-
Notifications
You must be signed in to change notification settings - Fork 0
/
AttentionModel.py
133 lines (111 loc) · 4.95 KB
/
AttentionModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 12 13:19:30 2024
@author: Mels
"""
import torch
import torch.nn as nn
from torch.nn import functional as F
from layers import MultiHeadAttention, FeedFoward
def save_model(model):
torch.save(model, 'Results/Model')
def load_model():
model = torch.load('Results/Model')
model.eval()
return model
#%%
class PositionalEncoding(nn.Module):
'''
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
'''
def __init__(self, n_embd, block_size):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(block_size, n_embd)
position = torch.arange(0, block_size, dtype=torch.float).unsqueeze(1)
div_term = 10000**-(2 * torch.arange(0, int(n_embd//2))/ n_embd)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class Block(nn.Module):
"""
Transformer block: This class contains the MultiHeadAttention Mechanism together
with a FeedForward layer. In between the layers are normalised and residue is added.
The normalisation happens to make the hyperparameters easier to compute. Residue is
added such that the gradient can be calculated backwards, making training easier.
"""
def __init__(self, n_heads, n_embd, block_size, dropout):
# n_embd: embedding dimension, n_heads: the number of heads we'd like
super().__init__()
head_size = n_embd // n_heads
self.sa = MultiHeadAttention(n_heads=n_heads, n_embd=n_embd, head_size=head_size, block_size=block_size, dropout=dropout)
self.ffwd = FeedFoward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class AttentionModel(nn.Module):
"""
Adds together the different transformer blocks, together with some other important layers:
- embedding
- positional embedding (to encode the position of the logits into the embedding,
otherwise information is lost in the attention mechanism)
- Blocks: The transformer block that contains
- MultiHeadAttention
- FeedForward
- Layernorm
- Residue
(heavily inspired by the Attention is All You Need paper)
- layernorm
- linear layer
"""
def __init__(self, vocab_size : int, n_layer : int, n_heads : int, n_embd : int, block_size : int, dropout : float):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_heads=n_heads, n_embd=n_embd,
block_size=block_size, dropout=dropout) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
self.position_encoder = PositionalEncoding(n_embd, block_size)
self.block_size = block_size
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_encoder(tok_emb)
#pos_emb = self.position_embedding_table(torch.arange(T))
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -self.block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx