forked from BelfrySCAD/BOSL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwalls.scad
520 lines (469 loc) · 18.7 KB
/
walls.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
//////////////////////////////////////////////////////////////////////
// LibFile: walls.scad
// Various wall constructions.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/walls.scad>
//////////////////////////////////////////////////////////////////////
// Section: Walls
// Module: narrowing_strut()
//
// Description:
// Makes a rectangular strut with the top side narrowing in a triangle.
// The shape created may be likened to an extruded home plate from baseball.
// This is useful for constructing parts that minimize the need to support
// overhangs.
//
// Usage:
// narrowing_strut(w, l, wall, [ang]);
//
// Arguments:
// w = Width (thickness) of the strut.
// l = Length of the strut.
// wall = height of rectangular portion of the strut.
// ang = angle that the trianglar side will converge at.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example:
// narrowing_strut(w=10, l=100, wall=5, ang=30);
module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orient=UP)
{
h = wall + w/2/tan(ang);
size = [w, l, h];
attachable(anchor,spin,orient, size=size) {
xrot(90)
fwd(h/2) {
linear_extrude(height=l, center=true, slices=2) {
back(wall/2) square([w, wall], center=true);
back(wall-0.001) {
yscale(1/tan(ang)) {
difference() {
zrot(45) square(w/sqrt(2), center=true);
fwd(w/2) square(w, center=true);
}
}
}
}
}
children();
}
}
// Module: thinning_wall()
//
// Description:
// Makes a rectangular wall which thins to a smaller width in the center,
// with angled supports to prevent critical overhangs.
//
// Usage:
// thinning_wall(h, l, thick, [ang], [strut], [wall]);
//
// Arguments:
// h = Height of wall.
// l = Length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively.
// thick = Thickness of wall.
// wall = The thickness of the thinned portion of the wall. Default: `thick/2`
// ang = Maximum overhang angle of diagonal brace.
// braces = If true, adds diagonal crossbraces for strength.
// strut = The width of the borders and diagonal braces. Default: `thick/2`
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Typical Shape
// thinning_wall(h=50, l=80, thick=4);
// Example: Trapezoidal
// thinning_wall(h=50, l=[80,50], thick=4);
// Example: Trapezoidal with Braces
// thinning_wall(h=50, l=[80,50], thick=4, strut=4, wall=2, braces=true);
module thinning_wall(h=50, l=100, thick=5, ang=30, braces=false, strut, wall, anchor=CENTER, spin=0, orient=UP)
{
l1 = (l[0] == undef)? l : l[0];
l2 = (l[1] == undef)? l : l[1];
strut = is_num(strut)? strut : min(h,l1,l2,thick)/2;
wall = is_num(wall)? wall : thick/2;
bevel_h = strut + (thick-wall)/2/tan(ang);
cp1 = circle_2tangents([0,0,+h/2], [l2/2,0,+h/2], [l1/2,0,-h/2], r=strut)[0];
cp2 = circle_2tangents([0,0,+h/2], [l2/2,0,+h/2], [l1/2,0,-h/2], r=bevel_h)[0];
cp3 = circle_2tangents([0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,+h/2], r=bevel_h)[0];
cp4 = circle_2tangents([0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,+h/2], r=strut)[0];
z1 = h/2;
z2 = cp1.z;
z3 = cp2.z;
x1 = l2/2;
x2 = cp1.x;
x3 = cp2.x;
x4 = l1/2;
x5 = cp4.x;
x6 = cp3.x;
y1 = thick/2;
y2 = wall/2;
corner1 = [ x2, 0, z2];
corner2 = [-x5, 0, -z2];
brace_len = norm(corner1-corner2);
size = [l1, thick, h];
attachable(anchor,spin,orient, size=size, size2=[l2,thick]) {
zrot(90) {
polyhedron(
points=[
[-x4, -y1, -z1],
[ x4, -y1, -z1],
[ x1, -y1, z1],
[-x1, -y1, z1],
[-x5, -y1, -z2],
[ x5, -y1, -z2],
[ x2, -y1, z2],
[-x2, -y1, z2],
[-x6, -y2, -z3],
[ x6, -y2, -z3],
[ x3, -y2, z3],
[-x3, -y2, z3],
[-x4, y1, -z1],
[ x4, y1, -z1],
[ x1, y1, z1],
[-x1, y1, z1],
[-x5, y1, -z2],
[ x5, y1, -z2],
[ x2, y1, z2],
[-x2, y1, z2],
[-x6, y2, -z3],
[ x6, y2, -z3],
[ x3, y2, z3],
[-x3, y2, z3],
],
faces=[
[ 4, 5, 1],
[ 5, 6, 2],
[ 6, 7, 3],
[ 7, 4, 0],
[ 4, 1, 0],
[ 5, 2, 1],
[ 6, 3, 2],
[ 7, 0, 3],
[ 8, 9, 5],
[ 9, 10, 6],
[10, 11, 7],
[11, 8, 4],
[ 8, 5, 4],
[ 9, 6, 5],
[10, 7, 6],
[11, 4, 7],
[11, 10, 9],
[20, 21, 22],
[11, 9, 8],
[20, 22, 23],
[16, 17, 21],
[17, 18, 22],
[18, 19, 23],
[19, 16, 20],
[16, 21, 20],
[17, 22, 21],
[18, 23, 22],
[19, 20, 23],
[12, 13, 17],
[13, 14, 18],
[14, 15, 19],
[15, 12, 16],
[12, 17, 16],
[13, 18, 17],
[14, 19, 18],
[15, 16, 19],
[ 0, 1, 13],
[ 1, 2, 14],
[ 2, 3, 15],
[ 3, 0, 12],
[ 0, 13, 12],
[ 1, 14, 13],
[ 2, 15, 14],
[ 3, 12, 15],
],
convexity=6
);
if(braces) {
bracepath = [
[-strut*0.33,thick/2],
[ strut*0.33,thick/2],
[ strut*0.33+(thick-wall)/2/tan(ang), wall/2],
[ strut*0.33+(thick-wall)/2/tan(ang),-wall/2],
[ strut*0.33,-thick/2],
[-strut*0.33,-thick/2],
[-strut*0.33-(thick-wall)/2/tan(ang),-wall/2],
[-strut*0.33-(thick-wall)/2/tan(ang), wall/2]
];
xflip_copy() {
intersection() {
extrude_from_to(corner1,corner2) {
polygon(bracepath);
}
prismoid([l1,thick],[l2,thick],h=h,anchor=CENTER);
}
}
}
}
children();
}
}
// Module: thinning_triangle()
//
// Description:
// Makes a triangular wall with thick edges, which thins to a smaller width in
// the center, with angled supports to prevent critical overhangs.
//
// Usage:
// thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [center]);
//
// Arguments:
// h = height of wall.
// l = length of wall.
// thick = thickness of wall.
// ang = maximum overhang angle of diagonal brace.
// strut = the width of the diagonal brace.
// wall = the thickness of the thinned portion of the wall.
// diagonly = boolean, which denotes only the diagonal side (hypotenuse) should be thick.
// center = If true, centers shape. If false, overrides `anchor` with `UP+BACK`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Centered
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true);
// Example: All Braces
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=false);
// Example: Diagonal Brace Only
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, diagonly=true, center=false);
module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly=false, center, anchor, spin=0, orient=UP)
{
dang = atan(h/l);
dlen = h/sin(dang);
size = [thick, l, h];
anchor = get_anchor(anchor, center, BOT+FRONT, CENTER);
attachable(anchor,spin,orient, size=size) {
difference() {
union() {
if (!diagonly) {
translate([0, 0, -h/2])
narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
translate([0, -l/2, 0])
xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
}
intersection() {
cube(size=[thick, l, h], center=true);
xrot(-dang) yrot(180) {
narrowing_strut(w=thick, l=dlen*1.2, wall=strut, ang=ang);
}
}
cube(size=[wall, l-0.1, h-0.1], center=true);
}
xrot(-dang) {
translate([0, 0, h/2]) {
cube(size=[thick+0.1, l*2, h], center=true);
}
}
}
children();
}
}
// Module: sparse_strut()
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
// the need for support material in 3D printing.
//
// Usage:
// sparse_strut(h, l, thick, [strut], [maxang], [max_bridge])
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// maxang = maximum overhang angle of cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// strut = the width of the cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Typical Shape
// sparse_strut(h=40, l=100, thick=3);
// Example: Thinner Strut
// sparse_strut(h=40, l=100, thick=3, strut=2);
// Example: Larger maxang
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0, orient=UP)
{
zoff = h/2 - strut/2;
yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
ystep = 2*yoff / yreps;
ang = atan(ystep/zstep);
len = zstep / cos(ang);
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
yrot(90)
linear_extrude(height=thick, convexity=4*yreps, center=true) {
difference() {
square([h, l], center=true);
square([h-2*strut, l-2*strut], center=true);
}
ycopies(ystep, n=yreps) {
xcopies(zstep, n=zreps) {
skew(syx=tan(-ang)) square([(h-strut)/zreps, strut], center=true);
skew(syx=tan( ang)) square([(h-strut)/zreps, strut], center=true);
}
}
}
children();
}
}
// Module: sparse_strut3d()
//
// Usage:
// sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut]);
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
// need for support material in 3D printing.
//
// Arguments:
// h = Z size of strut.
// w = X size of strut.
// l = Y size of strut.
// thick = thickness of strut walls.
// maxang = maximum overhang angle of cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// strut = the width of the cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example(Med): Typical Shape
// sparse_strut3d(h=30, w=30, l=100);
// Example(Med): Thinner strut
// sparse_strut3d(h=30, w=30, l=100, strut=2);
// Example(Med): Larger maxang
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50);
// Example(Med): Smaller max_bridge
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50, max_bridge=20);
module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge=30, anchor=CENTER, spin=0, orient=UP)
{
xoff = w - thick;
yoff = l - thick;
zoff = h - thick;
xreps = ceil(xoff/yoff);
yreps = ceil(yoff/xoff);
zreps = ceil(zoff/min(xoff, yoff));
xstep = xoff / xreps;
ystep = yoff / yreps;
zstep = zoff / zreps;
cross_ang = atan2(xstep, ystep);
cross_len = hypot(xstep, ystep);
supp_ang = min(maxang, min(atan2(max_bridge, zstep), atan2(cross_len/2, zstep)));
supp_reps = floor(cross_len/2/(zstep*sin(supp_ang)));
supp_step = cross_len/2/supp_reps;
size = [w, l, h];
attachable(anchor,spin,orient, size=size) {
intersection() {
union() {
ybridge = (l - (yreps+1) * strut) / yreps;
xcopies(xoff) sparse_strut(h=h, l=l, thick=thick, maxang=maxang, strut=strut, max_bridge=ybridge/ceil(ybridge/max_bridge));
ycopies(yoff) zrot(90) sparse_strut(h=h, l=w, thick=thick, maxang=maxang, strut=strut, max_bridge=max_bridge);
for(zs = [0:1:zreps-1]) {
for(xs = [0:1:xreps-1]) {
for(ys = [0:1:yreps-1]) {
translate([(xs+0.5)*xstep-xoff/2, (ys+0.5)*ystep-yoff/2, (zs+0.5)*zstep-zoff/2]) {
zflip_copy(offset=-(zstep-strut)/2) {
xflip_copy() {
zrot(cross_ang) {
down(strut/2) {
cube([strut, cross_len, strut], center=true);
}
if (zreps>1) {
back(cross_len/2) {
zrot(-cross_ang) {
down(strut) cube([strut, strut, zstep+strut], anchor=BOTTOM);
}
}
}
for (soff = [0:1:supp_reps-1] ) {
yflip_copy() {
back(soff*supp_step) {
skew(syz=tan(supp_ang)) {
cube([strut, strut, zstep], anchor=BOTTOM);
}
}
}
}
}
}
}
}
}
}
}
}
cube([w,l,h], center=true);
}
children();
}
}
// Module: corrugated_wall()
//
// Description:
// Makes a corrugated wall which relieves contraction stress while still
// providing support strength. Designed with 3D printing in mind.
//
// Usage:
// corrugated_wall(h, l, thick, [strut], [wall]);
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// strut = the width of the cross-braces.
// wall = thickness of corrugations.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Typical Shape
// corrugated_wall(h=50, l=100);
// Example: Wider Strut
// corrugated_wall(h=50, l=100, strut=8);
// Example: Thicker Wall
// corrugated_wall(h=50, l=100, strut=8, wall=3);
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, anchor=CENTER, spin=0, orient=UP)
{
amplitude = (thick - wall) / 2;
period = min(15, thick * 2);
steps = quantup(segs(thick/2),4);
step = period/steps;
il = l - 2*strut + 2*step;
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
union() {
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
polygon(
points=concat(
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
)
);
}
difference() {
cube([thick, l, h], center=true);
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
}
}
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap