[ Back to index ]
cm run script --tags=run-mlperf,inference,_find-performance,_all-scenarios \
--model=resnet50 --implementation=reference --device=cpu --backend=onnxruntime \
--category=edge --division=open --quiet
- Use
--device=cuda
to run the inference on Nvidia GPU - Use
--division=closed
to run all scenarios for the closed division (compliance tests are skipped for_find-performance
mode) - Use
--category=datacenter
to run datacenter scenarios - Use
--backend=tf
,--backend=ncnn
or--backend=tvm-onnx
to use tensorflow, ncnn and tvm-onnx backends respectively - Remove
_all-scenarios
and use--scenario=Offline
to run theOffline
scenario and similarly forServer
,SingleStream
andMultiStream
scenarios.
cm run script --tags=run-mlperf,inference,_submission,_all-scenarios --model=resnet50 \
--device=cpu --implementation=reference --backend=onnxruntime --execution-mode=valid \
--category=edge --division=open --quiet
- Use
--power=yes --adr.mlperf-power-client.power_server=192.168.0.15 --adr.mlperf-power-client.port=4950
for measuring power. Please adjust the server IP (where MLPerf power server is installed) and Port (default is 4950).power=yes
is ignored for accuracy and compliance runs - Use
--division=closed
to run all scenarios for the closed division including the compliance tests --offline_target_qps
,--server_target_qps
,--singlestream_target_latency
andmultistream_target_latency
can be used to override the determined performance numbers
Follow this guide to generate the submission tree and upload your results.
Check the MLCommons Task Force on Automation and Reproducibility and get in touch via public Discord server.