-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo_sentiments_t5.py
173 lines (147 loc) · 4.8 KB
/
ppo_sentiments_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
import os
import sys
from typing import Dict, List
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, pipeline
import trlx
from trlx.data.configs import (
ModelConfig,
OptimizerConfig,
SchedulerConfig,
TokenizerConfig,
TrainConfig,
TRLConfig,
)
from trlx.models.modeling_ppo import PPOConfig
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
default_config = TRLConfig(
train=TrainConfig(
seq_length=128,
epochs=100,
total_steps=100000,
batch_size=12,
checkpoint_interval=10000,
eval_interval=100,
pipeline="PromptPipeline",
trainer="AcceleratePPOTrainer",
save_best=False,
),
model=ModelConfig(
model_path="lvwerra/t5-imdb",
num_layers_unfrozen=-1,
model_arch_type="seq2seq",
),
tokenizer=TokenizerConfig(
tokenizer_path="lvwerra/t5-imdb",
padding_side="right",
truncation_side="right",
),
optimizer=OptimizerConfig(
name="adamw",
kwargs={
"lr": 5.0e-5,
"betas": [0.9, 0.999],
"eps": 1.0e-8,
"weight_decay": 1.0e-6,
},
),
scheduler=SchedulerConfig(
name="cosine_annealing",
kwargs={
"T_max": 100000,
"eta_min": 5.0e-5,
},
),
method=PPOConfig(
name="PPOConfig",
num_rollouts=128,
chunk_size=12,
ppo_epochs=4,
init_kl_coef=0.05,
target=6,
horizon=10000,
gamma=0.99,
lam=0.95,
cliprange=0.2,
cliprange_value=0.2,
vf_coef=1,
scale_reward=None,
ref_mean=None,
ref_std=None,
cliprange_reward=10,
gen_kwargs={
"max_new_tokens": 50,
"do_sample": True,
"top_k": 0,
"top_p": 1,
"eos_token_id": -1,
},
),
)
class LengthSampler:
"""
Samples a length
"""
def __init__(self, min_value, max_value):
self.values = list(range(min_value, max_value))
self.rng = np.random.default_rng(seed=2023)
def __call__(self):
return self.rng.choice(self.values)
def main(hparams={}):
config = TRLConfig.update(default_config, hparams)
def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]:
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
return sentiments
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1,
)
tokenizer = AutoTokenizer.from_pretrained("lvwerra/t5-imdb")
def build_imdb_dataset(tokenizer, input_min_text_length=2, input_max_text_length=8):
# load imdb with datasets
ds = load_dataset("imdb", split="train")
ds = ds.rename_columns({"text": "review"})
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False)
input_size = LengthSampler(input_min_text_length, input_max_text_length)
def tokenize(sample):
sample["review"] = sample["review"].replace("/>br", "")
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()] + [tokenizer.eos_token_id]
sample["query"] = tokenizer.decode(sample["input_ids"])
return sample
ds = ds.map(tokenize, batched=False)
ds.set_format(type="torch")
return ds
def build_imdb_dataset_test(tokenizer, input_min_text_length=2, input_max_text_length=8):
# load imdb with datasets
ds = load_dataset("imdb", split="test")
ds = ds.rename_columns({"text": "review"})
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False)
input_size = LengthSampler(input_min_text_length, input_max_text_length)
def tokenize(sample):
sample["review"] = sample["review"].replace("/>br", "")
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()] + [tokenizer.eos_token_id]
sample["query"] = tokenizer.decode(sample["input_ids"])
return sample
ds = ds.map(tokenize, batched=False)
ds.set_format(type="torch")
return ds
dataset = build_imdb_dataset(tokenizer)
prompts = dataset["query"]
val_prompts = build_imdb_dataset_test(tokenizer)["query"][0:100]
trlx.train(
prompts=prompts,
eval_prompts=val_prompts,
reward_fn=metric_fn,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)