[ Back to index ]
cm run script --tags=run,mlperf,inference,run-mlperf,_submission \
--adr.python.version_min=3.8 \
--implementation=reference \
--model=bert-99 \
--precision=int8 \
--backend=deepsparse \
--device=cpu \
--scenario=Offline \
--mode=performance \
--execution_mode=valid \
--adr.mlperf-inference-implementation.max_batchsize=384 \
--offline_target_qps=20 \
--results_dir=$HOME/results_dir \
--env.CM_MLPERF_NEURALMAGIC_MODEL_ZOO_STUB=zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/pruned95_quant-none-vnni
cm run script --tags=run,mlperf,inference,run-mlperf,_submission \
--adr.python.name=mlperf \
--adr.python.version_min=3.8 \
--implementation=reference \
--model=bert-99 \
--precision=int8 \
--backend=deepsparse \
--device=cpu \
--scenario=Offline \
--mode=performance \
--execution_mode=valid \
--adr.mlperf-inference-implementation.max_batchsize=384 \
--offline_target_qps=20 \
--results_dir=$HOME/results_dir \
--env.CM_MLPERF_NEURALMAGIC_MODEL_ZOO_STUB=zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/14layer_pruned50_quant-none-vnni \
--env.DEEPSPARSE_SEQLENS="64,128,192,256,384"
cm run script --tags=run,mlperf,inference,run-mlperf,_submission \
--adr.python.version_min=3.8 \
--implementation=reference \
--compliance=no \
--model=bert-99 \
--precision=int8 \
--backend=deepsparse \
--device=cpu \
--scenario=Offline \
--mode=performance \
--execution_mode=valid \
--adr.mlperf-inference-implementation.max_batchsize=384 \
--offline_target_qps=20 \
--results_dir=$HOME/results_dir \
--env.DEEPSPARSE_SEQLENS="64,128,192,256,384" \
--env.CM_MLPERF_NEURALMAGIC_MODEL_ZOO_STUB=zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/base_quant-none
cm run script --tags=run,mlperf,inference,run-mlperf,_submission \
--adr.python.version_min=3.8 \
--implementation=reference \
--model=resnet50 \
--precision=int8 \
--backend=deepsparse \
--device=cpu \
--scenario=Offline \
--mode=performance \
--execution_mode=valid \
--adr.imagenet-preprocessed.tags=_pytorch \
--adr.mlperf-inference-implementation.dataset=imagenet_pytorch \
--adr.mlperf-inference-implementation.model=zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned85_quant-none-vnni \
--adr.mlperf-inference-implementation.max_batchsize=16 \
--adr.mlperf-inference-implementation.num_threads=48 \
--results_dir=$HOME/results_dir \
--env.DEEPSPARSE_NUM_STREAMS=24 \
--env.ENQUEUE_NUM_THREADS=2 \
--offline_target_qps=204
Follow this guide to generate the submission tree and upload your results.
Check the MLCommons Task Force on Automation and Reproducibility and get in touch via public Discord server.