-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
270 lines (231 loc) · 9.94 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#Final project DADS5001 (Live chat analytics)
#Witsarut Wongsim 6420422017
#Pimchayanan Kusontramas 6420422018
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash
import dash_core_components as dcc
import dash_html_components as html
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from dash.dependencies import Input, Output
import pandas as pd
import datetime
df=pd.read_csv("chats-csv.csv",on_bad_lines='skip' )
df['datetime']= pd.to_datetime(df['datetime'])
# Group the data by username
grouped_data = df.groupby('name')
grouped_data
# Calculate the summary score for each category by summing the corresponding columns
scores = grouped_data[['positive_value','negative_value','joy','surprise','sadness','pleasant','fear','anger','neutral']].sum()
# Create a new dataframe with the username and scores
scores_df = pd.DataFrame(scores).reset_index()
scores_df['sum']=scores_df[['positive_value','negative_value', 'joy', 'surprise', 'sadness', 'pleasant', 'fear','anger', 'neutral']].sum(axis=1)
scores_df.sort_values(by='sum', ascending=False, inplace=True)
top10user=scores_df.iloc[0:10,:]
data = top10user
data['name'].unique()
text = df[['message']]
text.head()
text['message'] = text['message'].str.replace(r'[^ก-๙]','').reset_index(drop=True)
text['message'].astype(str)
text_data = pd.DataFrame(text, columns=['message'])
text = text.query('message != ""')
dfs=df[['datetime','message','positive_value','negative_value','joy','surprise','sadness','pleasant','fear','anger','neutral']]
dfs['datetime'] = pd.to_datetime(dfs['datetime'], unit='s')
dfs=dfs.dropna()
dfs[['positive_value','negative_value','joy','surprise','sadness','pleasant','fear','anger','neutral']] =dfs[['positive_value','negative_value','joy','surprise','sadness','pleasant','fear','anger','neutral']].cumsum()
df_accum = dfs
# load data into a DataFrame
categories = ['positive_value','negative_value','joy','surprise','sadness','pleasant','fear','anger']#,'neutral'
# Create a figure with 10 subplots
radar = make_subplots(rows=2, cols=5,specs=[[{'type': 'polar'}]*5]*2, subplot_titles=data['name'].unique())
# Iterate through the dataframe to add traces to each subplot
for i, username in enumerate(data['name'].unique()):
user_data = data[data['name'] == username]
trace = go.Scatterpolar(
r = user_data[categories].values.tolist()[0],
theta = categories,
fill = 'toself',
)
# Add the trace to the corresponding subplot
radar.add_trace(trace, row=i // 5 + 1, col=i % 5 + 1)
# Update the layout of the figure
radar.update_layout(polar=dict(radialaxis=dict(visible=True,range=[0,62])), font=dict(size=8) )
app = dash.Dash()
col = ['positive_value','negative_value', 'joy', 'surprise', 'sadness', 'pleasant', 'fear','anger', 'neutral']
# sum each column individually
df_grouped = df[col].sum()
# Create bar chart
chart = dcc.Graph(
id='bar-chart',
figure={
'data': [
go.Bar(
x=df_grouped.index,
y=df_grouped.values
)
],
'layout': go.Layout(
title='Bar Chart Sentiment Analysis',
xaxis={'title': 'Sentiment'},
yaxis={'title': 'Sum'}
)
}
)
app.layout = html.Div([
html.Div(
[
dcc.Graph(
id='acc_line_chart',
figure={
'data': [
go.Scatter(x=df_accum.datetime, y=df_accum['positive_value'], mode='lines', name='positive_value'),
go.Scatter(x=df_accum.datetime, y=df_accum['negative_value'], mode='lines', name='negative_value'),
go.Scatter(x=df_accum.datetime, y=df_accum['joy'], mode='lines', name='joy'),
go.Scatter(x=df_accum.datetime, y=df_accum['surprise'], mode='lines', name='surprise'),
go.Scatter(x=df_accum.datetime, y=df_accum['sadness'], mode='lines', name='sadness'),
go.Scatter(x=df_accum.datetime, y=df_accum['pleasant'], mode='lines', name='pleasant'),
go.Scatter(x=df_accum.datetime, y=df_accum['fear'], mode='lines', name='fear'),
go.Scatter(x=df_accum.datetime, y=df_accum['anger'], mode='lines', name='anger'),
go.Scatter(x=df_accum.datetime, y=df_accum['neutral'], mode='lines', name='neutral'),
],
'layout': go.Layout(
xaxis={'title': 'Date and Time'},
yaxis={'title': 'Sentiment'},
margin={'l': 40, 'b': 40, 't': 40, 'r': 40},
legend={'x': 0, 'y': 1},
hovermode='closest',
title = 'Accumulate Sentiment overtime Chart by category'
)
}
),
dcc.Graph(
id='sentiment-chart',
figure={
'data': [
go.Scatter(x=df['datetime'], y=df['positive_value'], mode='lines', name='positive_value'),
go.Scatter(x=df['datetime'], y=df['negative_value'], mode='lines', name='negative_value'),
go.Scatter(x=df['datetime'], y=df['joy'], mode='lines', name='joy'),
go.Scatter(x=df['datetime'], y=df['surprise'], mode='lines', name='surprise'),
go.Scatter(x=df['datetime'], y=df['sadness'], mode='lines', name='sadness'),
go.Scatter(x=df['datetime'], y=df['pleasant'], mode='lines', name='pleasant'),
go.Scatter(x=df['datetime'], y=df['fear'], mode='lines', name='fear'),
go.Scatter(x=df['datetime'], y=df['anger'], mode='lines', name='anger'),
go.Scatter(x=df['datetime'], y=df['neutral'], mode='lines', name='neutral'),
] ,
'layout': go.Layout(
xaxis={'title': 'Date and Time'},
yaxis={'title': 'Sentiment'},
margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
legend={'x': 0, 'y': 1},
hovermode='closest',
title='Sentiment overtime'
)
}
),
dcc.Checklist(
id='sentiment-categories',
options=[
{'label': 'positive_value', 'value': 'positive_value'},
{'label': 'negative_value', 'value': 'negative_value'},
{'label': 'joy', 'value': 'joy'},
{'label': 'surprise', 'value': 'surprise'},
{'label': 'sadness', 'value': 'sadness'},
{'label': 'pleasant', 'value': 'pleasant'},
{'label': 'fear', 'value': 'fear'},
{'label': 'anger', 'value': 'anger'},
{'label': 'neutral', 'value': 'neutral'}
],
value=['positive_value'])
] , style = {'padding':10 , 'flex':1}) ,
html.Div([
dcc.Dropdown(
id='column-selector',
options=['positive_value', 'negative_value', 'joy', 'surprise', 'sadness', 'pleasant', 'fear', 'anger', 'neutral'],
value='positive_value'
),
dcc.Graph(id='heatmap')
] ,style = {'padding':10 , 'flex':1})
,chart,
html.Div([
# Create a dropdown menu with all the available usernames
dcc.Dropdown(
id='username-dropdown',
options=[{'label': username, 'value': username} for username in data['name'].unique()],
value='evejangja'
),
# Create a Graph component to display the radar chart
dcc.Graph(id='polar-chart',figure={'layout': go.Layout(title='Radar Chart by User')}),
],style={'padding':10 , 'flex':1}),
dcc.Graph(figure=radar)
])
@app.callback(
Output('sentiment-chart', 'figure'),
[Input('sentiment-categories', 'value')])
def update_chart(sentiment_categories):
data = []
for category in sentiment_categories:
x_values = df['datetime']
y_values = df[category]
data.append(go.Scatter(x=x_values, y=y_values, mode='lines', name=category))
return {
'data': data,
'layout': go.Layout(
xaxis={'title': 'Date and Time'},
yaxis={'title': 'Sentiment'},
margin={'l': 40, 'b': 40, 't': 40, 'r': 40},
legend={'x': 0, 'y': 1},
hovermode='closest',
title='Sentiment overtime'
)
}
@app.callback(
dash.dependencies.Output('polar-chart', 'figure'),
[dash.dependencies.Input('username-dropdown', 'value')])
def update_chart(username):
user_data = data[data['name'] == username]
trace = go.Scatterpolar(
r = user_data[categories].values.tolist()[0],
theta = categories,
fill = 'toself',
)
return {
'data': [trace],
'layout': go.Layout(
polar=dict(radialaxis=dict(visible=True,range=[0,62])),
title=f'Radar chart by username:{ username }'
),
}
@app.callback(
Output(component_id='heatmap', component_property='figure'),
[Input(component_id='column-selector', component_property='value')]
)
def update_heatmap(column):
df_pivot = df.pivot_table(values=column, index='datetime', columns='name')
return {
'data': [
go.Heatmap(
x=df_pivot.columns,
y=df_pivot.index,
z=df_pivot.values,
colorscale='Blues', #Viridis
)
],
'layout': go.Layout(
xaxis={'title': 'Name','automargin': True},
yaxis={'title': 'Date and Time','automargin': True},
height= 600,
margin={'l': 40, 't': 40, 'r': 40},
hovermode='closest',
title=f'Sentiment Heatmap by {column}'
)
}
if __name__ == '__main__':
app.run_server()