forked from neurosim/MLP_NeuroSim_V3.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMapping.cpp
109 lines (100 loc) · 4.85 KB
/
Mapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*******************************************************************************
* Copyright (c) 2015-2017
* School of Electrical, Computer and Energy Engineering, Arizona State University
* PI: Prof. Shimeng Yu
* All rights reserved.
*
* This source code is part of NeuroSim - a device-circuit-algorithm framework to benchmark
* neuro-inspired architectures with synaptic devices(e.g., SRAM and emerging non-volatile memory).
* Copyright of the model is maintained by the developers, and the model is distributed under
* the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License
* http://creativecommons.org/licenses/by-nc/4.0/legalcode.
* The source code is free and you can redistribute and/or modify it
* by providing that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Developer list:
* Pai-Yu Chen Email: pchen72 at asu dot edu
*
* Xiaochen Peng Email: xpeng15 at asu dot edu
********************************************************************************/
#include <cstdio>
#include <vector>
#include <random>
#include "Param.h"
#include "Array.h"
#include "NeuroSim.h"
extern Param *param;
extern std::vector< std::vector<double> > weight1;
extern std::vector< std::vector<double> > weight2;
extern Array *arrayIH;
extern Array *arrayHO;
/* Weights initialization */
void WeightInitialize() {
srand(2);
/* Initialize weights for the input layer */
for (int i = 0; i < param->nHide; i++) {
for (int j = 0; j < param->nInput; j++) {
weight1[i][j] = (double)(rand() % 7 +(-3) ) / 3; // random number: 0, 0.33, 0.66 or 1
//printf("weight 1 is %.4f\n", weight1[i][j]);
}
}
/* Initialize weights for the hidden layer */
for (int i = 0; i < param->nOutput; i++) {
for (int j = 0; j < param->nHide; j++) {
weight2[i][j] = (double)(rand() % 7 +(-3) ) / 3; // random number: 0, 0.33, 0.66 or 1
}
}
}
/* Conductance initialization (map weight to RRAM conductance or SRAM data) */
void WeightToConductance() {
/* Erase the weight of arrayIH */
for (int col=0; col<param->nHide; col++) {
for (int row=0; row<param->nInput; row++) {
arrayIH->WriteCell(col, row, -(param->maxWeight-param->minWeight), 0 /* delta_W=-(param->maxWeight-param->minWeight) will completely erase */, param->maxWeight, param->minWeight, false);
}
}
/* Erase the weight of arrayHO */
for (int col=0; col<param->nOutput; col++) {
for (int row=0; row<param->nHide; row++) {
arrayHO->WriteCell(col, row, -(param->maxWeight-param->minWeight), 0 /* delta_W=-(param->maxWeight-param->minWeight) will completely erase */, param->maxWeight, param->minWeight, false);
}
}
/* Write weight to arrayIH */
for (int col=0; col<param->nHide; col++) {
for (int row=0; row<param->nInput; row++) {
arrayIH->WriteCell(col, row, weight1[col][row], weight1[col][row], param->maxWeight, param->minWeight, false);
}
}
/* Write weight to arrayHO */
for (int col=0; col<param->nOutput; col++) {
for (int row=0; row<param->nHide; row++) {
arrayHO->WriteCell(col, row, weight2[col][row], weight2[col][row], param->maxWeight, param->minWeight, false);
}
}
}
/* Mapping from analog current to digital output*/
int CurrentToDigits(double I /* current */, double Imax /* max current */) {
return (int)(I / (Imax/param->pSumMaxHardware));
}
/* Mapping from hardware digital output to algorithm value*/
double DigitsToAlgorithm(int outputDigits /* output digits from ADC */, double pSumMaxAlgorithm /* max value of partial weighted sum in algorithm */) {
return ((double)outputDigits / param->pSumMaxHardware) * pSumMaxAlgorithm;
}