forked from flatironinstitute/CaImAn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1p_sim.py
245 lines (214 loc) · 9.51 KB
/
1p_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
try:
get_ipython().magic(u'load_ext autoreload')
get_ipython().magic(u'autoreload 2')
except:
pass
import itertools
import logging
import matplotlib.pyplot as plt
import numpy as np
from operator import itemgetter
from scipy.io import loadmat
from scipy.ndimage import center_of_mass
import caiman as cm
from caiman.source_extraction import cnmf
from caiman.source_extraction.cnmf.utilities import compute_residuals
#%%
def get_mapping(inferredC, trueC, A):
"""
finds the mapping that maps each true neuron to the best inferred one
such that overall Ca correlation is maximized, trueC[n] ~ inferredC[mapIdx[n]].
For neurons that have not been found, mapIdx will contain NaNs.
"""
N, T = trueC.shape
cc = np.corrcoef(A.T.reshape(N, -1)) > .2
blocks = [set(np.where(c)[0]) for c in cc]
for k in range(len(blocks)):
for _ in range(10):
for j in range(len(blocks) - 1, k, -1):
if len(blocks[k].intersection(blocks[j])):
blocks[k] = blocks[k].union(blocks[j])
blocks.pop(j)
mapIdx = np.nan * np.zeros(N)
corT = np.asarray([[np.corrcoef(s, tC)[0, 1]
for s in inferredC] for tC in trueC])
# first assign neurons that have mutually highest correlation
# indices that haven't been a target of the mapping yet
noTarget = list(range(len(inferredC)))
for _ in range(10):
if np.any(np.isnan(mapIdx)) and len(noTarget):
nanIdx = np.where(np.isnan(mapIdx))[0]
q = corT[np.isnan(mapIdx)][:, noTarget]
to_del = []
for k in range(len(q)):
if np.argmax(q[:, np.argmax(q[k])]) == k: # mutually highest correlation
mapIdx[nanIdx[k]] = noTarget[np.argmax(q[k])]
to_del.append(noTarget[np.argmax(q[k])])
for d in to_del:
noTarget.remove(d)
# check permutations of nearby neurons
while np.any(np.isnan(mapIdx)) and len(noTarget):
nanIdx = np.where(np.isnan(mapIdx))[0]
block = filter(lambda b: nanIdx[0] in b, blocks)[0]
idx = list(block.intersection(nanIdx)) # ground truth indices
candidates = list([np.argmax(corT[i, noTarget])
for i in idx]) # inferred indices
if len(candidates) == len(set(candidates)):
# the easier part: neurons within the group of nearby ones are
# highly correlated with different inferred neurons
for i in idx:
k = np.argmax(corT[i, noTarget])
mapIdx[i] = noTarget[k]
del noTarget[k]
else:
# the tricky part: neurons within the group of nearby ones are
# highly correlated with the same inferred neurons
candidates = list(
set(np.concatenate([np.argsort(corT[i, noTarget])[-2:] for i in idx])))
bestcorr = -np.inf
for perm in itertools.permutations(candidates):
perm = list(perm)
c = np.diag(corT[idx][:, perm[:len(idx)]]).sum()
if c > bestcorr:
bestcorr = c
bestperm = perm
mapIdx[list(idx)] = bestperm[:len(idx)]
for d in bestperm[:len(idx)]:
noTarget.remove(d)
return mapIdx
def plot_centers(inferredA, trueA):
tc = np.array([center_of_mass(a.reshape(dims_in, order='F'))
for a in trueA.T])
if not whole_FOV:
tc -= dims
center = [center_of_mass(a.reshape(dims, order='F'))
for a in inferredA.toarray().T]
plt.figure(figsize=(15, 15))
if whole_FOV:
plt.imshow(A.sum(-1).reshape(dims_in, order='F'))
else:
plt.imshow(A.sum(-1).reshape(dims_in, order='F')
[dims[0]:2 * dims[0], dims[1]:2 * dims[1]])
plt.xlim(0, dims[0])
plt.ylim(0, dims[1])
plt.scatter(*np.transpose(tc)[::-1], marker='x',
lw=3, s=100, c='r', label='true centers')
plt.scatter(*np.transpose(center)[::-1], c='w', label='inferred centers')
plt.legend()
#%%
fname = 'test_sim.mat'
test_sim = loadmat(fname)
(A, C, b, A_cnmfe, f, C_cnmfe, Craw_cnmfe, b0, sn, Yr, S_cnmfe,
A_cnmfe_patch, C_cnmfe_patch, Craw_cnmfe_patch) = itemgetter(
'A', 'C', 'b', 'A_cnmfe', 'f', 'C_cnmfe', 'Craw_cnmfe', 'b0', 'sn', 'Y', 'S_cnmfe',
'A_cnmfe_patch', 'C_cnmfe_patch', 'Craw_cnmfe_patch')(test_sim)
N, T = C.shape
dims_in = (253, 316)
Y = Yr.T.reshape((-1,) + dims_in, order='F')
# cm.movie(Y).play(fr=30, magnification=2)
gSig = 3 # gaussian width of a 2D gaussian kernel, which approximates a neuron
gSiz = 10 # average diameter of a neuron
min_corr = .9
min_pnr = 15
# If True, the background can be roughly removed. This is useful when the background is strong.
center_psf = True
K = 200
#%%
whole_FOV = True
if whole_FOV:
fname_new = cm.save_memmap([Y], base_name='Yr')
dims = dims_in
else:
fname_new = cm.save_memmap([Y], base_name='Yr',
idx_xy=(slice(120, 2 * 120), slice(120, 2 * 120)))
dims = (120, 120)
Yr, dims, T = cm.load_memmap(fname_new)
Y = Yr.T.reshape((T,) + dims, order='F')
cn_filter, pnr = cm.summary_images.correlation_pnr(
Y, gSig=gSig, center_psf=center_psf, swap_dim=False)
#%%
try:
dview.terminate()
except:
pass
c, dview, n_processes = cm.cluster.setup_cluster(
backend='local', n_processes=None, single_thread=False)
#%%
patches = True
if patches:
cnm = cnmf.CNMF(n_processes=n_processes, method_init='corr_pnr', k=50,
gSig=(3, 3), gSiz=(10, 10), merge_thresh=.7, p=1, dview=dview,
tsub=1, ssub=1, Ain=None, rf=(50, 50), stride=(32, 32), only_init_patch=True,
gnb=16, nb_patch=16, method_deconvolution='oasis', low_rank_background=True,
update_background_components=False, min_corr=min_corr, min_pnr=min_pnr,
normalize_init=False, deconvolve_options_init=None,
ring_size_factor=1.5, center_psf=True, del_duplicates=True)
else:
cnm = cnmf.CNMF(n_processes=n_processes, method_init='corr_pnr', k=None,
gSig=(gSig, gSig), gSiz=(gSiz, gSiz), merge_thresh=.7, p=1, dview=None,
tsub=1, ssub=1, Ain=None, only_init_patch=True,
gnb=16, nb_patch=16, method_deconvolution='oasis', low_rank_background=False,
update_background_components=False, min_corr=min_corr, min_pnr=min_pnr,
normalize_init=False, deconvolve_options_init=None,
ring_size_factor=1.5, center_psf=True)
cnm.fit(Y)
# %% DISCARD LOW QUALITY COMPONENT
final_frate = 10
r_values_min = 0.9 # threshold on space consistency
fitness_min = -250 if patches else -80 # threshold on time variability
# threshold on time variability (if nonsparse activity)
fitness_delta_min = -250 if patches else -80
Npeaks = 5
traces = cnm.C + cnm.YrA
# TODO: todocument
idx_components, idx_components_bad = cm.components_evaluation.estimate_components_quality(
traces, Yr, cnm.A, cnm.C, cnm.b, cnm.f, final_frate=final_frate, Npeaks=Npeaks,
r_values_min=r_values_min, fitness_min=fitness_min, fitness_delta_min=fitness_delta_min, dview=dview)
logging.info('Keeping ' + str(len(idx_components)) +
' and discarding ' + str(len(idx_components_bad)))
#%%
A_, C_, YrA_, b_, f_ = (cnm.A[:, idx_components], cnm.C[idx_components],
cnm.YrA[idx_components], cnm.b, cnm.f)
#%%
YrA_GT = compute_residuals(np.array(Yr) - b0, A, b, C, f, dview=None)
cm.utils.visualization.view_patches_bar(Yr, A, C, b, f,
dims[0], dims[1], YrA=YrA_GT, img=cn_filter)
#%%
cm.utils.visualization.view_patches_bar(Yr, A_, C_, b_, f_,
dims[0], dims[1], YrA=YrA_, img=cn_filter)
#%%
mapIdx = get_mapping(C_, C, A).astype(int)
if True:
corC = np.array([np.corrcoef(C_[mapIdx[n]], C[n])[0, 1] for n in range(N)])
corA = np.array([np.corrcoef(A_[:, mapIdx[n]].toarray().squeeze(), A[:, n])[0, 1]
for n in range(N)])
corC_cnmfe = np.array([np.corrcoef(C_cnmfe[n], C[n])[0, 1]
for n in range(N)])
corA_cnmfe = np.array(
[np.corrcoef(A_cnmfe.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
corC_cnmfe_patch = np.array(
[np.corrcoef(C_cnmfe_patch[n], C[n])[0, 1] for n in range(N)])
corA_cnmfe_patch = np.array(
[np.corrcoef(A_cnmfe_patch.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
else:
corC = np.array([np.corrcoef(C_[mapIdx[n]] + YrA_[mapIdx[n]],
C[n] + YrA_GT[n])[0, 1] for n in range(N)])
corA = np.array([np.corrcoef(A_[:, mapIdx[n]].toarray().squeeze(), A[:, n])[0, 1]
for n in range(N)])
corC_cnmfe = np.array(
[np.corrcoef(Craw_cnmfe[n], C[n] + YrA_GT[n])[0, 1] for n in range(N)])
corA_cnmfe = np.array(
[np.corrcoef(A_cnmfe.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
corC_cnmfe_patch = np.array(
[np.corrcoef(Craw_cnmfe_patch[n], C[n] + YrA_GT[n])[0, 1] for n in range(N)])
corA_cnmfe_patch = np.array(
[np.corrcoef(A_cnmfe_patch.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
logging.info(np.median(corC), np.median(corA))
logging.info(np.median(corC_cnmfe), np.median(corA_cnmfe))
logging.info(np.median(corC_cnmfe_patch), np.median(corA_cnmfe_patch))
#%%
crd = cm.utils.visualization.plot_contours(A_, cn_filter, thr=.95, vmax=0.95)
plot_centers(A_, A)
#%%
cm.stop_server(dview=dview)