From 20aa8bd07c5ef84d00a92c698255b6f2320fc376 Mon Sep 17 00:00:00 2001
From: pavlosprotopapas
Date: Sun, 3 Nov 2024 10:57:55 -0500
Subject: [PATCH] finishing publications
---
publications.html | 937 ++++++++++++++++++----------------------------
1 file changed, 357 insertions(+), 580 deletions(-)
diff --git a/publications.html b/publications.html
index 5795f72..837e820 100644
--- a/publications.html
+++ b/publications.html
@@ -54,598 +54,375 @@ Publications
- Bea, Y., Jiménez, R., Mateos, D., Liu, S., Protopapas, P., Tarancón-Álvarez, P., Tejerina-Pérez, P.
"Gravitational duals from equations of state." Journal of High Energy Physics, 2024(7), 87 (2024).
-
+
- John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin.
- "IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581 (2024).
-
+ "IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581 (2024).
+
- John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin.
- "Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings."
- HICSS 2024: 7582-7591 (2024).
-
+ "Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings."
+ HICSS 2024: 7582-7591 (2024).
+
- A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo.
- "Faster Bayesian inference with neural network bundles and new results for ΛCDM models."
- Physical Review D 109 (12), 123514 (2024).
+ "Faster Bayesian inference with neural network bundles and new results for ΛCDM models."
+ Physical Review D 109 (12), 123514 (2024).
- V.S. Pérez Díaz, J. Ingram, V. Kashyap, J. Martinez Galarza, P. Protopapas.
- "Enhancing Chandra-Gaia Crossmatching with Machine Learning."
- AAS/High Energy Astrophysics Division 21, 105.02 (2024).
-
+ "Enhancing Chandra-Gaia Crossmatching with Machine Learning."
+ AAS/High Energy Astrophysics Division 21, 105.02 (2024).
+
- A. Mohan, P. Protopapas, K. Kunnumkai, C. Garraffo, L. Blackburn, et al.
- "Generating images of the M87* black hole using GANs." Monthly Notices of the Royal Astronomical Society 527 (4),
- 10965-10974 (2024).
-
+ "Generating images of the M87* black hole using GANs." Monthly Notices of the Royal Astronomical Society 527 (4),
+ 10965-10974 (2024).
+
- M. Cresitello-Dittmar, J. McDowell, D. Tody, T. Budavari, M. Dolensky, et al.
- "IVOA Spectrum Data Model Version 1.2." IVOA Recommendation 15 December 2023.
+ "IVOA Spectrum Data Model Version 1.2." IVOA Recommendation 15 December 2023.
- A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo.
- "NN bundle method applied to cosmology: an improvement in computational times."
- arXiv preprint arXiv:2311.15955 (2023).
+ "NN bundle method applied to cosmology: an improvement in computational times."
+ arXiv preprint arXiv:2311.15955 (2023).
- W. Lei, P. Protopapas, J. Parikh. "One-Shot Transfer Learning for Nonlinear ODEs."
- arXiv preprint arXiv:2311.14931 (2023).
-
+ arXiv preprint arXiv:2311.14931 (2023).
- D. Moreno-Cartagena, G. Cabrera-Vives, P. Protopapas, C. Donoso-Oliva, et al.
- "Positional Encodings for Light Curve Transformers: Playing with Positions and Attention."
- arXiv preprint arXiv:2308.06404 (2023).
-
- - K. Ly, J. Kurlander, M. Holman, M. Payne, A. Heinze, P. Bernardinelli, et al. "2010 RJ226." Minor Planet Electronic Circulars 2023.
-
- - J. Carter, S. Mancoridis, P. Protopapas. "Optimal data sample length for system call traces for malware detection in an iot ecosystem." 2023 3rd International Conference on Electrical, Computer, Communications and Electronics Engineering.
-
- - S. Liu, X. Huang, P. Protopapas. "Residual-based error bound for physics-informed neural networks." Uncertainty in Artificial Intelligence, 1284-1293 (2023).
-
- - A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo. "Cosmology-informed neural networks to solve the background dynamics of the Universe." Physical Review D 107 (6), 063523 (2023).
-
- - M. Mattheakis, H. Joy, P. Protopapas. "Reservoir Computing for Solving Ordinary Differential Equations." International Journal on Artificial Intelligence Tools 32 (01), 2350030 (2023).
-
- - J. Astudillo, P. Protopapas, K. Pichara, I. Becker. "A Reinforcement Learning–Based Follow-up Framework." The Astronomical Journal 165 (3), 118 (2023).
-
- - C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, M. Vishnu, et al. "ASTROMER-A transformer-based embedding for the representation of light curves." Astronomy & Astrophysics 670, A54 (2023).
-
- - T. Allen, F. Grezes, G. Shapurian, S. Blanco-Cuaresma, C. Grant, et al. "ADS Machine Learning and Deep Learning Efforts." American Astronomical Society Meeting Abstracts 55 (2), 177.37 (2023).
-
- - T.A.E. Ferreira, M. Mattheakis, P. Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." arXiv:2101.06100 (2021).
-
- - D. Sondak, P. Protopapas. "Learning a Reduced Basis of Dynamical Systems using an Autoencoder." arXiv:2011.07346 (2020).
-
- - R. Fang, D. Sondak, P. Protopapas, S. Succi. "Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow." Journal of Turbulence 21(9-10), 525-543 (2020).
-
- - L. Zorich, K. Pichara, P. Protopapas. "Streaming classification of variable stars." Monthly Notices of the Royal Astronomical Society 492(2), 2897-2909 (2020).
-
- - C. Flamant, P. Protopapas, D. Sondak. "Solving Differential Equations Using Neural Network Solution Bundles." arXiv preprint arXiv:2006.14372 (2020).
-
- - F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, M. Di Giovanni. "NeuroDiffEq: A Python package for solving differential equations with neural networks." Journal of Open Source Software 5(46), 1931 (2020).
-
- - N. Astorga, P. Huijse, P. Protopapas, P. Estévez. "Matching Priors and Conditionals for Clustering." European Conference on Computer Vision, 658-677 (2020).
-
- - W. Wu, P. Protopapas, Z. Yang, P. Michalatos. "Gender classification and bias mitigation in facial images." 12th ACM Conference on Web Science, 106-114 (2020).
-
- - H. Jin, M. Mattheakis, P. Protopapas. "Unsupervised Neural Networks for Quantum Eigenvalue Problems." arXiv:2010.05075 (2020).
-
- - M. Mattheakis, D. Sondak, A.S. Dogra, P. Protopapas. "Hamiltonian Neural Networks for solving differential equations." arXiv:2001.11107 (2020).
-
- - A. Paticchio, T. Scarlatti, M. Mattheakis, P. Protopapas, M. Brambilla. "Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread." arXiv e-prints: 2020arXiv201005074P (2020).
-
- - D. Randle, P. Protopapas, D. Sondak. "Unsupervised Learning of Solutions to Differential Equations with Generative Adversarial Networks." arXiv preprint arXiv:2007.11133 (2020).
-
- - R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P.A. Estevez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez-Palomera, C. Donoso. "Deep learning for image sequence classification of astronomical events." Publications of the Astronomical Society of the Pacific 131(1004), 108006 (2019).
-
- - M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, E. Kaxiras. "Physical symmetries embedded in neural networks." arXiv preprint arXiv:1904.08991 (2019).
-
- - M. Pérez-Carrasco, G. Cabrera-Vives, M. Martinez-Marin, P. Cerulo, R. Demarco, P. Protopapas, J. Godoy. "Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS." Publications of the Astronomical Society of the Pacific 131(1004), 108002 (2019).
-
- - C. Pieringer, K. Pichara, M. Catelán, P. Protopapas. "An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves." Monthly Notices of the Royal Astronomical Society 484(3), 3071-3077 (2019).
-
- - J. Astudillo, P. Protopapas, K. Pichara, P. Huijse. "An Information Theory Approach on Deciding Spectroscopic Follow-ups." The Astronomical Journal 159(1), 16 (2019).
-
- - A. Bianchi, M.R. Vendra, P. Protopapas, M. Brambilla. "Improving image classification robustness through selective CNN-filters fine-tuning." arXiv preprint arXiv:1904.03949 (2019).
-
- - B. Saldias-Fuentes, P. Protopapas. "A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification." Proceedings of the 2019 SIAM International Conference on Data Mining, 756-764 (2019).
-
- - M.J. Holman, M.J. Payne, W. Fraser, P. Lacerda, M.T. Bannister, M. Lackner, Y.T. Chen, H.W. Lin, K.W. Smith, R. Kokotanekova, D. Young. "A dwarf planet class object in the 21:5 resonance with Neptune." The Astrophysical Journal Letters 855(1), L6 (2018).
-
- - G. Ramponi, P. Protopapas, M. Brambilla, R. Janssen. "T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling." arXiv preprint arXiv:1811.08295 (2018).
-
- - J. Martínez-Palomera, F. Förster, P. Protopapas, J.C. Maureira, P. Lira, G. Cabrera-Vives, P. Huijse, L. Galbany, T. De Jaeger, S. González-Gaitán, G. Medina. "The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs." The Astronomical Journal 156(5), 186 (2018).
-
- - P. Huijse, P.A. Estévez, F. Förster, S.F. Daniel, A.J. Connolly, P. Protopapas, R. Carrasco, J.C. Príncipe. "Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era." The Astrophysical Journal Supplement Series 236(1), 12 (2018).
-
- - M. Belhaj, P. Protopapas, W. Pan. "Deep variational transfer: Transfer learning through semi-supervised deep generative models." arXiv preprint arXiv:1812.03123 (2018).
-
- - J.R. Maat, N. Gianniotis, P. Protopapas. "Efficient optimization of echo state networks for time series datasets." 2018 International Joint Conference on Neural Networks (IJCNN), 1-7 (2018).
-
- - N. Hoernle, K. Gal, B. Grosz, P. Protopapas, A. Rubin. "Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems." International Educational Data Mining Society (2018).
-
- - J.R. Martínez-Galarza, P. Protopapas, H.A. Smith, E.F. Morales. "Unraveling the Spectral Energy Distributions of Clustered YSOs." The Astrophysical Journal 864(1), 71 (2018).
-
- - R.C. Davis, G. Cabrera-Vives, F. Förster, P.A. Estévez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez, C. Donoso. "Deep Learning for Image Sequence Classification of Astronomical Events." arXiv preprint arXiv:1807.03869 (2018).
-
- - Y.F. Jiang, P.J. Green, J.E. Greene, E. Morganson, Y. Shen, A. Pancoast, C.L. MacLeod, S.F. Anderson, W.N. Brandt, C.J. Grier, H.W. Rix. "Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves." The Astrophysical Journal 836(2), 186 (2017).
-
- - P. Benavente, P. Protopapas, K. Pichara. "Automatic survey-invariant classification of variable stars." The Astrophysical Journal 845(2), 147 (2017).
-
- - Yago Bea, Raúl Jiménez, David Mateos, Shuheng Liu, Pavlos Protopapas, Pedro Tarancón-Álvarez, Pablo Tejerina-Pérez. "Gravitational Duals from Equations of State." arXiv preprint arXiv:2403.14763 (2024).
-
- - John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581.
-
- - John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings." HICSS 2024: 7582-7591.
-
- - Marios Mattheakis, Hayden Joy, Pavlos Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." CoRR abs/2101.06100 (2021) (Note: This appears to be a journal publication in 2023 of a 2021 preprint).
-
- - R Pellegrin, B Bullwinkel, M Mattheakis, P Protopapas. "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)
-
- - O Graf, P Flores, P Protopapas, K Pichara. "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)
-
- - Blake Bullwinkel, Dylan Randle, Pavlos Protopapas, David Sondak. "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)
-
- - S Liu, X Huang, P Protopapas. "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)
-
- - Hayden Joy, Marios Mattheakis, Pavlos Protopapas. "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)
-
- - F Förster, G Cabrera-Vives, E Castillo-Navarrete, PA Estévez, ... P Protopapas, et al. "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)
-
- - M Mattheakis, D Sondak, AS Dogra, P Protopapas. "Hamiltonian neural networks for solving equations of motion" (2022)
-
- - Pellegrin, R., Bullwinkel, B., Mattheakis, M., Protopapas, P., "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)
-
- - Graf, O., Flores, P., Protopapas, P., Pichara, K., "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)
-
- - Bullwinkel, B., Randle, D., Protopapas, P., Sondak, D., "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)
-
- - Liu, S., Huang, X., Protopapas, P., "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)
-
- - Joy, H., Mattheakis, M., Protopapas, P., "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)
-
- - Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., Estévez, P.A., ... Protopapas, P., et al., "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)
-
- - Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P., "Hamiltonian neural networks for solving equations of motion" (2022)
- -
- Ferreira, T. A. E., Mattheakis, M., and Protopapas, P., A New Artificial
- Neuron Proposal with Trainable Simultaneous Local and Global Activation Function, 2021, arXiv:2101.06100 [pdf]
-
- -
- D, Sondak, P. Protopapas, Learning a Reduced Basis of Dynamical Systems using an Autoencoder
- , 2020, arXiv:2011.07346 [pdf]
-
- -
- Fang, R., Sondak, D., Protopapas, P. and Succi, S.,
- Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow. , 2020, Journal of Turbulence, 21(9-10), pp.525-543 [pdf]
-
- -
- Zorich, L., Pichara, K. and Protopapas, P.,
- Streaming classification of variable stars. Monthly Notices of the Royal Astronomical Society , 2020, 492(2), pp.2897-2909 [pdf]
-
- -
- Flamant, C., Protopapas, P. and Sondak, D.,
- Solving Differential Equations Using Neural Network Solution Bundles, 2020, arXiv preprint arXiv:2006.14372, [
- pdf]
-
- -
- Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D. and Di Giovanni, M.,
- NeuroDiffEq: A Python package for solving differential equations with neural networks , 2020, Journal of Open Source Software, 5(46), p.1931 [pdf]
-
- -
- Astorga, N., Huijse, P., Protopapas, P. and Estévez, P.,
- Matching Priors and Conditionals for Clustering, 2020, August, MPCC, In European Conference on Computer Vision (pp. 658-677). Springer, Cham [pdf]
-
- -
- Wu, W., Protopapas, P., Yang, Z. and Michalatos, P.,
- Gender classification and bias mitigation in facial images , 2020. In 12th ACM Conference on Web Science (pp. 106-114) [pdf]
-
- -
- H. Jin, M. Mattheakis, P. Protopapas, Unsupervised Neural Networks for Quantum Eigenvalue Problems, 2020, arXiv:2010.05075 [
- pdf]
- -
- Mattheakis, M., Sondak, D., Dogra, A.S. and Protopapas, P.,
- Hamiltonian Neural Networks for solving differential equations , 2020., arXiv:2001.11107 [pdf]
-
-
-
- -
- Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P., and Brambilla, M.,
- Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread, arXiv e-prints: 2020arXiv201005074P , 2020, [pdf
-
- -
- Randle, D., Protopapas, P. and Sondak, D., Unsupervised Learning of Solutions to Differential Equations with
- Generative Adversarial Networks, 2020, arXiv preprint arXiv:2007.11133 [pdf]
-
-
- -
- Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., Estevez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez-Palomera, J. and Donoso, C.,
- Deep learning for image sequence classification of astronomical events , 2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108006 [pdf]
-
- -
- Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M. and Kaxiras, E.,
- Physical symmetries embedded in neural networks , 2019, arXiv preprint arXiv:1904.08991 [pdf]
-
-
- -
- Pérez-Carrasco, M., Cabrera-Vives, G., Martinez-Marin, M., Cerulo, P., Demarco, R., Protopapas, P. and Godoy, J.,
- Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS, 2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108002 [pdf]
-
-
- -
- Pieringer, C., Pichara, K., Catelán, M. and Protopapas, P.,
- An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves, 2019, Monthly Notices of the Royal Astronomical Society, 484(3), pp.3071-3077 [pdf]
-
- -
- Astudillo, J., Protopapas, P., Pichara, K. and Huijse, P., An Information Theory Approach on Deciding Spectroscopic Follow-ups, 2019, The Astronomical Journal, 159(1), p.16 [pdf]
-
-
- -
- Bianchi, A., Vendra, M.R., Protopapas, P. and Brambilla, M.,
- Improving image classification robustness through selective CNN-filters fine-tuning , 2019, arXiv preprint arXiv:1904.03949. [
- pdf]
-
-
- -
- Saldias-Fuentes, B. and Protopapas, P.,
- A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification , 2019, In Proceedings of the 2019 SIAM International Conference on Data Mining (pp. 756-764). Society for Industrial and Applied
- Mathematics. [
- pdf]
-
-
- -
- Holman, M.J., Payne, M.J., Fraser, W., Lacerda, P., Bannister, M.T., Lackner, M., Chen, Y.T., Lin, H.W., Smith, K.W., Kokotanekova, R. and Young, D.,
- A dwarf planet class object in the 21: 5 resonance with Neptune, 2018, The Astrophysical Journal Letters, 855(1), p.L6 [
- pdf]
-
- -
- Ramponi, G., Protopapas, P., Brambilla, M. and Janssen, R.,
- T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling , 2018, arXiv preprint arXiv:1811.08295 [
- pdf]
-
- -
- Martínez-Palomera, J., Förster, F., Protopapas, P., Maureira, J.C., Lira, P., Cabrera-Vives, G., Huijse, P., Galbany, L., De Jaeger, T., González-Gaitán, S. and Medina, G.,
- The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs , 2018, The Astronomical Journal, 156(5), p.186. [
- pdf]
-
- -
- Huijse, P., Estévez, P.A., Förster, F., Daniel, S.F., Connolly, A.J., Protopapas, P., Carrasco, R. and Príncipe, J.C.,
- Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era.
- The Astrophysical Journal Supplement Series, 2018, 236(1), p.12 [
- pdf]
-
-
- -
- Belhaj, M., Protopapas, P. and Pan, W.,
- Deep variational transfer: Transfer learning through semi-supervised deep generative models, 2018, arXiv preprint arXiv:1812.03123 [
- pdf]
-
-
- -
- Maat, J.R., Gianniotis, N. and Protopapas, P.,
- July. Efficient optimization of echo state networks for time series datasets, 2018, In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
- pdf]
-
- -
- Hoernle, N., Gal, K., Grosz, B., Protopapas, P. and Rubin, A.,
- Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems, 2018, International Educational Data Mining Society [
- pdf]
-
- -
- Martínez-Galarza, J.R., Protopapas, P., Smith, H.A. and Morales, E.F.,
- Unraveling the Spectral Energy Distributions of Clustered YSOs, 2018, The Astrophysical Journal, 864(1), p.71. [
- pdf]
-
- -
- Davis, R.C., Cabrera-Vives, G., Förster, F., Estévez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez, J. and Donoso, C.,
- Deep Learning for Image Sequence Classification of Astronomical Events, 2018, arXiv preprint arXiv:1807.03869 [
- pdf]
-
-
- -
- Jiang, Y.F., Green, P.J., Greene, J.E., Morganson, E., Shen, Y., Pancoast, A., MacLeod, C.L., Anderson, S.F., Brandt, W.N., Grier, C.J. and Rix, H.W., Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves,
- 2017, The Astrophysical Journal, 836(2), p.186 [pdf]
-
-
- -
- Benavente, P., Protopapas, P. and Pichara, K.,
- Automatic survey-invariant classification of variable stars, 2017, The Astrophysical Journal, 845(2), p.147 [
- pdf]
-
-
- -
- Castro, N., Protopapas, P. and Pichara, K.,
- Uncertain classification of variable stars: handling observational GAPS and noise, 2017, The Astronomical Journal, 155(1), p.16 [
- pdf]
-
- -
- Protopapas, P., Recurrent Neural Network Applications for Astronomical Time Series, 2017, In American Astronomical Society Meeting Abstracts# 230 (Vol. 230, pp. 104-03). [
- pdf]
-
- -
- Mackenzie, C., Pichara, K. and Protopapas, P.,
- Clustering-based feature learning on variable stars, 2016, The Astrophysical Journal, 820(2), p.138 [
- pdf]
-
- -
- Pichara, K., Protopapas, P. and León, D.,
- Meta-classification for variable stars, 2016, The Astrophysical Journal, 819(1), p.18 [
- pdf]
-
- -
- Narasimhan, H., Pan, W., Kar, P., Protopapas, P. and Ramaswamy, H.G.,
- December. Optimizing the multiclass F-measure via biconcave programming, 2016, In 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1101-1106). IEEE [
- pdf]
-
- -
- Nun, I., Protopapas, P., Sim, B. and Chen, W.,
- Ensemble learning method for outlier detection and its application to astronomical light curves The Astronomical Journal, 152(3), p.71 [
- pdf]
-
-
- -
- Kim, R., Empirical Methods in Peer Prediction (Doctoral dissertation) [
- pdf]
-
-
- -
- Xia, X., Protopapas, P. and Doshi-Velez, F.,
- Cost-Sensitive Batch Mode Active Learning: Designing Astronomical Observation by Optimizing Telescope Time and Telescope Choice In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 477-485).
- Society for Industrial and Applied Mathematics [
- pdf]
-
-
- -
- Nun, I., Protopapas, P., Sim, B., Zhu, M., Dave, R., Castro, N. and Pichara, K., Fats: Feature analysis for time series, 2105, arXiv preprint arXiv:1506.00010 [
- pdf]
-
- -
- Protopapas, P., Huijse, P., Estevez, P.A., Zegers, P., Principe, J.C. and Marquette, J.B.,
- A novel, fully automated pipeline for period estimation in the eros 2 data set, 2015, The Astrophysical Journal Supplement Series, 216(2), p.25 [
- pdf]
-
- -
- Yang, J.J., Wang, X., Protopapas, P. and Bornn, L.,
- Fast and optimal nonparametric sequential design for astronomical observations, 2015, arXiv preprint arXiv:1501.02467 [
- pdf]
-
-
- -
- Kim, D.W., Protopapas, P., Bailer-Jones, C.A., Byun, Y.I., Chang, S.W., Marquette, J.B. and Shin, M.S.,
- The EPOCH Project-I. Periodic variable stars in the EROS-2 LMC database, 21014, Astronomy & Astrophysics, 566, p.A43 [
- pdf]
-
-
- -
- Huijse, P., Estevez, P.A., Protopapas, P., Principe, J.C. and Zegers, P.,
- Computational intelligence challenges and applications on large-scale astronomical time series databases, 2014, IEEE Computational Intelligence Magazine, 9(3), pp.27-39 [
- pdf]
-
-
- -
- Nun, I., Pichara, K., Protopapas, P. and Kim, D.W.,
- Supervised detection of anomalous light curves in massive astronomical catalogs, 2014 The Astrophysical Journal, 793(1), p.23 [
- pdf]
-
- -
- Verde, L., Protopapas, P. and Jimenez, R.,
- The expansion rate of the intermediate universe in light of Planck, 2014, Physics of the Dark Universe, 5, pp.307-314 [
- pdf]
-
-
- -
- Verde, L., Protopapas, P. and Jimenez, R.,
- Planck and the local Universe: Quantifying the tension, 2013, Physics of the Dark Universe, 2(3), pp.166-175 [
- pdf]
-
-
-
- -
- Pichara, K. and Protopapas, P.,
- Automatic classification of variable stars in catalogs with missing data, 2103, The Astrophysical Journal, 777(2), p.83 [
- pdf]
-
-
- -
- Chang, S.W., Protopapas, P., Kim, D.W. and Byun, Y.I.,
- Statistical properties of Galactic δ Scuti stars: revisited, 2013, The Astronomical Journal, 145(5), p.132 [
- pdf]
-
- -
- Huijse, P., Estevez, P.A., Protopapas, P., Zegers, P. and Principe, J.C.,
- An information theoretic algorithm for finding periodicities in stellar light curves, 2012, IEEE Transactions on Signal Processing, 60(10), pp.5135-5145 [
- pdf]
-
-
- -
- Pichara, K., Protopapas, P., Kim, D.W., Marquette, J.B. and Tisserand, P.,
- An improved quasar detection method in EROS-2 and MACHO LMC data sets, 2012, Monthly Notices of the Royal Astronomical Society, 427(2), pp.1284-1297 [
- pdf]
-
-
- -
- Wang, Y., Khardon, R. and Protopapas, P.,
- Nonparametric Bayesian estimation of periodic light curves 2012, The Astrophysical Journal, 756(1), p.67 [
- pdf]
-
-
- -
- Kim, D.W., Protopapas, P., Trichas, M., Rowan-Robinson, M., Khardon, R., Alcock, C. and Byun, Y.I.,
- A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the Large Magellanic Cloud The Astrophysical Journal, 747(2), p.107 [
- pdf]
-
-
- -
- Blocker, A.W. and Protopapas, P.,
- Semi-parametric robust event detection for massive time-domain databases, 2012, In Statistical Challenges in Modern Astronomy V (pp. 177-187). Springer, New York, NY [
- pdf]
-
-
- -
- Wang, Y., Khardon, R. and Protopapas, P.,
- Infinite shift-invariant grouped multi-task learning for gaussian processes, 2012, arXiv preprint arXiv:1203.0970 [
- pdf]
-
-
- -
- Huijse, P., Estévez, P.A., Protopapas, P., Zegers, P. and Príncipe, J.C.,
- Computational Challenges in Processing Very Large Astronomical Survey Databases, 2012, In 2012 9th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT) (pp. 1-6). IEEE [
- pdf]
-
-
- -
- Kim, D.W., Protopapas, P., Byun, Y.I., Alcock, C., Khardon, R. and Trichas, M.,
- Quasi-stellar object selection algorithm using time variability and machine learning: Selection of 1620 quasi-stellar object candidates from MACHO Large Magellanic Cloud database ,2011, The Astrophysical Journal, 735(2),
- p.68 [
- pdf]
-
-
- -
- Huijse, P., Estévez, P.A., Zegers, P., Príncipe, J.C. and Protopapas, P.,
- Period estimation in astronomical time series using slotted correntropy, 2011, IEEE Signal Processing Letters, 18(6), pp.371-374 [
- pdf]
-
-
- -
- Wang, Y., Khardon, R. and Protopapas, P.,
- Nonparametric Bayesian estimation of periodic functions 2011, arXiv preprint arXiv:1111.1315 [
- pdf]
-
-
- -
- Mishra, B.P., Principe, J.C., Estevez, P.A. and Protopapas, P.,
- 2011, In 2011 IEEE International Workshop on Machine Learning for Signal Processing (pp. 1-6). IEEE [
- pdf]
-
- -
- Fuentes, C.I., Holman, M.J., Trilling, D.E. and Protopapas, P.,
- Trans-Neptunian objects with Hubble Space Telescope ACS/WFC 2011, The Astrophysical Journal, 722(2), p.1290 [
- pdf]
-
- -
- Wang, Y., Khardon, R. and Protopapas, P.,
- Shift-invariant grouped multi-task learning for Gaussian processes, 2010, In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 418-434). Springer, Berlin, Heidelberg [
- pdf]
-
- -
- Estévez, P.A., Huijse, P., Zegers, P., Principe, J.C. and Protopapas, P.,
- Period detection in light curves from astronomical objects using correntropy, 2010, In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
- pdf]
-
-
-
-
-
- -
- U. Rebbapragada, P. Protopapas, C. Brodley, C. Alcock, Finding Anomalies in Periodic Time Series, Machine Learning, p. 281, vol. 74, (2009) [pdf]
- -
- S. Pember, C. Brodley, P. Protopapas, and A. Kilmer, Similarity Retrieval in Large Datasets using Rank Revealing QR, ICDM, Under review at IEEE PAMI, (2009).
-
- -
- Dan Preston, Pavlos Protopapas and Carla Brodley, Event Detection in Time Series, Proceedings of the Ninth SIAM International Conference on Data Mining, p. 61-72, (2009) [pdf]
-
- -
- Dan Preston, Pavlos Protopapas and Carla Brodley, Discovering Arbitrary Event Types in Time Series, SIAM Best of 09 SDM, (2009)
- -
- Dae-Won Kim, Pavlos Protopapas, Charles Alcock, Yong-Ik Byun, Federica Bianco, Detection of Flare Stars in TAOS 2-year Data, The Astronomer's Telegram, vol. #2035, (2009) [html]
-
- -
- Gabriel Wachman, Roni Khardon, Pavlos Protopapas, Charles R. Alcock, Kernels for Periodic Time Series Arising in Astronomy, ECML PKDD, (2009) [pdf]
-
- -
- Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, Charles Alcock and the TAOS collaboration, The TAOS Project Stellar Variability I. Detection of Low-Amplitude δ Scuti Stars and a Revised Catalog of All Known δ Scuti Stars, submitted to Astronomical Journal, (2009) [pdf]
-
- -
- J.~H. Wang, P. Protopapas, W. –P. Chen, C. R. Alcock, W. S. Burgett, T. Dombeck, J. S. Morgan, P. A. Price, J. L. Tonry, Searching for sub-kilometer TNOs using Pan-STARRS video mode lightcurves: Preliminary study and evaluation using engineering data, submitted
- to Astronomical Journal, (2009) [pdf]
-
- -
- A. W. Blocker, P. Protopapas, C. R. Alcock, A Bayesian approach to the analysis of time symmetry in light curves: Reconsidering Scorpius X-1 occultations, The Astronomical Journal, Volume 138, Issue 2, pp. 568-578,
- (
- 2009) [pdf]
-
- -
- F. Bianco, P. Protopapas, B. McLeod, C. R. Alcock, M. J. Holman, M. J. Lehner. A Search for Occultations of Bright Stars by Small Kuiper Belt Objects using Megacam on the MMT, The Astronomical Journal,
- Volume 138, Issue 2, pp. 568-578, (2009) [pdf]
-
- -
- D-W Kim, P. Protopapas, C. Alcock, B. Yong-Ik, F. Bianco, De-Trending Time Series for Astronomical Variability Surveys, Monthly Notices of the Royal Astronomical Society, Volume 397, Issue 2, pp. 558-568, (2008) [pdf]
-
- -
- R. E. Schild, J. Lovegrove, P. Protopapas, Reverberation in the UV-Optical Continuum Brightness Fluctuations of MACHO Quasar, The Astronomical Journal, Volume 138, Issue 2, pp. 421-427, (2009)
- [
- pdf]
-
- -
- Zhan et al., First Results from the Taiwanese-American Occultation Survey (TAOS), ApJL, 685, L157, (2008) [pdf]
-
- -
- E. Morikawa, R. Dave, P. Protopapas, A Novel GUI Based Interactive Work Flow Application for Exploratory and Batch Processing of Light Curves, Astronomical Data Analysis Software and Systems XVII, 394, 357, (
- 2008) [pdf]
-
- -
- Lorenzo Faccioli, Charles Alcock, Kem Cook, Gabriel E. Prochter, Pavlos Protopapas, David Syphers, Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO Project: The Sample, AJ, 134, 1963-1994,
- (2007) [pdf]
-
- -
- Holman, Matthew J.; Protopapas, P.; Tholen, D. J., Searching for Solar System Wide Binaries with Pan-STARRS-1, AAS, 39, 52, (2007)
- -
- Dave, R.; Protopapas, P.; Lehner, M., Virtual Astronomical Pipelines, Astronomical Data Analysis Software and Systems XVI ASP Conference Series, Vol. 376, proceedings of the conference held 15-18 October in Tucson,
- Arizona, USA. Edited by Richard A. Shaw, Frank Hill and David J. Bell., p.253, (2006) [pdf]
-
- -
- J. M. Diego, M. Tegmark, P. Protopapas, H. B. Sadvik, Combined reconstruction of weak and strong lensing data with WSLAP, MNRAS, 375, 958-970, (2007) [pdf]
-
- -
- Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, Pavlos Protopapas. Supporting, Exact Indexing of Shapes under Rotation Invariance with Arbitrary
- Representations and Distance Measures, VLDB: 882-893, (2006) [pdf]
- -
- P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave , C. Alcock, Finding outlier light-curves in catalogs of periodic variable stars, MNRAS, 369, 677,
- (2006) [pdf]
-
- -
- Pavlos Protopapas, Raul Jimenez , Charles Alcock , Fast identification of transits from light-curves, MNRAS, 362, 460, (2005) [
- pdf]
-
- -
- J. M. Diego, H. B. Sadvik, P. Protopapas, M. Tegmark, N. Benitez, T. Broadhurst, Non-parametric mass reconstruction of A1689 from strong lensing data with SLAP, MNRAS, 362, 1247,
- (2005) [pdf]
-
- -
- J. M. Diego, P. Protopapas, H. B. Sadvik, M. Tegmark, Non-parametric inversion of strong lensing systems, MNRAS, 360, 477, (2005) [pdf]
-
- -
- A. Klein, P. Protopapas, S. G. Rohoziński, K. Starosta, Kerman-Klein-Dönau-Frauendorf model for odd-odd nuclei: Formal theory, Physical Review C, vol. 69, Issue 3, id. 034338,
- (2005) [pdf]
-
- -
- R. D. Amado, M. Á. Halász, P. Protopapas, Two Skyrmion dynamics with ω mesons, Physical Review D (Particles and Fields), Volume 61, Issue 7, (2000) [pdf]
- -
- Y. Lu, P. Protopapas, R. D. Amado, Nucleon-antinucleon interaction from the Skyrme model. II. Beyond the product ansatz, Physical Review C, 57, 1983-1990, (1998) [pdf]
- -
- P. Protopapas, A. Klein, Possible solution of the Coriolis attenuation problem, (1997), Phys. Rev. C, 55, 1810-1818 [
- pdf]
-
- -
- P. Protopapas, A. Klein, Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-Dönau-Frauendorf theory,
- (1997), Physical Review C (Nuclear Physics), Volume 55, Issue 2, pp.699-713 [pdf]
-
- -
- P. Protopapas, A. Klein, Application of the Kerman-Klein Method to the Solution of a Spherical Shell Model for a Deformed Rare-Earth Nucleus,
- (1997), Physical Review Letters, Volume 78, Issue 23, June 9, pp.4347-4350 [pdf]
-
- -
- P. Protopapas, A. Klein, N. R. Walet, Further application of a semimicroscopic core-particle coupling method to the properties of 155,157Gd and 159Dy,
- (1996), Physical Review C (Nuclear Physics), Volume 53, Issue 4, April pp.1655-1659 [pdf]
-
- -
- P. Protopapas, A. Klein, N. R. Walet, Application of a semimicroscopic core-particle coupling method to the backbending in odd deformed nuclei, (1996)
- , Physical Review C (Nuclear Physics), Volume 54, Issue 2, pp.638-645 [pdf]
-
- -
- P. Protopapas, A. Klein, N. R. Walet, Calculation of the properties of the rotational bands of 155,157Gd, (1994),
- Physical Review C (Nuclear Physics), Volume 50, Issue 1, pp.245-256 [pdf]
-
-
+ "Positional Encodings for Light Curve Transformers: Playing with Positions and Attention."
+ arXiv preprint arXiv:2308.06404 (2023).
+ K. Ly, J. Kurlander, M. Holman, M. Payne, A. Heinze, P. Bernardinelli, et al. "2010 RJ226." Minor Planet Electronic Circulars 2023.J. Carter, S. Mancoridis, P. Protopapas. "Optimal data sample length for system call traces for malware detection in an iot ecosystem." 2023 3rd International Conference on Electrical, Computer, Communications and Electronics Engineering.S. Liu, X. Huang, P. Protopapas. "Residual-based error bound for physics-informed neural networks." Uncertainty in Artificial Intelligence, 1284-1293 (2023).A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo. "Cosmology-informed neural networks to solve the background dynamics of the Universe." Physical Review D 107 (6), 063523 (2023).M. Mattheakis, H. Joy, P. Protopapas. "Reservoir Computing for Solving Ordinary Differential Equations." International Journal on Artificial Intelligence Tools 32 (01), 2350030 (2023).J. Astudillo, P. Protopapas, K. Pichara, I. Becker. "A Reinforcement Learning–Based Follow-up Framework." The Astronomical Journal 165 (3), 118 (2023).C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, M. Vishnu, et al. "ASTROMER-A transformer-based embedding for the representation of light curves." Astronomy & Astrophysics 670, A54 (2023).T. Allen, F. Grezes, G. Shapurian, S. Blanco-Cuaresma, C. Grant, et al. "ADS Machine Learning and Deep Learning Efforts." American Astronomical Society Meeting Abstracts 55 (2), 177.37 (2023).T.A.E. Ferreira, M. Mattheakis, P. Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." arXiv:2101.06100 (2021).D. Sondak, P. Protopapas. "Learning a Reduced Basis of Dynamical Systems using an Autoencoder." arXiv:2011.07346 (2020).R. Fang, D. Sondak, P. Protopapas, S. Succi. "Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow." Journal of Turbulence 21(9-10), 525-543 (2020).L. Zorich, K. Pichara, P. Protopapas. "Streaming classification of variable stars." Monthly Notices of the Royal Astronomical Society 492(2), 2897-2909 (2020).C. Flamant, P. Protopapas, D. Sondak. "Solving Differential Equations Using Neural Network Solution Bundles." arXiv preprint arXiv:2006.14372 (2020).F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, M. Di Giovanni. "NeuroDiffEq: A Python package for solving differential equations with neural networks." Journal of Open Source Software 5(46), 1931 (2020).N. Astorga, P. Huijse, P. Protopapas, P. Estévez. "Matching Priors and Conditionals for Clustering." European Conference on Computer Vision, 658-677 (2020).W. Wu, P. Protopapas, Z. Yang, P. Michalatos. "Gender classification and bias mitigation in facial images." 12th ACM Conference on Web Science, 106-114 (2020).H. Jin, M. Mattheakis, P. Protopapas. "Unsupervised Neural Networks for Quantum Eigenvalue Problems." arXiv:2010.05075 (2020).M. Mattheakis, D. Sondak, A.S. Dogra, P. Protopapas. "Hamiltonian Neural Networks for solving differential equations." arXiv:2001.11107 (2020).A. Paticchio, T. Scarlatti, M. Mattheakis, P. Protopapas, M. Brambilla. "Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread." arXiv e-prints: 2020arXiv201005074P (2020).D. Randle, P. Protopapas, D. Sondak. "Unsupervised Learning of Solutions to Differential Equations with Generative Adversarial Networks." arXiv preprint arXiv:2007.11133 (2020).R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P.A. Estevez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez-Palomera, C. Donoso. "Deep learning for image sequence classification of astronomical events." Publications of the Astronomical Society of the Pacific 131(1004), 108006 (2019).M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, E. Kaxiras. "Physical symmetries embedded in neural networks." arXiv preprint arXiv:1904.08991 (2019).M. Pérez-Carrasco, G. Cabrera-Vives, M. Martinez-Marin, P. Cerulo, R. Demarco, P. Protopapas, J. Godoy. "Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS." Publications of the Astronomical Society of the Pacific 131(1004), 108002 (2019).C. Pieringer, K. Pichara, M. Catelán, P. Protopapas. "An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves." Monthly Notices of the Royal Astronomical Society 484(3), 3071-3077 (2019).J. Astudillo, P. Protopapas, K. Pichara, P. Huijse. "An Information Theory Approach on Deciding Spectroscopic Follow-ups." The Astronomical Journal 159(1), 16 (2019).A. Bianchi, M.R. Vendra, P. Protopapas, M. Brambilla. "Improving image classification robustness through selective CNN-filters fine-tuning." arXiv preprint arXiv:1904.03949 (2019).B. Saldias-Fuentes, P. Protopapas. "A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification." Proceedings of the 2019 SIAM International Conference on Data Mining, 756-764 (2019).M.J. Holman, M.J. Payne, W. Fraser, P. Lacerda, M.T. Bannister, M. Lackner, Y.T. Chen, H.W. Lin, K.W. Smith, R. Kokotanekova, D. Young. "A dwarf planet class object in the 21:5 resonance with Neptune." The Astrophysical Journal Letters 855(1), L6 (2018).G. Ramponi, P. Protopapas, M. Brambilla, R. Janssen. "T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling." arXiv preprint arXiv:1811.08295 (2018).J. Martínez-Palomera, F. Förster, P. Protopapas, J.C. Maureira, P. Lira, G. Cabrera-Vives, P. Huijse, L. Galbany, T. De Jaeger, S. González-Gaitán, G. Medina. "The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs." The Astronomical Journal 156(5), 186 (2018).P. Huijse, P.A. Estévez, F. Förster, S.F. Daniel, A.J. Connolly, P. Protopapas, R. Carrasco, J.C. Príncipe. "Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era." The Astrophysical Journal Supplement Series 236(1), 12 (2018).M. Belhaj, P. Protopapas, W. Pan. "Deep variational transfer: Transfer learning through semi-supervised deep generative models." arXiv preprint arXiv:1812.03123 (2018).J.R. Maat, N. Gianniotis, P. Protopapas. "Efficient optimization of echo state networks for time series datasets." 2018 International Joint Conference on Neural Networks (IJCNN), 1-7 (2018).N. Hoernle, K. Gal, B. Grosz, P. Protopapas, A. Rubin. "Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems." International Educational Data Mining Society (2018).J.R. Martínez-Galarza, P. Protopapas, H.A. Smith, E.F. Morales. "Unraveling the Spectral Energy Distributions of Clustered YSOs." The Astrophysical Journal 864(1), 71 (2018).R.C. Davis, G. Cabrera-Vives, F. Förster, P.A. Estévez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez, C. Donoso. "Deep Learning for Image Sequence Classification of Astronomical Events." arXiv preprint arXiv:1807.03869 (2018).Y.F. Jiang, P.J. Green, J.E. Greene, E. Morganson, Y. Shen, A. Pancoast, C.L. MacLeod, S.F. Anderson, W.N. Brandt, C.J. Grier, H.W. Rix. "Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves." The Astrophysical Journal 836(2), 186 (2017).P. Benavente, P. Protopapas, K. Pichara. "Automatic survey-invariant classification of variable stars." The Astrophysical Journal 845(2), 147 (2017).Yago Bea, Raúl Jiménez, David Mateos, Shuheng Liu, Pavlos Protopapas, Pedro Tarancón-Álvarez, Pablo Tejerina-Pérez. "Gravitational Duals from Equations of State." arXiv preprint arXiv:2403.14763 (2024).John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581.John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings." HICSS 2024: 7582-7591.Marios Mattheakis, Hayden Joy, Pavlos Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." CoRR abs/2101.06100 (2021) (Note: This appears to be a journal publication in 2023 of a 2021 preprint).R Pellegrin, B Bullwinkel, M Mattheakis, P Protopapas. "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)O Graf, P Flores, P Protopapas, K Pichara. "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)Blake Bullwinkel, Dylan Randle, Pavlos Protopapas, David Sondak. "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)S Liu, X Huang, P Protopapas. "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)Hayden Joy, Marios Mattheakis, Pavlos Protopapas. "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)F Förster, G Cabrera-Vives, E Castillo-Navarrete, PA Estévez, ... P Protopapas, et al. "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)M Mattheakis, D Sondak, AS Dogra, P Protopapas. "Hamiltonian neural networks for solving equations of motion" (2022)Pellegrin, R., Bullwinkel, B., Mattheakis, M., Protopapas, P., "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)Graf, O., Flores, P., Protopapas, P., Pichara, K., "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)Bullwinkel, B., Randle, D., Protopapas, P., Sondak, D., "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)Liu, S., Huang, X., Protopapas, P., "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)Joy, H., Mattheakis, M., Protopapas, P., "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., Estévez, P.A., ... Protopapas, P., et al., "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P., "Hamiltonian neural networks for solving equations of motion" (2022)
+ Ferreira, T. A. E., Mattheakis, M., and Protopapas, P., A New Artificial
+ Neuron Proposal with Trainable Simultaneous Local and Global Activation Function, 2021, arXiv:2101.06100 [pdf]
+
+
+ D, Sondak, P. Protopapas, Learning a Reduced Basis of Dynamical Systems using an Autoencoder
+ , 2020, arXiv:2011.07346 [pdf]
+
+
+ Fang, R., Sondak, D., Protopapas, P. and Succi, S.,
+ Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow. , 2020, Journal of Turbulence, 21(9-10), pp.525-543 [pdf]
+
+ Zorich, L., Pichara, K. and Protopapas, P.,
+ Streaming classification of variable stars. Monthly Notices of the Royal Astronomical Society , 2020, 492(2), pp.2897-2909 [pdf]
+
+ Flamant, C., Protopapas, P. and Sondak, D.,
+ Solving Differential Equations Using Neural Network Solution Bundles, 2020, arXiv preprint arXiv:2006.14372, [
+ pdf]
+
+ Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D. and Di Giovanni, M.,
+ NeuroDiffEq: A Python package for solving differential equations with neural networks , 2020, Journal of Open Source Software, 5(46), p.1931 [pdf]
+
+ Astorga, N., Huijse, P., Protopapas, P. and Estévez, P.,
+ Matching Priors and Conditionals for Clustering, 2020, August, MPCC, In European Conference on Computer Vision (pp. 658-677). Springer, Cham [pdf]
+
+ Wu, W., Protopapas, P., Yang, Z. and Michalatos, P.,
+ Gender classification and bias mitigation in facial images , 2020. In 12th ACM Conference on Web Science (pp. 106-114) [pdf]
+
+ H. Jin, M. Mattheakis, P. Protopapas, Unsupervised Neural Networks for Quantum Eigenvalue Problems, 2020, arXiv:2010.05075 [
+ pdf]
+ Mattheakis, M., Sondak, D., Dogra, A.S. and Protopapas, P.,
+ Hamiltonian Neural Networks for solving differential equations , 2020., arXiv:2001.11107 [pdf]
+
+ Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P., and Brambilla, M.,
+ Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread, arXiv e-prints: 2020arXiv201005074P , 2020, [pdf
+ Randle, D., Protopapas, P. and Sondak, D., Unsupervised Learning of Solutions to Differential Equations with
+ Generative Adversarial Networks, 2020, arXiv preprint arXiv:2007.11133 [pdf]
+
+
+ Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., Estevez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez-Palomera, J. and Donoso, C.,
+ Deep learning for image sequence classification of astronomical events , 2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108006 [pdf]
+
+ Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M. and Kaxiras, E.,
+ Physical symmetries embedded in neural networks , 2019, arXiv preprint arXiv:1904.08991 [pdf]
+
+
+ Pérez-Carrasco, M., Cabrera-Vives, G., Martinez-Marin, M., Cerulo, P., Demarco, R., Protopapas, P. and Godoy, J.,
+ Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS, 2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108002 [pdf]
+
+
+ Pieringer, C., Pichara, K., Catelán, M. and Protopapas, P.,
+ An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves, 2019, Monthly Notices of the Royal Astronomical Society, 484(3), pp.3071-3077 [pdf]
+
+ Astudillo, J., Protopapas, P., Pichara, K. and Huijse, P., An Information Theory Approach on Deciding Spectroscopic Follow-ups, 2019, The Astronomical Journal, 159(1), p.16 [pdf]
+
+
+ Bianchi, A., Vendra, M.R., Protopapas, P. and Brambilla, M.,
+ Improving image classification robustness through selective CNN-filters fine-tuning , 2019, arXiv preprint arXiv:1904.03949. [
+ pdf]
+
+
+ Saldias-Fuentes, B. and Protopapas, P.,
+ A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification , 2019, In Proceedings of the 2019 SIAM International Conference on Data Mining (pp. 756-764). Society for Industrial and Applied
+ Mathematics. [
+ pdf]
+
+ Holman, M.J., Payne, M.J., Fraser, W., Lacerda, P., Bannister, M.T., Lackner, M., Chen, Y.T., Lin, H.W., Smith, K.W., Kokotanekova, R. and Young, D.,
+ A dwarf planet class object in the 21: 5 resonance with Neptune, 2018, The Astrophysical Journal Letters, 855(1), p.L6 [
+ pdf]
+
+ Ramponi, G., Protopapas, P., Brambilla, M. and Janssen, R.,
+ T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling , 2018, arXiv preprint arXiv:1811.08295 [
+ pdf]
+
+ Martínez-Palomera, J., Förster, F., Protopapas, P., Maureira, J.C., Lira, P., Cabrera-Vives, G., Huijse, P., Galbany, L., De Jaeger, T., González-Gaitán, S. and Medina, G.,
+ The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs , 2018, The Astronomical Journal, 156(5), p.186. [
+ pdf]
+
+ Huijse, P., Estévez, P.A., Förster, F., Daniel, S.F., Connolly, A.J., Protopapas, P., Carrasco, R. and Príncipe, J.C.,
+ Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era.
+ The Astrophysical Journal Supplement Series, 2018, 236(1), p.12 [
+ pdf]
+
+
+ Belhaj, M., Protopapas, P. and Pan, W.,
+ Deep variational transfer: Transfer learning through semi-supervised deep generative models, 2018, arXiv preprint arXiv:1812.03123 [
+ pdf]
+
+
+ Maat, J.R., Gianniotis, N. and Protopapas, P.,
+ July. Efficient optimization of echo state networks for time series datasets, 2018, In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
+ pdf]
+
+ Hoernle, N., Gal, K., Grosz, B., Protopapas, P. and Rubin, A.,
+ Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems, 2018, International Educational Data Mining Society [
+ pdf]
+
+ Martínez-Galarza, J.R., Protopapas, P., Smith, H.A. and Morales, E.F.,
+ Unraveling the Spectral Energy Distributions of Clustered YSOs, 2018, The Astrophysical Journal, 864(1), p.71. [
+ pdf]
+
+ Davis, R.C., Cabrera-Vives, G., Förster, F., Estévez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez, J. and Donoso, C.,
+ Deep Learning for Image Sequence Classification of Astronomical Events, 2018, arXiv preprint arXiv:1807.03869 [
+ pdf]
+
+
+ Jiang, Y.F., Green, P.J., Greene, J.E., Morganson, E., Shen, Y., Pancoast, A., MacLeod, C.L., Anderson, S.F., Brandt, W.N., Grier, C.J. and Rix, H.W., Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves,
+ 2017, The Astrophysical Journal, 836(2), p.186 [pdf]
+
+
+ Benavente, P., Protopapas, P. and Pichara, K.,
+ Automatic survey-invariant classification of variable stars, 2017, The Astrophysical Journal, 845(2), p.147 [
+ pdf]
+
+
+ Castro, N., Protopapas, P. and Pichara, K.,
+ Uncertain classification of variable stars: handling observational GAPS and noise, 2017, The Astronomical Journal, 155(1), p.16 [
+ pdf]
+
+ Protopapas, P., Recurrent Neural Network Applications for Astronomical Time Series, 2017, In American Astronomical Society Meeting Abstracts# 230 (Vol. 230, pp. 104-03). [
+ pdf]
+
+ Mackenzie, C., Pichara, K. and Protopapas, P.,
+ Clustering-based feature learning on variable stars, 2016, The Astrophysical Journal, 820(2), p.138 [
+ pdf]
+
+ Pichara, K., Protopapas, P. and León, D.,
+ Meta-classification for variable stars, 2016, The Astrophysical Journal, 819(1), p.18 [
+ pdf]
+
+ Narasimhan, H., Pan, W., Kar, P., Protopapas, P. and Ramaswamy, H.G.,
+ December. Optimizing the multiclass F-measure via biconcave programming, 2016, In 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1101-1106). IEEE [
+ pdf]
+
+ Nun, I., Protopapas, P., Sim, B. and Chen, W.,
+ Ensemble learning method for outlier detection and its application to astronomical light curves The Astronomical Journal, 152(3), p.71 [
+ pdf]
+
+
+ Kim, R., Empirical Methods in Peer Prediction (Doctoral dissertation) [
+ pdf]
+
+
+ Xia, X., Protopapas, P. and Doshi-Velez, F.,
+ Cost-Sensitive Batch Mode Active Learning: Designing Astronomical Observation by Optimizing Telescope Time and Telescope Choice In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 477-485).
+ Society for Industrial and Applied Mathematics [
+ pdf]
+
+
+ Nun, I., Protopapas, P., Sim, B., Zhu, M., Dave, R., Castro, N. and Pichara, K., Fats: Feature analysis for time series, 2105, arXiv preprint arXiv:1506.00010 [
+ pdf]
+
+ Protopapas, P., Huijse, P., Estevez, P.A., Zegers, P., Principe, J.C. and Marquette, J.B.,
+ A novel, fully automated pipeline for period estimation in the eros 2 data set, 2015, The Astrophysical Journal Supplement Series, 216(2), p.25 [
+ pdf]
+
+ Yang, J.J., Wang, X., Protopapas, P. and Bornn, L.,
+ Fast and optimal nonparametric sequential design for astronomical observations, 2015, arXiv preprint arXiv:1501.02467 [
+ pdf]
+
+ Kim, D.W., Protopapas, P., Bailer-Jones, C.A., Byun, Y.I., Chang, S.W., Marquette, J.B. and Shin, M.S.,
+ The EPOCH Project-I. Periodic variable stars in the EROS-2 LMC database, 21014, Astronomy & Astrophysics, 566, p.A43 [
+ pdf]
+
+ Huijse, P., Estevez, P.A., Protopapas, P., Principe, J.C. and Zegers, P.,
+ Computational intelligence challenges and applications on large-scale astronomical time series databases, 2014, IEEE Computational Intelligence Magazine, 9(3), pp.27-39 [
+ pdf]
+
+ Nun, I., Pichara, K., Protopapas, P. and Kim, D.W.,
+ Supervised detection of anomalous light curves in massive astronomical catalogs, 2014 The Astrophysical Journal, 793(1), p.23 [
+ pdf]
+
+ Verde, L., Protopapas, P. and Jimenez, R.,
+ The expansion rate of the intermediate universe in light of Planck, 2014, Physics of the Dark Universe, 5, pp.307-314 [
+ pdf]
+
+
+ Verde, L., Protopapas, P. and Jimenez, R.,
+ Planck and the local Universe: Quantifying the tension, 2013, Physics of the Dark Universe, 2(3), pp.166-175 [
+ pdf]
+
+
+ Pichara, K. and Protopapas, P.,
+ Automatic classification of variable stars in catalogs with missing data, 2103, The Astrophysical Journal, 777(2), p.83 [
+ pdf]
+
+
+ Chang, S.W., Protopapas, P., Kim, D.W. and Byun, Y.I.,
+ Statistical properties of Galactic δ Scuti stars: revisited, 2013, The Astronomical Journal, 145(5), p.132 [
+ pdf]
+
+ Huijse, P., Estevez, P.A., Protopapas, P., Zegers, P. and Principe, J.C.,
+ An information theoretic algorithm for finding periodicities in stellar light curves, 2012, IEEE Transactions on Signal Processing, 60(10), pp.5135-5145 [
+ pdf]
+
+
+ Pichara, K., Protopapas, P., Kim, D.W., Marquette, J.B. and Tisserand, P.,
+ An improved quasar detection method in EROS-2 and MACHO LMC data sets, 2012, Monthly Notices of the Royal Astronomical Society, 427(2), pp.1284-1297 [
+ pdf]
+
+
+ Wang, Y., Khardon, R. and Protopapas, P.,
+ Nonparametric Bayesian estimation of periodic light curves 2012, The Astrophysical Journal, 756(1), p.67 [
+ pdf]
+
+
+ Kim, D.W., Protopapas, P., Trichas, M., Rowan-Robinson, M., Khardon, R., Alcock, C. and Byun, Y.I.,
+ A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the Large Magellanic Cloud The Astrophysical Journal, 747(2), p.107 [
+ pdf]
+
+
+ Blocker, A.W. and Protopapas, P.,
+ Semi-parametric robust event detection for massive time-domain databases, 2012, In Statistical Challenges in Modern Astronomy V (pp. 177-187). Springer, New York, NY [
+ pdf]
+
+
+ Wang, Y., Khardon, R. and Protopapas, P.,
+ Infinite shift-invariant grouped multi-task learning for gaussian processes, 2012, arXiv preprint arXiv:1203.0970 [
+ pdf]
+
+
+ Huijse, P., Estévez, P.A., Protopapas, P., Zegers, P. and Príncipe, J.C.,
+ Computational Challenges in Processing Very Large Astronomical Survey Databases, 2012, In 2012 9th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT) (pp. 1-6). IEEE [
+ pdf]
+
+
+ Kim, D.W., Protopapas, P., Byun, Y.I., Alcock, C., Khardon, R. and Trichas, M.,
+ Quasi-stellar object selection algorithm using time variability and machine learning: Selection of 1620 quasi-stellar object candidates from MACHO Large Magellanic Cloud database ,2011, The Astrophysical Journal, 735(2),
+ p.68 [
+ pdf]
+
+
+ Huijse, P., Estévez, P.A., Zegers, P., Príncipe, J.C. and Protopapas, P.,
+ Period estimation in astronomical time series using slotted correntropy, 2011, IEEE Signal Processing Letters, 18(6), pp.371-374 [
+ pdf]
+
+
+ Wang, Y., Khardon, R. and Protopapas, P.,
+ Nonparametric Bayesian estimation of periodic functions 2011, arXiv preprint arXiv:1111.1315 [
+ pdf]
+
+
+ Mishra, B.P., Principe, J.C., Estevez, P.A. and Protopapas, P.,
+ 2011, In 2011 IEEE International Workshop on Machine Learning for Signal Processing (pp. 1-6). IEEE [
+ pdf]
+
+ Fuentes, C.I., Holman, M.J., Trilling, D.E. and Protopapas, P.,
+ Trans-Neptunian objects with Hubble Space Telescope ACS/WFC 2011, The Astrophysical Journal, 722(2), p.1290 [
+ pdf]
+
+ Wang, Y., Khardon, R. and Protopapas, P.,
+ Shift-invariant grouped multi-task learning for Gaussian processes, 2010, In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 418-434). Springer, Berlin, Heidelberg [
+ pdf]
+
+ Estévez, P.A., Huijse, P., Zegers, P., Principe, J.C. and Protopapas, P.,
+ Period detection in light curves from astronomical objects using correntropy, 2010, In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
+ pdf]
+
+ U. Rebbapragada, P. Protopapas, C. Brodley, C. Alcock, Finding Anomalies in Periodic Time Series, Machine Learning, p. 281, vol. 74, (2009) [pdf]
+ S. Pember, C. Brodley, P. Protopapas, and A. Kilmer, Similarity Retrieval in Large Datasets using Rank Revealing QR, ICDM, Under review at IEEE PAMI, (2009).
+
+ Dan Preston, Pavlos Protopapas and Carla Brodley, Event Detection in Time Series, Proceedings of the Ninth SIAM International Conference on Data Mining, p. 61-72, (2009) [pdf]
+
+ Dan Preston, Pavlos Protopapas and Carla Brodley, Discovering Arbitrary Event Types in Time Series, SIAM Best of 09 SDM, (2009)
+ Dae-Won Kim, Pavlos Protopapas, Charles Alcock, Yong-Ik Byun, Federica Bianco, Detection of Flare Stars in TAOS 2-year Data, The Astronomer's Telegram, vol. #2035, (2009) [html]
+
+ Gabriel Wachman, Roni Khardon, Pavlos Protopapas, Charles R. Alcock, Kernels for Periodic Time Series Arising in Astronomy, ECML PKDD, (2009) [pdf]
+
+ Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, Charles Alcock and the TAOS collaboration, The TAOS Project Stellar Variability I. Detection of Low-Amplitude δ Scuti Stars and a Revised Catalog of All Known δ Scuti Stars, submitted to Astronomical Journal, (2009) [pdf]
+
+ J.~H. Wang, P. Protopapas, W. –P. Chen, C. R. Alcock, W. S. Burgett, T. Dombeck, J. S. Morgan, P. A. Price, J. L. Tonry, Searching for sub-kilometer TNOs using Pan-STARRS video mode lightcurves: Preliminary study and evaluation using engineering data, submitted
+ to Astronomical Journal, (2009) [pdf]
+
+ A. W. Blocker, P. Protopapas, C. R. Alcock, A Bayesian approach to the analysis of time symmetry in light curves: Reconsidering Scorpius X-1 occultations, The Astronomical Journal, Volume 138, Issue 2, pp. 568-578,
+ (
+ 2009) [pdf]
+
+ F. Bianco, P. Protopapas, B. McLeod, C. R. Alcock, M. J. Holman, M. J. Lehner. A Search for Occultations of Bright Stars by Small Kuiper Belt Objects using Megacam on the MMT, The Astronomical Journal,
+ Volume 138, Issue 2, pp. 568-578, (2009) [pdf]
+
+ D-W Kim, P. Protopapas, C. Alcock, B. Yong-Ik, F. Bianco, De-Trending Time Series for Astronomical Variability Surveys, Monthly Notices of the Royal Astronomical Society, Volume 397, Issue 2, pp. 558-568, (2008) [pdf]
+
+ R. E. Schild, J. Lovegrove, P. Protopapas, Reverberation in the UV-Optical Continuum Brightness Fluctuations of MACHO Quasar, The Astronomical Journal, Volume 138, Issue 2, pp. 421-427, (2009)
+ [
+ pdf]
+
+ Zhan et al., First Results from the Taiwanese-American Occultation Survey (TAOS), ApJL, 685, L157, (2008) [pdf]
+
+ E. Morikawa, R. Dave, P. Protopapas, A Novel GUI Based Interactive Work Flow Application for Exploratory and Batch Processing of Light Curves, Astronomical Data Analysis Software and Systems XVII, 394, 357, (
+ 2008) [pdf]
+
+ Lorenzo Faccioli, Charles Alcock, Kem Cook, Gabriel E. Prochter, Pavlos Protopapas, David Syphers, Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO Project: The Sample, AJ, 134, 1963-1994,
+ (2007) [pdf]
+
+ Holman, Matthew J.; Protopapas, P.; Tholen, D. J., Searching for Solar System Wide Binaries with Pan-STARRS-1, AAS, 39, 52, (2007)
+ Dave, R.; Protopapas, P.; Lehner, M., Virtual Astronomical Pipelines, Astronomical Data Analysis Software and Systems XVI ASP Conference Series, Vol. 376, proceedings of the conference held 15-18 October in Tucson,
+ Arizona, USA. Edited by Richard A. Shaw, Frank Hill and David J. Bell., p.253, (2006) [pdf]
+
+ J. M. Diego, M. Tegmark, P. Protopapas, H. B. Sadvik, Combined reconstruction of weak and strong lensing data with WSLAP, MNRAS, 375, 958-970, (2007) [pdf]
+
+ Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, Pavlos Protopapas. Supporting, Exact Indexing of Shapes under Rotation Invariance with Arbitrary
+ Representations and Distance Measures, VLDB: 882-893, (2006) [pdf]
+ P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave , C. Alcock, Finding outlier light-curves in catalogs of periodic variable stars, MNRAS, 369, 677,
+ (2006) [pdf]
+
+ Pavlos Protopapas, Raul Jimenez , Charles Alcock , Fast identification of transits from light-curves, MNRAS, 362, 460, (2005) [
+ pdf]
+
+ J. M. Diego, H. B. Sadvik, P. Protopapas, M. Tegmark, N. Benitez, T. Broadhurst, Non-parametric mass reconstruction of A1689 from strong lensing data with SLAP, MNRAS, 362, 1247,
+ (2005) [pdf]
+
+ J. M. Diego, P. Protopapas, H. B. Sadvik, M. Tegmark, Non-parametric inversion of strong lensing systems, MNRAS, 360, 477, (2005) [pdf]
+
+ A. Klein, P. Protopapas, S. G. Rohoziński, K. Starosta, Kerman-Klein-Dönau-Frauendorf model for odd-odd nuclei: Formal theory, Physical Review C, vol. 69, Issue 3, id. 034338,
+ (2005) [pdf]
+
+ R. D. Amado, M. Á. Halász, P. Protopapas, Two Skyrmion dynamics with ω mesons, Physical Review D (Particles and Fields), Volume 61, Issue 7, (2000) [pdf]
+ Y. Lu, P. Protopapas, R. D. Amado, Nucleon-antinucleon interaction from the Skyrme model. II. Beyond the product ansatz, Physical Review C, 57, 1983-1990, (1998) [pdf]
+ P. Protopapas, A. Klein, Possible solution of the Coriolis attenuation problem, (1997), Phys. Rev. C, 55, 1810-1818 [
+ pdf]
+
+ P. Protopapas, A. Klein, Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-Dönau-Frauendorf theory,
+ (1997), Physical Review C (Nuclear Physics), Volume 55, Issue 2, pp.699-713 [pdf]
+
+ P. Protopapas, A. Klein, Application of the Kerman-Klein Method to the Solution of a Spherical Shell Model for a Deformed Rare-Earth Nucleus,
+ (1997), Physical Review Letters, Volume 78, Issue 23, June 9, pp.4347-4350 [pdf]
+
+ P. Protopapas, A. Klein, N. R. Walet, Further application of a semimicroscopic core-particle coupling method to the properties of 155,157Gd and 159Dy,
+ (1996), Physical Review C (Nuclear Physics), Volume 53, Issue 4, April pp.1655-1659 [pdf]
+
+ P. Protopapas, A. Klein, N. R. Walet, Application of a semimicroscopic core-particle coupling method to the backbending in odd deformed nuclei, (1996)
+ , Physical Review C (Nuclear Physics), Volume 54, Issue 2, pp.638-645 [pdf]
+
+ P. Protopapas, A. Klein, N. R. Walet, Calculation of the properties of the rotational bands of 155,157Gd, (1994),
+ Physical Review C (Nuclear Physics), Volume 50, Issue 1, pp.245-256 [pdf]
+
+