-
Notifications
You must be signed in to change notification settings - Fork 0
/
ensemble.py
123 lines (103 loc) · 3.59 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import hydra
import wandb
import os
import itertools
import torch
from omegaconf import OmegaConf
from pprint import pprint
from random_word import RandomWords
from typing import List
def get_torch_distribution(distr_name):
if distr_name == "laplace":
return "torch.distributions.Laplace"
elif distr_name == "normal":
return "torch.distributions.Normal"
elif distr_name == "uniform":
return "torch.distributions.Uniform"
else:
ValueError(f"Distribution {distr_name} cannot be resolved!")
def get_torch_distribution_args(distr_name):
if distr_name == "laplace":
return [0.0, 1.0]
elif distr_name == "normal":
return [0.0, 1.0]
elif distr_name == "uniform":
return [0.0, 1.0]
else:
ValueError(f"Distribution {distr_name} cannot be resolved!")
def get_permutations(n: int) -> List[List[int]]:
return list(itertools.permutations(range(n)))
# Add resolver for hydra
OmegaConf.register_new_resolver("eval", eval)
OmegaConf.register_new_resolver("get_torch_distribution", get_torch_distribution)
OmegaConf.register_new_resolver(
"get_torch_distribution_args", get_torch_distribution_args
)
OmegaConf.register_new_resolver("get_permutations", get_permutations)
def init_run_dir(conf):
# Handle preemption and resume
run_name = str(conf.wandb.run_name)
resume = True
r = RandomWords()
w1, w2 = r.get_random_word(), r.get_random_word()
if run_name is None:
run_name = f"{w1}_{w2}"
else:
run_name += f"_{w1}_{w2}"
out_dir = os.path.join(conf.out_dir, run_name)
config_yaml = os.path.join(out_dir, "config.yaml")
if os.path.exists(config_yaml):
with open(config_yaml) as fp:
old_conf = OmegaConf.load(fp.name)
run_id = old_conf.wandb.run_id
else:
run_id = wandb.util.generate_id()
resume = False
if not os.path.exists(out_dir):
os.makedirs(out_dir)
resume = False
conf.out_dir = out_dir
conf.wandb.resume = resume
conf.wandb.run_id = run_id
conf.wandb.run_name = run_name
with open(config_yaml, "w") as fp:
OmegaConf.save(conf, fp.name)
return conf
@hydra.main(version_base=None, config_path="config", config_name="ensemble")
def main(conf):
conf = hydra.utils.instantiate(conf)
if conf.test_run:
pprint(OmegaConf.to_container(conf, resolve=True))
else:
conf = init_run_dir(conf)
wandb.init(
dir=conf.out_dir,
project=conf.wandb.project,
config=OmegaConf.to_container(conf, resolve=True),
name=conf.wandb.run_name,
id=conf.wandb.run_id,
resume="allow" if conf.wandb.resume else False,
# compatible with hydra
settings=wandb.Settings(start_method="thread"),
)
wandb.define_metric("flow/step")
wandb.define_metric("permutation/step")
wandb.define_metric("flow/*", step_metric="flow/step")
wandb.define_metric("permutation/*", step_metric="permutation/step")
dset = conf.data
flow_dloader = torch.utils.data.DataLoader(
dset, batch_size=conf.flow_batch_size, shuffle=True
)
flow_ensemble_dloader = torch.utils.data.DataLoader(
dset, batch_size=conf.flow_ensemble_batch_size, shuffle=True
)
model = conf.model
trainer = conf.trainer(
model=model,
dag=dset.dag,
flow_dataloader=flow_dloader,
flow_ensemble_dataloader=flow_ensemble_dloader,
)
trainer.run()
if __name__ == "__main__":
main()