-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbig-numbers.cpp
67 lines (60 loc) · 1.42 KB
/
big-numbers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
ll mulmod (ll a, ll b, ll c) { // (a*b)%c evitando overflow, O(log b)
ll x = 0, y = a%c;
while (b){
if (b&1) x = (x+y) % c;
y = (y<<1) % c;
b>>=1;
}
return x % c;
}
ll expmod (ll b, ll e, ll m){ // O(log e)
if(!e) return 1;
ll q= expmod(b,e>>1,m); q=mulmod(q,q,m);
return (e&1)? mulmod(b,q,m) : q;
}
bool es_primo_prob (ll n, int a) {
if (n == a) return true;
ll s = 0,d = n-1;
while (!(d&1)) s++,d>>=1;
ll x = expmod(a,d,n);
if ((x == 1) || (x+1 == n)) return true;
for (int i=0; i < s-1; i++){
x = mulmod(x, x, n);
if (x == 1) return false;
if (x+1 == n) return true;
}
return false;
}
bool rabin (ll n){ //devuelve true si n es primo
if (n == 1) return false;
const int ar[] = {2,7,61}; //32 bits
const int ar[] = {2,3,5,7,11,13,17,19,23,29,31,37}; // 64 bits
for (int i = 0; i < 9; i++)
if (!es_primo_prob(n,ar[i]))
return false;
return true;
}
ll rho(ll n){
if( (n & 1) == 0 ) return 2;
ll x = 2 , y = 2 , d = 1;
ll c = rand() % n + 1;
while( d == 1 ){
x = (mulmod( x , x , n ) + c)%n;
y = (mulmod( y , y , n ) + c)%n;
y = (mulmod( y , y , n ) + c)%n;
if( x - y >= 0 ) d = gcd( x - y , n );
else d = gcd( y - x , n );
}
return d==n? rho(n):d;
}
map<ll,ll> prim;
void factRho (ll n){ //O (lg n)^3. un solo numero
if (n == 1) return;
if (rabin(n)){
prim[n]++;
return;
}
ll factor = rho(n);
factRho(factor);
factRho(n/factor);
}