-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGTP_random_fMRI.m
79 lines (71 loc) · 4.63 KB
/
GTP_random_fMRI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
%%%%%%%%%%%%%% Graph Theory Measures %%%%%%%%%%%%
%%%%%%% Author: Rajanikant Panda
%%%%%%% Date of Development: 1st May 2017
%%%%%%% Date of Modification: 10th August 2021
%%%%%%% Supervised: Steven Laureys and Jitka Annen
%%%%%%% Reference papers:
%%%%%%% 1. Holla and Panda et al. (2017). Disrupted resting brain graph measures in individuals at high risk for alcoholism. Psychiatry Research: Neuroimaging, 265, 54-64.
%%%%%%% 2. Thibautand Panda et al. (2021). Preservation of brain activity in unresponsive patients identifies MCS star. Annals of Neurology, 90(1), 89-100.
%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% This Program compute the fallowing graph theory measures (for random FC matrix by conening same no of node and links as absolute/original FC) %%%%%%%%%%%%
%%%% Input = NxM matrix (N=No of ROIs, M=No of time point), this is the BOLD time series
%%%% Output = Random Degree, Random clustering coeff (Network Segrigation)
%%%% Random Participation coefficient (Network Integration), Random local and global efficiency
%%%% Random path length, Random small-worldness
%% %%%%%
clc
clear
%%% Provid the data folder path
%%% Provid the data folder path
path='F:\CSG\fMRI\Meditation\GraphTheory\ToSent\GT_Post_Processing\Demo_Data\Control\';
cd(path)
SUBJlist=dir('CNT_*'); % write prefix of the group name
%%
for i=1:length(SUBJlist)
SUBJname=SUBJlist(i).name;
path1=([path SUBJname])
cd(path1);
%%
filelist= ([ SUBJname ]);
filename=filelist;
% prefix_name=filename(1:end);
final_data=load([filename]); % Loading the fMRI time series data
final_data=final_data.y_roi_regressed; % Check that correct data is loadig %final_data.y_roi_regressed_filtered;
GT_corr_data=corr(final_data); % ROI to ROI connectivity matrix using pearsion correlations
GT_corr_data_abs = abs(GT_corr_data); % Making absolute to the connectivity matrix
chanlocs = size(final_data,2); % No of ROIs
%% Sparcity based Thresholding
sparsity_val=0.1:0.025:0.52; %sparsity_val=0.01:0.05:0.52; %sparsity_val=0.01:0.025:1;
for i2=1:length (sparsity_val)
%% %%%Network properties/ network measurement for every sparsity threshold
GT_sparsity(i2)=sparsity_val(i2); % define sparsity
corr_data_thr1=threshold_proportional(GT_corr_data_abs,GT_sparsity(i2)); % calcualte binary matrix
corr_data_thr_bin=weight_conversion(corr_data_thr1,'binarize'); % binary weight matrix
corr_data_thr = weight_conversion(corr_data_thr_bin, 'autofix'); % removing NaN & Inf
for random_number=1:40 % No of Randomization Matrix to be generate
random_network=randmio_und(corr_data_thr,5);
%%
GT_corr_data_rand_thr(i2,random_number,:,:)=random_network;% asign to different array
GT_degree_rand(i2,random_number,:)=degrees_und(random_network); % calculate degree
GT_clust_coeff_rand(i2,random_number,:)=clustering_coef_bu(random_network);%% clustering coeff (Network Segrigation)
GT_local_eff_rand(i2,random_number,:)=efficiency_bin(random_network,1); % local efficiency
GT_global_eff_rand(i2,random_number,:)=efficiency_bin(random_network,0); % global efficiency
GT_distance_matrix_rand(i2,random_number,:,:)=distance_bin(random_network); % distance matrix
GT_path_length_rand(i2,random_number) =charpath(squeeze(GT_distance_matrix_rand(i2,random_number,:,:)),1,0); % path length
%%%%% Participation coefficient (Network Integration)
param.heuristic=50;
for i = 1:param.heuristic
[Ci, allQ(i2,random_number,i)] = community_louvain(random_network);
allCi(i2,random_number,i,:) = Ci;
allpc(i2,random_number,i,:) = participation_coef(random_network,Ci);
end
GT_modularity_rand(i2,random_number)= mean(allQ(i2,random_number,:)); % modularity
GT_community_structure_rand(i2,random_number,1:chanlocs) = squeeze(allCi(i2,random_number,1,:)); % community structure
GT_participation_coeff_rand(i2,random_number,1:chanlocs) = mean(squeeze(allpc(i2,random_number,:,:))); %participation coefficient (Network Integration)
%%%%%
end
end
varname=([SUBJname '_RAND'])
save(varname);
cd ..
end