-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathEnergyTransport_freeHamiltonian_Thermal.py
549 lines (428 loc) · 22.7 KB
/
EnergyTransport_freeHamiltonian_Thermal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/usr/bin/env python
import matplotlib.pylab as plt
from qutip import *
from scipy import *
import numpy as np
from equilbrium_positions import equilibrium_positions
import simulation_parameters
from scipy import linalg as LA
class chain():
"""
Create a changingain with the given parameters
"""
def __init__(self, omegax, N, M, omega_x, omega_z, equal_distances):
self.omegax = omegax
self.omega_x = omega_x
self.omega_z = omega_z
self.N = N
self.M = M
self.equal_distances = equal_distances
# Create an element of local modes basis, arr is the array of local modes,
# e.g., arr = [0, 2, 1] gives |0,2,1>: Note len(arr) must be = N and
# max(arr) must be < M:
self.ket = lambda arr: tensor([basis(self.M, arr[i]) for i in range(len(arr))])
self.ann_op = lambda i: tensor( [ destroy(self.M) if j == i else qeye(self.M) for j in range(self.N) ] )
self.local_n_fock = lambda i: tensor([ create(self.M)*destroy(self.M) if j == i else qeye(self.M) for j in range(self.N) ])
# Create local Fock space destruction operators:
self.a = [self.ann_op(i) for i in range(self.N)]
self.fock_identity = tensor( [ qeye(self.M) for i in range(self.N) ] )
def simulate(self, ions, times, example, ions_init_fock_state, ion = 1, DELTA=0, OMEGA=0):
N = self.N
M = self.M
omegax = self.omegax
middle_states = ions_init_fock_state[1:self.N-1]
if example == 1: #initial state (|01>+|10>)/sqrt(2), op = |01><10| + |10><01|, for ions[0] and ions[1]
psi0 = self.DFS_initial_state(ions)
op_term1 = tensor(self.op_arr(ions))
op = op_term1 + op_term1.dag()
# Find time evolution of psi0 and op with free Hamiltonian
H = self.free_Hamiltonian()
output1 = mcsolve(H, psi0, times, [], [op])
elif example == 2: # This is just a special case of example 4
psi0 = self.one_ion_excited_initial_state(ion)
op_term1 = tensor(self.self_correlation_op_arr(ion))
op = op_term1
# Find time evolution of psi0 and op with free Hamiltonian
H = self.free_Hamiltonian()
output1 = mcsolve(H, psi0, times, [], [op])
elif example == 3:
psi0 = self.one_ion_entangled_state(ion)
op_term1 = tensor(self.one_ion_1to0_projector_op_arr(ion))
op = op_term1
- # Find time evolution of psi0 and op with free Hamiltonian
H = self.free_Hamiltonian()
output1 = mcsolve(H, psi0, times, [], [op])
elif example == 4:
ion_init_fock_state = ions_init_fock_state[ion-1]
psi0 = self.one_ion_excited_initial_state(ion_init_fock_state, ion)
op_term1 = sum( [(float(n)/ion_init_fock_state) * tensor(self.self_correlation_op_arr(n, ion)) for n in range(1, sum(ions_init_fock_state)+1)] )
op = op_term1
H = self.free_Hamiltonian()
# Find time evolution of psi0 and op
output1 = mcsolve(H, psi0, times, [], [op])
elif example == 5:
op_term1 = tensor(self.op_arr(ions))
op = op_term1 + op_term1.dag()
psi0 = self.DFS_initial_state(ions, middle_states)
# Find time evolution of psi0 and op with free Hamiltonian
H = self.free_Hamiltonian()
output1 = mcsolve(H, psi0, times, [], [op])
elif example == 6: #Far detuned 2nd blue sideband
eta = .05
sigma_plus = create(2)
expo_ion1 = 1.j*eta * ( self.a[0] + (self.a[0]).dag())
expo_ion1_series = expo_ion1**2/2 + expo_ion1**3/6
H0 = self.free_Hamiltonian()
Ht_term1 = 0.5*OMEGA * tensor(sigma_plus, expo_ion1_series)
Ht_term2 = Ht_term1.dag()
H = [H0, [H1, 'exp(-1.j*DELTA*t)']]
output1 = mcsolve(H, psi0, times, [], [op])
#Plot and save simulation data:
if example == 1:
plt.figure(example*self.N)
plt.plot([x*1.e6 for x in output1.times], output1.expect[0])
plt.xlabel('Time ($\mu$s)')
plt.ylabel('$C_{a}$')
plt.ylim(-.5,1)
#plt.title('Expectation value of O = |01><10|+|10><01| for ions {} in a chain of {} ions, with max = {}'.format(ions, N, max(output1.expect[0])))
plt.xlim(0, times[-1]*1.e6)
#Save the graph:
plt.savefig('{}ions_example{}_DFSions{}_EqualDistanes{}_Radial{:.2f}MHz_Axial{:.2f}KHz_TwoOuterIonsNeighborTunneling{:.2f}KHz.pdf'.format(self.N,
example, ions, str(self.equal_distances), self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ), bbox_inches='tight')
#Save the data:
qsave(output1, '{}ions_DFSions{}_example{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_TwoOuterIonsNeighborTunneling{:.2f}KHz_data'.format(self.N, ions, example, str(self.equal_distances), self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ) )
elif example == 2:
plt.figure(example*(self.N+25)) # 25 is the max number of runs
plt.plot([x*1.e6 for x in output1.times], output1.expect[0])
plt.xlabel('Time ($\mu$s)')
plt.ylabel('Probability')
plt.ylim(0,1)
plt.title('Probability of finding ion number {} in excited state, in a chain of {} ions, with max = {}'.format(ion,
N, max(output1.expect[0])))
plt.xlim(0, times[-1]*1.e6)
#Save the graph:
plt.savefig('{}ions_ion{}_example{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_NeighborTunneling{:.2f}KHz.jpg'.format(self.N, ion, example, str(self.equal_distances),
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ), bbox_inches='tight')
qsave(output1, '{}ions_ion{}_example{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_NeighborTunneling{:.2f}KHz_data'.format(self.N, ion, example, str(self.equal_distances),
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ) )
elif example == 3:
plt.figure(example*(self.N+25))
plt.plot([x*1.e6 for x in output1.times], output1.expect[0])
plt.xlabel('Time ($\mu$s)')
plt.ylabel('Re Transition amplitude')
plt.ylim(-.5,.5)
plt.title('Transition amplitude between |0> and |1> motional states of ion number {}, initially in (|0>+|1>)/sqrt(2) state, in a chain of {} ions, with max = {}'.format(ion, N, max(absolute(output1.expect[0]))))
plt.xlim(0, times[-1]*1.e6)
#Save the graph:
plt.savefig('{}ions_ion{}_example{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_NeighborTunneling{:.2f}KHz.jpg'.format(self.N, ion, example, str(self.equal_distances),
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ), bbox_inches='tight')
#Save the data:
qsave(output1, '{}ions_ion{}_example{}_Radial{:.2f}MHz_EqualDistances{}_Axial{:.2f}KHz_NeighborTunneling{:.2f}KHz_data'.format(self.N, ion, example, self.omega_x/(2*np.pi* 1.e6), str(self.equal_distances),
self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ) )
elif example == 4:
plt.figure(example*(self.N+25)) # 25 is the max number of runs
plt.plot([x*1.e6 for x in output1.times], output1.expect[0])
plt.xlabel('Time ($\mu$s)')
plt.ylabel('<E>')
plt.ylim(0,1)
plt.xlim(0, times[-1]*1.e6)
#Save the graph:
plt.savefig('{}ions_EnergyTransport_Ion{}_IonsInitState{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_Ion1-2Tunneling{:.2f}KHz.pdf'.format(self.N, ion, ions_init_fock_state, str(self.equal_distances),
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ), bbox_inches='tight')
qsave(output1, '{}ions_EnergyTransport_Ion{}_IonsInitState{}_EqualDistances{}_Radial{:.2f}MHz_Axial{:.2f}KHz_Ion1-2Tunneling{:.2f}KHz.pdf'.format(self.N, ion, ions_init_fock_state, str(self.equal_distances),
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ) )
elif example == 5:
plt.figure(example*self.N)
plt.plot([x*1.e6 for x in output1.times], output1.expect[0])
plt.xlabel('Time ($\mu$s)')
plt.ylabel('$C_{a}$')
plt.ylim(-1,1)
#plt.title('Expectation value of O = |01><10|+|10><01| for ions {} in a chain of {} ions, with max = {}'.format(ions, N, max(output1.expect[0])))
plt.xlim(0, times[-1]*1.e6)
#Save the graph:
plt.savefig('{}ions_example{}_DFSions{}_MiddIonsInitState{}_EqualDistanes{}_Radial{:.2f}MHz_Axial{:.2f}KHz_TwoOuterIonsNeighborTunneling{:.2f}KHz.pdf'.format(self.N, example,
ions, middle_states ,str(self.equal_distances), self.omega_x/(2*np.pi* 1.e6),
self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) ), bbox_inches='tight')
#Save the data:
qsave(output1, '{}ions_example{}_DFSions{}_MiddIonsInitState{}_EqualDistanes{}_Radial{:.2f}MHz_Axial{:.2f}KHz_TwoOuterIonsNeighborTunneling{:.2f}KHz'.format(self.N, example,
ions, middle_states ,str(self.equal_distances), self.omega_x/(2*np.pi* 1.e6),
self.omega_z/(2*np.pi* 1.e3), self.omegax[0][1]/(2*np.pi* 1.e3) )
)
def DFS_initial_state(self, ions, middle_states=[]):
'''Create a pure state where ions[0] and ions[1] are in DFS state and the rest are in
ground state.
'''
arrays = [ [0] * self.N, [0] * self.N ]
# Note: Don't do arrays = [ [0] * self.N ] * 2, otherwise both arrays[0] and arrays[1]
# will have the same address and changing arrays[0][1] changes arrays[1][0] as well.
arrays[0][ions[0]-1], arrays[1][ions[1]-1] = 1, 1
if middle_states != []: # This works only for ions = [1, N]
for i in range(len(middle_states)):
arrays[0][1+i], arrays[1][1+i] = middle_states[i], middle_states[i]
arrays[0][ions[0]-1], arrays[1][ions[1]-1] = 1, 1
return 1./sqrt(2) * ( ch.ket(arrays[0]) + ch.ket(arrays[1]) )
def one_ion_excited_initial_state(self, state, ion):
'''Return an initial state with all the ions in ground motional state
except one, given by ion, which is between 1 and self.N.
'''
arr = [0] * self.N
arr[ion-1] = state
return ch.ket(arr)
def one_ion_entangled_state(self, ion):
arr = [[0] * self.N, [0] * self.N]
arr[0][ion-1] = 1
arr[1][ion-1] = 0
return ( ch.ket(arr[0]) + ch.ket(arr[1]) )/sqrt(2)
def self_correlation_op_arr(self, n, ion):
''' Return the projection operator of ion number 'ion' to itself
for the 'n'-th fock state.
ion is an integer between 1 and self.N
n is an integer smaller than self.M.
'''
if self.M<n:
print "Fock space dimension smaller than phonon number"
else:
arr = []
for i in range(self.N):
if i == ion-1:
arr.append(basis(self.M, n) * basis(self.M, n).dag())
else:
arr.append(qeye(self.M))
return arr
def op_arr(self, ions):
arr = []
for i in range(self.N):
if i == ions[0] - 1:
arr.append(basis(self.M, 1)*basis(self.M, 0).dag())
elif i == ions[1] - 1:
arr.append(basis(self.M, 0)*basis(self.M, 1).dag())
else:
arr.append(qeye(self.M))
return arr
def one_ion_1to0_projector_op_arr(self, ion):
'''Generate sigmax on the ion. ion is an integer between 1 and self.N'''
arr = []
for i in range(self.N):
if i == ion-1:
arr.append(basis(self.M, 0) * basis(self.M, 1).dag())
else:
arr.append(qeye(self.M))
return arr
@classmethod
def gen_omegax(cls, u, t12, N):
'''Generate omegax under the assumption that the spacings between ions are equal.
'''
return t12*array( [ [ u if i == j else 1./(absolute(i-j)**3) for i in range(N)] for j in range(N) ] )
@classmethod
def generate_couplings(cls, N, omega_x, zposition_arr = [], nearest_neighbor_coupling = 0,
axial_freq = 0, mass = 40 * 1.672621e-27):
'''Return the matrix of couplings.
Note that nearest_neighbor_coupling is used only when zposition_arr is empty.
'''
eps0 = 8.85419e-12
echarge = 1.60218e-19
if zposition_arr != []:
k = echarge**2/(8*mass*omega_x*np.pi*eps0)
elif nearest_neighbor_coupling != 0:
k = nearest_neighbor_coupling
zposition_arr = range(N)
else:
raise Exception("Either ion positions or the nearest neighbor coupling is missing!")
if zposition_arr != []:
t = np.zeros((len(zposition_arr),len(zposition_arr)))
for i in range(len(zposition_arr)):
for j in range(len(zposition_arr)):
if i != j:
t[i][j] = k / absolute(zposition_arr[i]-zposition_arr[j]) ** 3
return t
@classmethod
def generate_local_radial_freqs(cls, omega_x, couplings):
"""Return the array of local radial frequencies"""
ion_numbers = range(len(couplings[0]))
local_radial_freqs = [omega_x for i in ion_numbers]
for i in ion_numbers:
for j in ion_numbers:
if j != i:
local_radial_freqs[i] -= couplings[i][j]
return local_radial_freqs
@classmethod
def generate_omegax(cls, N, omega_x, zpositions, nearest_neighbor_coupling):
couplings = chain.generate_couplings(N, omega_x, zpositions, nearest_neighbor_coupling)
local_radial_freqs = chain.generate_local_radial_freqs(omega_x, couplings)
omegax = np.zeros((N, N))
# Construct the matrix of local radial frequencies and couplings
for i in range(N):
for j in range(N):
if i == j:
omegax[i][i] = local_radial_freqs[i]
else:
omegax[i][j] = couplings[i][j]
return omegax
def free_Hamiltonian(self):
"""
Return the free Hamiltonian of phonons in the ion chain
"""
H0 = 0
# Write the free Hamiltonian of phonons:
for i in range(self.N):
for j in range(self.N):
H0 += self.omegax[i][j] * (self.a[i]).dag() * self.a[j]
return H0
@classmethod
def eigenvalues(cls, qmat):
"""Return an array of eigenvalues of the given quantum object"""
return qmat.eigenstates()[0]
def find_plot_eigs(self, plot):
"""
Find eigenvalues, eigenvectors of omegax, save them and plot the results.
"""
eigs = LA.eig(self.omegax)
np.savetxt("{}ions_Radial{:.2f}MHz_Axial{:.2f}KHz_ions{}NeighborTunneling{:.2f}KHz_EigenValues.txt".format(self.N,
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), [1,2], self.omegax[0][1]/(2*np.pi* 1.e3) ), eigs[0] )
np.savetxt("{}ions_Radial{:.2f}MHz_Axial{:.2f}KHz_ions{}NeighborTunneling{:.2f}KHz_EigenVectors.txt".format(self.N,
self.omega_x/(2*np.pi* 1.e6), self.omega_z/(2*np.pi* 1.e3), [1,2], self.omegax[0][1]/(2*np.pi* 1.e3) ), eigs[1] )
if plotit:
eigenfreqs = np.sort([np.real(e) for e in eigs[0]])[::-1]
plt.figure(11)
plt.xticks(range(1, ch.N+1))
if equal_distances:
plt.plot(eigenfreqs/(2*np.pi * 1.e6), 'bs', label='Equal Distances')
else:
plt.plot(eigenfreqs/(2*np.pi * 1.e6), 'g^', label='Harmonic Potential')
plt.xlabel("Normal modes")
plt.ylabel("Frequencies (MHz)")
plt.savefig("{}ions_NormalModeFreqs_Radial{:.2f}MHz_Axial{:.2f}KHz_ions{}NeighborTunneling{:.2f}KHz.jpg".format(ch.N,
ch.omega_x/(2*np.pi* 1.e6), ch.omega_z/(2*np.pi* 1.e3), [1,2], ch.omegax[0][1]/(2*np.pi* 1.e3) ) )
def local_thermal_probs(nbar, error = 1.e-2):
# Find minimum dimension of effective Hilbert space for a given error and
# return a list with thermal distribution probabilities.
prob_sum = 0
nmax = int(nbar)
while 1 - absolute(prob_sum) > error:
nmax += 1
p_n = [nbar**l/(nbar+1.)**(l+1) for l in range(0,nmax+1)]
prob_sum = sum(p_n)
return p_n
def generate_middle_states():
nmax = 3
middle_ions_states = []
for nmiddle in range(0, nmax + 1):
for i in range(nmax):
for j in range(nmax):
if i<=j:
middle_ions_states.append([i, nmiddle, j])
return middle_ions_states
"""
def eta(self):
theta = self.wavevector_angle
mass = self.amumass * units.amu
k = 2.*np.pi/self.laser_wavelength
eta = k*(units.hbar/(2*mass*2*np.pi*self.trap_frequency))**.5 * np.abs(np.cos(theta*2.*np.pi / 360.0))
eta = eta.inBaseUnits().value
return eta
prob_list = reshape( kron(kron(arr,arr), arr), (1,len(arr)) )
def global_thermal_probs(error = 5.e-2):
# Find minimum dimension of effective Hilbert space for a given error and
# return a list with thermal distribution probabilities.
prob_sum = 0
nmax = 1
while (1 - absolute(prob_sum)) > error and nmax<len(prob_list):
p_n = [prob_list[l] for l in range(0,nmax)]
prob_sum = sum(p_n)
nmax += 1
return p_n
probs = global_thermal_probs()
[probs[i] for i in range(len(probs)) if probs[i] != probs[i-1]]
#For obtaining the middle ions states for thermal state:
nmax = 3
...: middle_ions_states = []
...: for nmiddle in range(0, nmax + 1):
...: for i in range(nmax):
...: for j in range(nmax):
...: if i<=j:
...: middle_ions_states.append([i, nmiddle, j])
...:
"""
if __name__ == '__main__':
#posit = [] # Position of ion0, ion1, ... on the trap z axis
nearest_neighbor_coupling = 2 * np.pi * 10.e3
#omegax = [[2,1],[1,2]] # An example
# omegax[0][0] = # Initialize local site frequencies x radial direction
# omegax[0][1] = # Initialize tunnelings x radial direction
#u = 2.25e3/6.7
#omega_x = 2.25e6
omega_x = 2*np.pi * 2.00e6 #Radial trap frequency with one ion
omega_z = 2*np.pi * 177.34e3 # 188.10e3 #144.06e3 # 144.04e3
N = 5 # Number of ions
eta = .05 # Lamb-Dicke factor
#M = 3 # Dimension of local Fock space
ion = 1 # for example 2,3,4
target_ions = [1, N]
# omegax: Local site frequency (when i = j) and tunnelings (when i != j). Must be real, symmetric.
p = simulation_parameters.simulation_parameters()
#for middle_ions_fock_state in [[0,0,0]]:
input_energies = [1,2,3]
fock_states_energy_sorted = [ [1, 0,0,0,0], [1, 1,0,0,0], [1, 0,1,0,0], [1, 0,0,1,0], [1, 0,0,0,1], [1, 1,1,0,0],
[1, 1,0,1,0], [1, 1,0,0,1],[1, 0,1,1,0], [1, 0,1,0,1], [1, 0,0,1,1],
[1, 2,0,0,0],[1, 0,2,0,0],[1, 0,0,2,0],[1, 0,0,0,2],
[1, 0,1,1,1],
[1, 1,0,1,1], [1, 1,1,0,1], [1, 1,1,1,0],
[1,3,0,0,0], [1,0,3,0,0],[1,0,0,3,0],[1,0,0,0,3],
[1, 0,0,2,2], [1, 0,2,0,2], [1, 0,2,2,0], [1, 2,0,2,0], [1, 2,2,0,0], [1, 2,0,0,2],
[1, 1,1,1,1],[1, 2,1,1,1], [1, 1,2,1,1],
[1, 1,1,2,1],[1, 1,1,1,2],
[1, 2,2,1,1], [1, 2,1,2,1], [1, 2,1,1,2], [1, 1, 1,2,2], [1, 1,2,1,2], [1, 2,1,2,2],
[1, 1,2,2,2], [1, 2,2,1,2], [1, 2,2,2,1], [1, 2,2,2,2], [1, 2,2,0,2], [1, 2,0,2,2],
[1, 0,2,2,2], [1, 3,2,2,2], [1, 2,3,2,2], [1, 2,2,3,2], [1, 2,2,2,3], [1, 3,3,2,2],
[1, 3,2,3,2], [1, 3,2,2,3], [1, 2,3,3,2], [1, 2,3,2,3], [1, 2,2,3,3], [1, 3,3,3,2],
[1, 3,3,2,3], [1, 3,2,3,3], [1, 2,3,3,3], [1, 3,3,3,3], ]
for ions_init_fock_state in [0,1,0,0,0]:
for equal_distances in [False]:
if equal_distances:
zpositions = []
else:
zpositions = equilibrium_positions.get_positions(N, omega_z, p)
# Find couplings and local radial frequencies and put all the values into omegax:
omegax = chain.generate_omegax(N, omega_x, zpositions, nearest_neighbor_coupling)
time_scale = 1000.e-6 #100./omegax[0][1]
times = linspace(0, time_scale, 1000)
example = 4
if sum(ions_init_fock_state) <= 2:
M = 4
elif sum(ions_init_fock_state) <= 4:
M = 3*sum(ions_init_fock_state) # Dimension of local Fock space
else:
M = 3*sum(ions_init_fock_state) + 5 # Dimension of local Fock space
# Set AC-Stark Hamiltonian parameters:
# Note: We need around 10KHz rf for carrier
#rf = 0 #2*np.pi * 800.e3 #2*np.pi * 100.e3 #2*np.pi * 1./500.e-6 # Rabi frequency
#DELTA = 0 #2*np.pi * 200.e3 # Detuning
#omega0 = omegax[ion-1][ion-1]
# Correction due to AC-Stark on site ion:
#omegax[ion-1][ion-1] += rf**2/(2*DELTA) * (eta*DELTA)**2/(DELTA**2 - omega0**2)
# Create a chain:
ch = chain(omegax, N, M, omega_x, omega_z, equal_distances)
# middle_ions_fock_state = ions_init_fock_state[1:N-1]
ch.simulate(target_ions, times, example, ions_init_fock_state, ion)
"""
https://www.youtube.com/watch?v=ZM2lfekLmBE
To be done:
DONE 1. Run all simulations once for equal distances
DONE 2. Import distances from Mike's
DONE 3. Run all simulations once again for harmonic potential mike's distances
DONE Add omega_Z
Add generate chain methods overloaded with different inputs
Add create trap, with which you set axial_freq and omega_X in the simplest version
Ion trap tool box:
create trap
set up trap parameters
create ion chain
generate initial state for the chain
construct operations: such as time evolution, etc
construct observables
Reproduce 5 ions with a displacement operator?
Reproduce our actual experiment
DONE Add AC Stark Hamiltonian
Add a graphing function, with capability of labeling axis and setting limits
Add examples as funsions in __main__ not inside the simulation class.
"""