forked from huawei-noah/Efficient-AI-Backbones
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-ghostnet.py
executable file
·136 lines (120 loc) · 5.47 KB
/
test-ghostnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# main script for testing GhostNet on ImageNet
# verified on TF-1.13.1, Tensorpack-0.9.7
import argparse
import numpy as np
import math
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import cv2
from time import time
import moxing as mox
import zipfile
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import imgaug
from tensorpack.tfutils import argscope, get_model_loader, model_utils
from tensorpack.tfutils.scope_utils import under_name_scope
from tensorpack.utils.gpu import get_num_gpu
from tensorpack.utils import logger
from imagenet_utils import (
get_imagenet_dataflow,
ImageNetModel, GoogleNetResize, eval_on_ILSVRC12)
def get_data(name, batch):
isTrain = name == 'train'
image_shape = 224
if isTrain:
augmentors = [
# use lighter augs if model is too small
GoogleNetResize(crop_area_fraction=0.49 if args.width_ratio < 1 else 0.08,
target_shape=image_shape),
imgaug.RandomOrderAug(
[imgaug.BrightnessScale((0.6, 1.4), clip=False),
imgaug.Contrast((0.6, 1.4), clip=False),
imgaug.Saturation(0.4, rgb=False),
]),
imgaug.Flip(horiz=True),
]
else:
augmentors = [
imgaug.ResizeShortestEdge(int(image_shape*256/224), cv2.INTER_CUBIC),
imgaug.CenterCrop((image_shape, image_shape)),
]
return get_imagenet_dataflow(args.data_dir, name, batch, augmentors,
meta_dir = args.meta_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval', action='store_true')
parser.add_argument('--data_dir', help='dataset dir.', type=str, default='/cache/data/imagenet/')
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--batch', type=int, default=1024, help='total batch size')
parser.add_argument('--lr', type=float, default=0.1, help='base learning rate')
parser.add_argument('--epochs', type=int, default=400, help='total epochs')
parser.add_argument('--load', help='path to load a model from', default='./ghostnet_chechpoint')
parser.add_argument('--flops', type=int, help='print flops and exit', default=0)
parser.add_argument('--weight_decay', type=float, help='weight_decay', default=0.00004)
parser.add_argument('--label_smoothing', type=float, help='label_smoothing', default=0.1)
parser.add_argument('--data-format', help='image data format',
default='NHWC', choices=['NCHW', 'NHWC'])
# param parser
parser.add_argument('--width_ratio', help='width_ratio', type=float, default=1)
parser.add_argument('--dropout_keep_prob', help='dropout_keep_prob', type=float, default=0.8)
parser.add_argument('--se', help='se', type=int, default=3)
parser.add_argument('--dw_code_str', help='dw_code_str', type=str, default='')
parser.add_argument('--ratio_code_str', help='ratio_code_str', type=str, default='')
args, unparsed = parser.parse_known_args()
args.meta_dir = os.path.join(args.data_dir, 'caffe_ilsvrc12')
print(args)
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.batch != 1024:
logger.warn("Total batch size != 1024, you need to change other hyperparameters to get the same results.")
TOTAL_BATCH_SIZE = args.batch
if len(args.dw_code_str) == 0:
dw_code = None
else:
dw_code = [int(s) for s in args.dw_code_str.split(',')]
print('dw_code', dw_code)
if len(args.ratio_code_str) == 0:
ratio_code = None
else:
ratio_code = [int(s) for s in args.ratio_code_str.split(',')]
print('ratio_code', ratio_code)
# create GhostNet
from ghost_net import GhostNet
model = GhostNet(width=args.width_ratio, se=args.se,
weight_decay=args.weight_decay,
dw_code=dw_code, ratio_code=ratio_code,
label_smoothing=args.label_smoothing)
model.data_format = args.data_format
print('model created')
# start evaluation
if args.eval:
batch = 256 # something that can run on your gpu
ds = get_data('val', batch)
start = time()
eval_on_ILSVRC12(model, get_model_loader(args.load), ds)
stop = time()
print('Evaluation used time: %.2fs.' % (stop-start))
elif args.flops > 0:
# manually build the graph with batch=1
image_shape = 224
input_desc = [
InputDesc(tf.float32, [1, image_shape, image_shape, 3], 'input'),
InputDesc(tf.int32, [1], 'label')
]
input = PlaceholderInput()
input.setup(input_desc)
with TowerContext('', is_training=False):
model.build_graph(*input.get_input_tensors())
model_utils.describe_trainable_vars()
tf.profiler.profile(
tf.get_default_graph(),
cmd='op',
options=tf.profiler.ProfileOptionBuilder.float_operation())
logger.info("Note that TensorFlow counts flops in a different way from the paper.")
logger.info("TensorFlow counts multiply+add as two flops, however the paper counts them "
"as 1 flop because it can be executed in one instruction.")
else:
print('nothing done')