-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_new_paulinomials.m
53 lines (42 loc) · 1.74 KB
/
testing_new_paulinomials.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function output = testing_new_paulinomials(n)
% Testing function for new_paulinomials.m
% This will test the function for random nxn matrices
% Note: Linear combinations do not pass without all Gell-Mann matrices (for any n).
test_a = zeros(1000,1); % Test B: maximum error between LHS - RHS
test_b = zeros(1000,1); % Test C: mean error between LHS - RHS, including only the non-zero elements (please double check this!)
test_c = zeros(1000,1); % Test D: variance in error between LHS - RHS, including only the non-zero elements (please double check this!)
factors = factor(n);
gell_mann_matrices_max = 1;
for ind = 1:length(factors)
gell_mann_matrices{gell_mann_matrices_max} = generate_gell_mann(factors(ind));
gell_mann_matrices{1,gell_mann_matrices_max}{1,factors(ind)^2} = eye(factors(ind));
gell_mann_matrices_max = gell_mann_matrices_max + 1;
end
for k = 1:1000
LHS = -5000*(1 + 1i) + 10000*(rand(n) + 1i*rand(n));
coefficients = new_paulinomials(LHS,{});
RHS = zeros(length(LHS));
IND = ones([1 length(factors)]);
coefficients_ind = 1;
while IND(length(factors)) <= factors(length(factors))^2
temp = eye(1);
for ind = 1:length(factors)
temp = kron(temp,gell_mann_matrices{1,ind}{1,IND(ind)});
end
temp = coefficients(coefficients_ind,1)*temp;
coefficients_ind = coefficients_ind + 1;
RHS = RHS + temp;
IND(1) = IND(1) + 1;
for ind = 1:length(IND)
if IND(ind) > factors(ind)^2 && ind ~= length(IND)
IND(ind + 1) = IND(ind + 1) + 1;
IND(ind) = 1;
end
end
end
test_a(k,1) = max(max(LHS - RHS));
test_b(k,1) = mean(mean(LHS(find(LHS)) - RHS(find(RHS))));
test_c(k,1) = var(var(LHS(find(LHS)) - RHS(find(RHS))));
end
output = [test_a, test_b, test_c];
end