-
Notifications
You must be signed in to change notification settings - Fork 0
/
day 2 prob 1
78 lines (52 loc) · 2.31 KB
/
day 2 prob 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# 661
An image smoother is a filter of the size 3 x 3 that can be applied to each cell of an image by rounding down the average of the cell and the eight surrounding cells (i.e., the average of the nine cells in the blue smoother). If one or more of the surrounding cells of a cell is not present, we do not consider it in the average (i.e., the average of the four cells in the red smoother).
Given an m x n integer matrix img representing the grayscale of an image, return the image after applying the smoother on each cell of it.
Example 1:
Input: img = [[1,1,1],[1,0,1],[1,1,1]]
Output: [[0,0,0],[0,0,0],[0,0,0]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the points (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0
Example 2:
Input: img = [[100,200,100],[200,50,200],[100,200,100]]
Output: [[137,141,137],[141,138,141],[137,141,137]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor((100+200+200+50)/4) = floor(137.5) = 137
For the points (0,1), (1,0), (1,2), (2,1): floor((200+200+50+200+100+100)/6) = floor(141.666667) = 141
For the point (1,1): floor((50+200+200+200+200+100+100+100+100)/9) = floor(138.888889) = 138
Constraints:
m == img.length
n == img[i].length
1 <= m, n <= 200
0 <= img[i][j] <= 255
answer code
class Solution {
public:
int calculateAverage(const vector<vector<int>>& img, int r, int c, int rows, int cols) {
int total = 0;
int count = 0;
int top = max(0, r - 1);
int bottom = min(rows, r + 2);
int left = max(0, c - 1);
int right = min(cols, c + 2);
for (int row = top; row < bottom; row++) {
for (int col = left; col < right; col++) {
total += img[row][col];
count += 1;
}
}
return total / count;
}
vector<vector<int>> imageSmoother(vector<vector<int>>& img) {
int rows = img.size();
int cols = img[0].size();
vector<vector<int>> result(rows, vector<int>(cols, 0));
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = calculateAverage(img, r, c, rows, cols);
}
}
return result;
}
};