-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_large_pose.py
executable file
·344 lines (302 loc) · 14.5 KB
/
train_large_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
import numpy as np
from dataset.dataset import getDatasetAndLoader
from model import getOptNet
from pyhocon import ConfigFactory,HOCONConverter
import argparse
import trimesh
import os
import os.path as osp
from MCAcc import Seg3dLossless
import utils
import cv2
from utils.constant import TEMPLATE_GARMENT, FL_INFOS, FL_COLOR
from engineer.visualizer.wandb_visualizer import wandb_visualizer
import random
import math
import pdb
import wandb
from pytorch3d.io import save_ply, save_obj
debug = False
parser = argparse.ArgumentParser(description='neu video body rec')
parser.add_argument('--gpu-ids',nargs='+',type=int,metavar='IDs',
help='gpu ids')
parser.add_argument('--conf',default=None,metavar='M',
help='config file')
parser.add_argument('--data',default=None,metavar='M',
help='data root')
parser.add_argument('--model-rm-prefix',nargs='+',type=str,metavar='rm prefix', help='rm model prefix')
parser.add_argument('--sdf-model',default=None,metavar='M',
help='substitute sdf model')
parser.add_argument('--save-folder',default=None,metavar='M',help='save folder')
parser.add_argument('--project_name', type = str, required = True, help='exp name show by wandb')
parser.add_argument('--exp_name', type = str, required = True, help='exp name show by wandb')
parser.add_argument('--data_type', type = str, required = True, help='the type of dataset')
parser.add_argument('--curve_sampling', type = int, default = 1, help='the type of dataset')
args = parser.parse_args()
resume_path = os.path.join(args.data, args.save_folder, 'a-pose.pth')
#point render
resolutions={'coarse':
[
(14+1, 20+1, 8+1),
(28+1, 40+1, 16+1),
(56+1, 80+1, 32+1),
(112+1, 160+1, 64+1),
(224+1, 320+1, 128+1),
],
'medium':
[
(18+1, 24+1, 12+1),
(36+1, 48+1, 24+1),
(72+1, 96+1, 48+1),
(144+1, 192+1, 96+1),
(288+1, 384+1, 192+1),
],
'fine':
[
(20+1, 26+1, 14+1),
(40+1, 52+1, 28+1),
(80+1, 104+1, 56+1),
(160+1, 208+1, 112+1),
(320+1, 416+1, 224+1),
]
}
resolutions_higher = [
(32+1, 32+1, 32+1),
(64+1, 64+1, 64+1),
(128+1, 128+1, 128+1),
(256+1, 256+1, 256+1),
(512+1, 512+1, 512+1),
]
config=ConfigFactory.parse_file(args.conf)
# registry visualized tool
wv_resume = True if not debug else False
wv = wandb_visualizer(args.project_name, args.exp_name, resume = wv_resume) if not debug else None
if len(args.gpu_ids):
device=torch.device(args.gpu_ids[0])
else:
device=torch.device(0)
data_root=args.data
if args.save_folder is None:
print('please set save-folder...')
assert(False)
save_root=osp.join(data_root,args.save_folder)
debug_root=osp.join(save_root,'debug')
os.makedirs(save_root,exist_ok=True)
os.makedirs(debug_root,exist_ok=True)
# save the config file
with open(osp.join(save_root,'config.conf'),'w') as ff:
ff.write(HOCONConverter.convert(config,'hocon'))
#[deform: 128, render: 256]
condlen={'deformer': int(config.get_int('mlp_deformer.condlen') * (1+len(TEMPLATE_GARMENT[config.get_string('train.garment_type')]))),'renderer':config.get_int('render_net.condlen')}
# batch_size:3
batch_size=config.get_int('train.coarse.point_render.batch_size')
dataset,dataloader=getDatasetAndLoader(data_root,condlen,batch_size,
config.get_bool('train.shuffle'),config.get_int('train.num_workers'),
config.get_bool('train.opt_pose'),config.get_bool('train.opt_trans'),config.get_config('train.opt_camera'), config.get_string('train.garment_type'), data_type = config.train.data_type,
curve_sampling = args.curve_sampling, a_pose = False)
# if debug:
# for ind in range(len(dataset)):
# __, datas = dataset[ind]
# gt_joints2d = datas['gt_joints2d']
# img = datas['img']
# draw_board =((img / 2. + 0.5) *255.).cpu().numpy().astype(np.uint8)
#
# for joint in gt_joints2d.astype(np.int):
# draw_board = cv2.circle(draw_board, (int(joint[0]), int(joint[1])), 2, (0, 0, 255), 1)
#
# cv2.imwrite('./debug/joints2d/{:04d}.png'.format(ind), draw_board)
# print('./debug/joints2d/{:04d}.png'.format(ind))
# os.makedirs('debug/{}/masks/'.format(config.train.garment_type), exist_ok = True)
# garment_type = config.train.garment_type
# for ind in range(len(dataset)):
# __, datas = dataset[ind]
#
# upper_mask =datas['upper']
# bottom_mask =datas['bottom']
#
#
# upper_bottom_mask =datas['upper_bottom']
#
# # NOTE the order of body mask and garment_mask
#
# upper_mask = upper_mask.detach().cpu().numpy().astype(np.uint8) * 255
# bottom_mask = bottom_mask.detach().cpu().numpy().astype(np.uint8) * 255
# upper_bottom_mask = upper_bottom_mask.detach().cpu().numpy().astype(np.uint8) * 255
#
# cv2.imwrite('debug/{}/masks/upper_{:03d}.png'.format(garment_type,ind), upper_mask)
# cv2.imwrite('debug/{}/masks/bottom_{:03d}.png'.format(garment_type,ind), bottom_mask)
# cv2.imwrite('debug/{}/masks/upper_bottom_{:03d}.png'.format(garment_type, ind), upper_bottom_mask)
#
# print('frame {:3d}'.format(ind))
# xxxx
bmins=None
bmaxs=None
#-1200
if config.get_int('train.initial_iters')<=0:
use_initial_sdf=True
else:
use_initial_sdf=False
# tmpsdf网络->输出为257, sdf 值和sdf 的feature embedding(256)
# deformer_network (128 + 39(xyz+embeding)) 输出为256值
# perspective camera
# seg3d loss 的约束engine
# silluhute render 器
# rendernet work
optNet,sdf_initialized=getOptNet(dataset, args.save_folder, batch_size,bmins,bmaxs,resolutions['coarse'],device,config,use_initial_sdf ,visualizer= wv, opt_large = True)
optNet,dataloader=utils.set_hierarchical_config(config,'coarse',optNet,dataloader,resolutions['coarse'])
print('box:')
print(optNet.engine.b_min.view(-1).tolist())
print(optNet.engine.b_max.view(-1).tolist())
optNet.train()
# initialized the sdf_field
if sdf_initialized>0:
optNet.initializeTmpSDF(sdf_initialized,osp.join(data_root,args.save_folder, 'initial_sdf_idr'+'_%d_%d.pth'%(config.get_int('sdf_net.multires'),config.get_int('train.skinner_pose_type'))),True, dataloader = dataloader)
engine = Seg3dLossless(
query_func=None,
b_min = optNet.engine.b_min,
b_max = optNet.engine.b_max,
resolutions=resolutions['coarse'],
align_corners=False,
balance_value=0.0, # be careful
visualize=False,
debug=False,
use_cuda_impl=False,
faster=False
).to(device)
verts_list,faces_list=optNet.discretizeSDF(-1,engine)
# save_body_mesh
body_verts, body_faces = verts_list[0], faces_list[0]
mesh = trimesh.Trimesh(body_verts.cpu().numpy(), body_faces.cpu().numpy())
optNet.load_init_sdf_vertices(mesh)
mesh.export(osp.join(data_root,args.save_folder,'initial_sdf_idr'+'_%d_%d.ply'%(config.get_int('sdf_net.multires'),config.get_int('train.skinner_pose_type'))))
# save_garment_mesh
garment_verts, garment_faces = verts_list[1:], faces_list[1:]
for garment_idx, garment_name in enumerate(TEMPLATE_GARMENT[optNet.garment_type]):
mesh = trimesh.Trimesh(garment_verts[garment_idx].cpu().numpy(), garment_faces[garment_idx].cpu().numpy())
mesh.export(osp.join(data_root,args.save_folder, 'initial_sdf_%s_idr'%(garment_name)+'_%d_%d.ply'%(config.get_int('sdf_net.multires'),config.get_int('train.skinner_pose_type'))))
# using initial curve align
optNet.align_fl(os.path.join(data_root, args.save_folder, 'fl_init', 'init_trans_matrix.pth'))
optNet.opt_times = 0
start_epoch = 0
if resume_path is not None and osp.isfile(resume_path):
print('load model: '+resume_path,end='')
if args.sdf_model is not None:
print(' and substitute sdf model with: '+args.sdf_model,end='')
sdf_initialized=-1
optNet,dataset, start_epoch=utils.load_model(resume_path,optNet,dataset,device,args.sdf_model,args.model_rm_prefix)
start_epoch = 60
if start_epoch >= config.get_int('train.fine.start_epoch'):
optNet,dataloader=utils.set_hierarchical_config(config,'fine',optNet,dataloader,resolutions['fine'])
print('enable fine hierarchical')
torch.cuda.empty_cache()
in_fine_hie=True
optNet.draw=True
optNet.isfine = True
elif start_epoch >= config.get_int('train.medium.start_epoch'):
optNet,dataloader=utils.set_hierarchical_config(config,'medium',optNet,dataloader,resolutions['medium'])
print('enable fine hierarchical')
torch.cuda.empty_cache()
learnable_ws=dataset.learnable_weights()
optimizer = torch.optim.Adam([{'params':learnable_ws},{'params':[p for p in optNet.parameters() if p.requires_grad]}], lr=config.get_float('train.learning_rate'))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, config.get_list('train.scheduler.milestones'), gamma=config.get_float('train.scheduler.factor'))
for __ in range(start_epoch+1):
scheduler.step()
# compute opt_time
coarse_epoch = config.get_int('train.coarse.start_epoch')
medium_epoch = config.get_int('train.medium.start_epoch')
fine_epoch = config.get_int('train.fine.start_epoch')
coarse_batch_size=config.get_int('train.coarse.point_render.batch_size')
medium_batch_size=config.get_int('train.medium.point_render.batch_size')
fine_batch_size=config.get_int('train.fine.point_render.batch_size')
coarse_time = np.ceil(len(dataset) /coarse_batch_size) * (medium_epoch - coarse_epoch)
medium_time = np.ceil(len(dataset) /medium_batch_size) * (fine_epoch - medium_epoch)
fine_time = np.ceil(len(dataset) /fine_batch_size) * (start_epoch - medium_epoch + 1)
optNet.opt_times+= (coarse_time+medium_time+fine_time)
start_epoch+=1
fl_curve_meshes = optNet.inter_free_curve.curve_to_mesh()
os.makedirs('./debug/cano_fl/', exist_ok = True)
for fl_curve, fl_name in zip(fl_curve_meshes, optNet.fl_names):
save_obj('debug/cano_fl/{}.obj'.format(fl_name), fl_curve.verts_packed().detach().cpu(),fl_curve.faces_packed().detach().cpu() )
learnable_ws=dataset.learnable_weights()
optimizer = torch.optim.Adam([{'params':learnable_ws},{'params':[p for p in optNet.parameters() if p.requires_grad]}], lr=config.get_float('train.learning_rate'))
#[10 30 80 130], gamma = 0.333k
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, config.get_list('train.scheduler.milestones'), gamma=config.get_float('train.scheduler.factor'))
ratio={'sdfRatio':None,'deformerRatio':None,'renderRatio':None}
optNet.opt_times=0.
# 200
nepochs=config.get_int('train.nepoch')
# 2048
sample_pix_num=config.get_int('train.sample_pix_num')
# coarse {
# start_epoch = 0
# point_render {
# radius = 0.006
# remesh_intersect = 30
# batch_size = 3
# }
# }
# medium {
# start_epoch = 6
# point_render {
# radius = 0.00465
# remesh_intersect = 60
# batch_size = 2
# }
# }
# fine {
# start_epoch = 12
# point_render {
# radius = 0.0041
# remesh_intersect = 120
# batch_size = 1
# }
# }
#
for epoch in range(start_epoch,nepochs+1):
if config.get_int('train.medium.start_epoch')>=0 and epoch==config.get_int('train.medium.start_epoch'):
optNet,dataloader=utils.set_hierarchical_config(config,'medium',optNet,dataloader,resolutions['medium'])
torch.cuda.empty_cache()
print('enable medium hierarchical')
utils.save_model(osp.join(save_root,"coarse.pth"),epoch,optNet,dataset)
if config.get_int('train.fine.start_epoch')>=0 and epoch==config.get_int('train.fine.start_epoch'):
optNet,dataloader=utils.set_hierarchical_config(config,'fine',optNet,dataloader,resolutions['fine'])
print('enable fine hierarchical')
torch.cuda.empty_cache()
utils.save_model(osp.join(save_root,"medium.pth"),epoch,optNet,dataset)
in_fine_hie=True
for data_index, (frame_ids, outs) in enumerate(dataloader):
frame_ids=frame_ids.long().to(device)
optimizer.zero_grad()
ratio['sdfRatio']=1.
ratio['deformerRatio']=optNet.opt_times/2500.+0.5
ratio['renderRatio']=1.
# core
loss=optNet(outs,sample_pix_num,ratio,frame_ids,debug_root, global_optimizer = optimizer)
loss.backward()
# here also having backward
optNet.propagateTmpPsGrad(frame_ids,ratio)
optimizer.step()
cur_lr = optimizer.state_dict()['param_groups'][0]['lr']
optNet.draw_loss(optNet.opt_times, total_loss = loss.item(), learning_rate = cur_lr, ratio = ratio)
if data_index%1==0:
for garment_idx in range(optNet.garment_size):
garment_name = optNet.garment_names[garment_idx]
outinfo='(%d/%d) (%s): loss = %.5f; color_loss: %.5f, eikonal_loss: %.5f'%(epoch,data_index,garment_name, loss.item(),optNet.info['{}_color_loss'.format(garment_name)],optNet.info['{}_grad_loss'.format(garment_name)])+ \
(' normal_loss: %.5f,'%optNet.info['{}_normal_loss'.format(garment_name)] if '{}_normal_loss'.format(garment_name) in optNet.info else '')+ \
(' def_loss: %.5f,'%optNet.info['def_{}_loss'.format(garment_name)] if 'def_{}_loss'.format(garment_name) in optNet.info else '')+ \
(' offset_loss: %.5f,'%optNet.info['{}_offset_loss'.format(garment_name)] if '{}_offset_loss'.format(garment_name) in optNet.info else '')+ \
(' dct_loss: %.5f,'%optNet.info['dct_loss'] if 'dct_loss' in optNet.info else '')
outinfo+='\n'
outinfo+='\tpc_sdf_l: %.5f'%(optNet.info['pc_{}_loss_sdf'.format(garment_name)])
outinfo+=';\tpc_norm_l: %.5f; '%(optNet.info['pc_loss_norm']) if 'pc_loss_norm' in optNet.info else '; '
for k,v in optNet.info['pc_loss'].items():
if garment_name in k:
outinfo+=k+': %.5f\t'%v
outinfo+='\n\trayInfo(%d,%d)\tinvInfo(%d,%d)\tratio: (%.2f,%.2f,%.2f)\tremesh: %.3f'%(*optNet.info['{}_rayInfo'.format(garment_name)],*optNet.info['{}_invInfo'.format(garment_name)],ratio['sdfRatio'],ratio['deformerRatio'],ratio['renderRatio'],optNet.info['remesh'])
print(outinfo)
optNet.opt_times+=1.
if in_fine_hie:
optNet.draw=True
utils.save_model(osp.join(save_root,"latest.pth"),epoch,optNet,dataset)
scheduler.step()