-
Notifications
You must be signed in to change notification settings - Fork 28
/
train_vae.py
297 lines (246 loc) · 12.5 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import yaml
import argparse
import torch
import torch.nn as nn
from tqdm.auto import tqdm
from denoising_diffusion_pytorch.ema import EMA
from accelerate import Accelerator, DistributedDataParallelKwargs
from torch.utils.tensorboard import SummaryWriter
from denoising_diffusion_pytorch.utils import *
import torchvision as tv
from denoising_diffusion_pytorch.encoder_decoder import AutoencoderKL
from denoising_diffusion_pytorch.data import *
from torch.utils.data import DataLoader
from multiprocessing import cpu_count
def parse_args():
parser = argparse.ArgumentParser(description="training vae configure")
parser.add_argument("--cfg", help="experiment configure file name", type=str, required=True)
# parser.add_argument("")
args = parser.parse_args()
args.cfg = load_conf(args.cfg)
return args
def load_conf(config_file, conf={}):
with open(config_file) as f:
exp_conf = yaml.load(f, Loader=yaml.FullLoader)
for k, v in exp_conf.items():
conf[k] = v
return conf
def main(args):
cfg = args.cfg
# logger = create_logger(root_dir=cfg['out_path'])
# writer = SummaryWriter(cfg['out_path'])
model_cfg = cfg['model']
model = AutoencoderKL(
ddconfig=model_cfg['ddconfig'],
lossconfig=model_cfg['lossconfig'],
embed_dim=model_cfg['embed_dim'],
ckpt_path=model_cfg['ckpt_path'],
)
data_cfg = cfg["data"]
if data_cfg['name'] == 'edge':
dataset = EdgeDataset(
data_root=data_cfg['img_folder'],
image_size=model_cfg['ddconfig']['resolution'],
augment_horizontal_flip=data_cfg['augment_horizontal_flip'],
)
else:
raise NotImplementedError
dl = DataLoader(dataset, batch_size=data_cfg['batch_size'], shuffle=True, pin_memory=True,
num_workers=2)
train_cfg = cfg['trainer']
trainer = Trainer(
model, dl, train_batch_size=data_cfg['batch_size'],
gradient_accumulate_every=train_cfg['gradient_accumulate_every'],
train_lr=train_cfg['lr'], train_num_steps=train_cfg['train_num_steps'],
save_and_sample_every=train_cfg['save_and_sample_every'], results_folder=train_cfg['results_folder'],
amp=train_cfg['amp'], fp16=train_cfg['fp16'], log_freq= train_cfg['log_freq'], cfg=cfg,
)
trainer.train()
pass
class Trainer(object):
def __init__(
self,
model,
data_loader,
train_batch_size = 16,
gradient_accumulate_every = 1,
train_lr = 1e-4,
train_num_steps = 100000,
ema_update_every = 10,
ema_decay = 0.995,
save_and_sample_every = 1000,
num_samples = 25,
results_folder = './results',
amp = False,
fp16 = False,
split_batches = True,
log_freq = 10,
resume_milestone = 0,
cfg={}
):
super().__init__()
ddp_handler = DistributedDataParallelKwargs(find_unused_parameters=True)
self.accelerator = Accelerator(
split_batches = split_batches,
mixed_precision = 'fp16' if fp16 else 'no',
kwargs_handlers=[ddp_handler],
)
self.accelerator.native_amp = amp
self.model = model
assert has_int_squareroot(num_samples), 'number of samples must have an integer square root'
self.num_samples = num_samples
self.save_and_sample_every = save_and_sample_every
self.batch_size = train_batch_size
self.gradient_accumulate_every = gradient_accumulate_every
self.log_freq = log_freq
self.train_num_steps = train_num_steps
self.image_size = model.encoder.resolution
# dataset and dataloader
# self.ds = Dataset(folder, mask_folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = convert_image_to)
# dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count())
dl = self.accelerator.prepare(data_loader)
self.dl = cycle(dl)
# optimizer
self.opt_ae = torch.optim.AdamW(list(model.encoder.parameters())+
list(model.decoder.parameters())+
list(model.quant_conv.parameters())+
list(model.post_quant_conv.parameters()),
lr=train_lr)
self.opt_disc = torch.optim.AdamW(model.loss.discriminator.parameters(), lr=train_lr)
min_lr = cfg['trainer']['min_lr']
lr_lambda = lambda iter: max((1 - iter / train_num_steps) ** 0.95, min_lr)
self.lr_scheduler_ae = torch.optim.lr_scheduler.LambdaLR(self.opt_ae, lr_lambda=lr_lambda)
self.lr_scheduler_disc = torch.optim.lr_scheduler.LambdaLR(self.opt_disc, lr_lambda=lr_lambda)
# for logging results in a folder periodically
if self.accelerator.is_main_process:
self.ema = EMA(model, ema_model=None, beta = ema_decay, update_every = ema_update_every)
self.results_folder = Path(results_folder)
self.results_folder.mkdir(exist_ok = True)
# step counter state
self.step = 0
# prepare model, dataloader, optimizer with accelerator
self.model, self.opt_ae, self.opt_disc, self.lr_scheduler_ae, self.lr_scheduler_disc = \
self.accelerator.prepare(self.model, self.opt_ae, self.opt_disc, self.lr_scheduler_ae,
self.lr_scheduler_disc)
self.logger = create_logger(root_dir=results_folder)
self.logger.info(cfg)
self.writer = SummaryWriter(results_folder)
self.results_folder = Path(results_folder)
resume_file = str(self.results_folder / f'model-{resume_milestone}.pt')
if os.path.isfile(resume_file):
self.load(resume_milestone)
def save(self, milestone):
if not self.accelerator.is_local_main_process:
return
data = {
'step': self.step,
'model': self.accelerator.get_state_dict(self.model),
'opt_ae': self.opt_ae.state_dict(),
'lr_scheduler_ae': self.lr_scheduler_ae.state_dict(),
'opt_disc': self.opt_disc.state_dict(),
'lr_scheduler_disc': self.lr_scheduler_disc.state_dict(),
'ema': self.ema.state_dict(),
'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None
}
torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))
def load(self, milestone):
accelerator = self.accelerator
device = accelerator.device
data = torch.load(str(self.results_folder / f'model-{milestone}.pt'), map_location=device)
model = self.accelerator.unwrap_model(self.model)
model.load_state_dict(data['model'])
self.step = data['step']
self.opt_ae.load_state_dict(data['opt_ae'])
self.lr_scheduler_ae.load_state_dict(data['lr_scheduler_ae'])
self.opt_disc.load_state_dict(data['opt_disc'])
self.lr_scheduler_disc.load_state_dict(data['lr_scheduler_disc'])
if self.accelerator.is_main_process:
self.ema.load_state_dict(data['ema'])
if exists(self.accelerator.scaler) and exists(data['scaler']):
self.accelerator.scaler.load_state_dict(data['scaler'])
def train(self):
accelerator = self.accelerator
device = accelerator.device
with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar:
while self.step < self.train_num_steps:
total_loss = 0.
batch = next(self.dl)
img = batch['image'].to(device)
for ga_ind in range(self.gradient_accumulate_every):
# data = next(self.dl).to(device)
# mask = mask.to(device)
with self.accelerator.autocast():
if isinstance(self.model, nn.parallel.DistributedDataParallel):
loss, log_dict = self.model.module.training_step(img, ga_ind, self.step)
else:
loss, log_dict = self.model.training_step(img, ga_ind, self.step)
loss = loss / self.gradient_accumulate_every
total_loss += loss.item()
if ga_ind == 0:
self.opt_ae.zero_grad()
self.opt_disc.zero_grad()
self.accelerator.backward(loss)
self.opt_ae.step()
rec_loss = log_dict["train/rec_loss"]
kl_loss = log_dict["train/kl_loss"]
d_weight = log_dict["train/d_weight"]
disc_factor = log_dict["train/disc_factor"]
g_loss = log_dict["train/g_loss"]
else:
self.opt_disc.zero_grad()
self.accelerator.backward(loss)
self.opt_disc.step()
disc_loss = log_dict["train/disc_loss"]
logits_real = log_dict["train/logits_real"]
logits_fake = log_dict["train/logits_fake"]
if self.step % self.log_freq == 0:
log_dict['lr'] = self.opt_ae.param_groups[0]['lr']
describtions = dict2str(log_dict)
describtions = "[Train Step] {}/{}: ".format(self.step, self.train_num_steps) + describtions
if accelerator.is_main_process:
pbar.desc = describtions
self.logger.info(describtions)
accelerator.clip_grad_norm_(self.model.parameters(), 1.0)
# pbar.set_description(f'loss: {total_loss:.4f}')
accelerator.wait_for_everyone()
self.lr_scheduler_ae.step()
self.lr_scheduler_disc.step()
if accelerator.is_main_process:
self.writer.add_scalar('Learning_Rate', self.opt_ae.param_groups[0]['lr'], self.step)
self.writer.add_scalar('total_loss', total_loss, self.step)
self.writer.add_scalar('rec_loss', rec_loss, self.step)
self.writer.add_scalar('kl_loss', kl_loss, self.step)
self.writer.add_scalar('d_weight', d_weight, self.step)
self.writer.add_scalar('disc_factor', disc_factor, self.step)
self.writer.add_scalar('g_loss', g_loss, self.step)
self.writer.add_scalar('disc_loss', disc_loss, self.step)
self.writer.add_scalar('logits_real', logits_real, self.step)
self.writer.add_scalar('logits_fake', logits_fake, self.step)
accelerator.wait_for_everyone()
self.step += 1
if accelerator.is_main_process:
self.ema.to(device)
self.ema.update()
if self.step != 0 and self.step % self.save_and_sample_every == 0:
self.model.eval()
self.ema.ema_model.eval()
with torch.no_grad():
milestone = self.step // self.save_and_sample_every
self.save(milestone)
# img = self.dl
#batches = num_to_groups(self.num_samples, self.batch_size)
#all_images_list = list(map(lambda n: self.model.module.validate_img(ns=self.batch_size), batches))
if isinstance(self.model, nn.parallel.DistributedDataParallel):
all_images = self.model.module.validate_img(img[:2])
elif isinstance(self.model, nn.Module):
all_images = self.model.validate_img(img[:2])
all_images = torch.clamp((all_images + 1.0) / 2.0, min=0.0, max=1.0)
nrow = 2 ** math.floor(math.log2(math.sqrt(self.batch_size)))
tv.utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = nrow)
self.model.train()
pbar.update(1)
accelerator.print('training complete')
if __name__ == "__main__":
args = parse_args()
main(args)
pass