diff --git a/setup.py b/setup.py index 52a9b216..92146024 100644 --- a/setup.py +++ b/setup.py @@ -45,6 +45,7 @@ 'join_l3 = pypromice.process.join_l3:main', 'get_l2 = pypromice.process.get_l2:main', 'get_l2tol3 = pypromice.process.get_l2tol3:main', + 'make_metadata_csv = pypromice.postprocess.make_metadata_csv:main', 'get_watsontx = pypromice.tx.get_watsontx:get_watsontx', 'get_bufr = pypromice.postprocess.get_bufr:main', 'get_msg = pypromice.tx.get_msg:get_msg' diff --git a/src/pypromice/postprocess/make_metadata_csv.py b/src/pypromice/postprocess/make_metadata_csv.py new file mode 100644 index 00000000..7bf819cb --- /dev/null +++ b/src/pypromice/postprocess/make_metadata_csv.py @@ -0,0 +1,214 @@ +#!/usr/bin/env python +import os, sys, argparse +import pandas as pd +import xarray as xr +import logging + +logging.basicConfig( + format="%(asctime)s; %(levelname)s; %(name)s; %(message)s", + level=logging.INFO, + stream=sys.stdout, +) +logger = logging.getLogger(__name__) + +def extract_metadata_from_nc(file_path: str, data_type: str, label_s_id: str) -> pd.Series: + """ + Extract metadata from a NetCDF file and return it as a pandas Series. + + Parameters: + - file_path (str): The path to the NetCDF file. + - data_type (str): The type of data ('station' or 'site'). + - label_s_id (str): The label for the station or site ID. + + Returns: + - pd.Series: A pandas Series containing the extracted metadata. + """ + try: + with xr.open_dataset(file_path) as nc_file: + # Extract attributes + s_id = nc_file.attrs.get(label_s_id, 'N/A') + location_type = nc_file.attrs.get('location_type', 'N/A') + project = nc_file.attrs.get('project', 'N/A') + if data_type == 'site': + stations = nc_file.attrs.get('stations', s_id) + if data_type == 'station': + number_of_booms = nc_file.attrs.get('number_of_booms', 'N/A') + + # Extract the time variable as datetime64 + time_var = nc_file['time'].values.astype('datetime64[s]') + + # Extract the first and last timestamps + date_installation_str = pd.Timestamp(time_var[0]).strftime('%Y-%m-%d') + last_valid_date_str = pd.Timestamp(time_var[-1]).strftime('%Y-%m-%d') + + # Extract the first and last values of lat, lon, and alt + lat_installation = nc_file['lat'].isel(time=0).values.item() + lon_installation = nc_file['lon'].isel(time=0).values.item() + alt_installation = nc_file['alt'].isel(time=0).values.item() + + lat_last_known = nc_file['lat'].isel(time=-1).values.item() + lon_last_known = nc_file['lon'].isel(time=-1).values.item() + alt_last_known = nc_file['alt'].isel(time=-1).values.item() + + # Create a pandas Series for the metadata + if data_type == 'site': + row = pd.Series({ + 'project': project.replace('\r',''), + 'location_type': location_type, + 'stations': stations, + 'date_installation': date_installation_str, + 'latitude_installation': lat_installation, + 'longitude_installation': lon_installation, + 'altitude_installation': alt_installation, + 'date_last_valid': last_valid_date_str, + 'latitude_last_valid': lat_last_known, + 'longitude_last_valid': lon_last_known, + 'altitude_last_valid': alt_last_known + }, name=s_id) + else: + row = pd.Series({ + 'project': project.replace('\r',''), + 'number_of_booms': number_of_booms, + 'location_type': location_type, + 'date_installation': date_installation_str, + 'latitude_installation': lat_installation, + 'longitude_installation': lon_installation, + 'altitude_installation': alt_installation, + 'date_last_valid': last_valid_date_str, + 'latitude_last_valid': lat_last_known, + 'longitude_last_valid': lon_last_known, + 'altitude_last_valid': alt_last_known + }, name=s_id) + return row + except Exception as e: + logger.info(f"Warning: Error processing {file_path}: {str(e)}") + return pd.Series() # Return an empty Series in case of an error + +def process_files(base_dir: str, csv_file_path: str, data_type: str) -> pd.DataFrame: + """ + Process all files in the base directory to generate new metadata. + + Parameters: + - base_dir (str): The base directory containing the NetCDF files. + - csv_file_path (str): The path to the existing metadata CSV file. + - data_type (str): The type of data ('station' or 'site'). + + Returns: + - pd.DataFrame: The combined metadata DataFrame. + """ + label_s_id = 'station_id' if data_type == 'station' else 'site_id' + + # Initialize a list to hold the rows (Series) of DataFrame + rows = [] + + # Read existing metadata if the CSV file exists + if os.path.exists(csv_file_path): + logger.info("Updating " + str(csv_file_path)) + existing_metadata_df = pd.read_csv(csv_file_path, index_col=label_s_id) + else: + logger.info("Creating " + str(csv_file_path)) + existing_metadata_df = pd.DataFrame() + + # Track updated sites or stations to avoid duplicate updates + updated_s = [] + new_s = [] + + # Traverse through all the subfolders and files in the base directory + for subdir, _, files in os.walk(base_dir): + for file in files: + if file.endswith('_hour.nc'): + file_path = os.path.join(subdir, file) + row = extract_metadata_from_nc(file_path, data_type, label_s_id) + if not row.empty: + s_id = row.name + if s_id in existing_metadata_df.index: + # Compare with existing metadata + existing_row = existing_metadata_df.loc[s_id] + old_date_installation = existing_row['date_installation'] + old_last_valid_date = existing_row['date_last_valid'] + + # Update the existing metadata + existing_metadata_df.loc[s_id] = row + + # Print message if dates are updated + if old_last_valid_date != row['date_last_valid']: + logger.info(f"Updated {label_s_id}: {s_id} date_last_valid: {old_last_valid_date} --> {row['date_last_valid']}") + + updated_s.append(s_id) + else: + new_s.append(s_id) + # Append new metadata row to the list + rows.append(row) + + # Convert the list of rows to a DataFrame + new_metadata_df = pd.DataFrame(rows) + + # Concatenate the existing metadata with the new metadata + combined_metadata_df = pd.concat([existing_metadata_df, new_metadata_df], ignore_index=False) + + # Exclude some sites + sites_to_exclude = [s for s in ['XXX', 'Roof_GEUS', 'Roof_PROMICE'] if s in combined_metadata_df.index] + excluded_metadata_df = combined_metadata_df.loc[sites_to_exclude].copy() + combined_metadata_df.drop(sites_to_exclude, inplace=True) + + # Sort the DataFrame by index (s_id) + combined_metadata_df.sort_index(inplace=True) + + # Print excluded lines + if not excluded_metadata_df.empty: + pd.set_option('display.max_columns', None) # Show all columns + pd.set_option('display.max_colwidth', None) # Show full width of columns + pd.set_option('display.width', None) # Disable line wrapping + logger.info("\nExcluded lines from combined metadata.csv:") + print(excluded_metadata_df) + + # Drop excluded lines from combined_metadata_df + combined_metadata_df.drop(sites_to_exclude, errors='ignore', inplace=True) + + # Save to csv + combined_metadata_df.to_csv(csv_file_path, index_label=label_s_id) + + return combined_metadata_df, existing_metadata_df, new_s, updated_s + +def compare_and_log_updates(combined_metadata_df: pd.DataFrame, existing_metadata_df: pd.DataFrame, new_s: list, updated_s: list): + """ + Compare the combined metadata with the existing metadata and log the updates. + + Parameters: + - combined_metadata_df (pd.DataFrame): The combined metadata DataFrame. + - existing_metadata_df (pd.DataFrame): The existing metadata DataFrame. + - new_s (list): List of new station/site IDs. + - updated_s (list): List of updated station/site IDs. + """ + # Determine which lines were not updated (reused) and which were added + if not existing_metadata_df.empty: + reused_s = [s_id for s_id in existing_metadata_df.index if ((s_id not in new_s) & (s_id not in updated_s))] + reused_lines = existing_metadata_df.loc[reused_s] + added_lines = combined_metadata_df.loc[combined_metadata_df.index.difference(existing_metadata_df.index)] + + logger.info("\nLines from the old metadata.csv that are reused (not updated):") + print(reused_lines) + + if not added_lines.empty: + logger.info("\nLines that were not present in the old metadata.csv and are added:") + print(added_lines) + else: + logger.info("\nAll lines are added (no old metadata.csv found)") + +def main(): + parser = argparse.ArgumentParser(description='Process station or site data.') + parser.add_argument('-t', '--type', choices=['station', 'site'], + required=True, + help='Type of data to process: "station" or "site"') + parser.add_argument('-r', '--root_dir', required=True, help='Root directory ' + + 'containing the aws-l3 station or site folder') + parser.add_argument('-m','--metadata_file', required=True, + help='File path to metadata csv file (existing or '+ + 'intended output path') + + args = parser.parse_args() + combined_metadata_df, existing_metadata_df, new_s, updated_s = process_files(args.root_dir, args.metadata_file, args.type) + compare_and_log_updates(combined_metadata_df, existing_metadata_df, new_s, updated_s) + +if __name__ == '__main__': + main() diff --git a/src/pypromice/process/L2toL3.py b/src/pypromice/process/L2toL3.py index 87d051cd..650f0702 100755 --- a/src/pypromice/process/L2toL3.py +++ b/src/pypromice/process/L2toL3.py @@ -107,6 +107,10 @@ def toL3(L2, station_config={}, T_0=273.15): # processing continuous surface height, ice surface height, snow height ds = process_surface_height(ds, station_config) + # making sure dataset has the attributes contained in the config files + ds.attrs['project'] = station_config['project'] + ds.attrs['location_type'] = station_config['location_type'] + return ds diff --git a/src/pypromice/process/join_l3.py b/src/pypromice/process/join_l3.py index a61b2c64..3377b107 100644 --- a/src/pypromice/process/join_l3.py +++ b/src/pypromice/process/join_l3.py @@ -304,7 +304,7 @@ def join_l3(config_folder, site, folder_l3, folder_gcnet, outpath, variables, me # creating the station_attributes attribute in l3_merged l3_merged.attrs["stations_attributes"] = st_attrs - + else: # if l3 (older data) is missing variables compared to l3_merged (newer data) # , then we fill them with nan @@ -350,6 +350,8 @@ def join_l3(config_folder, site, folder_l3, folder_gcnet, outpath, variables, me l3_merged.attrs['site_id'] = site l3_merged.attrs['stations'] = ' '.join(sorted_stids) l3_merged.attrs['level'] = 'L3' + l3_merged.attrs['project'] = sorted_list_station_data[0][1]['project'] + l3_merged.attrs['location_type'] = sorted_list_station_data[0][1]['location_type'] v = getVars(variables) m = getMeta(metadata) diff --git a/src/pypromice/resources/file_attributes.csv b/src/pypromice/resources/file_attributes.csv index 9fa56bc4..a2482b7d 100644 --- a/src/pypromice/resources/file_attributes.csv +++ b/src/pypromice/resources/file_attributes.csv @@ -1,56 +1,55 @@ -attribute,entry -acknowledgements,The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) -alt.axis,Z -alt.coverage_content_type,coordinate -gps_alt.positive,up -cdm_data_type, -comment,https://doi.org/10.22008/promice/data/aws -contributor_name, -contributor_role, -conventions,ACDD-1.3; CF-1.7 -creater_email,pho@geus.dk -creater_url,https://promice.dk -creator_institution,Geological Survey of Denmark and Greenland (GEUS) -creator_name,Penelope How -creator_type,person -featureType,timeSeries -geospatial_bounds_crs,EPSG:4979 -geospatial_lat_extents_match,gps_lat -geospatial_lat_resolution, -geospatial_lat_units,degrees_north -geospatial_lon_extents_match,gps_lon -geospatial_lon_resolution, -geospatial_lon_units,degrees_east -geospatial_vertical_resolution, -geospatial_vertical_units,EPSG:4979 -institution,Geological Survey of Denmark and Greenland (GEUS) -instrument,See https://doi.org/10.5194/essd-13-3819-2021 -instrument_vocabulary,GCMD:GCMD Keywords -keywords,GCMDSK:EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > ICE SHEETS > ICE SHEET MEASUREMENTS; GCMDSK:EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW/ICE TEMPERATURE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW MELT; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW DEPTH; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > ICE VELOCITY; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > ALBEDO; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ALBEDO; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ICE GROWTH/MELT; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ICE VELOCITY; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW DEPTH; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW MELT; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW/ICE TEMPERATURE; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC PRESSURE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > ALBEDO; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > INCOMING SOLAR RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION > DOWNWELLING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION > UPWELLING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > NET RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > OUTGOING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > RADIATIVE FLUX; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > RADIATIVE FORCING; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION > DOWNWELLING SHORTWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SUNSHINE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC TEMPERATURE > SURFACE TEMPERATURE > AIR TEMPERATURE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR INDICATORS > HUMIDITY > ABSOLUTE HUMIDITY; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR INDICATORS > HUMIDITY > RELATIVE HUMIDITY; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > LOCAL WINDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > U/V WIND COMPONENTS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND DIRECTION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND SPEED; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > CLOUDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > PRECIPITATION -keywords_vocabulary,GCMDSK:GCMD Science Keywords:https://gcmd.earthdata.nasa.gov/kms/concepts/concept_scheme/sciencekeywords -lat.axis,Y -lat.coverage_content_type,coordinate -lat.long_name,station latitude -license,Creative Commons Attribution 4.0 International (CC-BY-4.0) https://creativecommons.org/licenses/by/4.0 -lon.axis,X -lon.coverage_content_type,coordinate -lon.long_name,station longitude -lon.units,degrees_east -metadata_link, -naming_authority,dk.geus.promice -platform, -platform_vocabulary,GCMD:GCMD Keywords -processing_level,Level 3 -product_status,beta -product_version,4 -program,PROMICE -project,PROMICE -publisher_email,info@promice.dk -publisher_institution,GEUS -publisher_name,GEUS -publisher_type,institution -publisher_url,https://promice.dk -references,"How, P.; Abermann, J.; Ahlstrøm, A.P.; Andersen, S.B.; Box, J. E.; Citterio, M.; Colgan, W.T.; Fausto. R.S.; Karlsson, N.B.; Jakobsen, J.; Langley, K.; Larsen, S.H.; Mankoff, K.D.; Pedersen, A.Ø.; Rutishauser, A.; Shield, C.L.; Solgaard, A.M.; van As, D.; Vandecrux, B.; Wright, P.J., 2022, ""PROMICE and GC-Net automated weather station data in Greenland"", https://doi.org/10.22008/FK2/IW73UU, GEUS Dataverse" -references_bib,@article{How2022; doi = {10.22008/FK2/IW73UU}; url = {https://doi.org/10.22008/FK2/IW73UU}; year = {2022}; month=10; publisher= {GEUS Dataverse}; author = {Penelope How and Jakob Abermann and Andreas P. Ahlstr{\o}m and Signe B. Andersen and Jason E. Box and Michele Citterio and William Colgan and Robert S. Fausto and Nanna B. Karlsson and Jakob Jakobsen and Kirsty Langley and Signe Hillerup Larsen and Kenneth D. Mankoff and Allan {\O}. Pedersen and Anja Rutishauser and Christopher L. Shields and Anne M. Solgaard and Dirk van As and Baptiste Vandecrux}; title = {PROMICE and GC-Net automated weather station data in Greenland}; journal = {GEUS Dataverse}} -standard_name_vocabulary,CF Standard Name Table (v77; 19 January 2021) -summary,"The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and Greenland Climate Network (GC-Net) have been measuring climate and ice sheet properties since 2007 and 1995, respectively. The PROMICE weather station network monitors glacier mass balance in the melt zone of the Greenland Ice Sheet, providing ground truth data to calibrate mass budget models. GC-Net weather stations measure snowfall and surface properties in the accumulation zone, providing valuable knowledge on the Greenland Ice Sheet’s mass gain and climatology.Accurate measurements of the surface and near-surface atmospheric conditions in a changing climate is important for reliable present and future assessment of changes to the Greenland Ice Sheet. All measurements are handled and processed with pypromice, which is a peer-reviewed and freely available Python package with source code available at https://github.com/GEUS-Glaciology-and-Climate/pypromice. A user-contributable dynamic web-based database of known data quality issues is associated with the data products at https://github.com/GEUS-PROMICE/ PROMICE-AWS-data-issues/." +attribute,entry +acknowledgements,The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) +alt.axis,Z +alt.coverage_content_type,coordinate +gps_alt.positive,up +cdm_data_type, +comment,https://doi.org/10.22008/promice/data/aws +contributor_name, +contributor_role, +conventions,ACDD-1.3; CF-1.7 +creater_email,pho@geus.dk +creater_url,https://promice.dk +creator_institution,Geological Survey of Denmark and Greenland (GEUS) +creator_name,Penelope How +creator_type,person +featureType,timeSeries +geospatial_bounds_crs,EPSG:4979 +geospatial_lat_extents_match,gps_lat +geospatial_lat_resolution, +geospatial_lat_units,degrees_north +geospatial_lon_extents_match,gps_lon +geospatial_lon_resolution, +geospatial_lon_units,degrees_east +geospatial_vertical_resolution, +geospatial_vertical_units,EPSG:4979 +institution,Geological Survey of Denmark and Greenland (GEUS) +instrument,See https://doi.org/10.5194/essd-13-3819-2021 +instrument_vocabulary,GCMD:GCMD Keywords +keywords,GCMDSK:EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > ICE SHEETS > ICE SHEET MEASUREMENTS; GCMDSK:EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW/ICE TEMPERATURE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW MELT; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > SNOW DEPTH; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > ICE VELOCITY; GCMDSK:EARTH SCIENCE > CRYOSPHERE > SNOW/ICE > ALBEDO; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ALBEDO; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ICE GROWTH/MELT; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > ICE VELOCITY; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW DEPTH; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW MELT; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE > SNOW/ICE TEMPERATURE; GCMDSK:EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > SNOW/ICE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC PRESSURE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > ALBEDO; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > INCOMING SOLAR RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION > DOWNWELLING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION > UPWELLING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > NET RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > OUTGOING LONGWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > RADIATIVE FLUX; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > RADIATIVE FORCING; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION > DOWNWELLING SHORTWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION > SUNSHINE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC RADIATION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC TEMPERATURE > SURFACE TEMPERATURE > AIR TEMPERATURE; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR INDICATORS > HUMIDITY > ABSOLUTE HUMIDITY; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR INDICATORS > HUMIDITY > RELATIVE HUMIDITY; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > LOCAL WINDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > U/V WIND COMPONENTS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND DIRECTION; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND SPEED; GCMDSK:EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > CLOUDS; GCMDSK:EARTH SCIENCE > ATMOSPHERE > PRECIPITATION +keywords_vocabulary,GCMDSK:GCMD Science Keywords:https://gcmd.earthdata.nasa.gov/kms/concepts/concept_scheme/sciencekeywords +lat.axis,Y +lat.coverage_content_type,coordinate +lat.long_name,station latitude +license,Creative Commons Attribution 4.0 International (CC-BY-4.0) https://creativecommons.org/licenses/by/4.0 +lon.axis,X +lon.coverage_content_type,coordinate +lon.long_name,station longitude +lon.units,degrees_east +metadata_link, +naming_authority,dk.geus.promice +platform, +platform_vocabulary,GCMD:GCMD Keywords +processing_level,Level 3 +product_status,beta +product_version,4 +program,PROMICE +publisher_email,info@promice.dk +publisher_institution,GEUS +publisher_name,GEUS +publisher_type,institution +publisher_url,https://promice.dk +references,"How, P.; Abermann, J.; Ahlstrøm, A.P.; Andersen, S.B.; Box, J. E.; Citterio, M.; Colgan, W.T.; Fausto. R.S.; Karlsson, N.B.; Jakobsen, J.; Langley, K.; Larsen, S.H.; Mankoff, K.D.; Pedersen, A.Ø.; Rutishauser, A.; Shield, C.L.; Solgaard, A.M.; van As, D.; Vandecrux, B.; Wright, P.J., 2022, ""PROMICE and GC-Net automated weather station data in Greenland"", https://doi.org/10.22008/FK2/IW73UU, GEUS Dataverse" +references_bib,@article{How2022; doi = {10.22008/FK2/IW73UU}; url = {https://doi.org/10.22008/FK2/IW73UU}; year = {2022}; month=10; publisher= {GEUS Dataverse}; author = {Penelope How and Jakob Abermann and Andreas P. Ahlstr{\o}m and Signe B. Andersen and Jason E. Box and Michele Citterio and William Colgan and Robert S. Fausto and Nanna B. Karlsson and Jakob Jakobsen and Kirsty Langley and Signe Hillerup Larsen and Kenneth D. Mankoff and Allan {\O}. Pedersen and Anja Rutishauser and Christopher L. Shields and Anne M. Solgaard and Dirk van As and Baptiste Vandecrux}; title = {PROMICE and GC-Net automated weather station data in Greenland}; journal = {GEUS Dataverse}} +standard_name_vocabulary,CF Standard Name Table (v77; 19 January 2021) +summary,"The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and Greenland Climate Network (GC-Net) have been measuring climate and ice sheet properties since 2007 and 1995, respectively. The PROMICE weather station network monitors glacier mass balance in the melt zone of the Greenland Ice Sheet, providing ground truth data to calibrate mass budget models. GC-Net weather stations measure snowfall and surface properties in the accumulation zone, providing valuable knowledge on the Greenland Ice Sheet’s mass gain and climatology.Accurate measurements of the surface and near-surface atmospheric conditions in a changing climate is important for reliable present and future assessment of changes to the Greenland Ice Sheet. All measurements are handled and processed with pypromice, which is a peer-reviewed and freely available Python package with source code available at https://github.com/GEUS-Glaciology-and-Climate/pypromice. A user-contributable dynamic web-based database of known data quality issues is associated with the data products at https://github.com/GEUS-PROMICE/ PROMICE-AWS-data-issues/."