-
Notifications
You must be signed in to change notification settings - Fork 439
/
knapsack01.py
35 lines (33 loc) · 1.27 KB
/
knapsack01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#srikavya15 Implementation of0/1 knapsack in dynamic programming in python 18-10-2024
#0/1 knapsack using dynamic programming
def knapsack01(weights, profits, W, n):
dp=[[0 for _ in range(W+1)]for _ in range(n+1)]
for i in range(1,n+1):
for w in range(1,W+1):
if weights[i-1]<=w:
dp[i][w]=max(dp[i-1][w],profits[i-1]+dp[i-1][w-weights[i-1]])
else:
dp[i][w]=dp[i-1][w]
max_value=dp[n][w]
selected_items = []
w = W
for i in range(n, 0, -1):
if dp[i][w] != dp[i - 1][w]:
selected_items.append(i - 1)
w -= weights[i - 1]
selected_items.reverse()
return max_value, selected_items
W = int(input('Enter the knapsack capacity: '))
n = int(input('Enter the number of items: '))
weights = []
profits = []
for i in range(n):
x = int(input(f'Enter weight of item {i + 1}: '))
y = int(input(f'Enter profit of item {i + 1}: '))
weights.append(x)
profits.append(y)
print('Weights:', weights)
print('Profits:', profits)
max_value, selected_items = knapsack01(weights, profits, W, n)
print(f"The maximum profit that can be obtained is: {max_value}")
print(f"The selected items (1-based index) are: {[i + 1 for i in selected_items]}")