-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPredictSpectrumWidget.py
294 lines (241 loc) · 11.6 KB
/
PredictSpectrumWidget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# import qt4reactor
# qt4reactor.install()
from PyQt4 import QtGui, QtCore
from twisted.internet.defer import inlineCallbacks, returnValue, DeferredLock, Deferred
from fractions import Fraction
# from labrad import units as U
# from labrad.units import WithUnit
import numpy as np
# from common.abstractdevices.SD_tracker.SD_calculator import Transitions_SD as tracker
class ParamInfo():
'''
Container for the widgets with
each row in the parameters table
'''
def __init__(self, value):
self.value = value
class PredictSpectrum(QtGui.QWidget):
def __init__(self, parent):
super(PredictSpectrum, self).__init__()
# self.reactor=reactor
self.parent = parent
self.value_dict = {}
self.ident = 'Predicted Spectrum'
self.Ca_data = Transitions_SD()
self.initUI()
def initUI(self):
self.setWindowTitle(self.ident)
mainLayout = QtGui.QVBoxLayout()
buttons = QtGui.QHBoxLayout()
self.parameterTable = QtGui.QTableWidget()
self.parameterTable.setColumnCount(2)
self.plotButton = QtGui.QPushButton('Plot', self)
mainLayout.addWidget(self.parameterTable)
mainLayout.addLayout(buttons)
buttons.addWidget(self.plotButton)
self.OPpos = QtGui.QCheckBox("Positive Manifold")
self.OPpos.setChecked(True)
mainLayout.addWidget(self.OPpos)
self.OPneg = QtGui.QCheckBox("Negative Manifold")
self.OPneg.setChecked(True)
mainLayout.addWidget(self.OPneg)
self.deltam0 = QtGui.QCheckBox("Delta m=0")
self.deltam0.setChecked(True)
mainLayout.addWidget(self.deltam0)
self.deltam1 = QtGui.QCheckBox("Delta m=1")
self.deltam1.setChecked(True)
mainLayout.addWidget(self.deltam1)
self.deltam2 = QtGui.QCheckBox("Delta m=2")
self.deltam2.setChecked(True)
mainLayout.addWidget(self.deltam2)
self.plotButton.clicked.connect(self.onPlot)
self.setupParameterTable()
self.setLayout(mainLayout)
self.show()
def setupParameterTable(self):
self.parameterTable.clear()
headerLabels = QtCore.QStringList(['Parameter', 'Value'])
self.parameterTable.setHorizontalHeaderLabels(headerLabels)
self.parameterTable.horizontalHeader().setStretchLastSection(True)
params = ['B Field', 'Line Center','Mode 1 Freq', 'Orders1', 'Mode 2 Freq', 'Orders2', 'Mode 3 Freq', 'Orders3', 'Micromotion', 'Drive Frequency']
self.parameterTable.setRowCount(len(params))
for i,p in enumerate(params):
label = QtGui.QLabel(p)
value = QtGui.QDoubleSpinBox()
self.value_dict[p] = ParamInfo(value)
value.setDecimals(3)
value.setRange(-100, 100)
value.setValue(0)
self.parameterTable.setCellWidget(i, 0, label)
self.parameterTable.setCellWidget(i, 1, value)
def generate_spectrum(self):
##must be in gauss and MHz!!
b_field = self.value_dict['B Field'].value.value()
line_center = self.value_dict['Line Center'].value.value()
mode_1 = self.value_dict['Mode 1 Freq'].value.value()
order1 = int(self.value_dict['Orders1'].value.value())
mode_2 = self.value_dict['Mode 2 Freq'].value.value()
order2 = int(self.value_dict['Orders2'].value.value())
mode_3 = self.value_dict['Mode 3 Freq'].value.value()
order3 = int(self.value_dict['Orders3'].value.value())
drive_freq = self.value_dict['Drive Frequency'].value.value()
micromotion = int(self.value_dict['Micromotion'].value.value())
all_carriers = self.Ca_data.get_transition_energies(b_field*1e-4,line_center) #to Tesla and MHz
print all_carriers
#choose which carriers to include
included_lines = []
if self.OPneg.isChecked() == True:
included_lines.extend([el for el in all_carriers if el[0][1] == '-'])
if self.OPpos.isChecked() == True:
included_lines.extend([el for el in all_carriers if el[0][1] == '+'])
final_lines =[]
if self.deltam0.isChecked() == True:
final_lines.extend([el for el in included_lines if np.abs(float(el[0][1:3])-float(el[0][6:8])) == 0])
if self.deltam1.isChecked() == True:
final_lines.extend([el for el in included_lines if np.abs(float(el[0][1:3])-float(el[0][6:8])) == 2])
if self.deltam2.isChecked() == True:
final_lines.extend([el for el in included_lines if np.abs(float(el[0][1:3])-float(el[0][6:8])) == 4])
carriers = [carrier[1] for carrier in final_lines]
sideband_orders = [[i,j,k] for i in range(-order1,order1+1) for j in range(-order2,order2+1) for k in range(-order3,order3+1)]
sideband_freqs = [mode_1,mode_2,mode_3]
#add all secular sidebands
all_lines = []
for freq in carriers:
for el in sideband_orders:
all_lines.append(((freq + sum(np.multiply(el,sideband_freqs))),sum(np.abs(el))))
#add driven sidebands
if micromotion:
micro_lines = []
for el in all_lines:
freq,order = el
micro_lines.append((freq+drive_freq,0.5+order))
micro_lines.append((freq-drive_freq,0.5+order))
all_lines.extend(micro_lines)
freqs = np.arange(-50,50,0.005)
spec = np.zeros_like(freqs)
for line in all_lines:
spec = np.add(spec,self.make_gaussian(line[0],freqs,line[1]))
data = np.zeros((len(freqs), 2))
data[:,0] = freqs
data[:,1] = spec
return data
def make_gaussian(self,center,freqs,amplitude):
#takes a center and makes a guassian around that point
gauss = (0.5**amplitude)*np.exp(-(freqs-center)**2/(0.010**2))
return gauss
def onPlot(self):
'''
Plot the manual parameters. See documentation
for plotFit()
'''
class dataset():
def __init__(self, data):
self.data = data
self.updateCounter = 1
data = self.generate_spectrum() ####Ths is where we add the lorenzians
ds = dataset(data)
try:
# remove the previous plot
self.parent.parent.remove_artist(self.ident)
self.parent.parent.add_artist(self.ident, ds, 0, no_points = False)
except:
self.parent.parent.add_artist(self.ident, ds, 0, no_points = False)
def closeEvent(self, event):
self.parent.parent.remove_artist(self.ident)
#everything must be in Gauss and MHz. Copied from SD scanner
class EnergyLevel(object):
spectoscopic_notation = {
'S': 0,
'P': 1,
'D': 2,
}
spectoscopic_notation_rev = {
0 : 'S',
1 : 'P',
2 : 'D',
}
def __init__(self, angular_momentum_l, total_angular_momentum_j, spin_s = '1/2'):
#convert spectroscopic notation to the spin number
if type(angular_momentum_l) == str:
angular_momentum_l = self.spectoscopic_notation[angular_momentum_l]
total_angular_momentum_j = Fraction(total_angular_momentum_j)
spin_s = Fraction(spin_s)
S = spin_s
self.L = L = angular_momentum_l
J = total_angular_momentum_j
lande_factor = self.lande_factor(S, L, J)
#sublevels are found, 2* self.J is always an integer, so can use numerator
self.sublevels_m = [-J + i for i in xrange( 1 + (2 * J).numerator)]
self.energy_scale = (lande_factor * 9.274e-24 / 6.626e-34) #1.4 MHz / gauss
def lande_factor(self, S, L ,J):
'''computes the lande g factor'''
g = Fraction(3,2) + Fraction( S * (S + 1) - L * (L + 1) , 2 * J*(J + 1))
return g
def magnetic_to_energy(self, B):
'''given the magnitude of the magnetic field, returns all energies of all zeeman sublevels'''
energies = [(self.energy_scale * m * B) *1e-6 for m in self.sublevels_m] #put in MHz
representations = [self.frac_to_string(m) for m in self.sublevels_m]
return zip(self.sublevels_m,energies,representations)
def frac_to_string(self, sublevel):
#helper class for converting energy levels to strings
sublevel = str(sublevel)
if not sublevel.startswith('-'):
sublevel = '+' + sublevel
together = self.spectoscopic_notation_rev[self.L] + sublevel
return together
class EnergyLevel_CA_ion(EnergyLevel):
'''
Class for describing the energy levels of Calcium Ions. This is specific to Ca+ because it uses
precisely measured g factors of the S and D states in the calculations.
'''
def lande_factor(self, S, L, J):
g_factor_S = 2.00225664 #Eur Phys JD 25 113-125
g_factor_D = 1.2003340 #PRL 102, 023002 (2009)
if S == Fraction('1/2') and L == Fraction('0') and J == Fraction('1/2'):
g = g_factor_S
elif S == Fraction('1/2') and L == Fraction('2') and J == Fraction('5/2'):
g = g_factor_D
return g
class Transitions_SD(object):
S = EnergyLevel_CA_ion('S', '1/2')
D = EnergyLevel_CA_ion('D', '5/2')
allowed_transitions = [0,1,2]
def transitions(self):
transitions = []
for m_s,E_s,repr_s in self.S.magnetic_to_energy(0):
for m_d,E_d,repr_d in self.D.magnetic_to_energy(0):
if abs(m_d-m_s) in self.allowed_transitions:
name = repr_s + repr_d
transitions.append(name)
return transitions
def get_transition_energies(self, B, zero_offset = 0.):
'''returns the transition enenrgies in MHz where zero_offset is the 0-field transition energy between S and D'''
ans = []
for m_s,E_s,repr_s in self.S.magnetic_to_energy(B):
for m_d,E_d,repr_d in self.D.magnetic_to_energy(B):
if abs(m_d-m_s) in self.allowed_transitions:
name = repr_s + repr_d
diff = E_d - E_s
diff+= zero_offset
ans.append((name, diff))
return ans
def energies_to_magnetic_field(self, transitions):
#given two points in the form [(S-1/2D5+1/2, 1.0 MHz), (-1/2, 5+/2, 2.0 MHz)], calculates the magnetic field
try:
transition1, transition2 = transitions
except ValueError:
raise Exception ("Wrong number of inputs in energies_to_magnetic_field")
ms1,md1 = self.str_to_fractions(transition1[0])
ms2,md2 = self.str_to_fractions(transition2[0])
en1,en2 = transition1[1], transition2[1]
if abs(md1 - ms1) not in self.allowed_transitions or abs(md2 - ms2) not in self.allowed_transitions:
raise Exception ("Such transitions are not allowed")
s_scale = self.S.energy_scale
d_scale = self.D.energy_scale
B = (en2 - en1) / ( d_scale * ( md2 - md1) - s_scale * (ms2 - ms1) )
B = B *1e4 #(to guass from tesla)
offset = en1 - (md1 * d_scale - ms1 * s_scale) * B
return B, offset
def str_to_fractions(self, inp):
#takes S-1/2D5+1/2 and converts to Fraction(-1/2), Fraction(1/2)
return Fraction(inp[1:5]), Fraction(inp[6:10])