From 3cb6e793ab6b70100f72354799afd42306d9c240 Mon Sep 17 00:00:00 2001 From: Arun Kannawadi Date: Thu, 24 Oct 2024 00:17:31 -0400 Subject: [PATCH] Replace numpy functions with inbuilt ones for lists --- galsim/convolve.py | 20 ++++++++------------ 1 file changed, 8 insertions(+), 12 deletions(-) diff --git a/galsim/convolve.py b/galsim/convolve.py index 8817ffb557..c198e03773 100644 --- a/galsim/convolve.py +++ b/galsim/convolve.py @@ -294,16 +294,15 @@ def _prepareDraw(self): @lazy_property def _maxk(self): - maxk_list = [obj.maxk for obj in self.obj_list] - return np.min(maxk_list) + return min(obj.maxk for obj in self.obj_list) @lazy_property def _stepk(self): # This is approximate. stepk ~ 2pi/R # Assume R_final^2 = Sum(R_i^2) # So 1/stepk^2 = 1/Sum(1/stepk_i^2) - inv_stepksq_list = [obj.stepk**(-2) for obj in self.obj_list] - return np.sum(inv_stepksq_list)**(-0.5) + inv_stepksq = sum(obj.stepk**(-2) for obj in self.obj_list) + return (inv_stepksq)**(-0.5) @lazy_property def _has_hard_edges(self): @@ -311,23 +310,20 @@ def _has_hard_edges(self): @lazy_property def _is_axisymmetric(self): - axi_list = [obj.is_axisymmetric for obj in self.obj_list] - return bool(np.all(axi_list)) + return all(obj.is_axisymmetric for obj in self.obj_list) @lazy_property def _is_analytic_x(self): if len(self.obj_list) == 1: return self.obj_list[0].is_analytic_x elif self.real_space and len(self.obj_list) == 2: - ax_list = [obj.is_analytic_x for obj in self.obj_list] - return bool(np.all(ax_list)) + return all(obj.is_analytic_x for obj in self.obj_list) else: return False @lazy_property def _is_analytic_k(self): - ak_list = [obj.is_analytic_k for obj in self.obj_list] - return bool(np.all(ak_list)) + return all(obj.is_analytic_k for obj in self.obj_list) @lazy_property def _centroid(self): @@ -377,8 +373,8 @@ def _max_sb(self): # For non-Gaussians, this procedure will tend to produce an over-estimate of the # true maximum SB. Non-Gaussian profiles tend to have peakier parts which get smoothed # more than the Gaussian does. So this is likely to be too high, which is acceptable. - area_list = [obj.flux / obj.max_sb for obj in self.obj_list] - return self.flux / np.sum(area_list) + area = sum(obj.flux / obj.max_sb for obj in self.obj_list) + return self.flux / area def _xValue(self, pos): if len(self.obj_list) == 1: