diff --git a/src/pypromice/process/resample.py b/src/pypromice/process/resample.py index 4a402169..598e6035 100644 --- a/src/pypromice/process/resample.py +++ b/src/pypromice/process/resample.py @@ -52,11 +52,12 @@ def resample_dataset(ds_h, t): is_10_minutes_timestamp = (ds_h.time.diff(dim='time') / np.timedelta64(1, 's') == 600) if (t == '60min') and is_10_minutes_timestamp.any(): cols_to_update = ['p_i', 't_i', 'rh_i', 'rh_i_wrt_ice_or_water', 'wspd_i', 'wdir_i','wspd_x_i','wspd_y_i'] + cols_origin = ['p_u', 't_u', 'rh_u', 'rh_u_wrt_ice_or_water', 'wspd_u', 'wdir_u','wspd_x_u','wspd_y_u'] timestamp_10min = ds_h.time.where(is_10_minutes_timestamp, drop=True).to_index() timestamp_round_hour = df_d.index timestamp_to_update = timestamp_round_hour.intersection(timestamp_10min) - for col in cols_to_update: + for col, col_org in zip(cols_to_update, cols_origin): if col not in df_d.columns: df_d[col] = np.nan else: @@ -67,7 +68,7 @@ def resample_dataset(ds_h, t): timestamp_to_update = timestamp_to_update[missing_instantaneous] df_d.loc[timestamp_to_update, col] = ds_h.reindex( time= timestamp_to_update - )[col.replace('_i','_u')].values + )[col_org].values if col == 'p_i': df_d.loc[timestamp_to_update, col] = df_d.loc[timestamp_to_update, col].values-1000