-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinear_evaluation.py
276 lines (235 loc) · 12 KB
/
linear_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import numpy as np
from pathlib import Path
import json
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import argparse
from model_builders import load_model
import utils
from loaders import get_dataset
from utils import embed_dim
from utils import trunc_normal_
class ModelEval(nn.Module):
def __init__(self, backbone, in_dim, hidden_dim,
bottleneck_dim, num_classes, num_layers, linear_only,
train_backbone=False, l2_norm=False):
super(ModelEval, self).__init__()
self.train_backbone = train_backbone
self.linear_only = linear_only
self.out_dim = num_classes
self.l2_norm = l2_norm
if linear_only:
self.mlp = nn.Linear(in_dim, num_classes)
self.mlp.weight.data.normal_(mean=0.0, std=0.01)
self.mlp.bias.data.zero_()
else:
self.mlp = self.init_mlp(in_dim, hidden_dim, num_layers, bottleneck_dim)
self.backbone = backbone
for param in self.backbone.parameters():
param.requires_grad = False
def init_mlp(self, in_dim, hidden_dim, num_layers, bottleneck_dim):
if num_layers == 1:
layers = [nn.Linear(in_dim, bottleneck_dim)]
else:
layers = [nn.Linear(in_dim, hidden_dim)]
layers.append(nn.GELU())
for _ in range(num_layers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
for layer in layers:
layer.apply(self._init_weights)
last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, self.out_dim, bias=False))
last_layer.weight_g.data.fill_(1)
layers.append(last_layer)
mlp = nn.Sequential(*layers)
return mlp
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.backbone(x).detach() if not self.train_backbone else self.backbone(x)
if self.l2_norm:
x = F.normalize(x, dim=1, p=2)
return self.mlp(x)
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_iters=0, start_warmup_value=0):
warmup_schedule = np.array([])
warmup_iters = warmup_iters
if warmup_iters > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def validate(model, val_loader, device, targets):
correct = 0
total = 0
loss_step = []
max_indx_pred = []
with torch.no_grad():
for inp_data, labels in val_loader:
labels = labels.to(device)
inp_data = inp_data.to(device)
outputs = model(inp_data)
predicted = torch.max(outputs, 1)[1]
total += labels.size(0)
correct += (predicted == labels).sum()
max_indx_pred.append(predicted.cpu())
val_acc = (100 * correct / total).cpu().numpy()
preds = torch.cat(max_indx_pred).numpy()
cluster_acc, nmi, anmi, ari = utils.compute_metrics(targets, preds, min_samples_per_class=5)
return val_acc, cluster_acc, nmi, anmi, ari
def apply_color_distortion(s=0.5):
color_jitter = transforms.ColorJitter(0.8*s, 0.8*s, 0.8*s, 0.2*s)
rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
rnd_gray = transforms.RandomGrayscale(p=0.2)
color_distort = transforms.Compose([rnd_color_jitter, rnd_gray])
return color_distort
def get_data_loaders(args, normalize):
datapath = './data' if args.dataset in ["CIFAR10", "CIFAR100", "STL10", "CIFAR20"] else args.datapath
if not args.weak_augs:
transform_train = transforms.Compose([
transforms.Resize(224, interpolation=3),
normalize,
])
else:
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.5, 1), interpolation=3),
transforms.Resize(224, interpolation=3),
transforms.RandomHorizontalFlip(),
apply_color_distortion(s=0.2),
normalize,
])
transform_test = transforms.Compose([
transforms.Resize(224,interpolation=3),
normalize,
])
dataset_train = get_dataset(args.dataset, datapath=datapath,
train=True,
download=True, transform=transform_train)
dataset_val = get_dataset(args.dataset, datapath=datapath,
train=False,
download=True, transform=transform_test)
train_loader = DataLoader(dataset_train,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
num_workers=4)
val_loader = DataLoader(dataset_val,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
num_workers=4)
try:
val_labels = np.array(dataset_val.targets,dtype=np.int64)
except:
val_labels = np.array(dataset_val.labels,dtype=np.int64)
num_classes = len(np.unique(val_labels))
return train_loader, val_loader, num_classes, val_labels
def train_one_epoch(model, train_loader, optimizer, scheduler, device):
losses = []
criterion = nn.CrossEntropyLoss()
for it, data in enumerate(train_loader):
optimizer.zero_grad()
images, labels = data
labels = labels.to(device)
images = images.to(device)
it = len(train_loader) * ep + it
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = scheduler[it]
logits = model(images)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
losses.append(loss.item())
avg_loss = torch.tensor(losses).mean().numpy()
return avg_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser('Training MLP on top of frozen backbone (supervised)')
parser.add_argument('--load_path', default='', type=str, help='Path to pretrained weights.')
parser.add_argument('--checkpoint_key', default='teacher', type=str, help='Key to use in the checkpoint.')
parser.add_argument('--pretrained_weights', default=None, type=str, help='Path to pretrained model weights. ')
parser.add_argument('--save_path', default='./experiments/finetune/', type=str, help='Path to save model checkpoint.')
parser.add_argument('--dataset', default='CIFAR100', choices=['CIFAR100', 'CIFAR10', "STL10", \
"CIFAR20", "IN1K", "IN50", 'IN100', "IN200"], type=str)
parser.add_argument('--datapath', default='./data', type=str)
parser.add_argument('--batch_size', type=int, default=256, help="""Value for batch size.""")
parser.add_argument('--lr', type=float, default=5e-3, help="""Value for learning rate.""")
parser.add_argument('--wd', type=float, default=1e-2, help="""Value for weight decay.""")
parser.add_argument('--num_epochs', type=int, default=100, help="""Number of training epochs.""")
parser.add_argument('--arch', default='dino_vitb16', help="""Chosen architecture for backbone.""")
parser.add_argument('--vit_image_size', type=int, default=224, help="""Size of images for VIT.""")
parser.add_argument('--hidden_dim', type=int, default=512, help="""Hidden dimension in MLP.""")
parser.add_argument('--bottleneck_dim', type=int, default=256, help="""Dimension of bottleneck in MLP.""")
parser.add_argument('--num_layers', type=int, default=2, help="""Number of layers in MLP.""")
parser.add_argument('--linear_head', type=bool, default=True, help="""True if head should only be a linear layer instead of MLP.""")
parser.add_argument('--train_backbone', type=bool, default=False, help="""True if also the backbone should be trained.""")
parser.add_argument('--l2_norm', type=bool, default=False, help="""Whether to apply L2 normalization to the output of the backbone.""")
parser.add_argument('--weak_augs', default=False, help="""Whether to apply augmentations or not.""")
args = parser.parse_args()
args.save_path = os.path.join(args.save_path, args.dataset, f'exp_v002_adam_MLP_rrc05_{str(np.random.randint(1000)).zfill(4)}')
output_dir = Path(args.save_path)
output_dir.mkdir(parents=True, exist_ok=True)
with open(output_dir / "hp.json", 'wt') as f:
json.dump(vars(args), f, indent=4, default=str)
device = "cuda" if torch.cuda.is_available() else "cpu"
backbone, _ , normalize = load_model(args, head=False, split_preprocess=True)
train_loader, val_loader, num_classes, val_labels = get_data_loaders(args, normalize)
if args.pretrained_weights != None:
utils.load_pretrained_weights(backbone,
args.pretrained_weights,
args.checkpoint_key,
head=True,
head_only=False)
backbone = backbone.to(device)
backbone_dim = embed_dim(args, backbone)
model = ModelEval(backbone, backbone_dim, args.hidden_dim,
args.bottleneck_dim, num_classes, args.num_layers, args.linear_head,
args.train_backbone)
model = model.to(device)
if not args.train_backbone:
print('Training the head only \n\n')
model.backbone.eval()
# TODO try simple SGD here
optimizer = torch.optim.Adam(model.mlp.parameters(),
lr = args.lr,
weight_decay=args.wd)
else:
print('Training the whole model \n\n')
optimizer = torch.optim.Adam(model.parameters(),
lr = args.lr,
weight_decay=args.wd)
lr_schedule = cosine_scheduler(args.lr, 0,args.num_epochs,len(train_loader), warmup_iters=0, start_warmup_value=0)
max_val_acc = 0
for ep in range(args.num_epochs):
avg_loss = train_one_epoch(model= model,
train_loader=train_loader,
optimizer=optimizer,
scheduler = lr_schedule,
device = device)
with torch.no_grad():
val_acc, cluster_acc, nmi, anmi, ari = validate(model, val_loader, device, val_labels)
if val_acc > max_val_acc:
torch.save(model.state_dict(), output_dir / 'best_model.pth')
max_val_acc = val_acc
best_dict_data = {
"val_acc" : float(val_acc),
"cluster_acc" : float(cluster_acc),
"NMI" : nmi,
"ARI" : anmi,
"ANMI" : ari,
"epoch": ep}
with open(output_dir / "best-results.json", 'w') as f:
json.dump(best_dict_data, f, indent=4)
print(f'Epoch {ep} Average training loss: {avg_loss:.3}, Validation accuracy {val_acc:.3}, \
Cluster Acc {cluster_acc:.2} Maximum Val acc: {max_val_acc:.2}')
# Compute clustering metrics and save them to a file
with open(output_dir / "best-results.json", 'w') as f:
json.dump(best_dict_data, f, indent=4)