-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.py
117 lines (96 loc) · 4.82 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from keras.preprocessing.image import img_to_array
import imutils
import cv2
from keras.models import load_model
import tensorflow as tf
global graph,model
graph = tf.get_default_graph()
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import time
from datetime import datetime
# parameters for loading data and images
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
emotion_model_path = 'models/_mini_XCEPTION.102-0.66.hdf5'
# hyper-parameters for bounding boxes shape
# loading models
face_detection = cv2.CascadeClassifier(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised",
"neutral"]
#feelings_faces = []
#for index, emotion in enumerate(EMOTIONS):
# feelings_faces.append(cv2.imread('emojis/' + emotion + '.png', -1))
# starting video streaming
def Emo():
#camera = cv2.VideoCapture('C:/Users/1011696/Documents/Python_Scripts/Emo/FaceDetection/static/video.avi')
camera = cv2.VideoCapture(0)
df = pd.DataFrame(columns=['Time','Emotion'])
start_time = datetime.now()
t0 = time.time()
while True:
frame = camera.read()[1]
t1 = time.time() # current time
num_seconds = t1 - t0 # diff
global preds,label,fX, fY, fW, fH
if num_seconds > 30: # e.g. break after 30 seconds
break
#reading the frame
frame = imutils.resize(frame,width=300)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_detection.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE)
canvas = np.zeros((250, 300, 3), dtype="uint8")
frameClone = frame.copy()
if len(faces) > 0:
faces = sorted(faces, reverse=True,
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
(fX, fY, fW, fH) = faces
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
# the ROI for classification via the CNN
roi = gray[fY:fY + fH, fX:fX + fW]
roi = cv2.resize(roi, (64, 64))
roi = roi.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
with graph.as_default():
preds = emotion_classifier.predict(roi)[0]
emotion_probability = np.max(preds)
label = EMOTIONS[preds.argmax()]
end_time = datetime.now()
df = df.append({'Time':(end_time - start_time),'Emotion':label}, ignore_index=True)
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)):
# construct the label text
text = "{}: {:.2f}%".format(emotion, prob * 100)
# draw the label + probability bar on the canvas
# emoji_face = feelings_faces[np.argmax(preds)]
w = int(prob * 300)
cv2.rectangle(canvas, (7, (i * 35) + 5),
(w, (i * 35) + 35), (0, 0, 255), -1)
cv2.putText(canvas, text, (10, (i * 35) + 23),
cv2.FONT_HERSHEY_SIMPLEX, 0.45,
(255, 255, 255), 2)
cv2.putText(frameClone, label, (fX, fY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
(0, 0, 255), 2)
#print('{} {}'.format(label,(end_time - start_time)))
# for c in range(0, 3):
# frame[200:320, 10:130, c] = emoji_face[:, :, c] * \
# (emoji_face[:, :, 3] / 255.0) + frame[200:320,
# 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0)
#cv2.imshow('your_face', frameClone)
#cv2.imshow("Probabilities", canvas)
#if cv2.waitKey(1) & 0xFF == ord('q'):
print(df)
#df['Emotion'].value_counts().plot('pie').invert_yaxis()
#plt.savefig("C:/Users/1011696/Documents/Python_Scripts/Emo/FaceDetection/static/people_photo/pie_output.png")
#df['Emotion'].value_counts().plot('bar')
#plt.savefig("C:/Users/1011696/Documents/Python_Scripts/Emo/FaceDetection/static/people_photo/bar_output.png")
sns.set_style("dark")
sns.countplot(df.Emotion)
# plt.savefig("C:/Users/1011696/Documents/Python_Scripts/login2/FaceDetection/static/people_photo/bar_output.png")
plt.savefig("C:/Users/1011696/Documents/Python_Scripts/Face/login2 - Copy(V1)/FaceDetection/static/people_photo/bar_output.png")
df=[]
camera.release()