[ Back to index ]
Please follow this guide to run the entire set of MobileNet and EfficientNet models trained using ImageNet dataset (total 81 models) using TFLite backend.
If you want to try an individual model run, you can proceed as follows:
cm run script --tags=run,mlperf,inference,run-mlperf,_submission,_short \
--adr.python.version_min=3.8 \
--implementation=tflite-cpp \
--model=efficientnet \
--backend=tflite \
--device=cpu \
--scenario=SingleStream \
--test_query_count=100 \
--adr.tflite-model.tags=_lite0 \
--adr.mlperf-inference-implementation.tags=_armnn,_use-neon \
--clean
cm run script --tags=run-mlperf,inference,_find-performance,_all-scenarios \
--model=resnet50 --implementation=tflite-cpp --device=cpu --backend=tflite \
--category=edge --division=open --quiet
- Use
--division=closed
to run all scenarios for the closed division (compliance tests are skipped for_find-performance
mode) - Since only singlestream is implemented for tflite-cpp, datacenter submission is not possible
- Use
--adr.mlperf-inference-implementation.tags=_armnn,_use-neon
to use ARMNN backend
cm run script --tags=run-mlperf,inference,_submission,_all-scenarios --model=resnet50 \
--device=cpu --implementation=tflite-cpp --backend=tflite \
--execution-mode=valid --category=edge --division=open --quiet
- Use
--power=yes
for measuring power. It is ignored for accuracy and compliance runs - Use
--division=closed
to run all scenarios for the closed division including the compliance tests --offline_target_qps
,--server_target_qps
,--singlestream_target_latency
andmultistream_target_latency
can be used to override the determined performance numbers- Use
--adr.mlperf-inference-implementation.tags=_armnn,_use-neon
to use ARMNN backend
Follow this guide to generate the submission tree and upload your results.
Check the MLCommons Task Force on Automation and Reproducibility and get in touch via public Discord server.