHuxu+/XrZ40aNUpdX6FCBRs7dqydffbZNnr0aBcsly5dOs1j9+zZY23btnWTqcydO9eVbAAAACDvieuMcjg2b97sOmxIhw4dMtzfokULq1q1qh04cMCmTZuW5j6tu/zyy23Dhg0uC33sscfm2nEDAAAgviRdoLx06VJ3W65cOatRo4bvNk2aNEmzrRw+fNiuv/56F2QrgA61P7SCa7XGC1wAAACQB0sv1q5d6/opZ+c+rc8t69evd7eaYS8YZZQDtxW1tlNt88CBA13QvGDBgtT7ateuHXRA35AhQ2zAgAFRfAVAbB3au8l3faESVXL9WAAASKhA+auvvnJLemrbFuw+tY3T/blBNcaSWW2xBvlJYPZ3+vTp7lZ1y+kH+s2ZM8e1mfPzwAMP2H333Zf6tfbpBeIAAADII4GysrS5FfDmNtUlh6NIkSJuAQAAQB4OlMMNJnNTyZIl3e2+ffuCbrN37153S39kAAAA5JnBfNWrV3e3GzduDLqNd5+3bTSMGTPG1TI3bdo0avsEAABA7CRdoNywYUN3u3379jSD9QItXrzY3Qb2WI6UBgNqNj+vNR0AAAASW9IFylWqVEnN6r7++usZ7tesfMooq664Xbt2MThCAAAAJIKkC5Slf//+7lbTTy9ZsiR1vbLMXbp0cf/v1q1bhln5AAAAgISYwlpBrhfYyrp169ztc889Z1OnTk1dP3nyZKtcuXLq1+3bt7d7773XRo0aZc2aNbM2bdq4dnGzZs2yXbt2WfPmzV2/5GhSjbIW9WAGAABA4ovrQFk9iRcuXJhh/aZNm9wSODteeiNHjnQBsYLX+fPn26FDh6xmzZrWr18/69mzpxUuXDiqx6oaZS06ZjLVAAAAiS+uA2VN8qHJSsJ17bXXugUAAADIrqSsUQYAAAAiRaAMAAAA+CBQjhImHAEAAEguBMpRwoQjAAAAyYVAGQAAAPBBoAwAAAD4IFAGAAAAEq2PMpLD9mUjYn0IAAAA2UZGOUroegEAAJBcCJSjhK4XAAAAyYVAGQAAAPBBjTKQB+z/fUGsDwEAgIRDRhkAAADwQaAMAAAA+CBQBgAAAHwQKEcJ7eEAAACSC4FylNAeDgAAILkQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgHCX0UQYAAEguBMpRQh9lAACA5EKgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4KOg30oASO/Q3k0ZT0r5ipwoAEDSIqMMAAAA+CBQjhKmsAYAAEguBMpRwhTWAAAAyYVAGQAAAPDBYD4A+J8Rq1dkOBc9atXh/ABAHkWgDCDqFm7fGuSe8pxtAEDCoPQCAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB90vQCSyP7fF8T6EAAASBpklAEAAAAfZJQB5JoqL/+YYd2mTqfwDgAA4hIZZQAAAMAHGWXkGduXjfBdX/60Hrl+LAAAIP6RUY6SMWPGWO3ata1p06bR2iUAAABiiEA5Srp27WorV660RYsWRWuXAAAAiCECZQAAAIBAGQAAAAgNGWUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfDAzH5ANI1av8F3fo1YdziMAAEmGjDIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAuX/Wbt2rd19993WqFEjK1SokFWvXt3vfAEAACCPYMKR/1mxYoVNnTrVTj/9dEtJSbGdO3fG9p0BAABATJFR/p9LL73UNm3aZO+//76dccYZsX1XAAAAEHMEyt6JyM+pAAAAwP+J6+hw9erV9swzz1jHjh2tXr16VrBgQcuXL58NGjQopMe/88471qpVKytbtqwVL17c6tevb8OHD7dDhw7l+LEDAAAgscV1jfK4ceNs5MiRYT22R48e7rEKrlu3bm0lSpSw2bNnW9++fe2jjz6yTz/91IoWLRr1YwYAAEByiOtAuW7duta7d29r2LCh60YxePBgmzRpUpaPmzJliguSFRx//vnn7rGybds2FzR/+eWX9tBDD9kTTzyRC68CedWI1St81/eoVSfXjwUAACRZoNy5c+ew6ogVUEu/fv1Sg2SpUKGCjR071s4++2wbPXq0C5ZLly4d5aMGAABAMojrGuVwbN682RYtWuT+36FDhwz3t2jRwqpWrWoHDhywadOmxeAIAQAAkAiSLlBeunSpuy1XrpzVqFHDd5smTZqk2TYSCrh3796dZgEAAEDii+vSi3CsX7/e3VarVi3oNsooB24r+/fvT80w//zzz+7rd999133dtGlTO/744333NWTIEBswYEBUXwMAAABiL+kC5T179rhbtYMLRoP8JDD7+8cff9g111yTZjvv6/Hjx7sWdX4eeOABu++++1K/1j69QBwAAACJK+kC5XBVr17dTV2dXUWKFHELAAAAkkvS1SiXLFnS3e7bty/oNnv37nW3pUqVyrXjAgAAQGIpmIyZYdm4cWPQbbz7vG2jYcyYMW45fPhw1PYJxLuF27fG+hASon92sN7Z9NpGots4fF6GdVX7tIzJsQA5IekyypqcRLZv355msF6gxYsXu9vAHsuR6tq1q61cuTK1NR0AAAASW9IFylWqVHFdKuT111/PcL9m5VNGWXXF7dq1i8ERAgAAIBEkXaAs/fv3d7dDhw61JUuWpK5XlrlLly7u/926dWNWPgAAACRmjbKCXC+wlXXr1rnb5557zqZOnZq6fvLkyVa5cuXUr9u3b2/33nuvjRo1ypo1a2Zt2rRx7eJmzZplu3btsubNm9vAgQOjeqzUKAMAACSXuA6U1ZN44cKFGdZv2rTJLYGz46U3cuRIFxArgJ0/f74dOnTIatasaf369bOePXta4cKFo3qsqlHWomMuXbp0VPcNAACA3BfXgXKrVq3C6m3sufbaa90CAAAAZFdS1igDAAAAkSJQBgAAABKt9CKRJPpgvu3LRsT6EBLjfBQ5P7cPBUkg2MQiAID4RkY5SphwBAAAILkQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHXS+iJNG7XuRldPwAAAB+yChHCV0vAAAAkguBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+aA8XJbSHy9tGrF6RI9tGS4239ub6cyaLd/u+57t+U6dTLBHbHpY/rUeuHwvylo3D5/mur9qnZa4fCxApMspRQns4AACA5EKgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB32Uo4Q+ykDeUuXlHxOyvzIAIHRklKOEPsoAAADJhUAZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPDBFNZRwhTWyE37f1/ACc/FaakBAHkTGeUoYQprAACA5EKgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACAj4J+K5F9Y8aMccvhw4c5fXHquV0lfdffVWZPxPve//uCDOuKVWpmye7Q3k2+6wuVqBLRucsr5y+YEatXZFjXo1Yd3223LxuRC0cEAHkTGeUo6dq1q61cudIWLVoUrV0CAAAghgiUAQAAAB8EygAAAIAPAmUAAADAB4EyAAAA4INAGQAAAPBBoAwAAAD4IFAGAAAAfBAoAwAAAD4IlAEAAAAfBMoAAACADwJlAAAAwAeBMgAAAOCDQBkAAADwQaAMAAAA+CBQBgAAAHwQKAdYu3attWvXzkqUKGEVKlSwLl262L59+/zOGwAAAJJcwVgfQLz4888/rXXr1nbsscfaO++8Yzt27LD77rvPfv/9d3vvvfdifXgAAADIZQTK//Pcc8/Z1q1bbfHixXb00Ue7dUWLFrWrrrrKvv32W2vcuHFuvzcAAACIIUov/mfatGkuo+wFyXLZZZe5MoypU6fG6v0BAABAjMR1oLx69Wp75plnrGPHjlavXj0rWLCg5cuXzwYNGhTS41VC0apVKytbtqwVL17c6tevb8OHD7dDhw5l2HblypV26qmnplmn5zv55JNt1apVUXtNAAAASAxxXXoxbtw4GzlyZFiP7dGjh3usgl1lipUZnj17tvXt29c++ugj+/TTT11phWfnzp1WpkyZDPtRkK16ZQAAAOQtcZ1Rrlu3rvXu3dtee+01l9W9+eabQ3rclClTXJCs4HjhwoU2Y8YMNyBvzZo1LjP95Zdf2kMPPZTjxw8AAIDEFdcZ5c6dO6f5On/+0OL6wYMHu9t+/fpZo0aNUter5dvYsWPt7LPPttGjR7tguXTp0qmZ4127dmXYlzLNJ510UoSvBAAAAIkmrjPK4di8ebMtWrTI/b9Dhw4Z7m/RooVVrVrVDhw44AbweVSfnL4W+fDhw/bTTz9lqF0GAABA8ku6QHnp0qXutly5clajRg3fbZo0aZJmW9FEI3PmzHEt4jyqZd67d69dfPHFQZ9PAffu3bvTLAAAAEh8cV16EY7169e722rVqgXdRhnlwG3lrrvuch02Lr/8cleSoZILTTiir73A2s+QIUNswIABUX0NyF3P7SqZYd1dZfb4brv/9wW5cETJ69DeTRnW1XjLf9vf7/VfX+XlH33Xb+p0SoZ1lUZ95rvt+utKBDm+vRnWFSpRxbLD7/j8ji27Rqxe4bs+tJEb/2f7shEZ1k0qcr7vtj1q1bG8auPweRnWVe3TMibHgtzh97NR/rQecbPv7Owj2O8LP1d9sN13fbDv9+157HdI0mWU9+z5/wGO2sEFo0F+Epj9VccLdcUoVaqUXX311favf/3L2rdvb6+++mqmz/fAAw+4Wf28ZePGjVF7LQAAAIidpMsoR0I9k6dPn56txxQpUsQtAAAASC5Jl1EuWfL/f4y+b9++oNuo7liUPY6WMWPGWO3ata1p06ZR2ycAAABiJ+kC5erVq7vbzEogvPu8baOha9eubnY/r+MGAAAAElvSBcoNGzZ0t9u3b08zWC/Q4sWL3W1gj2UAAAAgqQPlKlWqpJY/vP766xnu16x8yiirrlgt4QAAAIA8EShL//793e3QoUNtyZIlqeuVZe7SpYv7f7du3VJn5QMAAAASquuFglwvsJV169a52+eee86mTp2aun7y5MlWuXLl1K/V1u3ee++1UaNGWbNmzaxNmzauXdysWbPcNNXNmze3gQMHRvVYNZhPi2bzAwAAQOKL60BZfY4XLlyYYf2mTZvcEjg7XnojR450AbGC1/nz59uhQ4esZs2a1q9fP+vZs6cVLlw4qseqwXxadMxkqgEAABJfXAfKrVq1spSUlLAff+2117oFAAAAyK6krFEGAAAAIkWgDAAAAPggUI4SZuYDAABILgTKUcLMfAAAAMmFQBkAAADwQaAMAAAA+CBQBgAAAHwQKAMAAAA+CJSjhK4XAAAAySWuZ+ZLJN4U1n/++aeVKVPGTWWdSPbs/duS3d/7Qv9231Pw74j3kX/vXsspf+/7K1vb7z+Yu+9voQP7fdcfysZx/B3k/O0Psm+/7YO97r/3FfDft8/2wV5LdgR7LdGw50Dk7+3fh/yPL9F+j0XTnr/3ZViXl89Hds5TMPF+/vz+DhaK0jFHY9/Z2Ud2fucEew+DvV97fI4jEX+HeMeW1QzQ+VIimSMaGWzatMmqVq3KmQEAAIhzGzdutCpVqgS9n0A5yo4cOWJbtmyxkiVLWr58+aK9e5hZ06ZNbdGiRUlzLuLx9cTimHLyOaO972jsL5J9hPNYZU90Ea8/CqVKlQrreZEz7008i9fXk9vHldPPx+8oy/XfUcoT79mzx4499ljLnz94JTKlF1Gmk53ZlQkiV6BAgaT6Qx+PrycWx5STzxntfUdjf5HsI5LH6nHx9v2WTOLx5zkZX09uH1dOPx+/o2LzO6p06dJZbsNgPiQc1YInk3h8PbE4ppx8zmjvOxr7i2Qf8fg9g+R8b+L19eT2ceX08/E7Kn5RegEAeYA+1lT2RAOO4zFDCCBv2x2nv6PIKANAHlCkSBF75JFH3C0AxJsicfo7iowyAAAA4IOMMgAAAOCDQBkAAADwQaAMAAAA+CBQBgCE7N1337UrrrjCqlWrZsWKFbM6derYk08+aYcOHeIsAoi5tWvX2t13322NGjWyQoUKWfXq1SPaHxOOAABC9sQTT7g/PMOHD7dKlSrZ/Pnz7cEHH7Rly5bZxIkTOZMAYmrFihU2depUO/30093sezt37oxof3S9AACEbOvWrVaxYsU06wYNGmQPPfSQ/fbbby54BoBYOXLkSOqU1MosT58+3TZs2BD2/ii9AACELH2QLI0bN3a3W7Zs4UwCiCkvSI7a/qK6NwBARFavXm3PPPOMdezY0erVq2cFCxa0fPnyuaxtKN555x1r1aqVlS1b1ooXL27169d3ZRI5WUM8b948K1y4sNWsWTPHngNAfFidgL+jIkGNMgDEkXHjxtnIkSPDemyPHj3cY/WHq3Xr1laiRAmbPXu29e3b1z766CP79NNPrWjRolE93pUrV7rnvPPOO+Nq2lkAOWNcgv2OihQZZQCII3Xr1rXevXvba6+9ZqtWrbKbb745pMdNmTLF/QHSH56FCxfajBkz7L333rM1a9a4rM+XX37p6ogDTZgwwWWCslrU6cLPtm3brH379nbiiSfa0KFDo/L6AcS3ugn0OyoayCgDQBzp3LlzWPV2gwcPdrf9+vVzbZE8FSpUsLFjx9rZZ59to0ePdn+ISpcu7e5Tm7dmzZplue/jjjsuw7o9e/ZY27Zt7eDBgzZ37lz3ESqA5Nc5QX5HRQuBMgAkuM2bN9uiRYvc/zt06JDh/hYtWljVqlVt48aNNm3aNLvhhhvcev0x8v4gZceBAwfs8ssvdyPJlQU69thjo/AqACSrzbn8OyqaKL0AgAS3dOlSd1uuXDmrUaOG7zZNmjRJs224Dh8+bNdff737o6c/aLVq1YpofwCS39Jc/B0VbWSUASDBrV+/3t1qtrxglK0J3DZcXbt2dbWGAwcOdEHzggULUu+rXbs2A/oAxPR31P79+91FvPz888/ua6+GuWnTpnb88cdna38EygCQ4FQvLJnVCWsAjezevTui51LzflEdYfqBN3PmzHFtnwAgVr+j/vjjD7vmmmvSrPO+Hj9+vGtrlx0EygCAkEUywxUA5LTq1au7qaujhRplAEhwJUuWdLf79u0Lus3evXvdLb2OAeS2kgn8O4pAGQCSIIMiGjEejHefty0A5JbqCfw7ikAZABJcw4YN3e327duDDoRZvHixuw3sXwoAuaFhAv+OIlAGgARXpUoVN5pbXn/99Qz3q9exsjVFihSxdu3axeAIAeRlVRL4dxSBMgAkgf79+7tbTSW9ZMmS1PXK4HTp0sX9v1u3bjFv3g8gb+qfoL+j8qVEc2ggACAi+gPi/dGQdevW2bZt21xGJnCa1smTJ1vlypXTPLZ79+42atQoK1SokLVp08a1Ypo1a5bt2rXLmjdvbjNnzrSiRYvyDgHgd1SICJQBII7MnTvXzj333Cy3U52f36CXt99+28aMGWPfffedHTp0yGrWrGk33XST9ezZ0woXLpxDRw0gr5ibx35HESgDAAAAPqhRBgAAAHwQKAMAAAA+CJQBAAAAHwTKAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUgG6pXr2758uXLcpkwYQLnNQbvy4YNG6K2T++9TEY5cb7i/Rji4TVHQ7K8jmjReUj/+3fQoEER7fOUU05Js79WrVpF7XiReArG+gCARNS8eXM78cQTg96f2X3x/Af4l19+sfXr17v/g/OYSJLh+zcZXkOsFC9e3K6++mr3//r160e0ryuuuML++9//2m+//WYzZsyI0hEiUREoA2Ho3LmzdezYkXMXJ2bNmmWHDh2y4447LtaHgjiVLN8jyfI6oq1ChQpR+yRvyJAh7nbu3LkEyiBQBpD4atasGetDQJxLlu+RZHkdQKKgRhnIQT/++KOrcStbtqz9/fffQbdr0qSJ2+6DDz5Is/6vv/6yJ5980po1a2ZlypSxo446ymrVqmV9+vSx7du3Z1pX+95771mLFi2sVKlS7mNJlYtMmzYtw2OUhdFj9JGv1KhRI019nrIqwaSkpLhMTv78+TMczzfffJO6j7Fjx2Z47AknnODu+/nnnzPcl93XnVnd5vLly+2qq65yx1msWDGrV6+ejRgxwo4cORJyvWco5zKS8xho//797vj0fPq+KVKkiB1//PF26aWX2uuvv55he51nnZfTTz/djjnmGCtcuLBVqlTJbf/ZZ5+F9JzhPr9XH5pZmUB2a2qz+3pCPe9ZHcemTZvsX//6l5100knu+6106dLufX7uuefs8OHDUflZCyY73zvBXkfg8bz66qvu/JUoUcIqVqxoN9xwg/3666+pP7OjR4+2Bg0auGPVz4U+Hfvjjz+CHl92fx6zonMcylgPLePHj7doWLNmjXXq1MmdW31P69zo+/riiy+O2nMgSaUACNnxxx+foh+b8ePHh/yYM8880z3mjTfe8L1/2bJl7v5KlSqlHDp0KHX95s2bU+rVq+fuK1euXMp5552XcsUVV6QeQ/Xq1VM2bNiQZl9ar+Xhhx9OyZcvX0rz5s1TrrvuupT69eu79Vr3/vvvp3nMF198kXLrrbemFC9e3G1z1VVXua+9ZdWqVZm+vmuuucY97q233kqz/j//+U/q8ei4A61bt86tr1GjRob9hfO6vfvWr1+fZv3cuXNTihYt6u6rWbNmyvXXX59y/vnnpxQuXNidl2CPC+dcRnoe5ddff02pXbu2e3yxYsXcseqYzz777JTSpUu7402vTZs2Kfnz53fnrF27du79aNSoUerxjxgxIsNjgr3u7D6/Hq9t/Y4rq+cKtj67ryfU857Ze/3NN9+47zXdX61aNfc+X3TRRSlHHXWUW3fhhRemHDhwIOKftWCy870T7HV4x9OvX7+UggULprRu3Trl6quvdq9H66tWrZqyY8eOlGuvvda9Lr0+/VwdffTR7v7TTjstw2sM9+cxM3/99VdKx44d07y+WrVquX01btw4zXot+p7MTCjfgz/88ENKqVKl3HZ6riuvvNJ9X+l3c4kSJdx75mfOnDnuMeecc07Irw/Jh0AZyOFA+YUXXkj9Y+unZ8+e7v5evXqlrjty5Ij7w6v1t99+e8ru3btT71MwrW1137nnnuv7x7JMmTIpCxYsSHPfI4884u47+eSTM31tfoFEZp577jn3uDvuuCPNeh2bAtJTTjnFHc8///yT5WPCfd1+x75///6U4447LvXcHj58OPW+FStWuAsT73xlFihn91yGex51fE2aNHGPveCCC1L++OOPDAHGxx9/nOFx06ZNS9myZUuG9fPnz3fBQaFChVI2bdqU5TGG8/w5ESiH83oy219W9//999+p9919990pBw8eTHNBp0BQ9/Xv3z9qP2vBhPK9k1WgXL58+ZTvvvsuzc9BixYt3H0KeHXBGBjYbt26NeXEE09097/66qtR+XnMLgXt2s8777yT7ceG8j142223uW0GDRqU4T6dn88//9z3cQTKEAJlIBu8P1JZLTt37kx9jP64KDunLFn6P/D6o1yxYkX3mOXLl6eu/+STT9y6Bg0apMkyBwY1devWddsoW+Lxnn/UqFEZHqOAQFlB3e+XpQk3wPPLDuuPT5EiRVwm5v7773f3BwYTwbLQ4b5uv2N/5ZVXUv+ABgY/ntGjR4cUKGf3XIZ7HqdMmeIeV7ly5ZQ9e/akRMMDDzzg9jlmzJgsjzGc58+JQDmc1xPK/oLdP2nSJLf+2GOPde9reu+++667v2TJku5iIRo/azkZKPudG2W2vfv9LraefPJJd58Cymj8PGaXd9G6Zs2abD82lO9BfTKhbZYsWZKtfRMoQ+h6AeRAezjVVXpKlizp2ha98sorbnnggQdS7/v4449t69atrp6wTp06adaLamsLFsz4Y6qa4JYtW7r62/nz51vdunXT3K96zvRUl6e64KVLl9rmzZutatWqFg3ap+r+1NJq3bp1brDRF198YQcOHLDzzz/fmjZtao8//rirLz3jjDNcjeTs2bNd/WGbNm3S7CvS1x3o888/d7fXXHONFSpUKMP9N954o3Xr1i3L15db53L69OnutkOHDq5+MjtUJ6pzp/Oyc+dO1xXBq8uU1atX5+jzR1s0Xk+ovPrf66+/3r2v6V155ZWuVlvH8e2337qf/Vj9rIWiXbt2vjXBop+pCy64IOj9W7ZsybGfx2DUhu333393vydzaqCifr+qZvyee+6xAQMG2DnnnOPqrIFQECgDudAeToNIFCRr0E5goOwNIrntttvSbO8NcHvooYfckhkF2ulVq1bNd1sNNpLMBhaG47zzzrMXXnjBBcP6Y+cNulKgrMFzChy07t///rcLHhQINWzY0MqXLx/V151+cJYEG2imQUkasPXnn39mup/cOpfeQC5NdpAdOu89e/a0ffv2Bd1m9+7dOfb80Rat1xMqBbKiiz0/uqDTfQqUvW1j+bOWFb/j8S58Kleu7BvwKkj1O9Zo/jwGs2TJEnerwYU5NcHP/fffb19++aX7HXTRRRe5C2f1WlaQrwskXcwDwRAoA7lAv5AVQP70008u83LWWWe5UebKciizoV/WgdSRQTSSPqssS2AmOjDTk5u8QHnmzJl21113uT9IysKpm4eORa/3q6++ch0VvCBaj0kv0tftJ7M/vqH8Yc7tc5kdynDqfBcoUMCGDRvmspsKlNTdQ6/t+eefd/f//0/mY8N7T5Pl9cT790dmx5PdY82Jn8f0dOEsunDOKfr+0e+mRYsWuU9O9DtYy+LFi+2pp56yLl262JgxY3Ls+ZHYCJSBXKA/8spAKyujLLICR7Vw+ueff+zaa6912c1A3ke1l19+ufXu3Tvu3yOVUOg1zpkzx10AfPfdd252K+8Ps4Ji3Tdv3rxMA+Vovm5vQoZg7cCUSd61a5fFCy8TqJaCoXrnnXdc0Ki2ZmrVlZ5XqpBTz++VGO3Zs8f3fpVM6KP1WLye7H6f+LUp9KisKHDbvCI3fg99//33qRnlnKbMsZc91u/eKVOm2C233OLaV6o87txzz83xY0Diia9LYSCJKVBW4Pj222+7zGqwsgtp27ZtmsAhN3hBj/6AZJdKKPSHbseOHa4eWcessguPFxRPnTrVfQSqUoyzzz47R1+3svjevvxek19P4lieR30kLG+88UamZQeBdL5F/WDT08fo6u+bk8+vHr16vToOvz68mv43O+chktcT7nlv1aqVu33rrbd8yyQmT57syi5UntC4cWOL15/BnJAbv4c0rkFOPvlky00qQVFwfOGFF7qvdXEP+CFQBnJJlSpVXPCo+sr+/fu7ATDK4rVu3TrDtsrgKPOhyRcUSPvV/+mP97PPPhu1P6o6PlmxYkVYj/eCYU1mIIGBskowlDV/6aWX3OQFyqgXLVo0R1+3BvGpJlMZZdVGB5YAKGv62GOPWU4I9zxedtll7uNnDajSsaefyEFB3CeffJJm3amnnupuJ06cmCarq231cbKXCc2p51etp3dB8uCDD6Y5x8oUhjJYMlqvJ9zzrteqn0O97vvuuy/N95Wer1evXu7/ynLn9ACwSH8Goy03fg95j9Pg35yijLHfANDffvvNlV8EuzgDHJp/AKHzWjOpt2j6xviBy2uvveb7+DfffDNNGzlNVhCMGv2rLZO200QEZ511lpv8Qc3ytb5AgQLuPr+WVcGoXZvuV9ujYO3S1IBfz6G+qVp+/PHHkM7NjBkzUp/fbyIRTVLg3a/JSKL5uoO1zJo1a1bqpBHqFav9qEew+jurRZ03GYOeM71wz2Uk51H9bb3JF9RSUMd6ww03pLRs2dJ3wg+1IfReu/rntm/f3k1WoUkk1M6se/fu7j59TwYKdr6y+/yitn86n17fYE1yoYkc1O9Yz5ud9nDhvp5QznuoE45oO00copZioUw4Es7PWjChfO9k1R4unBZqmbVBC+fnMTs6derkHl+hQgX3M6lzEO32cN4kMPq9dOmll6bceOON7nvbm4xIk7P4tb+jPRyEQBnIgT7K+oPuR/1VvT/Imrnr559/zvT5tP2zzz7rGvorcNCMWwoa9Aeqa9euLjiN1h9v9UQdMmRISp06dVIDhOz8ofd6J/tNJCLq7+rtc+HChVF93ZkFQd9//70L0nXe9bo089zjjz/uAh8FeOpv7fdHPtxzGel5VA/jYcOGpTRt2tQFhzqnen2XXXaZu9BKTxNGdOnSxU0koW3VD/imm25yPWk1MU52AuVwnl++/vprF3hoQhAFHwpMxo4d6yasyG4f5XBeTyjnPasexep3rO+tE044wX1f6LUr4B83bpxvEJUTgXIo3zu5HSiH8/OYHXq/FSBr4paskgfhBspTp05Nueeee1IaNmzo+tbr/a1SpUpKq1atUiZOnOjbZ10IlCH59A/JdQB5jQYWqp+q2tctW7Ys1ocDIAwqrVL7PpVOBBu4G0mPbQ3w0+8Jr9828h66XgBIWqqp3Lt3b4YeuaoPv+OOO4IOpgSQWLZt25ba214TpPhNBBMq9bpXtxbVMAMEygCSlgZFKSNUu3ZtN1OaBhBqgJYmOdDAMw041CAtAIlNnVo0CFQ0a2okgbI6nURz9kckNkovACQtdTIYPHiwm85as6qpk4LafGlyBE3VrKyy30xlAAAIgTIAAADggz7KAAAAgA8CZQAAAMAHgTIAAADgg0AZAAAA8EGgDAAAAPggUAYAAAB8ECgDAAAAPgiUAQAAAB8EygAAAIAPAmUAAADAMvp/u1rKxv8vvBYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "base = -3\n", + "for k in filename.keys():\n", + " data = awk.from_parquet(\"output/\"+filename[k])\n", + " sorted_times = np.sort(data.event_gen_time)\n", + " mu = sorted_times[0.5*len(sorted_times)]\n", + " sig_plus = sorted_times[(0.5 + 0.68/2)*len(sorted_times)] - mu\n", + " sig_minus = mu - sorted_times[(0.5 - 0.68/2)*len(sorted_times)]\n", + " print(\"%2.2f^{+ %2.2f}_{- %2.2f} \\\\times 10^{%d}\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base))\n", + " label = k+\"\\n\"+r\"$\\tau = %2.2f^{+ %2.2f}_{- %2.2f} \\times 10^{%d}$ s\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base)\n", + " plt.hist(sorted_times,bins=np.logspace(-2.9,-1,100),label=label,alpha=0.5)\n", + "plt.xlabel(r\"Event generation time $\\tau$ [s]\")\n", + "plt.ylabel(\"Events\")\n", + "plt.legend()\n", + "plt.loglog()\n", + "plt.savefig(\"figures/Dipole_gen_timing_distributions.pdf\",dpi=100)\n", + "plt.show()\n", + "\n", + "base = -3\n", + "for k in filename.keys():\n", + " data = awk.from_parquet(\"output/\"+filename[k])\n", + " sorted_times = np.sort(data.event_weight_time)\n", + " mu = sorted_times[0.5*len(sorted_times)]\n", + " sig_plus = sorted_times[(0.5 + 0.68/2)*len(sorted_times)] - mu\n", + " sig_minus = mu - sorted_times[(0.5 - 0.68/2)*len(sorted_times)]\n", + " print(\"%2.2f^{+ %2.2f}_{- %2.2f} \\\\times 10^{%d}\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base))\n", + " label = k+\"\\n\"+r\"$\\tau = %2.2f^{+ %2.2f}_{- %2.2f} \\times 10^{%d}$ s\"%(mu/10**base,sig_plus/10**base,sig_minus/10**base,base)\n", + " plt.hist(sorted_times,bins=np.logspace(-2.9,-1,100),label=label,alpha=0.5)\n", + "plt.xlabel(r\"Event weight calculation time $\\tau$ [s]\")\n", + "plt.ylabel(\"Events\")\n", + "plt.legend()\n", + "plt.loglog()\n", + "plt.savefig(\"figures/Dipole_weight_timing_distributions.pdf\",dpi=100)\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "id": "b3c5ba51-84f4-4cfd-b10f-c3b7eebadddb", @@ -270,16 +540,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "7777d8cc-71dc-44b1-811e-e1be421be5c2", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAIhCAYAAAA//6MUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydB3hUxdfGT3oPISShhQ5JgFBEigqKKEVAUMCKFSt2BQv23kHson6I7a+oYAMEFQtVKRZqQuhJqAkhvSf7Pe/gDXd37yabZJMteX/Ps8nu3DZ3bpk5Z07xMplMJiGEEEIIIYQQQojH4+3sChBCCCGEEEIIIaRxoBKAEEIIIYQQQghpIlAJQAghhBBCCCGENBGoBCCEEEIIIYQQQpoIVAIQQgghhBBCCCFNBCoBCCGEEEIIIYSQJgKVAIQQQgghhBBCSBOBSgBCCCGEEEIIIaSJQCUAIYQQQgghhBDSRHApJUBqaqrcfvvtEh8fL0FBQRIYGCidOnWSa665RjZt2mRzu+XLl8uYMWMkKipKbZeQkCAPP/yw5OfnN2r9CSGEEEIIIYQQV8bLZDKZxAVYt26djBgxQvLy8qRt27Zy6qmnio+Pj/z777+yd+9e8fX1lc8++0wuvvhis+1mz54t06ZNEy8vLznzzDOlZcuWsmrVKjl8+LBSJqxevVopBwghhBBCCCGEkKaOyygB+vTpI5s3b5abbrpJ3nzzTfHz81PllZWV8vjjj8szzzwjERERcujQIWUhAP755x+lLPD29pZFixbJ6NGjVXlhYaGMHz9efvnlF5k0aZIsWLDAqedGCCGEEEIIIYS4Ai6hBDh27FjVbP3Ro0clOjrabHlFRYWEhYVJUVGR/P3333LKKaeo8ksuuUS++uorueGGG+T9998322b//v3SuXNnpURISkpSLgKEEEIIIYQQQkhTxiViAgQEBNi9rqYsKC0tlSVLlqjvkydPtlqvQ4cOMnjwYPX9m2++cVhdCSGEEEIIIYQQd8UllAChoaHKnx888sgjUlZWVrUMM/lPPPGEsgKAuX+7du1UeUpKijL7B/379zfcr1YOtwFCCCGEEEIIIaSp4ysuAsz5EeH/vffeUzP8EOARGBAC/IEDB+Sqq65SsQI0ECwQIE4AXAWM0BQG2rqEEEIIIYQQQkhTxmWUAIjk/8cffyhh/6efflKCv0aPHj3k7LPPlvDw8KoyZBEAISEh1VoYgNzc3GqPXVJSoj5664OsrCxp0aKFyjpACCGEOBOE70G/16ZNGxUMl9Qf9PUHDx5UEwns6wkhhDSl/t5llABr1qyRiRMnVqUCPOecc8Tf31+VIwXg9ddfr77PnTvX4cd+/vnn5cknn3T4fgkhhBBHkpaWJrGxsWxUBwAFgGYxSAghhDSl/t4llADZ2dkyYcIEyczMVNYAgwYNqlp2/vnnK0uAXr16yQcffCBXXnmlDBs2rMoFoKCgwOZ+8/Pz1X+9BYERDz74oFI0aOTk5Ej79u1V49e0LSGEENLQwKINAqst9zdSe7S2ZF9PCCGkqfX3LqEEQAyAjIwM6dKli5kCQAOp/lD+22+/yfLly5USoGPHjlUKBJhMGDUUOnagrVtddgKjDAVQAFAJQAghxFWg2brj25J9PSGEkKbW37uEY2Fqaqr6X53A3axZM/UfvvpaDIHg4GD1fePGjYbbaOX9+vVzeJ0JIYQQQgghhBB3wyWUAG3btlX/k5OTlSm+JUgZ+Pfff6vvnTp1Uv8RL2Ds2LHqO2IIWLJ//35Zu3at+g5XA0IIIYQQQgghpKnjEkqA0aNHqyj/RUVFcuONN1b58oPS0lK55557lLWAn5+fXHTRRVXLZsyYoUwl5s2bJ8uWLasqLywsVIEEKyoqZNKkSZKQkNDo50QIIYQQQgghhLgaXibkIXABPv30U5kyZYqUl5dLdHS0DBgwQAn9MOlHukCkSHjrrbdk6tSpZtvNnj1bBfWDMmDo0KESExMjq1atkkOHDimXgdWrV0tUVFStAzLA/QBWCYwJQAghxNmwX2KbEkII8XxyG0kOdRklANi0aZO8+uqrsnLlSiX4o2qtW7eWIUOGyJ133ikDBw403A7BAmfNmiXr169X2QIQ2R8WA4j6X5fIihxsEUIIcSXYL7FNCSGEeD65TVEJ4CpwsEUIIcSVYL/ENiWEEOL55DaSEsAlYgIQQgghhBBCCCGk4aESgBBCCCGEEEIIaSJQCUAIIYQQ4uH8/vvvKojyhx9+2ODHwjFwLByTuA+8bq7Pvn371LP1xBNPiKdw9tlnS8eOHZvs+TsLKgEIIYQQQuwQoGfOnFlVlp2drQairiTo/vvvv6pOGCgTzwPX9ttvvxVXIiUlRW699VaVjhvpvoOCgiQuLk5uuukm2bBhg7grCFI+fvx4JZwGBASo7GP9+/dXgcr37NnToMfG84trjefZ1bj22mvVu9CeDwV118bX2RUghBBCCHE3oAR48sknq2ayXAEIDaiT0czaWWedJUVFRSr9MnFPcG2vueYaufDCC8UVmDt3rtxyyy0SGBgol19+ufTt21d8fX2VYmDhwoXy/vvvy7Zt26RHjx7iTrzzzjtKsdG5c2fV3u3atZOMjAxJSkqSzz//XD1LWNaQSgBcazzDaFM9HTp0UM8x2tkZ3HzzzTJ8+HCzsquuukopgR5++GGz8t69ezdy7UhtoBKAEEIIIcTFyMvLq1OaY1t4e3srYY04H00Z4yxBzhEgPTdm+yHg//jjj9KmTRuz5c8//7y88cYb1e4DCcqQ2js0NFRchfLycnnooYdUuvF//vnHKjp7aWmp5OfnO61+mGF35nN8+umnq4+lEqBly5Zy5ZVXOq1epPbQHYAQF/KjJHUH1whmap6CZnLXVM+fEFfvFzp16qS+Y8ZOM3+1nH3/4osvZMiQIUqYDw4OlkGDBsmCBQtsPr+//PKLWh9C0bhx49SygwcPyvTp09WMYPPmzZUAAMHrxRdflIqKiqp9wPR2ypQp6vuwYcOq6qS9Fyz7Msxq4ve0adMMzxEzu/7+/moGVOPQoUNq5hcCEpZB8IMgePTo0Wrb65tvvlHHwsywET179pSuXbsqobAmVqxYoYQQmJ23atVK7rrrLjXbbGR+jP1hVvfUU09V7Y92Rdv89ttvNv2MFy9eLAMGDFDt3Lp1a7nvvvuUYGjJzp07lfCDddAWuPZYF0Kt0bsc7XjdddcpYQlm8+np6Wr522+/LSNHjpS2bduq/WB/EKb0Lh1a/cBHH31kZnJtKZhjXxEREar+mImdM2eOYTviWmD2FqbuaPtXX33VrvbXeOCBB9T6uMctFQAACo577rmnygpAf/+99dZbqhx11Fxs0Ma4p7XyFi1ayIQJE2TLli1W+/74449l4MCB6jzRlpiVv+KKK8zuVdwTF198sWpXnCPuFVz7JUuWVHtemZmZysoH94BRejZco8jIyDrdZxqwkoC1DuqP9ePj45WbARQMaB9sC/A8a9dZszay5RNvb/vV5V6vCz/99JNceuml6trgWcW54t7E82sLuFlccMEFKj0e2h71r43rhb3vW9wDQ4cOlaioKFU3vM8mTpyoLFiaEu6rgnQR8FLTHlYNvJDwQF999dVy++23i4+Pj9Pq1xRAx4WXiysJQAcOHJDXXntNli1bJnv37lUvdrxg8XLCS/3cc88Vd2TTpk3ywgsvKD8/DGDQ0aHzx4Bs6tSpcsoppzTYsdEp41qjI3QV01sNdKaaWXBNwLSQCiVC3Jvu3bvL7NmzlZCDgSoGkEA/o/nII4/Is88+K+edd548/fTTaiYewjAEkzfffFNuu+02s31u3LhRCQc33nijek9obN68Wb7++mt1nC5dukhZWZnqW2bMmKEGyO+++65aD3WAkP7ee++pmUzUEWAbW+cAAeCzzz6Tl19+2WysgjzV3333nYwePVqio6NVWWpqqnrXoz+7/vrr1X537dqlhB8IO6g/Bu9GQKEBIeyDDz5Q56fnzz//lO3bt6u2qknxuXr1aiVIQBmC80ff/+WXX8qaNWsM14eQDvPtiy66SPW9JSUl8r///U9GjBih2hQ+33p++OEHJZSjP4PAjjaAkIrjoU01/vrrLznnnHPU8WEeDUET/ePrr7+u6gJBx9LtAsdEGzz66KNms9/Y/2mnnaaEQAiXW7dulf/7v/+TX3/9VQlwEOZwDT755BN1PmeeeaZSvFiC6456Y18wy8ZY9Oeff1ZKm927d6trrIG+FPdunz595LnnnpPCwkJVD/i92wPGNX///beqS21N/XHsY8eOqfsA7QFTewAhHtcS7YQ6Hz58WCkLcM+tWrWqanyBdsDzgWM/9dRTSohLS0tT1w7KKLQV9o/rA9AmMKGHcI97dN26dTJ27Fib9YOSBtcGMQF27NihxvM1UZv7DNcGbY52wzXA2BDXB88+zgeuBrjXsA6uM85Tq1d12Nt+tb3X6wrGOVlZWUoWio2NVeNi3NcY/+J9oZ2XBp4JjO0guMOKBEo21A/vB1hk4F6pDnvft3g2cT0SExPlwQcfVM8wFK1QoOF9hngWTQYTsSInJweqUPW/Jn777Te17uWXX2765JNPTB9//LHphRdeMCUkJKjyG2+8kS3cwHTo0ME0dOjQBtu/do3nzZtn1/qLFy82hYWFmfz9/U1XXHGF6Y033jD93//9n+mRRx4xJSYmqn0tWbLE5G4sWrTI5OPjY2rVqpXp/vvvN7333numl156yXTDDTeY2rZta3r55Zcb9Ph79+5Vbff4448bLi8qKjKVlpaanMGmTZvU86//REVFqY9l+dq1a+3a5zXXXKPO116wLrYhnklt+iXi+DbV+gH9e666d9Jff/2llj344INWyy644ALVR+Tm5laVYV18fv75Z6v1CwsLTZWVlVblV155pcnb29t08ODBqjL0U9gP6mtPX/bmm28a9knos1C+cOHCqrLx48eboqOjTWlpaWbrbtiwQfUN+nYwqgfaAmXbtm0z2x59CLY/cOCAqSYGDBhgCggIMO3evbuqDO/9M844w+pafP3116rs3XffNdtHWVmZ6dRTTzV17Nixql21axkcHKy+a2B5z549Vb+np3fv3qb4+Hiza6g/pr6NtXc5xgNG5OfnW5UtX75cbfPiiy/a9Z7HPYB2wVjUkjvvvFPdJ1qbHT9+XJ1n9+7dTQUFBVXr4bqGhITYvH/0fP/992q9O+64w2Qv2v3XvHlz05EjR8yW/fTTT2rZJZdcYnav//vvv+reGDJkSFXZhAkT1POD62iL7777Tu3viy++MNWFmTNnqu1xbNxzaMNPP/3UdOjQIat1a3OfrVu3Tq07bNgwNWbRg3W09aobdxq9d2rTfrW91+0B+7Mchxvd14cPHza1aNHCNHr0aLNybIt93HXXXYZte/PNN1d7/rV5395zzz1q3SMW92BT7O/pDuAg+vXrp8y3oA2EiRQ0jZghhdbryJEj1fr8Ec9BMz+DGRMCNH366afKGgSzJtBMYkYHWuya/Llc8b6AxhQad1gBwOQMWnyYjsGkEDNE+pkrZ4A2dVbAK5hc4vnXfzALg49luaUvHSHE88AsIGa18V7EDKT+g1kovOP/+OMPs20wK2sZcAvgvavNkGMWHrNr2M+oUaOksrJSzW7WFc3kH+bVevAbs9Lnn3+++p2Tk6NMh1F3vGv15wMzeJiTw/y3OtBn4DwQTE4/+wcTXlgcGJmU68FYCv0PzIX1Qdnw3odLgCXof2EWjCB6+vrCqgyWCTCLxmyjHqyrd+lAfWHtiVlVzQ8cs/PoyydPnqxmfPX7hrUf3vtGbXHvvfcanhfWB7iWaGfsB/cCrCowlrQHmDyjLhhrWN5vOFfsGzOdAHXDzD9mRmEyrYHZWswm2wMsRYCRuXxNYGbY0uIAM7baLLneGgTtgPrDAkQz9Ue7oP4w6bblvqBZpCxdurSqrrUB7jfff/+9sjqBlQosPNB/o43Qxjh+Xe4zvBcAZrotx4FG7h32Upv2q829Xh+0+xpgf7DOgLURZvpt3dew7tED6ydYYtSUEaM271vt3li4cKHDXB/cFSoBGgi8GDHYxwtK82fBwwZTF5i1oPPGjaiPnGmvf1lNVOdrpIF9QqiDOZ/mK4UX8/79+832pffhglkO9oUXV69evdSAQOsQYX6Dc4bZGo4Fc0U9WqRie/x9qstTaxnxGOuhzjDv0fvI6X3pMEDCceD7g3PFOcBkyOjhhzkUTKZwjjBRg9me5blUx2OPPaYC/kD5o5li6kHd0JFoZmp63ywMhOBPhgHfHXfcUbUN9gUlE8rRbuiU8EKvi48TTOZg9gXTOC3lzRlnnKF8DGsC9yfaDp2gJTC70kxG6+KfBWAeBhM93ENofwzytAGNPf63tnzi7W0/bXt0FGhHdGCoyw033OCwIEDr169Xx4C5GdoD7TJ48OCqDtwIdNx4NlEX1AmmdDDDtBd7fUTXrl2rBuJ4F2A9mLeOGTNGmeIRQmoH/O3R/8PnGu9G/QfvNWA5QWDLDBV91TPPPKOWa76+2A/GC+D48eN1vjyaoI++TxOW0C/BfPiyyy5TYxEAs2gIkhDgLc8HHyyvbsID4B0OJQcU4Vq/CvNlDNDxntW/8yCIaB9NeIEJOjAyzzYqwzXAvmFGbVlfzZ/ass5GEd/R3gBCjLZf8Pjjj1vtF30qxldGbWHr+sLsH2MbvN/xntb2BYWAvddWqxPa17JOMA/Xn6s25sK9aYm9pv2a8F+XCQujdsC1xTjCaNyEeBHaOgCm6hjDQIjF+U2aNEn18/q6oA9Hv4nxJMZE6GdxvSDQ2wuEZ5jM4zpA6QP3H4wL4dICM/663GcYR2GsAeHckdSm/Wpzr9cHuDjgHQL3Aox1cB3QJmhTo/sa976RyT/OCe1XnSxUm/ctJuYwzr/11lvV+w/jHCh5LJUkTQHGBGggcDPCtwTgxtfAjCkEQMwW48WlCRd18S8zoiZfI3To6HyhhMB+4b8EjSdeTPDrg4YYQrOloAe/Ijy06KgxCEG9IFh/9dVXSruP2QS8kLE9osGiI4R/jiP9fYzAYALniTbWpybRBFIIxhCEMUuB88QDDyEPwjpm6lF/DQhiuCYQLLEcQW3mzZtXYxAZjeLiYrUuOgkoRWoDtJxoU/hxwT9L62BhVfLSSy+pADi4ruho4PcHbS0GbXh52evjhIEkBgPwy8LLD2Va54YBX00z+VAYwdIBwiIUBzVRG39Y+LTi3HHf4z86eDwrixYtUrEH7PG/NcLe9tPAPYEBMXz6MMsD5QMGvag7tqsvOP/k5GS55JJL1Dmio4UCBucDTTaOaQnaD/ctBhMYEKPtMMDBfYzrXR32+ohiAK/5q2JGDYMZdJhQluA9hO0JIbUbA2Cwj5lIW3GBtMG5hn5WVg8C96FfRZAtPMfoXzEegDIQ7zgI5/UBwhL8liGQo49Hv4r66/sEbcYVSmxbfQUUrTUBH2f0AZhlRX+L9yveO3ofbcQp0E9I4F2pV+zbC+qMsQBiHtjC8h1aXQwnrQ20/xhT2OrrIfhYYnR9YdkAJS3GKIi3A0WJZvkBAcrea6vVCRYcGPcZ4ciUdlq7YexWW2zd5/bSrVs3JcwjiCY+GP9gHAohH378WgwM9K2YSMMziDHOrFmz1JgEMQkgCNoL7glMfOGD+x/XCvvG+BXLanuf1WfG35HYc6/XFcg2iG2Acf/dd9+t2g6KAIylMP6H4stZ71soOvDcrVq1So2HcM9gbIn7BwqKJmWt2aDOBk3IT/DJJ580ZWRkmI4ePar8g+HjhvLTTjvNzHcdZe+//77VfmrjX2YLe32N4MuN9e677z4rX3aUw8/Q8vzatGljys7OrirHOaLcy8vLzGcQ9OvXz8qnqDb+PtX5NGI/aEd7YgKgDVq2bGk688wzrXzHXnnlFbNjlJeXm9q1a6d8lXAdNXDO7du3t+sabN68Wa03btw4k71ovk2+vr6m7du3my1LTk5W7Tt48GBTSUlJVTn8Jps1a6bOG/W218dJu2aWPob28tVXX6n6YB+9evVS12zu3LlmPmV18c+CHyLiJ8A/Eb6KllRUVNgVE8DSV7I27adtj/X//PNPs/2OGTNGXZ+8vDxTbcD+Le9VIx85+GTGxcWp89ej+ZHC/1Hv47dx40ZVz1GjRlV7/rXxEX3ttdfU9niHENeEMQFcLybAvn37bL6T4CuNZZbv9brE9IiIiDCdddZZVuXvvPOOVd/04Ycf1iomgOZTj/gl6CtBt27dVFwjPZmZmeq9A59je7DVj+NYMTExyicY72is88ADD5its3r1ahUbQfvgN4A/tub3bAl8vy2vBfpivOfseXdX17+gDMu0vk7r3xAbp77xXe6++261bM+ePVZ9BepuObaxdZ/MmjVLLfvhhx9qrI/WVogHYclNN91kV0wAcMopp6g6JiUlmeyhOj/3W2+9VS3DOMUS9IFYhvG1LRDTAutgP7bA+AJ9LeIeGMXYsBeMcXEs+LfX9j7DGNievvb333+vVUyA2rRfbe51e7GMCfDtt9+qsg8++MBq3UGDBlk9D5qMYBRzAbIR3hnVnX9t37eWbNq0SY3zMN5zBRgTwM3QzMKgoYeZD8yFMDNr6ceCGT0thY9GXf3LLLHX1wizkdDGYcZYDzTxSEGEGVJL7TNMmPVRf2FSjNlq+PBps7IaqLMtn6K6+vvUBWj4MJuJ9oZvlr5dtRlgrV1hiQFTeayrt9zAOWMmtaF95ND2lmZcuA54t95///1VJpkAbY56YqZE08Lb4+OkrQOz+5rSORkBqxFoTPEfbYXZe5hZYeYCLh56U6ra+GfBGgOuKniGYMFgCe7VulCb9tOABhiWKnpgoYM2rctMVHU+cvAphCUA/uMYMGcz8l1E/fWzBnAZwaw9rDyqc1OojY+odm+gzWDRQgipGc0SCT76lmim+jBd1qfx06jJdF6PNtuoBzNssI6qTZ1sAasCjD9g+YPZTFjpWc72Y/YM/SYsBoxchFA/e8xpcSyMJ5BXXsuoopnrasB0G2bt2ge/ASwG+vfvr95TejdCWDciG4+RhQPec5ZjnbpcAz0wJcbMLtyqjNKXob+wt/21WUvL6wvLNSMrAFxfo33DugwufuhH4ZJoCaz+0B8A9B+wNoCFp963HVZ31c1mW4LYQAAWCxjzWYL7HrPu9pjgw5JUG7/q2wKZEmA1gnGlZuGJPswSuPwBrW3w37L9ML7AeAXnXF0/h+W20tjh2cD5aKbttb3PNGs/vBf0Lroa2rnX9jmuTfs1Brbua4y5q4tzAWsYPZBXYKmonZ8tavO+Nbp/EhIS1DNRm/emJ0B3AAehmbhhsI6BPkytLfOIApgpWZqq6P3L8DFCu4HxcsfLXA8G8Lh57fU1gl8QBCEjczWYy8AkGg+JPnCLkRkZttdSu1iWAwg4enPt6vx9oATAoEYvJNUXrV3hA28LV/eRMzIZ1Zeh3hgUwbQNAyOY+cM8FC98mCnCTUN78cOkEqak6CRgLgiFD/zLcd/C/NIesF988GLH/QaFAkzi0MnATA4DO0v/LFvofeSAo9ML1qb9GstHDsoXuEngWhkpYqCsslQiGfn44Z5EZwpFhtH5WfqI1nQNMIhDcCMMPCFYwPwfLkMox31DCBHDdwNMg+fPn6/6di3/O5RseKfChQcfvGvxnkW/ixR+UDrD7NRICDACilcoXeEOgOcZzy0mGrR3kx4cF4pTmD3DhQ/1geBjqdy0BEK/5pKG7fE+twQug3j/w8wXgg/e2RB+8B7FOw1llrnLjYDpNlyRkFINrk0w77YXpDCDEAuXNPR3GP/AjUFrS73CVEvXBhcquE7A1QvCG4RdKKHhKlebHOQaOAZcJqC8xYQIxhh4D0N4xD6hKEE/a0/aYkyE4J0LBQvGkVBYYwIDE0P6CQkNvJuhvIUAjrg/mtsAXDhxfeDOgT4DQhHe3VDMYKIJYywIr3B3xBgNLnoIVIh2xHVD3aHUwLWw18Qf1wEuZ7hnMJmD8QbudbhSoh0wKQG3Mwii9uwLigw8S7hvca20FHeaC6qGFuMGKeYwBkW/qcWS0oRBuEWgXdG+eEahfIJgjzEKjlOd6wraAq6rUPRgHIU2wXgGrnzYLxQIqJc2QVGb+wyuiRij4fpBcYFnGuNijFeguEfcIJwb+niYz2N8BfcJlGFMrsWTqk/7NQZ4T+C84DKDCRTcn5At8NzANQD3pCVoMzw7cGVF+2suw3iv1vReqc37Fu8fXJuRI0eqZwRyFeJXYeyOZ6EpQSWAg8BLorrBdnW+ULXxL8ONamlJAL91rbNpKF8jWz42DeFTVF39axPJUzs+Bht4KRhRUzTi2t4D0MTjRdfYPnL2+jghuBQGLIhdgHURTAftg9lmTatv7zWC4gIfDB4xAIJQihcrXvZ18Yd1BRrSRw7bo9OBcA6/eygfMIDFMfEMYwamvr69dfURxX2L+wYDEAyScP8gLgY6VNQLAylCiDWwesK7FjNQEB4wqIQSAOD9i+ccA3DMiELRjYE8hIvaDMpfeeUVJRBA2IWwDcEHAiMGvpbjDgiGUBDgfQ7hDLPkeEfXpASAQIJ6QWDDPo0CwOK4GFBj36gHFIdaEF2cM4QQe4BQhrgs8Au2tAKoCSgNli1bVpVHHcIRBCnMsEJAthTu0BY4FoRVCOYQBCCc4Hzxu65gTAFhGfuAEhwCNK4RhGyMx6BgtwdYOUBYhlCOQMSoP9ofAiuULZZAKEI8HSh5tAkHKAEAxobok6EogdIIwjEEKwjo2L9+EgbjTUzS4N7CDDauIZQC6JOqmzixBNcPAh/ub/jno79BP4bnAAIr7ll7J1LwLOG6QKBH/aDAwvVG3SE4auC+xn5xjpi5xfgHCinEzcC1BloQbgSwhiCIfhbKMLRNTfEAcE/hvsGYBtcW20Pwx4QK6oPAzdpx6nKfYbYbk3VQGiBmEdoL7Q9FkDYWxH0AgR6TBvCphxUHjm1LCVCb9msM0IYYS2BsieuCsTusGDEeRRwQIyUA6ot3At6nsBrGGAYyEWI52BrD6LH3fQtFEdroo48+UkoyTLzgHoUSBnFKmhTO9nvwRD9BW9jyXa+Nfxn8fPW+cvhoOYLt9TWCzwv8l4z8r+HjFR4eXuWHXZ0Pl63zMfIpqo2/j5Z/1jLWAEBsAks/a+RgNaoHtsd+3n77bZO98RTuvfdeq2XPPfec3XEZNN+rH3/80WQP1flmvfTSS2oZ8t1aosUAQH7m+vg4IW4CfE3rmzN14sSJah+aP31t/LNmz55tVz7f6vxvjXwla9t+tnwtq4tRUZuYAMjXi/089thjVuteeumlVs+M5kf6xx9/WK0/cuRIlftX74NoWf/a+IgakZqaqmJk9OjRo07bE8fCmACOh23qPBATALEOCgsLHbK/BQsWqPfd559/7pD9EUKIs2BMgCZEbfzLoA3T+8rho2nI7PU1gm8NNI+WvjeYtYXmFD7bdfXDrgl7/H0003jNX1kDpoMwE7LXRw7mzNAC4phGy2ECpGnSoaHEzAdmZPX+QvDRNkqnZgtkYIAGFyZ5OC8jMLNqT2RUXAfMpmOmXp+mEFpp1BOads2E3h4fJ7iRWKY7xCyOZm5eUyoizL4YzYZDk4pMEzAB1Mw6a+OfBVM6mEDCP9TIJ76uPnK1aT9n+shh5q26FIGYKdBvA3NDPBuYaaouO0JtfESN7h88D5j5aGo+co6kqLxcjv3XxoSQE8A8GrOEcDmwJ6OAHrwLLf258X7HjDb6IMwAE0IIqRm6A7gAjvIvs9fXCPuBGQzWg68OTM5wHM33BiZ2DYG9/j4wXYNyA6Ze6PBhdgcTewhKMCO0FGRhAgjzIpjSQaCFAgOmiTAtgmkaFAzYJ9oV28NEDr5dqAv2ibpAQIP/GAQntCN8hjCg0Pwuka7OHqDMQaA7+MbB3Av7gxkmBjrw34YJJVKuQeFSE6gz0ttACMQ1wvXUUtwhIBxMvzTB0h4fJ/jvw4QU5k7YNwRImHbCJQB1NMqzrAfCOpQq8DWD6RTaB0or3LsQ6mE+rsXBqI1/FoRNmG7BxBEma6gvzgGpDNFeuAbYR3X+t/Vtv8YA9yaea9QHzzbql5KSou5znDfaxQjcN1BoQamB9oMJIe4nLb2fLWrjIwo3EZg+4trCZBLPHdIz4jmBOR+pPSUVFfJaynbJKi2RexMSJSawdsIOIZ4GAoLBHQqmuVD8wmS5tkBxiffYFVdcod6hiNWCvg4+9Bj/1CXVMCGENEmcZuvgwjS2O4De3Blp17Cen5+fKTIyUqUimTFjhjLNtZfPPvvMdMYZZ5hCQ0NNwcHBytwergL6NGlIP4P9durUSR0rOjpapQZEHYzOzxHuAFgfKcnGjx+vUsShfvi+c+dOq33AbeCiiy5S6yGdy3nnnadMy41SBMKMHebozZs3r0phpz/2li1bTFdccYVyJcC5wvXg9NNPNz311FOmY8eOWbkQ9OnTR6Wsi42NNT3yyCOmn376yW53AI309HTlWpCYmKjqj/3BbQFtrDcrryntnZbSsW/fvirdG9pj+PDhppUrV1rVG2lq2rZtq46FdE8w84eJpAZSEOH+Quon7Af3Br4/+uijZukfbfHll1+apkyZoszDYcYJVwO0Ja6N/jiWaSdhuo5ro7Up1kdqK0vgQoFzgzsKzhX3JlJtIjWV3m0D9zbqjnbT3wu2zPntab/GcAcAeL5wX+P6BAUFmQYMGKDSZBo9M5o7ANL64L7B+wDbIAUo0gTaW3+k17rwwgvVM477v3Xr1qazzz7bNHPmzKpUojg3pN1CfQMDA9X1GjhwoEpnWp9USk2V0ooK00vbN5uuW7dKfab9vc50qJ5mzzRddzxs08YF7yf00V26dDF097MHpHVFP9S5c2f1PsT7Cn32W2+95fD6EkKIJ/dNXvjjbEWEqwGTZARHgblsXdK9EWsw2w6rA0ekWSOEEFe2AHhnV7JsyTF3r4kNCpEnEvvWOXAr+yXHwzYlhBDSVPsmugMQQgghDqC0slJeT9kuyXnmaVxDfX3lxi5xDZK5hRBCCCGktlAJQAghhNSTvLIyeWtnkuzMNw9uGeDtI9PiEyU2OIRtTAghhBCXgEoAQgghpB7kl5fJS8lb5GBRoVl5iI+v3BXfUzqE2M7iQAghhBDS2FAJQBqF33//nS1NCPHINICv7thmpQAI8vGR6QmJVAAQQgghxOVomGTwhBBCSBOIAYA0gHsL8s3KI/0D5IHuvd1CAbBjxw554403VOpYpKpE6k/ELkDayJpYvny5jBkzRqV/RdrKhIQEefjhh1UKzupASlocD2ksAwIC1H/8RsrR6kCKz4ceekilhsPxcNyxY8fKr7/+WuvzJoQQQpoyVAIQQgghtaSsslLm7Eq2igHQ3M9fHujeS9q5SQyAd955R+6880756KOPZOvWrVJRUWHXdrNnz5YRI0bIsmXLpGfPnjJu3DgVyfi5556T/v37S2ZmpuF2a9askT59+qjjRUREyIQJE9R//O7du7f8+eefhtsdPXpU7ff5559XygAcD8ddunSpDB8+XCkyCCGEEGIfVAIQQgghtVQAIA3gpuwss/IwXz+ZlpAoUQGBbtOeiYmJcu+998r//vc/SUpKkquuuqrGbf755x+ZPn26+Pj4yJIlS2TFihXy5Zdfyu7du+Xcc89V1gVTp0612q6wsFAuueQS9f/BBx9USof58+er//hdUFCglhcVFVlte9NNN0lKSoraPywJcDwcd/HixeLt7S133323bN682WHtQgghhHgyVAIQQgghdlJSUaHSAFoqAJAFADEA2gQFu1Vb3nDDDfLyyy/L5MmTlTk/BOqawGy8yWSSKVOmyOjRo6vKg4ODZe7cuWofCxculOTkZLPtPvzwQzl48KDExcVZuRvgN8rT0tLk448/Nlu2fft2+e6775TSAfvHcTTgjgBXgsrKSlUvQgghhNQMlQCEEEKIHVSYTPLu7h2yPTfbrDxQpQHs6TYuAPWhtLRUzf4DKA4s6dChgwwePFh9/+abb8yWab8vu+wyK2UDfl966aXq+9dff224HfaL/Vui1WPRokVSVlZWr/MjhBBCmgJUAhBCCCF28L99uw0tAO6J7yldw8KbRBvCJB/m/AA++kZo5XAb0KP9bqjt4E6wc+fOWp0PIYQQ0hShEoAQQgipBpi+L0jbJysyDpuVB/v4yn0JiU1GAQD27t2r/iOYX1hYmOE67dq1M1sXIJjfsWPH1Pf27dtXu11GRoYS6C2PaWu78PBw9bE8JiGEEEKM8bVRTgghhBAR+fHwAVl6KN2sLfy9vOWOuO7SKdRYEPZUIMyDkBDbrg+hoSdSI+bm5lptV9222nbattp69h4T2+iPaUlJSYn66I9BCCGENEVoCUAIIYTY4KfDB+SrtH1W5dd1jpO4sGZsNzcCgQObNWtW9dEsDwghhJCmBpUAhBBCiIELwMK0ffJFqrV5+TUdu8qAFlFNss00FwC9ub4l+fn56r9moq/frrptte1sbVvbY1qCNIQ5OTlVH2QiIIQQQpoiVAIQQgghFiw9dEB+sHABAJe06yRnxbRqsu3VsWNH9T87O9vMxF+PJlxr62qCfGRkpPqemppa7XZRUVFmpv/afmxtp3cD0B/TkoCAgKr4Afo4AoQQQkhTg0oAQgghRMeyQ+myMN3aBWBSbEcZ1bptk26r+Ph4CQ4OVt83btxouI5W3q9fP7Ny7XdDbQfFQVxcXK3OhxBCCGmKUAlACCGE/MfSg+mGMQCu7dRNxrSJbfLt5O/vL2PHjlXt8Nlnn1m1x/79+2Xt2rXq+4QJE8yWab/nz58vlZWVZsvw+4svvlDfJ06caLbswgsvVP/XrFljaA2g1WPcuHHi5+fX5K8RIYQQUhNUAhBCCCEisvzwQVlgYAFwUWxHOTO6JdvoP2bMmCFeXl4yb948WbZsWVW7FBYWyvXXXy8VFRUyadIkSUhIMGuza6+9Vtq0aSMpKSny6KOPmi3Db5THxsbK1VdfbbasZ8+ecsEFF6j9Yv9FRUVVy5YuXSoffviheHt7K59/QgghhNSMlwnRj4gZ8C1E5GAEDqLPICGEeD5rM4/K3D0phjEAXMEFoKH6pb///ltuvfXWqt+7d++WzMxMJYy3bXvyvL/55htp3bp11e/Zs2fLtGnTlDJg6NChEhMTI6tWrZJDhw4pl4HVq1cr335LMJs/cuRIpTBITExUn61bt6oPzPmXL18up512mtV2R48elSFDhsjOnTtVPc4880xVtmLFChXE8bXXXpM777yzVufOvp4QQoir0Vh9E5UATmx8QgghzmdHbo7MSt4qFWJySQVAQ/ZLv//+uwwbNqzG9fbu3WsVdA8C+6xZs2T9+vUqcn/79u3loosuUjPy+mwAluzatUuefvpptX1GRoZER0fL8OHD5bHHHpMuXbpU2wZI87dw4ULlFgClwcCBA+Xee++Vc889t5Znzr6eEEKI69GklAD79u2TTp062bUutP5nnXWWWRkGEq+88krVQKRDhw7KFBEDkdDQ0FrXh0oAQghpGuwryJfZO7ZKfnm5Wfm4Nu3kwtgO4iqwX2KbEkII8XxyG0kJ4CsuAAT1a665xuby7du3y4YNG9TMwqmnnmq2TG+SCPPAli1bKpPE5557Ts0W2DJJJIQQ0rTZlZcrr6dsl4IKcwXAuS3byAVt2zutXoQQQgghDYlLKAEgpCOwjy3GjBmj/l922WVmuYP/+ecfmT59uvj4+MiiRYtk9OjRqhy+huPHj5dffvlFpk6dKgsWLGiEsyCEEOIubM/JltdStkm5hTFcn4hIubx9J6VYJoQQQgjxRFw+O8CBAwfkxx9/VN8RFVgPfAPhzTBlypQqBQBADuO5c+eqaMGwBkhOTm70ehNCCHFNNmVnGSoAEsKayc1d4qkAIIQQQohH4/JKAFgIIH8wUgQNGjSoqry0tFSWLFmivk+ePNlqO8QFGDx4cFVUY0IIIWTDsUx5e2eSlQKgV7PmcmdcDwnw8WEjEUIIIcSjcQslgJEVAPIJw+wf9O/f33BbrRxuA4QQQpo2Sw6myZzdyVYKgIGR0XIHFQCEEEIIaSK4REyA6jIBIJWQv7+/XHXVVVbpikBERITNVETt2rUzW9cWJSUl6qOPykgIIcQzgNvYooNp8t2BVKtlg6Ni5NpO3cSbMQAIIYQQ0kRwaSXABx98oP4jyJ9lhP+8vDz1Xx8o0BItPWBNQj1iCzz55JMOqDEhhBBXosJkkk/37ZaVGYetlg2JainXdurKGACEEEIIsZpAKKmslMLycimsKFephIsq8KlQZcWVFVKkyirUcvwf3rKN9IpoLu6AyyoBILhrUf2vu+66Bj3Wgw8+qNIM6o+tWREQQghxXwXAu7uS5a/jx6yWXdq+k4xo2YYKAEIIIcSDySwplqzSEiWkF5VXVAnyRRb/i3XCfHFFuRSUl4u582DNIL5QL6ESoF7Mnz9f+fzHxsbKqFGjrJZrLgAFBQU295Gfn6/+h4eHV3usgIAA9SGEEOIZ5JaVyfu7d8j23GyzciT+u6JDFxnWsrXT6kYIIYSQ+pNeWCAZJcVqZl4J75UnhHlNsF93LKNRm7m4okLcBV9XdwW49tprVao/Szp27Kj+Z2dnK9cAo7gAaWlpZusSQghpGlr/F5O2KM2/Hj8vb7mxS5ycGmnuXkYIIYQQ1+Z4aYnsyc+Twv/M8b9Mqz7mmzMorCgXd8EllQDbt2+XdevWKTPNKVOmGK4THx8vwcHBylpg48aNMmzYMKt1UA769evX4HUmhBDifPLKymRW8lZDBcBd8T2ke3iE0+pGCCGEkNrz7/EseWtnklTW2kDfMXiJSLCPrwT5+kqwj48E+fhKoI+PKtP+B/v6SKcQ42D1rohLKgHmzp2r/kOw79y5s+E6yBgwduxY+eqrr+Szzz6zUgLs379f1q5dq75PmDChEWpNCCHEmWBmYGbyVjlaUmxW3szPX27r1l26hLpP50wIIYSQE/x8+IBDFABtg4KVAB/s4yOBEOohwPueEOSDrIT6/5b/tx4mpz0Jl1MClJWVyaeffqq+X3/99dWuO2PGDBU8cN68eTJp0iQ577zzVDmsA7BtRUWFKk9ISGiUuhNCCHEOJRUV8lrKdkkvMo8TExsUItMTEiXcz4+XhhBCCHGDqPxaxP2debny65FDsqfgRFa46kgIa6YE+BMC/QnBPcDHR0J8fFXE/qiAwEapv7vgckqAxYsXy9GjRyUiIkImTpxY7bow8581a5aK7D9mzBgZOnSoxMTEyKpVq+TQoUPKZWDOnDmNVndCCCGNT3llpby3e4fsyjdPB9vCP0Duie9JBQAhhBDSCFSaTFVR9vXR9vWp9FCOyPv6yPxV6/+Xes8eBkRGqVn6U5q3kMRmER43U9/klABaQMDJkydLYGDNGpt77rlHevXqpZQB69evV9kC2rdvr9L+4WMUMJAQQohnUFpZqdIA/pudZeUCcF/3XhLh7++0uhFCCCHuOANvJMAX6AT1+grw9eXpXv2kTVBwoxzLU3E5JcCiRYtqvc3w4cPVhxBCSNNSALyRst0qDSBmBqbF95Romv4RQghpAsJ7mZqB14Tzk2ny9MK8XoDHuoV6Qb4RBfj60r95lLQODHJ2Ndwel1MCEEIIITWBAQsiBSfn5ZiV+3t5qyCAscEhbERCCCFuK9hD0a0J8Mh8syLjsJShzGImHv/LTc6Jmt/QwMAfPv5e4iUTYjtIXFi4Cu5H0//6QyUAIYQQtyKrpMQwCGCgt4/cHd9TuoWFO61uhBBCCIT13LIyM5P5onJzwV0/Q19VXiXgVzgtHZ4jBXgtQF+QRSR+LeK+2XJfo3LPi8rvKlAJQAghxG1IKyyQ11O2S1ZpiVm5v7e3ygLQmWkACSGENBIVyo/+pAAPE/tFB1KtrNTcDQrwng+VAIQQQtyCzdlZMmfXDimx8FsM9fWVW7t2pwKAEEKIQ2bx/z2eJUdKisxm5i0D4SHCvWV/5ArAeF7Lex/0X657yxn5k7Px1jPwwf8t5wy8Z0MlACGEEJcnKTdb3kxJkgoL88iYgECZFp8o0XZkkyGEEEL0PvdVpvpasLzyCpmzO9nlGinA+4RQDzqEhEq/5i2qzOtPCu4nTO39vLwowJMaoRKAEEKIS3OkuEjm7Eq2UgB0CQ2TO+N6SKivn9PqRgghxHkC/Anf+pMCvGV6O61ci5SPNHdqm/LG87lHvBpLX3j81r6fmLU3/x5sMYvvQ7944mCoBCCEEOKypBbkyys7tkl+eblZ+aAW0TKlUzfx8/Z2Wt0IIYTUX8mbXligS22nS12nE+rVp/KkMG9yUT/6ECXsnxDiu4WGy4WxHZTAT4irwbuSEEKIS3K0uEje2JkkeeVlZuV9IyLlxs5xNHckhBA3ZtmhdPkqbZ+4OsNiWpv5y2sz9FU+9T4+SvhHgFr60RN3gUoAQgghLsfBokKZmbxVcspKzcpjg0JkSuduHGgRQogLmOXrA+VpJvhaMD2Y3iOnPQLo6VPjnfhdYaXgdSYQ4KvS2EHY9/WV9sEhMqZ1rBL6CfE0eFcTQghxOQXAy0lbJNdigNg1NFzuiutB00pCCHEyPx06IIsOpinB39n4e3mb+c9jtl7zwdd+B2jCvUU0fLWet4/40rWMNDGoBCCEEOIywDcUFgCWM0SYkbmtW3cqAAghxMkcKymRL9L2Ony/8WHNTqaq05nca+nu9AH0ArQyCvCE1AkqAQghhLi0AqBzSJjcE9+TCgBCCHEilSaT7MzLlbWZRx2e/u6qjl3k9KgYh+6XEGIbKgEIIYQ4nbTCAplloABAGsB74nrSJ5MQQhxMeWXlyfR68On/z3dfi85/4veJyPy5ZaWyOed4tZHx9TP1+I9geSHK/P4/E33d9yr/e19fae4foHzyCSGNB5UAhBBCnJ4GcNaOrVZpABEDABYAGFgSQgixL1gfhHZ9yr11xzIkvahQSish6J8M5FdmqnRIk7YMCJJne/djwFZC3AgqAQghhDjVBcBIAYD8yndTAUAIIbVKubfkYHqjB+s7NbIFFQCEuBlUAhBCCHEKu/Pz5PWUbVYKgLiwcLk7rqcK/EQIIaRmMoqL5au0fY3WVM38/KVtULB6X49uHdtoxyWEOAYqAQghhDQ623KOy5s7k6S0stIqOjTSAFIBQAgh1QOT/oL//Phh8l8ffL28Tvrp/xeRHz79Qf991yL0h/r6Sd/mkeo/IcR9oRKAEEJIo7IxK1Pe371Dyk0mKxcAKgAIIcR2IL81mUdlS/Zx+Sf7mN2R97VAfOCC2PYn0/Dp0vH5eXnRpJ+QJgSVAIQQQhqNNRlH5MO9u6RSzBUAic2ay61dE2gBQAhp8iC4H6ykENgvtTBfKU4x6//XcfsEf9AqMEie7tVPvL0Qt58QQsyhEoAQQkijkJSbbagAGBgZLdd37ia+TBFFCGlCZJYUyw8H0+VIcZEK5ncion+5FJVXSIXFe7K29GrWnAoAQohNqAQghBDS4BwsKpS3dyZbKQDOjmklV3boQjNUQojHzujDb18T8tX/8hPC/qf7dzvsWJp5P0z948PCZUJsB4ftmxDieVAJQAghpEE5Xloir+3YZpW2akTLNnJp+05UABBC3M43v7gSgnyFMtOHQJ+Smysbj2cKQp0UV0DoP1Fev/n86sH7s1/zFtLCP4DvUUJIraASgBBCSIMqAF5I2iKZpSVm5X0jIqkAIIQ4jaySEskqLTlpgq8T6C2/n/j930x+ebmUmsyzmjQ0fl7eUmaqlDGtYyUmMEhiAgKlW1g4zf0JIXWGSgBCCCENAvxcX9mxTfm96ukUEio3dYnnzBUhxGGUVVZKfnmZldCuCfkQ3rXviLDvitzWtbsE+Z5I0Qfz/sD//vsxXgohxMFQCUAIIcTh7M7LlVdTtlu5ACBi9Z1xPZkFgBDiMBYdSFUB9hp7hr62mKXl0/1vFxwi57ZszfciIaTRoBKAEEKIwy0AXjNQALQMCJL7EnpJuJ8fW5wQ4hAySorl2wOpTmtNJODTBPpAHx8VE2BU67YSHRB4Qsj3PbEMs/tM10cIcRWoBCCEEOIwYI77Rsp2KbBQAGCma1p8IhUAhBCHcqSoqN77aBMYrAR4bWZe/10T7rXyYJ1Qj//+3t50bSKEuB1UAhBCCHEIuWWlMjN5qxwqNh+Udw0NlzvjekiIL7scQohjQcA8SyCYnzS3P+FbH6wT6vEugjDfu1mkRAcG8pIQQpocHJERQgipN8iDDQXAgaJCAwsAxgAghDiODccyZU3mEckuK5Xs0lKzZa0Dg+SZ3qeyuQkhpBqoBCCEEFIvMAh/LWWblQKguZ+/3N6tO4NdEULqTIXJVJWuD/+TcnNkfuoem+v7MpI+IYTUCJUAhBBC6kxuWZnMTN5i5QKAoFj3JiRKVABNbQkhxpRXVkpxZYUUlZ8Q8jdkZcq/2VmqHOn8Sioqah3xv4V/AJubEEJqgEoAQgghdbYAeHNnkpUCIMLPnwoAQpowlSaT5JeXyx+ZR1W2kML/ZvHhNoT/+I1PaaVjU/qF+frJ+W3aOXSfhBDiiVAJQAghpNYcKCyUV1O2SVZpiVl5TECgCgJICwBCPBsI8D8dOiB7C/LUrD0EfCXcQ9CvrGi0evSJiJTzWrdV0fpbBQbRHYAQQuyASgBCCCG1IrUgXwUBtEwDGOUfIPcl9JLIAJrjEuLpzN+/R1ZkHG704wZ4n4juj0/fiEgZ37a9eHt5NXo9CCHEnaESgBBCiN3szc9TFgCWCgC4ANwV35MKAEKaCNtyjjt0fxDjg/9L4efj5S0Xt+8ozfz8JRAp/ry1VH8+4kWBnxBC6g2VAIQQQuxiZ16uvLJjq5Ufb+eQMLkjroeE+/mxJQnxQExVEfpP+PPje6aFK1B1wE3orOhWEux7QsgP8vGt+q4J/v7e3hTwCSGkkaASgBBCSI0cLCqUN1K2WykA4sOayV1xPZgGkBA3IqukRHbk5ZwI1Kei85crAV9F5Mdv5dtfIcUqgN+J36Ya9nlh2/bSPiRUQnx81Yw9hHuY7FO4J4QQ14NKAEIIIdWyPSdb3t6VpAQEPT3CI+S2bt2pACDETUDqveTcHJmdss3h+z6leQuJDQ5x+H4JIYQ4HioBCCGE2OTf41nyzq4kKTeZzwP2btZcbu3WXfy8vdl6hLgouWVl8um+XbI7P09F7S81OTYln0ao74nI/IQQQtwDKgEIIYQYsv5Yhvzf7hSpsDAE7hQSKjd0iacCgBAX54vUPfLX8WMO3y8C9cGnH2b/8Pc/v007puYjhBA3wuWUAKWlpTJnzhz58ssvZfv27VJYWChRUVHSq1cvufbaa+XSSy+12mb58uXyyiuvyPr166WgoEA6dOggkyZNkgcffFBCQ0Odch6EEOLOrDh6WD7Zt8vKD7h/8yi5rnM3ugAQ4oLB+9ZmHpVtudnKxx++/Lvyc2vczt/LW06NjFICvRa0T4vEr33XB/FDOVPyEUKIe+NSSoD09HQZNWqUEv4h+A8ePFhCQkIkLS1NVq5cqb5bKgFmz54t06ZNUxFlzzzzTGnZsqWsWrVKnnvuOVm4cKGsXr1a7YsQQoj9CoCP9+2yKh8S1VKu6dSVAgAhLsjKjCOGz211s/lDY1rJxe06Mio/IYQ0MVxGCVBUVCQjRoyQ5ORkeeKJJ+Shhx4SP126KVgEpKSkmG3zzz//yPTp08XHx0cWLVoko0ePrlp3/Pjx8ssvv8jUqVNlwYIFjX4+hBDijvyReVRZAFhybkxrubxDZwoLhLig28436fvlaElxjes+2L23RAUEMiUfIYQ0cVxGCfD8888rBcBNN90kjz/+uNXy4OBg6du3r9U2MH+bMmVKlQJAW3fu3LnSuXNnZQ2A/SYkJDTKeRBCiLuy4VimzN2TYuUCMLZ1O5kQ254KAEJcgGMlJXKkuEil99ucnSVrjx21aztY8nQNC2/w+hFCCHF9XEIJUFZWJu+88476ft9999kdO2DJkiXq++TJk62WIy4A3AngGvDNN9+o+ACEEEJqFwNgXJt2cmFsBzYbIS7AogOp8u2BVLvWHRAZJX0jIiXQx1e6hIZJmM66khBCSNPGJZQAf//9t2RmZkqbNm2ka9eusmXLFvn666/l4MGD0rx5c+Xrj5l+b10qKrgGwOwf9O/f33C/KIcSAG4DhBBCjPn1yCH53/7dVuWjWrWVC9q2Z7MR4gKUVlbKkoPpdisAbuoSz/gdhBBCXFcJsHnzZvU/NjZWZsyYIS+99JIy89d48cUX5ZRTTpFvv/1W2rc/MSDdu3ev+h8RESFhYWGG+23Xrp3ZuoQQQk6C9+zX6fvlh0PWgsWwmNYMGEaIC5FbViplpspq17msfWelAIjw92+0ehFCCHE/XEIJcOzYiRy2mLFHmr/bbrtN7rzzTmnVqlXVbywbO3asshpAwMC8vDy1DTIG2EJLD5ibW32KnJKSEvXRqGl9Qghxd8orK2V+6l757eghq2XI+X1hW8YAIMSVKK6osCrrFBKq0vg18/OXwdEx0j08wil1I4QQ4l64hBJAm/VHbIDLL79c3nzzzaplw4cPl59//lni4+Nl69atMn/+fLnqqqscenwEGHzyyScduk9CCHFVyiorVQDADVmZVstg/j+eLgCEuBzv7zbPkBTs4yuP9DQPmEwIIYTYw0kneyeiN+e/+eabrZbDBQBWAGD58uVm2xQUFNjcb35+vvofHl59NFwEDczJyan6pKWl1fFMCCHEtSksL5dXd2yzUgB4icg1HbtSAUCIC4FJEsQCeCNlu6QXmY93An18nFYvQggh7o1LWAIglZ/Rd6N1Dh06YbrasWNH9T87O1u5BhjFBdCEeW1dWwQEBKgPIYR4MjmlpTJzx1Y5WHQiqKqGn5e3XNOpq5weFeO0uhFCTlJUXi6PbPlbsstKbTZLTEAgm4wQQoj7WgL069evKv80sgQYoZVrfv5wDwgODlbfN27caLiNVo79E0JIUya7tFReTdlmpQAI8PaRO+K6UwFAak1qaqrcfvvtqj8OCgqSwMBA6dSpk1xzzTWyadMmm9vBom/MmDESFRWltktISJCHH364ynrPFrt27ZJrr71WBRGG4h7/8XvPnj0ed/Xe272jWgUAmMDUnYQQQtxZCYAAgEOGDDEz99eDWAErVqxQ3wcOHKj++/v7V7kIfPbZZ1bb7N+/X9auXau+T5gwoUHrTwghrszu/Dx5atu/klpobk6MYGIPdO8lPZs1d1rdiHuybt06SUxMlLfeeku55Y0cOVIJ9lDof/zxxypF71dffWW13ezZs2XEiBGybNky6dmzp4wbN0654T333HNqG1sTAWvWrJE+ffrIRx99pLICoV/Hf/zu3bu3/Pnnn+Ip7MrLlc05x6td57V+g6RrWPWujoQQQohLKwHA448/XhWkT9+Zl5eXy/Tp05WmHyb/U6ZMqVqGdIIYcMybN08NKDQKCwvl+uuvl4qKCpk0aZKaZSCEkKaqAJiVvFVyLGYVowMC5aEevaVDyAnrKkJqw0033aRc8fAfaXi/++47+frrr9Vs/SOPPKL6biwrLi6u2gZZftCf+/j4yJIlS5Ry/8svv5Tdu3fLueeeKzt27JCpU6daHQt9+iWXXKL+I4aPFiQY//EbSggsLyoqcvuLuL8gX55POpE22YgIP3+Z2iVBQn39GrVehBBCPAsvkxaa3wV45pln5NFHHxVfX1814w8LAaQE3LdvnzIZxKyCNvuvn1WYNm2aUgYMHTpUYmJiZNWqVSp2AEwUV69erUwOawNSBDZr1kzNTtQUVJAQQlyVTdlZ8vbOJCm3eM1H+QfItIREaRkY5LS6EXHbfglpfbV+9ejRoxIdHW22HAp4KO0hlKMPP+WUU1Q5BHX04zfccIO8//77VtZ7iP1TWVkpSUlJZsr7t99+W6UKjouLU8u8vU/OX2D97t27S0pKisyZM8cwuLA7tKnGogOp8u2BVKvyF3r3l2b+/uLn5VXlPkkIIcTzyG2kvsllLAEAZg9+/PFHZSqYnJwsixYtUoMJ+PxhIGGpAAD33HOPSiE4atQo2bx5s5qNQNwAzA5s2LCh1goAQgjxFAuAOTuTrRQAyCP+aGJfKgBInalNIF2tDy4tLVWz/2Dy5MlW63Xo0EEGDx6svn/zzTdmy7Tfl112mZkCAOD3pZdeqr7DEsFdQQaAd3ftMFQAnNEiRqIDA8Xf25sKAEIIIZ6THUAP/ArxqQ3Dhw9XH0IIISIZxcXy3q5kKTVVmjVHz/AIuSOuh/hZCFKE1AYo2s8880xldQfl/Ztvvil+fn5VM/NPPPGEsgIYPXq0tGvXTpVjph7m/AC+/0agHPuE24Ae7Xd12+nXc0dWHj0s67MyrMo7hYTK9V3inFInQgghnovLKQEIIYTUncNFRfJy8haryOL9m0fJjV3ixJcKAOIAYM6PQIDvvfeemuGHIA5ffwjiBw4ckKuuukopBzQQNwAgmJ9RSl+gKQy0dQHiDsD9ALRv377a7TIyMlR8gJCQELe7xoeKzbN2aJwR1bLR60IIIcTzoRKAEEI8BKT/QxBASwVAXFi43NQ1XnzoS0wcBGLu/PHHH0rY/+mnn5Tgr9GjRw85++yzzXwZIcyD6gR0LQUw/CEtt6tuW207bVtb65WUlKiPfl1XoazS3GoH9ImIlMFRMU6pDyGEEM+GNqGEEOIBIKr4S0nWFgBtgoLl5i4JVAAQh4KUfb169VIR+pGm9/Dhw5KVlaVi+SCtLzL04ONKIPsQgi1pH82CwBmUV1bK8sMH5bUd2+SZbf/KmsyjZsvPbdlG7ozrIQE+Pk6rIyGEEM+FlgCEEOIBecVfTdkmRRUVZuUdg0NVFoAQX77qiePIzs6WCRMmSGZmprIGGDRoUNWy888/X1kCQEHwwQcfyJVXXinDhg2rcgGAub4t8vPz1X+9BYHedcDWttp2lttagoDByCaktwRoTEVAcUWF/Hs8SzJLi+Wb9P3VrhvGZ5YQQkgDQksAQghxY3bm5cqsHVutFACdQ8KoACANAmIAwP8eKf30CoCqe09Xvnz5cvW/Y8eOVQoEvYm/nrS0NLN1NSVAZGSk+p6amlrtdshEUJ27AbIaQEmg/zTmzP+LSZvl/T07alQAgBim7ySEENKAUAlACCFuyr6CfHk9ZbtKL6YnIayZ3EsLANJAaMJ4dUI0zO0BXAS0GALBwcHq+8aNGw230cr79etnVq79ru12rkRqYYH62EOvZs2lX/MWDV4nQgghTRcqAQghxA3Zm58nM5O3SGFFuVUwsbvie9KXmDQYbdu2Vf+Tk5MlJyfHajliAvz999/qe6dOndR/f39/GTt2rPqOGAKW7N+/X9auXau+w9VAj/Z7/vz5KgWhHvz+4osv1PeJEyeKq1Jk8ZxackPnOLm9W3eZfcoguTu+J9N4EkIIaVCoBCCEEDdje062vJS8xcoFAAqAW7smiD/TAJIGZPTo0crsvqioSG688UYzn/zS0lK55557lLWAn5+fXHTRRVXLZsyYIV5eXjJv3jxZtmxZVXlhYaEKIlhRUSGTJk2ShIQEs+Nde+210qZNG0lJSZFHH33UbBl+ozw2Nlauvvpql73ulSbrsmExrWV6fKLMHThETo+KkVOat5BwPz9nVI8QQkgTw8tkMhl0TU0bBAuCKSNmOBrTZ5AQQmpiU3aWzNmZLKUmaxcARhP3XFytX/r0009lypQpUl5eLtHR0TJgwAAl9MM0H+kCvb295a233pKpU6eabTd79mwVnA/KgKFDh0pMTIysWrVKDh06pFwGVq9erXz7jbIRjBw5UikMEhMT1QeZCfCBQgKxB0477TSXbVM8t3Dd0WjhHyAv9R3QoMckhBDifuQ2Ut9ESwBCCHETNhzLlDdTkqwUAD3CI+gCQBoVRP2HwI9ZegTv++WXX2Tp0qXi6+srV1xxhcoaYKkAALAS+Pnnn2XUqFGyefNm+e677yQ0NFRF7t+wYYOhAgAMHjxYNm3apGb7EWdg4cKF6j9+o7y2CoDGptJivgVKEEIIIcRZ0BLADWZcCCFkTcYRmbd3p1iabg2IjFL+xL50AfBo2C+5d5v+c/yYvLkzqep3TECgPN+nf4MekxBCiPuR20h9E5NHE0KIi4Pc4kYKgNNbxMi1nbpSAUCIi2NpCeBNSwBCCCFOhEoAQghxYbZkH5d3diVZKQDOjmklV3boQrNiQtwAy8CA3kJ3AEIIIc6DSgBCCHHhLABv70yScotZxFGt2srF7TpSAUCIm1BpqcajDoAQQogTYWBAQghxQXbk5sgbKdutggAOjoqhAoAQN8MyDxMtAQghhDgTWgIQQoiLsS3nuLxlkAbwRAyAbrQAIMTNMFlYAnjTEoAQQogToRKAEEJczAXAKA0gsgBM6dyNAcUIcUP2FuSb/aYlACGEEJdXAqxcudJhBzzrrLMcti9CCPEkNmVnyTs7k6XMQgHQr3kLlQbQhxHFyX+wX3Yvfjly0Oy3F59lQgghrq4EOPvssx3SYWEf5eXl9d4PIYR4Gnvy82TOLmsFACwAoADw9WYIF3IS9svuRZvAYDlYXFj1e29BnlPrQwghpGljtztATEyMJCQk1PlAycnJcvTo0TpvTwghnkpqQb68lrJNSiutFQA3domnBQAxhP2y+2Dp3nNB2/ZOqwshhBBitxJg9OjR8sEHH9S5xaZMmSIff/wxW5wQQnTszMuV11O2S2GFuZUUFQCE/bLnUGGh4OscEua0uhBCCCEMDEgIIU50AZi9Y5uUVFaYlXcPj2AMAEI8iONlpWa/fZgegBBCiKsrAT7//HPp1KlTvQ50yy23yHnnnVevfRBCiKdQXFGhYgBYKgASwprJHd26MwYAqRb2y+5DfnmZVZmfF2N8EEIIcR5eJpPJPHktkdzcXGnWrJnk5ORIeHg4W4QQ4lDKKitlVvJW2Zmfa1beJyJSbu4SLwE+PmxxYgb7Jfdt0zv++tPK3efpXv2kTVBwgx2TEEKIe5LbSH0T3QEIIaSRFQBvpGy3UgB0DQ2XqV0TxJ9ZAAjxGEoqKqwUAKB1YJBT6kMIIYQ0iBJg7969snnzZunQoYP07duXrUwIIToFwPu7d8i23GyzNgnz9ZPrOnejAoA0COyXnUdRhbm7DxgcFeOQtMuEEEJIXamTU9r3338vEydOlPXr15uVv/zyyxIXF6eWnXrqqXLdddfVuWKEEOJJIP0fYgD8dfyYWXmAt49Mi+8pLTkzSOoB+2XXJDk3x6rsig5dnFIXQgghpF5KAKT6W7ZsmXTv3r2qLDk5WWbMmCEIMdCnTx8JDg6Wjz76SBYtWlSXQxBCiMdQWF6u0gD+m51lVg7T/+kJidI+JNRpdSOeAftl13zu39+zw6qcLj+EEELcUgnwzz//KEE/LOxkntv//e9/6v/bb78tf//9t2zYsEF8fHzkvffec1xtCSHEDX2CoQBIsnABgAXAHd16SJdQ5gsn9Yf9smtRaTLJHX//aVUe6utLVwBCCCHuqQTIzMyUtm3bmpX9/vvvEhQUJNdee636nZCQIEOGDJFt27Y5pqaEEOKmLgCWQQADvX3kzrge0qNZhNPqRjwL9suuxTPbNhmWD4tp3eh1IYQQQhyiBCguLlaz/BoVFRVq9n/QoEHi7+9fVd6mTRs5fPhwXQ5BCCFuTXllpbyzM0k25xw3Kw/x8ZV7ExIlIbyZ0+pGPA/2y65l/bO/MN+qPD6smVzQtr1T6kQIIYTUOztATEyM7Ny5s+r3n3/+KUVFRTJ48GCz9VAWEhJSl0MQQohbKwDe3b3DUAGAGAAdGAOAOBj2y65DXnmZYTmsf5gVgBBCiNtaApxxxhmyadMmmT9/vuTk5Mhzzz2nOrbhw4ebrZeUlKSsAQghpCnx2f498rdFFgDNBYAKANIQsF92HcorTVZlb596ugTqLCgJIYQQt1MCPPDAA+Lr6ytXXHGFREZGytKlS6Vfv35y1llnVa2TlpamMgYMGDDAkfUlhBCX5qfDB2RFxmHrNIAJidI1LNxp9SKeDftl16HcVGlVxowAhBBC3F4JAIH/hx9+kKFDh6o0gQgGuHjxYrN1vvzyS2nWrJmce+65jqorIYS4NL8dOSRfpO41K/P38pa74pgFgDQs7Jddh3KTuSWAr5cX3QAIIYS4FF4mk0VvRSQ3N1cpMODqEB7OmTtCSPXgNfr9gTT5/mCq1bIbOsfJ6VExbEJSL9gvuU+brs08KnP3pJi5Ar3V/3SH7Z8QQojnkttIcmidLAEIIYScZPFBYwXAxNgOVAAQ0sRYZeEO5Ovt5bS6EEIIIQ7LDkAIIeSEBcAPh9Ll2wPWCoDz27STsW3asZkIaWKZQVLycs3K8svLnVYfQgghpM6WACNHjpRZs2ZJfZg5c6baDyGEeIoC4Ku0ffJ1+n6zcsz5Xd6+s1zIfOCkAWG/7Jp8sm+3VdmY1rFOqQshhBBSL0uA5cuXS2xs/Tqxbdu2yS+//FKvfRBCiKsoAOan7pXlRw5aLbukXScZ3oqpUUnDwn7ZNckvL7MqG9gi2il1IYQQQurtDpCfny+pqdYmr7XZnhBCPIGlhw5YKQBgATAptqOMoAKANBLsl12PCoNYy+2CQ5xSF+IcPvzwQ5kyZYrMmzdPZc+qK9j2o48+kr1790rHjh0dWkdCCLFbCbBw4UL1aSi0l111FBUVSWBgoFX5X3/9JS+88IKsXLlSRVJs3bq1nH/++fLoo49KTAyjchNCHGcBgCCAljEAvMVLru3UVQZHt2RTk0ajoftlUnt25ZvHA4BrEHEv9u3bJ506dVLfW7ZsKenp6eLraz1cTkpKkh49eqjvHTp0UNs1Zt30BAcHS5cuXWTSpEkyffp0CQ0Nlcbk7LPPlhUrVkhAQIDs2LFDtYclCQkJapk+Kdnvv/8uw4YNq3bfSEeO9QghTlACtG/fvtFy3A4ePFi6du1quMzHx8eqbMGCBXL55ZdLeXm5DBgwQL0cN27cKG+++aZ89dVXsnr1apv7I4QQe8HA5YvUvfKzgQvA9Z27yWlMA0gakcbsl4n9FFVUmP3282YSJncFgv+RI0fkhx9+kPHjx1stnzt3rngbXN8JEybIaaedpiak6sPzzz8vM2bMkLZt21otg8B/5ZVXVvVNGRkZsnTpUnniiSdk2bJlauxrNGZuaEpKSuSRRx6RTz75pFbbnXrqqWryzghaQRDiRCVAY2g3NW644Qa7zacOHjwo11xzjVIAvPvuu3LTTTep8oqKCrWPTz/9VCZPnizr1q3jYIkQUmcwyPruQKqhAuDS9p2oACCNTmP2y8Q+Sisrrcp8qahxW8444wzZtGmTfPDBB1ZKAIw7McYcPny4mgHXg/ze+NQXKBFsKRIwuQWB31IAP/300+XPP/9UdTrnnHOksYFy4rPPPpP77rtPevfubfd2/fv3tzofQkjD4tYq6ldffVUKCwvVS1hTAABoP9955x31Et6wYYP89NNPTq0nIcS9gQvAooNpZmVe/ykARraynqUhhDQ9ygyUAHFh9RcGiXMICgqSyy67TJYsWSJHjx41W7Z48WJlJXDdddcZxgSAlQ7+60EZzOaxHSawoqKi1DFgNWBk7o7JLGxjr8IPpviaaX1mZqbV8q1bt8oll1yi3GSxLixn7777bjl27Jjh/mq7PnjmmWeksrJSHnjgAbvqTAhxHm6tBPjmm2/Uf8z2WwJ/KE1z+/XXXzd63QghnmEBsMQgBgC4vnMcFQCEkGqVAEG+jW+S3VDvworSXLf56P3O6wOEfMz6W5q3wzogMjJSLrzwwlrtLzs7W4YMGaIyZl111VUyceJE5cI6atQoJXTXh9LSUqVMgOKgb9++ZsvgHjBo0CA1bj733HNl2rRpym//tddeU+WWSoParq8BJcfo0aOVS8Jvv/1Wr/MhhLhIYMDGAi+NLVu2SF5enrRo0UIGDhwoY8aMUVpIPVi+a9euKjMiI1COF/c///zTKHUnhHgOGER+uHeXrM48YrXs6o5d5XTGACCE6Cg3WSsB/Lzceq6lisqyPDmy9h5xF1qeMVt8/MPrvR+MQRMTE1WkfwTcA4cPH1b+97fccovV2LQm4F5w6623yhtvvFEVTwBm+3CFRSyrOXPm2LUfjH8183n0VRDKf/zxRzlw4IC89NJLEhcXV7UuZuZhVQDLWQjnUDho3H///fLyyy+rmXvEOKjL+pYgUDfqgnXsdceFIsSWO8B5552nrCUIIR6uBPj444+tyuATBa0rXgQaevMoBEgyol27duo/0qsQQoi9lFdWysf7dsmaTHMTUHBFhy4yNKYVG5MQUqMlgC8DA7o9sAbATDgEWsyCI5MVrAOMXAFqIiQkRF588UWzgIJwDZg6dapyX7WX3bt3y5NPPmlVjuB6cJHVs2bNGrU+Zuj1Aj147LHHlDAPP3640fr7+9d6fUsQCwBBCzGeR4BuuBTUBLJ84WNEREQElQCENAAuo6Lu06ePMjOCOVRubq7ymYIvPwKzHDp0SJn2632mYAmgf6kaoaVIwf6qA8FUsI7+QwhpmhSUl8vM5K1WCgAVA6BdJzmnZf0iPhNCPJM9+SfHJdo7w4eBAd0eCLR+fn5qMgrAKuCUU06xMrm3B8zQW6bvQxYCpCKEq4C9QDiHBYD2gSXAd999p8bQyLIFhYWGZg0LU31LUBdYzRYXF6v0fXVZ34inn35aWUkgUwAUJjVx8803m52P/oM4BIQQD1YC3HPPPXLnnXdKz549JSwsTAUiGTFihPJLuuCCC6SsrKzBXgRIw6JFc8VHsyAghDQt8svL5KWkLbLTIte3j3jJbd26y8jWDAJICDFmVYa565Cvh7gCNHWio6Nl3LhxMn/+fFm+fLkSfutiBQDCw41dFKAIQGarugL3WUyWvf/++8qMH8K3hjaxBUWDEVoGAm292q5vBCx0b7vtNtm5c6e89957dT4vQkgTcgewBL5EMHmChhO+VGlpaUpIh6JAo6CgwDAdS35+frUvXY0HH3xQmXpp4MVGRQAhTc8C4I2UJEkvKrBK8XVrt+7SJyLSaXUjhLg+fham/2UGMQLcFW+/MOVn7071dSTXX3+9CjINX/nAwEC54oorxBWBuwLQuxZoY2BY2BqBGAf69Wq7vi0efvhhZT3x1FNPydVXX12HsyGENCRuoabu3r171ff09HT1H1FKNVJTrSN3AygMQMeOHavdP0yW8DLTfwghTUsBMHvHVtllYQEQ4ecvD/boQwUAIaRGLOPRD4vxHNchTMgg0J67fOwJRlcbYH7ftm1bFXgPGQGaN28ursjx48ergvtpwHUBGKUhxCQagvIhVWF8fHyd1rcFsicgOCCUCbNmzarnmRFCmqQSQJ+TVLMAgKDetWtX9R0vJCO08n79+jVKPQkh7kdeWZnMTN4iewtOWA7pFQAzevSWjiHm/puEEGKEZVq6VoFBbCgPwcfHR7799luVMg8upK7KK6+8ov6fddZZVWWIEdClSxeV0QDuDHqeeeYZNca+/PLLq4L81Xb96rjrrruU8gRKgNrEPCCEuLg7wKpVq1Sak7Vr10pGRoYKnqKlDPn5559Vuj/4+bdqVb9I2vDD0gR/veZxwoQJKlUJopROmTLFyhVg0aJF6jvysBJCiCWZJcXy2o7tcrC40Kw8zNdP7o7vKdEBgWw04lY0Vr9MarYE8GZQQI8CAfFspaRubPQpAkFWVpaK6v/3338rKwVkINBAJoIPP/xQWTMg5fbFF1+srGn/+OMPNdsPgR9p/eq6fnXAYgD1vPHGG80CetcmRSDcL2bMmGFnyxBCGlwJAG3g448/bqb51n+Hjz5eQrGxsSonanX8+++/yqQfLxsER9GAOROisD700EPqNwYuiNCqgUCBb731ltJUIhgKXjIAwVVwTGgdBwwYICNHjqzraRJCPJTcslJ5JXmbHCkpsrIAuC+hl7QK4iwecS8c2S+T2mOyUAM41iCdENspAuHWiuf6lltuUQKzZersIUOGyJ9//qn885F5KycnR9q0aaNm6hFEMCoqql7rVwcm6WChkJSUVKcUgXhvUQlAiOPxMlnar9kBTITGjh2rXjh4sIcOHaqiiCJgipZCBWCmAab4P/zwQ7X7g4kVZvWhvcT6WqoUpDrR/P1heoSco3olAUAOUiyD4I+AKPD/R0CUPXv2qP0gu4DmNmAvCAyIlw5eeowPQIjncbS4SGYlb5XM0hKz8hb+AXJvQqLE0IyXuBg19UuO7pebAo7u65/fvtksrsjVHbvK0BhaXBBCCHE9ObROlgCvvfaa0jpi0IGUfrbo06ePSg9SE1gPs/owB0pOTlYmTdBNYABz0UUXKS0irASMgJlS586d5bnnnlNmkMhvivQlSE3y6KOP2kxxQghpugqAl5O3SpaFAqB1YJByAYiiCwBxQxzdL5P6WwIQQgghrkqdlACYaR84cGC1Aw0ttyr8EmuiU6dOMnt23VPPnHrqqbJw4cI6b08IaRqkFxbI7B3bJLus1Kwcgv+0+ESJDAhwWt0IqQ+O7pdJ7bG0q2RMAEIIIR6lBECKEHuCCsGMQZ+mhBBCnMXe/DylACioKDcrbx8cInfH9ZRmdkQ6JsRVYb/sfBgTgBBCiEcrAWBij8ikNbFjxw5p165dXQ5BCCEOY19BvryaYqwAgAVAmC7gKCHuCPtl17MEYGBAQgghrop3XTZC1FBE9Ifvvi0WL16sFAXDhg2rT/0IIaReHCwqlFd3bJP8cnMFQFxYuExPoAKAeAbsl51PpUVMALoDEEII8SglwPTp08XLy0smTpyoIvuXWwyuly1bJjfccINK53fHHXc4qq6EEFIrUvJy5NltmySvvMysvEd4hHIBCPWlBQDxDNgvOx/LsIC0BCCEEOJRSgCkF5o1a5ZkZmbKpEmTJCIiQikFEJwP35Gm6OjRo2qdHj16OL7WhBBSA7sRAyB5mxRXVpiVJ4Q1k9u7dZcAHx+2IfEY2C87n7TCArPfGBcRQgghHqMEAHfddZfKMzxgwAApKipSKf3y8vJUbsNevXrJ999/L7fffrtja0sIIXZwoLBQ3t6ZJKUm88CkHYND5VYqAIiHwn7ZtaAKgBBCiEcFBtQYNWqU+hw7dkz27t2rMgEgEGDr1q0dV0NCCKmlBQBiABRaBAHsExEpU7smiL93nXWfhLg87JedR6R/gGSVllT9zi0zd0MihBBCPEIJoNGiRQv1IYQQZ6cBfD3FWgEAF4DbunUXH5rnkiYC++XGp8wiJXKboGAn1IIQQghpJCUAIYQ4m9SCfHk5eauUWMQA6BQSKrd0S6ACgBDSoFRY5Aj0o9URIYQQT1QC/PHHH/LLL7/IwYMHpbi42HAdBMaZO3dufQ5DCCE1ZgF4bcd2KwVAz/AIuT2uB10ASJOB/bLzsLRAouURIYQQj1ICFBYWyiWXXCJLly5VvxEU0BZUAhBCGtoC4PWU7VZZAJAGEC4AjAFAmgLsl53LcV0sAA1aAhBCCPEoJcBDDz2kMgM0b95crrzySunWrZuEhYU5vnaEEFINGcXF8sqObVJUYa4AiAsLlzvjenAQTpoM7JedS55BEMCWgUFOqQshhBDSIEqAr776SiIiIuTvv/+WDh061GUXhBBSLw4XFcnM5C2SV15mlQXg5i7xVACQJgX7ZediZA9JKyT3ZN++fdKpUyf1vWXLlpKeni6+vtbD5aSkJOnRo4f6jrEwtgMffvihTJkyRZ5//nmZMWNG1fpnn322rFixQgICAmTHjh2G4+eEhAS1TG9h+/vvv8uwYcOqrfPQoUPVenorXD0+Pj4qWCjSet99990yfPhwcSRPPfWUPP7446qd0tLSpFWrVg7dPyHERZQAx48flxEjRlABQAhxCumFBTIzeauVAiA+rBnTAJImCftl51Jp4Rbp78VUpO4OBNojR44oy9fx48dbLUe8K+86BH8sKSmRRx55RD755JNabXfqqafK+eefb7isY8eOVmUQ+m+//Xb1HXG7tm3bJkuWLFGfzz77TC6//HJxBFBYzJs3TykeysvL5aOPPpIHHnjAIfsmhLiYEgDay7q8+AghxBEKgJeTt0h+uXkQrtigELmDMQBIE4X9sotZAphPxBI35IwzzpBNmzbJBx98YKUEgLD76aefqhl1zO7Xhi5duigh/L777pPevXvbvV3//v3liSeesHv9qKgoq/Xnz5+vhP8HH3zQYUoABAiHFcRNN92k9o/2ohKAENenTpL85MmTldlRdna242tECCHVuAAgCKClAgBpAO/rnihBBiabhDQF2C+7lhLAi1oAtycoKEguu+wyNXN+9OhRs2WLFy9WVgLXXXddrff7zDPPSGVlpVME5UsvvVRCQkJk//79kpmZWVV+/fXXq5n8lStXGm73yiuvqOXvv/++1TItAxiUABdffLGkpKTIqlWrGvAsCCFOUwLgxZWYmCijR49WPlGEENIY0bdfTdkmxyyicHcNDZfp8YkS6uvHi0CaLOyXnYyFO4C3h1kCwOQ7t6zMbT7VZa2qDRDyMetvabqP2e7IyEi58MILa71PxAbA+HnZsmXy22+/ibPQxzm46qqr1H9YNxiB80csAwj5erKysuSbb75RsRHgrnD11VercqYGJ8T1qdO0mb+/v/z4449y+umnS69evaR9+/bqY+QiAM0hTIUIIaSu5JaVyktJWySjpNjKAmBafE8J8PFh45ImDftl5+LplgB55eVyzz/rxF2YfcogCferv2J44MCBatILPu/Tp09XZYcPH1Ypsm+55RYlGNeFF154QY2jobxbt26dVSA/IzZu3GjTHeC8886T0047rcZ9wFy/oKBAevbsqQJ86wMLYhy/YMECeeONN8zOa+vWrfLvv//KRRddZLYN+N///qdiHGhKhDPPPFPFJ0Cg0tdff13Cw8NrrBMhxA0DA+LFAG0rfIG0qKiW2PNiI4SQ6lwA3ty5XY5aKADaBAXLHd16UAFACPtlp1NpoQbgyMdzgDXAtGnTlLA+aNAgFfgO1gF1cQXQQCwApNj++OOPlcB8ySWX1LjNX3/9pT5GQDi3VALA3F9TGugDA4aGhso777xjNVa/4oorVEYDrDNx4sSqZZoVBOprKziitgz7wXe4PEDhABcBQogHKQGQjxjpAbt166Y0ofiPlwohhDiSXXm5KgZAQYV5DIBWgUFyb3yiNPP3Z4MTwn7Z6Vhan3P+w3OAUIsZe7gAQAkAq4BTTjlF+vbtW6/9Pv300/LFF1+oTAEQuo3SEOq5+eabZc6cOXbv/9ixY/Lkk0+alWGs/vPPPxtaDWA2H0oACP2aEgCxCxDEEJkGxowZY2WZgMCJ5557rsTGxlaVwyUASgAoCKgEIMTDlADfffedyp36559/SvPmzR1fK0JIk+dAYaG8lrJdCi0UAC38A+S+hF5UABDiAv1yaWmpEky+/PJL2b59uxQWFqqo5HAVvPbaa1UgMkuWL1+uAo2tX79emSYjs8GkSZNUxPLqJhR27dqlhAtsn5GRIdHR0So6+2OPPSadO3cW17IEoC2Ap4D7bNy4cWpmGz7xO3bsUCbz9QXm97fddpt6Ft577z259dZbxZHEx8dLcnKy+o5A3t9++62auJswYYIS4Nu2bWu2fvfu3ZVfP1IiwuIX7xEEAU9PT1d187Nwr9D8/rU4ABqYGISSAe8iWB/A9YAQ4iFKgJycHOV/RAUAIaQhyCo5EQTQUgHQPjhEbuvWXSJoAUCI0/tlCAejRo1Swj8E/8GDB6vI42lpaSrKOL5bKgFmz56tTKthNgz/YSguEEn8ueeek4ULF8rq1avVvixZs2aNjBw5UikZIFQMGTJEuSTCNBt+zFAM2OMT3WiWAOJZhPn6Kj97d6qvI0H0/K+//loptgIDA5XpvCN4+OGHlYXBU089ZSVMOxK4C6DuFRUVcsMNNyjlA5QCRtYAd999t1LqwfJAcwXQfP41ioqK5PPPP1ffr7nmGvUxAooCKDkIIa5Hnd6SXbt2Vf5FhBDiaLJLS+WFpM2SZZEFoFez5nJL1wTGACDEBfplCAGIDYSZRvgdw01QP1MIYR2pwvT8888/Kriaj4+PLFq0SEVI19ZFHnYEEZ46daoS6vVgOXym8R/WAlAYaOC4MGHGcszQIq2bK+DtYf4AUNo4ItCeuwJlF2bODxw4oNIGOkrZhgwDcDXAfT1r1ixpaBDH4O2331aWQ2vXrpUzzjjDbPnll18u9957r8oSAKUEFB94t1gq2PCMQvEIlwhYDxiBoIFQIiAIIgKXEkI8IEUgNKIrVqxQswCEEOJIBcDsHdZpADuHhFEBQIgL9csQvKEAgM/v448/bmUqHBwcbOUzjW0QTHjKlClVCgBtXS3AGKwBNBNmjQ8//FAOHjwocXFxyh1AD36jHNYHCLLmLCotTAE8SwVAoLjCzDnS4eE+diR33XWXUjBACQCz/YZW5uB5BY8++qjV8piYGGVxA8ubV199VXJzc20GBASY5f+///s/ww/cDhCc8Pvvv2/QcyKENKIS4I477pALLrhAzjnnHJXiBIFDCCGkPhSUl6s0gOlFBVZBAO+MYxYAQlylXy4rK6uKLn7ffffZHTsAUcfB5MmTrZYjLgDcCQAELT3ab8zAWqYixm/N5QCzli6TItDDLAGISP/+/eXCCy9UKfAcCaxXYE2Tl5cnR44cqTFFoNEHs+32AqsbzN7/+uuvSnFoCUz/oazTlAWWSgDE5oC7D9rh7LPPtnkcKPv0CgNCiAe4A3Tp0kX9R1pARAtFRNPWrVtbdc5aR7h79+7615QQ4rEUlpcrC4AjJUVm5VH+AfJA994S1oTNUAlxtX4Z2YEww9emTRtlKrxlyxYlgGO2HmbS8PXHTL/+2HANgDm/JkwZgXLEB4DbgB7td3Xb6ddzBsm52fWfYSFNFgjMmFVPSkqqU4rAZs2ayYwZM+w+HhQHCHYIawAI9HqgTAwPD1dWAKeffnrVu0UDMQygJEAcgOqUXcga0K5dO/npp5+UpQ6+E0JcBy8TnuRaYjSosHkALy8ViMSdwIsPL1T4O+FFSAhpOEoqKuSVHdtkV36uWXlMQKBMi0+U6MBANj9p8tTULzVmv/z+++8rN4CBAwfKsGHD5KWXXlJCgR6kUIP5NCKgA8QAwAwkApQh8rgRWtBACPUbNmxQZZgd1c7333//lT59+lhtB+G/X79+6nt+fr4KSNjYff0PB9NlYfo+s7K5A4fUa5+EEEKaHrmNJIfWyRJg7969jq8JIaTJcby0RN5MSZJ9hflm5aG+vjI9IVGiAqgAIMTV+mXkH9eEb6T5Q6TxO++8U1q1alX1G8vGjh2rrAYQLwDCPKhOQNfSA2IApKFtV922+rSC2NbWeiUlJeqjX7ehUgQSQgghrkydlADw3SOEkPqQUVwsM5O3SKZFEMBmfv4yPZ4KAEJctV/WZv0RGwDRxN98882qZcOHD5eff/5Z5ShHCj/kVrdML+YsENDtySefbJB9V1SaKwH6N7dOc0gIIYS4CnRbI4Q0OpklxfKygQIgxMdXpsX3lLbBwbwqhLgoYWFhVd+RS9wSuADACgAsX77cbJuCAvPAn3pgyg/05o/6Y9naVtvOcltLkIYN5pXaB37KjqLcZB6I0cebgQEJIYS4LlQCEEIaPQbAOzuTrdIAIgbAQz36SGywff68hBDn0LlzZ8PvRuscOnRI/dciqiMFmt7EX48mlOujr0MJgFzqIDU1tdrtoqKiqnU3CAgIUEoC/cdRVFjERPBldgBCCCHu7g6AlEMIJPTRRx9JbGys+m0v2O6XX36pTx0JIR4CBsrv7t5hFQMgNihExQAIZxYAQsTV+2UE4cM+4BaALAFGUb9RrvfXh3tAcHCwyhCAVGcIKGgJyrX9Wx4PFgVYjojm9m7X2ClO9fh4cY6FEEKImysBfv/9d9Xha+l98NtemCuXEKIpAP5vd4psys4ya5BWgUFyb0Ii0wASUguc2S8jAOCQIUNUOj8I58gEoAexArT848ggAPz9/ZWLwFdffSWfffaZlRJg//79snbtWvV9woQJZsvwG8dBfAHkLtdnQqisrJQvvvhCfZ84caI4i9WZ5vndaQlACCHE7ZUAv/32m/qvpfrRfhNCSG0UAOuzMqyyANzSNYEKAEJqibP7ZQjjCAKIYHtnnnmmnHbaaaq8vLxcpk+fLnv27FGm/Mh/roE85gsWLJB58+bJpEmT5LzzzlPlUGRcf/31Km0hyhMSEsyOde2118qzzz4rKSkpKq85vmvgN8phDXH11VeLMyivrFRCf7nOJSDEt05xlwkhhJBGwdfeWQNo/gP/y9c9dOjQhq4XIcRDgMnwx3t3WSkA/Ly85bZu3RkDgJA64Ox++dxzz5Wnn35aCeFQAmDGH/VBSsB9+/ZJUFCQfP7559KyZcuqbWCuP2vWLJk2bZqMGTNG1TkmJkZZFCB2AFwG5syZY3UsuBF8+eWXMnLkSHnuuefk+++/l8TERJV9AB/EAYCFAY7pDIorK8wUAKBtEGObEEIIcV3sclo7++yz5cUXX2z42hBCPE4BsPTQAUNTWSgA4sKaOa1uhLgzrtAvP/LII/Ljjz/KiBEjJDk5WRYtWqRm8zFzD2WAliFAzz333KNSCI4aNUo2b94s3333nYobgMj9GzZsUMH9jBg8eLBs2rRJzfZnZWXJwoUL1X/8RrlmieAqdAtzXNBBQgghxNH41jYvMCGE2EOlySSf7d8jvx09ER1cw0e8ZGrXBOkV0ZwNSUg9cIV+GbPz+NQGuBHgU1u6du2qAiG6A0wQSAghxJVh+FpCSIMIJ1+m7rVSAIAbu8TLKc1bsNUJIR6BC+hiCCGEkFrByDWEEIcrAD5P3Su/HDlotezidh1lQAtjc19CCHFHjHQA9UzAQAghhDQoVAIQQhxGWWWlfLpvt1UMALgAXNc5Tk6LimZrE0KaANQCEEII8QAlwL///itPPfVUnQ7y2GOP1Wk7Qoj7kFNaKnN2J0tKXq7VUHhK525UABDiYNgvuwr0B/BU/vrrL3n77bdl5cqVcvDgQamsrJQ2bdrIGWecoYJSIiimHqTI/OSTT1S2CgTHRPBKZK2Ii4tTwTBvvPFG6dChQ9X6HTt2lP3796vvW7ZsUVkvLEGwTaQCxfHB3r171XaEEFIfvEx2RBby9vZW6YjqCl5gdeH++++Xl19+WX1HKiJEIjZi+fLl8sorr8j69euloKBAvWCRaxjRhhF1uLbk5uZKs2bNJCcnR8LDGeGXkBqfmbIyeXb7JsksKTYr9xYvuaFLnAxqQQsAQuqDZb/krH7Zk3BUXw8F6LR/15uVvXrKIAnz83NALYkzgLB/7733yuzZs8XX11fOOeccJaD7+fnJnj171Ljz+PHjanIMaTIBhPkLLrhAZatAakwoCNq1a6fGpVAI/PHHH2pfSGuJIJcAwnxaWpr6ftddd6mxrCWLFy+WcePGqW2hZKASgBDPJreR5FC7LQHwQkMO38Zi7dq1Kp8wBjnV6SnwgkbOYayHXMWoJ3IOI5cwUgitXr3aZsohQohjFACzd2y1UgD4e3mrIID9IhkEkJCGoLH7ZWIMYwJ4Hph0wviyb9++smDBAunSpYvZ8qKiInnzzTfl2LFj6ndeXp6a6d+xY4fcd999auIqICDAbJtdu3ap8Wp+fr5ZORQLZ511lnz66acq7Sd+6/nggw+UQNCnTx9lkUAIIY2qBDjvvPPUi6gxKCwsVHmGW7duLQMGDJBvv/3WcL1//vlHpk+fLj4+Pio/8ejRo6u2Hz9+vPzyyy8ydepU9QInhDie46Ul8kryNjlYXGhW3sI/QG7pmiCdQsPY7IQ0EI3ZLxPSVICw/tJLL0mLFi1k2bJlStlmCUz8IeyXlJSo3zNnzlQKgCuvvFJtawRm/7///nspLS21WnbdddfJ5ZdfrsayEydOrCrPyMhQlgDXX3+9sgAghBCPDgwIM/6dO3fKkiVL5Msvv7S53vPPP6+sBKZMmVKlAADBwcEyd+5c6dy5s7IGSE5OloSEhEaqPSFNA8z8z0reKkctLAAi/QPk4R59pJm/v9PqRgghjYXJwBbAy8MCA2KsVZF3QuB1B3zCAursLvPhhx8qd5mbb77ZUAGgR5vt15Rx9sTA8jfoGydMmCDNmzeXefPmmSkBEF+grKxMKQk0twNCCPFIJcDvv/8ub7zxhgq4MmbMGJtKAGhSoSQAkydPtlqOuACDBw9WrgHffPONUiwQQhzDrrxceXtXsuSUmc9oRPkHyPSERCoACCFNBiOPRc9SAYhSAOy69XtxF7q+PV58wwPrtO2aNWvUf8QBsAfEAkhPT5fY2Fjp1q1bnY4JZcIVV1whc+bMkcOHD0urVq2qlAu9evVSVrGEEOJIvMWFgJ8UtJ3QvL766qvVrpuSkqLM/kH//v0N19HK4TZACHEMazKOyMvJW6wUAC0DguSB7r0lJjCITU0IIcQtgRAOINQ3xPq2wPgXgf8++ugj9XvdunWybds2VU4IIR6tBEAkVvg8vfPOO8osqjo036iIiAgJCzP2O0ZUVv26hJD6mYN+nbZfPti7U8otpr7aBAbLfd0TJdIiEBIhhDRFPM0SgDQ8p5xyigpECJcAzQoArgOIM0AIIU5RAjz++OMq7UlD8tNPP8m7774rl112mVx44YU1ro9IrCAkJMTmOlp6QKRaqA4EdsE6+g8hxEIBkL5flhw6kcpIT4/wCHmgRy9p7k8FACGNRWP0y6Q+2QGoBnBXNFP8AwcONMj61YFZfwQYRArC+fPnq9SAzHBFCHFaTAAMNhoS5EFE5NPo6GgVD6CxQYDBJ598stGPS4i7KAC+StsnPx62HuCMaNlGLm7fSXw44CWkUWnofpnUNzCgZ4FAe/Czd6f61hXEk0J8KmSYsicuAGJQtW3bVtLS0lRQ67rGBQCIC4CsA8iQhQkpjI0JIcRj3QHuvvtuFVQFOVft1XhqLgAFBQU219FysYaHh1e7LwQNhCJC++BFTggRqTSZ5MO9u6wUABjgXtGhi1zWoTMVAIQQ4uHAsgGB9tzlUx9LDAjgSD393nvvqRR91aGlCNSE9WeeeabG/RulCNSIjIxU1rCwKoBiYdSoUbWuPyGEuI0SANH7fX195e2335azzz7b7IMcrQAp//Ab7gKgY8eO6n92dnaVa4AlmjCvrVtdVFYoCvQfQpo6UAB8um+3rM48YlaOodWUTt3knJatnVY3QghxZXcA4r507dpV7r//fsnMzFTpp43iShUXF8srr7wiTzzxRFVMq/j4ePn444/loYceqlIO6MF+IOBv37692uO/8MILalz87bffire3SwzTCSEeiMukCERE1BUrVthcvm/fPvWB2RXAyzY4OFhlCNi4caMMGzbMahuUg379+jVgzQnxPMorK+X/9qTIhqxMs3Jv8ZIpnbvJGVExTqsbIYS4FEYpAuki5dZgRh+C/uzZs9V4E24BiYmJ4ufnp4R5+OwfO3asauYf1qk//vijitMBF1ME9xs5cqTKGIBxKrJUIfUgJrxmzpxZ7bExcVXT5BUhhNQXl1AxYjYffsdGn2uuuUat8/TTT6vfUAQAREwdO3as+v7ZZ58Z5m1du3at+j5hwoRGPR9C3Jmyykp5c2eSoQLg5q7xVAAQQkgNMQGIe4MZeMz0b9iwQa666irZvXu3slaFUgCp+2Cm//PPP8vDDz9ctQ0mqbA+ovojyj+UAi+//LKyZIXFKqwLkN4algaEEOJsXMYSoC7MmDFDFixYoDSukyZNkvPOO0+VQ+sK/6yKigpVnpCQ4OyqEuIWlFZWypxdybIl57hZua+Xl9zYJV76R9oXs4MQQpoynhYYsKnSv39/JcTbCywFpkyZoj72oE1s2YPmHksIIR5jCVBXYOY/a9YsJeyPGTNGuQRceumlSsuKqK4w4ZozZ46zq0mIW1BSUSFvpGyXTdlZZuUB3j5yV1xPKgAIIcQA2gEQQghxN9xaCQDuueceZZIF06zNmzfLd999J6GhoSriP8yymF+VkJopLC+X11K2y/bcbCsFwPSEROnRLILNSAghBpiMYgKwpQghhLi7OwCindaHq6++us7bfvjhh+pTHcOHD1cfQkjdYgBAAbArP9esPMjHR+6O6yldQk+k4ySE1I7SI/mS+eUWibyguwS2d6wizZn9MiGEEEKagBIAOVPrEukWgfywHQcbhLgmFSaTfLBnp5UCINTXVykAOlEBQEjtn6v8Esn8ZrtkL98tpopKqSgqk3b3n+XQlmS/7NqBAZkdgBBCiNsrASDEW3Zox48fl++//1597927t3Tq1KkqyAnM8sH48eOlefPmjq81IcRBCoAUWZ+VYVYe5usn98T3lA4hoWxlQmpBZWmFHP9xp2QtSpKKwrKq8oLNh6VgyxEJ6dXSYe3Jftm1oTsAIYQQt1cCWJrjQwEwcOBAGTRokAq816dPH7PlmzZtkltvvVW2b98uf/75p2NrTAipN+WVlfLOrmT51yAI4LT4ntKeCgBCamX1lrtmv2R+uVXKsgoN1zm2KMmhSgD2y64dGJBKAEIIIR4XGPCxxx6TrKwsWbp0qZUCAKBs8eLFkpmZqdYlhLhWFgAjBYCfl7fc0jWBCgBCagFm+Pc/8rMcmrPeUAHg5eMtkWPipe2dpzdou7JfJoQQQkiDKgHgBnD22WdLRITtQEdwA0DKvkWLFtXlEISQBqDgvywAlgoAfy9vua1bd+kVQfcdQuyhODVb0l5aKWkvrpDi/eZZNTTCT2svnV4+T2Im9xGf0IAGbVj2yy6WHaAOcZQIIYQQl3IHsOTIkSPi7V2z/gCd4NGjR+tyCEKIg8kqKZGZyVvlSEmRlQLg7vieEh/ejG1OSA1gtj9z4TbJXblPuQEYEdw9RqIv7y1BnSMbrT3ZL7tWYEBCCCHE45QArVq1kt9++03y8/MlNNQ4eFheXp78/vvvEhMTU986EkLqSWZJsbyctEUyS0vMyoN9fOXWbglUABBSAwj0l7U4WY4vTZHKsgrDdQLahCvhP6Rv60afCWa/7DrQBoAQQohHugNceOGFKibAuHHjZMeOHVbLU1JS1DoIIDhhwgRH1JMQUkeOFhfJiwYKAKQBvC8hUbqHOzZ/OSGehKm8Uo4v3yV7p/8gx75PMlQA+DYLlFbX9ZeOz4+U0FPaOMUUnP0yIYQQQuzFy2TLnrEaINwjM8CuXbuUW0C/fv3MUgT+/fffUlFRIV27dpV169a5XZrA3NxcadasmeTk5Eh4eLizq0NInckoKZYXtm+W7LJSs/I2gcEqDWBkQMP6KRPirqBrzN94QDK+2CKlh/MM1/EO8JXIsfEq8J93oK/hPhylEKipX/L0ftmV+/q9+XnyzPZNZi5W7ww4w0G1JIQQ0pTIbSQ5tE7uABg8rF69Wm677Tb55ptvZOPGjeqjgUHPxIkT5a233uJAgxAnkV9eJq/u2GalAIgNCpHpCYkS7ufHa0OIAUW7jsnR/22Sop2Zhu3j5e0lzYZ2kqhJPcU3IshqeXphgXybnipx4eEyslXbRmlj9svOo8JiLsWbQQEJIYS4OHVSAgD4+n/11VeSnp4uK1euVP9B27Zt5ayzzpJ27do5sp6EkFpQWF4ub6QkyeFi8yCA7YNPKABCfakAIMSS0iP5kvHFZslbf6I/MyK0XxuJvrS3BLQ11s5/tn+P/HLkoPq+Kz9Xhka3kgAfn0ZpbPbLzqHcQgngZ0fgZEJI/UGmshUrVtgM0uoux3AmsBSD1dg111wjH374obOrQ9xBCaARGxsrkydPdkxtCCH1pqyyUt7amaQEEEsLgHsTekmIb70fe0I8ivK8Ejn2zXbJ/mW3mCoqDdcJ7BQpMZN7q8j/1dEyMLDqe155mfxy5JCMaRMrjQn75calvNL8nvGlJYBb07FjR9m/f7/hsqFDh6qg13owCXbHHXcoQTEkJEQuueQSefbZZyVQ9y4AECLPPPNMtc6PP/5YJ0H00KFDKghoXYGlrtE5NGWeeOIJefLJJ1XAc7Szq3LttdfKRx99ZPf68+bNU9sQYguHSAOlpaVy7NgxCQgIkMjIxkuJRAgxp6SiQl7Zsc1KAdDcz1/uiutBBQAhOipLK+T4jyly7PtkqSwqM2wbv+gQib6kl4Sd1s4u//6zolvJskMHJOu/QJyrM47I6NZtGz1YIPtl51kC+NASwO2BP+7dd99tqCDQgzgb559/vorFMWXKFJUW+5VXXpGysjJ5/fXXzdZ955135J9//pGtW7c2eP2J4/j444+lsLDQ6U2K4K+W9x+UOVAOXXDBBdK3b1+zZZa/CXGoEuDTTz9VLzm81CorK5UpyQcffKCWIVYA3AWgDdWCExFCGlYBMNtAARDm6yd3MwggIWYzcrmr90vmV1ulLMt4cOcT4i8tLuwhEcO7iLefuTl/VkmJQKZv7m8dWBOm4Oe3aScL0vbJyFZtZHjLxs0WwH658akw0RLA04iIiFAzxDWxfv162bRpk3rurrjiClWG1Nn/93//J6+99lrVs3/gwAF58MEH5emnn+aY2M1o3769uAJQAuCjB/colAAo56w/qS11dly74YYblNCPgIBBQUFWvjJxcXEyf/58WbhwYV0PQQiphQLgtZTtstNCARDo7aMsAGKDQ9iWhIhIwZYjsv/hn+XQu+sNFQBePt4q2n/nWWMkcnScmQIgp7RU+fw/tPkvWZhmbC4MBkfFyAt9+su4tu0lqBHdb9gvu4YlgK8XYwI0FdLS0tT/U089taqsf//+UlRUJBkZGVVlt956qxoX33XXXQ47NmaBoWSAIIix+IgRIyQsLExZMSA9N3y9LdcFEBrxXftY+oF/9913cu6556pgo3BpSExMlJkzZyqrBz3YTtt+0aJFMnjwYHV8bbZaXz8EE4epPZZDwTJp0iRlPWEELCXgUoEYJ7AwxkQirDJgcWwPiKj+4osvKreHNm3aiL+/v/p/9dVXy+7du83WRZ3gCgCGDRtW1Sb6GXesY6TILS8vV1Yfffr0UXIQ2h37QFtYom+rn376Sc444wwJDg6WFi1aKFnK3nOrDXAHQMYYKKXwwffa+vzn5eXJ448/Lj179lTniGs3atQodT0t0dqpuLhYHnnkEenSpYv4+flVKdOQPv7+++9XmWtw3ri38EzMmDFD8vPzbe4PVjXYB64J7gds8/bbbxvWF7IozhtuN6gr2rhbt25y8803S2pqap3PzVOp0+jkf//7n5rx79Wrl/qPC+pjEfgIjQq/xKVLl8q9997rqPoSQgwUAK+nbJcdeTlm5aG+vnJfQi8qAAgRkeLUbMn4fLMUbDlssz3Cz+gg0RcnKhcAPXllZbLsULr8euSQlP436/vnsaMytk2stA4KttqPr7e3+jQm7JddJyaAn3fjun40BrD2bAhBpaGAkIFUmXWlpKRECUwHDx5UKboGDBighChLtCDYsIhNSEhQ35GOE0JFdHS0+v3ll1/KDz/8oAR1y7GyI9iwYYO89NJLSgCFsIO6fPvtt7JlyxYlUEPYggAFgQcCb4cOHcxmjfVm47BWeOGFF1SQb2T5gmC7atUque+++1RqUVj4WoIyCLZwi4CyA+nN9Pz555/y/PPPy3nnnadiJ2zbtk1ZC2O/WNa5c+eqdSGAQRCDO9NFF12k6v3HH38oq4rFixer9aOioqptj6SkJHnsscdUe0AZghgMycnJ8tlnn8mSJUvU9UEbAK0doBiBMK4J/xAIqwPCJuoHhQmEUmRLKygokC+++ELGjx+vlAP33HOP1Xbff/+9qsO4ceOUIgCB1eFuAOWEI4XPO++8U9544w11Ha+//npVhklZuKzg/kB71kRWVpYK9I7rBQXP1KlT1bXFOaNtcd0tLRMAFDywjsH1Rjtq1uBff/21zJ07V20LAR/vFFxPKGzQ/mgLKA0sufzyy5XFzejRo9Xzg+cJ7Y11b7zxxqr1sL9LL71UFixYoM4b2+HZhTIM22B7zaqjrufmcZjqwFlnnWUKCwszpaamVpV5eXmZpkyZYrbemDFjTJ06dTK5Gzk5OVDrq/+EuDIlFRWmmUlbTNetW2X2ueuvP01pBfnOrh4hTqc0s8B0cM46U/KVX5qSrvjC8LP/2d9MRbuPWW1bUFZm+jptn+mWDWutnjF83tmZVLVueX6JKXdjutP6JU/vl125r//9yCGz++K5bZtMnsbRo0dVW7nLB/WtKx06dDDc54ABA0y7du0yW7e8vNzUu3dv9ezdfvvtpssuu0w9d3fccYdanpWVZWrZsqVpxowZ9Wr/oUOHqjocOnSoquy3336rqtv8+fPN1r/qqqtU+eeff25WjjLsy4iffvpJLR81apQpP//k+KGystI0depUtWzBggVV5fPmzVNl3t7epp9//tlqf/r6zZkzx2wZfqP8/PPPryqrqKgwdenSRZUvW7bMbP377rtPlV933XWG7aInOzvbdOyY9fv8119/VXW94YYbzMoff/xxtQ/U1wijY3z00UdVbVlSUlJVvn//flNUVJTJ19fXtHv3bqu2Qvnq1avN7p+zzz5bLfvjjz9MtUWrO/avsWLFClXWvXt31RYauBfj4uLUspUrV1aV7927V5Vdc801ZvuePHmyKn///ffNyo8cOWJq166dKTo62lRUVGTVTn379jVs//T0dLO20njyySfVdp9++qlZuba/QYMGmb2jk5OTVTvGx8ebrf/GG2+o9c8991xTYWGh2TL81teptufmqXJondSk0PBAI1pTGkAECTxy5Ehd9ROEkGoorayUt3cmyfbcbCsLgHsTEmkBQJo0FYVlkvHlFtl771LJWbXPML0T0vzF3numtHtwqAR2PhnUtriiQhYfSJMHNm2UxQfTpKTS3AxWiwCPeBsVJeWStWSH7Jn+gxx8ba2UHsoTZ8B+2XlYpmJldgD3BrOlv/zyixq/YnYXM6dXXXWVmnGHmTzMiDUwMwnz73POOUfFBcDsNmaAMTMPpk+frkzgMQsPc2ishxnMli1bqhlQR4AZTcyA6rnuuuvUf9TZXt588031/7333lOz5xowyYZ1AP5//vnnVtshKN3w4cNt7hcz5foZW4DfMNPGrLjmNrFmzRo1I44ZW1gD6MHMPmQKzObDSqA6YL1gFKQcM7ywUl6+fLnUFy1KP64z3A00MNOM6w9XAVhnWYJsaph51t8/sECo7bWyp24woUdbaMC9A/chqMktIDMzU1k14H6Fm5keuGnAMgTXzagtYW1i1P6Ynde3lcbtt9+u/tu6LrAiwYy+Rnx8vGrDHTt2mD2LcBFAeyIAJyxx9OC3Vqf6nJun4VtXMyn9jWULNGJDmD4R0tSpMJnk3V3JsiXnuFl5iI+vTI+nAoA0XUzllZL9627J/Hq7VOSfiNBviW9EkERN6inNzuqoYgDoXWt+P3pYfjiUJvnl5YbbeouXnBEVI+e3bCu+fxyUvTOXSnn2SSEw46ut0vbO06WxYb/sPHDfVBcjgLgXmqCkN5eHyTb45JNP5P3335dp06aZCX4wv7fk119/VcIWFAoQfmBejP8wa4drAEzvYSoN//f6oI9HoAF3XJCdbT5JUB0wzYbwrwX4tgSCFMzqLRk4cGC1+4XAZumagd8o37lzp1JgQokAZQswStMHn3bEWoDbAYQ/uCNXB+IRvPrqq8qFAUIfhHINI0G0tqCu8Dc3OncoG8C///7bYNeqprrZasfq6qYHCgnEgEC/YhQgE9cN4H6AG4g994Pmr49nAm4qiN0AE34NuN4YUVObQcmGmAJwA+natatSLjXUuXkadVICQJuDxq4OXOzt27czCiohDuZocZF8sGenVRDAYB9fmZaQKO1DQtnmpMmBPid/wwHJ+GKzlB6xDjIEvAN8JfL8eIkcHS/egSe7v7LKSlmhhP90ySkznmWCl/dpLWJkXOtYCfzrqGS+8ZuUZRRYrZe3Pk2K9yZIYKfm0piwX3YeERZChWWGFuIZwN8eSgDMWOuVAEYgMOBNN92kZuQheC1btkyNm7EtfMEx0w1Bdfbs2fVWAuhnSTV8/wtIahnMrzrgJw1hWQuUZwQsIyyBVUN12FqulUMYBFosAVvrt27d2mw9W8CfG5YRUBygneHnD4FdC8y3f7/toK72gjrYsoaurp6OulY11Q1KFi0mhR60LdqhpjbEvQBwv+LjiPsBcQpgbYJ2Q9wEtBMC/QHccxDKjbCnzbR7CP1gTdTn3DyNOikBYA6F9CcIoAAzICPwokxPT6/3y40QcpL0wgJ5OXmL1SxlkI+P3BPfUzpSAUCaIEUpmXL0881StDPTcLmXt5c0G9ZZoib2FN9mgWbLknNzZO6eFMkqNR6AgAGRUTKuTTsJ33pcMt9dKccP2h5AhfVvK97B1sGNGhr2y86j0mLmv3/z6gOXuSMItHf06FFxp/o6Gi0gnT3CAawJsB6i6gPMXlsG4TvllFOUVYGrAGELAiJmzmtDTSlQbbkFa+WaZbEm7Nla//DhwzaFQj2Y3UUwxL/++stqVhhZyxwB6mDrebC3ng0FjosZdlhjw7xdD+oMhXlNddOWw51Fu4frcz/guG+99Zb07t1bBXqEUkbfXtUpnuxBu4eQirMm6nNunkadlACI9g8hH74tzz77rJmgDw0LojBiHZgVQfNDCKk/2aWl8sqObVYKAD8vb7mjWw/pHBrGZiZNitLDeZLxxRbJ25Buc53Qfm0k+rLeEtDGeNDTIiBApf4zom9EpFzQtr202J0vGc+vlQN7zd1v9IQktpSoixMlqIvjhQ97YL/sPCotrP+9axCK3BFbM4tNCZiWA336OFvm2Jjhh/+8ZZR5zHZqAhC+1yRAN8R1tDXjjFhfyOgFc+iaTKprA2ZbIZTqXQLwe+3ater8kWJPU4oAWEgglZweKFS0lOTwCa8OxBWA77/lORw6dEj27Nljtb7mtlybmXjUFe4eiFpvaf6O+lsqfBoT1A33IOphORFrb92QDQPXBgK7I0C7Q/kAtw+9AgAgjkZ9gdVHjx49lLKtpvvX0efmztQpMCAaF4En8BBDkwLTDjQoytBJIHUDTIpgdqOlYyCE1B2kKHtlx1YrU+XogEBlARAfXnOMDkI8hfLcYjny0d+y9/4fbSoAgjpHSvuHz5bYaUNsKgC0Z2hItLn5Ys/wCHm4Rx+5QWJEZm+QtJdWSrENBUBQtyhp/9DZ0m7GUKcpAAD7ZedhUgHQT+KBGQKbDPADLiwsNCx/4IEH1HdMgNkCgiRSso0ZM0alkNPo3r27+o9UgQBjZPi3a+WNBYKjwUrXCG3SDi4MRukgMWNbkyuwEQiIaGnxgN8oHzt2bJVyCTECkFseigjLoGzPPPOMqhPSvtXk04/0f7t27TKzKEDu+ltuuUXlnLdECxiXlpZm9zlpwfwQ10G/T+wD6QFhrn7FFVeIM9Dqhtl1vdk/TOa1GXdtHVu0atVKKRCgqHn55ZcNA+tCKWb0rBihpWTE/vRxAHAvog0dAWRPPH9IUwl3HD24/pobgKPPrclZAoCLL75YvbzwYMLXSbvRoKUbMWKEMoXStHqEkPplAXhzZ5IcKDJ/IXULDVcKgAAG3yRNhMrSCjm+LEWOLUqWyiLrwRzwjwmVqEt6Sdig2KpZNnTymaUlSuA34vw27WRN5hHpEhouE2I7SNfQMDkwe43s/9s4UBEI7BAhURclSkjf1o0+m2cL9svOwXII6aUiSBB3BObiEOIQcR+CCyxaIaxCeIewB4EFy2wxa9YsNRONjAF6MAOKmUrkI0cAPgTDg2IBOc0bE0REh7UughRijI5ZcPhnw0wbed0fffRRefrpp1WANfxGG0D4hlCNGVuM+WuruIBfPhQMaEPM0CM3O9oH7hX6fPWwFMDkIdaHEgXvMxwfM7aYwYaCAFkKauKOO+5QH5wfFDFQuPz888+qH4DVAdpeD2I24B3+0EMPqbrBtBwWHFrUeiOQLQJ57+EWjbZDADlYKyDqPIRN3AedO3cWZ4D7E+f/xhtvSGJiokyaNEmd+8KFC5XQjWtR3T2sj7aPmXVYZcD6+/TTT1ftAkUHrDIw4w7rCsuZfSPg/496oA4I8Aj3NShpECQT3/HM1BcoeVasWKHubyjFcV/D9D81NVV+/PFHmTt3rrrvHX1uTVIJAHBz4YWJmwsvCWh38FBbRgElhNSdHw+lWwWaivIPkNu6dacCgDQJTJUmyV29TzIXbJOyLGPtvE+ov7S4oIdEDO8i3n4nzDvRN23OOS7fpu9X7jQv9Olv+MxEBgTIU736SUxAYJVA7xt+ImCRJf6twpTwr1cyuBLsl50fE4CWAO4LBELMdsOcGkIvZgMxroVQihnGkSNH2twWggz80SEAWgYow7gYAiOUAJgFR8wCrAfBqDHRhG6YskMQx7gdkdYhyIKnnnpKCYivv/66ymqA6OuoK7IY4NzqMrt92mmnySOPPKI+2C8UDxDGkF7PUlAeMmSIUpKgHrCUwOx1mzZt5K677lLba3EZapoRRhpGCMFoawh3sDhAqjkoFiyBcgZR63E9sA3cNKB8qE4JgHc/FDhoT1hBYztYKPTr108FjYQA6kzQzlCCIF0eUj4CKGDQrkiBaQ+wkMBsOYL5QbmBlIe4XzCTDmUKFEb2XA8NKHjgSgNFANoLluJoK1jYOEIZhmsCmRTPKOLWIaMHxgB4FjHzr88y4Ohzc1e8TEZ2EE0cWDVAE4iXj7MCexACknKzZWbyVrPGaO7nLzN69JYoG7OahHgSBVsOy9HPNklJ2onov5Z4+XpL8/PipMW4BPEJ8T+ZnSY3W75NT5U9BSfzCF/SrpOMal1z9GBQdqxQ9kz/QaUcBH4tglVgwfAhHczSCjYW7Jdct03n798jPx85aTUyJKqlTOnsOJ9qQtwRzN5DqQLLYKNUbIQQ5/b39bIEMAKmGMg/CS0aNGG0CiCkbmzPyZbXU7ZblV/ZsSsVAMTjKd6fLRmfb5KCrcaRokGzwR3UrLxfdIhZtH/M/Fum0ARLD6XL0JhWEvifNUB5dpF4B/uLt7+1dQCE/ubDu0rumv3S4sIe0uyczlUWBu4G++WG5aSH6wlc0ECEEEIIqb8SACYdMDXBB6Y7GvBBgZ+FBvw8EOBDi7xJCLFfAfBGynYpM5kPL0+JaCF9Iho3/zghjQlm4DMXbJXc1fsNA/aAkJ4xEn15HwnsePJZ2JWXK9+k75fkPGOLARDq6yvHSkqkVaWPZC3eIcd/3Kki+keOMY423WJCD6Vk8A50uL7c4bBfdiKW7gCMCUAIIcTFqdPIBr4b8H1CmgUNBFJADkgEBkRQD/yGPxH8M5wVIZMQd2TF0cPyv327pcIi3NSpzVvITV3iXdIPmZD6UlFQKlmLkpVgXllmnKopILaZRF/eW0J6t6p6Dvbk58l3B1Jla47t9H3w9R/ftr0MCI6Q7B93yu4fUqoCCx77PlkihnUW7yA/q+009wJ3gP2y61gCeGKKQEIIIZ5FnZQAW7dulV69eklAwMnASRD2MShDlMWJEyeqVCKI5PnBBx9QCUCIHWDW84dD6fJ1+n6rZQMjo+XGLnEcXBKPAz732b/slsxvtktFfonhOr4RQWpGvtlZHcXrv6hrqQX58u2BVNmUfSLtjxEIoHl+2/YyKCxS8n/ZI3sX/WF1DPzOWpYiURN6ijvDftmFAgM6rSaEuA5nn322TWsuQoibKgGQCQDRPvWsXLlSBS/Q0i8gwuKZZ55Zp5yihDQ10FEuSNsnyw4fsFo2IDJKbqACgHjgPZ+/Pl0yvtwipUfyDdfxDvCVyHEJEnleXJVJflF5uczbu1P+Om6dx1ofPBNp/wY3j5b8Vfsl9Zv1yv/fCCgVKguN0w26E+yXnUelZZJAWgIQQgjxRCUAcqVWVJw010Q6DeTdRB5UfSDA6OhoFZCIEFK9MPTJvt2yIuOw1bLRrWNlUmwHugAQj6IoJVNF/C/adcymYN5sWGcVjd+3mXkWDAT1yyo1thgI9/WTsW3ayZlRLaX4jzRJ/fpHKcsoMD6Gl5eEDWonURf1VGn/3B32y87DcrKTzgCEEEI8UgmAnJ3btm2r+g1BHwOQM844wzDFASGkdgoADCIvrkU6M0LcgdJDeWrmP29Dus11wk5tK9GX9Rb/1mE2hfcL2naQV1NO9kFhvn5KYTY0uqWU/X1YDr7ys5QctM4OoBHar41yLwhsHyGeAvtl14FKAEIIIR6pBICfz0cffSQvvPCCjB49WuUAxcDsvPPOs/JRjI2NdVRdCfEoyisr5cO9u+SPY0etll3dsaucFdPKKfUixNGU5xbLsa+3S/ave8RUaRlG7QRBXVpI9OTeEhwfrX5nl5ZKhL9xYL7EZhHSJTRMDhcVycjWbWV4yzZSuStLDr/1mxTvsx0gMCSxpRL+g7q2kMZS8pVmJ4m3f7j4hTRsX8h+mRBCCCENqgR46KGHZOHChfLwww+rDwY6I0aMkFNPPbVqnZSUFNm7d69SEhBCzCmpqJA5u5Jls0VEcx/xkhu7xMuAFlFsMuL2VJaUy/FlKXJsUbJUFpcbruPfMlSiLu4lYYNilTI5q6RElhxKk9UZR+Tu+J7SPdx6th7rXd85TlkABPue6MbyC8tsKgAg9OMYSC3YGJgqSqXw6DopSP9ZygsOSGDMAInsMbVBj8l+2XmYLGICMIMLIYQQj1QCdO3aVdauXSuzZs2So0ePysCBA+W+++4zWwfpAfv06SNjx451VF0J8RgLgDd2JklSbraVAuDmrvFyaiQVAMS9MVWaJHfVPslYsFXKjxsH5PMJ9VcR+SPO7SJevt6SW1YqSw6mqxSZZaYT1gLfpadKQvdmhkJVy8Ags98hfVtLULcoKdqZWVUW2CFCzfxjWWMIZhWluVJw4FcpPPS7VJbmVZUXZ/wl5cXHxDew4SwQ2C+7DnQHIIQQ4up4mZi/wwotlkFOTo7KeECIIxUAc3btkH+yzQOi+Xt5yy3dEqR3RCQbm7gt6E4KNh+WjPmbpSQtx3AdCPyI9o+o/z4h/pJbViY/HkqXX48cktL/hH890+J7Ss9mzU8eo7xS7cOIwu1HJfW531WgPwj/mnVBQ1OWnyb56T9L0dF1IpXGFg8h7UZJsy6X1PkY7Jccj6PadO7uFFmrc+sa1aqtXNK+k4NqSQghpCmR20hyaJ0sAQghdQ8CaKkACPHxlTvieki3MCqciPsCU3wI/wVbjxguhzAePriDisbvFxUi+eVl8lPafll+5KCUVJ7MNqPHz8tbDhcXKSUA0gge+3qblGUVSbuHhhoK98E9YiT23jMlpFdL8fLxbvDnuSRrs+Sn/ySlx5OrXdc3uLX4hbZr0PoQ52GZCZ2WAIQQQlydeikBkBEAsQF+//13SU9PV4MiBAJEgKJJkyaJv42gToQ0NSpNJvls/x5ZnWkuIPl7e8s98T2lU6j7pygjTZOyzALJXLBNctfsV32ArYB8iPgf2LG5FJSXy+L0/bL88EEptiH8+3p5yZnRrWRsm1gJza+Qw3M3Ss6KfVVBBQu3HJGQ3saBM0P7tpaGpLKiRIoOr5X8A8ulotA6raeegOY9JKTdSAlonthofuLsl50PYwIQQgjxWCXAunXr5PLLL5f9+60Hfv/3f/+nghR99tlncvrppzuinoS4tQvA+7tTZOPxk77KmgvA3XFUABD3pKKgVLIWJUvWshRlom9EQLtmEnN5Hwnu1VKKKiqUj//PRw6o70Z4i5ecERUj49q2k4gSkayvkmTPz7us9p/x1Va1z8YUtiqKs6Tg4G9ScGiFmMoKbK/o7SfBLQdJSOyIBs8IYAn7ZRcJDOikehBCqufaa69V2c0QuLxjx45uewxng7536NChahKYuC91spfcsWOHygawb98+lZt42rRp8sYbb6jP9OnTpW3btko5MGrUKElOrt5MkhBPpriiQt7amWSlAMAgEVkA4sObOa1uhNQFCOQQ/PdM/0GOLU42VAD4RgRJ6xsHSMdnR6oZ++VHDskDmzbK9wdTDRUAeB7OaBEjz/buJ1e37CCyaJfsuecHyVpqrGAoPZgrpYdOBt5rSEpz98rx7e/KkfUzJD/1B5sKAKQBDOt4obQ87SWJiJ/S6AoA9svOw9j+hbgrn376qdx8883Sv39/CQgIUALPhx9+WKMPL8bCHTp0UNtA+EPA7Pz8fKt1jx8/LlOmTJGWLVtKq1at5LrrrlNlRkyePFkSExOVhU9tBVHU+88//5T6gPPwVEG2ruBesOeecDZPPPGEqqe9H6xPmhZ1sgR47LHH1IvtzjvvlJdeesnK7P+5556T+++/X1577TV5/PHH5Ysvvqhxn//73//kxx9/lE2bNsmhQ4fUCzE4OFji4+NlwoQJcscdd0hoaKjhtsuXL5dXXnlF1q9fLwUFBeolDHeEBx980OY2hDRGGsDXUrZJSl6ulakzFAD9IhsnVzkhjgAWX3nr0iXzqy3KP98I70BfaTEuQZqfFyfeASe7F/j8F1aUGwr/A1tEy/g27SXGy0+O/7xT9izeoawMDPfv5yMRI7qqoIK+YQENdmFNpkopzvxHCuDvn7Or2nV9Q2MlNHakBMUMFC9vP3EWDdEvE9IUeeSRR9REVlRUlLRu3Vp9rw6MOzEr+u+//8rIkSOVlew///wjM2fOlBUrVsjKlSslMDCwav2rrrpKfvrpJ7n66qvVe/Xjjz+WzMxM+f777832+8MPP6jndM2aNeLn57x3C6kdzz//vMyYMUNNiDoTuGZbgnv0u+++U/er5XKj9YlnUyclwK+//ipdunSR2bNnG5pj4mUFoXzx4sVqXXt45513VNrB7t27S79+/SQyMlKOHDkif/zxh2zYsEE++OAD9TKF5YEe1AHaV9TjzDPPVJrVVatWqQEP4hWsXr1avcgJaUyKysvl7V3JhgqAu+J6So9m1rnPCXFVCndkSMZnm6Vot3lQSw0vb2+JOKeztJjYQ3zDTw52NYa3bCM/Hz4g+eUnFAHoNfpHRsn4tu2llW+A5Py2R/Z8myTlucU2999sWCdpcUF38YsMloaisrxICg+vkoL0X6Si2Nx6x5KAFn0kNHaE+EckuIQPeEP0y8Q+bITCIG4KXFq7deumJpReeOEFNaFUHVC6Qbh64IEH1PoaEARffPFF9Uxq+8Ak15IlS+SZZ56Rhx9+WJVhph1KvMOHDyvLAACF3i233CK33XabnHbaaQ16vsSxQHGEj7OBUG8p2MN6AUoAlHPmn9TJHQBaz4EDB1Y78MGyAQMGqHXtYdasWUoTum3bNlm2bJmKJ/DLL79IWlqaDBkyRHbt2qVcDfRA04oyHx8f9VKFkuDLL7+U3bt3y7nnnqvMI6dOncqrTBqV7NJSeW77Ztmem21WHurrK9PiE6kAIG4DTO4PzF4jqU//ZlMBEDYgVjq9OEqaX91XyoKN9cqBPj4yqtUJ8/j+zaPkicRT5OZOcRK87ojsvXepHPn4H0MFAPqRZkM6SqeXz5NWU05tMAVAeXGm5OyaL0f+vFdyd31hUwHg5eMvwW2HSczAZ6VFrzsloHl3l1AANFS/TOqGF6MCuDXDhw9XCgB7wEw+lAawOn300UfNluE3yrFcA2NacOqpp1aVwe0ApKamVpUhrhb2jQktRwEXXrwD4CqAMTWsbJs3by4hISHqnGGJa7kurCDwqc5sHJYO48aNUxNucIWAAgXWFIWFhWbrwX9c2x6TfrCaiIiIqHpn6esHWWDs2LFqOdoQ6/7111+G54X6XX/99WrmHRZQCFCO3/r2rI7S0lLlzgwX5nbt2qlziImJkYkTJyo5Qw/qBlcOgP/6dtGvg984H0vmzZsngwYNUueED74buRXo22rjxo3KBTssLEyljcN1M9p3fVm0aJEMGzZMHSMoKEj69OmjFMfl/ynv7W1LbIPJXNxXqDMmaC2tXPTttGfPHiUD9ujRQ7U9ysHBgweV1RqUYLgempvNrbfeKkePHrW5P8RieP311yUhIUFtg2f5ySeflMr/Agtb8t1336n7q0WLFspiB8eAtc7WrVvrfG4ebQnQuXNnJbDXxLFjx6RTJ/ty5eJBMAIXBS/Bs846S5lPWZrc4CWJB3H06NFV5XAjmDt3rqonrAEQlwA3AyENzdHiIpm1Y5tklhRbKQDuS+glscEhvAjE5YFAnrlwm5qhN1UaT3MGdW0hMZP7iF/XSFmdcUQWb0pSs/uXdehsuP65LVtLr4jm0u6/ZwAm/xmfb7Jp+g/lQtRFiRLQtmFSZ6LvKMvdrVL8FWf+Xe10rndAcwlpe46EtD5LvP1c08WsIfplUrfAgJ5ORkZGnbeF4AMBwwjcv7YyjNQExn0YmDc2O3fuVMIKBEjL4+P34MGDlasrhH8ImPgACJfnnXee+v7333+r/+3bt1f/4cf/1ltvKeGiIVxaIUBCsOrZs6eKR4CJMwhCEACTkpKURS2Ebwhgr776qtrm7rvvrtpeP7sMK15YK2B9KAIgrEFoffbZZ+W3335TH0vXJCgAMK7H8W666SYrYR1CIdoNwhasISDkf/XVV0oOgBWTXl5ISUlRE4W4J3F8nBOEN1gPQ6iFNXBcXFy17ZGVlaXODwLdmDFjlGIEdUD7L126VCk5oDwFF154oWRnZ6v2uuCCC6Rv3752tztctaBsgLICSgoAGQUyDO4HuGpZAktoWJqgrRCnAut9++23smXLFnWeejeT+gDhFpOqsMJGHArcuzh/lMG6+uuvv65R4V1SUqLuaSgw0C44R8SywCQt2grnfvvtt1ttB3dv3PNQ+mj3EEC7QzmASV1cc1iz4fxxz+GZwnMDhYUliMWBSeHzzz9fPZdoLyhTIMTjvtQzffp0de44b1xbHBvPKtzMoahDPI76nJvLY6oDL774oikgIMC0detWm+tgmb+/v+n555831Ze1a9eiVzC1bt26qqykpMQUHBysyn/99VfD7c4880y1/LnnnqvV8XJyctR2+E+IvezIzTbd9defpuvWrTL73PnXH6Y9eblsSOLyVBSXmTK+2Wbacd1CU9IVXxh+dk9bYspdl2Yqq6gwrTx62HT/P+ur7vWb168xHSsutvt4md9vt9p/6osrTEW7jzXYOVZWlJkKj/xpOrrxadOB366r9oN1sC62cTY19UuN3S97Ao7q69/ZmWT2zv86bZ/Jk/kvFmKdPm+++abN/UZFRdV5v48//niDnCueFex/3rx5hssXL16slt9+++2Gy1GO5b/88ktV2ZgxY0x+fn6mG264wXT99der7+PGjVPLSktLTYmJiabLLrusXvW+5ppr1HH/+OOPqrK9e/dWtdcLL7xgtv4jjzyiyi3fDR06dFAfI7Zt22by9fU19enTx5SZmWnYbjNnzqwq++2336qO/8EHH1jtT1+/GTNmmC1btmyZKu/Vq5dZ+bBhw1T5u+++a1b+1ltvqfJzzjnHsF1wLI3i4mJTenq64fsyNDTUNHz4cLNy3AvV3RNGx1ixYoUq6969uyk7O7uqPCsryxQXF6eWrVy50rCt5s+fb7b/q666SpV//vnnptqi1V3/vOzatUtdx5iYGFNqaqpZuwwZMkSt//HHH5vtB2VDhw41K3vooYdU+aOPPmqqrKysKs/NzTX1799f9T0HDhywaqfY2FjT/v37rep65MgRU15enlX5Rx99pLZ75plnzMq1/XXq1Ml08ODBqvKMjAxTRESEKSwsTMmOGosWLaq6pyzv37KyMtPhw4frfG71pbHk0Dq5A0BzAg3LOeecI2+++aaKiqqB79BgQnMDjQ4CEdWHvLy8KtOj8ePHm2n/NFMjzZTKEq3c0pyHEEfzV1amvJK8TfLKzSP4tgwIkkd69pVOoWFsdOKyYLY/+/e9smf6UslcsFUqS6zN/3xCA6TlVadIhxdGybbO/vLYln/kw707JbO0pGqdMlOl/HAo3e7jNh/RTXybnZjJCI6PlvaPDJN2958lgZ0jxdFUlhVIXuoPcmT9g3J8+3tSlrfXeEUvLwmMPlVanDJDovo9LEExg8TLu87ZdBuNxuyXbYH9aqax8Hm2BWZZMOMG82HMCsNSD/7RRpHU9cCEGSafMPeFmSf+4zdm7VwJ13AQIY1BTk6O+m80IwnCw8PN1gOffPKJCh6I2WTMVl9xxRUqpZxm4QrLAswKIy4WZicx24vZaTzjFTbSq9YGWAJhtlSPNjONmWd7effdd5WpOGZBYbVr+S6Ijo6Wzz//3Go7zPBrJvVGwKpAi5eggRldvL8wA665BcCCAJYGMCO/8cYbzdaHKzDeK7Ac0FwwbIF3iVEQP1gVYAYeM9K1zc5giXZ9Ic/o7xVcV1hcACO3AFg/XHrppWZlsN6o7bWqDrhf4zri/tIsVbR2QUwLW3XTA1N7zNAjLg1M7/VWAzCbR8wLzMTDosAS3IuaFYwezMobWcLAVB/PFfoRI+CGo4/JgH4Gs/WQJ+EmrvH222+r/3jWLO9fX19fZRFT33Nzdeo0soG/D4D5zV133aU+eGgBzGQ08KB27drVbFs0HkyPbAGTf9yQaHQtMCAuHMwwtJsRwOcD4Li4CEZoN7O2ri1g5oGPhn7wREhN/JmZIf+3Z4eVQWhsUIhMT+gp4X7mpnCEuApQ6BdsPiwZn2+WkvSTg1TLiPyI9t98bJz8W5on3yVtkoPF5r6eejJKitV+8a4v2nVMjn2zXVpeb+zPj2wCLa/pp/4H92rZIP715YWHJf/Acik6vEZMFcauB8DLN1CCW50pIW3PFd+gaHE3GrJftgeY+MJ0E/uqzqS7rsF8ESEdfptQ/mNwDhNgmMNicL1gwQI1IHRWADUGBiS1AabHmlCoB6b4eA7mzJmjBCAtzTZiXUExAJN1PC/1VeLBnNnb23wOEAo1y3dFTWjpB2GajRhelsB82yhNuGZab4tTTjnFUPjD+wLHwcQeTLURjBEg0r1l34HzgwCN42M9vXBrBNaB2T3ePwjQaCn0w1WlPsH+tMlIowj8UDRodbBEHzuiPteqrnU7/fTTlRLKqG56IFwjqxuCt0NQtuVCZHQ/IJaNLSBYQ9kE03/sX68EwzNhhL1ttn79eqXowP3TUOfmkUoAfUAKrbM3ynFqlFalpkHe9u3brV6O8E+Bz4ZeewbFAKjOB0x7idQk1EPzanRhCamrAiCxWXO5uUu8BPu6/gwiaZoU7z0uGfM3ScE26wA72rs6fEgHaTGpp2z3KZG39m2XtELbAeW6hobLhbHtpXt4hBSnZkvmV1sl/58TnbTvd0kqsJ8RYQNPdM6OBP1SaXay5Kf/LCVZm6uV0nwCoyQk9lylAPD2NfZVdgcasl+uCQjmmJHHIBkDfPhgGqEP5osZUC2WD7aHpR8G+JjBg1Bvuf9LLrlE/UeUdX2wNARQQx+O5Ris2fI3b8yYAAwM2HTQxqX6mX492vjTlqWA/pnFbDYEXTxLECgwKYb02ZoVLBR4UKLVVwmgWSdYznyC2lgawJceWPpZ14Q2w1rb5Vq51tZa29paXxPaa5IBoMCEBRWAohEKVcgPeC/iXYaAifqJwrqAOkAxAesIo/PCsYzq6ahrVVPdtHpYgnqh/MCBA3bdCwjoiI8tjILS2rp+UCrfe++9qs1wXSDIa+93xKqwdU3sbbOcnBxlAWKpEHPkubk6dZJQappZrw/QdOIDLRxMfWAuBbNCZAz45ptvlGbP0WBQgZkJ/QNRk9aQkDUZR2Te3p1WCoCh0a3kyo5dxNtFooYToqcss0AJ6DlrbOe+DklsKVGX9ZY9zUXmpu+SvQUnlK5GdAoJlQvadpDEZhFSdjhfDn78p+StSzObDc75ba9EjokX/5YNG1TPVFkmRUfXK+G/PL96E1D/Zl0lJHakBLboK17ePuLuNGS/bE8figBpCJKEWUtb1DWYL0xRMeuDAF+Wbgb4jW3gIoh86wie5Ww8/dVvFJnbXqoLdIeZ8PoEBnSmBQ7ufyO0cm09W8DcGEoymLsDzWxZH3gOM+TINADhpSalQmOgCVsYM9uyyDWiJqUjrICrK9fOXTu+rfUxo69fzxZQYkCghEUSLIwsrR30WRPqCuoAC2fMGmuB7/TPE+77murZUOjb0TIrBuqF8prqpi2fNGmSlRK3LvcD3BOefvpppciBFYK+zVAnWG3Ul4iICHWP4LpUpwioz7l5pBLA3tQp9QFmRPC/gHCOKKEwSbnyyiurNP3aC6c6zYvmX1jTzQtzEHwIsZeVRw/Lx/t2WSkARrRsI5e27+QyacMI0UAU/mOLkuX4shQxlRunyglo10xF/D/WOVReT90jKUdtz6Agyv8FbdtL34hIKT9WKIf/b6PkrtpnmE3AVFmpjgvT/4agojRXCg+ukIKDv0plaTWzPl7eEhTdX0JiR4h/uHEWA3elMfplIxAtGT7BV199tfLzt6UEgM8klASadZ9R/dHXYyAOhb8+Nzt+g8suu8xqsIbf8JnFgBGmo85QAlje8Z7+9jeazXQERm4grg6Ee5gJw10F41G9dSp+oxw++NVNLGGWFfc7LFKhCNOjn+3Uvjfm+AJWO3h2jUDEdphpQ1BGCjtHAWUIxu+WCiO8GzRliF5BAp99zQVNA79Rrl/PFnCFgouGpQIAlkda5gbLNqntTDzqjPPC+xJWS3pQZk89GwrUDe9Y1MPSNH/dunVSXFwsZ5xxRrX76N69u5K1kBkCk7iQ4eoD3C+g7EIcCEulCY5RVFQk9WXgwIHyww8/qEwCmktGY5ybK1GnwICNDV40CPyB4B64CAB5HDX/Ds01wBItGIi2LiGO4Lcjh+QjKgCImwCBP2tpiuyZ/oNkLU42VADAX7/1TQOk47MjJaRXK1WWkmcsTLcJDJapXRLk8Z59pZd3iBz95F8VUDBnxV5DBQACCkKxEH15H4efW1nBAcne8aEc+fN+ydv3rU0FgJdvsIS2Hy0tB70ozXvc7HEKAGeBgTqCVMGcU0slZov6BPPVfrtqEGDGBGi6QPC84YYb1LMARZQe/Ea5ZdA6S5D3HHE67rnnnqoyzRIGQooGvkPh0JgzxhCOIZBBEDSqN8yskeLNMs2fNj6vyzOJ7SxdDLS4A0jZpvl8I5gchDeYaCMloJ733ntPWZbAzL8my14oIOE6pTf1hoAPU3SjdJhoE1BTwEE911xzjfoPRY/e7B+CruaOrK3T2EApi+sIt2u9nz2UPw888ID6DheV6sD2WjpHtJtRIEXEcLHXigiCPyZ8oYTR+g2A64T7zRHcdttt6j/i52gm/3pLBM3CxNHn5kq4jcOypl3VGjk+Pl6Zf+HmgGLASIujKQwQiZQQR/DT4QPyRaq12e3o1rEyKbYDLQCIy4CZEJjlZ365VUqPGkddR0C+FuO7q8B/3v4nTeLbh4TKgMgo2ZB1Mu98TECgjG/bXga1iBZTQZna7/EfU6Sy1Hg2xDvITyLHxEkk9h3k59DzKjm+VQqUv79t/zzgExQjobEjJKjVYPH2obWXo8GACG4ImEVClOvqqGswXyj5jx07pr4bRZDWb4cBu+VsbGPAmACeBUzuESAOaOb5KNNmbDFjDMFfAz76cF1F8GoIvRhzQniBTz9iZMDF1RawnIFwjyBl2gyzNsZFQGxEk4fwcejQIRX8cubMmdKYQIjGWBruO4hX4O/vr9xy8YFAjgjrEJBQX1gCwYIXzywydmCGFcIjAh3WBhwH7hGYhUawT8Q7+eqrr5RQiOugB+vhekDRgjgjmDCEMI8c97BYwfKagFCJa4X9YJYegfBwrWGhgWB52nXXgGUy6gLFJ4RSzTLmkUcesXkMtBeOA6sptBtMy9GXwZUpPT1d7rzzzgZxd7YHXDPcu4jX0rt3b9UGeIeiPWF9jcj6sMSuCSgzcN+//vrryuoL5wNhHu2I5whuFQj2bjmzbwQsvKBkQlyAPn36qKw2UJ4sXbpUKW2gDKsvY8aMUX0YnilY9EyYMKGqvlA4YZn27Dry3DxGCYCbFw8mbhJcHCNfLkdEHYYWUvPJgU8gwIto7Nix6vjIJmCpBMBLE8E+AC4sIfVl6cF0WZB+MviWxvlt2smFbdtTAUBchsLkDMn4bJMU7THXbmt4eXtLxPAuEjYuXoKbG/vSQuDfmJUpkf4BMq5tezm9RbR4l1bK8e+TJGvJDqkoLLOdTWBUN4k8P15ZATgKRPYvPPKHFBxYLuUFxlGBNfybJ0ho2xES0KJPk3suG6tfxqAZUZthoo80ZjVR12C+eks/W9vqzYaxra31Gi0TUNO65TwOKAAsA1TDrB8fDb0SAPcbBF4I7Hj+kLYOvswQqpD+zVawSgiQEP7g9qqZuOtBHSBgIzgg9gFlg95aoDFAujXUc/HixcocHzPkOCdNYIXwDTN2zCLD/B6CI3z2obBDXesyuw2XCAjvOF+kNsUxIYy/8MILVpHfoXyAkgJCGmKHQUCDUI64I6inPW5SSK0KX28EHP3000/VBCOUH1BuPvXUU4aWAFgf1/v999+vMk2vTgkAIEDiOuPcYKkAkOkEx6guZWJjgHsQ1ii4jmgDWAFA3oIQjnvUnn4UbtUQ0hHfBfFZ8CzgfQtLMShnEPS1V69edtcJMWTQ1ogJA2UT9oPUmmh3KFIcwcsvv6yUOkiri2sKixc8u7j+ehcXR5+bq+BlqkMUFmwCTRH872xtrqUJwv+a/GaQEQDaU2jGoIGzNCGEjx80cdAIQtOiAa0MzAChMcILClpTy0jDdQnkgIEBXmIw03FWoA7iWiw6kCrfHrA2d4PwDwGJEFeg5GCuZMzfLPl/2xaSwwbESuUFXWVJeZakFhTIU71OEV8bQXG252RLt7Bw8ftv+aH31kvOSmtFGPDy8ZaIc7tIi/EJ4hvhuAjtFSXZyte/4OAKMZVVk0fe21eCYgZJaOxw8Qv1vGeypn7J0f1ydaAOGIRhEIT+W+/LjZk/CC8whdYPiqGsRz50RGPGzJcRGFDfdNNNavCpBUaDeaqWwxtB1izTG2rl2gQB1reVyguDR6NMQPXt619P2S6bsk8q3CbEdlDKYUKI/WDGH/EToDioKS89IZ7M/7N3HnByleX+/03vW2f7Zjd1d9NJCCEhHUJHqgIKAoJX+dsQUARsl6tXLAiKoqhXsSIQmlIEkpCEBBICpJDey/beprfz/zzv7MxOOTPZvjO7zzefycycNu+cmZ33PO33dI2QHTogTQCaqMkLQmkjVKdz7bXXiosKmrTJGCeRHoIuACgl6ExQij+lmtCFBKUBkaeHjHdKoyJBBnIA0P2zzz4btR+lXJGXii5mKK2DsgHotekigRwA5CHsbxoSw0RCF8wv1ZySdQB8snQiOwCYlMDX6ULDnz7CyfvfTOgAMEyzwnz/EvznCiseajosUv0b3U5sbY2veQwxIzMr7AAgci6viosI0PPMFZMw+ZFLUXDLvCFzAHhtp9F+4P/Q+P63YDv1WkIHgFJjgbn8imC9f9XtY9IBMBrzcjIoRZIMeYqe9FXMbaBivpGlA4n2De0Xu28sJL5GF1WhW39qevsDJwIwDMMwY7Ic4G9/+1s4NaKwsFB4+AmqqaBbyCCneg5K4TlTOg6lw5AICKUaUWsgygog4QVKAyFlSLqYoVQZOQV/SjeiFAxyBlBNFV0kUBoSTfZ060/bEoaJRNRr1ZzCf+rjo1bUAeCiwmB0imFGi4DLh7b/HELbq4cQcPtkt6G2fJprq7Cu0If3Wk8i4IiOEr9ae1qk+ifKBohEV5KBjCXl6NwSzAbIOHcCrJ+cBW3R0PzOSlIA7tbdosWfpyMYCU6E2lQMU8lqGAsWQ6HSItVwNARTh42FS0bk9YZ6Xk4GpcmSWBKlaNItEprDCUqbpBpmGsszzzwTJ+YrNzfLifnSdnQtQMJNJD5G9aGJ9iOHRLJyg5HqBKRgNwDDMAwzFp0ApIJINRQ0uROhyFBkiw5K6SPRDKq3oNqKZFD9zoMPPoiBsnr1anFjmKGCvstrqk/izYbauHU3l0/BqgL5dFOGGQlIhZ/U+Fte2Adfh3yrHKrH119VgU3T1NjcXg9fq3yKuN3vQ7XDjklmi/je2z6qg0KpgHm+vPBO7jUz4Hd4YL12JvQTk4vB9ZWA3w1H/WbYa9fD70yusKvLmSVa/OmyZ6Z0vX/Aa4O9biMMBeeNyDiHel4+E6SeTHXQyVJ76RZyNgxGzJeek0OB1pNAVF/3GykG2tueYRiGYUaLAZUDkAhGZM1dyLMeK7JDYiGhyZlh0gWX34/fHTsU5wCgy+hbJ05lBwAzaggjfVc9Tj7wJhr++KGsA4CE+YyXT8OOu6fjf63t2NDWCJ+MkaJTqnB50QT8ZO45mGgyw76nAae+tx61v3gXjX/dKdtKMJRZUHrP0iFxAPhdbeg8tgaNW7+BrqP/TOwAUGlhLFqOvHN+gNw5d0OfMyulHQChDAC/ux3u9v0j8nojOS9TNJ++i3K3kBAYaQLQc3IERIr5EqEshb6K+YaeU0ZBIBD9vaTnoVJByhocDWL/ulL7m8kwqQllANFvBusBMEwKOwFIDTGyd2aoJcLRo0ejtqP0PbneogyTyg6ARw7ujWqNFrqou31yBZbnB6NsDDPi380T7ah+eBNqHtkMd228qjkZxfqlZdh790w8PM2Jtzqb4JXiDXmtQolLCkvwk7kLcO2EciiPd6D6fzei+ifvwHUiKG7mbbGjY+Pg6saT4ek6hrb9T4p6f3v1G5B8vX2AI1FqM2GZdI2o98+qvBUa0+DbAg0VXkc9Oo8+DW+CTgVKjRmG/IVw1L09IuNJh3n5/vvvF9/Tp556Sih5h6DsgDvuuEPo+5AeUKhHeqTYILWEIqFgUiuPhJ7T8tLSUtxyyy1IBVLcP8UwDMMwAysHIOG9SGEhEvAj7x2J8JE4EXHgwAEh6Bc7mTNMqtLl9eKXh/bhpMMWnwEwaRrOs6ZX/09mbOBttqN5zV50vXcq4Tb6WQXYc74Vbyi74HJFO7BCaBRKrMgvxGVFpcjUauE62Y6aNXth210vu33rS/uRuWwilLpBdZINIwX8cLXuhK3mLXg7k7enU5snwFx6oTCiFUoNUgUp4IOrdRfsdRvgaT8YDgNnTvuM7PbmsksheRML4Q0l6TAvh8R8qR0VaRSsWLFCOCtID4j6oCcS86UyAuqnftFFF4k2XtQDnLoTUAkE3UgHINRHPDUyAdgLwDAMw6Q2A7q6o4mYavipNRD1R6TnEyZMwJ/+9Cfs2rVLCPOROj+J+6WKZ55hzuQAeOTgHtQ6oyOSBpUK/zWlEnOzcvgEMiOK3+ZB678PoP3NI5D88qn5+vIs5N04F/pZ+fj9xzvgcse3fVMrFFiaVyBS/3N0OpFFUPvCh+jeLt+mLZTyT4J/Cq1q0O8j4HPAUb8lWO+fwEEhUCigy5kjjH9tVnwXgtGE0vrt9e/AUf8OAu6OqHWOxndhmXwdlKp4wTmNceS0Q9JlXh6omO+SJUuwe/duUWZA+gDUCYH0hOi9fO9738OUKVMwWrAmAMMwDJNuKKQBzF6k0EtKxJdccgnOPvtssWzbtm24+uqrRbu/EFdddRWef/55qFSDv5Aci/0ZmdR2AFjUGtw3fTaKDcZRGxsz/gh4/ehYdwytL++H3+6R3UaTY4T1U7OQsbQ8bCxva2nCH44fDm+jhEJkr3yiZAKsOj08TTYR3e/aciqh0ULHzb12JjKXlUOhGlC1WBifsxn22nVwNGyB5Eucfk7K/obCpTCXrIbaWIBUgc6Rp+OAEPdzteykNICE22ZW3AJT8YpRnZfG+rycynP9zw/uxf6uXufQDRMm4aIi7h7DMAzDpK4dOiAnQDJhonfeeUfUHE6fPl0IEKUj7AQYP3gDAfzs4B4cs3VHLbdqdbi7chYKRym9lBl/0E9x97ZqND+3R5QAyKHQa2C9qgrZF1dAGROlD0gSvr9nJ+pdDizKDRr/BXoDfO1OtLy8H50bTyTMKFBbdMi9egYyV02OO25/34On6yjsNWvhatlBCxJuq9Rlw1RyPkxFK6DUJG7rNtKIzIWGd4Xx73c0JN1WqbHAWLQMxuIVUOutKTkvjZV5Oa2cANxClmEYhklxO3Roij17oHq8iy++eCgPyTDDhi8QwO+OHpJ1AHxz+mwRPWWYkcBxoAlNT38cFuaLQ6lA08I8/GeeDv/vrAnIlTHUlQoFbp00FUa1Opy9QmKCp//nbZFdIIfKqEHOFVXIvmgalHr14GrlWz6CrXotvN0nkm6rsUyCecKF0FvPhkI5pFPQoPB0nxIifo6m7YBfPgMjhDZzKozFq2DIOzulNAvk4HmZYRiGYZhYUucKjGFGEE8ggCePHsTujmijix0AzEhC9fnNz3wM2866hJH1tlnZeHOhEbWiVNqPl2tP42sVM2S3n2qJ9hjryrOgyTPBXRfdTYDE/rIvnoacyyuhMmkHPP6A1w57/SYhlBdwJXBgENS5wDof5tKLoMmYklL1/qHof8vOh+kNJdxGodLBULAIpuJV0JgnjOj4mNRmyNIpGYZhGCaVnABUazgYSPSHYVLJAfCrw/uj0jdDfdO/WjGDMwCYYcfX4UTLC/vQuekEpICMCSEB7RMMeHtpBo7nR0f9yXF13NaNyWZ5AbVIFEqFEPirfTzYf12hViJ79VTkXFkFdcbAM118jgbYatfB2fAupCRRc4VaD2PhMphKLoDakIdURak2ik4E9H5iUZuKYSxeCWPBYrFdqsDzcuoQW1XJ3QEYhmGYMeEEmDhx4oAjN7Sfz+cb0L4MM9S4/X78+siBOAcA9U6n6GqpMXVqk5mxR8DlQ9vrh9D22iEE3DK/ixLQkaPGliWZODBJm7Dh+K72trATQPIFYN/bCPNZ8kr05nNKYJiSC11Zpqj71+QaByGUdxC2mrVwt32ctN5fpbfCVHqBcAAo1amhqyFJAfgcddCYSmXXk7Bf2AmgVInMBYr6azMrUi5zgeB5OXVJvW8LwzAMwwzACUCR/FS8CGKY/mDzefGLQ/txwh6tAWBUqXFXxYy4VGqGGSpIkK9z00m0vLAXvk4ZpXwJ6NID2xdnYtdMIySV/O9thSUDV5eUozIjU2QQdG05iZYX98PbYkf5QxcIYz8W+u0u+96qAav9U72/s2m7EPvz2k6fsVbeVHoR9LlnQaFMDfV5v6dLtPYT7f18DhQs/rl8Oz/LZOitZ0FjnijE/lS6LKQyPC8zDMMwDDOsToCTJ08O+AUYJlUcAI8d3IeTDlvUcoNKhXsqZ2JSH1KrGWYg0XP7rno0//PjuLr84AZAl8KP3Qsy8MHZZvj18obzZJMF15SWY3pGpnjeta1aOBQ89b0OrZY1ezHhfvk2dQNxAPi93XDUbYK99m0EPJ2JN1QoYchbAFPphdBmTEYqILIWOo/AUbcBTupSEOjNunA2bpNt50fOkpxZX0W6wPNy6hCbE8MxE4ZhGCbVYWFAZszT4fHgkYN7UO9yRi03q9X4egU7AJjhwXm8TRj/pPwvh83nw74ZRrx/XibcGfIK82VGE64uLceczGzxnBwKZOy7TkeXs4h1exvh2N8E44z8QY3ba6+DvXYdHI1bk6rkK9RGGIuWizZ/an18BsJoEPA5hZFvr3sbPru82CKJGNK4ObuNGS5YE4BhGIZJddgJwIxp6pwO/PLQPrR43FHLszRa3Fs1K9xKjWGGCm+zHc3P7kHXtsSp86Y5hdi7LAvvqGSyAwCUGIy4qqQM87NzhbFq39eEluf2wHmsNeExDdOsUAywzV+w3v8AbNVvwd22J+m2KkM+TKWrYSxcKptWPxp4bTXCuHc2boXkj/5bj0WhUEPy2aHQmEdsfMzYRorJBeDiSYZhGCbV6dMV41//+ldMnToV5513Xty6rq4uaLVa6PXxStP//Oc/8cEHH+DRRx8dmtEyTD9w+f34+cG96PB64hwA36yajUJDagiWMWMDv82D1n8fQPubR4QGgBz68izkfXouTLMKkOn1YP3uD0W3ihCFegOuLCnDwhyrMP6dR1vR/NweEeFPBB3T+qnZMM0t7Hd0m5T9HU3vi3p/n7026bbarEqYSy+ELncuFIqB6QsMJVLAC1fLDthrN4jU/6SotDDmL4SxaCW0GZMwFuB5OXWIbfCh5HoAhmEYZiw4AW677TZxk3MCZGdni3V//OMf49a99dZb4kKFnQDMaPByzak4B0COVof7p89Bri41IphM+hPw+tHx1lHhAPDbZdLnJUBjNcL6qVnIWFIeNtQzNFqsLijG6/U1yNPphfF/bm4eVAoFXCfb0fL8Xth21Sd8XV1xhmj/R+r//TX+/Z5OYTw76jci4IkWyoxCqYYh75xgvb+lHKmCs/lDdB75e/Kxk+1vLIBJtPc7D8oxFvnneTl18EY48gjOBGAYhmHGfDkApZHG9shlmNFmf2cH1jdGG1AWtQbfnjEXWVrtqI2LGTvQ7173tmqR+k/q/HKZKHXwQHXJFFz46cVQauNF/y4uKhEOgPOs+VArg9H1+t9tR+fmxGKs2gIzcq+diYzFZVAo+2dukLo/tfgjtf9IsbxYKFWexPNMxeenpEq+Sped2AGgUEBvnRds75c1fVzW/vO8PLKcihGcHY/fOYZhGCa9YE0AZsxx3NaNXx85gEBMneb/m1rFDgBmSCCxv6anP4brRFvcOrffj3qvC3vmmnFsWRHUFhWWKiWYZI5jVmuwPL8wapk6M760itDkGJF79QxkLp8Ihbrv6fiSFIC7dbcw/j0dh5JuqzYWiai/oWBRytT7y0Ht/DTmsqiWhUptZlCosGg5VPqcUR0fM77I1erQGqE70xWTgcYwDMMwqQY7AZgxRa3DgccO7YM74I9afnnRBNFbnWEGg7u2C83/3C2bpu/x+9HgcuHgND0On18GZ07QiPb6/XizvhbXTuhbOn3OFZVoX38MAadXPFdbdMi5cjqyLpgim02QiIDPBUfDFthr18PvTKwpQOiyZ8A04SLosmeNehSTotje7uOw122ELqsKxsIlcdvQGI0lq9B56C/QZlWJlH+K/iuUPKUxI49OGf13aVLx95BhGIZJbXimYsYMFH35zdEDcPij05zPybHimtKyURsXk/742p1oeXEfOjeeiCt/8vgDaHQ5cbxIjUOrS9BZGt9xYltrE64smRBO+fd1uaBQKaEyxZemqMw65FxagfY3DiPn8kpkX1wBZT9U/33OZmH4kwNA8kW3xYxCqYGx4FwR+deYSjHaBPxu0d7PUbcxHOH32WpgKDhP1jFhyD8X2oyp0JiKR2G0DJMYk1q+5SfDMAzDpArsBGDGBN1eLx45uBcNrmijZ0ZGFj4/uWLUo5tMehJw+dD22iG0vX4IAXe0c4lU/RudTtRYgEOXFaC5wiLq0SMxqFS4uLAEFxQUCwcACQfS8aiDQPbF05B3/WzZ1825jIz/abJOgoQt/rqOCpV/UsxHEp0WSps3lZwvUudV2gyMNl57nRAodDS8F+e0IGeAt+s4tJlT4vajcgUlOwAYhmEYhhkkkiTBR9dSgQA8Ab8QfKXH7p7nYrm/9/GK/MK07wTDTgAm7bH5vHj00F7UOh1Ry8uMJny1YkY4+sowfYVa/HVuOoGWF/bB1+mKWkcTA0X+G9V+HL4wH7XzsiGpFHHpwRcWFuOiwhKY1GrhTGh9bb9wAPgdwTR/4Qi4ZBrUGfEaAH2N/EsBn1DKt9esg7f7RNJtqYaeUv4NeQugUI5upJLG7WrZKVL+PR0Hk25rr98o6wRgmFRBitGfYRiGYYb4d7bHQCejnEp+SX8pZKC7/cFlYr1YHlxGv83XTZgoe7wdba149vTxnmMEj9OfX/JFuXkwqNPbjO7z6I8ePSra/fVnHS1nmOGky+vFzw/uRY0zWp2dFNe/Om0GtOwAYPo5ydh31qP5mY/hruuKWucTxr8LzZIHxxfl4uR5Vvh10bXA9H2jqD9F/y0aDQIeP9r+cxht/z4AX3evcBhBmQVt/z6I/JvP6vdn5Pd2w1G3Cfa6DQi4OxJvGFLKL1kNbeboZ8T4XW2w178DR/07CHg6k26r0lthLF4BY+HSERtfusHzcmqS5sEhhmGYgWv6CGM9aISHoubCQI8w1GOXUUT9mlJ53aStLU145vRx2HyJOxolgn6Kry3tbc0ciV+S0BIh6Npf6D0YgPHhBHj33XfFLRY6sYnW0ZdhtC86mbFLh8cjHAB1LkecUvM3qmYhR5e66uZM6uE83obmp3fDcbBZdj15i3fPNODoynK4LdGRdK1CiVUFRbikqBQZGg0kXwAdbx9D68sH4G2L/n6GoN9GcgT053eSUucp5d/RtA3wJ1YgV6j1MBYug6nkAqgNeRh1733HAdhr34ardVfSUgWynnQ5c0R7Ql3ObCgUnMWTDJ6XGYZhmP5AkXKn3x9hoAej52HDPCK6Hk6D79mGIt+fKZ8se9zX62rwYs3JAeVF6ZWqhE4AStEfiAOAoLGQU0Irc42lGWSQ0CMFgPHgBCgrK2Njnkkp2j1uWQ2AkAPAqpNvs8YwsXiabGh5bi+6tvW2m4vFPLcIk26cgw32ari7eiPvGoUSK/MLcWlRKTK1WkgBCZ1bTqL1xf3iuImwLJwA63UzoSvJ6JMR7W7fK4x/d9u+pNuqDFZh+JMDQKlOHR9117E1Ue38YlFqLWLMpFMw2k6LdIHn5dSBiwEYhhlq2txudHo90ZFzUZfemwYfa8QL4z0QgFWnw22Tpske91+1p/FmQ+2AxpSj1SV0AqgVigH/FtLYEwVEBpvRS+dE7hjaPhyXRqNVqsS2OqVSOA5Cz8dCiLtPToCTJ08O/0gYpo+0uskBsAdN7uhabTL8v8kOAKaP+G1utP7rANrfOio0AOTQT8xG3qfnwjQzXzy/pluBA10dYrJblleIy4tLka3Vicmre3sNWp7fG1dGEIn5rCJYPzlLHLevavlk/Psc8S0JI9FmVYqUf731rJSLnot2fsUr0Xk4vmRMmzkVxuJVMOSdPeo6BekGz8upy1i4OGQYpm+0uF3o9HqjxOTsPh+6fV7YxPLemvPIqDrdl5vM+PyUioTG+paWxgF9DKUGU8J1gzGq6T0Mx3Gpep/S8+naqj/HDRrnKmGga1XBe/FcFTLcVVAk+EWeYDThaxXBsmEy7HuN/F5Dn8YzljPa01vRgBl31Djs+OXh/WiLqePJFw6A2VwCwJwRqtPvWHsUrf/aHxbpE8slSTiYSGiyoqwA1htmI+O86CyoKZYMfLpsMs7KzglnmziPtqLxzzvgOtme8DWNM/KR96lZMEyznnF8fne7SJ2n2nnJmzibAEo1DHnnwFS6GlqLvPDNSEEOC3frx9CT6KBcO7+CReg6vkao/ytUOhgKFsNUvAoa8+i3JmQYhmHGhmgcQQagHAe7OoXBHjLUIyPpocdR6/y9j6dZMhMa6y/XnMbW1qYBjZuEgxOR6H30BcoaSAQZuAOFzkl/x0uGdG80XQWtquc+xuBOdOQpZgu+XjETZrUaZo2m1+inaPwgDHSLRoO5WTkYz7ATgEkbPmxrwV9PHIXdH10bVKg3CAdAlrZv7dSY8XuR0PXuKbSs2QtvqyNqeavHjSaXC06tAsdX5iH/xoWYUhiM/seyujCmL70kJXQAGKbkwnr97HAmQTI8XSdgr3kLzpaPyKpOuJ1SYxGCeWREq3RZGE18jgah8O9oeBeSzwHrvAcTtvOzlH8CCqVWOARSqVSBYRiGGRlovqWIbyBJhHd/Zwea3a5wCjxF0+ucDrFPZLQ9yljvqc9enJuf0Fh/q6EWuzvaBjTuPK9nmCLrSYzqYTpu5Hij0t3D0fNeIz20LNKIT5S2PzsrGw/Nmhe1vYimDzKdP0Ojxewsvr4fDtgJwKQ8pMr+Wl0N/l0XX1NcbDCKEgD6kWCYRNj3NKL5md1wneqt56eJrM3jQZPLCbdCwumFOTi+LA9eoxovN9dgXkFen3rAUnSf0vxtu3pT9vVlWbB+ahZMZxUl9VRLAT9crTtFyr+nM3k3FbWpGKbSC2HMXwSFSju67f1ad4vOBJ72A1HraFmidn7mCReP0AgZhmGYwUTUQwY4GXMkdptItZ0i671t2aLbtEUa6pGt3Cj1e4k1H7dPTmys7+lMnFk3Gunqw3Xc5BF7pdAd0qmijepQ6ro2JqoeirLTY5MqsXm3LK8Ai6x5Yn/NEKa7m9UacWPSB3YCMCnfAeCJIwdw3N4tmyJEbQAppYdh5CCjn9r92fc0hJeROH2Hx41Gt1NckDTMysSR8wvgzO41rCnqcKi7E9MzsqLKCJRa+XQ3qvMnJ4C20CIeW84tTTqxBnwOOOo3i7R/v6sl6Yeny50Dc+mF0GZNH9XaNFGmEGrvl6AtobP5A2RMvQEqjWXEx8cwDDMeEZF1SUqodv5aXTXaPZ6kCvCRBnwkFxYU48YEQnAbmxpw1JZYA2fgEfBBpKsP03G9yY4bUX8uDPcIY50cKJkabTC6HhFVDxnxycoBriiegE+UlA14zMnGq8PAzwUzdmAnAJPSyqjUAYCMtVjOybHic5OmDapmihm7eFvsaHl+n0j/p8iGgIx/r0d0lKCLofZyEw5fWIDOEmPUvjMysnB1ablwMhGehm5xLE99F8p/eKGsIU5CfxMeWAljlRUKVeKogM/ZBHvtOjjqt0DyJ+lPq9LCWLhEKP1rjEUY9fZ+dRvhatlJaQDJ2/tlTYfkdQDsBGAYhhn8729PJuQxW1dUj/Xe+nW/aKGWLLK+raU5rpVyXyHnwEinwQ/XcfP0ekwymaOi6pFq77E16qHHtI0libFOre0StbcbDGNZkI5JDdgJwKQklGL22KF9cQ4A+km8fsIkXFRUMmpjY1IXv92DtlcOou2Nw5B8PRcDEkSbHTL+XX4/7Hk6HFpdipZpZmG4hqi0ZOKqkjJUZmT2OhJe2o+uzSdF6z+ie1s1MhbLe+YT1f0HDemDsIkWfx8HUxESoNRlw1RyPkxFy6HUmDFaBLx2OBrfhb1uE/yO3iwKORQaM0xF1N5vBbf3YxiGSRLYcPh9oqOMXASY5opv7vpAtFnzSQExX5GBP+gIeBLH9KilwfsTH7fAYMBkkyWmTl0lpusivVFE1yON9VDknbbRJwkMUWSdbgzDBGEnAJNyNDidogVge4wQS55Ojy9MqcTknggtw4Qgg79j/TG0vLQPflvP90YCunwe8X1yUr2iRY2jK4tRNzcbkqrX+KeLDfLiT8/IFJ53X4cTrf8+KI4X2zqw5YV9sCwsTRrtD4/J7xHp8WT8+2zVSbfVZEwSKf96K7XKG92fZXfHIbTu+QXgTyyERGgypwhxQgONeRQ1ChhmtOmjncaMIUi8jlrAhdLqo8XqemviaTltF5k2/8UplViYmxd3THJUx173DE1kfXjS66eYM0T7tVDNemSdemTrtth0edrGqGZjnWFGG3YCMCnFabtNZAB0+XpbtxHcAYCRgyIntu01aH5uDzyN0e30SHyoxuGASwOcWFGAU+fmwq/tNd7LjWZcXVqG2ZnZwvj329xoe/UQ2t88goBXPkrh63TBXd0p0v8T4fd0CYE8R90GBDzxWhZhFEro886GueTChGJ6o4HGMhEKhUpEo2IJtvdbBFPxSmjMQ1+ryDBjgUR9qZnUEb2LbRMXm2Ifen5RYbFsWvaa6hM47bAPqWFdZDAKQzmZWFx/j0mclZUjRJSjhOViDPfI55HK8Il0BojLirnFK8OkM+wEYFKGY7Zu/PLQvrgWgMV6I+6tmsUtAJkoHAeb0fzPj+E81ip7ZlQqFawXTcPTsxTwmnp/6koNJmH804WRMP4dXrS/cRht/zmMgDPa+RRCqVEh++JpyLmiEiqzTnYbr61aRP2dTe+T8l/CT0uhNsJYtFyk/av1uaP2qVJnAoVMhIja+RkLz4O9Zn1UZwJj8UoYCxZDqY7WUGAYhhltErUt29bShH+ePh7VRq4/rCooglbmuIOJrre6E+vBkPGdyAlg1epw7YSJsiJ0xiRq8Fw+yTCMHOwEYFICatP2+OF4BwCJuNxdOSupgiozvnDXdqH52Y9h21GXcBvLOaXIu342JheY8MrHH6HN40aR3oArS8qEqCRdLAbcPrSvPYrWVw/2lhDEQGn/WRdMQe6VVVBnGWQvPN2tu2CrXQdP+8Gk41YZC2AuWQ1D4RJhaI8GwZaEu0WWglKXheyqO2S3MxatFHoAeus8kfKvzaxgkSKGYQYdeTdr1AnbiL3dWA97T4q9OyYq741rN9e7nu4TKalTRpPNl9gpeybo+HK178ki5GeC6v0TMS87V2gBZGu1ODc3T9S4G1QqYeQPtt86wzBMJGxZMSkhlvPzg3vjJmoSavvqtOkwsAOAoQundidaXtyHzo0nwor/Dp8PjS4nSijVkS6WpuQi/6a5MFRYw+eMhCT9UkDUYCoVCqEf0L7hGFr/dUDU/8uhUCqQsWwirNfMgMZqilsf8Lt7Wvyth9/ZlPTz0WZPF/X+upw5o2ZI+90dwfHWb0LA3dN/WalGxpTrZdv5aUzFKFz881EVJ2SYdEGSLZ4Zv+zpaMfTp46hye2KW/fpsslYXVgsu9+rddVCxHUgJEqHH4x4XbLWcKRR1BVOsY9Wk48Vqws9pmAGlZ8lu6a5ddLUQY2XYRimr7ATgBlVurweoQHQ4olOj5uZkYUvT5vOLQAZkaLf9tohtL1+CAFPME3S6fMJEaUubzB9X8oDlt6xGJZzS+MM7XNyex0CYtuAJDoIyDkAaF/LuRNg/eRMaAvjjWOfqwX22reFQS35krRcUmpgLDgXppILoTGPTt1kqCuBaO/XupM8F9EbBHyiVaGl7FLZ/dkBwDADYyx09qLe8/QbIhd9puXvtjSJtHVKbaff4r0d7cjUaoVj1pWkpn24WsMlamV3prR9JRS9BjwJ2CmoFr63dVwifQc21hmGSXfYCcCMGq09GQCxbQBJwObOqVXsABjnCMX/jcfR+sI++LqDTiJKk6TIf4cnGC3ymNQ4vjwPNWfnYN7cXGT04epbqVUh9+oZaPjTh1HLLWeXIPe6mdCXZUWPQ5Lg7Tom6v1dLR8lb/GnzYCp+HwYi1dApc3AaBDwOeBoeBeOuk3wOeqTbutq/iihE4BhmLEL/ZbubG9Fu8cTp26/paVRbPP5yRVYbM2XdZb+7eTRuPZ1VHY1mJZzg0mxTxSxn2Q2476q2TIR+6Chzyn2DMOMV9gJwIwKzS4XfnzgY3TEpP6FugAYuQRgfCv+f1SH5mc+hqchqK5P7ZYo2tTp8YjE24BGiZOLc3FisRV+fTDSs7ahDrf0MZUyc/lEtL12UHQUMM0qgPX62TBMzokeR8AnjH5b9Vp4u08kPZ7aPEGk/BvyF0KhlK93HW483afgqHsbjqbtZ27vlzE52N4vb8GIjY9hmJGnxmHH304eg1GlgsPvF33qKQOvL3XySXvPK1XwxWj4DMZYJ6ZnZIlrgFD6fK96fW9kvnddtDge9Y6Xg/QHKjMy+z1OhmGYsU5KOAG8Xi/eeecdvPHGG9i4cSOOHDkCu92O3NxcLFy4EF/84hdx+eWXJ9x/3bp1ePTRR7F9+3axX3l5Oa677jo88MADMJu5pjXVIIPu8cP74xwAVGN3T+WshJM5M/ZxHm1F09O74TzcIp57ROTfhXaPO1h1qwBq5mXj2Mp8uC3B74lFrcFlRaVYWVAUdiI49jYJ/YCiL5wDbVF8Wr9CrUTBbfPFvXF6dKQr4LWJ2nl77Ybe+nk5FAroc+fCVEot/ipHrd7f2fQBbDVvwtuV3FGhUGlhyD8XRhL6s5SP2PgYhhk6qBSKUvGrHXY4/T44/X5xT3OnnPOc6vMje9T3d66mG7WKi4WWxQr5yvHJ0ok4z5ofNt6TRd4/Uz55QONkGIZh0tQJsGnTJlx44YXicWFhIZYuXQqTyYT9+/fjlVdeEbcvfOELePLJJ+MutB977DHcc889YvmyZctQUFCAzZs340c/+hFeeOEFbNmyBVZrdE0wM/oOgDqXI64E4N5KbgM4XqGIf/Nze9C9vSb4PBBAo9PZa/xT9kiFBYdXF8CepxfPTSo1LikqxQUFReGLVHIeNK/ZC8eBoFhfy/N7UfzVxbKvaZpdGPXca6+DvXYdHI1bk0bSFdRCr2gpTCWroTbEp8qONJ6uI0kdAGpjUbC9X+F53N6PYdIAcmSSkd/qcYdT9MnQ/6itNaFBTxF+OSdAsXHgLT03NTeg3GSWjaRPNlmE4170le/5/aV5nERac7Q6YfSL9TIOBIZhGGb0SQkngFKpFJH7u+66SxjykTz77LO46aab8Pvf/x5LlizBLbfcEl63c+dO3HvvvaIfODkKLr00WNvqcDhw5ZVXYv369bjzzjvx/PPPj/h7YuKhC5nfHj2Ig92dUcupb/s3p89K2DaIGbv4ulxoffkAOtYdg9TT8olq/qm2NFRu2lVswKELC9E+MajST+2SLiosweqC4vBFr+tkO1rW7IVtd3QNfNf71ci5cjr05dF1/lEt/tr3wV6zDu62PUnHqtJbYSq5QDgAlOqBX1gPNaKdX8366IVKFfTW+TAVrYA2q4rb+zFMCs2DGoUi7m/S5vNiW0sz9nS2Y29nkgykBFBGgByUMn8mppozhMEepXCvUorliVLp/9+0qn6PkWEYhkkdUsIJcP7554ubHDfccAPWrl2LP/7xj/jrX/8a5QR4+OGHxUX85z73ubADgDAajWL7yZMni2yAgwcPoqqKJ6zRhD6nf5w8Ji5wIjGr1fjStCp2AIwzAm4f2t84jNZXDiLg6k0pbXAGHQCEM1uLI+cXoGFmhki9p4tZMvwvLioRrZYId20XWl7YG84gkKNj3VEU3hFd+y75PSLiT5F/n70u6Vi1mdNEyr8+9ywo+nBBPdT4PZ2iG4GxaLms2CC18yNDnzoBKHXZwvA3Fi2DSifv+GAYZmjpa4PAl2tO4Y36Wvx47gJkabVxOjkTjCb88/TxAY2BMgXkyNJoRVs6lUKBXK0OUywZouc8OVPpd5Rq8EerlIlhGIYZ506AMzFv3jxxX11dHV7m8Xjw2muvicef+cxn4vYhXQDKHKDSgJdeeknoAzCjQ0CS8PSp42HF4RB0IUJ1jAV6A3804wRqz9e1+SSan98LX3t8iz76LjSp/Ti2zIrTC3IgqZWiZdP5BUUi9d/SoxdBgn6tL+1H17unhINJDk2OEblXT0fm8knhZX53B+x1b8NetwmS15Z4oEoVDHnniJR/bUbv/iPa3q/zMOx1G+Bq2RFs76dQJVTyt0y8EgHvBUKjYDQcFQzDJKfJ5cQrddVhZf5YJpktQsSvP1RaMnFWVo7oO5+vk59HCw0GfL1yJn88DMMwTPo5AUgokCgqCgp/EYcPHxZp/8SCBfIK17ScnABUNsCMDmTMPF99EhuaotO0KeWQLkyo3pAZH98D+8cNQvHfXR1dDhKCRPoKr6jCrjlanLK1QKNQYmV+IS4tKhX9pwlvm0OUD3RuPCHKB+RQW3SiBCDrgimiHSDh6T4Je81aOJs/CBrUCVBozDAVrxBt/kYjki7a+zVuhaNuY1yGgqN+I8wTLpGN2umyKkdwlAzD9BfqbhLCFfDjnaYGLM+P1iVJVD8/yWQJp+pT9L7IYBQlUfScYRiGGX2kgB+S3wUo1VCqdEgHUt4J0NDQgD//+c/iMekGhDhxIiiElZWVBYslXv2bmDBhQtS2zMjzWn0N3myojVqm6Ok/PMUs/7kxYwvXiXY0P7Mb9n1N8AckNLtdQjQqVxf8kSSjNmNJOayfnAmN1YTL3C6o6jW4rLgU2VpdWDug7ZWDQjsg4JU34lVGDXKuqEL2RdOg1KshSQE4mz8Sxr+nM+hITITaVCyi/oaCRaPy4+21nYa9biOcjdsg+eV7bfudLXC374U+Z/aIj49hmMGx5vTJiMcnRHecWCcAiZ1SdJ9uVBpQlZHJ7XIZhmGGOUglBTyQfE4E/E5IPoe4DqOgTMDnhCSWucRzehzwucQ2Ab8rYh9n+Nots/JWmIqWp8VnltJOAJ/Ph5tvvhmdnZ2YPXu2aBUYors72D+cuggkItQesKsreXsct9stbiHOtD3TNyjS8VLNqahlKijw+SkVODuHOzaMdbzNdqHO3/nuqbDx3+J2wS9JwgmQrdXCMrsQeTfOgX5idng/q06PmyZOiTpWywv70LH+mOzrKHVqZF9SgZzLKqAyacUPta36bdhr18PvCrYaTIQuZzZMpauhy5454nWxpEvgbPlIpPx7O+XfWxiVFsb8hVDpckdqeAzDDIEmANX6/3D/Lth8vTX7JI47SSYLjoRO75vOTj6GYZg+G/BhY9zVY6QHjfKg0R5pvAcN/PB6vyNs0EOSzywdCOQwSBdS2glAyv6k8J+bmysU/rUxQjpDBQkMPvTQQ8Ny7PHK3o52/O1kvGFz88QpWJibNypjYkYGv82D1n8fQPubR+D3+tHicaHJFTT+Q7TnaVF383SsPn9On46Ze+X0YAmAPxBVPpB94VTkfKIK6gw9fM4mdB5dB0f9loTR9LBBXbBYRP5JVG+k8TmbRdTf0bAluS6ByG4oFOUJxoIlUGoSOzwZhkkdFFBgT0c7/nj8MLp9XtltTNwNh2EYjPf0+R7jPNJ498sY8b7o7Xqj7y7yBCCVCJBTIU1IWScAtQskhf/s7GzRHaCioiJqfagEwG5PLKRjswUvsDMy4hW1IyHRwHvuuScqEyBUSsD0nzqnA785ehCBmPjIjWWT49IfmbEDpel3rD2K1n8dgNfmRovbjWa3E75A7/fAlanB0ZX5qJuThX06F1YGAlD3oa5Vk2sUNf7tbx2BQqlE5spJQvRPnW0QAnpde9+Cq3V30slAqcuCqeR8oZ6v1IyOFoXf1Yam7Q8kn7QUSuit82AqXglt1nRW7maYNJwDX6jpTf+X44tTWMeDYZixhddeJzoVBbz2XmM+gVGfNFiTxkj+eNHrVCUlnQD33nsvHn/8cVHv/9Zbb4W7A0QyceJEcd/R0SFKA+R0AULdBELbJkKn04kbMzSpOT/Yt0v0Qo7ksqJSXFg48lFXZmQ+8+5t1Wh+dg/czTa0ut1ocrvgi/gO+PQqnFhixalzcyFplFiYk4erSsrCDgDJF0DnOyehUCmQuUJejT/3qumitSBlBWjydHA2bUfHR+tEPX0yNJZJIuXfkLcACuXo/uSp9DnQZlaKSVLWSRFu79dbHsEwTPpAJU9PHT+CDG2wk4kcD0yfw7X+DMOMKVxte9C255cpF5nvNyotlCo9FGoDlCojFGo9lGoDFCoDlGo9FCpjz3Na3rNebEfb66FIo6zNlHMC3HfffXj00UeRmZkpHACJlP8rKythNBpFh4APP/wQq1atituGlhPz588f9nEzQV6sORXnAFiQbcW1peV8isYgjv1NaPrnx3Acb0Vbj/Hvjfj8JZUC1QtycGxZHrwmtfguXFlShhKjsbdl4NbTaH1xn2j7pzLrYFlYCqUh/gJanalH/q2VcNRtQNu2txHwJNHuUCigt54Nc+mF0GRMGdFoOjlFAp7OhN0FKMIf6QTQZk+HqXhVT3u/lPtJZhjmTPRc9NLffq3DIdT85VhizRcZcVT7zzAMM5agUszRdgAoVFphrAuDXBjl9LjHaKf7yHXqHsOd7sNGv2FcXYel1Du9//778bOf/Uw4AKgE4Jxzzkm4LekDXH755VizZg2efvrpOCfAqVOn8N5774nH11xzzbCPnQFeravG6/U1cafi9snTOKV5jOGu7ULzP3eje2cd2jwe0QM71vnTODMTh8/PhzNHJ3pZX11aLhSvQxfLtg9rhXAgHSuE3+ZG25tHYL16RtSxvLYa2GvXwtH4PtUdJBwX/Ygbi5aLtH+1fmTFJ6lOzdm4VQj9kdJs/sIfy37vKdWfuhGQGCE5BNRGLpFhmLFAfagNYMyf/WfKJ+OCAs6EYxhmrIryOc8oxJwUhaIn0h6KvJNhHjTWw8Z55H2UUU+ReIrM68aVAT8UpMzZ+s53voOf/OQn4RKAZA6ASKcBCQY+9dRTon3gJZdcIpZTdsAdd9wBv98vlldVVY3AOxjfvFVfG9cJgPh02eSEvY+Z9MPX6Qoq/pNIH5UB+HyocUTrcnSUGXHowkJ0lhoxJzMbV5WWY2KPEjbtY/+4QRyDWgfK0f76oWCbP4Ma7raPYaMWf+0Hko5LZciHqeQCGAuXinStkcRrqxaGf2x7v0Tt/GiSylvwP+wYY5gxhssf3770W9Nno8KSOSrjYRiGSYbf242Apzuslh9Uz6e6fXtUy7zetnjOKJG+ZJF/beZUaMzlMUa9Pjoi3xOpFwb8CHdoYlLECfDvf/8b//u//yseT506FU888YTsdlarFY888kj4OaX5//znPxeifpdddhlWrFiB/Px8bN68GfX19aJk4Mknnxyx9zFe2drShGerT8Qtv6a0HBcUFI3KmJihJeDyoe0/h9D26iFRlx8iQ62BUaWGw++DI1eHQxcWoLnCghmZ2fhyaTmmmC1RpQPNa/bCeSSxt9gwJRe511XA1b4Ztr3r4Hc0Jh2XNrsK5pILocudA4XizAKDQ4UU8MLZ/JEoTfB0HpXdxl67QdYJQPBkxzBjj1KjUbRDpcj/S7WnsTg3nx0ADMMMCkkKiGsOyoKUZG6Jl/t6HnvitiWj3k1iysMIZWQa8s8d1tdgxoAToK2tLaqOP1TLH0t5eXmUE4C4++67MXv2bOEM2L59u+gWUFZWJhT/6SYnGMgMHcds3fjriXgj6IaySbiosIRPdZpDLflIsK/lhX3wdcgoniqAwvxMvDpfh9p52ajMysLtpWVRF75k9FPk376vKeHr6CZkIvuqMsC6B90NP4XUlqTFilItJhZR72+eMOLt/Rz178BRvxkBb3fSbf3OJkh+j6hRYxhm7KNVqgBlsP3fN6pmoYozABgm7aEMRkghg9oXNqrjjW8fINbFGN9+b8/+ketouSd4DFrnp3t5wx6B+AyjlEehgMacXJSdGX1Swglw2223idtAWb16tbgxIwulgf/y0D54pEBcBsCFXP+Y1oi0/V31aHrmYzSfaIHN5wuL+YVQalTIubwS0y6rwKGmatyYk4vpGb1ieJTuT8a/bXd9wtfRFlqQdWk2pMKdcLQ8D9REf5eiXk9rgbF4lRDRU2mTt/0cai+8u20P7HUbxf2Z2/udJcbI7f0YZnySo9NF/RYyDDOMveaFEe2OiHxHGNBiXY8xHvk44IXf2QivvUakootthSHeY6zT4559QMY6c0ZESr/aAJU2W3RkUhsL+KylOCnhBGDSsw/yIwf3wu7vTQ0nVuQV4orikY3OMkOL83gbmp/ejYY9dWh0OkWqP5Gp0cKsUYtU9oxl5bB+chY0OUHHwM0Tp0Qdw3W8DSe/ty7ha2hyDbCcrwaKd8BlPw40Jx6P2lwqov6GvIUjHlWnNoRdx184o+ANtfczFi6DqWi5aAPIMAzDMEzyYAMZ4qL+vMeAj4yAu9v3B410hTouih7aDjFBKGbg0HVMWDE/1AZPKOtHtsGLrO+PfK4f0ZJMZmhgJwAzYAdAty9apX12ZraohWTSE2rR17xmD+o3Hxcq1w5ftIOnweXA3PnTkPfpudCXJY9y6SZlwzDNGlf/r8pQw7TUA0X5O/B524BoTcFeFArocuYI41+bVTWKNfSKpA4A0iQItvc7i1VpGWackuZdsRlmVATpWnf/HD5bNZ/9gaLUQCFuaiiU2p7HGlEy2ftc3bNME2yfpwg+p/W0HfW1p/bEHLwYn7ATgOkXR7u78Ksj+0V6eCQVlgz8v6lVUCvZE5hu+LrdaH15P2reOIgGmz3usyW6C/X48MJCTLvsLOgzzqx0TUY7ZQpUP7xRPFcaJRgWdUI1cSeg9EDyJk4nI4V/UvpPhVQyauen1GYi4OkMLyPPuLHwPBiLV0JjZOFLhmGiYY1rhkkOtdNNeweAQtlrUKs0UQZ2QuNbpQEUMsY77a/sWRc+FvW87zlG5E2hDi5jNX1mkLATgOkzH7S24P+OH4IvpiaaFODvqpjJrQDTjIDHj/Y3D+P0C3tQ39GNbm+8Ze7K1ODoqnwEFhbhU6XlwtkTwtflQvfWamRdNFV2MjLOyINhlhaS+Rg0FQeg0CaOl6n0ucEWf0XLRGrZSEGphlTrb7DOhy57Rtx6mqSNRcthO/UKNJZyoUlgyF8IpUo3YmNkGCb18QYCIjuOfgn3d3aI7IC5WVwaxIxvhKiejHK9t/vk8L4wGd6xkXIynnuMbYUwtmmZCgG/G7rsKig1lghjnSLlPca42Cdy/5BRz+2vmfSGnQBMn37E11SfxJsNtXHrJpss+HrFTOhV/GOYLkgBCV1bTuLkM7tQV9eGLhnj36dX4fiyPDiWFuMTEyfi3Nw8qHoMfb/Ng7bXDgkHAjkStMUZMM3ujdqT8I6jaRvsNWuhWVSXdCzUR9ZUeiH0ufNGbEKlCxBXyw7Rws/TeUQs87vaZJ0AhKmE0v3nQGOZxJ53hmFkcfv9qLYH65terDmF4tZm/GI+t8di0ve6z926C15bdZKWdL1K+dFt6Xrr92nbPqHSQqk2xUTIgxFvEv2jdnOUui6XAt+b/h68h0LFczXD9AF2AjBnvLB56sQRfNAWXxc9JzMbd06t4gyAdFL8/7gBJ/++A7VHG9HhiVe8lVQKnF6Yg47zS3HJ1Ek4z5ofLvEIOL1oe/MI2l8/BL+jd2Jvfm4PjLPyRcq8vW4DHHWbkrfPU6pgsJ4tjH9txshpSPhcLWJsjobNCHiix+du+1isV+utcfuptJnixjAMIwdF/WPlyUJOU4YZ2VZ2/rBxnlgt3x3dqi7OgPcKJ/5IYi5ZjYzJ143oazLMeIedAExCnD4fHj20D8ft8QbdUmsBbpk0lS900gTX6Q40/2MXuvc24mBnB/wybe7qZ2eh6eJSXDhjCpbmFUATMv49fnSsPYrWVw7Cb3PH7ec4Uov6558ECnaJi4hEKDQmmIpWBFv8jZCCfrC9396e9n4fJ27vJ0lw1L+DjEnXjsi4GIYZW3TGOFXZCcAMJa6WXUEHttcWEYGPVcv3JG9hm8JozGWjPQSGGXewE4CRxRcI4NdHDsQ5AJRQ4KbyyViRX8jpVmkk+tfx1lERJVAqFMjT69HgdIa3aZtkQu0lpVi+oAJfyi+Ctsf4l3wBdGw8jtaXD8DX0bt9cKWEgKcLPncLtFXN8GttUAX8smNQG4tE1N9QsGjEaun9ni44GraIyP8Z2/tpM0TdP90YhmEGQpsn2kHaLpNpxTADwd1xCG17fzW2Tp5I3VcHhXbzF0Gft2C0R8Qw4w52AjCyDoDfHj2Ig929iuiEXqkS6f+zs7L5rKU4AbcP7W8eEdF7SuOPJE+rR4vbhY48HU5fVIxzl03H7YXF4bIOyR9A17un0PLifnhbYnr4Bfzwu9tE6ryuogtZy7qhzpE3/nU5M4Xxr8ueNSIOI3JyeLqOwlG3Ac7mj5JmJRDUetBUvFJ0ABC1hwzDMAPAL9OrPF+v53M5XkTvKMWe7v2eiJT7YGReinwcTrkPPY9M25eP7Hs6jyIVMBYtJY95knr8yFr93hZ0vWr5wXXhmn7uKc8wow5f+TJReAIB/O7oQezqaItablFr8M2q2SgxjpxyOzMw0b/GDcew/+kPke9UQK2MN761uUZYb5gK9TwrPl1cAqNaHb6g6X6/Gi3P74OnIToDhC5uKKLud7dCO9mJ7OXdUOfLGNkqrfDqm0pXQ2MqGdmPUPKjfd9vo9r5xaJQG4Lt/YpWQmMqHtHhMQwzNgnIZGDfPHHKaAyFGUZ8ziZ0HP4LvN2n+yd6N9qQEz6qzVwf+8orNVDpcsWcOZJdexiGGRnYCcBEtTj6v2OH4hwAOqUKd1XMYAdACkMGfNtHNfj4z++j9WRrsOZfp0dxhNNGoVIi++JpsF47E1P16rj9qx/eBMf+poiFFKCwBY1/Tye05W5YltugKY6/8FHqskStv7F4BVQaC0aDyHZ+cvWGxuKVI1qSwDDM+EAS0oDRlBhMozIWRl4bhox2T8dBeO11si3r+qJ4TyVwqYDaVAxL+SeijPXo6Hx0X3lWy2cYRg52AjACl9+PJ44cwP6ujjgHwN2VMzHJPDqGHXNmOg83Y8eftqJtXz18ESGpVo9b1P+TwF/GeeXI+9QsaPLkL0wpXZ/a/AkngCTB7+mA39mMgM8JTalHGP/asvgaV41lYrDeP2/BiKTUiwu5rmPQZVXJrjeRE+D0q0FxJKUGhvxzRMq/xjKZNSwYhhmmH6b4RTJJWMww47WdRuex5+BzNgaNekrPl3yijG2sYCxahsypnwn2sWcYhhkE7ARg4PD58JhMFwByAHy9cgamWTL4LKUg9voufPjUVrRsPSV0HGIJSBJOT9DhgjtXQj/pzDoOGSsL0fT8Bniam4SxrSn0ImN5NzSTPCKbMIxCAb11fk+Lv6kjYlxHtffz2pB/7o/l2/npc0Q/YUphNBSeN2pZCQzDjB/k9NhJRJcZ4Wy4fU/A70wuBDuioncyUfnefvby63rr6KNT9DWWSVAb8kf7nTEMM4ZgJ8A4x+bz4rGD+3DSYYtzAHy1YjoqLNwfPdXwdjqx8x8foObNQ/D65CMctkI9NNdOx/LzZ0Nv6C0JcB5vgybbAHW2ofd49lrRE9jR9D40s9Xw7zLCtKwb2gp3lPGvUOthLFwGU8kFUBvyRrW9X7J2fhQlYRiGGSnI4RoLdWJhRg5RujaCDgBdzixkTLk+Ou1eCN6R8R4U2WUYhkll2AkwjunyekQGwGmHPU4EkDQAuAQgtQi4fNj30i6ceHEPnI7odlQhXJka4MppuOgT8zHBZO5dfqoDLS/shW1HHbIumIKC2+bD3bZHGP/u9v3h7QzzPDDMdyBSuFdlyIOpZDWMhUugVPc6D0azvR85ASzlV7KqP8MwKQm7AEYWH9X69wNDwbky0fhIxfvYKH1vpF6ly4FKyxmSDMOkN+wEGKc4fT48emgfqmMcAFkaLe6tmoXiiOgxM7pQy75Db+zH4Wd2wNnmkN3Ga1AhcPFELP/kQkzK7s3ecNd1CbX/7u3VPQcLoO2N7QiUvAhoG+KOo4gIYGizKmGmFn+5c4e9nQ+lcnq7jsFe93af2vupjSVCpInS/xmGGVm8Xi/eeecdvPHGG9i4cSOOHDkCu92O3NxcLFy4EF/84hdx+eWXJ9x/3bp1ePTRR7F9+3axX3l5Oa677jo88MADMJt7nZexHD16FD/84Q/F/s3NzcjLy8Pq1avxve99D5MnT0YqCQNyJkDMOQr4EfDZI1riRbbJixTm88qsixTrC7XVixby83adiPsMcufdHxSCFdF5jaijV6pN7DxmGIZhJ8D4xO334+eH9sY5AHK0OnyjahYK9MMf7WX6ZhhT5H7Pn99HzfEm2brTgFoB29JirPzsYkwr7K2R9zTa0PrSfnS9e0och/oUh1r80cVY1zonMi6TOaBSDUP+uTBTiz9z2bB/TAGfC87GrbDXb4TPVpN0W27vxzCpwaZNm3DhhReKx4WFhVi6dClMJhP279+PV155Rdy+8IUv4Mknn4zTDHnsscdwzz33iOXLli1DQUEBNm/ejB/96Ed44YUXsGXLFlit8Xof7777Li666CI4HA7MnDlTvObevXvxl7/8Bc8//7xwDCxatAgpowkwxsoBaB4J9a4PG+okvBdw99xHGO+h5WIbb1DLxR0tOjwS6DKnjfhrMgzDpAucCTAOHQC/PXoQJ+zRGgBW4QCYLdTkmdHHeaQFTU9/LO7NMqJ/lGvaOc+KypvOxvLKieELbW+rA60v70fnppOQAgEEvA74Xc2ixV+opl5pCECdF93mT6mxiBZ6ppJVUGlHRgfC1bIL7Qd+D8kvX9oQgtv7MUxqoVQqReT+rrvuEoZ8JM8++yxuuukm/P73v8eSJUtwyy23hNft3LkT9957L1QqlXAUXHrppWI5GfZXXnkl1q9fjzvvvFMY9ZHQ+uuvv17cU7YAOQxCPPjgg3j44YfF+kOHDsFgGHkntowkAIY3d2ro8Hu7YTv9BnyO+gjD3RNl0KPH8Jd9oymKufyK0R4CwzBMSqOQhHuXiaSrqwuZmZno7OxERkbGmCsBiO0CQBoAD86Yg3zOABh1PPXdaH5uD7o/iI6K1zjsaHUHjWVbZSam3HQ2lsybKtr/Eb4OJ1pfOYiO9ccgef0IeDqFon7A25vtodQHYFhoh2GBA0pt8M9ebSoRKv/G/HNHvOWQ39WGxvfvS3AFze39GCZd56XPf/7z+OMf/4gLLrhAROhDkKG+Zs0asf4Pf/hD1D6nTp0SKf2BQAAHDhxAVVVvG9Df/OY3+PKXv4yKigqxjpwQIWj76dOn4/DhwyLzgEoRRvqcfu2jbThm6w6XBlxSWIKvVc5EOtCy+2fwtB/EWEKXMxO5c+4Z7WEwDMOk9HzPmQDjBHIAPHY43gFgVKlx3/TZ7AAYZextdpxasxuqd2shBeKNYirRqM5VIfOGWfjs+WdB23MR7Le50frqIXS8eQQBt0ek+5PxTymYIRRaCcYFduEAUOqDx6Y6f0r512ZNH/YWf+RnlHsNqufX584VGQHhZYZ8mIpXBkUINYlrgxmGSV3mzZsn7qurq3sdnB4PXnvtNfH4M5+J7+BBugCUOUClAS+99JKI+Ieg58SNN94Y5QAg6PkNN9yAH/zgB3jxxRf75QQYKsgZWxiRgXBBYTFSHYrwU2eYUXMAKBQ9QnuRwnuhtnjqhOuiRfvihfxItE9jmTg674lhGCaNYCfAOMBBDoBD8g6Ar1fMYBHAUcTl8GDrP7ej5bWDUHoDmJ6RGVdLqrGaUHzDbExeUASTRhNe3rWtGg3/9wH8dnsw6u9qE231QijUklD6Ny6yQ2kMiEi/oXAJzCWroTYWjkB7vz2w120S6fwZk66W3c5YvAqu1t3CGWAsPh+67BnD7pRgGGZ4IaFAoqioKLyMIvWUzk8sWLBAdj9aTk4AKhuIJPQ82X6R2zHxv8c+RwMknxMBvxPOpg/gbNgyRIY8Gd86QBU0ypVkqPc8FjdVz71SA7WxSKjyK1VGbqPHMAwzyrATYBy0AZTrAkAlAN+smo0SI3cBGA28Hh+2/msH6l/cC3R5xDIy31vcbuT36DKozFrkXjUDWaunQKlRxUfXMxrhbj4iWupFKlMpVBL0c50wnmeDyhyAUp8Dc8kFMBYug1JjGvH2ft7u47CUXyGryKzLnomCc3/KKv8MM0ZoaGjAn//8Z/GYdANCnDgRVG/PysqCxWKR3XfChAlR2xLd3d1obW0Vj8vKypLuRx0DqNsAiRSOJopRbhBIivmdx56Fu3U3/K7guesrGVNugFJriTDgQ1F3XZRBH26vx05bhmGYtISdAGPcAfDw/o/R5HZFLWcHwOjhCwSwbd1eVP9zJ5RNzrj1zW4n8sxGWC+pQM4nqqAyaeNSOB1N78Neu06o6WumZcK/N5iGSl389LOcMC6xQZXphyZjMsylF0FvnTesLZHIIeHpOgpH3QbZ9n4BTzdcLTtgyF8Yty9dQHKbP4YZG/h8Ptx8882ijnH27NlRqflkzBPJDPRQe0Cqh4zdL9m+kW0Fad9E27ndbnGL3HYsYq99G47at/u9n8pYIDRi2LBnGIYZ+7ATYIziCQTwmyMHZR0ApAFQbOAMgJEkIEnY/v4RHP3bh9Cc7JJXjlYA3kVFyL19GfKKsoP7ef3wNtmhzpNgr90AR/1GYVSHMC2xwX1AD910l3isypFgyFsAE9X7Z0xJmfZ+job3ZJ0ADMOMHUjZnxT+c3NzhcK/VjuyYqNngroIPPTQQxjreG0n+7W9QqUTIrGZupgtcgAAXbBJREFU025iBwDDMMw4gZ0AYxC7z4ffHDmAI7boKIdVp8e9lTNZBHAEoSj5R/tPYd9fP4B+byt6K/pjmJWHsz53LiqrSoP7+QLo3HwSzc9th89Zj4xbD0KhiI6wE6psP3K/1AxVlgGmoothKl417JF1r60Gdor6N27tV3s/hmHGLtQukDoCZGdnY+3atULJP5JQCQCl6yfCZgu2ro1UQ44sHUi0b2i/2H1jIbHBe+65JyoTIFRKMFgnbyogSrHqt8DTGdRkkEOpzYBCbYRSZYDKYIWl7ApozMF5h2EYhhk/sBNgjNHt9eLRQ3txOkYDIFerwwPT5yArxSIzY9n4332qHjv/th3G9xvQI8ofh3JiJqbfthCzzglG7akzQOe7J9H8zBY4T9cg4A1e3Lp2amGYL+MEMBYic9pqGArPg1KlG9b35BRlCG/D03k0+Ybc3o9hxhX33nsvHn/8cVHv/9Zbb4W7A0QycWJQsb2jo0Ok+MvpAoS6CYS2JWi7nJwctLW14fTp05g7d27C/axWa9JyA51OJ25DDbUHbHA5hairSgFsbWnCjMwsjAQBvxvOxm2w166Hz14ru40+/xxkTLoOakPeiIyJYRiGSX3YCTCGqHM68Pjh/WiOKQEwqFT4yrTp7AAYIbq6HFjzpw0wbKyF0dur1h+JKt+EqTedjTnnV4kWV+Q06HrvOBqf3gDnybq4CLvjPTP0cxxQ9PzFkoo+1W7qcmaPWPomKUoncwCoDHkiE4Hb+zHM+OG+++7Do48+KnoakwMgkYJ/ZWUljEaj6BDw4YcfYtWqVXHb0HJi/vz5Ucvp+bp168T6T3ziE33eb6SQIIlsALqRq9bp9w3+mH4PnM0fwOdshBTwiht67kn4L3jv6VOLP4N1PjsAGIZhmCjYCTBGONDVITQAHDEXH5kaLb46bTrKTNxzfbihFP6Ot4+h5aX9yK9rhsMX7wDQZOhQ9sk5mH/lWULxn4z/jq370Pj3DXCdaIIU8MseW5XjQ8Cpg6Vioaj315hGPn1TtPNriWnBpVD0tPdbJZT+WVCKYcYP999/P372s58JBwCVAJxzzjkJtyV9gMsvvxxr1qzB008/HecEOHXqFN577z3x+JprrolaR8/JCfDMM8/g+9//vnCchggEAnj22WfF42uvvRajQXyi1+Ads+0HfgdXy65BH0dtngBdzpxBH4dhGIYZW7ATIM0hI3JzcyP+ceoYfDF1iTlaHb5ZNYs1AEbgM+h+vwYta/bA0xhM3y/UG3Dc1ivgp9WpUfyJmTj7+rOhNmnFhWv7e++j6R+b4TzeLncVKdAUe2E+X0L20uUwFa+ASpu43nWw+D2dos7fVLI6QTu/GVAZ8uF3NkGpzYSxaDlMRctZ3Z9hxiHf+c538JOf/CRcApDMARDpNCDBwKeeekq0D7zkkkvEcsoOuOOOO+D3+8XyqqqqqP1uu+02/O///i8OHz6M7373u+JxCHpOy0tLS3HLLbdgNIiVBBisCyDgc8LVuntQxzCXXw59zhxoLBOHtTsMwzAMk57wzJDG+CUJfz1xFFtaGuPWTTKZ8ZVpM7gEYBipdzqQedKG5n9+DOfxtrguDCa1Gl5JQuEFU3H2Z8+FNscoUjjbNr+Fpmfeh+tYdNlGJOoCLzIvNiPn/MthzF84bBdxor1f5yHY6zaKNn4I+KHSZcOQf27cthTlz5h8nbjiHe62gwzDpC7//ve/w4b41KlT8cQTT8huRzX6jzzySPg5pev//Oc/F+J8l112GVasWIH8/Hxs3rwZ9fX1omTgySefjDsOlRE899xzuOiii/CjH/1IvP6sWbOwd+9ecSMdAMowMBiC7VJHnmgvAGkDDOpoPme8Z6GPZEz7DPTZM6E2Fg5qDAzDMMzYhq/i0xQy3v5x8pisA+Ds7FzcMbkCOpVqVMY21qlx2PH6RwfhefEgFtUBZo2M5r8CqFo6DcU3zoVxQhb8ni507H0J9b/9EO5jiY+ttvqQfUURci++BLqsymFLrw/4HKJtn6N+E3z2uqh19rpNsk4AgtoPMgwzviGRvsh6/FBNfizl5eVRTgDi7rvvxuzZs4UzYPv27ULxv6ysTCj3001OMJBYsmQJdu/ejR/84AeiNOCFF15AXl6eiP5/73vfw5Qpw9sSNRmx5vpAfrV9rhZ0HPoz/K5m2a4rxuIVUCi1UCg14h5Kdc/j4I2Mfo1lEpdkMQzDMH2CnQBpCIkPPXf6BDY1N8Stu7CgGNeXTRp0JIKRF158bd8RdL98ECW7gin8DWo1pqo1UVd9him5yPv0HBir8uC1nUb7wReFsr7k88HfaZX9s1PnAjlXTUXe5ZdDY8ofttPv6T4JB7X3a9ouhKdkt+k4BK+9FhpTybCNg2GY9IXS8+k2UFavXi1u/YWyDv7yl78g1YgrB+jD9OtzNqHj8F/gtVUHjf5AEjFBhQKZ0z7LBj7DMAwzZLATIM3wBQL404kjeL+1OWq5RqHE56dUYEEOGZnMUNLkcuKVoyfQ/MoBlL/fiowIxX+7z4dunxcWjQbaAjPybpgD04IiuNs+RsuuP8PT0avcrFACpmXd6HwpO7xMnaOF9dpZyLviEqj0iVtbDYXKtL1uA7xdJ5JvrNL2lB/IZDcwDMMwZ6QvTnhyAPRF2V/8LOty2QHAMAzDDCnsBEgzB8CvjhzA3s72qOV0uUHp/+wAGFpa3W68cvokqt84iEnvNGGSI165X61UwGdSo+Az85GxtAjOlnfR8PavAXW0kyaEtsIt6v0VvmxYrz0b1k+sgko7PAa3z9Egav0dje9B8tqTbqsyFsJUvBLGgvOg1AyPM4JhGGYsQi0CI1EkKOEj3RWv7RRsp17r+8GVKlgmRXdLYBiGYZjBwk6ANCoB+POJo3EOABUU+NzkaTgnlzMAhooOjwev157GwY2HMHl9Iyra49PmVQoF8jJMmHb1HFgvtMLZugn169+D/R01XHuMyLpZI5T9o1BqYCo4F9nfXwJ9yWQodcP35+fpOoGWHT9MvpFSBX3uPGH8a7OqONLEMAwzBMRquXi6jqNlR29HgzOhy50Dc9llUCjUotZfqR4twUOGYRhmrMJOgDTAEwjg90cPYWdHa9RyrVKJL02djtlZvenlzMDp8nrxRn0Ndm07gklr6zGzzimb5plnMGDSRVWwXqSHu3sTGt/dA8d7Jrh2WyD5gxd/9s1mZN0QdNhQOz1T8Soh7DScLf4iobZQoXZ+ce9BnwNT4XIYi5ZBpcsakfEwDMOMVZIJAzqbP0T7vt+e8RjW+d+GSpsFpdbC5VgMwzDMsMNOgDTIAJBzAKgVCnyjchamWEbGqBzrkPG/fsdhTHyrDnOP2mSNf6tOh/LFE5F7oR9u72to31cHxzYTnDuskHwxkZ8TOkht5checqFQ1B+OGntKLw14u2UdCxSJogh/17Hnwst0ObPEMl3OHCiU3DmCYRhmaH6Lo58rI9wAjvotZ9zfPPFKaDMm84fBMAzDjBjsBEhx1jXUyToAvjRtOjsAhghvix3qv+3DgndOxIV0KKszV6tH6Qwrcs63w69/Gd31Nji3m+D4MA+SJ6b6U0HaeplQWwpgzF4KY8HQt60KeG1wNLwr6v1VumxYz7pPdjtj4RLYatbCkL9QGP9qw/B1HWAYhhmvxGoChHwAVJblbtsju4+xaDnUpmLRjnWkMsQYhmEYJgQ7AVK8H/1z1dFq7kaVGl+aVoXpGZzGPVj8Ng9aXz2I9jcOo9jrR6dCCZ8UCF/D5eh0KCwxIGdVB6TcV+B2+eHcaoLzgzwEXMqoY1FkXaXLgdqcj+wLpyP3yiqoswxDGvX3dh8Xhr+z6QPyBATfg7MpYTs/pcaMgkU/hYLaEjAMwzDDAnWIifrtpd/sgB9te38Zt63aWIS8Bd/nlH+GYRhmVGEnQIpy3NaNXx7eF1dreFP5FHYADKK0whsIQOMHOtYeReu/D8Bv94TT/fN1etQ7HcjSalGQBWSd1wj1lCOQ/IBzm0mk/gecMca/Sge1wQqVIRdZK6cg9+oZ0OQah27MfjecjdvgqNsIr+207DaOuk3InPYZ2XXsAGAYhhle9Eo1bD2OWcLp98PvakHA0x23bVbl59gBwDAMw4w67ARIQSjq+9ujB2Hz+aKWU/T/XO4CMKDzuaujDS9Wn8TZRzyYvblNlADEkqtVw6QOIHP+cejPaoBCK8G5ywD7ZgsC9mjjX6k1Q63Pg1KbgcylE5F7zQxoC8wYKii6L6L+jVsh+ZzJt7WdEu8xVpGaYRiGGX6KDQZ0+9TCad/gdGKiyQIpwikQQptVCU3GJP5IGIZhmFEnZZwAhw4dwltvvYWPPvpI3A4cOAC/348f/OAH+M53vpN033Xr1uHRRx/F9u3bYbfbUV5ejuuuuw4PPPAAzOahM8xGKlr99KnjaPO4o5ZPMplx59RKNvT6yf7ODrxYcwqde+pRubYB3kY3HBmZ0Ch7jXrJ74bf0wLtjDrkL+6A0hgsCSD8HepeB4BCKdT0yfhXqPWwLJwA63UzoSsZmnpOKeCDq+Uj2Os2wdNxKPnGSjUM1vkwFq+CNnMafy8YhmFGiXy9AQafGi6/H9laLSZoAug4+Ke47XLn3MPZWQzDMExKkDJOgN/+9rf45S/j6+fOxGOPPYZ77qGJVYFly5ahoKAAmzdvxo9+9CO88MIL2LJlC6xWK9KlFeD/HTuEj9qjhQCJeytnwaBOmY8r5Tlm6xaR/9ojDahY24hpx4OK/2TeN7qcKDWYEPDZ4Hc2QzOlCRnLuqHO8ccdx3iuDa7dmVAqrFDpc6FQqmGeXwzrdbOgLx86XQZbzTrYTr8qmz4aiUpvFa0GjYVLWUyKYRgmhdCrVJD8XrTufgRZquguMwq1UcwfDMMwTOoiBSRIHj8Cbp+4iccePySXL3hPy6OW+SC5e557fLAsLodpZnoIcafMjDRr1ix84xvfwLx58zB//nxhxP/tb39Lus/OnTtx7733QqVS4ZVXXsGll14qljscDlx55ZVYv3497rzzTjz//PNIdew+H359ZD8Od3fFtRr68rTp7ADoh5jiSzWncPBkA6ZtaMLijztitpBgd9vh8tRAW9yFjKu6oS7yAvH2PzSWiTBNvxC6m4xoffkgTLMLYf3kTBim5GLIkfyJHQAKhWjrF2zvN4sjSQzDMCnaHcDvbpPdRqkZOq0YhmGYcWugh4xwV8hA7zXCg8tCxnrMOjLoQ8vEc39wW1oWMvbp3tebDTwQtCWZ7AToL5///Oejnisj0rUT8fDDD4ta6M997nNhBwBhNBrxxz/+EZMnTxbZAAcPHkRVVRVSlSaXE08cOYgapz2uFeDtkytwVnbOqI0tXaBz+K/a09hRXY9JW5qxbHsbFP5IWUUJGskDa6AL2bk2mFd1QzPZDe8xHdqfskI31QXTcpswuPXWs2EuvRCajCkiw0R3qQemWUUwVuUN2/ipnV/XiZfCqv+EUmuBsXCZiPyr9emRzcIwDDOukXyhDoFRGAuWjsJgGIZhRgbJH4gyrHuj6ZHLZAz0HqM+ykAPGfihdaFl/sEZ6COB5InWc0tlUiYToL94PB689tpr4vFnPhOvjE66AEuWLBGlAS+99JLQB0hFHD4ffnxgDzq9QZX6EAaVSmQAcCvA5LS63Xi1rhpb6+pRsr0FS7e0QO2KCOtLfqgDHuSiG9lmJ8zLu6Gb6YTvlBadf8uFt14jNgt0ZiD3qkXIqLwwzuBWmbSDcgCQo8rTdRSOug0wl10GjalUtp2fIX8hnA3vCvEoU/EK4Yzg9FGGYZg0Qort6QPkzPk6dNmzRmU4DMMwFN2OTG3vjXzLGOg9ae+Rqe/hVPi4yHnE/mlgoI8EAbdManGKkrZOgMOHD4u0f2LBggWy29BycgJQ2UCq8szp43EOgCyNFl+vnIkJRtOojSvV6fR4hPH/TmM98ne3Y/HGJug7I9SYAz4oA27kwo4cvQvmRTYYFtjhrdei85858NZoo1v86XLg2zcd6rlDF3EP+JyivZ+9bgN89trg66lNyJp2k+z2lvIrYJ5wMTSmkiEbA8MwDDN6GEvOhz5nNn8EDMPIBongl6IN9FBKeyiaTo9dMRH2yCi6XISdDfQhRalRQaFTQalVQ6FVQalTQaFVi3ulLmKZTg3DtGEoGR4m0tYJcOLECXGflZUFi8Uiu82ECROitk1F8bp3W5qilmkVSnxr+myhNswkpsvrwcfvHcbCdY0wN7p6lkqiLRMZ/zlwIkfthnmeHcbzbPC3q9H5Qg48J4PGv0prESJ7Sk0GQrmbjgPNot5IoRxcqz2vrVoY/uQAoM4DkTgb30PG5E9CqdLF7ac2pIeQCMMwDNPLgc6OYEtfBSB5FTipNmFyjzAgt25lmPQ10CmCLsXWjPcY2FHGtoiYx9SfxxrikantEaJzdN3JDJGBHmmU002vDhvrwWW92yhjl2mDRrxYJx73rhurv+Np6wTo7g6KqJlMiaPlofaAXV3RYnuxuN1ucQtxpu2HSsDuF4f2xS3/BjsAzojreBukZz7G+R/Uo8NDWRQBSH4PFAEPchRu5CrcMM1wwrS8GwGXAt2vZcF9TBds8afPFun+1OIvhLbALFr9WRaVDdgBQK/vFO39NsDbeSzxdj6XcA5Quj/DMAyT/lBnH7oRFNjzSZGaRmfWN2IYZgAGujcgU38ul+YuV5ueZPsIY11E6pkBI4zpSCNcrz5zND2R0R4y0kMGes8+Y9VAHwnS1gkwlJDA4EMPPTRir3fabsPPDu6Fwx8tHkH1/1PM8lkN4xX6AQ79gXsabWhZsxdd205T0B/5qgDafQ4hxJRNxr/SA2O5C6aV3VCoJNjetsB9WA+FSgO1MTfc4i+ExmpC7tUzkLmsHArVwC7UfM4m2Os2wdGwBZI3uiVULCpDvlD4N+SdPaDXYhiGYdKBCMOBL1CZ8WigR9aUy0XBI9fFGObxdesRLdjYQB8S6Lo6FC0PG9bCCI8xurUJDPSe9ZFRd4Uw8KOPxwZ6apO2ToBQCYDdHq2oH4nNFjTKMjIykh6LRAPvueeeqEyAUCnBUFPrcODRQ/viHADTzBm4c2rlsLxmOuLy+7GuoQ4721tx34RKdPz7IDrWHYPk88Hvboff1QKFz4UiaGBS+qHP98C8sgvKbD8cmy1wHyDj3wiNxQqVNivqQkydZUDu1dORtXIyFOr+G/+SFIC79WPY6zbC3b5XVggqDHUbyD0LppLzoc2azj+IDMMwY4zksULOBGBSsAd6XOs0+ZryhG3VwkJxManvdBxv+gijpY2BHpm+HrcsZp1MND2YFt9ryCs0Sr4eZdLXCTBx4kRx39HRIUoD5HQBqquro7ZNhE6nE7fhxu334xeH96HbFyFgB6DCkoGvV8yETqXCeIfO0frGerzZUAOH04Py91vx4c4DyPEFhOFPPZilQK8DJSfTBdMym1D8VygBb50O3mOF0GRYoVSbwvX+hNqiQ86V05F1wRTxAzpQJJ8DbQd+B/ijBR0jUeqyRHs/U9FyqPTc4pFhGGY8egQUNDExzAjhqe9G678OiMzJeHG5wfdAH+8IA10XY1if0VgPpbXHGOYR20UKy1FwiiPozEiQtk6AyspKGI1G0SHgww8/xKpVq+K2oeXE/PnzkQrpUf84dQxtHndcBgA7AILG/8amBvynvgbdHg9Kdnfg7I1N0HW60BBww6hogyIi4q7UB2BcZBeK/wo1qe4bRZ29cdEqqGr3w7a7PrytyqxFzuWVyL5wmvjRHiyinV/eOaKdXyza7CqYis+HPncut/djGIZhGGbErjOrf/oOvM2JM2THMgqlEkp9gpryQdSm9y5TAyoFG+jMmCFtnQBarRaXX3451qxZg6effjrOCXDq1Cm899574vE111yD0WZLS1NcJwCjSo27K8d3BgCJKb3T1IDX62vQ6XHDesSG2esaYG60IRDwIBDwg+LtdpUKZvhErb/hbAcMi2xQGSWojUUwla6GoWBxWHGfRP7ICaA0aJBzWQWyL66Ayqjp17gCXju8ttPQZU+XXU8Oh5ATgBwQxsLzYCpeBbWxcAjOCsMwDJOuRMlUcSYA099a+gQ18L219DLK9G4f3LVdKesAIN2lpMa2TE25fMq7TKQ9FE0fQHknw4xn0tYJQNx///14/vnn8dRTT+G6667DJZdcIpZTdsAdd9wBv98vlldVVY3qOP2ShL+fPBp3kfDViunj1gHgCwSEU+TVumqRHZFZ68A5b9Uj62SHUNoP9ET9LQovrEo39PBDP8sJw9l2uA8YYH+1AuU/uET0X45Nm9JPzkHRnQthPqsIKrOuXxOwt/uEEPpzNm+HAgoULH4UyohOAiE0lsnC8aDNqoQhf6Fsyz+GYRhmfFUAUJva6BmJlavHApI/ECViJ69CH2OkR9XcJ+jfHlmfP0q19Ml6oMsrtMtH2MOicnLHGaD4MsMw48AJsGPHDnzpS18KPz92LNhm7Xe/+x1effXV8PKXXnoJRUVF4TT/n//850LU77LLLsOKFSuQn5+PzZs3o76+XpQMPPnkkxht1jfWwRcjHndd6URUWDIx3iDjfltrM/5VexotbhcMbW7MWVeLgr1U6+8Nt2MxK3zIU7qE8a+d6IZxsQ3e0ybYXqqCUpkrWvx5D2fBsFj+Aitz6cS+j8nvhrPpfTjqNsLbfSq8nEZCy+Xa+ZHjIXv65wd0DhiGYZixhxQIlfv1zvesCTA6reIG1MtdLsoeOq4/PWvpS752XvIe6PR4gK2RGYZJb1LGCUCK/O+//37c8pqaGnEL4XZH19TffffdmD17tnAGbN++XXQLKCsrE4r/dJMTDBzpLABSuY8kS6PFpcWlGG/s7+zA06eOod7lhMbmQ+WG0yj9kFT+feFLJlOP8W+AH+oCL4zn2RDoyILjrTlQSllQaXu/si0v7INlYemAPcxeex0c9RvhaNgqxP7ksNdtgLFoOdeAMQzDMEmRAvGRXHJYj1f6q0SftFVcTHSdW8WdGevVM8Q1EsMwTEo7AVauXBmOAveX1atXi1sqsq+zHa0xYoBXlZRhvEGf7T9PHUdTZzcmbj6FSe+2QOXpvWAyCuPfDSN8UGX6YVzcDaWiBO73KgGfGUpK+Y9xVnub7HAdb4NhmrXv4wj44Gr5SKT8ezoOJd9YqRI1/lLAAwWn+zMMwzDJZ5i4JfrceSl7zkSNucMrHxWXqUuPMr4T1KVHtY1jJfohr6XvbfkWUUsflZ4fjO7ry7NgnF0wFF8ThhlXjlxJ8onrfgTo3hu+BZ97ep77oDGVQm1M77+xlHECjFWePBpvaC7LS+8vzUDwOZpxyQe7ceTVVuhsvWl1BoVfRP5N8AnFf8MiJ3SZU+D8KAeSq0fMTxGfip+xtBy5V8+AtsDct9d3tcBRtwmOhs0IeLqTbqvS54rov7FoGVTa8VeywTAMwwyAnkBGaMqyTL4OakPe8KTAJ4mMB84UaXf70Plub+kbMzDiFOdDYnc96vMJVepjhe8iRfFiBO+4lp4Z75Bh7u0+GTTAhYHuA4QxHjLSg4+jjHbazk+GuwfG4lXQZVXIHrtx27cQ8LtIDTxo6Et9L/vJmHoDzMaLkM6wE2AYOdrdBXdMeuCCbOu4SS2nCxV3x2G0rnsT7S/XwdSqQlbADCdU0CoCKFA6g4r/agmGBQEYS6fDucMMR5e8OA6dN8u5E4T6v7ao72Uetpq30HXsufAFWoKDQ5czG6bileKe6zgZhmGYvk12ofvgBWRohlcbChKLzDm9QYPcG58KTwrvne+cEEZkKgnIpQtU4x42tHVyvdyj277F1sjLR96j1yk03MudGTuITGxhYAej3HKR8JDxrc2sgFJjijtGwGtD9+nXZIz00PHosb83mi75AH+PES/5kDPrq0LsO35sPrTs/NGA35suZyYAeSdAwNsNyR+drd1XhNMgzWEnwDCypaUxbtmnyydjrEJCf6T2vzgnBxOch9C+dS06XrPBW6Ol+LrYJl/pglNSIVfhJrsbhnk6mKbNhHOHGraj9Icof3FjOacU1mtnQjeh/5F5bcbUhA4ApdYCY+EyGItXQK3ve1kBwzAMwxAS/Yu4IAz5+ZVqA/wOL7q3nRbt28iQ79hwfFyftJASvULTY4AnUqIPGfAJlOi5VRwzvo3z6NT0sNEtIuDB5dS5SqXNiDum39WG9oN/hN/dioCnCxI5L/th0FrnPQht5pT4sfo9sFe/NfD3Su9DBoVicKaqyAhIhFIDDNQJkOy4aQI7AYaRWke02NxSawGytGQQjy3a3G68Vl+NzY21cDtbUPfBKVzzbi3ch0gQKfr9Us2/UemDcWY2Cm9dCVPlWTj5jTfga5cX5qM2f9brZkE/KbsPP5QBKJTxLRc1lknQWMqjlP+ptR+p/uutZ0Oh5D8DhmEYZuBIPmfU84BDicYnauE4uDctTitl2sVHzJP0ZE/WSo6V6JkxAhnIwXpwLxRqk2wmr9/TBU/nkZ508mAauiT1RM/JUOypMQ8a7pFR8aBxnz39v6DSxV/jerpPoeWj/xnw2LWWSbJOAAkBeDoODvi4YvxyqHpKeAdKguOK63qFsl+p+pHQZ5EIhVIto+Qig1IDhbipxT09V2qMSHfY+hlG2mIEASss8X+M6UyHx4PX66qxof4E3M5maNpaMX2rB2V7fWhXmIXBHwml2BumFqDwcxcgY/708PLcq6ej4U8fRW1rmlUA6ydnwTA1N+kYAl47HI3vCqE/c+mFIp0/FvrRNhatQJdzDYyF58FYtBIaU/Gg3z/DMAzD5Ol00Lvc4YvJDMmDjmdyoA60j7qAXHwEPTIFXg3jjDzoJmRxejuTcgSDO34ZcbaI5xGR71C9uKlomezxPF3HYK/dEHGs3jR3+RR1v3i9EIVLHodCJg3eZ69B+77fDPh9BnxOWSfAYANUiYx1YcQO5rh0juSOqxjkcRNkAhBKDZUAB4LGuCJoiCuU2uA5EoZ58HHIUO812jUiEJiI7OlfCI49fAwy8EPHCb5W8DXHZhk3OwGGCV8ggA5v9B/gBGP8j0c60unx4D/11VhffRAuZwuU9m5M/ciLyR95oepxuLUodChTBv+gFSot9CVFKLhlJTKXTIv7Y8pcPgltrx6Cp8kGY1WeqPk3Ts9POjF4u08Iw9/ZvJ3csBHt/FbI/rEaCxbDULAISlb5ZxiGYYaQIjKmla7w89xDEpTuSkAzuCg8CfiZF5RAPzE7TlSOBeSY0YaMZjJgew3qoDFNxracwR5peJOhlTPjTtnj2uvfQefRfwZT1AfQNcxYuFQ+Yu9uh7NxKwZKohpwMh4HRSKjetiM9X6YfvTbJAzjCCNboZLfVKmBoXBJrwHdcwsa1b1GtjDSFRooVCGDXiu2UesTB/0Kz3sUw4EuqxLjGXYCDBPtnngPXJZWh3Smy+vFf2qOY131fjidLVB43CLqP22bFzpHjyqyQkK2wiNq/pVaMzQ5BchcOAOeum4YJhfK/jAr1Erk3zoPCqUSxln5CT1uAb8bzqb34ajbGJXaH8Jnq4G367hsrRI5IsamH49hGIYZTSIjWFVbPFDsMEFpje9cQ5o2prlFwojXFltgmlUoBOegUozZSBMzvCnqoZRySvJWG+SDJ15bDTxdRyNS0uPbnUVHxYOR8FAUPG/B92WP62zajo6DfxrQe1CoDcnWhoM7A4Len0o79EZ1orr5wUbsE9SWJx2vnHEeilyTcU3p6ir5c0wtrzOmfjq4PV0bK3VQG/ODRnp4/+BjuRLbhENSqpBddXuft2dGH3YCDBN+Ge+lUdX3P6ZUwubz4vVT+7G2+gCcznayxlF41I+qd70wtfeoISvQY/x7oNNnQm2eCMu8SfC2OtD13mmxTeuL+1H8lUWyr2GeW5Tw9b322mB7v8b34uouY3G2fCTrBGAYhmGY4UAIa0kSLvijE/puCVDHz/UV/3dt0OBn0p6gwnmvoRwX7Y5LUe9NZSfj11S0XPa4joZ34Wzc1muMh+rKY1LXI1PUQyh1WShc/HPZ47o79qPr6LMDe7MKhci+lA3gDML4TaasPhTGOhm3w3FcOZQqPVTGgh4jPLpuvDci3hvxjo2SU1tq2eNqLMg756Fo47zn+FCoBuw4pP3NpasHtC8ztuAZaQRJN0+/nSL/xz/AmzVH4XR3i2XZtX5M3+xBdn2v8Z+l8MCq8kOvz4HakAvD9CJITi9sO+uijte17TRyrqyCviyrTz+2rpYdIuXf03Eo+cZKFfTW+UIPQJs5vlN7GIZhmJFF5fbj8l/0itsqYvLOCm6dzw6AoawTj+gFTmdbTvyMoBbFfldz4l7ikQZ2jKCbxlSKrIpbZI/befQfIjAxENSm4oROAJ+rBe72/UNeTz2odPWeunzIpZAP5rjCyZHIuXAGY532kTGwQ4Zyb8/OaFT6PJjLLoswxGNS1ENR9Z4UdUpXp/cdep1gXXo8amMhChYOvIVdwrepVIvvIZPaSJIEyUvC5AqR2ZxOsBOAiYM82I7GrXjp6Ad4wxZMJzK3BlD1rgcFx3pa+PUY//lqJfTGPKi0WdAJ414B58HmhGe18+3j0N82P+lE1n3yX3A0bEbAE3Q8JIK8p8ai5TAWLYNK2//WgQzDMAwzWAr2xcxVEYZN0RfOEbo3TGICPhf8rpZew77HOHfUvwNP5zFxvRGZxh6JPu9s5Mz8kuxx7XVvw9X0wYBOfawjZ6giysmN9UFEqhMptg9JBNwnG/WPWxZOUdf01PIHoM89K8LA7jG8e+rBhdq7TH051Wlb539Hpq685/EAo+BqQx4yJl/X7/2YsWGkSx4fAm6/aNUacPsgef29zz1+qCw6mGbKl9S0rzsKx76m4H4eP/xdbvi73Qi4fAh4g3ZR8VcWI2PRBKQT7AQYxr7BsaR6HgCJppC4HkXfJa8NiyUVttpnomyrX9T+h95SptKLAp0WBkMplGoj1FYjVHo13NWdCY+tyTPBes0MZCwpTz4IhQru9n2JHQAKBXQ5c0R7P13ObNFxgGEYhmFGi7L32mVn+2lPXgWVOb21gAYDBRNs1W8g4OkUKfSUri6Xpu3pOIC2vb9OqQh48nT14Tru4NLrE0XWldosaDOnnSFFPYE6eihKLoMuqwoF5z3Wq9I+iBT1qPFqzNBq4jU1mLGF5AtEG+N07/ELQdTgvV8Y2FJ4nU881pZmJjS2G/+yA/Y9jT2GfdBgp2P1BdOcwoROANeJdnR/UJP8/XgS/xalKuwEGEFS1Qng6ToBe+1aOJs/FPX+RMCtQOB9A65+vxMtHr1Ylqn0ocBggtFQIry4KpMWKrMWngYbfAnenCbHiNyrZyBz+cQ+pcmIdn7FK9F56C9Ry5VaC4yFy2AsXgG13joUb5thGIZhBo2n2wtfxOWUCz5UPHUdlJr01AEaCnzOZnQc+L+oZRTlV0DGgB5UZD1ZBHx4atbloteyKeqifjtkVAcNbDJwE0FGdcbUG6LancWqqMemqPdGyhO3MdPnzBS3oYZeV6UdZG94JqXxNNoQcHjDhnrYsO4xzMMGe4+xHRltN80tRNb58hpdp/7nbTgPtwxoTBnnTkjoBPB1uOBpSJ5FnAgpibOAxFzPRF+dDakEOwGGif43NRlZyCtva/4Ibx/bCpu9Eas0jcHlfsC50wjHe2YEHErkwgOfSot8YwZMhhz61RfGvDpDL0T//HaPrHdDnalH7lXTkblqctSFEHmqPR0H4Wr7GBmTr5edtAz556Lr2BpIPge0WZWi1p9q/gfbM5VhGIZhhpouowIZEZq1rgrVuHYAENTGt69R+8GlwSc21lV6q+gRnriXeGTbM02UgZ2o/psgUTUqQ4wywocgCq4xl4kbw8Sls/sCwVaiCYJpth118Ds8vQZ6ZOp72EjvjYyLKHvP86zVU5FzaYXscWt/vgXuuq4BfSCqjMRZUIOpnQ+l3w/UWE94XHfi41JL1jNB5zTdYKtqnBHw2tFdvxmbTn6ItQ4T2gNaqBVFmK9qg+6wCvZNFvjbg192ldYCrT4Pk2gyJCe3VoXsSyvhbbWja8spWeOfUh9zP1GFrNVToNSpo17X0fiuKDXwOxrEMoP1bGgzp8YdQ6nSIavyNqiNRdCYiofzdDAMwzDMoFAEgkK5IbxzjCl5RmkeDvidPeJ4Ear1YQX7aCV7lS4Leus82WPZazfA3XEgRr2eVPM9IuJPr9X3Pus91wrUrkwY4ZHq6moo1SZYJl4FhUofk8reU3+eAEvZZeI21FA0P1lEnxkfSP5AjJEdrDXXWI0iUCZHy4v7ginwEanusdH1YIp8ICrKTo6A/JvPQs4l8sZ6w58+gq8jefesRPg7XQnXKXQDN6oHG1kfyHH7YqyL7ciholWJcSh0anFPZcuJEO1ce7aj7RUaFVRGDdRZeij0arGONAXSDXYCDBMyHQJHtTuAz9GArpp1eK9mP9Z6rGgNZIfXZVRLOPJuMcoa3SLSr9Jni5R7hVofHnfmykmwXjsT6myDyADo3lotfgBDUGlAzuWVyL5oWlgFmX60KBpAhr+zeXtc31d73UZZJwBhyDt7mM4EwzAMwwwfUsCdMqfXVv2maJ3rJYG9fqLLnpHQCeC1nYKr+aM+H4ta46kSRNc1lskoWvF/addBiUnRqDkZzZGibz1ibrERcePMAmhy4x12tF39b9/v3a8nsk6GeVQNe8Q1cCTJxEDbXj044LTxpEb1IIz1ZONRatXDclxFguNSBhU5HsjIFga3MNTVYlnwuRq6ssRC4JR9bJpdGGHg9xwrZMDTcgpQqhT9+r0xzS4Qt7EGOwHGMMHU+wPoql6LD5qq8ZavCC2BkvB6S0tQ8T//uB8OhQEw54g2f5Q2F8I8vxh5N8yBrqS3BQ/9aGadPxnta49CadAIz2T2JdOEI4AI+N1wNr0PR91GeLtPJRyfs/kDUf+W6MKAYRiGYdINtaloWI4b8DmF8S160Pvdwai76EfvgcYyUaiqywUABuIAICSqD0xEP1P4DQWLZUUBCTb+meTfQ3nBQ4IEqb3Ndth216Njff++5yV3L5F1AlCrtzOJwA3c+FUBw+AE6GsEXA5ybCQ8rkYJhUoZNqrJgBbLtBT97jWqg4Z2z/MeQ15XkthYz//MHOR9apbYPmyw022QjkDD5ByAbkyfYCfACHYHGOkWf7aaddjR5cBaXzGaAr1eSX13ABXbvJiwzyfq2Mw6E4pMmdBrghM01R4hIAnDvvD2BbKvkXvl9KAD4LKKsPqx114HR/1GOBq2inr+ZFCqP4n8UR0ewzAMw6QrCqkPwnF9wOdsgtdWIzIJQoZ+wNsFv6cbzqatYeFeOaj/uZwTgCLwwyO61/e5W6nNgKnk/AGPg0lhdfcIMTgy5ChbVI7uj2rhqevqSX+PiM6HBOZCNexRbduCafOG6XmYcN9y2eO2vXEYnZtODKlRTfXqCqUSUkyZT5+Pm6Q2nKLafiT+uxqoc0FXnBHsUx9pnFMEXavsjaT3GOfB5T1Gu0YFTX7i0pbSby0fFiedxpo49Z4ZOdgJMEKMRJKb39UmWvzZ6t7BHrcaa71FaAgUhter3RKmfOjF5J0+qAJqmHQWFBozYFGTqE2ovin4o0cp/d3ba5H/6bnC2I+Ffujzrp8taggp6k8p/56OQ8kHqFQJgT8S+tNmVrL3n2EYhhl7JLloJuM+4HdBpe3NrgvhatkhRHGHsgSB2vgmHKMQxFPLtIoL1t2Tsz4RuuyZUKoMYl6PaycnVPF7jqPSCrG7wfaqZwbREz1Std3rF9dv+om9JaGRtL5yAO7qruD2ofT5kNBcbNu2GCM5Y1EZir+ySPa4XZtPovvD2qFPg9cMkxCcTgXJ2X8nADkQpEDiIKB5QQkCdk9vBD3CGBe16VFR9p77nih7snajxV9d3O+x9un9cInOmIadAGmOqLvvOg4btfhr+gj7/Ra85Z2A+kCvN1bpk1D+sQ/Ttvug9Whg1Gag0GBGRoTxH7B7AaVCCF3QPeG3udH+1hHkXjUj4euTA6Dj4J+SjlGlz4WxaLlQ01VpE6cHMQzDMEzaiwDJXDiTk75t/2/g7ToBfd7ZyJn5pbhtFMqBC0tR1kCiun6FSifE9UjoT20qDToGBqlmP1xt58Yq4jorUvgtrNIe02Itoie6YUoujDPk+5bXPbFNRNajouaiFj4grguTQW3bCm+X112iHuuO/U0Deo80hv7WgA+FsX4mghHyUCQ8JO4WFHZLhPXqGeLvOpiu3vfoOr1WMgpukdfYYJjRgJ0AaYqIwDd/CHvNunArnsaAHn9xR/TklCQUH/aj6j0/jDY1jJoMFGYakaHWBo3/gAR/h0v8aAkPoyr+x6v9jSPIubwqYTsPfd4CKI4+E5/+r1BAlzNbRP3pXqEYeDsQhmEYhkkXYu0AMsqaPvhO2FBP2CovQc28HBSlp+3JwKcovtrYq/cTiTZjsrgxySHB47CIXFRKekwUvCdFXUTDe6LkGYsnwDxPvpPR8W/8R9SsJxKRS0buFVUJnQCe+m64TnWkjWq7Ujvwa0D6PBJBKvyUWh427C3BDlXaQktvtH0A7ehI6JphxjrsBBgm4koEh6ggwO/pgqNuE+z1GxFwR08AhUoXZqo6sM+fhdxqP2a8B2Q1q6BXG1FoMSBTE2H8tznDfTwp1SgWihBYFk2A9ZOzEAh0Q3J5RccAuXZ+xsLFsNesDz7XWmAsXCbq/eW2ZxiGYZixrAkQO993HV8TFakPeDpE7b/GXBq1HbWdUxnyw8a9UqkLPqYovjZT1PdrTCXQZc+CQjlwYy1dheDo2sWxt1HGUO8xzCPV32MMdTLkc6+ZCcsCeWfJiW/8J2n/8WToJmQkdAKQvtJAHABi1+ESghuFiL2uPBvms1wxUfX4lPd4NXiK2GuTGutssDPMwGAnQJrgtVULoT9Kv6d+vIm4qLMN5g3ZyD+lhl6tQYHZgKyQ8S9J8LU6AV8Aqkx9uJVfLDRJ5l4zA4qMBtjq/w7XoR0w5J2D7On/Jbu9sWiluKAxFa+A3np2b89fhmEYhhlnSBGpAFLAD3v1m1HrqWuOz9kY5wTQ584Vt3SpNVfnGILttmIIuHxCqT22D3pkL/VoUbjoCHzx1xbDcraMsR6QUP3Tdwb8HpL1URdp5QN0AiQTghuMsU7neigi9rE90ZPVlpvPLoY23xQtIBfZai1WFT5G3T0R2RdOFTeGYVIHttaGidiarIHkAUhSAK6WXbDXrhOie3TIYwEztvtLcIPmZHT2vjsPnl0zYPpYg1kuNwxmdZTx7293IeDwQp2lh7KnlV8s5rlFyLlqEgLG/eisewT+Ew3hdVR6kDHlBlkxI42pGNaz7hvAO2QYhmGYMUZE+Zu9LpglF4suZ9bQG+kRBncoKk43XVmWrNPf1+lCywv7hFCZ2D4cXY8Ules9Xixl314J4/T4dHXap+mfuwf+XpKqtiuSCq8N5LjDqdqezFgX9eQxRnRkFFw3ISvhvjmXVSJjaXlcnftge6JnLinv03YMw6Q/7AQYIfqjvxPwOeCo3wx77dvwu1rEsmN+M97yFeOEP9jKo0LZhQXqNqh1FfDumQ7be55gaz8FUGSIVgNW6TXwK9zQFmfIeiNoEs+8JBMB0w50NPxDPtOANAga34N5wiX9fesMwzAMM37KASLmWcqSi8U6/0EoFFr47R742p3wd1ErQD8M06yyYmWehm40/nVnVDQ9ymCn5zT/J6D8oQuEyFwsdIyOt/vXW70vxi8ZsoMhqRCcVgXJ5Ru29HoRNQ8LvvUa11FR8ZCiO0XFtSoYqvISHrfg8wsAv9Sb3i4U4HsM9kEIM5rm9HZ+YhiGGQjsBBgmBuKn9jkaYKtdD2fDu+H6wePC+C/Ccb+ld0OFAu9gLha2TETn2hb47S7Z46kz9bBeNwsZy8tR/cONcB5tjVqvn5wJ8yovApYNsHfXAN1JBqfSIuCTfx2GYRiGYYKCvMpOHxyHmkX2Xetbu+BrzIK/S4mATQX4FLBl7kbA/VHc6Zr4P6uhmpwja7zaP+7NzBuqdPXBpKoP63GTpOVr882idCAqah6p0K5RRrdei0hf15fLt8UjJv5gdVAfqR9R876gL0sczWcYhhlN2AkwylAKn7t9n1D5d7ftCS8n43+trwjHIo1/pRoqXS5Kj2hQsbEFJ3wnkK2Nr+2itL+cK6qQc0lFOAWQBP6qf7xJPNYWq2Fc2oZA1kZ4qLewLfH41KZiGItWwFh4XuJ+wwzDMAwzXukp/zN1+5Hd7ofuzydw7F+1gN8Nv8cSM6cWCSO2X5F1mbr7/pBI8G7QEfsENeuUsk/lhWRQR4m8hSLrYRG46NZrIYE4TV7ia42JP7oIw4HSkLhdHMMwzFiEnQCj1B0g4HfD2fAe7LXr4XPUh5ef9JtE2v/RCONfoTZCZbAir0aNynWNyG3yIF9vQJa2t7bfb3PD3+lB/q1nwXrtTNE2JRLjzHxkrZoMn3ETFIX7EaDhJMoeVKphsM6HsXgVtJnThtQrzjAMwzBjCS0k6HwBaP0SXEbAHHDD7+yS3TaZMz1RBJyi2wNBoVIGo/IJauhpXcaiMtElSJ2pk+mHrjpjrXkiSr+5bEBjZhiGYUYGdgKMsDAgGf+2U6/CXrcRks8RXn/Kb8KbviIc9fcI7ynIg54p2uxltChR8Uojik46hPGfk5EZNsypppD6xdJkry22CEXdWAdA8HAKFN6xAJ1Hj8Jes192zCpDXk/Uf4msACDDMAzDMNGYlAFoVH54sxTQtQKaJO37lGpz/PysUoryvUQSwiqTFvk3zukRkYtpsaaJibJH1K3TcZNBEfviryzij5NhGGYcwk6AEYQE/xq2fDVqmV1SYY2nHPv9PXVjSpVI+VfprTB0S5j2ShPK9nWhINb4d3jhre+G5JegK7GEFf+bn9sLw8x8KJXyk7+xeAXsNWt7FyiUoiURRf112TM46s8wDMMw/UBBWXU9c7Ok7H2syvBDoZegNASg0AVgmT0PpvJ50E/KFunnoZucGGAkFHWnEj+GYRiGGSrYCTBCBPyuOAcA8Q/PZJH6r1DrheGv0mVD4wxg8vpmTPmwAwVqnTD+lT0XFQGnV0T+qaZQV5wBFUX9e4IHkt8D2959qP7HOpTe8KB8Oz9jEbRZVaJHsaloOYyFS6HSxwsRMQzDMAzTF3oz/3waBZTzlci7tAHanMnQ58yGQqWHxlIGbWYlO9oZhmGYlICdAMN8SSAFfKLmP+BuAQzx263OseCUezKUGguUvgDK3mtF5XttKJY0yDFl9Br/Ll/Q+Ld7oCm0QJ9rDBr/koSApwt+VyskbSdMS21QFzngaNgCS9llsmPLnv5f4vUUSVIWGYZhGIbpx4QPwG1WwHjJHBRf8C02+BmGYZiUhZ0Aw3hNIPm98LQH6+/l9HPME6/EkvIrsXHvbri3VmPaxiZM9Ghg1Zl7jX+3D54GG/ydLtEaR1+eBSgVwvj3u9pERF+hc8O41A7DPDsUPVmFjvpNME+4VPYiRKXjljUMwzAMMxyQg50FdRmGYZhUhp0Aw4jXdlLckzCvL0bwJ6vqczAULBG9fy/5y2k0HmtGqdEInV4VbhXkbeiGr80JjdUE3Yx8KNRKkfLvt7fC726DQuuBiYz/sx1QaKOFCP3OFni7jkObOWU43yLDMAzDjG/i2gENTM2fYRiGYUYKdgIMFwEfJJ8LPkmBk5IZBskvWgkbCxfDUv4J+Fp0qH54Exz7m2CWALPFEtVZwHmoBSqzFobpeULpN+Dtgq+rFX5vN5RaCcbz7DAssEOpj+lCoDbCWHieUPnXmIqH7e0xDMMwDAMYa33QuKWwPk/LiRo+LQzDMExKw06AYcLn6YQ3IAkHgFdSwqdQ4FDR9VgxYRVaXz6A9jcOQwr17o3J2DfNLED2qsnoePsIfK5WeDtaRWmBQiPBuMgO40I7lIZo419tKoZ5wiXQ5y2AUqUbrrfFMAzDMEwEejug8fQ+93T3tv9lGIZhmFSEnQDDhRRAnWQUDoAQm3YpUPDEf6Bqd8vuopuQibwb58A0pxCS24+uD07A194AhUqCcaFDOACURupF1Is2qwKmktUw5J09bG+FYRiGYZgEUJpf5NMELXoZhmEYJlVgJ8Aw4fb74JCCp1fnCmDxezbMPGyH25IBo1oNyR+At9kBdY4BukILrJ+ciYylE6Eg0T9KDtCrkfep+WjbXg3tnINQmQMxKf+LYSxaySn/DMMwDJNCKNkJwDAMw6Q47AQYJjp9XqEVVFLtwQVvdcNk92NKTiEMShW8TXZ4GrsBnwT9JB0K78uHqXRS3DGyV0+FYd6FaNsT7DCgsUyCsXgFDPkLOeWfYRiGYVKA2B48IWc+wzAMw6Qq7AQYJqjef85OB5ZstvUskKDtcMPZaBPK/0qjAqpCO5x1jej4eAeMxfOhUMZ/HLqcWTBNuFgY/lrLxOEaLsMwDMMwQ4CCuwMwDMMwKQ47AYYJyeXD4i12Yfyb7AFktQfgVnaSZCBUuR4oTPZgVyG/At0bJLjO2QVD3gLZi4nMKdcP1zAZhmEYhhnKFoFcDsAwDMOkOKxeM0wEutzQufworvXB2uyH2idBUnZDXdwhHAAhdFPcMJxth71uw3ANhWEYhmGYYSI2+V/icgCGYRgmxRkzToA1a9Zg5cqVyM7Ohslkwty5c/HTn/4UXq93VMYT8PpR0OiDxisFowQSoCl1AepgyEBb7kH2za3I/FQ7tKVaaDOmQYpRGGYYhmEYJnXnejkUStVoD4FhGIZhxn45wNe//nX88pe/hFqtxvnnnw+z2Yy3334b3/rWt/DKK6/grbfegsFgGNExSS0uqPwRaYKK4ANNsRemFd3CCUAq/+bSy2AqXQ2l2jii42MYhmGYdCIV53pBjP9eqWJhQIZhGCa1SXsnwMsvvywuCuhiYNOmTZg/f75Y3tLSIi4StmzZgu9+97t45JFHRnRcktsTdWEgQYHMT7ZDO8UNXXYFjEXLYbCeDYVKO6LjYhiGYZh0I1Xnenk4E4BhGIZJbdK+HOBHP/qRuL///vvDFwWE1WrFb37zG/H417/+NTo7SZRv5Ai4HdELFEDW0rORv/AHsJ71LRgLFrMDgGEYhmHSeK6PSPTrRZX2l1YMwzDMGCetZ6ra2lp88MEH4vFnPvOZuPVLly7FhAkT4Ha78frrr4/o2CSvP/q5AsiuugMaU/GIjoNhGIZh0plUnutlUXA5AMMwDJPapLUTYOfOneI+JycHkyZNkt1mwYIFUduOFAFfvBOAYRiGYZixM9fLoVBxOQDDMAyT2qS1E+DEiRPivqysLOE2FB2I3HY0MwEYhmEYhhk7c71sOYAirS+tGIZhmHFAWgsDdnd3i3tqE5QIEhEiurq6Em5DKYR0CxGqKUy2z5nwSh50691QBIJXBz6tYlDHYxiGYcYvofljPLaSTeW5nmjX9c71hFUR4PmeYRiGSen5Pq2dAEPFww8/jIceeihhZGHIyPzvoT0ewzAMM+4M4szMzNEeRloyYnP9jUN7OIZhGGb80T3M831aOwEsFou4t9vtCbex2WziPiMjI+E2DzzwAO65557w80AggLa2NuTm5kIxSIEf8ubQBUZ1dXXSMTB8zvh7NnLw3yWfs3T7nlFEgC4IiovHn7gsz/VjE/4d5nPG37PUhP82R/d8jdR8n9ZOgIkTJ4p7OumJCK0LbSuHTqcTt0iysrIwlNCXgp0AfM6GG/6e8fni79jY/bscrxkAPNePbXje4nPG37PUhP82R+98jcR8n9bqNfPmzRP3ra2tCcWAPvzwQ3Ef2VeYYRiGYZj0gOd6hmEYhhla0toJUFpainPOOUc8fvrpp+PWb9myRWQCUJT/sssuG4URMgzDMAwzGHiuZxiGYZihJa2dAMSDDz4o7n/84x9jx44d4eWUHfClL31JPP7KV74yammU5ID4/ve/H1duwPA54+/Z6MF/l3zO+HuWXvBcP/bg32E+Z/w9S034b3N8nC+FNAb6Dd111114/PHHodFocMEFF4g2QuvXr0dHRweWLFmCtWvXwmAwjPYwGYZhGIYZIDzXMwzDMMzQMCacAMRzzz2HJ554Art27YLX68WUKVNw88034+6774ZWqx3t4TEMwzAMM0h4rmcYhmGYwTNmnAAMwzAMwzAMwzAMw4xxTQCGYRiGYRiGYRiGYfoGOwGGiTVr1mDlypXIzs4WGgVz587FT3/6U1GqkK7Q2Elr4Zvf/KboypCVlSV0GAoLC3HllVfitddeS7r/unXrRJcGq9UqNBqqqqrw7W9/GzabLel+R48exW233SYUokl0g+7p+fHjx5Pu193dLcSkKisrxevR615++eV4++23MZrcd999UCgU4vbDH/4w4Xbj/Xx5PB6h9bF06VLk5ORAr9eL93LppZfi2Wefld1nPJ+z06dPCxHU0FjofE2aNAm33nordu/enXC/sXzODh06hF/96ldiXLNnz4ZarT7j3126nZdAIIDf/e53OPfcc2GxWMSNHv/+978HJ/oNPzzXp+/fznDDc33f4fm+f/B8Hw3P9RIGBJUDMEPLXXfdRZ+GpFarpYsuuki69tprpaysLLFs6dKlksPhSMtTvnbtWvEe6FZYWChdfvnl0vXXXy/NmjUrvPwLX/iCFAgE4vZ99NFHxXqFQiEtX75c+tSnPiWOQcsqKyul5uZm2dfcsmWLZDQaxXYzZ86UbrjhBnFPz00mk7R161bZ/RobG6WKigqxXVFRkXg9el16fbo9/vjj0mjw7rvvSkqlUoyBxvaDH/xAdrvxfr6qq6ulGTNmiPFYrVbpiiuuEO/lvPPOE+/vuuuui9tnPJ+zbdu2SRaLRYylpKREuvLKK6VrrrlGmjRpUvi36Lnnnht35yz0Wxx7S/R3l27nxefzifmF9qPX/cQnPiFuBoNBLKPj+P3+AZw5pi/wXM9zfSJ4ru87PN/3D57vE/8W81zfP9gJMMS89NJL4ktoNpuljz76KLycLhpnz54t1t17771SOrJ+/XphfL3zzjtx65555hlJpVKJ9/eXv/wlat2OHTvEhSytf/3118PL7Xa7dMEFF4h95Iw6Wl9cXCzWP/DAA1Hr6DktnzBhgqxT5aqrrhLr6fh0nBCvvfaaGAcZ4rt375ZGEhrHtGnThJF29dVXJzRGxvv5ovFVVVWJ8fz3f/+35PF4otbT+Hbu3Bm1bLyfszlz5oSdcJHniwzA73znO2IdOSKdTue4Omd/+MMfpG984xvSP/7xD+nAgQPSZz/72TM6AdLpvDz22GNhx8/x48fDy+lxaCy/+tWv+ni2mP7Acz3P9Yngub7v8Hzff3i+j4fnegxormcnwBBzzjnniAuvH/7wh3HrNm/eLNbpdDqpo6NDGmvccccd4QvZSCgaRcs///nPx+1z8uRJcYFL6+kiPZInnnhCLKcIWWw0i56HImdPPvlk1Lp9+/aJ5XTxTMdPNM4bb7xRGkm+9rWvidelC/tbb701oTEy3s/Xd7/73bBB21fG8zlraWkJe7+bmppko8WhyDAZuOP5nCX7u0u380LHDGUn/P3vf4/b729/+5tYR84AzgYYeniu57k+ETzX9x2e7/sHz/d9g+f6vsFOgCGkpqYmfDEeGZWJhCJBtP7pp5+Wxhq//vWvwxfBIdxudzg99u2335bdb9myZWL9j370o6jlq1evFsu/973vJZ08qOQiEnLA0HJKp02U0RBKz42NMg8XGzZsENHFW265JekP1Hg/X3R8Sv+n1zty5Eif9hnv56y7u7vPToDTp0+P63N2pguDdDovVHoQcipHZnhERti0Wq3Y5r333pM9NjMweK7nuT4RPNf3HZ7v+w/P932D5/q+wcKAQ8jOnTvFPYmYkSCXHAsWLIjadixx5MgRcV9UVBRedvjwYTgcjqj33tdzEno+XPvZ7fbwmIcTEkO6/fbbUVBQgF/84hdJtx3v52vHjh1oaWlBcXExpk6dij179uChhx7CF7/4Rdx///1CfJKE0CIZ7+fMbDZj2bJl4vF3vvOdKPFROlf//d//DafTKQQVJ0yYIJaP93OWiHQ6L6H9Zs6cKUQgYyGBNFon95rM4OC5nud6OXiu7x883/cfnu+HBp7rg7ATYAg5ceKEuC8rK0u4TegiPLTtWKGhoQF//vOfxePrrrsuvDz0PqmTAKlW9/WckNpva2tr0vMZ2q+5uVlcIMe+ZqL9MjIyxC32NYeLb3zjG+J1fvvb34puEckY7+fr448/FvekCk1GP3XVICOWlM5/8pOf4IorrhBGESnjxo5/vJ4z4g9/+AMmT54szhM5IK+++mrxd0iOFOpK8tnPfhbPPPNM3PjH8zmTI53Oy3ieb0ab8Xzuea5PDM/1/YPn+4HB8/3g4bk+CDsBhhC6ECSoJWAyLx7R1dWFsYLP58PNN9+Mzs5O0YaLoraDPSeh/ZLtG9ov0b6p8Dm89dZbon3XjTfeKAyzMzHez1fIkKJIGxn9X/rSl0TrF/purV27FhUVFWIdtX8KRbzH+zkjqDXW1q1bcdFFF6G2thb/+te/8OKLL4qJjhwB1K40ZEgOZvxj6ZzJkU7nJR3O51hlvJ57nusTw3N9/+H5fmDwfD94eK4Pwk4AZtDceeedWL9+PXJzc/H8889Dq9XyWQWE4XrHHXcgLy9P9CpnzkyorzkZ+J/+9Kfx61//Whj+ZMCuXr1aOAIo9Xnv3r1Rke3xzrvvvisccHRenn76aRGta2trwyuvvCLOJX0P6cYwDDNQeK6Xh+f6gcHz/cDg+Z4ZKtgJMISE0kcjUz3lasaIyKhcOnPXXXfhj3/8o0hzD0Vqh+KcRKbiJto3tF+ifUf7c/j617+OmpoaYchardY+7TOez1fkWIjIjJIQlH5LWQDEunXrovYZr+eso6MD11xzjUgzp+g/OU9If4L+Jql84o033oDRaMSf/vQnbNiwYVDjHyvnLBHpdF7S4XyOVcbjuee5PjE81w8Mnu/7D8/3QwPP9UHYCTCETJw4UdxXV1cn3Ca0LrRtOnPvvffi8ccfF/WzlAo3b968uG1C75N+uCJTZs90TugPlAQWicj6b7n9yMCOTMsMHSfRfpSeGUrRHM7P4aWXXoJarcZvfvMbkY4deSPDjCAHCj2ncoHxfr4IqmuXeyy3TX19fdSYxus5I7FEcgDQeTn33HPj1kcuDzlOxvs5S0Q6nZcz7ZdorMzg4bme5/pIeK4fGDzf9x+e74cGnuuDsBNgCAkZwVTnlEgM6MMPPxT38+fPRzpz33334dFHH0VmZqZwACRStqbaJYpCRr73vp6T0PPh2o8uxGMzF4ajhnLTpk1xt8bGRrH+5MmT4vm2bdvE8/F+vmgsCoVCPKYuAXKElodqbsf7OQsZgckijvR3SlCJADHez1ki0um8hPbbt28fXC5X3H7UEYLWyb0mMzh4rk/vv53hgOf6/sPzff/h+X5oSKffq/nDOdf3sZUg00fOOecc0ZeZej/Hsnnz5nBf546OjrQ9p9/61rfE+8jMzJS2b99+xu0/9alPie0///nPx607efKkpFKpxPoDBw5ErXviiSfE8oqKCsnv90eto+e0nNY/+eSTUev27t0rltNxT506Ffead9xxh1h/4403SqNFsh6m4/18hfqw//SnP5XtKzx58mSx/uGHHw4vH8/n7C9/+Yt4LYPBIPu7QuesrKxMbPOTn/xkXJ+zM/UOTqfzQscsLCwU6/7+97/H7fe3v/1NrCsuLo4bDzN4eK5P37+dkYTn+uTwfN8/eL4f/N9duv1e+YdxrmcnwBDz0ksviQ/DbDZLH330UXh5S0uLNHv2bLHu3nvvldKVb3/72+I9ZGVl9ckBQNB5UCgU4ov/n//8J7zcbrdLF1xwgTjeddddF7cfracvNa1/8MEHo9bRc1peWloqORyOuH2vuuoqsX716tVR619//XUxDqVSKe3evVsaLZL9QI3387Vu3ToxluzsbGnr1q3h5V6vV/rqV78q1lksFqmhoSG8bjyfs6amJslkMomx0KTW3d0dXud2u6Uvf/nLYp1Go5GOHTs2rs9ZXy4M0um8PPbYY2K/kpIS6fjx4+Hl9JiW0bpf/epXfTw7TH/guT69/3ZGCp7rk8Pzff/g+X7wf3fp+Hv12DDN9ewEGAa+9rWvhS+6L7nkEvElIqOZli1ZskT2i5EO/Otf/xLvgW4LFiwQf2RyNzknx6OPPir2oz+4lStXStdff71UVFQkllVWVkrNzc2yr7llyxbJaDSK7WbNmiU8ZHRPz8nwiTQSI2lsbJSmTZsmtqPXodej16XXp2W//OUvpdHkTD9Q4/180Xmh11Wr1dJ5550nXXvttdLEiRPDEe9XX301bp/xfM7IE0znil43Ly9Puuyyy8RkE5ocaGL57W9/O+7OGU3y5557bvhmtVrDE3Tk8rq6urQ8Lz6fT7rmmmvENvS6V155pbiFxvDJT36SswCGEZ7rea4/EzzXnxme7/sHz/fx8Fz/yQHN9ewEGCaeffZZafny5VJGRoYwWuhC8Mc//rGIzKUrTz31VNgJkOxWXl4uu//atWuFUyQnJ0eURNBF7wMPPCB1dXUlfd0jR45It9xyi/C8kWOF7un50aNHk+7X2dkp3X///eJ16PXoden1yfM82vTFSznez9ebb74pXXrppWIc9D4mTJgg3XbbbXGpWZGM53O2a9cucX6oXILGotVqxd/iTTfdJL3//vvj8pxt2LChT79ZJ06cSNvzQhM/pR2SY5YcDXSjVHVaFggE+nimmIHCc72Utn87IwHP9X2D5/v+wfN9NDzXB6SBoKD/+qciwDAMwzAMwzAMwzBMOsLdARiGYRiGYRiGYRhmnMBOAIZhGIZhGIZhGIYZJ7ATgGEYhmEYhmEYhmHGCewEYBiGYRiGYRiGYZhxAjsBGIZhGIZhGIZhGGacwE4AhmEYhmEYhmEYhhknsBOAYRiGYRiGYRiGYcYJ7ARgGIZhGIZhGIZhmHECOwGYAbNx40b813/9F2bMmIHs7GxoNBrk5uZi4cKF+MpXvoJ169ZBkiQ+wymEQqEQt/6wcuXK8H7Jbv/93/+N8Ubk+//ggw8Sbjd16lSxDf3NpDITJ04U4zx58uRoD4VhmBSC5/v0g+f74TmfPN8zYwX1aA+AST9aWlpw00034a233hLPS0pKsGTJEmRmZqKzsxN79+7FE088IW7z5s3Djh07RnvIKcWf//xnfO5zn8Ott94qHqcLc+fOxVlnnZVwfbJ1qWz0njp1CidOnBCPB8P999+P9evXD9nYGIZhRhue7wcHz/epA8/3DBMNOwGYftHR0YGlS5fi0KFDqKqqwm9+8xusWrUqbjtyBDz22GN45pln+AyPEa6++upxGe3vC0ajEW+//TbeeOMNXHLJJaM9HIZhmEHD8/34hef7xPB8z4wVuByA6Rdf/epXhQNg8uTJeO+992QdAMSsWbPwxz/+ERs2bOAzzIx57rrrLnH/wAMPcAkMwzBjAp7vGSYenu+ZsQI7AZg+c+zYMTz99NPiMUX5SQfgTJA+QCKef/55ETXNy8uDVqsVZQU333wz9u/fH7ct1ShTHRalc5HOwO9//3ucffbZMJlMogzhoosuwtatWxO+ltPpxM9//nMsWrQIWVlZ0Ov1qKysxH333YfW1lbZFD56vdtuuw1tbW34+te/jilTpkCn04ka+RCke0AXSpQKb7VaxfrS0lLccMMNsjXiNH4qBSD+8pe/RNWYRR53IOcoBJ2HSy+9VLxPs9mMBQsW4E9/+hNGMnpkMBigUqlQW1ubcLtPfvKT4n3/8pe/HPHvRujzpVIAYtKkSVGfRX9r97/whS+Iuv9du3aF/0b6o7eQ6PUo80JObyFyeV1dHT7/+c+juLhYnPeQAy7EwYMH8ZnPfAaFhYXie09lHc8+++wZx/bSSy+JrJ+MjAxYLBYx1tdffz3pPgP93Px+Px599FFRPkTf2f7qVjAMM7TwfM/zfV/g+Z7ne57v0xiJYfrIL37xC1L5k7KzsyW/3z/g8+b1eqXrr79eHEun00nnnXee9KlPfUqaO3euWGYwGKT//Oc/UfucOHFCrCsvL5duvfVWSaPRSOeff744TkVFRfhY27Zti3u92tpaafbs2WKbnJwcafXq1dI111wjjkXLJk6cKJ08eTJqn6eeekqsu/zyy6VJkyaJ93zllVeKcd50003h7aZMmSJptVpp3rx5Yv21114rzZgxQ+yrVqul559/Puq49957r7RkyRKxnval9xK6Pfzww4M6R8Rzzz0nqVQqsc2sWbOkT3/609LSpUslhUIh3XPPPWJ5f//sV6xYIfb5/ve/3+d96HVpn8j3FElLS4s4b3SjxyP93di8ebPY1mQyifXXXXdd1Gdx4MCBPr3P0Pmsrq6Wnn32WfGYvi9utztqO/qsad2GDRtkz23s8hB0zuXOfWj55z73OamwsFAqKysT73fVqlXhz/+RRx6Rtm7dKlksFqmyslK68cYbpcWLF4fH/Mwzz8S9Xuhv4u677xb3CxYsEJ/lwoULw/s9/vjjcfsN5nOjsdPfDn0XLrjgAvF6c+bM6dP5ZxhmeOD5nuf7vsLzPc/3PN+nJ+wEYPrMZz/7WXHRThfqg+HBBx8Uxzn33HOl48ePR61bs2aNMGLI6G5vb48zGELG3qFDh8LrfD6fdPvtt4t1F110UdTxAoFA2Oi+4447pK6urijDhYxyWkfGk5wTIPR+Ozs7Zd/LSy+9JLW1tckuJydAbm6u5HA4ZI9NxuZQnqP6+nph8NF+jz76aNQ+69atk/R6/Yg5AdauXSv2qaqqkl3/y1/+Mmx8j9Z3I9LopWMMhEgnAH3XyGim5/T+RsIJQLc777xTfJdD/Pvf/xbL6btA7++HP/yhGFvsxf3UqVMTng9yGv3973+PWkdOA1pO3+s9e/YM6edWWloa9bkxDDO68HwfD8/38vB8z/N9CJ7v0wt2AjB95tJLLxUX7BRRlGPXrl1R0dTQjaKuIVpbW0VUkAzSmpoa2eN86UtfEq/zq1/9StZgICMnFjKAQ1FIj8cTXk7RR1p+1llnRRlKISijgSLmtE2kYRMy1CmqfOzYsQF9S0Le8ddee61fToCBniMy9mjZokWLZPe56667BuUEONNt586d4X3I6AwZlO+9917cMenzoHWvvvrqqH03htoJEHK20PO8vLwoh9NwOQEoiu50OuP2o0g6racIfqQDgKC/A8qIofWnTp2SPR9XX3217HjIaUPr/+u//mtIP7e//vWvsvsxDDM68HzfP3i+5/k+BM/3PN+nC6wJwAwZ1dXVos499nb06NHwNiQUSPX51FKQ6oXlCNXGk/BgLGq1WlZ9neqdSaPA7XZH1fi/9tpr4v66664T+8aiVCqxfPnyhK9HNcokgpgMqsn+wx/+gHvvvVfUZpOOAN327dsn1pOQYn8Y6DkK1ZVT+0Y5qCXhYKBacjpGoltOTk54W6rpDr1ebBtEqpunW1FRUdRnOdLfjeHgggsuEBoEzc3N+NnPfobhhoQ5qc4/lmnTpol70oaIra+n8xRqh0jf3f58V0LLIzUMBvu5hf4+GYZJH3i+5/k+BM/3PN9HwvN9+sAtApk+Q8J3BBk4clxxxRVRyuirV6+O65t+/PhxcU/LzyT+Jfc6ZDhqNBrZ7UnArL29HS6XK+71vvvd74pbf1/vTL3jH3roIfzv//4vvF5vwm26urrQHwZ6jmpqasIid3IkWj5cLYNIAPEHP/iBEKH7xS9+IUTriKeeekrc33LLLUI8cLS+G8PFj3/8Y6xdu1YI3X35y19GQUHBsL1WWVmZ7HIS10u2noT+iETn40zfodB3bSg+t/z8fNFyiWGY1IHn+3h4vk8Mz/c838fC833qw04Aps/Mnz8ff/vb37Bjxw4EAgERRe8vtB9BSuoUOUxGVVVV3LL+vmbo9UjlnNT9kzFz5sy4ZSHDVY4XX3xRGMVkcP3617/G+eefH1ZoJ2PowQcfxMMPP9zvlnGDPUepAjlQKFL99ttvC6V5UqgnZ0lIPT/UJWG0vhvDBWWP3HjjjfjnP/+J//mf/8ETTzwx4GOFzkkizvSeh+ucRH6nB/u5JfsbYxhmdOD5Phqe75PD8z3P97HwfJ/6sBOA6TMU6aeUd4qoUqswet5fJkyYIO6pPV9smvhwEHq9q666Ct/4xjeG9NjPPfecuKdMAGoRF8uRI0cGdNyBniNKxaZ2cNR6TY5Ey4cTMvTJCUDRf3ICvPLKK2hpacF5550n3t9ofjeGkx/+8Id44YUXRJnI3XffnXA7aqNHdHd3y64PtTAcaU6cOCHKPxJ9h6gN5lj83BiGCcLzfTQ8358Znu95vmfSi9QInTFpAUX6brjhBvH4nnvuQWdn54BqpsnwoZripqYmDDdUE02sWbOm3xH5M9HW1ibuy8vL49bRe6OU8GSGn8/nG9JztGLFCnH/j3/8Q3b9X//6V4w0VOudmZkpHAFUQxoqBYjNAhiN70ZfPouBQjoSX/ziF0Xmw7e//e2E24Vq6A8cOBC3zuFwiHr70YAyfpJ9h0I1f6P1uTEMM7zwfB8Nz/dnhud7nu+Z9IKdAEy/oNRmujigKDdFczdt2iS7HUUMI+uGQ1B99Fe/+lXY7XZ84hOfwJ49e+K2IQG3f//73yKqPVgoA+Ccc87B9u3bheEpV6NEmQ1PPvlkvw3B6dOni/vf//738Hg84eXkHCEBtUROklAUdf/+/bLrB3qO7rjjDlGasHXrVjz++ONR25OBRu9xpKFUb0qNp5Txn/zkJ3jjjTdE/XfImTSa343IzyIk4jiUfOc73xG19+SASiTAR7oZob+r2tra8HI6B5RdQo6T0YDKN5555pmoZc8//7zIbiBhQfqcRvNzYxhm+OH5vhee788Mz/c83xM836cPXA7A9AtSWX/33XdFajcJgVFEkAyps846C1lZWUIlnBwEZAhQ5H327NlYsGBBnHBafX29qA2n/SjtmCKnZFyQ44CU48mg+M9//jPomneqiX755Zdx+eWXi04FZMjQ65FgGhnuJGpGY/X7/ULRX66DQCK+/vWvi8golUbQ+BctWiQiv+QYIUP39ttvx5/+9Ke4/Wg70g7YuXOnqLukc0SCdpRO/c1vfnPA54iOSennN998M+666y783//9H2bNmiWMy82bN4vxPvbYYwM+l3Qek5UU0Hv52te+FrecnC+/+93vwrXx9N0JCdPFMpLfjVDkgqLtdM5I1Z++3wR9DrHlCv2FBO+ofIZ0I+jvQo7rr79eiCZ++OGHQpOCtCvIYULPKbqe6Ds03ND359Of/rQQN6ROA8eOHcP7778v1j3yyCOYM2fOqH5uDMMMPzzf98LzfTQ830fD8z3P92nJaPcoZNIX6ol+++23S5WVlVJGRoakVqul7Oxsaf78+dIXv/hFae3atZLf70+4/+uvvy5de+21UklJiaTRaKSsrCxp+vTp0o033ig9/fTTkt1uj+spTn3ME5Gs57vL5ZKefPJJadWqVVJubq4Ya35+vuhX/+Uvf1l68803o7Z/6qmnxLFuvfXWpOeAXuumm24S/dqpDz2N4c4775QaGhoS9ngn9uzZI1155ZWin7xSqRTbUc/4wZyjEJs3b5Yuvvhi8ZkYjUZp3rx50u9+9zuxLtSXvT+Eetmf6XbVVVclPMbMmTPD223YsOGMrzlS3w36fj788MNifNTnvj9jJELbV1dXy67v7u6WCgoKkh63vb1d+spXviKVlpaK90rv+Qtf+ILU2NiY8DuU7LtF0PeW1tP3ONlnGjueyPP03HPPSYsXL5bMZrNkMpmkZcuWSa+88sqIfm4Mw6QGPN/zfM/zPc/3kfB8n/4o6L/RdkQwDMMwDMMwDMMwDDP8sCYAwzAMwzAMwzAMw4wT2AnAMAzDMAzDMAzDMOMEdgIwDMMwDMMwDMMwzDiBnQAMwzAMwzAMwzAMM05gJwDDMAzDMAzDMAzDjBPYCcAwDMMwDMMwDMP8/3bsQAAAAIBh0P2pD7LCaDRIAAAAAIiQAAAAABAhAQAAACBCAgAAAECEBAAAAIAICQAAAAAREgAAAADWcMIBv1D3fvgnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "fig,ax = plt.subplots(1,2,figsize=(12,6))\n", "color = [\"goldenrod\",\"lightseagreen\",\"mediumvioletred\"]\n", "alpha = 0.7\n", - "filename = {\"MINERvA\":\"MINERvA_Dipole_M4.70e-01_mu1.25e-06_example.parquet\",\n", - " \"MiniBooNE\":\"MiniBooNE_Dipole_M4.70e-01_mu1.25e-06_example.parquet\",\n", + "filename = {\"MiniBooNE\":\"MiniBooNE_Dipole_M4.70e-01_mu1.25e-06_example.parquet\",\n", + " \"MINERvA\":\"MINERvA_Dipole_M4.70e-01_mu1.25e-06_example.parquet\",\n", " \"CCM\":\"CCM_Dipole_M2.35e-02_mu3.00e-07_example.parquet\"}\n", "for c,k in zip(color,filename.keys()):\n", " \n", @@ -288,7 +569,7 @@ " # iterative\n", " data = awk.from_parquet(\"output/iterative_tol5/\"+filename[k])\n", " #ax[0].plot(data[\"event_gen_time\"],color=c,alpha=alpha)\n", - " ax[1].plot([0]+list(data[\"event_global_time\"]),color=c,alpha=alpha)\n", + " ax[1].plot([0]+list(data[\"event_global_time\"]),label=k,color=c,alpha=alpha)\n", " data = awk.from_parquet(\"output/iterative_tol10/\"+filename[k])\n", " #ax[0].plot(data[\"event_gen_time\"],ls=\"--\",color=c,alpha=alpha)\n", " ax[1].plot([0]+list(data[\"event_global_time\"]),ls=\"--\",color=c,alpha=alpha)\n", @@ -299,17 +580,19 @@ " data = awk.from_parquet(\"output/precomputed_tol10/\"+filename[k])\n", " ax[0].plot([0]+list(data[\"event_global_time\"]),ls=\"--\",color=c,alpha=alpha)\n", " \n", - "ax[0].plot([],[],color=\"black\",label=\"5% Interpolation Tolerance\")\n", - "ax[0].plot([],[],color=\"black\",ls=\"--\",label=\"10% Interpolation Tolerance\")\n", + "ax[1].plot([],[],color=\"black\",label=\"5% Interpolation Tolerance\")\n", + "ax[1].plot([],[],color=\"black\",ls=\"--\",label=\"10% Interpolation Tolerance\")\n", "ax[0].set_xlabel(\"Generated Event Number\")\n", "ax[1].set_xlabel(\"Generated Event Number\")\n", - "ax[0].set_ylabel(\"Elapsed Time [s]\",labelpad=-4)\n", + "ax[0].set_ylabel(\"Elapsed Time [s]\",labelpad=1)\n", "ax[1].set_ylabel(\"Elapsed Time [s]\",labelpad=-4)\n", - "ax[0].set_ylim(0,100)\n", - "ax[1].set_ylim(0,1000)\n", - "ax[0].text(4000,1.5,\"Pre-computed Cross Section Tables\")\n", - "ax[1].text(2700,15,\"Iteratively-generated Cross Section Tables\")\n", - "ax[0].legend()\n", + "ax[0].set_ylim(0,80)\n", + "ax[1].set_ylim(0,1100)\n", + "ax[0].text(-250,75,\"Pre-computed Cross Section Tables\",\n", + " fontsize=13)#,bbox=dict(facecolor='none', edgecolor='black'))\n", + "ax[1].text(-250,1040,\"Iteratively-generated Cross Section Tables\",\n", + " fontsize=13)#,bbox=dict(facecolor='none', edgecolor='black'))\n", + "ax[1].legend()\n", "plt.savefig(\"figures/GenerationTiming.pdf\",dpi=100)\n", "plt.show()" ] @@ -324,13 +607,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "c9d9ce02-1e38-4ef5-a70d-f7351fd0b199", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output/cross_sections_tol10/Dipole_M2.35e-02_mu3.00e-07\n", + "Warning: nuclear density for He4 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n", + "Warning: nuclear density for Mn55 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n", + "Warning: nuclear density for N14 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n", + "Warning: nuclear density for Na23 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n", + "Warning: nuclear density for Be9 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n", + "Warning: nuclear density for W183 not tabulated in Nuclear Data Table. Using symmetrized Fermi form factor instead.\n" + ] + }, + { + "ename": "TypeError", + "evalue": "__init__(): incompatible constructor arguments. The following argument types are supported:\n 1. siren.interactions.InteractionCollection()\n 2. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.CrossSection])\n 3. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.Decay])\n 4. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.CrossSection], arg2: List[siren.interactions.Decay])\n\nInvoked with: , [, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[11], line 53\u001b[0m\n\u001b[1;32m 48\u001b[0m table_dir \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(\n\u001b[1;32m 49\u001b[0m xs_path,\n\u001b[1;32m 50\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDipole_M\u001b[39m\u001b[38;5;132;01m%2.2e\u001b[39;00m\u001b[38;5;124m_mu\u001b[39m\u001b[38;5;132;01m%2.2e\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m (model_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mm4\u001b[39m\u001b[38;5;124m\"\u001b[39m], model_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmu_tr_mu4\u001b[39m\u001b[38;5;124m\"\u001b[39m]),\n\u001b[1;32m 51\u001b[0m )\n\u001b[1;32m 52\u001b[0m \u001b[38;5;28mprint\u001b[39m(table_dir)\n\u001b[0;32m---> 53\u001b[0m \u001b[43mcontroller\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mInputDarkNewsModel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprimary_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtable_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmodel_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 56\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m xs \u001b[38;5;129;01min\u001b[39;00m controller\u001b[38;5;241m.\u001b[39mDN_processes\u001b[38;5;241m.\u001b[39mcross_sections:\n\u001b[1;32m 58\u001b[0m int_type \u001b[38;5;241m=\u001b[39m xs\u001b[38;5;241m.\u001b[39mups_case\u001b[38;5;241m.\u001b[39mnuclear_target\u001b[38;5;241m.\u001b[39mname\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m+\u001b[39mxs\u001b[38;5;241m.\u001b[39mups_case\u001b[38;5;241m.\u001b[39mscattering_regime\n", + "File \u001b[0;32m/n/holylfs05/LABS/arguelles_delgado_lab/Everyone/nkamp/spack/var/spack/environments/lienv/.spack-env/view/lib/python3.10/site-packages/siren/SIREN_Controller.py:204\u001b[0m, in \u001b[0;36mSIREN_Controller.InputDarkNewsModel\u001b[0;34m(self, primary_type, table_dir, fill_tables_at_start, Emax, **kwargs)\u001b[0m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m primary_type \u001b[38;5;241m==\u001b[39m _dataclasses\u001b[38;5;241m.\u001b[39mParticle\u001b[38;5;241m.\u001b[39mParticleType(\n\u001b[1;32m 201\u001b[0m cross_section\u001b[38;5;241m.\u001b[39mups_case\u001b[38;5;241m.\u001b[39mnu_projectile\u001b[38;5;241m.\u001b[39mpdgid\n\u001b[1;32m 202\u001b[0m ):\n\u001b[1;32m 203\u001b[0m primary_cross_sections\u001b[38;5;241m.\u001b[39mappend(cross_section)\n\u001b[0;32m--> 204\u001b[0m primary_interaction_collection \u001b[38;5;241m=\u001b[39m \u001b[43m_interactions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mInteractionCollection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43mprimary_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprimary_cross_sections\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 208\u001b[0m \u001b[38;5;66;03m# Initialize secondary processes and define secondary InteractionCollection objects\u001b[39;00m\n\u001b[1;32m 209\u001b[0m secondary_decays \u001b[38;5;241m=\u001b[39m {}\n", + "\u001b[0;31mTypeError\u001b[0m: __init__(): incompatible constructor arguments. The following argument types are supported:\n 1. siren.interactions.InteractionCollection()\n 2. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.CrossSection])\n 3. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.Decay])\n 4. siren.interactions.InteractionCollection(arg0: siren.dataclasses.Particle.ParticleType, arg1: List[siren.interactions.CrossSection], arg2: List[siren.interactions.Decay])\n\nInvoked with: , [, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ]" + ] + } + ], "source": [ "import siren\n", - "from siren.LIController import LIController\n", + "from siren.SIREN_Controller import SIREN_Controller\n", "import os\n", "\n", "# Define a DarkNews model\n", @@ -368,7 +677,7 @@ " \n", "\n", " # Define the controller\n", - " controller = LIController(events_to_inject, experiment)\n", + " controller = SIREN_Controller(events_to_inject, experiment)\n", "\n", " # Particle to inject\n", " primary_type = siren.dataclasses.Particle.ParticleType.NuMu\n", @@ -380,6 +689,7 @@ " xs_path,\n", " \"Dipole_M%2.2e_mu%2.2e\" % (model_kwargs[\"m4\"], model_kwargs[\"mu_tr_mu4\"]),\n", " )\n", + " print(table_dir)\n", " controller.InputDarkNewsModel(primary_type, table_dir, **model_kwargs)\n", "\n", "\n", diff --git a/resources/Examples/figures.mplstyle b/resources/Examples/figures.mplstyle index df2567d6b..d58fc986c 100644 --- a/resources/Examples/figures.mplstyle +++ b/resources/Examples/figures.mplstyle @@ -1,14 +1,17 @@ figure.figsize: 8,6 axes.titlesize : 24 -axes.labelsize : 14 +axes.labelsize : 16 lines.linewidth : 3 lines.markersize : 10 -xtick.labelsize : 14 -ytick.labelsize : 14 +xtick.labelsize : 16 +ytick.labelsize : 16 -legend.fontsize: 13 +legend.fontsize: 14 legend.frameon: False legend.title_fontsize: 14 + +image.cmap: BuPu +axes.prop_cycle: cycler('color', ["goldenrod","lightseagreen","mediumvioletred","blue"]) \ No newline at end of file