diff --git a/notebook/fink_fat_experiments/kbo_neo_issue.conf b/notebook/fink_fat_experiments/kbo_neo_issue.conf new file mode 100644 index 00000000..68b36e50 --- /dev/null +++ b/notebook/fink_fat_experiments/kbo_neo_issue.conf @@ -0,0 +1,49 @@ +[TW_PARAMS] +trajectory_keep_limit=15 +old_observation_keep_limit=2 +trajectory_2_points_keep_limit=8 + + +[ASSOC_PARAMS] +intra_night_separation=145 +intra_night_magdiff_limit_same_fid=0.2 +intra_night_magdiff_limit_diff_fid=0.8 +inter_night_separation=0.3 +inter_night_magdiff_limit_same_fid=0.1 +inter_night_magdiff_limit_diff_fid=0.5 +maximum_angle=1 +use_dbscan=false + + +[ASSOC_PERF] +store_kd_tree=false + +[SOLVE_ORBIT_PARAMS] +n_triplets=30 +noise_ntrials=20 +prop_epoch=None +orbfit_verbose=3 + +orbfit_limit=6 +cpu_count=8 +ram_dir=/media/virtuelram +manager= +principal= +secret= +role= +exec_env='/home/roman.le-montagner' +driver_memory=6 +executor_memory=8 +max_core=100 +executor_core=4 +orbfit_path=/opt/OrbitFit + + +[ASSOC_SYSTEM] +tracklets_with_trajectories=true +trajectories_with_new_observations=true +tracklets_with_old_observations=true +new_observations_with_old_observations=true + +[OUTPUT] +association_output_file=kbo_neo_issue_ff_output diff --git a/notebook/parameters_selection/kbo_neo_issue.ipynb b/notebook/parameters_selection/kbo_neo_issue.ipynb new file mode 100644 index 00000000..b6cc96f4 --- /dev/null +++ b/notebook/parameters_selection/kbo_neo_issue.ipynb @@ -0,0 +1,3053 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%reload_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "import exploring_script as es\n", + "import importlib\n", + "importlib.reload(es)\n", + "import pandas as pd\n", + "import numpy as np\n", + "import glob\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "from astropy.time import Time\n", + "from astropy.coordinates import SkyCoord" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "confirmed_sso = es.load_data(columns=[\"ssnamenr\", \"jd\", \"nid\", \"ra\", \"dec\", \"magpsf\", \"sigmapsf\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "rocks_names = pd.read_parquet(\"data/rocks_fink.parquet\")\n", + "mpc_database = pd.read_parquet(\n", + " \"../data/MPC_Database/mpcorb_extended.parquet\",\n", + " columns=[\"Number\", \"Name\", \"Principal_desig\", \"Other_desigs\", \"a\", \"e\", \"i\", \"Node\", \"Peri\", \"M\", \"Epoch\", \"Orbit_type\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "start_jd = Time(\"2020-09-01\").jd\n", + "end_jd = Time(\"2020-10-01\").jd" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "exp_paper_data = confirmed_sso[(confirmed_sso[\"jd\"] > start_jd) & (confirmed_sso[\"jd\"] < end_jd)]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "mpc_in_fink, fink_not_in_mpc = es.mpc_crossmatch(mpc_database, pd.Series(exp_paper_data[\"ssnamenr\"].unique()))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "orbfit_limit_point=6\n", + "tw=15\n", + "\n", + "\n", + "is_detectable = (\n", + " exp_paper_data.sort_values(\"jd\")\n", + " .groupby(\"ssnamenr\")\n", + " .agg(nb_det=(\"ra\", len), is_in_tw=(\"jd\", lambda x: np.all(np.diff(x) <= tw)))\n", + " .reset_index()\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "exp_paper_data = exp_paper_data.merge(is_detectable, on=\"ssnamenr\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "exp_paper_data_detectable = exp_paper_data[(exp_paper_data[\"nb_det\"] >= orbfit_limit_point) & (exp_paper_data[\"is_in_tw\"])]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "mpc_in_detectable, detectable_not_in_mpc = es.mpc_crossmatch(mpc_database, pd.Series(exp_paper_data_detectable[\"ssnamenr\"].unique()))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MBA 80594\n", + "Jupiter Trojan 2065\n", + "Hungaria 1596\n", + "Phocaea 1127\n", + "Object with perihelion distance < 1.665 AU 695\n", + "Hilda 349\n", + "Amor 111\n", + "Apollo 87\n", + "Distant Object 29\n", + "Aten 13\n", + "Name: Orbit_type, dtype: int64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpc_in_fink[\"Orbit_type\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MBA 42237\n", + "Jupiter Trojan 1058\n", + "Hungaria 788\n", + "Phocaea 635\n", + "Object with perihelion distance < 1.665 AU 407\n", + "Hilda 189\n", + "Amor 53\n", + "Apollo 49\n", + "Distant Object 12\n", + "Aten 5\n", + "Name: Orbit_type, dtype: int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpc_in_detectable[\"Orbit_type\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NumberNamePrincipal_desigOther_desigsaeiNodePeriMEpochOrbit_type
33(34)CirceA855 GA1965 JL2.6868880.1065875.49740184.33198330.0496680.665082460000.5MBA
44(45)EugeniaA857 MA1941 BN2.7208800.0833546.60508147.5915887.54349346.556922460000.5MBA
50(51)NemausaA858 BA1949 HC12.3649190.0674049.97939175.954991.69084116.270592460000.5MBA
61(62)EratoA860 RDA906 BE3.1306030.1681092.23647125.12030277.48090127.943792460000.5MBA
66(67)AsiaA861 HANone2.4221940.1845756.02929202.38775107.06734284.597702460000.5MBA
.......................................
1088217NoneNone2017 YG132015 EU42.2897550.2349334.0478953.75587330.70343232.090542460000.5MBA
1091374NoneNone2018 BA18None2.7321530.2367578.5140793.65058250.96625205.931072460000.5MBA
1111028NoneNone2019 AS55None1.9321070.11358817.87981303.8714156.44723318.195372460000.5Hungaria
1115074NoneNone2019 GP45None2.5833910.28873510.4945616.31149329.24792223.049682460000.5MBA
1118834NoneNone2019 JM61None3.1499780.32788420.9467657.29304274.48483176.199162460000.5MBA
\n", + "

45433 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " Number Name Principal_desig Other_desigs a e \\\n", + "33 (34) Circe A855 GA 1965 JL 2.686888 0.106587 \n", + "44 (45) Eugenia A857 MA 1941 BN 2.720880 0.083354 \n", + "50 (51) Nemausa A858 BA 1949 HC1 2.364919 0.067404 \n", + "61 (62) Erato A860 RD A906 BE 3.130603 0.168109 \n", + "66 (67) Asia A861 HA None 2.422194 0.184575 \n", + "... ... ... ... ... ... ... \n", + "1088217 None None 2017 YG13 2015 EU4 2.289755 0.234933 \n", + "1091374 None None 2018 BA18 None 2.732153 0.236757 \n", + "1111028 None None 2019 AS55 None 1.932107 0.113588 \n", + "1115074 None None 2019 GP45 None 2.583391 0.288735 \n", + "1118834 None None 2019 JM61 None 3.149978 0.327884 \n", + "\n", + " i Node Peri M Epoch Orbit_type \n", + "33 5.49740 184.33198 330.04966 80.66508 2460000.5 MBA \n", + "44 6.60508 147.59158 87.54349 346.55692 2460000.5 MBA \n", + "50 9.97939 175.95499 1.69084 116.27059 2460000.5 MBA \n", + "61 2.23647 125.12030 277.48090 127.94379 2460000.5 MBA \n", + "66 6.02929 202.38775 107.06734 284.59770 2460000.5 MBA \n", + "... ... ... ... ... ... ... \n", + "1088217 4.04789 53.75587 330.70343 232.09054 2460000.5 MBA \n", + "1091374 8.51407 93.65058 250.96625 205.93107 2460000.5 MBA \n", + "1111028 17.87981 303.87141 56.44723 318.19537 2460000.5 Hungaria \n", + "1115074 10.49456 16.31149 329.24792 223.04968 2460000.5 MBA \n", + "1118834 20.94676 57.29304 274.48483 176.19916 2460000.5 MBA \n", + "\n", + "[45433 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpc_in_detectable" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "bft_data = pd.read_parquet(\"../data/BFT_Miriade/ssoBFT-latest.parquet\", \n", + " columns=[\"sso_id\", \"sso_number\", \"sso_name\", \"sso_type\", \"sso_class\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "rocks_names[\"ast_number\"] = rocks_names[\"ast_number\"].fillna(-1).astype(int).astype(str)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def get_label(x):\n", + " if x[0] == \"MB\":\n", + " if x[1] in [\"Middle\", \"Outer\", \"Inner\"]:\n", + " return x[0]\n", + " else:\n", + " return x[1]\n", + " elif x[0] == \"NEA\":\n", + " return x[1]\n", + " else:\n", + " return x[0]\n", + "\n", + "def merge_bft(data):\n", + " merge = (data\n", + " .merge(rocks_names, left_on=\"ssnamenr\", right_on=\"ast_number\")\n", + " .merge(bft_data, left_on=\"ast_name\", right_on=\"sso_name\")\n", + " )\n", + " merge[\"class_alt\"] = (\n", + " merge[\"sso_class\"].str.split(\">\").map(lambda x: get_label(x))\n", + " )\n", + "\n", + " return merge" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "exp_with_bft = merge_bft(exp_paper_data_detectable)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MB 618812\n", + "Trojan 14382\n", + "Hungaria 10869\n", + "Phocaea 7546\n", + "Mars-Crosser 7061\n", + "Hilda 2794\n", + "Cybele 2772\n", + "Apollo 707\n", + "Amor 600\n", + "KBO 90\n", + "Aten 66\n", + "Centaur 39\n", + "Name: class_alt, dtype: int64" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp_with_bft[\"class_alt\"].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# KBO analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/roman/anaconda3/envs/fink_fat_env/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" + ] + } + ], + "source": [ + "kbo_class = exp_with_bft[exp_with_bft[\"class_alt\"] == \"KBO\"]\n", + "kbo_class[\"iso_time\"] = Time(kbo_class[\"jd\"], format=\"jd\").iso" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "kbo_diff_time = kbo_class.sort_values(\"jd\").groupby(\"sso_name\").agg(\n", + " time=(\"iso_time\", list),\n", + " diff_time=(\"jd\", lambda x: list(np.diff(x))),\n", + " diff_time_start=(\"jd\", lambda x: list(x)[1] - list(x)[0] if len(list(x)) > 1 else np.nan)\n", + ").explode(\"diff_time\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACZ4AAAOjCAYAAAAxxIMQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVd/G8TsJKRAIEAi9d0KHEIp0UBGliCCoCIiK+iAidnyoKgoiYi9YALGACAgiIs3Qu4IgSK+hBEJCIKRn3j942SezJdlNsklIvp/r2is5s6fN7Mzu7M5vzvEwDMMQAAAAAAAAAAAAAAAAAABO8sztDgAAAAAAAAAAAAAAAAAAbi0EngEAAAAAAAAAAAAAAAAAXELgGQAAAAAAAAAAAAAAAADAJQSeAQAAAAAAAAAAAAAAAABcQuAZAAAAAAAAAAAAAAAAAMAlBJ4BAAAAAAAAAAAAAAAAAFxC4BkAAAAAAAAAAAAAAAAAwCUEngEAAAAAAAAAAAAAAAAAXELgGQAAAAAAAAAAAAAAAADAJQSeIVNOnDghDw8Py2Po0KHp5u/UqZMpvyuuXLmiadOmqWvXripfvrx8fX1Ndc2ePdth2aNHj+rFF19Uy5YtVbp0aRUqVMhU9sSJEy71Jbu5uh2RebNnz3Z6vwEA3Np4z3deWFiYaVtNnDjRbW1l5XzQGZxXmbl7eyNvycljGTmLzzQAAAAAAAAAeVmh3O4AkJ6wsDDdd999unz5sstlZ8yYoRdffFEpKSlu6BkAAAAAAAAAAABwa+vUqZPWrVtnSRuGkYu9yR6zZ8/WI488YknPmjWrwN+kCACAuxB4hjzryJEjuueeexQbG+ty2e+//17PPfecG3oFAAAAAAAAAACAm44fP659+/bp9OnTiomJUWpqqkqWLKmSJUuqfv36atiwoby8vHK7mwAAAHADAs+QZ7366qumoLPGjRtr+PDhql69unx8fCzLGzRoYCqXnJysF154wbSsZ8+euu+++1S+fHl5ev5vhtly5cplqY8TJ07UpEmTLOk//vhDnTp1ylKdgDPCwsLUuXNnS3rChAlMqQQg38iPd1kCrko7PWbHjh0VFhaWe525RXF3c/7FuTAAAACQ+/bu3auZM2dq8eLFCg8PTzdvkSJFdNttt2nQoEG677775O/vn0O9BAAAgLsReIY8KSYmRkuWLLGk69atq23btsnPzy/DsqtXr9a5c+cs6cGDB2vOnDlu6ScAAAAAAAAAAEBBcerUKY0ePVqLFi1yusz169e1atUqrVq1SiNHjtQrr7yi0aNHO3XNBwUTN6YCAHDrIPAMOcLVERp27dqlxMRES3rw4MFOfwHZsmWLKf3EE0+41HZOqlatGifLAABks6FDhzKqkZM6deqUb85FOK9CQZafjmWY8ZkGAACAvGTZsmUaNGiQrly5Yvf5kiVLKigoSMWLF9elS5d04cIFXb9+3ZQnJiZGr776qhYtWqQdO3bkRLcBAADgRgSeIU86dOiQKW09naa7ygIAAAAAAAAAAMDsu+++05AhQ5SSkmJa3qJFCz366KPq0aOHqlatalPu4MGDWrJkiX788Uft2rXLsvzixYtu7zMKLm7iAQAg53jmdgcAe6Kjo03pgICAHCkLAAAAAAAAAACA/9m5c6eGDRtmCjorXry45s6dqx07duipp56yG3QmSXXr1tVLL72knTt3atGiRapbt25OdRsAAAA5gMAz5Enx8fGmtIeHR46UBQAAAAAAAAAAwA0xMTEaMGCAEhMTLcvKlCmjsLAwDRo0yKVrMPfee6/+/vtvPfroo+7oKgAAAHIBU23CJDU1VZs3b9ahQ4d0/vx5+fn5qUaNGmrfvr1KlSqVY/0wDCNXyt7qIiMjtXnzZoWHh+vy5csqXbq0QkND1bRp0wzLHjlyRFu3btXZs2fl4eGhChUqqFOnTqpYsWK29O3gwYPas2ePLl68qCtXrigwMFAVKlRQu3btFBgYmC1tZEV8fLw2bdqkAwcOWPpXtWpVderUSUWKFMmWNiIiIrR161adP39ekZGRKlq0qMqUKaPQ0FBVr149W9rIT3JiexmGob///lsHDhxQRESEYmNjVbp0aVWqVEnt27dX0aJFs6Wdm65cuaL169fryJEjiouLU6lSpVSrVi21a9dOvr6+2dqWKy5cuKBt27YpIiJCly5dkqenp0qUKKE6deqoadOmKlGiRKbqjY6O1qZNm3T27FldunTJ8ho2a9ZMderUyd6V0I19ZsOGDTp+/LiSkpJUunRpBQcHq3Xr1vLy8sp0vefPn9eff/6pEydOKCYmRqmpqSpSpIjKlCmjGjVqqGHDhlnaV65fv65NmzYpPDxcERER8vLyUpkyZRQcHKzmzZtnWwC1u15nZF5Ovwe5y/Hjx7Vt2zaFh4crKSlJ5cqVU0hIiBo2bJjbXcuSvPqenV3cvX75Zf/OyNGjR/X333/r7Nmzio6OVunSpTVw4EAVL17cYZmIiAjt27dPR48eVXR0tJKTkxUYGKhy5cqpVatWKleuXA6ugVl0dLQ2b96sc+fO6eLFi/Lz81NQUJCaNWum4ODgbGvn1KlT2rlzpy5evKjIyEj5+PgoMDBQdevWVdOmTeXv759tbbkiMTFRW7Zs0fHjx02fybVr11ZoaKg8PbP33r2EhARt2rRJZ86c0blz5+Tl5aWWLVuqY8eO2dqO5N5z68uXL+vPP//UkSNHdOXKFSUnJ6tIkSIqXbq0qlevrgYNGqhkyZLZtCYAAADIaRMnTtSxY8csaU9PT/38889OXXewx8fHR19++aUWLVqUTT0EAABArjIAwzCSk5ONadOmGRUqVDAk2Ty8vLyM/v37G8ePHzcMwzCOHz9uen7IkCHp1t+xY0dTfmvW9Tn7mDVrljFr1qxMlb25Lq76448/MtWeM+ud2e144MABo3///oaPj4/ddps1a2Zs3rzZbp1r1641Wrdubbech4eH0atXL+PkyZOZ2lZXr141Jk6caFSvXt3hNvHy8jI6depkrF+/PlNtOMt6P5k1a5ZhGIZx7do146WXXjKKFStmt39FixY1nnzySSMqKipT7aakpBhz5swxQkJCDA8PD4fboX79+sasWbOMlJSUdOvL7L73xx9/WOqoVq2aZXmNGjUyXIdLly7Z9H3YsGEZllu0aJGpzMcff5zj28uRiIgIY/To0Ub58uUdtuHj42P06tXL2LNnj9P1OjpGz549azzyyCMOj1F/f3/jv//9r3Ht2rVMrU9mJCQkGB9//LHRuHHjdLe1l5eXcdtttxlffPGFERsb61Td69atM7p06WIUKlTIYb21atUy3n33XSMhIcHpPletWtVSvmrVqpblBw8eNO69917D09PTblulSpUypk+fbiQmJrq0jX788UejTZs2GR5fXl5eRrNmzYxJkyYZkZGRTte/ceNG46677jJ8fX0d1l2mTBlj3LhxRkxMjEt9vyk7X+cJEyY4fF/JiDOfd9b1O/vo2LGjTV2O3vPTWrBggSnPoEGDnF6ftCZOnGiqZ9q0aRmWcdd7UGZYn9dMmDDB6bKbN2822rZt63AdGjRoYCxcuNCSP6PzwazKrvOq3HzPtu6Tsw97r1turV9u79+Z/V4h2X4/SG+fmjt3rhEaGmq3nr/++stUT2pqqrF+/Xrj6aefNurWrZthPxo1amTMnj3bSEpKcnq9s3IsG4ZhLF261OjQoUO6n91VqlQx3n33XSM+Pt6lum+6evWqMXnyZKN27drprr+vr69x++23G/PmzbP57M7sa5vRZ9axY8eMQYMGOfxOIMkoXbq0MXLkSOPixYtOr/OQIUPs7mOnT582hg8fbpQoUcKmnd69e5vqcOYzzRF3n1uvXr3auP322x2eg918eHh4GPXq1TNefvll49SpUy61AQAAgNwVFRVlFC1a1HR+99xzz+V2t3LEpUuXjKVLlxqffvqpMXnyZOPzzz+3+b7nyOHDh425c+caU6dONd5++23j22+/Nc6cOePeDmdBVn6zSUlJMf79919j4cKFxocffmhMnjzZeOedd4yvv/7aWL9+faa/Q7r7d6S8IjU11di9e7fxww8/GO+//77x5ptvGjNnzjSWL19uXL16Nbe7BwCAU/LvJzWcFhkZ6fCiifUjICDAWLt2LYFnmbzgkdF6Z2Y7/vzzz0bhwoUzbNvb29tYtGiRqb6JEyemewHi5qNcuXLGv//+69J2+uWXX4wyZcq4tH2GDx/u0gU2V9i7YHPq1CmjXr16TvWtfPnyxs6dO11q89ChQ0aTJk1c2gatW7c2IiIiHNaZ2X0v7cW2YcOGmZ47ceJEuuthHZwhyahWrVqG6z9ixAhTmQMHDuT49rLnyy+/TPeiovXD09PTmDRpklN12ztG169fbwQGBjrVVsuWLV0KXMqszZs3m4K4nH1kdKEzISHBePjhh12qs3bt2hnuGzfZCzxbsGCBU++Bkoy7777biIuLy7Cd+Ph44957783UsbZq1aoM67927ZrRv39/l+otV66csX37dqe2003Z/Trnt8Cz+Ph4o2TJkpY8/v7+Lv+Yk5qaatSoUcNSh5eXl3H27Nl0y7jzPSgzMhusMmnSpAwDDW4+Ro4caaSmpt4SgWe5/Z7t7sAzd69fXti/3R14Fh8fb/Tt2zfdeqwvRDz//POZ6k+7du2MCxcuOLXemT2WL1y4YHTq1MmlftWpU8c4cuSIU/Xf9PPPPxulS5d2eRtYf9Zk9rVN7zNrxowZDgMx7T0CAgJMQbXpsRd4tmrVKqN48eIO68+uwDN3nlunpqYaTz/9dKZeiy+++MKp/gMAACBvmDJliul8zsfHx6WbMVyVlRsvDMP8ncHeb0Zp5fUb/d39W1xarv5mExMTY8yZM8e49957Tb+v2Xv4+voa/fr1M3bt2pVhvdyYan7k1I2pAABkVfbOE4FbztWrV3XHHXdo+/btpuUeHh6qVq2aQkJCVK1aNcvymJgY9e7dWwcOHMjhnsKeTZs26f7771dcXJwkyc/PT/Xr11dISIiCgoJMeZOSkjRo0CAdPnxYkjRlyhRNnDjRMjVp8eLF1bhxYzVt2tRm6qPz58+rb9++SkpKcqpfM2fOVJ8+fRQREWFaXqRIEdWvX1+hoaGqVauWzVQ1M2fOVL9+/XJkutTr16+rR48e+vfffy3LypYtqxYtWqhOnTry9vY25T937pzuvPNO7du3z6n6t23bprZt22rPnj2m5V5eXqpVq5ZCQ0MVHBwsPz8/0/Nbt25VmzZtdPHixUyuWca6dOliSq9Zsybd/GvXrrVZduLECdPw6hmVq1ChgurVq+cwb05tr3Hjxumxxx7T1atXTcsDAgLUoEEDhYaGmt7zpBtTEE+YMEGjRo1yqo20du3apbvuukuXL1+WdGMY+po1ayo0NFS1a9e2mUJxx44dGjp0qMvtuGLevHnq3LmzTp48afNc+fLl1axZMzVv3lxVqlRxqd6EhATdfffdmjt3rt16Q0JC7B5bhw8fVrt27fTXX3+5tiKSfv31Vw0cONDyHujt7a06derYfR1v5n/ppZcyrPexxx7T4sWLbZbfnCa0devWatCggc37rDMiIiLUsWNHLViwwOa5SpUqqUWLFmratKnNdFTnz59Xp06dtHHjRqfacdfrnJ/4+vpq4MCBlnRsbKwWLlzoUh0bN240vRfecccdKl++vMP8Of0e5C5vvvmmJkyYoNTUVNPywMBAy3R8hQsXtiz/8MMPNXny5Jzupsvy4nt2dnL3+uWX/TsjQ4cONU0HU6xYMTVo0EDNmjVT6dKl7ZaJj4+3WVayZEnVr19frVq1UtOmTe2+d2zcuFFdunSxfM5lt8OHD6t169YKCwszLU/7XbBRo0Y23w0OHTqkNm3a6NChQ0618+6776pv3766dOmSTTuVK1e2fPZVqFAhS+uTGePGjdPo0aOVmJhoWl6iRAk1adLE7nTaMTExuv/++zVr1iyX2/vrr7/Uu3dvXblyxbKsatWqCgkJUc2aNW3OkzLL3efW48eP10cffWSzPDAwUE2aNFHr1q3VqFGjdD8TAQAAcGuwng7z3nvvdfjdJz9YsmSJmjdvrgULFth8T7jpr7/+UseOHW1+P5w0aZK6du2qrVu32i1nGIaWLl2qVq1a6eDBg9ne95xUvXp1DRkyRIsXL1ZUVFS6eRMSEvTTTz8pJCREb775Zg710Dk9e/Y0/Q67ePFiXbt2zaU6DMPQN998Y0l7eXnpoYceSrfMV199pZo1a2rGjBk6d+6cw3yJiYlaunSpmjVrptdee82lfgEAkKNyN+4Nue2JJ56wuePi6aeftrnj4tixY6a8aafqUzbcLREXF2esWrXK8rAeMeedd94xPX/zcfbsWePs2bOmZY0bNzaVtVdu1apVTo16Y8/ly5dd7ufNh7Ws3nVy83WoUKGCMXv2bNP0aKmpqcbvv/9uVKlSxVSmX79+xsaNGy2jlLRs2dJYvXq1kZycbCkbHx9vfPLJJzbTv33wwQcZbp/Vq1fbjIDSs2dPIywszGY0s8jISGPq1Kk2I2NMmTIlw3ZcZX13S9pRgLp162YzmllkZKQxZcoUw8/Pz1SuUaNGGU7Xd+7cOZvR3ho3bmz88MMPNqPpxMXFGfPnzzdq1qxpyt+jRw8jNTXVpu6b+9I777xjyv/www+nu+9dvnzZUsfZs2dNZR966KF016dOnTp277ZJb7QC6zbSu1PIndsrra+//trm/W7w4MHGjh07bKYVCg8PN8aMGWN4e3ubysyfPz/dNqyP0ZsjIQUGBhrvvvuucenSJZt2hg4darNtly9fnm47mbV9+3abO/UCAgKM119/3e4okJcvXzZ+/vln48EHHzR8fHzSvcPwueees1mPPn362NyNFRkZabz99ts2o5TVrFkzw9Gm0h63JUqUsNxNV6lSJePrr7+2mY7y0KFDxt13321qx9PT09i3b1+62yht/kKFChljxoxxODLg+fPnjQULFhiDBw82ChcunO6IZykpKUbnzp1N9QcFBRnTpk0zzp07Z5N348aNRpcuXUz5K1WqZLMf2VsHd7zO7r7L8ujRoy5/lq9atcruaJTO3h27detWU74uXbo4vU6GYRiPPfaYqfy8efMc5s2J96DMcHWUpE2bNtmMltq8eXPjjz/+ML0Px8bGGl999ZVRqlQpy7FUsWJFU7nsltXzqrzwnr1z507Lvm39uZjecXD06NFcXb+8tH+n/V7x4osvmtp48cUX092O1t8PrPepsmXLWv4PCQkxfv/9d5vz2y1bttiMGDVixAijWLFixiOPPGL89NNPDkdGPHPmjDFlyhSb6RefeeaZDNfb1WM5NjbWqF+/vqlM9erVjc8//9x03mgYhpGUlGT89ttvRvPmzU35mzZtmuGUKYsXL7bZp8qWLWt88MEHNp99hnFjBLbvv//e6NWrl+Hp6WnzWZMd58I3LV261KZvDRs2NFasWGH6bpSQkGD8+OOPRuXKlU15fXx8Mrzr3HrEs5v7kJ+fnzF27FibqXaioqKMdevWmZa5OuKDu8+tz5w5Y3P8PvHEE8b+/fvt5r98+bKxbNky48knnzSKFy/OiGcAAAC3kGvXrhmFChUynft9//33bm0zN0c827hxo+k3NT8/P6N+/fpGSEiIERQUZPP9oUiRIsahQ4cMwzCMt956y/Rc8eLFjcaNGxtNmza1mapUkhEcHJzhdYa8POKZv7+/ze8AlStXNho3bmy0bt3aaNCggVGkSBGb9ZaU7sjnOT3imWEYxlNPPWXKN3v27AzXP63169ebyt91113p5h87dqzddQgICDAaNGhghIaG2lyDdeX3AQAAcgOBZwXYli1bTBcOPTw8jLlz56ZbZubMmXZPdrL7pDUrJ9Q5Oe97VvppGFk/+Zdk1K1b1wgPD3dY5uDBg6YAMi8vL6N27dqGdCMILb0vN9Yn5k2aNEm3f1FRUUa5cuUs+T09PY2vvvoq3TKGYRj//POP6Yubj4+P3QtRWeFoStbHH3883YClzZs323xBevvtt9Ntq3v37qb8w4cPz/BLZFRUlNG2bVtTOeupUdPK7HRKN6W90Fi+fHmH+c6cOWNqp1mzZpb/Bw4c6LDct99+ayr39ddfO8ybE9vr6NGjptexcOHCTl1IX7dunSlAqkyZMukGrdo7RqtVq5bhdFSPP/64qUyfPn0y7Jur4uPjbb6wBgcHG6dOnXKq/JkzZxxOubt9+3abQJTx48enW9/OnTuNgIAAU5lRo0alW8betJHNmzdPd0qo5ORkm33s2WefdZjfOkghvX3X2qVLl9Lti/XUBK1atcpwCrWUlBSbqazS+4HBna9zXv6xy5orP1LWrVvXdC7k7LaKi4szTZVWvHhxh+8POfUelBmufJ6kpKQYDRo0MOXv0aNHuu/ZJ06csAk4c9c5WnacV+WV92zDcO3Hcntyav3y8v6d1QsWjqbt7N+/v0vTw+/cudO4cuWK0/lPnDhhVK9e3bRNM5r21NVzwyeffNKUv2fPnhkGgNubivrdd991mP/8+fM2QXTt27c3oqKi0m3npoMHDxqnT5+2+1xWz4VjY2NNgYSSjNtvvz3dQLrLly8bjRo1MpVp2rRpuu1YB55JMooWLWps2LDB6b66uh+7+9z6448/dumcL62rV686/TkLAACA3Ld69Wqb89mbgVbukpuBZ3ntRv+8/Fucv7+/Ua9ePWPcuHHG5s2bTdvqppSUFGPLli3GwIEDTXV7eXkZ27dvt1svN6b+T07emAoAQFYReFaAWZ/sPf30006Vsz6JcsdJK4Fn9lmvm7e3t1Nzu1tfWJJk1KpVy+6XgbRSU1NNF+QlORyhwTBs7+p56623MuzbTb/++qup7H//+1+nyzrDXuBZkyZNTF8AHfnss89M5SpXruyw3JYtW0x577rrrgxH4rrp3LlzptHfbrvtNod5s3qxbcSIEaby//zzj91833zzjSVP6dKljdmzZ1vSZcqUcVj/sGHDTPU7Gi0qp7aX9eiOP/zwg1NtGIbtxbX0RmmwPka9vLyMHTt2ZNjG5cuXTaPrFSlSxOaLZlZ9/vnnpr6VKlUq3ePZFQ888ICp7nvuucepcvPmzTOV8/f3N6Kjox3mtw48CwgIcLhvpXXgwAFTubp16zrM27t3b0u+okWLOvUe4YzY2FgjMDDQUnf58uUzDCK4KTk52WjdurWpX44u2rvzdc7LP3ZZc+VHyjfffNOUd/LkyU618cMPP5jKDR8+3GHenHoPygxXPk9WrFhhylu+fHmbkQbt2bBhg81nsDvO0bK6n+Wl92zDyP7AM3etX17ev90ReFajRg3j+vXr2dpPe6wv8Hz88cfp5nflWD516pRp1ILGjRtnOHLZTbGxsaYA56pVqzr8rBwzZoypT7Vr1zauXbvmVDsZyeq5sPXnZYUKFZwKDjx+/LjNqK2rV692mN9e4Nlnn33mUl9d2Y9z4tx61KhRpjbOnz/v0voAAADg1vHRRx+Zzv2KFi3q9PllZuVm4NnN3w3zyo3+efm3OFevhc2ZM8dU//33359hGW5MvSEnbtwDACCrPIUCKTo62jT/vJ+fnyZNmuRU2TfffFM+Pj7u6hpc0L9/fzVu3DjDfL169bJZ9sorr6hIkSLplvPw8LAp+9dff9nNm5KSog8//NCSrlKlip5//vkM+3ZTjx491KxZM0t64cKFTpfNrDfffFNeXl4Z5nv88cdVu3ZtS/r06dNatWqV3bzvvfeeKT1jxgx5eHg41Z9y5crpscces6Q3bdqkCxcuOFXWVV26dDGl165dazffmjVrTGW6detmSUdERGjfvn12y6Wtr0aNGqpatardfDmxvS5fvqxvvvnGkm7Tpo0GDhzoVBvSjde/TJkylrQr++Z9992nkJCQDPOVLFlSd9xxhyV9/fp1/fvvv0634wzrbf3222+rfPnyWa43OjratE08PDw0ffp0p8oOGDBArVu3tqRjY2P1/fffO932k08+6XDfSqtevXqm98rDhw/r2rVrdvPGxcVZ/vf09JSnZ/acKn3zzTe6fPmyJT1x4kQFBgY6VdbLy0tjxoyxpK9du6bff//dbl53vc752cMPP2x6ndO+X6Rnzpw5pvSQIUPs5svN96Ds9vXXX5vSY8eOVbFixTIs165dO/Xp08dNvco+eek92x3csX75af921quvvqrChQu7vZ2uXbua3r83b96cbXV//PHHSk5OtqSnTZsmX19fp8oWKVJEo0ePtqRPnjypnTt32uRLTEzUp59+alr22Wefyd/fP5O9zl5ffvmlKT1p0iQFBARkWK5atWoaNWqUadnMmTOdbrdKlSp6/PHHnc7vqpw4t057riRJ3t7erncUAAAAt4S0v2VJUlBQkNPnl7cib29v/fjjj6pQoYLDPHXq1NEjjzxiSaekpOjw4cOqVauW5syZk+758ZAhQ1S3bl1Les+ePTp37lz2dD6HderUyaX8gwcP1qBBgyzpRYsW6cqVK9ncq8xL+7ueYRiaO3euU+V+/vln03oMGDBAfn5+dvO+/fbbun79uiX99ddf66677sqwjQ4dOuidd96xpCMiIvTtt9861T8AAHIKgWcF1JYtW5SQkGBJ33333U5fAA8KClKPHj3c1TW4oH///k7la9iwoSnt4eGhvn37OlW2UaNGpvSpU6fs5tuzZ4/Onj1rSQ8cONDlixBpL3L++++/unTpkkvlXVG2bFndeeedTuX19PQ0fSmSpLCwMJt8qampWrFihSUdGhpq+iLpjLTbQJI2bNjgUnlnde7c2RRokTbALK20AWRdunRRxYoVTetkr9yxY8d04sQJS7pr1652686p7RUWFma6QPbwww+71Ia3t7c6d+5sSW/evFmpqalOlR0wYIDT7TRt2tSUPn36tNNlM3LmzBkdOHDAki5VqpQeeuihbKl7y5YtSkxMtKTbtWunOnXqOF1+2LBhpvT69eudLpvZ7Zuamqrw8HC7+dL+sBQTE6NffvnF6TbSs3z5csv/hQoVcikwQ7pxHKU9Zu3t6+58nfOzSpUqmYJxDx48qG3btqVb5vz586YA5Nq1a6tt27Z28+bme1B2S/vZ5+3t7dJ+PHTo0OzvUDbLK+/Z7uKO9ctP+7czvLy8dP/99+dYe9WqVbP87+jmj8xI+5lUrlw5040FznDm/Gv79u2Kjo62pBs2bGhz40NuuXbtmv78809LukiRIi69n1mfu7hyvj5gwIBsC2q3llPn1tYX4bjgAQAAkH9ZB56VKFEidzqSQ/LSjf75UdprLMnJydqxY0cu9saMG1MBAMgaAs8KqO3bt5vSrt6d4Gp+uEeLFi2cyleqVClTunr16ipZsmSmysbExNjNZ31RwpkRNaxVqVLFlE4bQJHd2rVr59RoZzdZ7/PWx5Ak7d2713R3S17eBiVLljRdVF63bp3Nhd7Dhw+bLjTfDCBLe9HQ3khp1sFoji4y5tT2yu59MyYmxmHQkjVX2kr7xVFStt7xZb0NunTp4vTIJhmxDtBx9aKydWDi1q1bnSrn7e2tJk2aON2Os9v39ttvN6UfeughTZ8+3XTx3FWGYWjTpk2WdJ06dZwaVSUtf39/0/uxM/t6dr7O+Z11UFRGPy59++23SklJsaQHDx7sMG9uvgdlp5MnTyoiIsKSbty4sdM3LUhSx44d3dGtbJVX3rPdxR3rl1/2b2fVq1fPqVH+0nPixAm9/fbb6t+/v+rXr6+goCD5+vrKw8PD5rFlyxZLuey6ISMqKso0Ym3z5s1dDoTKzPmXM3dx55SdO3ea3sNbtmypokWLOl2+du3aqly5siV97tw5nTx50qmyoaGhznfURTl1bm19rvT8889r7NixOn/+vMvtAQAAIG+7evWqKZ1XRjB2l7x0o39+VL16dVM6LwXdcWMqAABZQ+BZAXX8+HFT2vpEOSPWJ8fIHUFBQU7ls77Txtly9spaT61yk/VFifvvv9/uBbT0HiNGjDDVYX1HVXZydZ+3zm99DEm22+CTTz5xeRs0aNDAVIc7t0HaL1JRUVGmkR8kc1BZlSpVVKtWLUnmQKF169aZLtxZl7NuJ62c2l7W7YSGhrrczrRp0zJsxx7rC/fpsf7hxtGxlhlHjx41pTNzIdIR6wutztwVmFaNGjVMF/FPnz4twzAyLBcYGOhS8Kiz27d///4KDg62pK9du6YXXnhBZcuW1R133KEpU6Zo48aNio+Pd7rtCxcumPaZ/fv3u7wPenh46OLFi5Y67O2D7nyd87t7773XtB/OmzfPNJKftbSBaR4eHun+WJSb70HZKavnjiVKlDAFauRFeeU9213csX75Zf92lvWP5K44efKk+vTpoxo1aujll1/WTz/9ZBnhN733m5uyEgCd1sGDB02fs8uXL3f5NbPeP261z6SsnrtIsgl+d/ZiUVb2oYzk1Ll127ZtTcFnycnJmjx5sipWrKj27dtr4sSJWrNmjc1FSgAAANx6rG+8iY2NzaWe5Iy8dKP/rSI1NVVr167V888/r27duqlq1aoqUaKEvLy8bL5vWI/I7M4ZbzKDG1MBAMg8As8KKOsLF9YnuxlxNT/cw9Fc8e4qJ8lhQEhkZGSm63TEnaOHuLoPlyxZ0jQahL2Lf7faNrAOCLMeqSxtAFnaYLPOnTvLw8PD0r+dO3eayv3xxx+W/xs0aODwQndOba/cfF3ccaxlhvVFQ1eCDzISFRVlSpcuXdrlOtIejykpKU5dqMzKtpUcb19vb2/98ssvNj+EJCYmatWqVRozZozat2+vEiVKqHPnznrvvfd04cKFdNvKqX3Qna9zflekSBHTXa2XL1/WsmXL7Ob966+/tHfvXku6U6dOqlq1qsO6b7XPBkeyeu6Y2TI5Ka+8Z7sL539Z5+polTdt375dTZo00ZIlSzK9rzgTnOYMPpOy59zFuox1nY5kdh9yRk4ej99//71at25tWpaamqqNGzdq0qRJ6tatmwIDA9WmTRtNnjxZJ06cyPa+AQAAwP2sRzrPy9/XskNeutH/VrBkyRLVqlVLXbt21bvvvqs1a9bo1KlTunLlilOjcWXXDVbZhRtTAQDIPALPCqhr166Z0hnNPW8tvw+pDNe540uCO4cKdnWf9/DwUOHChS1p62NIuvW2QYcOHeTt7W1Jpw00MwzDFECWNvAsMDDQNE1n2nL79u0zBeFYT6OYVk5tr1vtdXEH60AuV6aTyoj1sZCZzwfrMrk9QkaNGjX0559/WkbvsCchIUFhYWEaPXq0qlSpomeeecZhv3NqH3Tn61wQDBkyxJR2dFej9XLrctbyy3tQVs8dJc4f86P8sn87K+15k7MiIyPVo0cPmws0jRs31ogRIzRjxgzNnz9fS5cu1cqVK7Vq1SrLIzMjcWWEz6TcPXfJzD7krJw8HkuXLq3169frk08+sYyKbC05OVlbt27V2LFjVbNmTT388MMZBusDAAAgb7EOPEs7Gn9+lJdu9M/rXn31VfXp08fuzDDOSkhIyMYeZR03pgIAkHmFcrsDyB3WP5Rfv37dpfL5fUhluM76AvSUKVOcHpraEeupXrKTq/u8YRimu4/sXTyz3gYPPPCAhg0blrkO/r8KFSpkqXx6/P39FRoaqk2bNkmSNm7cqMTERPn4+Gjv3r2mHxKsR0fr2rWr/vrrL0k3RkobM2aMJOen2ZRybntZtzNr1ixVqlQpS+1YT6+U11kPi28vcDKzrI+FzHw+WJex7m9uKFKkiF599VW98sor2rRpk9auXauwsDBt27bN5k7ExMREffjhh1q5cqXWr19vM6qL9T4YHBys999/P0v9SxsIe5M7X+eCoH379qpevbrlB7Ply5fr0qVLplFtkpOT9f3331vS/v7+uu+++9KtN7+8B2X13FHi/DE/yi/7tztNnjzZ9ANz7dq19e233yo0NDTDspkJ8HS1zs6dO+vVV1/NUp32ppTJy59J+fncJS13fxfx9vbWU089paeeeko7d+7UmjVrFBYWps2bN9tMF5Samqpvv/1Wq1evVlhYmM3IsgAAAMib6tWrZ0pfvXpVR44ccXjzAQqGOXPm6K233jItK1y4sNq3b6/Q0FBVqVJFpUuXlq+vr3x8fCx5Lly4oEGDBuV0d10yZMgQff3115b0N998o759+9rkK6g3pgIA4AiBZwVUiRIlTGlX51J3R3Q+bm3W081Ur15d3bp1y6XeZMzVfT4qKsp0Im99DEm226BEiRJ5ehtINwLDbgaeXb9+XVu2bFHHjh1N027Wr19f5cuXtyn3zjvvSJI2bdqkhIQE+fr6msp5eXmpY8eODtvOqe1l3U5wcLBTF3vzE+u7EyMiIrKtbuuLzZn5fEhbxsvLK09cvL3J09NT7du3V/v27TVhwgQlJSVp586dWrFihb7//nsdOXLEkvfgwYMaOnSoli9fbqrDeh80DMMt+7o7X2dJlil2MyMzQUo5zcPDQ4MHD9akSZMkSUlJSfrhhx80cuRIS54VK1aYtut9992X4Sg++eU9KKvnjhLnj/lRftm/3Wn+/PmW//38/LRixQrVqFHDqbLumDbD+jXz8/O7JT+TsiI7zl2s3wPtBd/ltNz8LhISEqKQkBC9/PLLSk1N1Z49e7RixQrNnz9fe/bsseQ7f/68+vXrpz179sjTkwH4AQAA8rrWrVurUKFCSk5OtizbuXMngWcFWGJiol5++WXTsmHDhuntt99WqVKl0i178OBBd3YtW3BjKgAAmcMvfQWU9cWOffv2uVT+77//zs7uIB+oXr26KZ02GCMvcnWfTztssmS7vvaW5fVtINmOSHZzxLK0I5fZmy4z7TSd8fHx2rx5s1JSUrR+/XpLnmbNmtkN0Lspp7bXrfi6ZLfatWub0jt37sy2uq2HEE97cdEZx44dM01PVaVKlSwFOLmbt7e32rRpo0mTJunQoUP6+OOPTRdOf/vtNx04cMBUply5cqYRyk6ePKmkpKRs75s7X2fJdtoA65Hf0nOrTMUwePBg0/5nfffinDlzTOmM7maU8s97UFbPHaOjo3X69Ons7BLygPyyf7vLqVOndPbsWUu6e/fuTgedxcXFZWnKEkdy6jVz92dSVmT13MVemfSmVMkpeeV49PT0VLNmzTRmzBjt3r1bCxcuNJ0H7du3T7///nuu9A0AAACu8ff3V/PmzU3Lli5d6tY28/uNj67Ii9siLCxMFy5csKTvuOMOffXVVxkGnUnuubkqu928MfWmmzemppVdN6Z269YtS4+8cAMUAAA3EXhWQLVs2dKUXrdunUvlXc2fX1nfpW0YRi71JPd17tzZlLaecjGv2bhxo1JSUpzOb73P2xvNIzQ01HTnyubNmxUfH5/5TqYju/a9Nm3amC4ErVmzxiaAzF7g2c1pOtOW+/PPP01DRtsrl1ZOba9bbd90h/bt25vSa9euVUJCQrbU3bp1a5u6XWGd37q+vMzDw0P/+c9/9OCDD5qWb9y40ZT29vbWbbfdZklfv35d27Zty/b+uPN1lqSAgABTOu2PTBnZsWOHS23l1udrjRo11K5dO0t6586dlkDCqKgo/fLLL5bnqlSpYvP+Yk9+eQ+qWrWqaRrZvXv3uvSDIeeOrkv7A3NePcfM6/t3bp+rW79PujK94IYNG9wSpFypUiXT6ASHDx92S1Co9WfSb7/9lq31Z+W1DQkJkZeXlyW9Y8cOl6YCPXLkiGmblS9fXlWqVHG6vLvk5HcRV/Tt21fPP/+8aZn1uRIAAADyrnvvvdeUXrRokVtHNC8INz46Ky9ui61bt5rS//nPf5wu+88//2R3d9yCG1MBAHAdgWcFVNu2bU1zq//6669OXzyMiIiwmUasoPL39zel89sdNa4IDQ013WGxdu1a7d+/Pxd7lL6IiAin77RPTU3Vt99+a1pmbwpJHx8f0whisbGxmjVrVtY66kB27Xu+vr6mgJjt27crLCxMMTExkm5c1OvUqZPdsmkDy9auXWuaZlOyHU3NWk5tr27duqlQof/NLD1v3rwCN91bhQoV1KhRI0s6MjJS3333XbbU3bp1a9PnycaNG1364vz111+b0ulNz5pXpT2GJPtTEHbv3t2U/vDDD7O9H+58nSXb0Vz++usvp8umnWrOGbn5+Tp06FBT+uaPSfPnzzcF8j388MNO3Xman96D0h6fSUlJmjdvntNlZ8+e7YYe5W9pj4O8eo6Z1/fv3D5Xtw6GSkxMdLrsJ598kt3dsbD+TProo4+yvY2WLVuaptvct29ftgYmZuW1LVq0qFq0aGEq++OPPzpdPq+eu+TkdxFXOXOuBAAAgLzpiSeeMI3mlJCQoKlTp7qtvZy88TGvy4vbIis3WLn6nZAbUwEAuHUQeFZAlShRwnSnSnx8vCZMmOBU2f/+978uXTTJz9JeTJHklulwbhXe3t569tlnLWnDMPTEE0+4ZaSG7PLqq686NerZF198ocOHD1vSlSpV0h133GE374svvmhKT5gwQadOncpaR+3Izn0v7QWqpKQkTZw40ZJu3ry5w+ky0wae7dixQ0uWLLGkfXx8TF/OHMmJ7VW2bFk9/PDDlnRsbKxGjBiRrW3cCkaNGmVKv/TSSzp37lyW6y1RooT69etnSRuGoRdeeMGpsj/99JO2bNliSRctWlQPPPBAlvuU06wvntob5vyxxx4zHUs//fSTfv3112zvi7teZ0k2UyssXrxYycnJGZZbtGiRy1Os5ebna//+/U0jxnz33XdKTU21ubsx7bD76clP70HDhg0zpd944w3TVLmObNy4UT///LObepV/pT0OTpw4kXsdSUde379z+1y9XLlyprSzozwtX77cdF6V3UaPHm0KGPzwww/1559/Zmsb3t7eNne+P/nkk4qNjc2W+rP62j722GOm9Pjx450a9ezkyZN6//33Tcsef/xxl9p2p5z6LuIqZ86VAAAAkDeVLFlSjz76qGnZu+++my2j+dsb4CAnb3zM6/LitsjsDVYXLlzQokWLXGqLG1MBALh1EHhWgI0aNcp0QvTxxx9nODLKl19+qS+//NLdXbtlNGjQwJReuHBhLvUkbxg1apTKli1rSW/cuFH9+vXTlStXnK4jNjZWH3zwgb766it3dNFkz549GQ4FvXXrVj333HOmZU8//bRpep60OnTooDvvvNOSvnjxou644w79+++/TvcrNTVVP//8s15++WWHeapWrWq602zNmjWKiopyuo20rEcmS3tRNL3pMlu3bm0JzkhOTjYNs92qVStT4IYjObW9xo4da+rP/Pnz9cQTT7gURHv58mW98cYbpjuabiUPP/ywatasaUlHRkaqW7duOnPmjFPlw8PDdfDgQbvPjR492nQH2pIlS/TGG2+kW9/u3bttLvo+9thjNnfy5bSHHnrIpSkBo6KibD4X046iclPx4sVN+2hqaqoeeOABLV261KX+7dq1SwMGDHD4vDtf53LlyqlZs2aW9OnTp/X222+nW9+OHTtsXmdnWH++/vTTTy7XkVnFihUzBeefOXNGn3/+uSlIsk2bNqpTp47TdeaX96A77rhD9evXt6TPnTungQMHphtkfvLkSQ0cODAnupfvpD0OLl26pLCwsNzrTDry8v5t/V6ydOnSHL0pokqVKqpYsaIlvWPHjgx//N++fbsGDRrk1n7VqFHDdOEoLi5O99xzj+l9zhlr167V8OHDHT7/zDPPmALEDh8+rB49epimZk/PwYMHHX5+ZfVc+KGHHjJ9bwkPD9f999+f7n4bHR2t3r17my52NGvWLMNRfnNSTpxbjxgxQr/88ovTow0kJCTogw8+MC2zd64EAACAvGvixImqVq2aJZ2SkqI+ffpo7969maovKSlJL7zwgt0bl+rWrWv6jrlq1SqnvkPs2LFDixcvzlR/8qqcvAnUWZm9wWrkyJGmgC1ncGMqAAC3DgLPCrA2bdqYLjgYhqGHH35YzzzzjE6fPm3Ke+LECT311FOWCwtpv2QUZM2aNVPp0qUt6bCwMHXp0kWfffaZli9frtWrV5se+V3x4sW1YMECeXt7W5YtXbpUDRo00PTp0x3ebX/69Gn99NNPGjRokCpUqKBRo0bZ7IPZ7ebdQjNnztQdd9xhM8pDVFSU3n77bXXu3Nl0calhw4Y2gWjWvvnmG1WuXNmSPnjwoFq0aKFnn31We/bssXuRJioqSqtXr9bo0aNVrVo13XvvveneNebp6WkKCouOjlbr1q01depULVmyxGbfS+9CXEhIiIoXL273ufQCz9Ib1Sy9ctZyYnvVqFHDJphx5syZatSokb744gu7w5QbhqGjR49q7ty56tu3rypVqqRx48bdsnci+fj4aP78+fL19bUs279/vxo2bKjJkyfr5MmTNmWio6O1ZMkSPfjgg6pRo4bDC9IhISEaPXq0adm4cePUr18/7du3z7Q8KipK77zzjm677TZTUGrNmjUzDFbLCb/++qs6deqk4OBgTZgwQVu2bLF7N11cXJwWLFigVq1ambZdkyZN1LJlS7t1v/TSS+rRo4clffXqVfXp00d9+/bV2rVr7f74Eh8fr+3bt+vNN99UixYtFBISku50YO58nSXbUV3Gjh2rMWPG2LzHnD17VhMmTFDHjh0VFRVlCoZzxu23325Kv/7663rkkUc0d+5crVixwvT+tmvXLpfqdsaQIUNMaev3fevnM5Jf3oM8PT31+eefm25cWL58udq0aaOwsDDT+/X169c1a9YshYSEKDw8XIUKFTIF4CBj1qOr3nvvvXrllVe0YMECrVy50nQcHDt2LJd6mbf37zJlyqhJkyaW9OHDh9WmTRu9//77WrZsmc35Unx8fLa2L9n+CD148GC99dZblmnNbzpz5ozGjh2rDh06KCoqSn5+fm79zjVjxgxTMPG5c+fUoUMHPfLII9q6davdixnXrl3Txo0b9d///lf16tVT165dtXLlSodtBAUFafbs2ab3jPXr16t+/fr66KOP7O4bERER+uGHH9SrVy8FBwc7nL47q+fCRYoU0RdffGFa9ttvvyk0NFSrVq1SamqqZXliYqIWLlyopk2bas+ePZblPj4+eXIaYXefW2/atEm9evVS9erV9cILLygsLMxmf5ZuXExcsWKFbrvtNtM0P+XKldM999yTDWsKAACAnFKiRAnNnz/f9Lv/+fPn1bFjR/3www8uTYG4bt06hYSEaPr06XbLeXl5mW6miIuL00svvZRunUePHtX999/v1Owmt5KcvAnUWW3btjWlp0yZYjPCsbWxY8dqwYIFLrfFjam28sKNqQAA2GWgQLty5YrRrFkzQ5Lp4eHhYdSoUcNo2bKlUb16ddNzxYoVM5YvX25aNmTIkHTb6dixoyl/RiZMmGDK/8cffzi9Tq62lVWvvfaazfZz9LB2/Phxt27HtNKW69ixo9Pl/vjjD1PZCRMmZFjmhx9+MPz8/Oxug/LlyxtNmjQxQkNDjbp16xolS5a0m8+Zdlwxa9YsU/0ff/yx0ahRI9OycuXKGSEhIUbdunUNb29vmz6VLFnS2LNnj1Pt/f3330blypXtrlvx4sWN4OBgo1WrVkaDBg2M8uXL282X0esUFhZmeHh4OLXvZXQM9ezZ06aMr6+vcf369XTLTZkyxW5769evd2o75eT2MgzDmD59uuHp6Wm3fOXKlY1mzZoZLVu2NGrXrm0UK1bMbr5Zs2Y5rD8rx6j1PppeO1kxf/58w9fX1+66VaxY0WjevLnRokULo0qVKjb7V3p9io+PN7p162a33goVKqR7bJUqVcrYtWtXhn2vWrWqpUzVqlVdWm9nP1eKFy9u0z8vLy+jatWqRrNmzYxWrVo5XI8iRYpkuB7R0dFGp06d7G4nX19fo06dOkarVq2MJk2aGFWrVjW8vLyc+jyx5q7XOSkpye55Q6FChYzg4GAjNDTU5ryhXLlyRlhYmGlZRp93hmEYXbp0cer9zd6xn9XjKSUlxahYsaLD1ykqKsql+m5y93tQZmTmc97RuU+pUqWM5s2bGw0aNDAKFy5seu6NN95w+zlaTp5X5cR7dmRkpFG6dGmnjgN7r1tOr19e3L8NwzC++eYbp7ahJOP48eOmsq7uU/ZERkYalSpVsvu+2aBBA8v7pvV78cyZM116DTNzLJ8+fdrmfPjmw9/f36hXr57RqlUro1GjRkalSpXsnnc683k8Y8YMu2U9PDyMqlWrGiEhIUazZs2MChUq2ORJ7xw2O86Fx44dazd/yZIljaZNmxqNGjWyu796enoaX3/9dYbrPmTIkHT3MWdk5nh057l1kyZN7L6WlSpVMpo0aWK0bt3aCA4Otvt90MvLy1i2bJnL2wAAAAB5w+zZs+1+72vZsqXx2WefGSdPnrRb7tChQ8b06dONNm3aOPV9wvr6kyTjkUceMcLDw035IiMjjRkzZhiBgYGGJKNmzZpOndPedCtcb/nkk09szr1feeUV4/Lly6Z84eHhxvjx4y2/x1hvi+z6jSQxMdH0G60ko06dOsbKlSuN1NRUS77U1FRj06ZNpt+L69ev71Kf/vzzT5vvYUOHDjW++eYb47fffjNWrVpleezcudOmfFZ/u1m5cqWpvPV3nM8++8yl+gzjxrUz6327Tp06xsyZM43z58/b5E9NTTWOHDlifPPNN8a9995reX3dde0AAIDMIvAMxsWLF42QkBCnfrAPCAgw/vjjD7df2LuVAs+Sk5ONQYMGObX9rOXXwDPDMIydO3caderUcWq72Lsg8fnnn7u0fhmx9yXj9OnTNl92HD3Kli1rbN++3aU2IyIijDvvvDNT20CS8fDDD2fYxgcffGA3AMb6kdExNGPGDJsynTp1yrD9HTt22JQrUqSIkZiY6OxmssiJ7WUYhrFixQqHF9gyevj6+hq//vqrw7rzehDDTRs2bLB7ETyjR0Z9SkhIcPr98Oajdu3axoEDB5zqd24FnjnzqFixorF582an+pKUlGQ899xzRqFChTLVVuXKlZ1qx12v8/Hjx21+vHL0qFKlirFv375MBW+Eh4cbzZs3z7ANdwSeGYZhvPLKK3bbu//++12uKy13vgdlRmY/58ePH+90wMczzzxjGIb7z9HyW+CZYRjGunXrjDJlymS4jfNC4Jlh5L39+6aXXnrJqf3VHYFnhnHjx/KyZcs6tR08PT2Nd9991zAM117DzB7L165dMwYNGuT08Wz9aN++vVPtLFy40HIxyJVHRuew2XEuPGPGDMPHx8fpPgUEBBgLFy50ar1zK/DMMNx3bm0v8MyZR8mSJY2ff/7Z5fUHAABA3rJ48WIjICDA4XlfYGCgUbduXSM0NNSoWbOmUaRIEYd5W7du7bCde+65xya/h4eHUadOHSM0NNSoVauWKQjO39/f2LVrlyl/fgg8y6mbQF3ZFj/++KPDc/4WLVoYTZs2tfn+V7ZsWWP9+vUu9ckwuDE1J2/cAwAgK5hqEypdurS2bNmiqVOnqnz58nbzeHl5qV+/ftqzZ486deqUsx3M47y8vDR37lxt3LhRI0aMUGhoqEqXLm2a5qwgatGihfbv369vvvlGrVu3lpeXV7r5fX191aVLF73zzjs6ffq0ZVpXd6pUqZJ27NihF198UUWLFrWbx9/fX8OHD9f+/fsdTp/nSFBQkFasWKH169erZ8+e8vf3Tze/h4eHmjVrpldeeUV///23vvnmmwzbGDlypA4cOKDx48erS5cuqlChgooUKWKa0sgZ9qbG7NKlS4blmjdvrpIlS5qWtWvXzjTsurNyYntJ0p133qljx47pgw8+UOPGjTPcVkWLFtXdd9+tTz/9VOfOnTNNlXirateunQ4fPqzp06erbt266eb18fFRt27dNHfuXD3wwAMZ5p07d65l2uFChQo5zFuzZk1Nnz5d+/btU7169TK1Hu6wfft2vf322+ratWuG+6Ak1apVS6+//roOHjyoNm3aONVGoUKFNH36dB08eFDDhw9XmTJlMixTrVo1DR8+XCtXrtSJEyecasddr3O1atW0bds2/ec//3H4WVe4cGGNHDlSe/bssRkW31kVKlTQ1q1btWDBAj344INq0KCBSpQoke5+lZ0cTadpPW2eq/LLe9CkSZO0YcOGdPf7+vXra+HChXr//fdzsGf5S4cOHfTvv//qo48+Us+ePVW9enUVK1ZMnp5582tcXt2/p06dqt27d+uFF15Qu3btVKZMGfn5+bmlLXuaNWumXbt2adCgQQ7PiT08PHT77bdr69atNtNXu5O/v7/mzp2r3bt364EHHlCJEiUyLFOvXj2NGjVKmzdv1vr1651qp2/fvjp27JjGjRtnmfI+vT716tVLP//8s9q3b59u3uw4F3722Wd14MABDRo0yOF3AkkqVaqURo4cqSNHjqhv375O159b3HVu/csvv+ijjz7S3Xff7dT+UqFCBb344os6dOiQevfunZlVAQAAQB7Sp08f7dmzx+G53eXLl3Xw4EFt375dR48e1fXr123ylCpVSjNmzEj3+8ScOXNsfo83DEOHDh3S9u3bdeTIEaWmpkqSAgMDtXz5cjVv3jwLa5Y3FSpUSIsWLVLNmjVNy5OTk7V//35t375dx48ftyyvUqWKVq9eneH3rqzo37+/Jk+ebPO9KyoqSrt27dLu3bt1+fJly/LKlStr9erVqly5ssttzZ07N9deV09PTz388MN2n+vdu7dT34fsee6557R8+XK712NPnz6tv/76Szt27NDhw4d19epVmzy+vr5O/Z4MAEBO8jAMFyZfR76XmpqqjRs36tChQ4qIiJCvr69q1Kih9u3bq3Tp0rndPdzCrly5oq1bt+rs2bO6dOmSkpKSVKxYMZUpU0b16tVT3bp1c/QCoLX4+Hht3LhRBw4cUExMjEqWLKmqVauqc+fOKlKkSLa0kZSUZPkieOnSJcXGxsrf318lS5ZUnTp1FBwcrOLFi2dLW/lBTm2vixcvatu2bTp//rwiIyOVmpqqgIAAlStXTvXr11ft2rUzFUh3Kzl58qR27NihiIgIRUVFydfXV4GBgapbt66aNm3qVACWPdHR0dq4caPOnj2ryMhI+fv7q2zZsmratGmGgVB5QUpKig4cOKDDhw8rPDzc8kW/WLFiqlixopo2barq1atnuR3DMPTPP//on3/+0aVLlxQdHS1fX18VL15c1atXV3BwsCpUqJDldtzxOsfGxmrdunU6fvy4oqOjVaRIEdWrV08dOnTI9H5T0OT2e1BYWJg6d+5sSU+aNEnjx493qY5jx45ZPuOTkpJUrlw5hYSEqFGjRtndXdxicnv/zosuX76s9evX6+TJk7p69ar8/f1VvXp1tW3bNks/HGfHsSzd+D74559/6tChQ7p06ZJiYmJUpEgRlShRQjVr1lRwcLCCgoIy3c+bDhw4oL///lsXL160fH4EBQWpXr16aty4ca7dxJOYmKjNmzfr+PHjunjxojw9PVWmTBnVqVNHoaGheTbo0xnuOLe+eeHv8OHDOnXqlGJiYpSSkqJixYqpXLlyaty4serUqXNLbzcAAAA4tnv3bn3xxRdatGiRzp8/n25ef39/dejQQUOGDFGfPn2cOuePjY3VlClT9N577+natWs2zxcqVEgDBw7U1KlTLb+dpQ2G6tixo8LCwhzW36lTJ61bt86SduVyqSvtpGX93W3ChAmaOHFihuUiIyM1fvx4ffXVV0pISLB5vnDhwnrsscf02muvqUSJEjpx4oTpd8shQ4Zo9uzZDuvPzLb47bffNGbMGO3Zs8fu8wEBAXr88cc1btw4FS9e3OU+3ZSUlKQlS5Zo8eLF2rNnj8LDw3Xt2jUlJydb8th7DWbPnq1HHnnEkp41a5aGDh2aYXtp/fvvv6pfv77N8mXLlunuu+92qS5r8fHx+uKLL/Tll19q79696W7zokWLqmPHjrrnnns0YMAAm8EAAADIbQSeAQAAAAXUihUrdNddd1nS77zzjp5//vlc7BGAzOBYBgAAAJCbjh49qn379un06dO6evWqDMNQiRIlFBgYqODgYDVo0CDDWVEcSUxM1IYNG3T48GFFRkbKz89PNWvWVMeOHQtcAE5evAn0wIED2rZtmyIiIpScnKxSpUqpfv36at26tXx8fHKlT7cabtwDANzqcmauIgAAAAB5zqVLl0xpRt4Ebk0cywAAAAByU82aNW2mg8wuPj4+6tq1q7p27eqW+m8l/v7+6tGjR253w6R+/fp2RwWD84KCgnTPPffkdjcAAMg05jsAAAAACqh9+/aZ0nXq1MmlngDICo5lAAAAAAAAAEBuYKpNAAAAoAC6du2aGjZsqJMnT0q6cQfxxYsXFRAQkMs9A+AKjmUAAAAAAAAAQG5hqk0AAACggFi3bp2uXbumI0eO6PPPP7cEqkhSjx49CFQBbhEcywAAAAAAAACAvIARzwAAAIACokSJErpy5YrNcm9vb+3atUuNGjXKhV4BcBXHMgAAAAAAAAAgL/DM7Q4AAAAAyD1+fn764YcfCFQBbnEcywAAAAAAAACAnMZUmwVYamqqzp49q2LFisnDwyO3uwMAAIAc4OnpqYCAAFWrVk2dOnXSE088oQoVKigmJia3uwbABRzLuNUYhqGrV6+qQoUK8vTkPkggs/g9DwAAAAAA5ARnf89jqs0C7MyZM6pcuXJudwMAAAAAABQQp0+fVqVKlXK7G8Ati9/zAAAAAABATsro9zxGPCvAihUrJunGThIQEJDLvQEAAAAAAPlVTEyMKleubPktAkDm8HseAAAAAADICc7+nkfgWQF2czj+gIAAfqgCAAAAAABux9SAQNbwex4AAAAAAMhJGf2e53gSTgAAAAAAAAAAAAAAAAAA7CDwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPbgFXr17VL7/8ogkTJujuu+9W2bJl5eHhIQ8PD4WFheV29wAAAAAAAAAAAAAAAAAUMIVyuwPI2Jo1a3TvvffmdjcAAAAAAAAAAAAAAAAAQBKBZ7eMoKAgtWjRQiEhIQoODtaDDz6Y210CAAAAAAAAAAAAAAAAUEAReHYL6NmzpyIiIizpa9eu5WJvAAAAAAAAAAAAAAAAABR0nrndAWTMy8srt7sAAAAAAAAAAAAAAAAAABYEngEAAAAAAAAAAAAAAAAAXFLgA88uXryo3377Ta+99pp69eql8uXLy8PDw/KYPXt2lurfvHmzhg8fruDgYAUEBCggIEDBwcEaPny4Nm/enD0rAQAAAAAAAAAAAAAAAAA5qFBudyC3nD9/Xq1bt9bJkyfdUn9sbKyeeeYZff311zbPHThwQAcOHNAXX3yhYcOG6YMPPpC/v79b+gEAAAAAAAAAAAAAAAAA2a3AjngWHx/vtqCzlJQU9e3b1xR0VrhwYYWEhKh169YKCAiwLP/666913333KSUlxS19AQAAAAAAAPI7d89q4Kzz589r6tSpatOmjcqXLy8/Pz9Vq1ZN3bt315w5cxQXF5cj/QAAAAAAAMgJBXbEs7SCgoLUokULhYSEqGXLlurdu3eW6hs3bpxWrlxpST/++OOaMmWKAgMDJd0YDW3KlCl64403JEm///67xo8fr8mTJ2epXQAAAAAAAKAgcfesBq6YN2+ennzySV25csW0/OTJkzp58qR+//13TZkyRd9//72aNWuWS70EAAAAAADIPgU28CwwMFALFixQy5YtVbVq1WyrNzw8XDNmzLCkH374Yc2cOdOUx9/fX6+//rokWYLPZsyYoREjRqhChQrZ1hcAAAAAAAAgP3PnrAaumDt3rgYPHmxaVqdOHZUvX14nTpyw9PHff/9Vp06dtGXLFgUHB+dGVwEAAAAAALJNgZ1qMyAgQP369cvWoDNJ+uCDDxQfHy9JKlKkiN577z2HeceNG6fKlStLkuLi4vT+++9na18AAAAAAACAgiIoKEjdu3fX2LFjtWTJkhxrd+/evXr88cct6bp162rnzp06ePCgwsLCdOLECa1cuVJly5aVJMXExKhnz56W3xABAAAAAABuVQU28MxdFi1aZPn//vvvt0yvaY+Pj48eeeQRS3rx4sVu7RsAAAAAAACQn9yc1eDEiROKiIjQb7/9ptdff129evXKsT7897//VUJCgiSpdOnSWrdunVq0aGHKc/vtt2vNmjXy9fWVJB07dkyffvppjvURAAAAAADAHQg8y0YHDx7UkSNHLOnu3btnWOauu+6y/H/48GEdOnTILX0DAAAAAAAA8ht3zWrgrP379+uXX36xpN944w3LyGbWGjRooGeffdaSfvvtt5WamuruLgIAAAAAALgNgWfZaM+ePaZ0mzZtMizTvHlz+fj4OKwDAAAAAAAAQN6UdvaDokWL6qGHHko3//Dhwy3/nz9/Xlu2bHFb3wAAAAAAANyNwLNsdODAAcv/Pj4+qly5coZlrPOlrSOtS5cuWR6RkZGW5VeuXDE9x12SAAAAAAAAQM749ddfLf+3a9dORYsWTTd/jRo1VLduXbvlAQAAAAAAbjWFcrsD+cnJkyct/1eqVEkeHh5OlatSpYqOHj0qSTpx4oTdPEFBQXaX9+nTx5Q+fvy4qlWr5lS7AAAAAAAAADLHMAzt3bvXknZm9oOb+Q4ePCiJ2Q8AAAAAAMCtjcCzbBQTE2P5v3jx4k6XCwgIsPx/9erVbO1TWgkJCUpISLCk0/YXAAAAAAAAgPNOnTql2NhYS7pmzZpOlUubz9HsBwAAAAAAALcCAs+yUdofmvz8/JwuV7hwYbt1pGUYRuY79v/eeustTZo0Kcv15CXVXrGdjuDElLtzoScAAAAAAAAoSNLOfiDdmNXAGWnznTx5UoZhOJw5gRtJAQAAAAC4NYRHxykqNtG0rKS/jyqWKOygRP5A4Fk2SkpKsvxfqJDzmzZt3sTExHRyZs2YMWP03HPPWdIxMTGqXLmy29oDAAAAAAAA8ivrIDBnZ0BIO/tBamqqrl+/Ln9/f7t58+ONpAAAAAAA5Dfh0XHqNn2d4pJSTMsLe3tp9fMd83XwGYFn2ahIkSKW/+Pj450ulzavox+ZsoOvr698fX3dVj8AAAAAAABQUFjPXODsDAhpZz+4WY+j3wS5kRQAAAAAgLwvKjZRcUkpem9AU9UqU1SSdCTimp6dv1tRsYkEnsE5RYsWtfwfFxfndLnr16/brQMAAAAAAABA3pR29gPJ+RkQrPOlNwMCN5ICAAAAAHDrqFWmqBpWdG5E9PzCM7c7kJ+ULl3a8v+5c+ecLnf+/HnL/6VKlcrWPgEAAAAAAADIfmlnP5CcnwHBOp87Z0AAAAAAAABwJwLPslHdunUt/0dGRppGMkvP6dOnLf/Xq1cv2/sFAAAAAAAAIHtZz1zg7AwI1r8ZMgMCAAAAAAC4VRF4lo3q169vSu/evTvDMuHh4bp48aLDOgAAAAAAAADkPWlnP5CcnwEh7ewHxYoVk7e3d7b2CwAAAAAAIKcQeJaNQkND5evra0lv3LgxwzIbNmyw/O/n56fQ0FC39A0AAAAAAABA9qlTp44pferUKafKMfsBAAAAAADILwg8y0ZFixZV165dLenvvvsuwzJp83Tt2lX+/v5u6RsAAAAAAACA7FO0aFFVrlzZknZm9gNJ+uuvvyz/M/sBAAAAAAC4lRF4ls2GDh1q+f/vv//WL7/84jDvn3/+qd9++81uWQAAAAAAAAB5W4cOHSz/OzP7QVJSkrZt22a3PAAAAAAAuDWER8dpX/gVy+NIxLXc7lKuKZTbHchv+vXrpyZNmmjPnj2SpCeeeEK1a9e2GTb/3LlzGjRokFJSUiRJTZs21X333Zfj/QUAAAAAAACQOb1797bMaHDgwAH99ddfatasmcP8S5cu1dWrVyVJnp6e6tmzZ470EwAAAAAAZI/w6Dh1m75OcUkppuWFvb1U0t8nl3qVewp04Nnjjz+uuXPnZpjnySeftFkeHx9vN7+Hh4e+/PJLdejQQXFxcTp37pxatWqlp556Sh06dFChQoW0fft2ffTRR7pw4YIkqXDhwvriiy/k4eGR9ZUCAAAAAAAAkCN69OihoKAgXbx4UZL0xhtvaOHChXbzpqSkaMqUKZb0XXfdpTJlyuRIPwEAAAAAQPaIik1UXFKK3hvQVLXKFLUsL+nvo4olCudiz3JHgZ5qMykpSQkJCTaPtJKTkzPMYy0kJETfffedChe+sUPFxMRo6tSpuvvuu3XnnXdq3LhxpqCz7777TiEhIe5ZSQAAAAAAAAAu8fDwsDyGDh3qMJ+/v7/GjBljSS9atEjvvfeeTT7DMPTCCy9o586dlvpff/317O42AAAAAADIIbXKFFXDisUtj4IYdCYV8MAzd7r33nu1a9cude3a1e5IZh4eHurWrZv+/PNP3XvvvbnQQwAAAAAAAODW9/jjj8vPz8/m4WqezBoxYoRuu+02S3r06NHq2bOn5s2bp7CwMM2ePVsdOnQwBaQ9//zz6U7JCQAAAAAAcCso0FNtzp49W7Nnz3Zb/fXr19fq1at1+vRpbd68WeHh4ZKkihUrqm3btqpcubLb2gYAAAAAAAAKgpuzGqQnOTlZycnJbmnfx8dHixcvVteuXbV3715J0rJly7Rs2TK7+R988EFNnTrVLX0BAAAAAADISQU68CynVK5cWQMGDMjtbgAAAAAAAABwg6CgIG3fvl3jx4/XzJkzdeXKFZs81apV07hx4zRs2LBc6CEAAAAAAED2I/AMAAAAAAAAwC3LHbMaGIbhchk/Pz+9/fbbeu211xQWFqYTJ04oKipKZcuWVf369dW6dWt5eHhkaz8BAAAAAAByE4FnAAAAAAAAAJBN/Pz81L1799zuBgAAAAAAgNsReAYAAAAAAAAAAAAAAADkc+HRcYqKTcztbtzSjkRcy+0u5CkEngEAAAAAAAAAAAAAAAD5WHh0nLpNX6e4pJTc7sotr7C3l0r6++R2N/IEAs8AAAAAAAAAAAAAAACAfCwqNlFxSSl6b0BT1SpTNLe7c0sr6e+jiiUK53Y38gQCzwAAAAAAAAAAAAAAAIACoFaZompYsXhudwP5hGdudwAAAAAAAAAAAAAAAAAAcGsh8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOCSQrndAQAAAAAAAAAAAAAAJCk8Ok5RsYm53Q0AyHeORFzL7S4gHyLwDAAAAAAAAAAAAACQ68Kj49Rt+jrFJaXkdlcAIF8q7O2lkv4+ud0N5CMEngEAAAAAAAAAAAAAcl1UbKLiklL03oCmqlWmaG53BwDynZL+PqpYonBudwP5CIFnAAAAAAAAAAAAAIA8o1aZompYsXhudwMAAGSAwLMC6OOPP9bHH3+slBSGqC2Iqr3yqyl9YsrdGeZxlA8AAAAAAAAAAAAAAAAFk2dudwA5b8SIEdq/f7927NiR210BAAAAAAAAAAAAAAAAcAsi8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgkkK53QEAAAAAAAAAAAAAQMETHh2nqNhES/pIxLVc7A0AAHAVgWcAAAAAAAAAAAAAgBwVHh2nbtPXKS4pxbS8sLeXSvr75FKvAACAKwg8AwAAAAAAAAAAAADkqKjYRMUlpei9AU1Vq0xRy/KS/j6qWKJwLvYMAAA4i8AzAAAAAAAAAAAAAECuqFWmqBpWLJ7b3QAAAJngmdsdAAAAAAAAAAAAAAAAAADcWgg8AwAAAAAAAAAAAAAAAAC4hKk2AQAAAAAAAAAAkKdcvXpVGzdu1JkzZ3Tp0iUVKlRIlSpVUkhIiGrXrp3tbW3atEmHDh1STEyMChcurKpVq6pt27aqUKFCluqOjY3VmjVrdOzYMSUmJqpSpUrq2rWrypYtm+k6586dq6NHj0qSWrVqpbvuuitLfSyI4uPjdeDAAe3fv18XL15UbGysihcvrlKlSql58+aqW7dubndRycnJ2rp1q44cOaKLFy8qJSVFQUFBaty4sVq0aCFPz+wbXyQiIkI7duzQ6dOnFR0dLQ8PD5UoUULVq1dXSEiIAgMDs60tAACQvxB4BgAAAAAAAAAAgDxhy5YtmjRpktasWaPk5GS7eRo2bKgXX3xRDz/8sDw8PDLd1vHjxzV+/Hj9+OOPSkxMtHnew8NDHTt21KRJk9ShQweX6k5JSdGbb76pKVOm6Pr166bnPD099fDDD2v69OkqVaqUS/Xu2bNHjzzyiFJSUuTj46O9e/e6VL4g27dvnxYtWqTVq1dr69atSkpKcpi3TJkyevTRR/X0009nOfjQVadOndLrr7+u+fPn6+rVq3bzlC1bVk899ZRefPFFFSlSJFPtpKamas6cOfrkk0+0c+fOdPO2b99eI0aM0IABAzLVFgAAyL+YahMAAAAAAAAAAAC5Kjk5Wf/5z3/Utm1b/f777w6DzqQbAURDhgxR9+7dFRUVlan2fvzxRzVs2FDffvut3aAzSTIMQ2FhYerUqZNeeeUVGYbhVN0pKSkaMGCAxo8fbxN0Jv0v4Kd9+/a6cOGCS/0eOXKkUlJSJEmjR49WnTp1XCpfEIWHh6tRo0Zq1KiRJkyYoA0bNqQbdCbdGAHsrbfeUv369fXNN9/kUE+lr7/+WnXq1NGXX37pMOhMki5cuKCJEyeqUaNGmQo+PHHihG677TYNGzYsw6AzSdqwYYMGDhyoO+64QxERES63BwAA8i9GPAMAAAAAAAAAAECuSUlJUe/evbV8+XKb5ypUqKAKFSro2rVrOnr0qClgaOXKlbr99tu1bt06+fv7O93eggUL9MADDyg1NdW0PCgoSJUrV1ZERITCw8MtgWaGYWjq1KlKSEjQjBkzMqx/2rRpWrhwoWlZ/fr15efnp3379lnW4cCBA3rkkUfsrrc93333nTZs2CBJqlixosaNG+dUuYIuKipK+/bts/ucv7+/ypcvr8DAQF25ckVHjhyxBPZJUkxMjIYMGaJDJ85o4KMj3NrPLz96V+9Pec1mebHixVWxUhWlpqYq/PQpxV77X0DasWPH1L5DR81Z9Jtq1qnnVDsXzp3VkL7dFX76lM1zZcqWV1C5ckpNSdG58DOKjrpsen7VqlVq17GzZv20XMVLlHBtBe04EnEty3UAAIDcReAZAAAAAAAAAAAAcs3YsWNtgq969uypyZMnq1GjRpZlV65c0axZszR+/HjLaFC7du3Sf/7zH82ZM8epto4ePapHHnnEFHTWpEkTzZgxQ507d7YsO3jwoF599VUtWrTIsuy9995T+/bt1bdvX4f1X7lyRW+88YYlXaNGDS1evFiNGzeWdGMkrUGDBmnVqlWSpN9++01r1qxR165d0+33tWvX9NJLL1nS77zzjkvBdvifhg0bavDgweratauaNm0qT8//TRAVExOjuXPnasKECYqMjLQsnzzhv5r5d4KK1Ap1S5/iju5UxE+vm5Z5l66ikp0flV+1porz9JIklUpJVpFjOxW19islR5+TJF2JjlK/fv1U4ZEP5FHIJ8O2In6apDiroDP/Rt1UvHV/eQdW1M1QsOKS/M4dVvSGbxV/fJcl7+F/96v7g8NV6q5nMr/CaRT29lJJ/4z7DQAA8iYCzwAAAAAAAAAAAJArjhw5omnTppmWPfPMM3r//fdt8hYvXlzPPvusOnTooC5duujKlSuSpG+++UYjR45USEhIhu2NGzdOsbGxlnTLli21evVqBQQEmPLVrVtXP/30k5588knNnDnTsvyll15Sr169VKiQ/UtsP/74o6V+Ly8vU9CZJJUpU0aLFy9WvXr1dObMGUk3plfMKPDstdde09mzZyVJnTp10sCBAzNcV5jdfffdGjt2rFq3bu0wT0BAgEaMGKFevXqpY8eOOn78uOU5r21ztPidkfL29s7WfqWkpOieDk9L+t9Urk1DWunz7xaqiH9ROyU6KTpqmB4b0EsH998YyS358hn1L/yPhj45Mt22/vl7twZO3WFaNvrVSRr2n1EOSrST9IgmvDBSi+bNtSyN3btKP3/1nsqWr+DEGqavpL+PKpYonOV6AABA7iDwDAAAAAAAAAAAALli2rRppqkNW7RooXfffTfdMs2bN9eMGTM0bNgwy7IxY8ZYRhFz5J9//tH8+fMtaR8fH82ZM8cm6OwmDw8Pvf/++/rjjz90+PBhSTdGTJs1a5Yef/xxu2XWr19v+b9bt26moLOb/P399eSTT2rs2LGSZJk+05GDBw/qvffekyQVKlRIH374Ybr5YRYUFKRNmzapbdu2TpepXLmyFi1apBYtWlhGxzt/5qQuHf5Lt99+e7b274cfftCZkycs6aJFi2rpogWqXLmi40IVi+vnhQvUpEkTJSYmSpJmf/qexr/4jMP9WZJ+/HyNKd2wYUNNf2OcPDw80u3jnC8+0bpVyy2jwBmGoaN/blDX4cMzWDsAAJDfeWacBQAAAAAAAAAAAMh+S5cuNaVffvlleXl5ZVhu8ODBqly5siW9evVq0+hU9nz99demKTYHDhyo+vXrp1vGz89Pr7zyimnZl19+6TD/oUOHLP/fdtttDvO1b9/e8v/p06cVHx/vMO+oUaOUlJQkSRoxYoQaNmyYbp9hVrZsWZeCzm5q2rSpunfvblr2+++/Z1e3LJYsWWJKW+/bjtSrV0/9+vWzpCMjI7Vw4cJ0yxw8eNCU7tOnT4ZBZ9KNYLg777zTtOzIkSMZlgMAAPkfgWcAAAAAAAAAAADIcQcPHtT58+ctaS8vL919991OlfXy8lKPHj1MyxYtWpRuGesgt0cffdSptgYMGCB/f39LeseOHZZpL61FR0db/i9XrpzDOq2fi4qKspvv559/tgQ7lS1bVpMmTXKqz8geaQMEJenUqVPZ3sa6detM6V69ejldtmfPnqZ0RsfA5cuXTWlnAtxuqlKliimddl8HAAAFF4FnAAAAAAAAAAAAyHHWQTy1atVSkSJFnC7fpEkTU9o6sCytgwcPmkZo8vf3d3oULOu8hmHo119/tZs37WhtaUdXs5Z2elHpxhSa1uLj4/Xcc89Z0lOmTFHx4sWd6jOyR8mSJU3pK1euZGv9SUlJpuBLyXa/To913tWrVysuLs5hfuv9J7281qzzli5d2umyAAAg/yLwDAAAAAAAAAAAADkuMjLSlA4MDHSpfKlSpUzp3bt3O8xr/VxoaKjdYC9HrKfNdNRW2nVIb3SstM95eHioRIkSNnmmTp1qmT60TZs2GjJkiNP9RfYIDw83pa33uayyPgYk144D6/7Ex8frwIEDDvM3bdrUlN6xY4fTbW3fvt2UDg0NdbosAADIvwg8AwAAAAAAAAAAQI7z9DRfprIeBSwjSUlJpnRMTIxNoNBN1sE4wcHBLrVlnd9RcE+jRo0s/69Zs8ZhfWmfq1+/vry9vU3PnzhxQlOnTpV0Yzt99NFH8vDwcKnPyLoNGzaY0nXq1MnW+q2PAcm148D6GJAc75uSdP/995v2o4ULF1qCG9Ozfv16bdmyxZIuV66czVS3AACgYHL+Vg4AAAAAAAAAAAAgm1iP7BQREWFKh0fHKSo20WH5PYdP2ixbvmGn2rQvarN8++59prR3QJD2hTs/bWKir3nKxX/2/2u3fK2mrSV9Jknatm2bPp37k9p3ud2U5/zZcH362eeWdJPQ22zqevapkZapDe97cIh8ytZ0qb/IutMnjmvdunWmZdkdbGVvdLOIiAhVrVrVqfLWx4yUfuBZnTp19Nhjj+mLL76QdGOEtLvvvltLlixR7dq17ZbZsmWL+vfvb1r20UcfycfHx6k+AgCA/I3AMwAAAAAAAAAAAOS4GjVqmNInTpzQxYsXFRQUpPDoOHWbvk5xSY5Hf7r4y0qbZWO+26Ciu20vf13YfdiUnrv3qhZ/uNHpvibHXDSlIy5e1D12yhspxeXpX0KpsdGSpBGPDVbJzo+qSL128vAqpIRT+3R5zedKvhrz/yU8FObZVJvT1BV3/C9FrFgmSfL0K6YtgbfbbSunnZx6T460U/XlZTnSTkYu/jxFhmFY0nXq1VfLli2ztY1ChQqpcuXKOn36tGXZjh07nA4827lzp82yCxcupFvm/fff15EjR/THH39IuhGo1qhRI913333q1KmTKlasqJSUFJ08eVIrVqzQb7/9ptTUVEt/33//fd13333OriIAAMjnCDwDAAAAAAAAAABAjqtRo4YqVKigs2fPWpbNnz9fTz/9tKJiExWXlKL3BjRVrTK2I5hdj72mrp/8ZbP8P+0q6f5B7WyWP/i7t/amGSBtXJ9m6trdNp8jV6Ki1O7TNAtSk7VoeEv5+Pra5P2t+nS9NOJRSZKRGKfLv3+ky79/ZLfeh4YN1yuvPWRJJyUl6b7bn7Ok/zthku5/OG9Madhoas60s2yk86+Lu6z4ZbFePGgO9nt7yltume60ffv2+v777y3pefPmqV+/fk6V/eGHH2yWXbt2Ld0yhQsX1sqVKzV58mRNnz5dV69eVUJCgr7//ntTP9Ly9PTUnXfeqddff10tWrRwqm8AAKBgIPAMAAAAAAAAAAAAuaJPnz765JNPLOkpU6Zo0KBBkm4E+NQqU1QNKxa3Kfff/76ta5ZRw/6neKEUu/lTEuNM6boVS9nN50hcoO20glWLe6lUKds6Gv5nmGIjTmnSpEnp1tmnTx99/ekHpikLp02bpuNHDkmSmjdvrokvjZKnp6ep3N9//61ff/1Vx48fV0pKiipXrqw777xTbdq0cXp98jJXXhd3OHjwoF5/eZRpWd++fdW7d2+3tNenTx9TwNfPP/+sbdu2qVWrVumWW7lypWXUsrQyCjyTboxcNmHCBPXv31+PPfaYtmzZkm7+Hj16aNSoUQSdAQAAGwSeAQAAAAAAAAAAIFeMHj1an332mWUqv/DwcN13331667O5DsvMnTtXU6faH34rLi7O7vL4+HhTOm2wlzN87Yxs5qgtSZo4caJat26tCRMmaMeOHaYpG2vVqqXnn39ew4cPNwWVnTt3Tq+//rokycPDQx999JHp+YsXL+qJJ57Q4sWLbdqbNGmSOnTooNmzZ6t69eourZuzVq1a5ZZ685LLly+rZ8+eion5X1BjpUqVNHPmTLe12bdvX1WvXl3Hjx+XJKWkpKhfv35as2aN6tSpY7fMnj17/j9A01Z6++VNly5d0osvvqhvv/1WycnJGeZftmyZli1bplatWmn27NmqV69ehmUAAEDBQOAZAAAAAAAAAAAAckWtWrX0yiuv6M0337QsW7t2re7t0lrxwT0Vfrqy6gTVU2xsrP788099/vnnWrBggaQbwVkBAQG6cuWKpWzRorbTckqSn5+fKZ2YmOhSPxMSEjKs01r37t3VvXt3RURE6MSJE0pOTlbFihVVtWpVu/lffPFFXb16VZI0ePBg0whmkZGR6tSpk/bv3++wvfXr16t9+/basGGDW4LPunXrlu115iVxcXHq1auXDh8+bFnm7++vRYsWqVSpUm5r18vLS59++qnuuusuS4DimTNn1Lx5cz333HPq37+/atasKcMwdOjQIf3www/68MMPLcGUJUqUUHR0tKU+R8fATf/8849uv/12nTt3zrIsJCRETz/9tDp06KDy5csrJSVFp0+f1tq1a/X+++/r0KEbo/Bt27ZNoaGhWrlypVq3bp3NWwIAANyKPDPOAgAAAAAAAAAAALjHa6+9pp49e5qWnT1zWpdXfqLubZrI19dXgYGB6tatmyXoTLoxyletWrVM5UqUKGG3DetgHOsR0DJibxSpjAJ8bipTpoxCQ0PVtm1bh0FnGzdu1HfffSdJKl68uM2Ibk8//bQl6Kxo0aL67LPPFBkZqatXr2revHkKCgqSdGPEuKFDh5pGWEPGkpOTdf/992vTpk2WZT4+Plq0aJFatmzp9vbvvPNOvfXWW6ZlsbGxev3119W4cWP5+/uraNGiat68uaZNm2bZf++44w4NHTrUVM7RMSDdGDWvW7dupqCzCRMmaPv27RoyZIiqV68uPz8/+fv7q169evrPf/6jvXv3mtq4evWqevXqpYiIiCyvNwAAuPUReAYAAAAAAAAAAIBc4+XlpcWLF2v06NHy8vLKML+3t7fefPNNjRs3TteuXTM952zgWWxsrEt9tM5fqFChDEc8c1ZKSopGjhxpSU+cOFFly5a1pPft26d58+ZZ0vPmzdMTTzyhwMBAFS1aVAMGDNCvv/5q2Xbr16/XypUrs6VvBYFhGBoyZIiWLVtmWebl5aXvvvtOd9xxR4714+WXX9bcuXMVEBDgVP6BAwfqp59+sgmKTC/w7KWXXtL58+ct6aFDh2rixIny8PBwWMbHx0dffvmlOnbsaFl28eJFTZw40al+AgCA/I3AMwAAAAAAAAAAAOQqLy8vvfvuu9q3b58effRRlSlb3iaPv7+/Bg8erO3bt2vMmDGSbkxBmZb1CGg3lSlTxpQ+c+aMS/0LDw83pW+OMJYdPv/8c+3evVuS1LBhQz399NOm5+fOnWv5v127drr77rtt6mjZsqX69etnSc+ePTvb+pff/ec//9H3339vSXt4eGjmzJmm7ZlTBg0apOPHj2vs2LFq0KCBzfOenp6644479PPPP+uHH35QsWLFnD4GIiMjLaPq3azrjTfecKpfXl5emjx5smnZN9984/KUtQAAIP8plNsdAAAAAAAAAAAAQMEWHh2nqNhEqVh5PTtpuu4ZMUlPf7Fa7/aqpgpFvVS+fHlVrlxZPj4+ljIXL17UpUuXLGl/f3/Vr1/fbv1169Y1pU+dOuVS/6zz16tXz6XyjkRGRmrcuHGW9IcffqhChcyX79JO/3jPPfc4rKtXr16aP3++JGnz5s3Z0r+0Vq9ene112tOtW7ccaUe6MQLYZ599Zlr27rvvatiwYTnWB2uBgYF6/fXX9frrrysyMlJnz55VVFSUSpcurSpVqtiM3ndzCtabQkJC7Na7fv16JSUlWdLNmjVTxYoVne5X27ZtVapUKUugW2xsrHbt2qU2bdo4XQcAAMh/CDwDAAAAAAAAAABArgmPjlO36esUl5RiWl6sVFnd1jpUFUsUtltu7969pnTTpk0dTtVpHShmHayTkQMHDqRbX2a9+uqrunz5siRpwIAB6tSpk02ew4cPW/63DqBLK23Q3alTp5SQkCBfX99s6ack3X777dlWV3oMw8iRdl5//XVNmzbNtGzSpEl69tlnc6R9Z5QqVUqlSpVy+HxCQoJp/yhUqJCaNm1qN+/x48dN6erVq7vUFw8PD1WtWtU0wpr1SIAAAKDgIfAMAAAAAAAAAAAAuSYqNlFxSSl6b0BT1Srzv9GcSvr7OAw6k6Rff/3VlL7rrrsc5rUOxtmxY4eSk5NtRhdzJO2oY/bqy4xdu3bpyy+/lHRjtLbp06fbzRcdHW35PyAgwGF91s9FRUWpXLlyWe5nfvTee+9p/PjxpmXPP/+8zbK8buXKlaZRzDp16iQ/Pz+7eRMSEkxpZ/f9tLy9vU3plJQUBzkBAEBB4ZnbHQAAAAAAAAAAAABqlSmqhhWLWx7pBZ2lpKRowYIFlrSXl5ceeeQRh/nr1aunmjVrWtKxsbFOT0cZGxurLVu2WNIeHh7pTnnpDMMwNHLkSKWmpkqSxo4d63DaQ0/P/13Oi4uLc1in9XNpy+F/vvzySz333HOmZcOHD9c777yTSz3KvHnz5pnSjz32mMO81iOnnT171uX2rEc4CwoKcrkOAACQv3DGWQB9/PHHCg4OVsuWLXO7KwAAAAAAAAAAAC6bOXOmTp8+bUn36NFDFSpUSLdMr169TOmvvvrKqbbmz5+va9euWdIhISEZtpWROXPmWILZ6tSpYxMIlVbJkiUt/1tPl5iW9XMlSpTIUh+tGYaRIw93mjdvnp544glTOw899JA+/fRTt7brDvv27dP8+fMt6dKlS6tPnz4O81erVs2U3r59u2JjY51u79ChQzpz5oxpWY0aNZwuDwAA8icCzwqgESNGaP/+/dqxY0dudwUAAAAAAAAAAMAlR48e1bhx4yxpb29vTZkyJcNyw4YNk4eHhyU9b948HThwIN0y8fHxNnU/+uijLvbYLCYmRq+88ool/f7778vHx8dh/uDgYMv/a9eudZhv9erVlv9r166dbp0F0bJlyzR48GDLKHOS1KdPH82ePfuWGx0uLi5Ojz/+uGmqyzfffFO+vr4Oy7Rr1870fHx8vD766COn23zrrbdM6Zo1a9oEswEAgILn1jqLAgAAAAAAAAAAwK0pNUU6vkHa+9ONv6k3gmbOhZ9WalK8U1UcOHBAXbt2VWRkpGXZiy++aArOcqRhw4a6//77LenExEQNGTJEMTExdvMbhqFnn31Whw8ftiyrUaOGhg0b5lRfHZkwYYIuXLggSerdu7e6d++ebv6OHTta/v/ll1+0f/9+mzznz5/X7Nmz7ZaBFBYWpv79+yspKcmy7I477tD8+fNVqFChbG1r4sSJ8vDwsDw6deqUYZmYmBidO3fOqfqjoqLUp08fbd261bKsXbt26U6zKUlFihTRvffea1o2fvx4U8CiI59++qlp/5KkIUOGONVfAACQv2XvmRQAAAAAAAAAAABgbf9SacXLUszZ/y0LqCB1n6o/Vh5U+KdvaOqVB/XYwwMVGhqqwoULm4rv3btXc+fO1fvvv6/ExETL8jZt2phGP8vIG2+8oV9++UXXr1+XJO3YsUMdOnTQe++9ZwoQOnTokMaMGaNFixaZyk+ZMkXe3t4urLjZ/v37LaNM+fn5acaMGRmWGTp0qCZNmqSUlBQlJyerd+/eWrRokRo1aiRJOnnypPr3728KoMvqqGz5yb59+9SrVy/Fx/8vuLFcuXIaMWKE1q9f71JdhQsX1m233ZbdXdSpU6fUokUL9e3bV/3791enTp0UGBhoynP27Fn99NNPmjx5siIiIizLS5curdmzZ5tG83Pktdde06JFiyzHUGJiorp3765Ro0bp6aefVvXq1U359+zZo6lTp+qHH34wLS9XrpyeffbZTK4tAADITwg8AwAAAAAAAAAAgPvsXyr9OFiSYV4ec+7G8ugBSo2L0bdffaZvv/pMXl5eql69ukqWLKm4uDidO3fONMLZTS1bttQvv/wiPz8/p7tSq1YtffXVV3rwwQdlGDf6s2fPHnXu3FlBQUGqUqWKIiIidObMGcvzN40cOVL9+/d3efWt60hOTpYkvfzyyzaBPvZUrlxZo0aN0rvvvitJOnLkiBo3bqz69evLx8dH+/btM025eP/996t169ZZ6md+snPnTl29etW07Pz58+rdu7fLdVWtWlUnTpzIpp6ZJSYmat68eZo3b54kqVKlSipTpoykG/09d+6czT5ZunRprVixQjVr1nSqjdq1a2vOnDmm/T8lJUXvvvuu3n33XVWsWFHly5dXSkqKTp8+rUuXLtnUUbhwYS1ZskTFihXLyuoCAIB8gsAzAAAAAAAAAAAAuEdqyo2RztIEnYUbpRRl3Axa8dClo7tMRVJSUnTkyBGHVXp4eOjRRx/Ve++9J39/f5e7NHDgQBmGoUcffVRxcXGW5RcvXtTFixftlnnhhRf09ttvu9xWWgsWLNDatWslSdWqVdMrr7zidNnJkydrz549WrNmjWXZgQMHbPI1a9ZMn332WZb6ibzhzJkzOnPmjMPnb7vtNn377beqVq2aS/UOHDhQvr6+evzxx20COsPDwxUeHu6wbK1atfTtt98qNDTUpTYBAED+5ZnbHQAAAAAAAAAAAEA+dXKzaXrNcKOUuiVM0z2Jb/7/Y7KWlXlEAY27qkzZsulW5evrq/vuu09bt27VF198kamgs5seeOAB7du3Tw8++GC6U2d26NBBYWFhmjZtmlNTGTpy/fp1Pf/885b0jBkzXBqpzc/PT8uWLdPLL78sX19fm+e9vLz0+OOP648//lDJkiUz3U/kjkqVKum5555T3bp1083n4eGh2267TfPnz9eGDRtcDjq76d5779WBAwc0adIkValSJcP8wcHB+uCDD7R79261atUqU20CAID8ycOwHpMVBUZMTIyKFy+uK1euKCAgILe7kynVXvnVZtmJKXfnQk9uHdbbzN72YrsCAAAAALJTfvgNAsgLOJYA3JL2/iQtfNSS3JdaTfckvqn3vD9WLY//jaxUssd4VWx9n44dO6Z9+/bp1KlTiomJkSQFBgaqbt26atWqlYoUKZLtXYyJidHGjRt1+PBhXb16VX5+fqpSpYpuu+02VaxYMVva2LNnjxYvXizpxvo888wzWerv6tWrdfz4caWmpqpSpUrq1q2bgoKCsqWvyF0XL17U7t27dfz4cV2+fFnJyckKCAhQ9erV1apVK8v0m9np5MmT2rVrly5cuKArV67Iw8NDJUqUUIUKFRQaGqqyGQSFAgAAW/vCr+ieDzdq2ch2alixeG53x2XO/gbBVJsAAAAAAAAAAABwj6L2A1ZqeYSroeeJ/y0oeyOYpkaNGqpRo0YOdOx/AgIC1KNHD7e20aRJEzVp0iRb6goICFDfvn2zpS7kPUFBQbr99ttztM2qVauqatWqOdomAADIH5hqEwAAAAAAAAAAAO5Rta0UUEGSo2kqPaSAijfyAQAAALilEHgGAAAAAAAAAAAA9/D0krpP/f+EdfDZ/6e7T7mRDwAAAMAthcAzAAAAAAAAAAAAuE9wL+n+b6SA8ublARVuLA/ulTv9AgAAAJAlhXK7AwAAAAAAAAAAAMjngntJ9e6Wdm6QFsVK97wvhbRnpDMAAADgFsaIZwAAAAAAAAAAAHA/Ty+pYrMb/1dsRtAZAAAAcIsj8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgEgLPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwrAD6+OOPFRwcrJYtW+Z2VwAAAAAAAAAAAAAAAADcggg8K4BGjBih/fv3a8eOHbndFQAAAAAAAAAAAAAAAAC3IALPAAAAAAAAAAAAAAAAAAAuIfAMAAAAAAAAAAAAAAAAAOASAs8AAAAAAAAAAAAAAAAAAC4h8AwAAAAAAAAAAAAAAAAA4BICzwAAAAAAAAAAAAAAAAAALiHwDAAAAAAAAAAAAAAAAADgkkK53QEAAAAAAAAAAAAUPAkJCfrrr7904MABRUVFKS4uTgEBASpTpoyaN2+uWrVqycPDI1vaSk5O1rZt27Rv3z5FRkbKy8tL5cuXV4sWLdSgQYMs1Z2SkqJNmzZp3759unLlisqUKaO2bduqfv36ma5zw4YNWrNmjSSpbNmyeuqpp7LUx4IoNTVVR44c0d69e3Xu3DnFxMSocOHCCgwMVP369dWsWTN5e3vndjd1+vRp7dy5U+fOnVN0dLS8vb1VokQJ1a5dWy1atFCxYsWypZ34+Hht2rRJJ06c0MWLF+Xp6aly5cqpadOmaty4cba0AQAACh4CzwAAAAAAAAAAAJBjEs4f0Ssjv9Hq5UuUkJDgMF/FihX16KOPatSoUQoMDMxUW9euXdOUKVP06aef6vLly3bz1K1bVy+//LKGDh3qcqDbwoUL9eyzz+rMmTM2z7Vt21afffaZGjVq5FKd169f16BBg3Tq1ClJ0qxZs1wqX5CdP39eCxcu1MqVKxUWFqaYmBiHeQsXLqx+/fpp9OjRatasWQ728kYQ2Oeff67PPvtM//77r8N8np6e6t69u0aNGqU77rgjU23t379fEydO1C+//KL4+Hi7eapVq6Znn31WI0aMUKFCXD4GAADOY6pNAAAAAAAAAAAAuE14dJz2hV/R36ejNH7sqzr/zXP6dfGP6QadSVJ4eLhee+01BQcHa8WKFS63u3fvXjVu3FiTJ092GHQmSQcPHtSwYcN011136cqVK07X/95776lfv352g84kafPmzbrtttu0adMml/r91ltvWYLO2rRpoyFDhrhUvqDq3bu3KlasqKefflpLly5NN+hMkuLi4jR37lyFhIToxRdfVGJiYo70c/fu3WrWrJmeffbZdIPOpBujti1fvlx33nmnHnzwQV2/ft2ltt544w01atRICxYscBh0JkknTpzQs88+q1atWln2PQAAAGcQsg4AAAAAAAAAAAC3CI+OU7fp6xSXlKLI3z7Qtb9X2uQpUqSIatasqcKFCysyMlLHjh2TYRiW5y9cuKDevXvr559/1l133eVUuwcPHlSXLl106dIl0/KiRYuqRo0aiouL04kTJ5SUlGR57vfff9ddd92ltWvXys/PL936N2/erOeff960rFKlSipXrpwOHz5sCWC7evWq7r//fu3bt08lS5bMsN/Hjh3TtGnTJN0Y7eqjjz7KtulG87tNmzYpNTXVZrm3t7cqVKigoKAgxcfH69ixY6YArtTUVL3zzjs6dOiQFi5c6NYRv/bu3asuXbooKirK5rmqVauqbNmySkhI0PHjx20C53744QdduHBBv/32m3x8fDJs64knntDMmTNtlpcuXVpVqlRRQkKCjh07pri4OMtzf/75pzp16qRNmzapfPnymVhDAABQ0DDiGQAAAAAAAAAAANwiKjZRcUkpur/UGZugs+DgYP3666+6cuWK/v77b23btk1HjhzRhQsXNGnSJFNwTWJiooYMGWI3YMdacnKy+vfvbwo6CwwM1Jw5c3T58mXt2bNHhw4d0vnz5/Xf//5Xnp7/u1y2ZcsWvfTSSxm28fLLL1uCnPz8/LRgwQKdPn1aO3bs0IULF0x1nD17Vu+++26GdUrSs88+axkJ7vHHH1fz5s2dKgezsmXL6sUXX9SaNWsUExOjEydOaMeOHdq7d6+io6O1dOlSmylQly5dqldeecVtfUpJSdHDDz9s2oe9vLz0wgsv6MyZMzpx4oS2bdum3bt3KyoqSmvXrlVoaKipjrVr11oCE9Pz+eef2wSdtW3bVps2bVJERIR27dqlffv2KTIyUrNnz1bZsmUt+Y4fP64HHnggi2sLAAAKCgLPAAAAAAAAAAAA4FaLv/rAlA4JCdH27dvVo0cPmxGmgoKCNH78eP3222+m5y5evKjPPvssw7a+/vpr7d2715IuWbKkNmzYoMGDB8vb29uyPDAwUG+88Ybmzp1rKv/pp5/q8OHDDus/dOiQNm7caEm/88476tevnyXt6+urqVOnqk+fPqY+ZeS3337TL7/8Yunb5MmTMywDs4YNG2rBggU6c+aM3n77bXXp0sVm9Dpvb2/17NlT27dv1z333GN67oMPPtChQ4fc0reff/5Ze/bsMS377rvvNG3aNFWsWNG03NPTU507d9bGjRt15513mp6bOnVqutPUXrlyRS+//LJpWd++fbVu3Tq1bdvWNIJe4cKFNWTIEG3dulWVK1e2LF+3bp1++uknl9cRAAAUPASeAQAAAAAAAAAAwG2Sos/ryMH9pmWffPKJ/P390y3XpUsXPfroo6ZlNwOzHElMTNQbb7xhWvbOO+8oODjYYZkHH3xQgwYNsqSTk5M1ceJEh/k3bNhg+T8gIECPPfaY3XwvvPCC5f+zZ8/q2LFj6fZ71KhRlvTkyZNVqlQph/lh66uvvtKePXvUr18/p6bL9PPz07x581SpUiXLsqSkJM2ZM8ct/VuyZIkp3aNHDw0YMCDdMt7e3vriiy9M63P16lWtW7fOYZlPPvnEMtWrdGMK2NmzZ6e7TapVq2az3mPHjlVKSkq6/QMAACDwDAAAAAAAAAAAAG6THHnGlK5UqZJatmzpVNn77rvPlD5y5Ei6+X///XedPn3akq5WrZoeeeSRDNuZOHGiaSSoBQsWmIJ30ko7IlZISIh8fX3t5mvVqpVputD0RtKaPn26ZZS15s2ba/jw4Rn2GWa9e/c2TZvqDH9/fz3zzDOmZb///nt2dsvi4MGDpnTfvn2dKle5cmWbKTfTOw6sA9yeeeYZFStWLMN2OnfurLZt21rSBw8e1Pr1653qIwAAKLgIPAMAAAAAAAAAAIDbpMRfNaXTTumXkSpVqpjS0dHR6ea3Drp55JFHTAFljtSsWVMdO3a0pJOSkrR8+XK7edP2oVy5cg7rLFSokGnUsqioKLv5wsPDLdNqenh46KOPPnI5gAqZ1759e1P61KlTbmnn8uXLprQ7joPY2Fjt2rXLtKxXr15Ot9OzZ09TetGiRU6XBQAABRNnrQAAAAAAAAAAAHAbT1/zlJpxcXFOl7XOW7p06XTz//rrr6b0HXfc4XRbt99+uym9bNkyu/m8vLws/6empqZbZ9qpCh1Ndfj8888rNjZWkjR48GC1adPGqf4ie5QsWdKUdjTSXVYVL17clHbHcXD27FklJydb0n5+fqpTp47T7TRp0sSUXrp0qdNlAQBAwUTgGQAAAAAAAAAAANzGp0wNU/rAgQOWQKuMbN++3ZS2nnIwrQsXLuj8+fOWtK+vr5o3b+50P2+77TZTevfu3XbzBQYGWv5Pb3SsuLg4Xbp0yW65m9atW6f58+dLuhGYNHXqVKf7i+wRHh5uSqcdpS47NW3a1JTesWOHU+UMw7DJ6+g4iIyMNKVLlizp1Ih/N1mv+6lTp2xGagMAAEiLwDMAAAAAAAAAAAC4TaGA0moa0sqSTkhI0AcffJBhuYSEBL333numZY8++qjD/AcOHDCla9WqJR8fH6f7GRwcbEofOXLENHrUTY0aNbL8v2vXLocjZP3xxx+mEdEaN25sej4lJUUjR460pCdOnKiyZcs63V9kjw0bNpjSrowQ5ooBAwaY0l988UWGU8dK0ty5c3X27FlLunnz5jZBbDdZT9GadsQ9ZyQlJdkssz6uAAAA0iLwDAAAAAAAAAAAAG41+tWJpqCY8ePHa86cOQ7zR0dHq1+/fqagl549e6pnz54Oyxw8eNCUrly5skt9DAoKkp+fnyWdmJio48eP2+Tr0KGDZbrNhIQEvfnmmzZ5kpKS9Nprr1nSDRs2VFBQkCnPxx9/rL1791qef/rpp13qL7IuJSVF33zzjWlZjx493NLW7bffbpr6NSIiQj179tSFCxccllm6dKmeeuopS9rb21sff/yxw/zWo+pFRUXZDSZzJCIiwmYZgWcAACA9BJ4BAAAAAAAAAADArZqHttFHH31kmfYvOTlZQ4cOVWhoqKZMmaLFixdrxYoV+vbbbzVy5EjVrFlTy5Yts5S//fbb9cMPP6TbhnXQTKVKlVzuZ4UKFdKtU5LKly+vXr16WdJvv/22XnrpJZ06dUqJiYn666+/dM8992jbtm2WPGmDh27WO2HCBEv6ww8/VKFChVzub3br1KmTPDw83P4ICwvL7VWVJH3++ec6duyYJe3t7a0HH3zQbe199913atiwoSW9ceNG1a5dW8OHD9ecOXP022+/acmSJZo+fbo6duyo3r176/r165KkIkWKaP78+WrdurXD+itVqiRvb29LOikpSXv27HG6fzt37rRZll5gHAAAQO6fwQIAAAAAAAAAACDfe+qpp1S3bl0988wz+ueffyRJO3bs0I4dOxyWqVGjhl566SU9/vjjNtMIWrt27Zop7e/v73IfrctY13nTtGnT9Pvvv1uCgqZNm6Zp06bZzduiRQsNHz7ctGzMmDGWaRYHDBigTp06udxXZM3Ro0f1yiuvmJaNGDEiUwGLzipdurS2bt2qMWPG6PPPP1diYqKuXr2qL774Ql988YXdMt7e3urbt69ef/111a5dO936/fz81LJlS23evNmybN68eQoJCcmwb4ZhaP78+TbLHR0DAAAAEiOeAQAAAAAAAAAAIId06dJFO3bs0AsvvGCZrtKRKlWq6IUXXtCDDz6YYdCZZBsgk3baTGcVLlw43TpvqlmzphYuXJhhG3Xq1NHPP/9sGs1s+/btmjVrlqQbgW7Tp0+3KXf27Fl98sknevrppzV06FC99NJL+uWXX5SQkODqKsGO69evq1+/frp69aplWdWqVU3To7qLv7+/PvjgA/3xxx8KDg7OMP/AgQM1evToDIPOburT5//Yu/NwK6uyf+DfzQwHGWRwQAaRnE0zpMQBAk3TciyHTDFzeNVSU3MqpzRTkzSHUtE0FStLzRzKGVCpxFkTJwREBEVkEDgy7t8f/NhxZDzD5oB+Ptd1rnc9z17Pve7Dq6++j9+91j5Vrq+77rqMGTNmhc/dcMMNGTVq1BL3Bc8AgOWx4xkAAAAAAACrxLXXXpuf//znmTBhwgrnvvPOOznuuOPys5/9LL/61a9yxBFHLHf+J598UuW6SZMm1e6vadOmVa4rKyuXOXf33XfP888/nzPPPDMPPPBA5syZU/qsffv2Ofzww3P22WenVatWpfvFYjE//OEPUywWkyQ/+9nP0qlTp9Ln8+fPz9lnn53LLrssc+fOrbLer371q2y44YYZNGhQ+vfvX+3fbWUMHDgwU6ZMKUvtxW299dZlX2NZisViBgwYkBdeeKF0r1GjRhk8eHDWWmutsq8/evTo/PjHP87f//730l8Hy3Prrbfm1ltvzR577JFBgwYtcRzspx199NG54IILSqG6GTNmZK+99srDDz+cddZZZ6nPPPLIIznppJOW+tny/h4AABA8AwAAAAAAoKzmzp2bb3/727nzzjtL99Zee+388Ic/zDe/+c184QtfSEVFRT788MM888wzuemmm/K3v/0txWIxH330UX7wgx9k5MiRyzzOMllyh7PFg2Ar69M7iq1oR7NNN900d999d2bMmJG33norH3/8cTp06JAvfOELS93R7cYbbywdLbrxxhvn5JNPLn1WLBZzyCGHLPW4w0VGjx6dPfbYI3fddVf23HPP6vxqK+XLX/5ynddc3Zxyyin561//WuXeb37zm+ywww5lX/vxxx/PPvvsk+nTp5fu9e/fP8ccc0y++tWvZp111sknn3yS0aNH58EHH8yVV16Z8ePHJ0keeOCB9OzZM0OHDl3u7metW7fOwIEDqxzv+vLLL2fLLbfMaaedlr333jtdunTJnDlz8sorr+QPf/hDbrzxxsyfPz9J0qZNm9IxsEnSsmXLOv5TAAA+Sxy1CQAAAAAAQFldeObJVUJnvXr1yn//+9+cf/752W677dKmTZs0btw46623Xr71rW/lrrvuyt/+9rcqwa/LLrusdETl0nw6IPPpHdBWxqd3d1rZ0E3Lli2zzTbbZKeddsqmm2661NDZ1KlTc9ZZZ5Wuf/Ob31TZle3666+vEjo75ZRTMmbMmFRWVuapp54qhcLmzJmTAQMG5IMPPqjW70Zy8cUX5/LLL69y79xzz81xxx1X9rVff/31fOtb3yqFzho0aJBBgwblkUceyXe+85107tw5TZo0SatWrbL11lvntNNOy6uvvprdd9+9VGPChAn51re+tcK/to866qgce+yxVe59+OGHOe2007LJJpukefPmad26dXbYYYdcf/31pdDZEUccscRuem3atKmD3x4A+KwSPAMAAAAAAKBsPnnnpdz1p1tL1x07dsx9992Xddddd7nP7bXXXrnmmmuq3PvJT36yzKP/Ph0SmzlzZrV7/fQzdbnb09lnn51JkyYlSfbee+8qgaJ58+bl/PPPL12feuqpueyyy9K1a9c0a9YsvXv3ziOPPJIuXbokSSZPnrxEgIrlu+6663LmmWdWuXfCCSfkvPPOWyXr/9///V+Vv77OOeecHHnkkct9plWrVrnzzjuzySablO69/vrrufLKK1e43m9/+9tceumlSxwfuzSFQiEnnnhirr322syYMaPKZ4JnAMDyCJ4BAAAAAGu84cOH5+ijj87mm2+eVq1apVWrVtl8881z9NFHZ/jw4WVde/r06fntb3+bvffeO926dUvLli3TtGnTdOzYMb17986pp56aV155paw9AKzOpj97b5Xrk046KR06dFipZw8//PBsvPHGpevJkyfnrrvuWurcjh07Vrl+9913q9lp8t577y23Zk299NJL+d3vfpdk4fGdnw6NPfzww5kwYUKSpHnz5jnnnHOWqNGmTZsqwambb765Tnr7PLj99tuX2NVswIABueKKK1bJ+i+99FKGDBlSum7btm1+8pOfrNSzLVq0yNlnn13l3qBBg1bq2Z/85Cd56623cuKJJ6Z79+5LfN6kSZPst99+efzxx3PFFVekcePGmTx5cpU5PXr0WKm1AIDPp0b13QAAAAAAQE3NnDkzJ5xwQn7/+98v8dnIkSMzcuTIDBo0KEcccUSuvPLKVFRU1On6f/zjH/PDH/4wH3300RKfTZo0KZMmTcq//vWvDBw4MIcffniuvPLKrLXWWnXaA8DqrFgs5pOxL1W5961vfWuln2/QoEH23HPPvPHGG6V7w4YNyyGHHLLE3MV3hUqSd955p1q9fvDBB1WOMGzSpMlSwzo18aMf/ah0nOHpp5+eDTfcsMrnTz31VGncp0+fZf6zYq+99iodoThx4sSMHj16iVq18eyzz2bKlCl1Vm9ZvvzlL6dt27ZlXydJ7rnnngwYMCALFiwo3dt///1z4403plAorJIeHn300SrX/fr1S4sWLVb6+T333DOFQiHFYjFJ8tZbb2XChAlZb731VvjsBhtskCuuuCJXXHFFJk6cmIkTJ+bjjz/OOuusk86dO6d58+alucViMSNHjqzyfM+ePVe6TwDg80fwDAAAAABYI82fPz/77bdfHnroodK95s2bZ4sttkijRo3y6quvZvr06UmS3//+9xk/fnzuv//+NGzYsE7Wv/baa0v/8X+Rdu3aZdNNN02TJk3y7rvv5s033yx9dvPNN+fNN9/MI488kmbNmtVJDwCru+lTp6Y4u+rxldUNSn16/vjx45c6b9NNN61yPWrUqMyZMydNmjRZqXU+HbjZaKON0qhR7f9T2h//+McMGzYsSdKtW7ecccYZS8xZ/J8Xnw7QLW799ddPq1atSv98e+ONN+o0eHbKKadk6NChdVZvWR5//PH07du37Os88sgjOfDAAzNv3rzSvd122y233357nf37wMoYPXp0levq/u+sTZs2adu2bZWg+/jx41cqeLa4ddddd7lH3I4ePbrKcaCdOnVa4ZG4AMDnm6M2AQAAAIA10tlnn10ldHbUUUfl3XffzYgRI/Kvf/0r7733Xn72s5+VPn/wwQeXenRZTYwaNSonnXRS6XrdddfN3XffnUmTJuXJJ5/MY489ljfeeCOvv/56dt1119K8p556KhdffHGd9ACwJpgzZ/YS96ob5mrcuHGV60U7h33ap0M1s2fPzrPPPrvS6yy+61iSbLPNNivf5DLMmDGjypGKl19++VLDx1OnTi2NW7Vqtdyai3++KnYnW1M99dRT2XvvvTN79v/+Gtxpp51y9913r3QYsa4s3kNS/b8HkpX/+6A27r///irX3/jGN+p8DQDgs0XwDAAAAABY44wfPz6XX3556frQQw/N9ddfn7XXXrt0r6KiIhdccEGV8Nnll1+e9957r9brDxo0qPQfkRs1apR//vOf2WeffZY4smvjjTfOfffdl+22265079prr61y3BfAZ1mbtmsvca+6/3f40zucdejQYZlz99xzzyrXDz/88Eqv8+m51TkSdFkuvPDCUv+77bZb9tlnn6XOa9Dgf//JrrKycrk1F/988ef4n+eeey577rlnZs2aVbrXs2fP3HfffVWOllxV2rVrV+W6un8PzJ49O5MnT65yb3l/H9TUn/70pyrXRx55ZJ2vAQB8tvi3UQAAAABgjXPllVfmk08+SZK0aNEiV1xxxTLnnn322encuXOShf+x/je/+U2t13/iiSdK49133z1bb731Muc2adIkp512Wun6/fffz6hRo2rdA8CaoHGTJmnYsmr47LHHHqtWjUcffbTK9UYbbbTMuXvttVeV65tuuinFYnGFa4waNarKEZONGzfOHnvsUa0+P+2NN94ohaSbNGmSK6+8cplz27ZtWxp/+ljGxU2fPr1KAGnx5+rCkCFDUiwWy/5TzmM2X3311ey2226ZNm1a6d6WW26Zf/7znyvcTa5cunXrVuV60Z/zyho6dGiV40KbNm2aTp061VV7SZJ//vOfGT58eOl6q622yle+8pU6XQMA+OwRPAMAAAAA1jh33XVXaXzAAQdU2ens05o0aZLvf//7peu777671utPmjSpNN5yyy1XOP/TcxZ/HuCzrlnXquHcK664okqIZnmGDh2af/3rX1Xu9e/ff5nzd9ttt2ywwQal6zFjxuSmm25a4TrnnXdelSDQ/vvvn9atW69Uj8ty4oknZs6cOUmSH//4x9l4442XOXfzzTcvjYcNG7bMYxQ/HcLbYostatXjZ83o0aOz66675sMPPyzd69GjRx5++OEldh1blT791+w777yTO+64Y6WeLRaLSxzTveOOO6Zp06Z11t+HH36YH/3oR1XuDRw4sM7qAwCfXYJnAAAAAMAa5fXXX89bb71Vut59991X+Mw3vvGN0vjNN9/MG2+8UaseWrZsWRovChUsz6JjORep6x1qAFYbC+Yno59IXv7rwv+5YH4qNu9bZcorr7yS4447boXHDr/11lv57ne/W+XeF77whWy//fbLfKZp06b56U9/WuXeqaeemldffXWZz9x+++257bbbStcNGzbM+eefv9zeVuSee+7JP//5zyRJp06dcvbZZy93fp8+fUrjSZMm5fe///0ScxYsWJBLL720dN2jR4+sv/76terzs+S9997LLrvsUuUYyy5duuTRRx/NuuuuW6drDRkyJIVCocrP8my00Ub56le/WuXesccem5deemm5zxWLxZx55pl5/PHHq9wfMGDAcp97//33M3Xq1OXOWWT8+PH5+te/XuXfrb773e9m1113XannAYDPt0b13QAAAAAAQHW8+OKLVa6XF0BYZNttt02TJk1KIbEXX3xxuTvPrEivXr3y/PPPJ1m4M82KLH58W/v27bPJJpvUeG2A1darf0/+eXoy/X/BnzTfLs27/zi9eu+Up4f/75jiQYMGZeTIkTnvvPPSp0+fNGr0v/9kNXny5Nx888254IILqhyXmCQXXXRRGjZsuNw2fvCDH+Tqq6/Of//73yTJlClTstNOO+Xyyy/Pd7/73dJaH330US6//PJcdNFFVZ4/5phjavXPiE8++SQ//vGPS9eXXXZZKioqlvvMjjvumI033rgUjD7xxBPTrl277LfffkmSmTNn5kc/+lH+/e9/V/k9WWjWrFn5+te/nrfffrt0r2HDhjnjjDPyxhtvVDtwvuOOO6ZZs2Z12uPFF1+cr33ta6Wd9aZMmZLtt98+Z5xxRo466qgq4bgFCxbkX//6Vy644II8+OCDVepstdVWOeSQQ5a71ogRI3LQQQfl4IMPzv77758ddtgha621VpU5o0aNyp/+9Kdccskl+fjjj0v3e/TosdxjYQEAFid4BgAAAACsUUaOHFkaN2nSJJ07d17hM4vmjRo1aokaNXHMMcdk0KBBWbBgQZ555pn84Q9/WObuI++8805++ctflq5PPvnkNGjgMArgM+bVvyd3HJakWPX+zIVHHl7ykx/kiJPfzejRo0sfPfnkk9lll13SsmXLbLjhhmnevHkmT56ct99+u8qxl4uccsop+fa3v73CVho3bpy//OUv2XHHHfPRRx8lWRgyGzBgQI4//vhstNFGqayszOjRozN37twqz/bq1SuXXXZZNX/5qi699NLS79m3b98cdNBBK3ymUCjksssuy1577ZUkqayszP7775/OnTtnnXXWyWuvvZYZM2aU5nfv3n2JoxE/zz744INS0HCR+fPn57jjjqtRvdGjR6dbt2510Nn/9OnTJ7/85S9zxhlnlO7NmjUr55xzTs4555x069YtHTt2zOzZszNmzJglQpdJ0qFDh/ztb39bqX+PmDlzZm644YbccMMNKRQK6dq1a9q3b5+5c+dm4sSJef/995d4pnv37nnooYfq9VhSAGDN4u0GAAAAALBGGTt2bGm8wQYbrPB4q0W6dOlSGo8ZM6ZWPXzpS1/KpZdeWlr7iCOOyLHHHpsRI0Zk5syZmTt3bkaPHp2rrroq2223XSZOnJhk4dFVP/nJT2q1NsBqZ8H8hTudfTp0lpTutX/9tgx9/LH07dt3iRkzZszIyy+/nKeffjqjRo1aInTWuHHjXHzxxfnVr3610i1tttlmeeyxx9K1a9cl1nrxxRfzxhtvLBE622WXXfLggw+mefPmK73Op40dOzYXX3xxkqRRo0a56qqrVvrZb33rW0scEzpu3Lg888wzVUJnbdu2zV/+8pcV7qLG6uf000/PtddemxYtWizx2ZgxY/L000/nxRdfXGro7Mtf/nKefPLJdO/evdrrFovFjBkzJs8880xefPHFpYbO9tprr/znP//JhhtuWO36AMDnl+AZAAAAALBGmT59emncunXrlX6uVatWpfHiR0rV1CmnnJI//elP6dq1axYsWJBrr702vXr1SsuWLdOkSZN07949J5xwQj744IN06dIlv/71rzN48OAqx8ktz+zZszN9+vQqPwCrpbHDqx6vuTQzP0jnBePy6KOP5o477kjfvn1XuGtT69atc+yxx+bll1/O6aefvtJB40W23nrrvPzyyznzzDPTtm3bZc77whe+kEGDBuWhhx5KmzZtqrXGp5188smprKxMkhx//PHZcsstq/X8hRdemJtuuikdO3Zc6ud9+/bN8OHDs+2229aqT+rPMccck1dffTWnnnpqOnTosNy5hUIhvXr1yk033ZR//etfK30E7NZbb51jjz12ieDlpzVs2DC77bZbHnzwwdxzzz1p3779Sv8eAACJozYBAAAAgDXMzJkzS+NmzZqt9HOL72CzeI3aOOCAA7LZZpvlmGOOyb/+9a+lzllrrbVy9NFH59BDD61W7V/+8pc5//zz66JNgPKaseTuScua16BBg3znO9/Jd77znXz88cd55pln8vbbb2fq1Kn55JNP0qpVq7Rr1y5f/OIXs/nmm9f6aOK11lorF110Uc4///z85z//ySuvvJLJkyenYcOGWW+99bLttttmq622qtUai0ybNi1f/OIXs9VWW6VQKOSkk06qUZ3DDz88hxxySIYNG5ZXX301M2bMSMeOHbPTTjutdPDo86Zbt25LPZ61XPr27Vur9bp27Zpf/epXufTSS/Pmm2/m+eefz4cffphp06alcePGadOmTbp06ZJevXotNzS5LJ07d85vf/vbJMn48ePz4osvlo7vXLBgQVq3bp0vfOEL+cpXvlLrsCUA8PkmeAYAAAAArFEWPxptZXcP+/TcOXPm1LqPjz76KMcff3z+/Oc/l/7jc+vWrbP55punWbNmmTBhQl5//fV8/PHH+dnPfpaLL744V155Zb7//e+vVP0zzzwzJ598cul6+vTp6dy5c637BqhzLdep0by11lorX/va1/K1r32tDE1V1bhx4+y4447Zcccdy7ZG69atc+6559ZJrcaNG6d///7p379/ndRj9VQoFLLxxhuXNVDYqVOndOrUqWz1AYDPN8EzAAAAAGCN0qJFi9L4k08+WennFp9bUVFRqx6mTJmSPn365JVXXkmy8D/qXnnlldlnn32q7M7z7rvv5uyzz87NN9+cGTNm5Igjjsi8efNy1FFHrXCNpk2bpmnTprXqE2CV6No7abV+Mn1CkmXsAlXRceE8AADgM6N2+xMDAAAAAKxiLVu2LI0rKytX+rlZs2YttUZNnHjiiaXQWYcOHTJ8+PDst99+SxwJt8EGG+Smm27KKaecUuXZcePG1Wp9gNVKg4bJ7pf8/4vCpz78/9e9f7RwHgAA8JkheAYAAAAArFHat29fGk+YMGGln5s4cWJp3K5duxqvP27cuAwePLh0fdZZZ6VLly7LfeaCCy5Ix44dkywMy11//fU1Xh9gtbT5XskBtySt1qt6v6LDwv/Zvc+q7wkAACgrR20CAAAAAGuUTTbZpDSePHlyZs2aVeX4zWVZfJexTTfdtMbrP/7441mwYEHpeq+99lrhM82bN8/Xv/713HbbbUmSYcOG1Xh9gNXW5nslm+6ZjB2ezHg/ablO0miL5Jp/1XdnAABAGQieAQAAAABrlM0226zK9QsvvJDevXsv95nx48dn0qRJy6xRHePHj69y3blz55V6bvF5i+++BvCZ0qBhsuFO/7seP63+egEAAMpK8Oxz6Jprrsk111yT+fPn13crrAa6nXF/fbcA1bK0v2bHXLxnPXQCAABAfenVq1eaNm2a2bNnJ0mefPLJFQbPnnjiidK4WbNm6dWrV43Xb9q0aZXrysrKNG7ceIXPzZo1qzRu3rx5jdcHAAAAWB00qO8GWPWOP/74vPrqqxkxYkR9twIAAAAA1dayZcv079+/dD148OAVPrP4nP79+6eioqLG66+//vpVrp955pmVeu7ZZ58tjTt16lTj9QEAAABWB4JnAAAAAMAa5/DDDy+NX3rppdx7773LnPvcc8/lH//4x1KfrYmddtqpyvVvfvObFT4zYsSIPPnkk6XrPn361KoHAAAAgPomeAYAAAAArHG+/e1vZ+utty5dH3PMMXnttdeWmDdhwoR873vfy/z585Mk22yzTfbff/+l1hwyZEgKhULp5+abb17qvE6dOmXXXXctXf/973/POeeck2KxuNT5r732Wr7zne+Urps1a5bvfve7K/wdAQAAAFZnjeq7AQAAAACA6ioUCrnhhhuy8847p7KyMhMmTMhXvvKVHHvssdl5553TqFGjPP3007n66qvz/vvvJ0maN2+eQYMGpVAo1Hr9yy67LNtvv31mzZqVJLngggty77335rDDDsuWW26ZZs2aZcKECXn44Ydz22235ZNPPik9+7Of/SwbbLBBrXsAAAAAqE+CZwAAAADAGqlnz54ZPHhwDjnkkFRWVmb69Om55JJLcskllywxt3nz5hk8eHB69uxZJ2t/8YtfzJ133pmDDjoo06ZNS5K88MILeeGFF5b73I9//OP89Kc/rZMeAAAAAOqTozYBAAAAgDXWvvvum2effTb9+/df6k5mhUIhu+yyS5577rnsu+++dbr27rvvnpdffjlHHXVUKioqlju3b9++eeihh/LrX/+6TnsAAAAAqC92PAMAAAAA1mibbbZZHnnkkYwbNy7Dhw/P+PHjkySdOnVK796907lz55Wq07dv3xSLxWqt3blz51x//fW58sor89xzz+XVV1/NRx99lHnz5qV169bp2rVrevXqlY4dO1b79wIAAABYnQmeAQAAAACfCZ07d86BBx5YL2s3a9YsvXv3Tu/evetlfQAAAIBVzVGbAAAAAAAAAAAAVIvgGQAAAAAAAAAAANUieAYAAAAAAAAAAEC1CJ4BAAAAAAAAAABQLYJnAAAAAAAAAAAAVIvgGQAAAAAAAAAAANUieAYAAAAAAAAAAEC1CJ4BAAAAAAAAAABQLY3quwEAAAAAAAA+G8ZPrcyUmXNK1299MKMeuwEAAMpJ8AwAAAAAAIBaGz+1MrsMHJrKufOr3G/euGHaVjSpp64AAIByETwDAAAAAACg1qbMnJPKufNzxYHbpEfHlqX7bSuapFOb5vXYGQAAUA6CZwAAAAAAANSZHh1bZstOreu7DQAAoMwa1HcDAAAAAAAAAAAArFkEzwAAAAAAAAAAAKgWwTMAAAAAAAAAAACqRfAMAAAAAAAAAACAahE8AwAAAAAAAAAAoFoa1XcDAAAAAAAAa4rxUyszZeac+m5jtfTWBzPquwUAAGAVEjwDAAAAAABYCeOnVmaXgUNTOXd+fbey2mreuGHaVjSp7zYAAIBVQPAMAAAAAABgJUyZOSeVc+fnigO3SY+OLeu7ndVS24om6dSmeX23AQAArAKCZwAAAAAAANXQo2PLbNmpdX23AQAAUK8a1HcDAAAAAAAAAAAArFkEzwAAAAAAAAAAAKgWwTMAAAAAAAAAAACqRfAMAAAAAAAAAACAahE8AwAAAAAAAAAAoFoEzwAAAAAAAAAAAKgWwTMAAAAAAAAAAACqRfAMAAAAAAAAAACAahE8AwAAAAAAAAAAoFoEzwAAAAAAAAAAAKgWwTMAAAAAAAAAAACqRfAMAAAAAAAAAACAahE8AwAAAAAAAAAAoFoEzwAAAAAAAAAAAKgWwTMAAAAAAAAAAACqpVF9NwAAAAAAALA6Gj+1MlNmzildv/XBjHrsBgAAYPUieAYAAAAAAPAp46dWZpeBQ1M5d36V+80bN0zbiib11BUAAMDqQ/AMAAAAAADgU6bMnJPKufNzxYHbpEfHlqX7bSuapFOb5vXYGQAAwOpB8AwAAAAAAGAZenRsmS07ta7vNgAAAFY7Deq7AQAAAAAAAAAAANYsgmcAAAAAAAAAAABUi+AZAAAAAAAAAAAA1SJ4BgAAAAAAAAAAQLUIngEAAAAAAAAAAFAtgmcAAAAAAAAAAABUS6P6boBV75prrsk111yT+fPn13crZdHtjPurXI+5eM966uSz5dN/rok/2xXxZ7bq+LMGAAAAAAAAgFXLjmefQ8cff3xeffXVjBgxor5bAQAAAAAAAAAA1kCCZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2CZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2CZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2CZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2CZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2CZwAAAAAAAAAAAFSL4BkAAAAAAAAAAADVIngGAAAAAAAAAABAtQieAQAAAAAAAAAAUC2N6rsBAAAAAACA+jZ+amWmzJxTun7rgxn12A0AAMDqT/AMAAAAAAD4XBs/tTK7DByayrnzq9xv3rhh2lY0qaeuAAAAVm+CZwAAAAAAwOfalJlzUjl3fq44cJv06NiydL9tRZN0atO8HjsDAABYfa3S4NmkSZPy7LPPZty4cZk2bVoqKytTLBarXeecc84pQ3cAAAAAAMDnWY+OLbNlp9b13QYAAMAaoezBswULFmTQoEG5/vrr88ILL9RJTcEzAAAAAAAAAACA+lPW4Nk777yT/fbbL88//3ySVNndrFAoVLtesVis0XMAAAAAQN146623cvfdd+eJJ57IyJEj89FHH2XatGlJkoceeij9+vVb4pkJEyZk7ty5SZLmzZunQ4cOq7RnAAAAAOpe2YJnkydPTv/+/fP222+XAmOFQqEUPqvJEZsAAAAAQP14++23c8opp+Tee+9d6ju+5X1h9LzzzssNN9yQJOnQoUPGjx+fhg0blrdhAAAAAMqqbMGzc845J6NGjaoSONtggw2y3377ZZtttknHjh1TUVFRruUBAAAAgDpy55135gc/+EE+/vjjJU4lWPzLpstyyimn5IYbbkixWMykSZNy3333Ze+99y532wAAAACUUVmCZ7NmzcqNN95YeunUoEGDXHDBBTn99NN9kxEAAAAA1iAPPPBADjrooMyfP78UOCsWi1l33XXTuXPnjBgxYoU1Nt544+ywww558sknkyR33XWX4BkAAADAGq5BOYoOHTo0c+bMSbLwG4+nnXZazjrrLKEzAAAAAFiDTJo0KQcffHApdFYsFvOd73wnL774Yt5777385z//SbL8YzYX2X///ZMsDK098sgjZe0bAAAAgPIrS/BszJgxSRa+RGrYsGFOP/30ciwDAAAAAJTRBRdckI8//rh0femll+bPf/5zttpqq2rX+trXvlYaT5w4Me+8806d9AgAAABA/ShL8GzKlClJFn7TceONN07r1q3LsQwAAAAAUCYLFizIbbfdlkKhkEKhkG9/+9s59dRTa1xv8803T5MmTUrXI0eOrIs2AQAAAKgnZQmetWzZcqljAAAAAGDN8O9//ztTp05NsVhMkvzsZz+rVb1GjRqlU6dOpWs7ngEAAACs2coSPNt0001L4w8++KAcSwAAAAAAZfTmm2+Wxh07dqzR8Zqf1qZNm9J42rRpta4HAAAAQP0pS/Bs5513TkVFRYrFYsaOHZuJEyeWYxkAAAAAoEwmTZqUJCkUCtlggw3qpGajRo1K43nz5tVJTQAAAADqR1mCZ82aNctRRx1Vur7++uvLsQwAAAAAUCYNGvzv1eGCBQvqpOZHH31UGrdt27ZOagIAAABQP8oSPEuS8847L126dEmxWMyll16a5557rlxLAQAAAAB1rEOHDkmSYrFYJycazJo1K2PHjk2hUKhSHwAAAIA1U9mCZ61atcoDDzyQddZZJ7Nmzcpuu+2We++9t1zLAQAAAAB1qFu3bqXxxIkTM3bs2FrVe/zxxzNv3rwUi8UkyTbbbFOregAAAADUr0blKvzOO++kZcuW+dOf/pQf/OAHefvtt7PPPvukV69eOfDAA9OzZ8907NgxzZo1q3btLl26lKFjAAAAAGCRr371q2nZsmVmzpyZJLn55ptz7rnn1rje5ZdfXhp36dIl3bt3r3WPAAAAANSfsgXPunXrVto2P0kKhUKKxWKefvrpPP300zWuWygUMm/evLpoEQAAAABYhsaNG2f33XfPX//61yTJr3/96wwYMKDKTmgr64Ybbshjjz1Wel94wAEH1GWrAAAAANSDsh21uciirfOTlF4sFYvFWv0AAAAAAOV37rnnpkGDBikUCvn444+z2267ZcyYMdWqcd111+WHP/xh6YupzZs3z6mnnlqehgEAAABYZcoePEuWDJoBAAAAAKu/LbbYIscee2yKxWIKhULefPPNbLXVVjn77LPzxhtvLDF/0RdPJ06cmNtvvz29e/fOcccdlzlz5pRqnHfeeenQocOq/lUAAAAAqGNlO2pzwIAB5SoNAAAAAKwiV1xxRd5888089NBDKRQKmTlzZi666KJcdNFFqaioSJJSqOyAAw5IZWVlKisrS88v+qxYLOaAAw6w2xkAAADAZ0TZgmc33XRTuUoDAAAAAKtIw4YNc/fdd+f//u//cuutt5Z2NSsWi5kxY0YpVFYsFjN58uQqzy4+95hjjslVV121yvsHAAAAoDxWyVGbAAAAAMCaq3nz5vnDH/6QP/7xj9lkk01SLBaT/C9YVigUlvhJFgbOevTokT/+8Y/53e9+l0aNyvY9WAAAAABWMW96AAAAAICVcuCBB+bAAw/Mgw8+mAceeCBPPPFERo4cmdmzZ5fmNGrUKF27ds3Xvva17L777tlnn33SoIHvvwIAAAB81gieAQAAAADVsttuu2W33XYrXc+aNStTp05NixYt0qZNm/prDAAAAIBVRvAMAAAAAKiVFi1apEWLFvXdBgAAAACrUL0Fz8aNG5d33nknU6ZMyccff5y11lorbdu2TdeuXbPBBhvUV1sAAAAAAAAAAACswCoNnj3++OO5/vrr88QTT2TChAnLnLfeeuulT58+Oeqoo9K3b99V1yAAAAAAUPLcc89l2223re82AAAAAFgNNVgVi7zyyiv58pe/nF122SV33HFH3nvvvRSLxWX+vPfee/nTn/6U/v37Z7vttst///vfVdEmAAAAALCYnj175otf/GIGDhyYiRMn1nc7AAAAAKxGyh48+8Mf/pDtttsuL7zwQorFYpKkUCikUCgsdf7inxWLxTz77LPp2bNnbrnllnK3CgAAAAB8yn//+9+cdtpp6dy5c/bYY4/ccccdmT17dn23BQAAAEA9K+tRm3fffXeOPPLIzJ8/vxQoWxQ+69y5c7beeuu0b98+FRUVmTlzZj788MO8+OKLGTduXJKUAmizZ8/OD37wg7Ru3Tp77713OVsGAAAAAD6lWCxm/vz5efDBB/Pggw+mVatWOfDAA3PYYYeld+/e9d0eAAAAAPWgbMGzyZMn5/vf/34pdFYsFtO8efOceOKJOeKII9KjR49lPjtq1KjceOONufLKK1NZWZlCoZD58+fn8MMPz1tvvZV27dqVq20AAAAA4P/r06dPhg0bliRVTimYNm1aBg0alEGDBmWjjTbKgAEDcuihh6ZLly712S4AAAAAq1DZjtr8+c9/nunTp5dCZ1tttVVeffXVXHTRRcsNnSXJRhttlIsuuij//e9/s9VWW5V2SZs+fXouvPDCcrUMAAAAACzm8ccfz+jRo3P++eenR48epfd0i4fQ3nrrrZxzzjnp3r17+vXrl1tuuSUzZ86sz7YBAAAAWAXKEjwrFov54x//WAqddenSJcOGDUvXrl2rVadr164ZMmRIunbtWqo1ePDgcrQMAAAAACxFly5dcvbZZ+f111/PU089laOPPjqtW7euEkIrFotZsGBBhg4dmu9///tZd911c/jhh+exxx6r5+4BAAAAKJeyBM+efvrpfPjhhykWiykUChk4cGBat25do1pt2rTJZZddVnqRNXny5Dz99NN12S4AAAAAsBK23377XHvttZk4cWL+/Oc/Z88990zDhg2TVN0FbebMmbn11luz6667pmvXrjn77LPz5ptv1mfrAAAAANSxsgTPFn+J1LJly+y99961qrfXXntlrbXWKl2/8cYbtaoHAAAAANRckyZN8p3vfCf33ntvxo8fn4EDB2brrbde6lGc48aNy0UXXZRNN900vXv3zvXXX59p06bVZ/sAAAAA1IGyBM8++OCDJAtfMHXr1i2NGjWqVb3GjRunW7duS9QHAAAAAOpXhw4d8uMf/zjPPfdcXnrppZx88slZZ511lhpC+89//pNjjz026623Xn22DAAAAEAdKEvwbP78+aXxoq32a2vxOgsWLKiTmgAAAABA3dlyyy1z2WWX5d13380DDzyQAw44IE2bNk2xWKwSQJs9e3Y9dwoAAABAbZUleNaxY8ckC18ijR07tvTtxppaVGeRDh061KoeAAAAAFA+DRo0yO67754//elPmThxYi677LI0bdq0vtsCAAAAoA6VJXi24YYblsZTp07No48+Wqt6jz76aKZMmbLU+gAAAADA6qdYLOahhx7Kcccdl3POOccuZwAAAACfMY3KUXT77bfPWmutlRkzZqRYLObUU0/NiBEj0rhx42rXmjt3bn7yk5+Urlu2bJnevXvXZbufO9dcc02uueaaKkeiAqtGtzPur3I95uI966kTAAAAKI9XX301f/jDHzJ48OBMmDAhSaoctQkAAADAZ0NZdjxr3Lhx9tprr9ILpZdffjl77bVXZsyYUa06s2bNyr777psXX3wxSVIoFLLPPvukUaOy5OU+N44//vi8+uqrGTFiRH23AgAAAMBnwIcffpgrr7wyPXv2zFZbbZXLLrss7733XorFYpKF7/WKxWKKxWK++tWv5re//W09dwwAAABAbZUleJYkF1xwQZo0aZLkf9vqb7bZZrnpppsya9as5T47a9as3Hzzzdl0003zj3/8o/RtyCZNmuT8888vV8sAAAAAwEqaO3du7rzzzuy9997p1KlTfvzjH+e5556rEjZLFr4b3GCDDXLWWWfl9ddfz/Dhw3PMMcfUZ+sAAAAA1IGybR3WrVu3XHzxxTn55JNL32gcP358jjzyyJxwwgnZbrvt8sUvfjHt27dPRUVFZs6cmcmTJ+fFF1/MiBEjMmvWrCpb8BcKhVxyySXp1q1buVoGAAAAAFbg3//+d2655Zb8+c9/ztSpU5NkqTubtWjRIvvvv38GDBiQr33ta47aBFYr46dWZsrMOaXrtz6o3oktAAAAlDF4liQnnXRSJk+enF/84hdVvuE4c+bMDB06NEOHDl3qc59+UZUkZ599dk444YRytgsAAAAALMU777yTW2+9NbfcckveeuutJFXf4S3+Hq9Pnz4ZMGBAvv3tb6dly5b11jPAsoyfWpldBg5N5dz5Ve43b9wwbSua1FNXAAAAa56yBs+ShUdu9urVK0cffXTef//9Jb7ZuOiFVJIqu5st+mbkOuusk0GDBuWb3/xmuVsFAAAAABZz00035ZZbbskTTzxRel+XVA2bFYvFbLTRRjnssMNy2GGHpWvXrvXS6/Dhw3PzzTfnySefzLvvvpsk2WCDDbLjjjvm8MMPT+/evcvew/Tp0/O3v/0td955Z1577bW89957mTNnTtq1a5eNN944O+64Y/r165cddtghTZs2LXs/wNJNmTknlXPn54oDt0mPjv8LyLataJJObZrXY2cAAABrlrIHz5LkW9/6Vt5+++3ceuutufHGG/Pcc89l/vz5S8xb9OKqYcOG+fKXv5wjjzwyhxxySJo39//oAQAAAMCq9oMf/KDKbmaLh81atWqVAw44IAMGDMgOO+xQbz3OnDkzJ5xwQn7/+98v8dnIkSMzcuTIDBo0KEcccUSuvPLKVFRUlKWPwYMH58c//nEmTZq0xGcTJkzIhAkTMnTo0PziF7/IX/7yl3z7298uSx/AyuvRsWW27NS6vtsAAABYY62S4FmSNG/ePEcffXSOPvrozJw5M88880zGjh2bKVOmZMaMGWnZsmXatm2brl27pmfPnmV7AQQAAAAAVM+iwFmhUMiuu+6aAQMGZN99902zZs3qta/58+dnv/32y0MPPVS617x582yxxRZp1KhRXn311UyfPj1J8vvf/z7jx4/P/fffn4YNG9ZpHyeeeGKuvPLKKvc6d+6czp07p0mTJvnggw/yxhtvZN68eXW6LgAAAEB9WmXBs8VVVFSkT58+9bE0AAAAAFANxWIxm222WQYMGJDvfe97WX/99eu7pZKzzz67SujsqKOOysUXX5y11147ycLd0C6++OJceOGFSZIHH3ww55xzTn7xi1/UWQ9nnXVWKXRWKBQyYMCAnH766dl0002rzKusrMzjjz+e2267LU2aNKmz9QEAAADqS70EzwAAAACA1d/xxx+fAQMGpGfPnvXdyhLGjx+fyy+/vHR96KGH5vrrr68yp6KiIhdccEGSlMJnl19+eY4//vg6CdA99dRTufjii5MkDRo0yM0335xDDz10qXObN2+ePfbYI3vssUet1wUAAABYHTSo7wYAAAAAgNXTVVddtVqGzpLkyiuvzCeffJIkadGiRa644oplzj377LPTuXPnJAt3HvvNb35T6/WLxWKOPvroFIvFJMmpp566zNAZAAAAwGeR4BkAAAAAsMa56667SuMDDjigdLzm0jRp0iTf//73S9d33313rdd/5JFH8uqrryZJWrdunXPOOafWNQEAAADWJIJnAAAAAMAa5fXXX89bb71Vut59991X+Mw3vvGN0vjNN9/MG2+8UasebrjhhtJ4//33T0VFRa3qAQAAAKxpGlX3gVtuuWWJe4cddthKzasrS1sPAAAAAPh8ePHFF6tcb7/99it8Ztttt02TJk0yZ86cUo2NN964xj088sgjpXG/fv1qXAcAAABgTVXt4Nnhhx+eQqFQ5d7SgmBLm1dXBM8AAAAAoObeeeedJe516dJlpebVlaWtt7JGjhxZGjdp0iSdO3de4TOL5o0aNWqJGtX11ltv5aOPPipdf/GLX0ySvPzyy7nuuuvy8MMP5913303jxo2z3nrrZeedd84hhxySnXfeucZrAgAAAKxuqh08W1yxWFxhuKxYLNZmiZJCobBS6wEAAAAAy9etW7cq79kKhULmzZu3wnl1ZVnrrayxY8eWxhtssMFK99ilS5dS8GzMmDE1Xv+ll16qcr3uuuvmvPPOy4UXXpj58+dX+WzatGl57bXXcv3112evvfbKLbfcktatW9d4bQAAAIDVRY2CZysbJqur0Fld1wIAAAAA6uc9X12YPn16aVydEFerVq1K448//rjG60+ePLnK9SWXXJKBAwcmWRiq23zzzdOxY8d88MEHefXVV0t/fn//+9+z0047Zfjw4WnZsuUK15k9e3Zmz55dul789wYAAACob9UOnt100011Og8AAAAAoDpmzpxZGjdr1myln2vevPlSa1TXtGnTqlwvCp3tuuuu+d3vfpeNNtqo9Nnbb7+dY489Ng899FCShcdxHn/88fnDH/6wwnV++ctf5vzzz69xnwAAAADlVO3g2YABA+p0HgAAAACwaq3p7/jmzp1bGjdqtPKvOBefO2fOnBqv/8knnyxxr0+fPrn//vvTuHHjKve7d++e+++/P1//+tfz+OOPJ0luvfXWnHnmmdl0002Xu86ZZ56Zk08+uXQ9ffr0dO7cucZ9AwAAANSlGh21CQAAAACsudb0Uw1atGhRGi8tBLYsi8+tqKio8fpLe/a3v/3tEqGzRRo1apTf/e532WyzzVIsFlMsFnPzzTfn4osvXu46TZs2TdOmTWvcJwAAAEA5NajvBgAAAAAAqqNly5alcWVl5Uo/N2vWrKXWqM36SbLttttm8803X+4zm2yySXr27Fm6HjZsWI3XBwAAAFgd2PEMAAAAAFijtG/fvjSeMGHCSj83ceLE0rhdu3Z1sn6yMHi2MrbddtuMGDEiSfL222/XeH2oqfFTKzNlZs2Pmf2seOuDGfXdAgAAwGdC2YJn/fr1K40HDhyYL33pSzWu9dxzz+XUU09NkhQKhTz66KO17g8AAAAAWDNtsskmpfHkyZMza9asKsdvLsu4ceNK40033bTG62+22WZVrlc2xLb4vClTptR4faiJ8VMrs8vAoamcO7++W1ktNG/cMG0rmtR3GwAAAGu0sgXPhgwZkkKhkKT2L1GmTJmSIUOGJEmpJgAAAABQXj//+c9L48MOOyzdunWrca3Ro0fn1ltvLV2fc845Na716eDXCy+8kN69ey/3mfHjx2fSpEnLrFEdPXr0SJMmTTJnzsKdo2bPnr1Sz33yySelcbNmzWq8PtTElJlzUjl3fq44cJv06Fjzo2Y/K9pWNEmnNs3ruw0AAIA1WlmP2iwWi4JiAAAAALCGOu+880rv93bcccdaBc/efvvtKvVqEzzr1atXmjZtWgp8PfnkkysMnj3xxBOlcbNmzdKrV68ar9+oUaPssMMOefzxx5MsDNWtjDFjxpTG66yzTo3Xh9ro0bFltuzUur7bAAAA4DOgQTmLC50BAAAAwJqtWCyudvVatmyZ/v37l64HDx68wmcWn9O/f/9UVFTUqof99tuvNB42bNgKdz2bM2dOhg0bVrr+6le/Wqv1AQAAAOpbWYNndWXevHmlcaNGZd2kDQAAAABYzOr65dLDDz+8NH7ppZdy7733LnPuc889l3/84x9LfbamDjzwwLRsufC4wilTpuS6665b7vxBgwblww8/LF3vvffete4BAAAAoD6tEcGzSZMmlcaLXuYAAAAAAGuOBQsWlMYNGtT+teS3v/3tbL311qXrY445Jq+99toS8yZMmJDvfe97mT9/fpJkm222yf7777/UmkOGDEmhUCj93Hzzzctcv0OHDjn55JNL12eeeWYee+yxZdY9/fTTS9ebbbZZ9t133+X+fgAAAACruzVi+7BFL2wKhUI6depUz90AAAAAANU1bdq00ri2x1wmC98V3nDDDdl5551TWVmZCRMm5Ctf+UqOPfbY7LzzzmnUqFGefvrpXH311Xn//feTJM2bN8+gQYPqbBe3008/Pf/4xz8yYsSIzJo1K7vuumsOOeSQ7LXXXllnnXXy/vvv5957781tt91WCt41a9Yst912W52E7wAAAADq0yoJntXkRU5lZWVGjx6dv/71r7nllltKNRb/FiMAAAAAsGZ49tlnS+P27dvXSc2ePXtm8ODBOeSQQ1JZWZnp06fnkksuySWXXLLE3ObNm2fw4MHp2bNnnaydJC1atMi9996bXXfdNS+//HIWLFiQW2+9NbfeeutS57dq1Sp33HFHtt122zrrAQAAAKC+1Cp41rBhw+V+XiwWkyS77LJLbZYp1SkUCragBwAAAIA1zLBhw3LdddeVvly65ZZb1lntfffdN88++2x+9KMf5bHHHiu9S1ykUCikf//+ueqqq7LpppvW2bqLrLPOOhkxYkQuuOCCXHvttZk8efIScxo1apQDDjggF1xwQbp3717nPcDSjJ9amSkz55Su3/pgRj12AwAAwGdRrYJnn36JU9t5S1MoFFIoFFIsFrPttttm7733rnEtAAAAAKCqfv36rdS8U045JW3btl3pusViMbNmzcqYMWPy4Ycflu4VCoXstttuNep1WTbbbLM88sgjGTduXIYPH57x48cnSTp16pTevXunc+fOK1Wnb9++NXqX2bRp01x44YU599xzM2zYsLz99tuZNGlSWrVqla5du6ZPnz5p1apVtetCTY2fWpldBg5N5dz5Ve43b9wwbSua1FNXAAAAfNbU+qjNRaGwcllUu1+/frn11ltXuMsaAAAAALDyhgwZUtqJbGkWvZ976aWXql178feGi9bo2LFjvvvd71a71sro3LlzDjzwwLLUXhmNGzdO//79079//3rrAZJkysw5qZw7P1ccuE16dGxZut+2okk6tWlej50BAADwWVKr4NnOO++8zJdSQ4cOLX221VZbVevbkA0aNEhFRUXWXnvtbLHFFtl1112zzTbb1KZVAAAAAGAVW/R+sFgsplgspn379rnjjjvSunXreu4MPh96dGyZLTv5+w0AAIDyqFXwbMiQIcv8rEGDBqXxr3/965Xesh8AAAAAWLVW5kSD6p56UCgUqny59Otf/3oOO+ywan1BFQAAAIDVV62P2lyeYrG43G36AQAAAID6tWDBgmV+1qBBg9L7vYcfftiXSwEAAAAoKVvw7Nxzzy2Nu3fvXq5lAAAAAIAy8uVSAAAAAJZmlQTPAAAAAIA1z84771wKnTkiEwAAAIDFlfWoTQAAAABgzTVkyJD6bgEAAACA1VSD+m4AAAAAAAAAAACANYvgGQAAAAAAAAAAANVStqM2jzjiiLLULRQKufHGG8tSGwAAAAAAAAAAgBUrW/Ds5ptvTqFQqNOaxWJR8AwAAAAA6tns2bPzyiuv5MMPP8zUqVMze/bsatc47LDDytAZAAAAAKtK2YJntVUsFqtc13WIDQAAAABYebNmzcqtt96am266Kc8//3zmzZtXq3qCZwAAAABrtrIGzz4dHquuRWGzYrFY61oAAAAAQM0MHTo03/ve9/Lee+8lqfl7v0KhUDrVAAAAAIA1W9mCZ6NHj672M7NmzcqkSZMyYsSI/PnPf84zzzyTQqGQHj165MYbb0yXLl3K0CkAAAAAsCz//Oc/861vfSsLFixYIjS2+HhFJxj4cikAAADAZ0vZgmddu3at0XObbbZZdt5555xyyim56667ctRRR2XUqFE5+OCD88gjj2TTTTet404BAAAAgKWZMGFCDj744MyfP78UJOvevXu+853vZMMNN8wxxxxTuv+Tn/wkG220UT766KP897//zdChQ/Puu++WPt98881z8sknp2HDhvX2+wAAAABQd8p61GZt7bfffuncuXP69u2b9957L3vssUdeeOGFtGrVqr5bAwAAAIDPvIEDB2batGml8NiRRx6Za665Jo0bN06SHHPMMaW5u+22W/r161e6LhaLueeee3Lqqafm7bffzsiRI3Pbbbflb3/7m/d7AAAAAJ8BDeq7gRXZbrvtcuqppyZJxo4dm3PPPbeeOwIAAACAz75isZibbrqpFDrr1atXrr/++lLobEUKhUL22WefvPjii9lll11SLBYzdOjQ7L///uVsGwAAAIBVZLUPniXJ//3f/yVZ+LJr0KBBqaysrOeOAAAAAOCz7ZVXXsmUKVNSLBaTJGeddVaN6lRUVOSee+5Jjx49UiwW89hjj+Xaa6+ty1YBAAAAqAdrRPBsvfXWy4YbbpgkqayszLBhw+q5IwAAAAD4bHv55ZdL40aNGmW33XZb7vz58+cv87PmzZvnoosuSrLwy6W/+tWv6qZJAAAAAOrNGhE8S5IOHTqUxq+99lo9dgIAAAAAn32TJ09OsvDIzA033DBNmjRZYs6iYziTrPCUgm9961tp0aJFkmTMmDFVgm0AAAAArHnWmODZjBkzSuNZs2bVYycAAAAA8Nn38ccfl8Zt27Zd6pyKiorSUZzTp09fbr2mTZumW7dupesXXnih1j0CAAAAUH/WiODZ1KlT88Ybb5S+QdmmTZv6bQgAAAAAPuMqKipK47lz5y51zlprrVUajxs3boU1W7ZsWRpPnDixFt0BAAAAUN/WiODZpZdemnnz5pW+PbnhhhvWc0cAAAAA8NnWoUOH0nhZu5l16dKlNH7xxRdXWHPChAml8fz582vRHQAAAAD1bbUOni1YsCAXX3xxLrnkktJuZ02bNk2fPn3quTMAAAAA+GzbbLPNkiTFYjHjxo3LggULlpiz9dZbl+YMGTIk8+bNW2a9kSNHZty4caX3fO3atStD1wAAAACsKo3KVXjYsGE1eq6ysjLvv/9+nn/++dx9990ZN25caaezQqGQH/zgB2nevHldtgoAAAAAfMrmm2+epk2bZvbs2ZkzZ05ef/31Uhhtka997Wu5/vrrkySTJk3K7373u/zoRz9aolaxWMxPfvKT0rhQKOSLX/xi+X8JAAAAAMqmbMGzvn37lr69WFOLB86KxWI22mij/PznP6+L9gAAAACA5WjatGm23377DBkyJEny8MMPLxE822uvvbLWWmtlxowZpXBZZWVljjnmmLRu3TpJ8tprr+W0007LAw88UHrPt+6662a77bZb1b8SAAAAAHWo7EdtFovFGv0kKQXXisVivvSlL+Xhhx9O27Zty90yAAAAAJBkzz33LI3vueeeJT5v3rx5zjrrrNIuZnPmzMmZZ56Z9u3bZ/3110/79u2zxRZb5P7770/yv93OTj/99DRoUPZXkwAAAACUUVnf7iwKkNX02UWBs9/+9rd5+umn07Vr1zrsDgAAAABYnoMOOqi0S9mQIUMycuTIJeaccsop+drXvlYKlRWLxcyfPz8TJ07MRx99tMSXTL/5zW/mhBNOWKW/BwAAAAB1r2xHbZ577rnVfqZQKKRZs2Zp1apVunbtmm233TbrrLNOGboDAAAAAFakU6dOeeGFFzJnzpwkSfv27ZeY06hRo9x///059thjc8stt5TuL36aQbFYTIMGDXLsscfm8ssvXzXNAwAAAFBWq1XwDAAAAABYvWy11VYrnNOsWbPcdNNNOemkk3LHHXfk3//+d95///0Ui8Wsu+666d27d773ve9lk002WQUdAwAAALAqlC14BgAAAAB8vmy99dbZeuut67sNAAAAAFaBBvXdAAAAAAAAAAAAAGsWwTMAAAAAAAAAAACqRfAMAAAAAAAAAACAamm0qhecPn16/v3vf+fpp5/O6NGjM3Xq1MyYMSMtW7ZMmzZtsuGGG6ZXr1756le/mlatWq3q9gAAAAAAAAAAAFiBVRY8GzFiRH7zm9/krrvuyuzZs1c4v2nTptlvv/1ywgknpFevXqugQwAAAAAAAAAAAFZG2YNnM2fOzGmnnZbrrrsuxWIxxWKx9FmhUFhi/qLPP/nkk/zxj3/Mn/70pxx99NG59NJL07Jly3K3CwAAAACfef369avX9QuFQh599NF67QEAAACA2ilr8GzKlCnZfffd88wzz6RYLKZQKKRQKJTCZYuH0D5tUShtwYIFue666zJixIg89NBDadu2bTlbBgAAAIDPvCFDhiz1S6GrwqL3hAAAAACs2coWPFuwYEH22GOPjBgxIklKgbMGDRqkb9++6du3b7bccsu0a9cuFRUVmTlzZiZPnpyXX345Q4cOzdChQ7NgwYLSc88++2z22GOPDB8+3IspAAAAAAAAAACAelS24NkVV1yR//znP6WQWLFYzEEHHZSLL744Xbp0WeZz++67b5LknXfeyemnn54///nPpfDZ008/ncsvvzwnn3xyudoGAAAAgM+F5Z1GAAAAAAAr0qAcRYvFYn79619XOVbziiuuyO23377c0NniunTpkj/+8Y+54oorStvvL6oLAAAAANTcggUL6vVn/vz59f1HAAAAAEAtlSV4Nnz48Lz33ntJFh6x+f3vfz8nnHBCjWqdcMIJ+f73v18KsE2YMCFPPfVUnfUKAAAAAAAAAABA9ZQlePbGG28k+d92/T/96U9rVe9nP/tZkpSO7Xz99ddrVQ8AAAAAAAAAAICaa1SOohMnTiyNu3btmg033LBW9TbccMN069YtY8aMSaFQyAcffFDbFgEAAAAA4DNh/NTKTJk5p3T91gcz6rEbAAAAPi/KEjxr1qxZkoU7lHXo0KFOanbo0CFjxoxJkjRt2rROagIAAAAAwJps/NTK7DJwaCrnzq9yv3njhmlb0aSeugIAAODzoCzBs+7du5fGkydPrpOai9dZvD4AAAAAAHxeTZk5J5Vz5+eKA7dJj44tS/fbVjRJpzbN67EzAAAAPuvKEjzbaaed0rBhw8yfPz9jxozJu+++mw022KDG9d59992MHj06SdKwYcPstNNOddUqAAAAAACs8Xp0bJktO7Wu7zYAAAD4HClL8GzttdfOvvvum7/+9a8pFosZOHBgLr/88hrX+9WvfpVisZhCoZB99903a6+9dh12CwAAAAAszS233FK22ocddljZagMAAABQfmUJniULw2IPPvhgZsyYkauuuiq9evXKwQcfXO06t99+e66++uoUCoW0atUqv/rVr8rQLQAAAADwaYcffngKhUJZagueAQAAAKzZGpSrcNeuXfO3v/0tFRUVWbBgQQ499NCcdNJJmTp16ko9P3Xq1Jx44ok57LDDUiwW07Jly9x9993p0qVLuVoGAAAAAJaiWCzWyc+iWgAAAACs+aq949k777yz0nM32mij/PnPf85xxx2XsWPH5qqrrsqgQYOy5557pm/fvtlyyy3Trl27tGjRIrNmzcqHH36YV155JUOHDs3999+fTz75JMViMd26dctvf/vbdO/ePe+8847wGQAAAACsIrUJii2+W9ri4TMAAAAA1nzVDp5169atRtvrFwqFFIvFVFZW5s4778ydd9653PmLXkIVCoWMHTs2e+65Z+l63rx51V4fAAAAAKiem266qdrPzJo1K5MmTcqIESPy2GOPpbKyMoVCIT169Mjpp5+eRo2q/UoSAAAAgNVQjd/yVOfbiYuCap/+huPy5n863ObbkAAAAACwag0YMKBWz0+ePDnnn39+rrnmmowaNSqDBw/OPffck7XWWquOOgQAAACgvjRYFYss2kZ/8Z+6nA8AAAAArH7atWuXK6+8Mtddd12KxWKGDh2a/fff3/s+AAAAgM+Aau94VttvOQIAAAAAny9HHnlkhgwZkttvvz2PPvporrnmmvzwhz+s77YAAAAAqIVqB89uuummcvQBAAAAAHyGnXHGGbn99ttTLBbzy1/+Mscff3wKhUJ9twUAAABADa2SozZZvVxzzTXZfPPNs91229V3KwAAAAB8Tmy55Zbp2LFjkmTixIn597//Xc8dAQAAAFAbgmefQ8cff3xeffXVjBgxor5bAQAAAOBzZIMNNiiNX3rppXrsBAAAAIDaEjwDAAAAAFaJ+fPnl8YfffRRPXYCAAAAQG0JngEAAAAAZTd37tyMGjUqhUIhSVJRUVHPHQEAAABQG4JnAAAAAEDZ3X777ZkxY0aKxWKSZP3116/njgAAAACoDcEzAAAAAKCshg8fnpNOOqm021mhUEifPn3quSsAAAAAaqNRdR/o169fletCoZBHH310hfPqyrLWAwAAAABWD7Nnz87777+f559/PnfccUfuuOOOzJ8/P8nC93u77bZbOnToUM9dAgAAAFAb1Q6eDRkypPTNxGKxWBovb15dWd56AAAAAEDdatiwYZ3UWfRer1gspkWLFrnsssvqpC4AAAAA9afawTMAAAAA4POhWCzWukahUCiFzlq2bJm//vWv2WyzzeqgOwAAAADqU4OaPFQsFlfqpdOieXX1AwAAAACsWrU9gaBYLKZRo0Y54IAD8sorr+TrX/96HXUGAAAAQH2q9o5nCxYsqNN5AAAAAMDqaeedd6528KxQKKRZs2Zp1apVunbtmm233Ta77LJL2rVrV6YuAQAAAKgPjtoEAAAAAJZqyJAh9d0CAAAAAKupGh21CQAAAAAAAAAAwOdXWXY8mz9/fmbOnFm6bt68eRo3blyOpQAAAAAAAAAAAFjFyrLj2R/+8Ie0bdu29PPEE0+UYxkAAAAAAAAAAADqQVmCZ++//36KxWKKxWJat26dfv36lWMZAAAAAAAAAAAA6kFZgmctW7ZMkhQKhXTt2rUcSwAAAAAAAAAAAFBPGpWj6HrrrVeOsgAAAADAamDWrFl59913M3369FRWVqZYLFa7xs4771yGzgAAAABYVcoSPNtss82SJMViMePGjSvHEgAAAADAKvTKK6/k97//ff7xj3/krbfeyoIFC2pcq1AoZN68eXXYHQAAAACrWlmCZ1tssUW22GKL/Pe//82UKVPyn//8J1/5ylfKsRQAAAAAUEaVlZU56aSTcuONN6ZYLNZodzMAAAAAPnsalKvw0UcfXRqfe+655VoGAAAAACiTysrK7L777rnhhhuyYMGCFIvFFAqFFAqF+m4NAAAAgHpWlh3PkuS4447LHXfckaeeeioPP/xwTj311Fx22WXlWg4AAAAAqGPnnntunnjiiVLYbFHw7Mtf/nK22mqrtGvXLi1atKjvNgEAAACoB2ULnjVs2DD33ntv9tprrzz55JO5/PLL8/TTT+fnP/95+vbtW65lAQAAAIA6MGPGjFx11VWlwFmSDBgwIL/4xS+y/vrr13N3AAAAANS3sgXPfv7znydJ+vTpkzfffDPvv/9+nnrqqfTv3z/rrLNOevbsmQ033DCtWrVK48aNq1X7nHPOKUfLAAAAAMD/99hjj2X27Nml3c6OPfbYXH311fXdFgAAAACribIFz84777wUCoXS9eLfjJw4cWLuv//+GtcWPAMAAACA8hozZkySpFgspnHjxrnwwgvrtyEAAAAAVitlC54tzeJBtJooFou1rgEAAAAArNjMmTOTLHynt8kmm6RNmzb12xAAAAAAq5WyBs8W7XAGAAAAAKxZOnToUBo3a9asHjsBAAAAYHVUtuDZ448/Xq7SAAAAAECZbbPNNqXxe++9V3+NAAAAALBaKlvwrE+fPuUqDQAAAACUWc+ePdO1a9eMHTs2EyZMyMiRI7PZZpvVd1sAAAAArCYa1HcDAAAAAMDq6cwzzyyNL7roonrsBAAAAIDVjeAZAAAAALBURx99dPbYY48Ui8Xcfvvtueqqq+q7JQAAAABWE4JnAAAAAMAy/fWvf803vvGNFIvFnHTSSTnssMMyatSo+m4LAAAAgHrWqFyFGzZsmCQpFAp56KGH0q9fvxrXevTRR/P1r3+9VG/evHl10iMAAAAAsHzNmjXLfffdl0suuSQXXHBBBg8enNtvvz1bb711tt1223To0CHNmjWrdt1zzjmnDN0CAAAAsKqULXhWLBZX63oAAAAAwMpZsGBBWrVqlY4dO2bs2LEpFot5/vnn88ILL9S4puAZAAAAwJqtbMGzZOHuZAAAAADAmuutt97Kvvvum1dffTVJ7d/5FYtF7w0BAAAAPgPKGjwDAAAAANZc48ePT58+fTJx4sQqgTGnEwAAAACwRgTP5syZUxo3bdq0HjsBAAAAgM+PE044IRMmTEihUEihUEixWMxmm22Wb33rW9lyyy3Trl27tGjRor7bBAAAAKAerBHBs3feeac0XmutteqxEwAAAAD4fBg3blz+9re/lQJnzZo1y3XXXZdDDz20vlsDAAAAYDWwRgTP7rjjjiRJoVBI9+7d67kbAAAAAPjsGzZsWOlIzUKhkMsvv1zoDAAAAICSWgXPhg0btlLzXnzxxTRqtPJLFYvFzJo1K6NHj86dd96ZIUOGlD7bbrvtqtsmAAAAAFBN7777bmlcUVGRI444oh67AQAAAGB1U6vgWd++fVMoFJb5+aJvRJ566qm1WaaKgw8+uM5qAQAAAABL17x58yQLdzvr0aNHGjduXM8dAQAAALA6qZOjNhcFzGr6+fIsHmz73ve+l+23377GtQAAAACAldOpU6f6bgEAAACA1ViD2haoTahsZeu3a9cuP//5z3PTTTeVdS0AAAAAYKEvfelLSRa+nxs7dmzZ3wMCAAAAsGap1Y5n55577jI/O//880u7lX3ve99L9+7dV7pugwYNUlFRkbXXXjtbbLFFvvSlL6VRozrZnA0AAAAAWAndu3fPjjvumCeffDJTp07NsGHD0qdPn/puCwAAAIDVRFmDZ4sMGDAg/fr1q81SAAAAAMAqduaZZ2bPPfdMkpxxxhl58skn07Bhw3ruCgAAAIDVQa2P2lyeYrFoC34AAAAAWEN94xvfyBlnnJFisZinn346Bx98cCorK+u7LQAAAABWA2U7v/Lxxx8vjbfeeutyLQMAAAAAlNFFF12UtddeOz/96U9z55135vnnn8+ZZ56Z/fbbL23atKnv9gAAAACoJ2ULnvXp06dcpQEAAACAVaBfv36lcceOHTN+/PiMGjUqRx11VI4++uhsuOGG6dChQ5o1a1atuoVCIY8++mhdtwsAAADAKlS24BkAAAAAsGYbMmRICoVC6XrRuFgsplgsZtSoUXn77berVbNYLFapCQAAAMCaabULnj344IN58skn8+GHH6Zt27b58pe/nG9+85tp2rRpfbcGAAAAACSCYwAAAACUL3g2fvz4PPjgg6Xr3XbbLZ06dVrm/DfffDPf/va388orryzx2XrrrZcbbrghu+++e1l6BQAAAACWrlgs1ncLAAAAAKyGyhY8u/rqq3PppZcmSVq3bp2DDjpomXM/+OCD9OnTJ++//37pRdbi2/a/99572WuvvXLXXXflm9/8ZrlaBgAAAAAWs2DBgvpuAQAAAIDVVINyFb7nnntKIbKDDz44LVq0WObcU089NRMnTkxSNXC2eAht3rx5Ofzww/PRRx+Vq2UAAAAAAAAAAABWQlmCZ1OnTs3rr79eCpEtb5eysWPH5vbbb0+hUEixWEyzZs3ys5/9LP/4xz9y6623ZrvttisF0KZMmZJf/epX5WgZAAAAAAAAAACAlVSWozb/+9//VtmtrHfv3sucO3jw4NKW/YVCIYMHD84+++xT+vw73/lOdthhhzz77LMpFou57bbb8stf/rIcbQMAAAAAAAAAALASyrLj2ejRo0vj9dZbL61bt17m3Pvuuy/JwtDZ1ltvXSV0liRNmjTJBRdcULp+77338sYbb9RtwwAAAAAAAAAAAKy0sgTPPvzwwyQLw2Tt27df5rwZM2bkmWeeKR3JeeCBBy513i677JJmzZqVrl966aU67BYAAAAAAAAAAIDqKEvwbNasWaVxRUXFMuc9/fTTmTdvXulYzt13332p8xo1apTu3buXridOnFhHnQIAAAAAAAAAAFBdjcpStNH/ylZWVi5z3hNPPFEat2rVKltvvfUy57Zq1ao0/vjjj2vZIQAAAACwIj//+c/LVvucc84pW20AAAAAyq8swbPWrVsnSYrFYsaNG7fMeY8++miShUdy9u7de7k1Fw+wNWzYsA66BAAAAACW57zzzkuhUChLbcEzAAAAgDVbWY7a7NGjR2n80Ucf5fXXX19izvvvv5/hw4eXXlz17dt3uTUnT55cGi+++xkAAAAAsPopFotL/Cy6DwAAAMCaryzBs2233TYNGjQohcquvPLKJeZcffXVWbBgQelFU//+/ZdZ7+OPP8748eNL9bp06VKGrgEAAACAT1tagGxlfpKFJx0s+llUCwAAAIDPhrIctdm2bdv069cvjzzySJLk2muvzTrrrJNjjz02jRs3zm233ZZLLrkkhUIhxWIxPXr0yLbbbrvMes8991yVl1Vf+MIXytE2AAAAALCYxx9/vNrPzJo1K5MmTcqIESNy991357333kuhUEiPHj1y2WWXpXXr1mXoFAAAAIBVrSzBsyQ5/fTT88gjj5TCZeeff37OP//80ueLB8lOPvnk5da67777SuM2bdoIngEAAADAKtCnT58aP3vYYYfl8ssvz5VXXpmf/vSnGTVqVM4666w8/PDDWW+99eqwSwAAAADqQ1mO2kwWHp15/PHHp1gsVtlKf9HPontf/epXc+SRRy631l//+tfSlvw77LBDuVoGAAAAAOpQo0aNcvLJJ+fOO+9MgwYNMnLkyHzzm9/MnDlz6nyt4cOH5+ijj87mm2+eVq1apVWrVtl8881z9NFHZ/jw4XW+3opMmzYt66+/fpXjRg8//PBV3gcAAABAuZQteJYkV111VX7605+mUaNGpR3OFikWi9l1113z97//PQ0bNlxmjfvuuy9jx44tPf+Nb3yjnC0DAAAAAHVsjz32yLHHHptisZgXXnghF198cZ3VnjlzZn7wgx9khx12yKBBgzJy5Mh8/PHH+fjjjzNy5MgMGjQoO+ywQ37wgx9k5syZdbbuipx22mmZMGHCKlsPAAAAYFUr21Gbi1xwwQU59thjc8899+SNN95IZWVl1l9//ey6667ZfvvtV/j8P//5z2y99dal67322quc7QIAAAAAZXDSSSfl6quvTrFYzG9+85uceeaZady4ca1qzp8/P/vtt18eeuih0r3mzZtniy22SKNGjfLqq69m+vTpSZLf//73GT9+fO6///7lfhG2LjzxxBMZNGhQWdcAAAAAqG9lD54lyfrrr59jjz22Rs9effXVddwNAAAAALCqde/ePRtssEHefffdTJ06NU899VT69u1bq5pnn312ldDZUUcdlYsvvjhrr712koW7oV188cW58MILkyQPPvhgzjnnnPziF7+o1brLM3v27Bx11FEpFovp0KFD1ltvvbz00ktlWw8AAACgvpT1qE0AAAAAgEXWXXfd0vi///1vrWqNHz8+l19+een60EMPzfXXX18KnSVJRUVFLrjggvzsZz8r3bv88svz3nvv1Wrt5bnwwgvz+uuvJ0kGDhyYtm3blm0tAAAAgPokeAYAAAAArBKffPJJaTxt2rRa1bryyitL9Vq0aJErrrhimXPPPvvsdO7cOUlSWVmZ3/zmN7Vae1leeeWVXHLJJUmSfv365dBDDy3LOjB+amVeGT8tr4yflrc+mFHf7QAAAPA5JXgGAAAAAJTdrFmz8uabb6ZQKCRJWrduXat6d911V2l8wAEHVNnp7NOaNGmS73//+6Xru+++u1ZrL82CBQty1FFHZe7cuWnatGl+97vf1fkakCwMne0ycGi+edWT+eZVT+akP7+Q5o0bpm1Fk/puDQAAgM+ZRvXdAAAAAADw2Xfttddm9uzZSZJCoVDagawmXn/99bz11lul6913332Fz3zjG9/Iz3/+8yTJm2++mTfeeCMbb7xxjXv4tGuuuSb//ve/kyRnnnlmndaGxU2ZOSeVc+fnigO3SY+OLZMkbSuapFOb5vXcGQAAAJ83gmcAAAAAQFn96U9/yllnnZVCoZBisZiGDRumb9++Na734osvVrnefvvtV/jMtttumyZNmmTOnDmlGnUVDhs3blx++tOfJkk23njjnHHGGXVSF5anR8eW2bJT7XYOBAAAgNqodvCsYcOGVa4LhULmzZu3wnl1ZVnrAQAAAAB165133qnRc5WVlXn//ffz/PPP54477si///3vFIvFJAvf7x1wwAFp1apVjfsaOXJkadykSZOV2j1t0bxRo0YtUaO2jjvuuHz88cdJkt/97ndp2rRpndUGAAAAWF1VO3i26AVRXc0DAAAAAFZP3bp1S6FQqHWdYrFY2u2sffv2ufjii2tVb+zYsaXxBhtssNI9dunSpRQ8GzNmTK16WOTPf/5z7rvvviTJoYcemn79+tVJ3SSZPXt26XjSJJk+fXqd1QYAAACorQY1eahQKKzUy5y6eClVjloAAAAAwMorFos1/klSCp116tQp//znP7PBBhvUqp/FA1itW6/8UYOL77K2aIey2pgyZUpOPPHEJMnaa6+dgQMH1rrm4n75y1+mdevWpZ+V2dkNAAAAYFWp9o5nO++880qFwFZ2HgAAAADw2VUsFtOxY8ccfvjh+elPf5q11lqr1jVnzpxZGjdr1myln2vevPlSa9TUKaeckvfffz9Jcumll6ZDhw61rrm4M888MyeffHLpevr06cJnAAAAwGqj2sGzIUOG1Ok8AAAAAGD1NGDAgGo/UygU0qxZs7Rq1Spdu3bNtttumy9/+ctp1KjaryKXae7cuaVxdeouPnfOnDm16uGxxx7LTTfdlCTZcccdc8QRR9Sq3tI0bdo0TZs2rfO6AAAAAHWh7t72AAAAAACfKYuCVaubFi1alMaffPLJSj+3+NyKiooar//JJ5/kmGOOSZI0btw41157rdMfAAAAgM+dBvXdAAAAAABAdbRs2bI0rqysXOnnZs2atdQa1XXeeeflrbfeSpKceuqp2WKLLWpcCwAAAGBNJXgGAAAAAKxR2rdvXxpPmDBhpZ+bOHFiadyuXbsarT1u3LgMHDgwSbLhhhvm7LPPrlEdAAAAgDWd4BkAAAAAsEbZZJNNSuPJkydX2clsecaNG1cab7rppjVae/LkyZk3b16SZPTo0WnRokUKhcIyf4YOHVp69g9/+EOVz4YMGVKjHgAAAABWB43quwEAAAAAYPU0b968DB8+vHTdo0ePrL/++tWuM378+IwaNap0vdNOO6VQKNS4r80226zK9QsvvJDevXuvsIdJkyYtswYAAAAA1VPt4NkRRxxRjj5WWqFQyI033livPQAAAADA58Fdd92Vgw8+OEnSoEGDjBw5skZ1Zs6cmX79+qVYLCZJ7rnnnnzzm9+scV+9evVK06ZNM3v27CTJk08+ucLg2RNPPFEaN2vWLL169arR2o0aNarWMZ3Tpk0r7ZDWtGnTtGzZsvRZ48aNa9QDAAAAwOqg2sGzm2++uVbfRqyNYrEoeAYAAAAAq8iNN95YCot985vfTI8ePWpUZ+ONN84ee+yR++67r1S3NsGzli1bpn///nnggQeSJIMHD85pp5223GcGDx5cGvfv3z8VFRU1WnvLLbfMhx9+uNLz+/btWzpu86CDDsrNN99co3UBAAAAVjcNVsUixWJxiZ+6nA8AAAAA1K1Zs2Zl2LBhKRQKKRQKOeigg2pV77vf/W5p/Oijj2bu3Lm1qnf44YeXxi+99FLuvffeZc597rnn8o9//GOpzwIAAABQMzUKni0tGLa8nySlF1SLdkuryXwAAAAAYNV44YUXMnv27NJ7uf79+9eq3uLPz5w5My+99FKt6n3729/O1ltvXbo+5phj8tprry0xb8KECfne976X+fPnJ0m22Wab7L///kutOWTIkCrvJe1OBgAAALBs1T5qc/To0dWaP3LkyBx33HEZO3ZsisVimjRpkj322CN9+/bNVlttlXbt2qWioiIzZ87M5MmT89JLL2Xo0KF54IEHMmfOnBQKhWy44Yb57W9/m0033bS67QIAAAAANfD666+Xxuuvv37at29fq3odOnTI+uuvn/feey9J8tprr+XLX/5yjesVCoXccMMN2XnnnVNZWZkJEybkK1/5So499tjsvPPOadSoUZ5++ulcffXVef/995MkzZs3z6BBg0pfdgUAAACg5qodPOvatetKzx06dGgOOuigfPzxxykWiznyyCNz0UUXLfcl1de+9rWceOKJmTRpUs4666zceOONGTNmTA466KD8/e9/z0477VTdlgEAAACAavroo4+SLAx4dezYsU5qrrPOOqXg2aRJk2pdr2fPnhk8eHAOOeSQVFZWZvr06bnkkktyySWXLDG3efPmGTx4cHr27FnrdQEAAACo4VGbK2Ps2LHZe++9M3369CTJ9ddfn+uvv36lvxnZoUOHDBo0KNdff32SZNq0adlrr73yzjvvlKtlAAAAAOD/mzNnTmncsGHDOqm5eJ1Zs2bVSc199903zz77bPr377/UncwKhUJ22WWXPPfcc9l3333rZE0AAAAAarDj2co67bTTMn369BQKhRxzzDE58sgja1TnyCOPzLPPPpvrrrsu06dPz2mnnZY//elPddwtAAAAALC4du3aJUmKxWI++OCDOqm5+C5nbdq0qZOaSbLZZpvlkUceybhx4zJ8+PCMHz8+SdKpU6f07t07nTt3Xqk6ffv2TbFYrLO+kmTIkCF1Wg8AAABgdVGW4NlHH32Uu+66q3R9+umn16reGWeckeuuuy7FYjF33XVXPvroo6y99tq1bRMAAAAAWIYOHTqUxu+++24++OCDWh25+cEHH+Sdd94p7Uq2eP260rlz5xx44IF1XhcAAACAJZXlqM0nnngi8+fPT6FQSLdu3dK1a9da1evatWs23HDDJMn8+fPzxBNP1EWbAAAAAMAy9OzZM8nCoyqLxWL++te/1qreX/7ylxSLxdKOYl/84hdr3SMAAAAA9acswbO33367NG7fvn2d1Fy8zuL1AQAAAIC617lz53zhC19IsvC4zQsvvDDTp0+vUa1p06blF7/4RWm3s65du2aTTTaps14BAAAAWPXKEjz75JNPkix8IfXhhx/WSc3JkyeXxrNnz66TmgAAAADAsg0YMCDFYjGFQiHvv/9+9t5771RWVlarRmVlZfbee+9MnDixVOuwww4rU8cAAAAArCplCZ6tu+66pfHYsWPz7rvv1qreu+++m9GjR5e+EdmxY8da1QMAAAAAVuzEE0+schLBsGHDsu2222bo0KEr9fyQIUPypS99KU888UTp3d7aa6+dU045pSz9AgAAALDqNCpH0Y033jhJUigUUiwWc9lll+WKK66ocb1f/epXKRaLpZqL6gMAAAAA5VNRUZFBgwZl//33T7FYTLFYzOuvv55+/fplyy23zDe+8Y307NkzHTt2TMuWLTNjxox88MEHeeaZZ/KPf/wjr7zySmmXs2KxmAYNGmTQoEFZa6216vtXAwAAAKCWyhI86927d9Zff/1MmDAhxWIxV199db7yla/k4IMPrnat22+/PVdffXXp5dR6662XHXfcsQxdAwAAAACftvfee+fSSy/NqaeeWtq1rFgs5uWXX84rr7yyzOcW/yLpovDZwIEDs88++6yKtgEAAAAos7IctVkoFHLSSSeVXigtWLAghx56aE466aRMnTp1pWpMnTo1J554Yg477LAkKdU66aSTytEyAAAAALAMJ598cu666660bt269J5u8RDap3+SlOYUi8Wsvfbaueeee3LiiSfW568BAAAAQB0qy45nycKXUX/5y18yYsSIUvjsqquuyqBBg7Lnnnumb9++2XLLLdOuXbu0aNEis2bNyocffphXXnklQ4cOzf33359PPvmk9CIrSXr27JmTTz65XC0DAAAAAMuwzz77pHfv3rniiity7bXXLvcLpovCZ2uvvXaOO+64nHDCCWnfvv0q6hQAAACAVaFswbMGDRrkn//8Z3bdddc899xzpW83VlZW5s4778ydd9653Oc/vRX/l770pTzwwANp0KAsm7QBAAAAACvQsWPHXHTRRTn//PPz9NNP54knnsioUaPy0Ucf5eOPP85aa62VtddeO1/4whey0047ZbvttkujRmV7BQkAAABAPSrrW5+2bdtmyJAhOfXUUzNo0KAkqbIF/7Isvg1/khx55JEZOHBg1lprrXK2CwAAAACshMaNG2eHHXbIDjvsUN+tAAAAAFBPyr59WMuWLXPttddm+PDhOfDAA9OkSZPlhs6ShaG0xo0b58ADD8xTTz2V66+/XugMAAAAAAAAAABgNbHK9rn/yle+kj/+8Y+ZNm1a/vWvf+Xpp5/O6NGjM3Xq1MyYMSMVFRVp06ZNunfvnu222y69e/dO69atV1V7AAAAAAAAAAAArKRVFjxbpHXr1tl9992z++67r+qlAQAAAAAAAAAAqANlP2oTAAAAAAAAAACAzxbBMwAAAAAAAAAAAKpF8AwAAAAAAAAAAIBqETwDAAAAAAAAAACgWgTPAAAAAAAAAAAAqBbBMwAAAAAAAAAAAKpF8AwAAAAAAAAAAIBqETwDAAAAAAAAAACgWgTPAAAAAAAAAAAAqBbBMwAAAAAAAAAAAKpF8AwAAAAAAAAAAIBqETwDAAAAAAAAAACgWgTPAAAAAAAAAAAAqBbBMwAAAAAAAAAAAKpF8AwAAAAAAAAAAIBqETwDAAAAAAAAAACgWgTPAAAAAAAAAAAAqBbBMwAAAAAAAAAAAKqlUX03wKp3zTXX5Jprrsn8+fPruxXKrNsZ99d3C58bNf2zXtpzYy7es7btAAAAAPAZMX5qZabMnFO6fuuDGfXYDQAAAPyP4Nnn0PHHH5/jjz8+06dPT+vWreu7HQAAAAAAlmL81MrsMnBoKudW/RJx88YN07aiST11BQAAAAsJngEAAAAAwGpoysw5qZw7P1ccuE16dGxZut+2okk6tWlej50BAACA4BkAAAAAAKzWenRsmS07Ob0CAACA1UuD+m4AAAAAAAAAAACANYvgGQAAAAAAAAAAANUieAYAAAAAAAAAAEC1CJ4BAAAAAAAAAABQLYJnAAAAAAAAAAAAVIvgGQAAAAAAAAAAANUieAYAAAAAAAAAAEC1CJ4BAAAAAAAAAABQLYJnAAAAAAAAAAAAVIvgGQAAAAAAAAAAANUieAYAAAAAwP9r787Dq6rOxQF/IRAIhBlRRgG1TFZxwopXRUHr7HVura1QVIrealvFVqtWWqtiVRT1XutAUYvtzwm1olURcELROoAVBFFQCKDIFIYw5/eHj6ccQiCHnOTkJO/7PHmevdZZa68vcXvO2R/f3hsAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICU1M10AAAAAAAAQETh8uJYtnp9oj37q1UZjAYAAAC2T+EZAAAAAABkWOHy4uh/6ytRvGFTUn9+vdxo3igvQ1EBAABA2RSeAQAAAABAhi1bvT6KN2yK28/uFXu2Lkj0N2+UF+2a5WcwMgAAANg2hWcAAAAAAFBN7Nm6IPZu1zTTYQAAAMAO1cl0AAAAAAAAAAAAAGQXdzwDAAAAALLe5MmTY/To0fH666/H/PnzIyKiffv28V//9V8xYMCA6NOnT9rXXLNmTbzyyisxYcKEeP/99+Pjjz+OJUuWRE5OTjRv3jx69uwZRxxxRAwcODDatm2b9vUBAAAAMknhGQAAAACQtVavXh2XXHJJjBo1qtRrM2bMiBkzZsR9990XP/3pT2PkyJHRqFGjCq/55ZdfxiWXXBLPPvtsrFmzZptjiouLY8GCBfHSSy/FsGHD4vLLL4/rrrsu8vLyKrw+AAAAQHWg8AwAAAAAyEqbNm2K0047LV588cVEX35+fvTs2TPq1q0b06dPj6KiooiIGDVqVBQWFsa4ceMiNze3QuvOmzcvHn300aS+nJyc6NKlS+y2226Rm5sbn3zySSxcuDAiIjZs2BA33nhjfPDBB/HUU08pPgMAAABqhDqZDgAAAAAAYGdcc801SUVnF1xwQcyfPz/eeeedePPNN2PBggVx9dVXJ15/4YUX4tprr03b+jk5OdGvX78YM2ZMfPXVVzF79ux4/fXX45VXXokFCxbEpEmTokePHonxzz//fFxzzTVpWx8AAAAgkxSeAQAAAABZp7CwMEaMGJFo//jHP4577703WrRokehr1KhR/OEPf0gqPhsxYkQsWLCgQmvXqVMnTj/99Pj3v/8d48ePj3POOSdatWpVatwRRxwRkydPTio+u/322+PLL7+s0PoAAAAA1YHCMwAAAAAg64wcOTLWrl0bERENGzaM22+/vcyx11xzTXTo0CEiIoqLi+OOO+6o0Nr7779/PP7440kFZWVp2rRpUoHc+vXr49lnn63Q+gAAAADVgcIzAAAAACDrPPnkk4nts846K+lOZ1vLy8uLgQMHJtpjx46t1Ni21q9fv8jPz0+0P/744ypdHwAAAKAyKDwDAAAAALLKzJkzY/bs2Yn2scceu8M5xx13XGL7k08+iVmzZlVKbNuSm5sbTZs2TbSLioqqbG0AAACAyqLwDAAAAADIKlOnTk1qH3LIITucs//++0deXl6Z+6hMxcXF8dVXXyXarVu3rrK1AQAAACqLwjMAAAAAIKvMmDEjsZ2XlxcdOnTY4Zytx225j8r29NNPx+bNmxPt733ve1W2NgAAAEBlUXgGAAAAAGSVzz//PLHdvn37yMnJKde8jh07Jrbnzp2b7rC2aePGjXHDDTck2q1bt45+/fpVydoAAAAAlalupgMAAAAAAEhFUVFRYrtp06blntekSZPE9sqVK9MaU1luuumm+PDDDxPtq6++Oho0aFCuuevWrYt169Yl2lv+3gAAAACZ5o5nAAAAAEBWWb16dWK7vEVcERH5+fnb3Edleemll+K6665LtPv06RMXXXRRueffeOON0bRp08RPeR4pCgAAAFBV3PEMAAAAAMgqGzZsSGzXrVv+FOeWY9evX5/WmLb28ccfxw9+8IPYtGlTREQ0b948HnnkkcjNzS33Pq688sr41a9+lWgXFRXVmuKzwuXFsWx15f43qm5mf7Uq0yEAAABAShSeAQAAAABZpWHDhonttWvXlnvelmMbNWqU1pi2NG/evDjmmGNi6dKlEfFNvM8++2zsvvvuKe2nfv36Ub9+/coIsVorXF4c/W99JYo3bMp0KFUuv15uNG+Ul+kwAAAAoFwUngEAAAAAWaWgoCCxXVxcXO55a9as2eY+0unLL7+M/v37x7x58yLim+Kxp556Kvr06VMp69VEy1avj+INm+L2s3vFnq0r579TddW8UV60a5a/44EAAABQDSg8AwAAAACySqtWrRLbCxcuLPe8RYsWJbZbtmyZ1pgiIpYuXRpHH310zJo1KyK+ebTn//t//y+OPvrotK9VG+zZuiD2btc002EAAAAAZaiT6QAAAAAAAFLRtWvXxPaSJUuS7mS2Pd/ehSwiolu3bmmNqaioKL7//e/Hhx9+GBERderUiYcffjhOOeWUtK4DAAAAUF0oPAMAAAAAskr37t2T2h988MEO5xQWFsbixYvL3EdFrF69Oo4//vj417/+FREROTk5cf/998cPfvCDtK0BAAAAUN0oPAMAAAAAskrv3r2jfv36ifbrr7++wzmvvfZaYrtBgwbRu3fvtMSydu3aOPnkk+ONN95I9N19990xcODAtOwfAAAAoLpSeAYAAAAAZJWCgoLo169foj1mzJgdztlyTL9+/aJRo0YVjmPDhg1xxhlnxIQJExJ9t912WwwZMqTC+wYAAACo7hSeAQAAAABZZ8CAAYntadOmxT/+8Y8yx7733nvx/PPPb3Puztq0aVOcc845MW7cuETfH//4x/jlL39Z4X0DAAAAZAOFZwAAAABA1jnjjDNi3333TbQHDx4cH3/8calxCxcujHPPPTc2bdoUERG9evWK008/fZv7nDRpUuTk5CR+Ro8evc1xJSUlMWjQoHj88ccTfddee21cddVVFfiNaq/C5cXx78IViZ/ZX63KdEgAAABAOdTNdAAAAAAAAKnKycmJ+++/Pw4//PAoLi6OhQsXxsEHHxxDhgyJww8/POrWrRtvv/123HXXXfHll19GRER+fn7cd999kZOTU6G1H3vssXjwwQcT7QYNGsSUKVPi2GOPLdf8ffbZJ26++eYKxVBTFC4vjv63vhLFGzYl9efXy43mjfIyFBUAAABQHgrPAAAAAICsdOCBB8aYMWPiRz/6URQXF0dRUVEMHz48hg8fXmpsfn5+jBkzJg488MAKr7tmzZqk9tq1a+OFF14o9/y1a9dWOIaalCcjVgAAQilJREFUYtnq9VG8YVPcfnav2LN1QaK/eaO8aNcsP4ORAQAAADviUZsAAAAAQNY69dRT4913341+/fpt805mOTk50b9//3jvvffi1FNPzUCElMeerQti73ZNEz+KzgAAAKD6c8czAAAAACCrde/ePcaPHx/z5s2LyZMnR2FhYUREtGvXLvr06RMdOnQo13769u0bJSUlOxw3YMCAGDBgQEVCBgAAAMh6Cs8AAAAAgBqhQ4cOcfbZZ2c6DAAAAIBawaM2AQAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICUKDwDAAAAAAAAAAAgJQrPAAAAAAAAAAAASInCMwAAAAAAAAAAAFKi8AwAAAAAAAAAAICU1M10AAAAAAAA1A6Fy4tj2er1ifbsr1ZlMBoAAACgIhSeAQAAAABQ6QqXF0f/W1+J4g2bkvrz6+VG80Z5GYoKAAAA2FkKzwAAAAAAqHTLVq+P4g2b4vaze8WerQsS/c0b5UW7ZvkZjAwAAADYGQrPAAAAAACoMnu2Loi92zXNdBgAAABABdXJdAAAAAAAAAAAAABkF4VnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReAYAAAAAAAAAAEBKFJ4BAAAAAAAAAACQEoVnAAAAAAAAAAAApEThGQAAAAAAAAAAAClReJZFFi9eHJdddlnstddekZ+fH61atYpjjjkmnnrqqUyHBgAAAAAAAAAA1CIKz7LERx99FHvvvXfcdtttMXv27KhXr14sX748XnrppTj11FPj0ksvzXSIAAAAAAAAAABALaHwLAusW7cuTj755Pjqq69i7733jg8++CCKioqiqKgorr/++sjJyYmRI0fGX/7yl0yHCgAAAAAAAAAA1AIKz7LAvffeG5999lk0bNgwxo0bF/vuu29ERDRs2DB++9vfxkUXXRQREVdffXVs2LAhk6ECAAAAAAAAAAC1gMKzLPDXv/41IiJ++MMfRseOHUu9fsUVV0ROTk4sWLAgJk6cWNXhAQAAAAAAAAAAtYzCs2pu1apV8c4770RExLHHHrvNMR07dozu3btHRMTLL79cZbEBAAAAAAAAAAC1U60vPFu8eHE8//zz8fvf/z5OPvnkaNOmTeTk5CR+Ro8eXaH9T548OS688MLo0aNHNGnSJJo0aRI9evSICy+8MCZPnrzD+TNmzIiSkpKIiNh7773LHPfta9OnT69QvAAAAAAAAAAAADtSN9MBZMqiRYvie9/7Xnz++eeVsv/Vq1fHJZdcEqNGjSr12owZM2LGjBlx3333xU9/+tMYOXJkNGrUaJv7WbhwYWK7bdu2Za737WtbjgcAAAAAAAAAAKgMtbbwbO3atZVWdLZp06Y47bTT4sUXX0z05efnR8+ePaNu3boxffr0KCoqioiIUaNGRWFhYYwbNy5yc3NL7WvVqlWJ7YYNG5a55revrVy5Ml2/BgAAAAAAAAAAwDbV+kdtRkTssssuceyxx8bVV18dTz/9dIX3d8011yQVnV1wwQUxf/78eOedd+LNN9+MBQsWxNVXX514/YUXXohrr722wusCAAAAAAAAAABUhVp7x7MWLVrEY489FgcddFDsvvvuadtvYWFhjBgxItH+8Y9/HPfee2/SmEaNGsUf/vCHiIi4/vrrIyJixIgRcfHFF5d6nGZBQUFie82aNdGkSZNtrrtmzZqIiGjcuHHFfwkAAAAAAAAAAIDtqLV3PGvSpEmcccYZaS06i4gYOXJkrF27NiK+efzl7bffXubYa665Jjp06BAREcXFxXHHHXeUGrNlIdqCBQvK3Ne3r7Vp02ZnwgYAAAAAAAAAACi3Wlt4VlmefPLJxPZZZ50VLVq0KHNsXl5eDBw4MNEeO3ZsqTHdunWLnJyciIj46KOPytzXt6/16NEj5ZgBAAAAAAAAAABSofAsjWbOnBmzZ89OtI899tgdzjnuuOMS25988knMmjUr6fWCgoLo3bt3RET885//3OY+5s+fH9OnT4+IiH79+qUcNwAAAAAAAAAAQCoUnqXR1KlTk9qHHHLIDufsv//+kZeXV+Y+IiJ+9KMfRUTE3/72t5g3b16p12+++eYoKSmJtm3bxpFHHplq2AAAAAAAAAAAAClReJZGM2bMSGzn5eVFhw4ddjhn63Fb7uNbF154YXTp0iVWr14dJ554YkybNi0iIoqLi+Omm26Ku+66KyIirr/++qhXr15Ffw0AAAAAAAAAAIDtqpvpAGqSzz//PLHdvn37yMnJKde8jh07xqeffhoREXPnzi31ev369eOZZ56Jo446KqZNmxb77rtvNGnSJFavXh2bNm2KiIif//znMXDgwIr/EgAAAAAAAAAAADvgjmdpVFRUlNhu2rRpuec1adIksb1y5cptjunZs2d8+OGH8ctf/jL23HPPWLduXTRt2jT69+8fY8eOjZEjR+5wnXXr1kVRUVHSDwAAAAAAAAAAQKrc8SyNVq9endhu0KBBuefl5+dvcx9ba926ddx2221x22237VR8N954YwwbNmyn5mazTr8ZV6pv7k0nZCCSmsfflqqwreMsnfMcs2SC98/KU57/9/2tAdLHZ1p6+O4KAAAAAGQjdzxLow0bNiS269Ytf03flmPXr1+f1pi2dOWVV8aKFSsSP/Pmzau0tQAAAAAAAAAAgJrLHc/SqGHDhonttWvXlnvelmMbNWqU1pi2VL9+/ahfv36l7R8AAAAAAAAAAKgd3PEsjQoKChLbxcXF5Z63Zs2abe4DAAAAAAAAAACgOlJ4lkatWrVKbC9cuLDc8xYtWpTYbtmyZVpjAgAAAAAAAAAASDeFZ2nUtWvXxPaSJUuS7mS2PfPmzUtsd+vWLe1xAQAAAAAAAAAApJPCszTq3r17UvuDDz7Y4ZzCwsJYvHhxmfsAAAAAAAAAAACobhSepVHv3r2jfv36ifbrr7++wzmvvfZaYrtBgwbRu3fvSokNAAAAAAAAAAAgXRSepVFBQUH069cv0R4zZswO52w5pl+/ftGoUaNKiQ0AAAAAAAAAACBdFJ6l2YABAxLb06ZNi3/84x9ljn3vvffi+eef3+ZcAAAAAAAAAACA6krhWZqdccYZse+++ybagwcPjo8//rjUuIULF8a5554bmzZtioiIXr16xemnn15lcQIAAAAAAAAAAOysWl14dsEFF0SDBg1K/aQ6Zks5OTlx//33R35+fkR8U2B28MEHx29+85t47rnn4sUXX4zrr78+9ttvv5gxY0ZEROTn58d9990XOTk5lffLAgAAAAAAAAAApEndTAeQSRs2bIh169Ztd8zGjRtj48aNKe33wAMPjDFjxsSPfvSjKC4ujqKiohg+fHgMHz681Nj8/PwYM2ZMHHjggSmtAQAAAAAAAAAAkCm1+o5nlenUU0+Nd999N/r167fNO5nl5ORE//7947333otTTz01AxECAAAAAAAAAADsnFp9x7PRo0fH6NGjK23/3bt3j/Hjx8e8efNi8uTJUVhYGBER7dq1iz59+kSHDh0qbW0AAAAAAAAAAIDKUqsLz6pKhw4d4uyzz850GAAAAAAAAAAAAGnhUZsAAAAAAAAAAACkROEZAAAAAAAAAAAAKVF4BgAAAAAAAAAAQEoUngEAAAAAAAAAAJAShWcAAAAAAAAAAACkROEZAAAAAAAAAAAAKVF4BgAAAAAAAAAAQEoUngEAAAAAWW/y5Mlx4YUXRo8ePaJJkybRpEmT6NGjR1x44YUxefLkSl//ww8/jF/96lexzz77RIsWLaKgoCC6du0aP/rRj+Kf//xnpa8PAAAAUNXqZjoAAAAAAICdtXr16rjkkkti1KhRpV6bMWNGzJgxI+6777746U9/GiNHjoxGjRqldf2NGzfGtddeG8OHD4/NmzcnvTZr1qyYNWtWPPLII3HiiSfGqFGjYpdddknr+gAAAACZovAMAAAAAMhKmzZtitNOOy1efPHFRF9+fn707Nkz6tatG9OnT4+ioqKIiBg1alQUFhbGuHHjIjc3N20xDB48OKnorV69etGjR48oKCiIjz/+OJYsWRIREc8++2wcffTR8cYbb6S9+A0AAAAgEzxqEwAAAADIStdcc01S0dkFF1wQ8+fPj3feeSfefPPNWLBgQVx99dWJ11944YW49tpr07b+vffem1R0dvLJJ8ecOXPigw8+iNdffz0WLlwYd955Z9St+831v1OnTo0LL7wwbesDAAAAZJLCMwAAAAAg6xQWFsaIESMS7R//+Mdx7733RosWLRJ9jRo1ij/84Q9JxWcjRoyIBQsWVHj9NWvWxO9+97tEu2/fvvHkk09Gu3btEn316tWL//mf/4l77rkn0fe3v/0t3nvvvQqvDwAAAJBpCs8AAAAAgKwzcuTIWLt2bURENGzYMG6//fYyx15zzTXRoUOHiIgoLi6OO+64o8LrP/jgg7Fo0aKIiMjJyYn/+7//K/MRnoMGDYqDDz44IiJKSkpi+PDhFV4fAAAAINMUngEAAAAAWefJJ59MbJ911llJdzrbWl5eXgwcODDRHjt2bIXXf+KJJxLbRxxxRHTr1m274wcPHpzYfu6552LdunUVjgEAAAAgkxSeAQAAAABZZebMmTF79uxE+9hjj93hnOOOOy6x/cknn8SsWbN2ev1Vq1bFq6++utPrr1q1Kl555ZWdXh8AAACgOlB4BgAAAABklalTpya1DznkkB3O2X///SMvL6/MfaRi+vTpsWHDhpTW32233aJTp05pWR8AAACgOlB4Vgvdfffd0aNHjzjooIMyHQoAAAAApGzGjBmJ7by8vOjQocMO52w9bst9VGT9iIg99tijXPO2HFeR9QEAAACqA4VntdDFF18c06dPj3feeSfToQAAAABAyj7//PPEdvv27SMnJ6dc8zp27JjYnjt3blrWr1u3brRp06ZK1wcAAACoDupmOgAyp6SkJCIiioqKMhzJztu8bs1Ozcvm3zkVO/v3qYja8rfdWjr/1rX1b1iWyj6O/b3JhG0d147F9CjPe4a/NUD6+ExLj/J+583mv+23sX+bi4CK2vL/h6ZNm5Z7XpMmTRLbK1euTMv6jRs3jjp1ynd9b6rrr1u3LtatW5dor1ixotT62WTVyqLYvG5NrFpZFEVF5SsWBAAAgGyU7efA5c3nKTyrxb5NbpXnUQQ1TdPbMx1BzeVvW3H+hlXL35vqwrFYdfytASqX99nKUxP+titXrkypSAjKsnr16sR2gwYNyj0vPz9/m/uoruvfeOONMWzYsFL92Z7PO+T2TEcAAAAAVSPbz4F3lM9TeFaLtW3bNubNmxeNGzcu9+MIqpOioqLo0KFDzJs3L+lqUajOHLdkI8ct2chxS7Zy7JKNHLeUR0lJSaxcuTLatm2b6VCoITZs2JDYrlu3/CnOLceuX7++2q9/5ZVXxq9+9atEe/PmzbF06dJo2bKlfB5UEcct2chxS7Zy7JKNHLdkI8ct5VHefJ7Cs1qsTp060b59+0yHUWFNmjTxZkjWcdySjRy3ZCPHLdnKsUs2ctyyI+50Rjo1bNgwsb127dpyz9tybKNGjar9+vXr14/69esn9TVr1qzc61VXPjPIRo5bspHjlmzl2CUbOW7JRo5bdqQ8+bw6VRAHAAAAAEDaFBQUJLaLi4vLPW/NmjXb3Ee2rQ8AAABQHSg8AwAAAACySqtWrRLbCxcuLPe8RYsWJbZbtmyZlvVXrVoVq1atqtL1AQAAAKoDhWdkrfr168fvfve7Uo8bgOrMcUs2ctySjRy3ZCvHLtnIcQtkQteuXRPbS5YsSbqT2PbMmzcvsd2tW7e0rB8R8cUXX1Tp+tnKZwbZyHFLNnLckq0cu2Qjxy3ZyHFLOuWUlJSUZDoIAAAAAIDymjBhQvTr1y/RfuONN6JPnz7bnVNYWBjt27dP2seRRx65U+t/9tlnscceeyTaY8aMiXPOOWe7czZs2BBNmzZNPJpz1KhRMXDgwJ1aHwAAAKA6cMczAAAAACCr9O7dO+nK7Ndff32Hc1577bXEdoMGDaJ37947vX6XLl2SitjKs/67776bKDqLiDj88MN3en0AAACA6kDhGQAAAACQVQoKCpLueDZmzJgdztlyTL9+/aJRo0YViuHkk09ObD/22GOxfv36cq/fs2fPpDumAQAAAGQjhWcAAAAAQNYZMGBAYnvatGnxj3/8o8yx7733Xjz//PPbnJuO9b/++uv485//XObY+fPnx4MPPpjW9QEAAAAyLaekpKQk00FAKj799NN4++23Y/78+bF+/fpo3rx5dOvWLfr06RMNGjTIdHgAQDUxc+bMmDp1asyfPz/WrFkT+fn5seuuu8Z3vvOd2HfffZMezQSZtG7dunj//fdjxowZsWzZsiguLo4mTZpE69atY//9948999wzcnJyMh0mVNjatWtj8uTJ8fHHH8eyZcsiLy8v2rdvHwcffHB06dIl0+EBWaikpCT222+/mDp1akREtGnTJiZMmBDdunVLGrdw4cLo169fzJgxIyIievXqFe+99942P18nTZoURx55ZKL9l7/8ZbtFYqeccko888wzEfHNXdj++c9/xqGHHpo0pqioKE488cTEoz7btGkTn376aeTn56f+S2cp+TwAoDzk88gW8nnUFvJ5lEfdTAcA5fXUU0/FH/7wh3jvvfe2+XpBQUEMGDAgfve730WrVq2qODooraSkJObOnRsffvhhzJ8/P5YvXx7169eP5s2bx1577RUHHXSQ5CpAmq1cuTLuvPPOuP/++2POnDlljsvLy4vevXvHGWecEZdeemkVRgj/8e6778aIESPi8ccfj3Xr1pU5rl27djFo0KC49NJLo0WLFlUYITVdYWFhvP322zFlypR4++2341//+lesXLky8fruu+8ec+fOrfA6ixcvjmHDhsXo0aNj9erV2xxzwAEHxDXXXBOnnHJKhdcDao+cnJy4//774/DDD4/i4uJYuHBhHHzwwTFkyJA4/PDDo27duvH222/HXXfdFV9++WVEROTn58d9992Xtn8EuuOOO+LNN9+MxYsXx6pVq6Jfv34xaNCgOOaYY6KgoCCmTZsWd955Z+K7aZ06deLPf/5zrSk6k88j28jnAVQ9+TyyiXwemSafR3XkjmdUe+vWrYtBgwbFmDFjyjV+l112iccffzwOP/zwSo4MSlu2bFk89dRT8c9//jMmTJgQX3/9dZlj69WrFyeccEL84he/iCOOOKIKo4Sd88Mf/jD+/ve/J/Wl6wsspMOzzz4b559/fuIfFctj1113jUWLFlViVFDa5s2b46qrroo//elPsXnz5nLP23XXXWP06NFx7LHHVmJ01HRvvPFG3HrrrTFlypRYsGDBdsem43N+0qRJceaZZ273e/GWfvKTn8R9990XeXl5FVoXqF3Gjh0bP/rRj6K4uHi74/Lz82PMmDFx6qmnljkm1TueRURMnjw5TjrppFi6dOl2x+Xm5sYdd9wRF1988XbH1QTyeWQT+TxqMvk8qjv5PLKFfB6ZJJ9HdVcn0wHA9mzevDnOPvvsUkmq3Nzc6Ny5c/Tq1SuaNm2a9NrixYvjuOOOizfffLMqQ4W4+OKLY7fddouf/vSn8eijj+7ww3jDhg3x1FNPRd++feO8886LoqKiKooUUvePf/yjVJIKqpMRI0bEySefXCpJ1aBBg+jSpUv07t07vvvd77qLAtXC4MGDY/jw4aWSVA0bNozvfve70bt379hjjz1K3Ynlyy+/jFNOOSWef/75qgyXGuadd96JsWPH7jBJlQ6vv/56HH/88aW+Fzdr1iz222+/6NSpU+Tm5ia99tBDD8UPf/jDcI0ckIpTTz013n333ejXr98272SWk5MT/fv3j/fee2+7RWc7q0+fPjFt2rQ4/fTTo27dbT9gonfv3vHaa6/ViqIz+TyyiXweNZl8HtWdfB7ZRD6PTJLPo7pTeEa19qc//SmefvrppL6f/exn8cUXX8Rnn30W77//fixdujSefPLJ6NixY2LMmjVr4qyzzooVK1ZUdcjUYlOmTIn169eX6s/NzY327dvHAQccEPvss0+p5GrENx/IRx99dKxataoqQoWUrFixIoYMGZLpMKBMDzzwQPzqV79KOqk57rjj4vnnn4/ly5fHp59+GlOmTIlp06bF4sWLo7CwMB5++OE4/fTTXYFDlXv88cfj/vvvT+rr0aNHjBs3LlasWBHTpk2LKVOmxOzZs+PLL7+MYcOGJR2n69evj/POOy+WLVtW1aFTCxQUFKRtX8uWLYuzzz476e5Du+++ezz11FOxdOnSeO+992LOnDkxd+7cGDx4cNLcJ598MkaMGJG2WIDaoXv37jF+/Pj4/PPP4+9//3vceuutceutt8bf//73+Pzzz+Oll16Kbt267XA/ffv2jZKSksTPju529q127drF448/HgsWLIjHH388br/99rj55pvjr3/9a8ycOTOmTJkShxxySAV/y+wgn0c2kc+jppLPo7qTzyObyOdRncnnUS2UQDX19ddflzRu3LgkIhI/N954Y5nj58+fX9KpU6ek8ddee20VRkxtd8ABBySOvWbNmpVcdNFFJePGjSspKipKGrdx48aSiRMnlhx22GFJx2tElJx++ukZih7KdsEFFySO0UaNGiUds7vvvnumw6OW++STT0oaNGiQOCbr1atX8sgjj5R7/tKlSysxOiht7733TnofPfDAA0tWrVq13Tkvv/xySd26dZPm3XDDDVUUMTXNiBEjSiKipHHjxiV9+/YtGTp0aMljjz1WMnfu3JKJEyem7XP+yiuvTNpX586dSwoLC8sc/8c//jFpfNOmTb1HA2Qh+TyyjXweNZV8HtWZfB7ZRj6PTJPPo7rLKSlxvzuqp1//+tdx8803J9qHH354TJo0aZuPTPjWyy+/HP3790+0GzduHHPmzImWLVtWaqwQEXHggQfGkiVL4uqrr45zzjkn8vPztzt+06ZNcdFFF8W9996b1D9hwoQ48sgjKzNUKLdJkybFUUcdFSUlJVGnTp246aab4oorrki8no5nxUNFHHXUUTFx4sRE+9FHH40zzzwzgxFB2T777LPYY489kvrefvvtOOigg3Y492c/+1n8+c9/TrQPOeSQmDx5ctpjpOb79NNPY926ddGtW7eoUyf5JuiTJk1K+h66s5/zixcvji5duiTd/WP8+PHRr1+/MueUlJRE375949VXX030XXXVVfHHP/4x5fUByBz5PLKNfB41kXwe1Z18HtlEPo/qQD6P6s6jNqmWNm/eHH/5y1+S+q677rrtJqkiIvr16xeHHXZYor1y5cp49NFHKyVG2NqwYcNi5syZMWjQoB0mqSK+uWX///7v/8aBBx6Y1L/17XohU4qLi+P8889P3O785z//eblOpqCqPP3000lJqjPPPFOSimpt5syZSe327duX+3319NNPT2rPnj07bXFRu+yxxx7Ro0ePUkmqdPr73/+elKQ6/PDDt5ukiojIycmJ3/3ud0l9o0aNCtfKAWQP+TyykXweNY18HtWdfB7ZRj6P6kA+j+pO4RnV0uTJk2Px4sWJdpcuXaJv377lmjto0KCk9lNPPZXGyKBsJ5xwQtIz28sjNzc36WqziIgXXnghnWHBTrvmmmvi008/jYiIjh07xvXXX5/hiCDZ1leYb32CA9XN0qVLk9odOnQo99yOHTsmtZcvX56OkKBSPP3000ntrc/RynLkkUdG586dE+1FixbFW2+9ldbYAKg88nlkI/k8ahr5PKo7+TyyjXwetYV8HhWh8Ixqady4cUnto48+eodXR245dkuTJk2K1atXpy02SLctr+qNiFiyZEmsWbMmQ9HAN9555524/fbbE+277747CgoKMhcQbKWwsDApsd+rV6/o2bNnBiOCHWvatGlSu7i4uNxztx7bqlWrtMQE6bZq1aqk2+tHRBxzzDHlmpuTk5P0qLWIiGeffTZtsQFQueTzqE3k86iO5POo7uTzyEbyedQG8nlUlMIzqqUPPvggqd2nT59yz23btm106tQp0V6/fn1Mnz49TZFB+jVv3rxU34oVKzIQCXxjw4YNMWjQoNi0aVNEfHO78xNPPDHDUUGyf/7zn4ljNOKbq2qguuvVq1dSe8aMGeX+B9W33347qd27d+90hQVp9dFHH8WGDRsS7c6dO8duu+1W7vmHHnpoUnvrc0MAqi/5PGoT+TyqG/k8soF8HtlIPo/aQD6PilJ4RrU0Y8aMpHaPHj1Smr/1+K33B9VJYWFhqb6WLVtmIBL4xo033hgffvhhREQ0a9YsRo4cmeGIoLR33nknqb3vvvsmtt9///245JJLYt99943mzZtHw4YNo1OnTnH00UfHLbfcss33XagK7du3T/oH2HXr1pXrPXbdunVJV61HlP9W51DVnMsB1F4+A6hN5POobuTzyAbyeWQj+TxqA+dyVJTCM6qd4uLi+OKLL5L6Unle9rbGz5w5s8JxQWV57bXXktq777575OXlZSgaarvp06fHH//4x0R7+PDhKV3VAFVl60RVly5dYtWqVTFo0KDYf//9484774xp06bF8uXLo7i4OD7//PMYP358DB06NPbaa6+46qqrkq7ggaoyfPjwqFPnP6dh1157bTz44INljl++fHmcccYZSSfrJ510Upx00kmVGifsrK3PvSp6Lvf555/H2rVrKxwXAJVLPo/aRj6P6kQ+j2whn0e2ks+jppPPo6LqZjoA2NrXX38dJSUliXa9evWidevWKe2jXbt2Se2vvvoqLbFBZRg1alRS+/jjj89QJNR2mzdvjkGDBsX69esjIuKwww6LCy64IMNRwbbNnj07qV2nTp04/PDD4/3339/h3OLi4rjxxhvjnXfeiSeffDIaN25cWWFCKf/1X/8Vd911V1x88cVRUlISGzdujAEDBsTdd98dp512WnTt2jXy8/Pj66+/jilTpsQjjzwSS5cuTcw/+uij429/+1sGfwPYvq3Pvdq3b5/S/F133TXq1q0bGzdujIhvvp8sWbKk1DkeANWLfB61jXwe1YV8HtlEPo9sJZ9HTSefR0UpPKPaWbVqVVK7YcOGkZOTk9I+GjVqtN19QnXx3HPPxauvvprUN2DAgMwEQ603cuTIeOuttyIiIi8vL+69996U33+hKmzevDlWrlyZ1HfJJZckklQ5OTlx4oknxvHHHx/t27eP1atXx/vvvx8PP/xwLFiwIDFn/PjxMWDAgHjiiSeqNH4YMmRIdO3aNS655JL46KOPIuKbq363vvJ3S126dIkrrrgiLrjggqQrLKG62frca+tzsx3JycmJ/Pz8pPd553MA1Z98HrWJfB7ViXwe2UI+j2wnn0dNJp9HRXmHo9rZ+k2oQYMGKe8jPz9/u/uE6mDp0qUxePDgpL7//u//jt69e2coImqzOXPmxNVXX51oX3nlldGtW7cMRgRlW7FiRdLdFCIi3nvvvYiIaNmyZbzyyivxzDPPxM9+9rM48cQT4+yzz46bbropZs6cGeecc07SvCeffDIeeuihKosdvnXUUUfFO++8E5dffnnk5uZud2zHjh3j8ssvj3POOUeSimrP+RxA7eT9n9pCPo/qRD6PbCKfR00gn0dN5XyOivIuR7Wz9fN+8/LyUt5H/fr1k9rFxcUVignSbfPmzXHuuefG/PnzE31NmzaNkSNHZjAqarMLL7wwVq9eHRER3bp1i6uuuirDEUHZyjphyc3NjXHjxsVhhx22zdcLCgri4YcfjmOOOSap/4YbbiiV+ILKds8998Qee+wRt9xyS2zatGm7Y7/44ou46KKLolOnTqUe6QPVjfM5gNrJ+z+1gXwe1Y18HtlEPo+aQD6Pmsr5HBWl8IxqZ+sK2vXr16e8j3Xr1m13n5BpQ4cOjeeffz6p789//nN06NAhQxFRmz3wwAMxfvz4iPjmdrj33nvvTn2phKpS1uf6+eefHwcffPB259apUyf+7//+L+kqs5kzZ8Yrr7yS1hihLBs2bIgzzjgjhgwZEgsXLoyIiBYtWsS1114bb7/9dixbtizWr18fCxYsiGeeeSZOPfXUxGNSli5dGoMGDYqhQ4dm8leA7XI+B1A7ef+nNpDPozqRzyPbyOeRzeTzqOmcz1FRCs+odgoKCpLaW1fYlsfWFbRb7xMyaeTIkXHbbbcl9V1xxRVx9tlnZygiarOFCxfG5Zdfnmiff/75ZV5dBtVFWZ/rF1xwQbnmd+nSJfr375/UJ1FFVRkyZEg88cQTiXbv3r3jo48+imHDhsVBBx0UzZo1i3r16kWbNm3ipJNOiieffDKeeuqppBP1W265Jf7yl79kInzYIedzALWT939qOvk8qhP5PLKRfB7ZTD6Pms75HBWl8IxqZ+s3oTVr1qR8u9xvby9d1j4hUx555JH4xS9+kdQ3YMCAuOmmmzITELXexRdfHMuXL4+IiN122y1uvvnmzAYE5ZCfnx+5ublJfY0bN4799tuv3Ps44ogjktr/+te/0hIbbM+kSZPigQceSLRbt24dzz77bOy2227bnXfyySfH3XffndQ3dOhQtyunWtr63Gvrc7MdKSkpkagCyELyedRk8nlUN/J5ZCP5PLKVfB61gXweFaXwjGqnVatWiduPRnxz+9KvvvoqpX0UFhYmtVu3bp2W2KAinn322TjvvPOSEq+nnXZa3H///UnHPFSVxx57LMaOHZto33HHHdGsWbPMBQQp2Pqzfc8990y63f6OdO3aNamd6ncN2BkjR45Mav/iF7+IXXbZpVxzBwwYEN/5zncS7SVLlsSTTz6Z1vggHbZ+f54/f35K87/88svYuHFjol2nTp1o1apVWmIDoPLI51FTyedR3cjnkc3k88hG8nnUBvJ5VJTCM6qd/Pz86NixY1LfF198kdI+th7frVu3CscFFTFx4sQ488wzkz50jz766Pjb3/5W6iofqCpDhw5NbJ9wwglx1llnZTAaSE337t2T2k2aNElp/tbjly1bVuGYYHtKSkpiwoQJSX0nnXRSuefXqVMnTjjhhKS+V199NS2xQTpt/Q8BFT2X23333ZMeTQFA9SSfR00kn0d1JJ9HNpPPI9vI51FbyOdRUQrPqJa2TixNnz49pfkzZszY7v6gKk2ZMiVOPvnkpOdh9+nTJ8aOHRt5eXkZjIza7ttb8kdEjBs3LnJycnb4c+SRRybt4/PPPy815oMPPqjaX4RaqUePHkntdevWpTR/y/fkiIiGDRtWOCbYnmXLlsWKFSuS+jp37pzSPrYev/VdQaA6cC4HUHv5DKAmkc+jupLPI5vJ55Ft5POoLZzLUVEKz6iWevXqldSePHlyuecuXLgw5s6dm2jXq1ev1JdZqCrTpk2L4447LlatWpXo22+//eK5556LRo0aZTAygOy2//77J7W//PLLlOZvfSv+li1bVjgm2J5tJVPr1q2b0j7q1auX1N60aVOFYoLK0LNnz6Rjde7cubFw4cJyz3/jjTeS2lufGwJQfcnnUVPI5wFUDvk8so18HrWFfB4VpfCMaunEE09Mao8fPz5KSkrKNffFF19Mah955JFRUFCQttigvGbOnBlHH3100u2eu3fvHi+88EI0bdo0g5EBZL8TTjgh6tT5z1fZOXPmxNKlS8s9/913301qb30raUi3bSVDFyxYkNI+tr4icpdddqlQTFAZGjduHIcffnhS30svvVSuuSUlJTF+/PikvlQeYQFAZsnnURPI5wFUHvk8so18HrWFfB4VlVpJLlSRPn36RKtWreLrr7+OiIjPPvssJk2aVOqW0NvywAMPJLVPOeWUSokRtufzzz+P/v37J12B07lz53jppZd8qaTaePrpp2PDhg0pzZk6dWpcfvnlifauu+4af/3rX5PG7LnnnmmJD7andevWceihh8Zrr72W6HvyySfj/PPP3+HcjRs3xtixY5P6+vbtm+4QIUleXl60adMm6UqxCRMmxKBBg8q9j5dffjmpvccee6QtPkink08+Oel4feCBB+InP/nJDudNnDgx5syZk2jvuuuucfDBB1dKjACkn3we2U4+j2wgn0c2k88j28jnUZvI51ERCs+olurUqRMDBgyIW265JdE3bNiw6Nu3b+Tk5JQ57+WXX076wtq4ceM466yzKjVW2NrChQujX79+MX/+/ERfu3bt4uWXX4527dplMDJIdsQRR6Q8Z+vbSDdo0CD69++frpAgJYMHD0763P/Tn/4UP/7xj6N+/frbnXfffffFokWLEu0mTZrE97///UqLE77Vr1+/pOT+7bffHuedd165btH/yiuvxJtvvllqf1Ad/eAHP4irrroqVq9eHRERr776akyYMCGOOuqoMueUlJTEsGHDkvoGDhyYdDU8ANWbfB7ZTD6PbCGfR7aTzyPbyOdRW8jnURH+i1Nt/frXv066pf4rr7wSw4cPL3N8YWFhqasiLr300mjVqlWlxQhbW7p0aRx99NHx6aefJvp22WWXeOmll6Jz584ZjAyg5vnhD38Y3/3udxPtWbNmxeDBg2Pz5s1lzpkyZUpcccUVSX0XXXSRR6ZQJc4999yk9r///e+46KKLtnvMRkTMnj07zjnnnKS+vfbaKw455JC0xwjp0Lp16/if//mfpL7zzz9/u4+juPHGG+PVV19NtJs2bRpDhw6ttBgBqBzyeWQj+TyAqiOfR7aRz6O2kM+jIhSeUW21atUqrrrqqqS+K6+8Mi666KKkN7jNmzfHU089FX369Im5c+cm+tu2bRuXXXZZVYULsXLlyjj22GPjo48+SvQ1a9YsXnzxxejevXsGIwOomerUqRMjRoxIunvCgw8+GN///vfj3XffTRq7YsWKuO2226J///6xatWqRP93vvOdUt83oLJ8//vfL/Woqfvuuy+OOOKIePnll2Pjxo1Jry1ZsiRuvfXWOPDAA0ud4N9www2Rm5tb6TFTM73xxhsxfvz4Uj9bv3euXbt2m+PGjx8f06dP3+4aV1xxRey2226J9pw5c6JPnz7xzDPPRElJSaJ//vz58bOf/Sx++9vfJs3/7W9/Gy1atEjDbwtAVZLPI9vI5wFULfk8so18HtWFfB7VWU7JlkcIVDObN2+OU045JZ599tmk/tzc3Nh9992jadOmMWfOnFi+fHnS6/n5+fHSSy/FoYceWoXRUtsdeeSRMWnSpKS+3//+9zt19cIBBxwQzZs3T1NkkD6TJk1KOsnafffdk/6RADJh+PDh8Zvf/KZU/2677Rbt27eP1atXx6effhrr169Per1ly5YxceLEpKssobItWrQo+vTpE3PmzCn1WkFBQXTu3Dny8/NjyZIl8dlnn8W2Ttcuu+yypEdYQao6deoUn3/+eYX2cd5558Xo0aO3O+bVV1+N73//+7F27dqk/mbNmkXnzp1j+fLl8cUXX8SmTZuSXj/llFNi7Nix230sGwDVl3we2UQ+j9pAPo/qSD6PbCKfR3Ugn0d1pvCMam/t2rUxcODA+Pvf/16u8S1btozHH388+vbtW7mBwVbS+UE6ceJExzDVkkQV1dWdd94Zl112WWzYsKFc47t27Rr/+Mc/Yq+99qrkyKC0efPmxU9+8pNS/8C1I/Xq1Ys//OEPccUVVziBp0KqKlEVETFhwoQ488wzY+nSpeXa7znnnBOjRo2K+vXrVyg+ADJLPo9sIZ9HbSCfR3Uln0c2kc8j0+TzqM48apNqr0GDBvG3v/0tHn/88ejVq1eZ4xo1ahQXXXRRTJ8+3Qk+ANQyP//5z2PatGlx9tlnR7169coc17lz57jjjjti2rRpklRkTIcOHeLll1+ORx99NPr27Rt16mz/tKxp06YxZMiQ+PDDD+PXv/61JBVZ5aijjorp06fHkCFDomHDhmWO22+//eKJJ56IMWPGSFIB1ADyeQDAjsjnkU3k86hN5PNIlTuekXVmz54dU6ZMicLCwli/fn00a9YsunfvHoceemg0aNAg0+FRi7lCktrAFZJkg6Kiopg8eXJ88sknsWLFiigoKIhdd9019t9//+jatWumw4NSVq5cGf/617/is88+i+XLl8fatWujSZMm0bJly9hnn32iR48eO0xmQTYoLi6OyZMnx4wZM2L58uWRl5cX7dq1i4MPPjj23HPPTIcHQCWSz6O6ks+jNpDPIxvI55Ft5POoLeTzKA+FZwAAAAAAAAAAAKREmS0AAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQBsx9y5cyMnJyfxM2DAgO2O79u3b9L4VKxYsSL+9Kc/Rb9+/aJNmzZRv379pH2NHj26zLmffvppDB06NA466KBo1apV1K1bN2nu3LlzU4ol3VL9OwIAAADAzpDPSw/5PACgPOpmOgAAACImTZoUp59+eixdujTluSNGjIihQ4fGpk2bKiEyAAAAAGBr8nkAAArPAAAybvbs2XHiiSfG6tWrU577yCOPxK9+9atKiAoAAAAA2Bb5PACAbyg8AwDIsKuuuiopSbXPPvvEhRdeGJ07d468vLxEf8+ePZPmbdy4MS6//PKkvpNOOilOP/30aNOmTdSp85+nqu+2224VivG6666LYcOGJdoTJ06Mvn37VmifAAAAAJCN5PMAAL6h8AwAIIOKiori6aefTrS7du0aU6ZMiQYNGuxw7vjx42PhwoWJ9k9+8pN48MEHKyVOAAAAAEA+DwBgSwrPAADSaNKkSSmNf/fdd2P9+vWJ9k9+8pNyJakiIt58882k9uDBg1Nauyp16tQpSkpKMh0GAAAAACSRz9s2+TwAoDzq7HgIAACVZdasWUntrW+/X1lzAQAAAIDUyecBAPyHwjMAgAxavnx5UrtJkyZVMhcAAAAASJ18HgDAfyg8AwDIoLVr1ya1c3JyqmQuAAAAAJA6+TwAgP+om+kAAAAyYfPmzTF58uSYNWtWLFq0KBo0aBBdunSJww47LFq2bFllcZSUlGRkbrZbsmRJTJ48OQoLC2Pp0qXRqlWr6N27d/Tq1WuHc2fPnh1vvfVWLFiwIHJycqJt27bRt2/faNeuXVpimzlzZkydOjUWL14cK1asiBYtWkTbtm3jv/7rv6JFixZpWQMAAACgtpHPy27yeQBQMyk8AwBqlU2bNsWIESNixIgRsWDBglKv5+bmxmmnnRY333xzdOrUKeX99+3bN1555ZVEe+tk0ty5c6Nz585lzj/yyCO32f+Xv/wlIiIGDhxY5tyyrpCcM2fOTv0ukyZNKjOesvq/taPf+7zzzovRo0eXOb+sv+PHH38c1157bTz99NOxfv36UvP222+/uPvuu+OQQw4p9drEiRPjqquuirfeeqvUazk5OXHSSSfFnXfeGR07dtzu77Ytq1atiltvvTUefPDBmDNnzjbH5ObmxmGHHRa///3v47DDDkt5DQAAAIDaSD6v/OTzyk8+DwDSw6M2AYBaY+nSpdGnT58YOnToNpNUEd8ksh577LHYd999Y+LEiVUcIdvz9NNPx/777x+PPfbYNpNUERHvv/9+HHHEETF27Nik/mHDhkW/fv22maSK+CYR9swzz8TBBx8cM2fOTCmuZ599NvbYY4+47rrrykxSRXxzbE2aNCkOP/zwGDx4cGzcuDGldQAAAABqG/m87CafBwA1n8IzAKBWWLlyZRxzzDHx9ttvJ/Xn5OREp06d4sADD0y6irCoqChOOeWUmDFjRhVHyra88cYbcdZZZ0VxcXFERDRo0CC6d+8eBx54YOyyyy5JYzds2BDnnntufPLJJxERcdNNN8V1112XuMqyadOmsc8++0SvXr2ioKAgae6iRYvitNNOiw0bNpQrrnvvvTf++7//O7766quk/oYNG0b37t2jd+/eseeee0adOnVKzTvjjDNq9eMVAAAAALZHPi+7yecBQO3gUZsAQK0wdOjQePfddxPtnJycuPjii2Po0KFJt2KfM2dODB8+PP785z/HypUr46KLLkprHLvttlu89NJLifZDDz0UDz/8cKJ9yy23xL777ltqXs+ePSMikuZedtllMW3atER7y9e2XnNn7Lvvvol9ljfOynLuuefG+vXro23btnHDDTfEmWeeGQ0bNoyIb65ufOmll+KCCy6IL774IiIi1qxZE1dddVX84he/iN/+9rcREXHQQQfFjTfeGH379o3c3NyIiFi3bl2MGjUqfvnLX8a6desiImL69Olxzz33xM9//vPtxvTyyy/HkCFDYvPmzYm+k046KS677LI49NBDo27d/3zVXrp0adx///1x/fXXx8qVKyPimys+b7755vj1r3+dpr8SAAAAQM0hn5c6+Tz5PACoagrPAIAa76233op777030c7JyYmHHnoozj333FJjO3fuHPfcc08ccMABceGFF8bcuXPTGkuDBg2if//+ifbrr7+e9PoBBxwQffv2LXN+mzZtEtvNmzdPem3L/aZD8+bNE/tMNc50mzt3bnTt2jUmTJgQbdu2TXotJycnjjnmmHjppZdin332SSScxo4dG1OnTo3NmzfHGWecEY888kjUq1cvaW79+vVjyJAhkZ+fHwMHDkz0P/DAA9tNVC1fvjzOPffcRJKqTp06cd9998VPf/rTbY5v0aJFXHHFFXHiiSdG3759Y/HixRERce2118Z5552308lEAAAAgJpIPm/nyOfJ5wFAVfOoTQCgxrvjjjuSboF+8cUXbzNJtaULLrggzj///MoOjXKqV69ePProo6WSVFv6zne+k5Rs2rRpU3zyySex5557xoMPPlgqSbWl8847L7p27ZpoT506NRYuXFjm+HvuuScWLVqUaP/xj38sM0m1pR49esTo0aMT7fXr18ddd921w3kAAAAAtYl8XvaTzwOA2kHhGQBQoy1fvjzGjh2baDdo0CCGDRtWrrk33HBD5OXlVVZopODMM8+MffbZZ4fjTj755FJ9v/nNbxK38S9LTk5Oqbnvv//+Nsdu2rQp7rzzzkS7Y8eOcdlll+0wtm8df/zxsd9++yXaTzzxRLnnAgAAANR08nk1g3weANQOCs8AgBrtzTffTNyqPSLihBNOiBYtWpRr7i677BLHH398ZYVGCs4888xyjdt7772T2jk5OXHaaaeVa+53v/vdpPYXX3yxzXFTp06NBQsWJNo/+MEPtnv15bYcc8wxie2PP/44vv7665TmAwAAANRU8nk1g3weANQOCs8AgBrt7bffTmr37ds3pfmpjqdyHHDAAeUa17Jly6R2586do3nz5js1t6ioaJvjXnvttaT2gQceWK79b6ljx45J7RkzZqS8DwAAAICaSD6vZpDPA4DaoW6mAwAAqExz5sxJam99Bd2ObH3VHJmxyy67lGvc1rfgL++8bc0tLi7e5ritk0pnnXVWudcoy9KlSyu8DwAAAICaQD6vZpDPA4DawR3PAIAabfny5Untra+C25FUx1M5GjRoUKXzIiJKSkq22b9kyZKd3mdZVqxYkfZ9AgAAAGQj+byaQT4PAGoHhWcAQI22atWqpPbWV8HtSKNGjdIZDjXA1snPdNi8eXPa9wkAAACQjeTzSDf5PACoPB61CQDUaFsnmtasWZPS/NWrV6czHGqArZOdN910UxxwwAEV2mfPnj0rNB8AAACgppDPI93k8wCg8ig8AwBqtGbNmiW1v/7665TmV8Zt2MlurVq1Smp37tw5+vfvn6FoAAAAAGoW+TzSTT4PACqPR20CADValy5dktr//ve/U5o/bdq0dIZDDdC5c+ek9uzZszMUCQAAAEDNI59HusnnAUDlUXgGANRoBx10UFL7lVdeSWl+quNrqjp1kr82lpSUZCiSzDvyyCOT2hMmTMhQJAAAAAA1j3xeesjn/Yd8HgBUHoVnAECN1qdPn8jLy0u0x40bF0uXLi3X3K+++iqee+65ygotqzRq1CipvWbNmgxFknm9e/eO5s2bJ9oTJkyI6dOnZzAiAAAAgJpDPi895PP+Qz4PACqPwjMAoEZr1qxZnHrqqYn22rVr43e/+1255v72t7+N9evXV1ZoWaVFixZJ7Tlz5mQoksyrV69e/OIXv0i0S0pKYvDgwbFhw4bMBQUAAABQQ8jnpYd83n/I5wFA5VF4BgDUeJdeemnk5OQk2nfffXeMGTNmu3Puv//+uP/++ys7tKzRs2fPpPYTTzyRoUiqh0svvTR23XXXRPv111+PM844I1asWFHufaxevTpGjhwZDzzwQGWECAAAAJC15PMqTj4vmXweAFQOhWcAQI13yCGHxKBBgxLtkpKS+PGPfxyXXHJJzJs3L2ns3LlzY8iQIXHhhRdGRESnTp2qMtRqa7/99otWrVol2pMmTYqjjjoq7rnnnnjuuedi/PjxST81XdOmTeOxxx6LevXqJfqeeeaZ6NmzZ9x6663xxRdfbHPevHnz4vHHH49zzz032rZtG5deemmpYxAAAACgtpPPqzj5vGTyeQBQOepmOgAAgKpw6623xrvvvhvvv/9+RHyTrLrzzjvjrrvuis6dO0fLli3j66+/TrrlfOPGjeN///d/4/jjj89U2NVGvXr14pJLLolrr7020Tdx4sSYOHHiNseXlJRUVWgZc9hhh8VDDz0UAwcOjLVr10ZERGFhYVx++eVx+eWXR5s2baJ169ZRv379WLFiRXz11VexbNmyDEcNAAAAkB3k8ypGPq80+TwASD+FZwBArdCkSZN48cUX47jjjot//etfif6SkpL47LPP4rPPPis1/umnn3aF5BauuuqqmDVrVvz1r3/NdCjVxg9+8IPYa6+94pxzzolZs2YlvbZw4cJYuHDhdufn5uZG27ZtKzNEAAAAgKwkn1dx8nmlyecBQHp51CYAUGu0atUq3nzzzRg+fHi0adNmm2Nyc3PjjDPOiKlTp0bfvn2rNsBqLjc3Nx5++OF4/fXX4+KLL47evXtHq1aton79+pkOLaMOOOCAmD59ejz00EPxve99L3Jzc7c7vn79+nHUUUfFLbfcEvPmzUs8BgIAAACAZPJ5FSOft23yeQCQPjklteG+qQAAW9m8eXO8/vrrMWvWrPjqq6+ifv360aVLlzjssMOiVatWmQ6PLLZixYp46623YsGCBfH111/Hhg0bonHjxtG6devo1q1bdO3aNRo0aJDpMAEAAACyinwelUU+DwB2nsIzAAAAAAAAAAAAUuJRmwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkBKFZwAAAAAAAAAAAKRE4RkAAAAAAAAAAAApUXgGAAAAAAAAAABAShSeAQAAAAAAAAAAkJL/DzmxJ7LGXTL/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "es.plot_hist_and_cdf(\n", + " kbo_diff_time[\"diff_time\"],\n", + " None,\n", + " \"diff time between consecutive jd in the trajectories\",\n", + " \"diff time\",\n", + " \"distribution\",\n", + " None,\n", + " \"Cumulative\",\n", + " \"diff time\",\n", + " \"cumulative\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACnYAAAOjCAYAAACME6iUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wU1f7/8fcmIQQSAomEHgidANJD7yAiCigoqFeaCuq1YUMsSLkWUFT0WkBEQCwgChelqHSk9wjSSwi9BgIhPfP7gx/7zexuNrvJJlng9Xw89pGc2XPmnJmduvuZcyyGYRgCAAAAAAAAAAAAAAAAAABAgfMp6AYAAAAAAAAAAAAAAAAAAADgGgI7AQAAAAAAAAAAAAAAAAAAvASBnQAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAkCOwtITEyMLBaL9TVw4ECn+du3b2/K745Lly7pgw8+UKdOnVS2bFkVLlzYNK9p06ZlWfbgwYN65ZVXFBUVpZIlS8rPz89UNiYmxq22eJq76xE5N23aNJe3GwCO5eZYDuTUqVOnNHLkSLVu3VqlSpVSoUKFTNvhihUrrHkHDhzoVed5FKyIiAjrthAREVHQzYGH5ObeIL9kbk/79u0LujnIY6NGjcryvIQbG9cVAAAAAAAAAADknF9BNwB5a8WKFerdu7cuXLjgdtmPP/5Yr7zyitLT0/OgZQAAIK/NmjVLgwYNUmJiYkE3BYAXyM29AQAAAAAAuPm0b99eK1eutKYNwyjA1njGtGnTNGjQIGt66tSpdAwDAACAGxKBnTexAwcO6J577lFCQoLbZX/44Qe9+OKLedAqAACQH1avXq2HH35YGRkZBd0UAF4gN/cGAAAAAABk5fDhw9q5c6eOHj2q+Ph4ZWRkKCQkRCEhIYqMjFTdunXl6+tb0M0EAAAAgBsOgZ03sddff930w229evU0ZMgQVa5cWf7+/tbpderUMZVLS0vTyy+/bJrWvXt39e7dW2XLlpWPj491epkyZXLVxlGjRmn06NHW9PLlyxluEflixYoV6tChgzU9cuRIjRo1quAahBtC5uHT27Vrx1ChOcDT0vnnxRdfNAV1tmnTRv3791eFChXk5/d/l4D169cviOblKY7xNzeOxTmT03sDd7H/ecbAgQM1ffp0a/rw4cOKiIgouAbBY7gHBgAAwM1gx44d+uqrrzR37lwdP37cad6iRYuqVatWeuSRR9S7d28FBgbmUysBAAAA4MZGYOdNKj4+XvPmzbOma9asqQ0bNiggICDbskuWLNHJkyet6f79+5t+VAQAAN5tz5492rRpkzXdvn17LV261PRwBoBbR27uDQAAAAAAuC42NlYvvPCC5syZ43KZq1evavHixVq8eLGeffZZDR8+XC+88AL3pMjSzTg8PAAAAJAT/Lp/g1ixYoUMw7C+srNlyxalpKRY0/3793f5JnndunWm9BNPPOFeY/NRRESEab1MmzatoJsEAECBsz2XDx482KWgzmnTppnOq/QOd2uLiYmxbgsxMTEF3RzkQm7uDYC8NmrUKNO5h94rbx5cVwAAANxc5s+fr3r16mUZ1BkSEqIaNWooKipKlStXVtGiRe3yxMfH6/XXX1ebNm3yurkAAAAAcMOjx86b1L59+0xpd4ZUzE1ZAABQ8DiXA8iMYwIAAAAAIDe+//57DRgwQOnp6abpjRs31mOPPaZu3bqpUqVKduX27t2refPm6aefftKWLVus08+ePZvnbcata+DAgRo4cGBBNwMAAADINXrsvEldvHjRlA4ODs6XsgAAoOBxLgeQGccEAAAAAEBObd68WY8++qgpqLN48eKaMWOGNm3apKeeesphUKck1axZU8OGDdPmzZs1Z84c1axZM7+aDQAAAAA3PAI7b1JJSUmmtMViyZeyAACg4HEuB5AZxwQAAAAAQE7Ex8erb9++SklJsU4rVaqUVqxYoUceecSt+8v77rtPf//9tx577LG8aCoAAAAA3HQYit3DMjIytHbtWu3bt0+nTp1SQECAqlSpojZt2ui2227Lt3YYhlEgZW9058+f19q1a3X8+HFduHBBJUuWVNOmTdWgQYNsyx44cEDr16/XiRMnZLFYVK5cObVv317ly5f3SNv27t2r6OhonT17VpcuXVJoaKjKlSun1q1bKzQ01CN15EZSUpLWrFmj3bt3W9tXqVIltW/fXkWLFvVIHWfOnNH69et16tQpnT9/XkFBQSpVqpSaNm2qypUre6SOm0l+rC/DMPT3339r9+7dOnPmjBISElSyZElVqFBBbdq0UVBQkEfque7SpUtatWqVDhw4oMTERN12222qVq2aWrdurcKFC3u0roKQ18uX35/Xrejq1atavXq1jh49qrNnzyogIEClSpVSnTp1VL9+/Xxrh7ecy3fu3Kndu3fr5MmTunLlikqXLq3+/furUKFCDvMnJiYqOjpau3btUlxcnBITE1WkSBEFBwcrIiJCtWrVUnh4eD4vheccP35ca9eu1ZEjR5SWlqayZcuqbt26aty4sUfmf+bMGa1du1anTp3ShQsXVLx4cZUuXVrNmjUr8PWWmpqqtWvXaufOnbp48aKCg4MVHh6udu3aKSQkpEDbtm/fPkVHR+vkyZO6fPmy/Pz8FBgYqPLly6tq1aqqXbu2/Pzy97Zp+/bt2rVrl86cOaOkpCSVKlVK4eHhat26tYoUKeL2/LzlmOApsbGxWrt2rWJjY2UYhsLCwtSgQQM1bNjQI0GrKSkpWr9+vWJiYnT27FllZGQoLCxM1atXV/PmzeXr6+uBpSh4mzdv1oEDB3Ty5EklJSWpUqVKevjhh52WOXz4sP755x/Fxsbq0qVL8vPzs173N2/evECvJWJjY7V582adPn1acXFxKl68uMqUKaNWrVqpTJkyHqnj+rXUnj17rPdlRYsWVZkyZRQZGanbb7+9wLaPixcvas2aNTpx4oTOnTtnvfZv2LChatSo4fH6zp8/b73/PXv2rIKCgtS1a9c8qSsv74WPHDmibdu26dixY4qPj5fFYlFgYKDKli2rKlWqqE6dOgoICPDQkgAAANx4Ro0apUOHDlnTPj4++t///ufSbyaO+Pv76+uvv9acOXM81EIAAAAAuIkZ8Ii0tDTjgw8+MMqVK2dIsnv5+voaDzzwgHH48GHDMAzj8OHDpvcHDBjgdP7t2rUz5bdlOz9XX1OnTjWmTp2ao7LXl8Vdy5cvz1F9rix3Ttfj7t27jQceeMDw9/d3WG/Dhg2NtWvXOpznsmXLjObNmzssZ7FYjB49ehhHjhzJ0bq6fPmyMWrUKKNy5cpZrhNfX1+jffv2xqpVq3JUh6tst5OpU6cahmEYV65cMYYNG2YUK1bMYfuCgoKMJ5980oiLi8tRvenp6cb06dONJk2aGBaLJcv1EBkZaUydOtVIT093Or+cbnvLly+3ziMiIsI6vUqVKtkuw7lz5+za/uijj2Zbbs6cOaYyn3/+eb6vr6ycOXPGeOGFF4yyZctmWYe/v7/Ro0cPIzo62uX5ZrWPnjhxwhg0aFCW+2hgYKDxxhtvGFeuXMnR8rjTJldfI0eO9Jrly6vPy1U5PUdJ/3euSUpKMgICAqzTO3bsmG29W7dutZvfmDFjsi330UcfmcosWLAg2zLbt283evbsaWqj7at8+fLGiBEjjMuXL2c7P3fl9Nya+dhmGIYxYMAAh+vflTqvb/OpqanGp59+atSpU8dhnY7OB/v37zf69etnBAYGZtvmcuXKGYMGDTLWrVtnN5+cbme26yGnstrHt2/fbnTp0iXL43LVqlWt59WcmDt3rtGsWTOnx/3bb7/dmDZtmlvH/UqVKlnLV6pUyWnekSNHOlynSUlJxpgxY4zQ0FCH7fL19TX69u1rxMTEOJ2/J4/F19s1duxYo2rVqtnOo0iRIkbHjh2NL7/80uV1lxPx8fHGG2+8keX9hCQjICDAuPfee40dO3Y4nVdu7g1yypP7X+b327VrZ52+ceNGo2PHjlnOKzw8PFfLsGPHDuOBBx4wgoKCsqyjRIkSxjPPPGOcPn06x/VkJaf3ZY72z6yu3a9evWqMGTPG4f1F8eLF7eaTmJho/Pzzz8bDDz9slClTxmk7fH19jS5durh9TM3q+OGK5ORkY8KECUbt2rWzbJfFYjGaNGlizJs3z612ZXbkyBHjiSeeMEqVKuV0HYSEhBj/+te/7O7NPHkPbGvlypVGx44dDT8/vyznUa1aNeOjjz4ykpOTXV7mrM4Ba9euNbp3724UKlTIrp6PP/7YNA93rits5eW9cHp6ujFp0iSjXr162a5/f39/o0WLFsb48eONq1evulUPAADAjS4uLs7u/ujFF18s6Gbli3Pnzhm//vqr8eWXXxrvvPOOMWnSJGPbtm0uld2/f78xY8YMY9y4ccb7779vfPfdd8axY8fytsG5kN3vj86kp6cbe/bsMX755Rfjv//9r/HOO+8Y48ePN7755htj1apVRlJSUr636UaSkZFhbN++3fjxxx+NTz75xHj33XeNr776yli4cGGefIcMAACAG8/NezWcj86fP280bdrUpR9lgoODjWXLlhHY6aEftTyxHv/3v/8ZRYoUybbuQoUKGXPmzDHNb9SoUU6DKK6/ypQpY+zZs8et9fTbb79l+8Oh7WvIkCFGamqqW/W4ytGPw7GxsUatWrVcalvZsmWNzZs3u1Xnvn37jPr167u1Dpo3b26cOXMmy3nmdNvL/APzo48+anovu2CU2bNn280vIiIi2+V/+umnTWV2796d7+vLka+//jrLQF5HLx8fH2P06NEuzdvRPrpq1aosA4JsX1FRUcb58+fdWh532+Tqy9XAzrxevrz8vFzlicBOwzBMwTwBAQFGYmKi03o/+OADu/m1b98+2/befffd1vx+fn5Ov0TLyMgwhg0bZvj4+Li8TGXKlDH++usvl9efK7wlsPPChQtG69atndZpG9j57bffGoULF3a77f/617/s2pTT7SwvAzt/+OEHh8Evjl7du3d36wvvixcvGl26dHFrWaOioowTJ064NP/cBnYeO3bMaNCggUvtKlmypLF161aX162rL0fH4iNHjrh8/WL7yqvrrBUrVrh13efr62u8/vrrWc7vZgzs/OSTTwxfX1+X5jl48GC3gphTU1ONZ555xq1jebFixYz58+fneH05kteBnTExMU4DIB0FdjZu3DhHbXr66add3l9yGti5fv16p0F/jl7du3d360GZjIwMY9SoUVk+fOPslVleBHYmJycb/fr1c2te1atXz/ae4jpH54Bx48Y5vf/1VGBnXt4LX7hwwWjVqlWOPov9+/e71H4AAICbxdixY03XQ/7+/sbZs2fzrL6sHlBzVeaymR8SdMTbOwHJzQNwnv790VZ8fLwxffp047777jNCQkKcXkMXLlzYuP/++40tW7ZkO1/bZXb15eizdmVbsv3d5pFHHsm2jY6MGjXKNJ8PPvgg2zIF3REDAAAAbhw+Qq5cvnxZXbp00caNG03TLRaLIiIi1KRJE0VERFinx8fHq2fPntq9e3c+txSOrFmzRn369FFiYqIkKSAgQJGRkWrSpInCwsJMeVNTU/XII49o//79kqSxY8dq1KhR1qEtixcvrnr16qlBgwZ2QxCeOnVKvXr1Umpqqkvt+uqrr3TvvffqzJkzpulFixZVZGSkmjZtqmrVqsnHx8eu3P33358vw21evXpV3bp10549e6zTSpcurcaNG6tGjRp2w+yePHlSd955p3bu3OnS/Dds2KCWLVsqOjraNN3X11fVqlVT06ZNVbt2bbth8davX68WLVro7NmzOVyy7HXs2NGUXrp0qdP8y5Yts5sWExNjGsImu3LlypVTrVq1ssybX+trxIgRevzxx3X58mXT9ODgYNWpU0dNmzY1HfMkKSMjQyNHjtTzzz/vUh2ZbdmyRXfddZcuXLgg6dpQP1WrVlXTpk1VvXp1u+FWN23apIEDB7pdT0HJ6+XL788rr2Xe95KSkrR27Vqn+R3te+vWrbMe8x1JS0vTqlWrrOmoqKgsh5U1DEMDBw7U+++/r4yMDNN7JUuWVKNGjRQZGWm33506dUpdunTRH3/84bT9N5q0tDT16NFDq1evtk4LCQlRvXr1VK9ePRUvXtyuzOLFizVgwAAlJyebphctWlS1a9dW8+bN1bBhQ0VERNid824Ey5cvV//+/a3n/+vH5CZNmqhcuXJ2+X/77Tf17t1baWlp2c77woULat++vf7880+79ypWrKgmTZqoSpUqdutt06ZNatWqlY4cOZLDpXLNxYsX1blzZ23fvt06rXz58mrSpInq1q2rwoULm/KfO3dOPXr0UHx8fJ62KzExUZ07dzZdv0jXjr+VKlVS48aN1bRpU9WqVSvfhpResGCBunbtanfdFxAQoFq1aqlRo0Z216Xp6el699139dhjj+VLGwvaxIkT9fzzzys9PV2SVKRIEUVGRioqKsrhvjR58mRNmDDBpXlfvXpV99xzjz777DO7Y3mZMmXUoEEDNWrUSKVKlTK9d/nyZfXs2VOzZ8/O2ULls/j4eHXp0kW7du2yTrs+THft2rUVGBjosFxSUpLdtHLlyqlu3bpq3ry5br/9dofH988//1xDhgzx3ALY+O2339ShQwcdPnzYNN3f3181a9a07sd+fn525Tp27OhwuWylpqaqT58+GjVqlFJSUuzquX7NVqdOHZUoUSLXy+SO5ORk3X333ZoxY4bde2XLllWTJk0c3pPt379frVu31rZt29yuc9KkSXr11Vet95r+/v6qUaOGoqKiVL58ebvr1pzKy3thwzDUs2dPrVmzxjTdYrGoXLlyatSokZo1a6batWvn+2cKAADgjWyHS7/vvvtUsmTJAmpN3ps3b54aNWqk2bNn290DXLdt2za1a9dOc+fONU0fPXq0OnXqpPXr1zssZxiGfv31VzVr1kx79+71eNvzU+XKlTVgwADNnTtXcXFxTvMmJyfr559/VpMmTfTuu+/mUwtd0717d4WEhFjTc+fO1ZUrV9yah2EY+vbbb61pX19f/etf/3JaZsqUKapatao+/vhjnTx5Mst8KSkp+vXXX9WwYUONGTPGrXYBAADgJlJwMaU3hyeeeMLuqbtnnnnG7qm7Q4cOmfJmHspZHnhiLjEx0Vi8eLH1Zdtzx/jx403vX3+dOHHCOHHihGma7XBkjsotXrw4257SsnLhwgW323n9ZSu3Tx5e/xzKlStnTJs2zUhISLDmzcjIMP744w+jYsWKpjL333+/sXr1amuPPlFRUcaSJUuMtLQ0a9mkpCTjiy++sOuB7NNPP812/SxZssSut6Du3bsbK1assOuB5Pz588a4cePseuMbO3ZstvW4y/YJx8w9uHTu3NmuN87z588bY8eOtRuW+PbbbzdSUlKc1nXy5Em7Hlrq1atn/Pjjj3Y95yUmJhqzZs2yG0q1W7duRkZGht28r29L48ePN+Xv16+f023vwoUL1nmcOHHCVNZRr3GZ1ahRw+ETl5MnT86yjG0dzp4Wzcv1ldk333xjd7zr37+/sWnTJrtesY4fP2689tprdr3UzZo1y2kdtvtolSpVDElGaGio8dFHHxnnzp2zq2fgwIF263bhwoVO63HH5s2brduB7Tp2ts0cPHiwQJcvPz4vV2U+R73yyiumOl555RWn6zHzuWbdunWmsm+88UaWdaakpGQ5lK6j88l1a9euNeV98803s8z76aef2s27TZs2xpo1a0z70+XLl43Jkyfb9cwaGhpqHD9+3M216Vjmc+vixYvtenH87rvvsj22GUbueuwsXbq06bywZs0a07aWkZFhLF682NQjpW3PcR06dDBWrFhhOqded/XqVWPt2rXGm2++aVSpUsXhsdcTx/jcsN3Hr58r/f39jVGjRtn1kBwdHW3cc889dtuRK+fx3r1725UbPHiwceDAAVO+48ePG8OHD7cbordly5YO13Nmuemx8/rxzc/Pz3jmmWfs2nXlyhVj/PjxdsedYcOGOZy/p47F77//vql8WFiY8dVXXzncBjIyMowDBw4YEydONLp06WJYLBaP99gZGxtrlChRwtSm2267zZg8ebLdOXzt2rUOe8R1NER8bu4NcsqT+1/m8uXLl7f2lBIZGWn88ssvdvchW7ZsMVq0aGEqV7RoUbvzqiP9+/c3lQsKCjJGjBhhHDp0yC7v9u3bjfvvv9+Uv1ixYh7rxS/zfZmrx/HFixcbq1evtpuX7bV75mN037597Xr8SElJcXh9UadOHaNixYrGSy+9ZCxdutS4dOmSXZ6MjAwjOjraeOqpp+x6VbUd8cARd3ui2blzp92IC23atDHmz59vt23Ex8cbX331lWn5JRlPPvlktu0aOnSo3f7WoEED45dffnHY6+f+/fuNCRMmGFFRUYZkvmf35D2wYRjGiy++aNe2e++91+5zPX/+vPH+++/bra+qVatmO6xf5nNAsWLFrPMoW7asMWXKFCM+Pt6U/9ChQ8aOHTtM09ztsTOv74V/+uknU97AwEDjgw8+ME6dOuUwf2xsrDF9+nSjV69ehp+fHz12AgCAW8qVK1fsvkv44Ycf8rTOguyxc/Xq1aZeOgMCAozIyEijSZMmRlhYmN31d9GiRY19+/YZhmEY7733num94sWLG/Xq1TMaNGjg8PvJ2rVrZ/sbiTf32BkYGGjKb7FYjPDwcKNevXpG8+bNjTp16hhFixa1W25JTkeKyu8eOw3DMJ566ilTvmnTpmW7/JmtWrXKVP6uu+5ymv/NN990uAzBwcFGnTp1jKZNm9r9fnz99dxzz7nVNgAAANwcCOzMhXXr1pmGIbNYLMaMGTOclvnqq68cXpB7+sYqNzd97taVG7lpp2Hk/gZVklGzZk2ngTV79+41BWj6+voa1atXN6RrQZ7ObsBtbx7r16/vtH1xcXFGmTJlrPl9fHyMKVOmOC1jGIbxzz//mL5c8Pf3N06ePJltOXdkNTTk4MGDnQYErl271u4m/v3333daV9euXU35hwwZku0XHXFxcUbLli1N5Zz9kOxoCGF3REZGWsuWLVs2y3zHjh0z1dOwYUPr/w8++GCW5b777jtTuW+++SbLvPmxvg4ePGj6HIsUKeJScOHKlStNPySXKlXKaVC4o300IiLCLiDI1uDBg01l7r333mzblhPZfWGUnfxavvz6vHIiN1/Qpqammn68b968eZZ5V69ebTqWZn5oYfjw4VmWe/vtt03tW7ZsmcN8R48etQuSGDBggNPj4eHDh43y5cubyvTs2dPl5XdHToc+zU1g5/XX0KFDXarrn3/+MZXr0KGDy0Mnp6enG3v37nW5be4e43PK0T5euHBhY+nSpU7LvfDCC6YyRYoUcTo0188//2xXz9dff+20jgULFtgFUdoOmWsrN4Gd15d9wYIFTsvZnu9KlSqV7TksN8fi6wFX19vn6pDEhnFtOLbsHoJwl21gb3h4uBETE5Nl/vT0dLugsKJFi2YbJJ7ba253eGL/c3RsufPOO00PYdlKSEgw6tevbyozYcIEp/XMnDnTlL9q1arZnpMNwz5AuEePHm4vY3Zyehy/Lqtr9+zWia1Vq1ZlGwSe2Z9//mm6d2ratGm2ZdzZPlNTU426deua8o8ePTrbffPYsWPWe7jrr61bt2aZ//fff7dbd88995zL56klS5Zk+V5u98eNGzfaDYf+1ltvOS2zefNmIzg42FTm+eefd1om8zng+isyMtKt+0x3tuP8uBd+4IEHXLrOcyQ2NjbbYFgAAICbyZIlS+yuB68HMuaVggzs9LZOQLw9sLNWrVrGiBEjjLVr1zq8V09PTzfWrVtnPPjgg6Z5+/r6Ghs3bnQ434MHD7rdAc3ixYvtOh0xDNe3pfXr15vydezYMdvlz+zxxx83lZ85c2aWeb2pIwYAAADcOAjszAXbG5JnnnnGpXK2F/p5cWNFYKdjtstWqFAhu15NHHnyySftPrNq1ao5/XHZMK7d8NesWdNUzllPSLZPdr733nvZtu26BQsWmMo668kuJxz9OFy/fn2XfuidOHGiqVx4eHiW5Wx75LvrrrtcDqI4efKkKeirVatWWebNbdDB008/bSr/zz//OMz37bffWvOULFnSmDZtmjVdqlSpLOf/6KOPmuafVZBHfq0v296Jf/zxR5fqMAzD+Pzzz01lnfVUaruP+vr6Gps2bcq2jgsXLph6hy1atKjLP7y7w50vBx3Jr+XLr88rJ3L7Be3dd99tLevn52fXW9R1Y8aMseZr3LixMXr0aGs6Kioqy/l37NjRmi8gIMDUu2Rmr732mt3x0JWe/NauXWv3UEhefCleUIGdLVu2dPkYNHfuXJe/+HSXNwV2jh8/PttyGRkZdr0Nvvbaa1nmt83r6jXo2LFjTeUqVark9Dye28DO7AJHr2vWrJmp3Lp165zmz82xuHjx4tayXbt2dausp+3Zs8d0PPDx8TE2bNiQbbnU1FTj9ttvN60HZ70LG8aNH9hZsWJF4+LFi9mWW7RokancnXfemWXejIwMo1atWqZzqytBnddlDhCzWCxOg81zIi8CO509VORJtj2QZHWdfJ072+ePP/5oyvvEE0+43K6///7b1Buks173bY+zDz/8sMv1ZCe3++NDDz1kKn/PPfe4VM42kDkwMNDpfmUb2FmoUCG7Hjmz4852nB/3wpmDv2vVquXWsgAAANxqPvvsM9M1VlBQkMcfdrRVkIGdknd1AuLNgZ3u3sNMnz7dNP8+ffpkWya3v1O6sy1l/g3PYrEYsbGxLtWRmJho+p6pePHiWXaS4M0dMQAAAMC7+Qg5cvHiRc2dO9eaDggI0OjRo10q++6778rf3z+vmgY3PPDAA6pXr162+Xr06GE3bfjw4SpatKjTchaLxa7stm3bHOZNT0/Xf//7X2u6YsWKeumll7Jt23XdunVTw4YNrelffvnF5bI59e6778rX1zfbfIMHD1b16tWt6aNHj2rx4sUO806YMMGU/vjjj2WxWFxqT5kyZfT4449b02vWrNHp06ddKuuujh07mtLLli1zmG/p0qWmMp07d7amz5w5o507dzosl3l+VapUUaVKlRzmy4/1deHCBX377bfWdIsWLfTggw+6VId07fMvVaqUNe3Ottm7d281adIk23whISHq0qWLNX316lXt2bPH5XoKSl4sX0F+Xvkh876XlpamlStXOsyXed/r1KmTOnXqZE1v3bpVly5dsiuTlJSktWvXWtMtW7ZU4cKF7fIZhqEpU6aYpo0fP15+fn7Ztr9Fixbq27evaV5ff/11tuVuFGPGjHH5GJSYmGhKFypUKC+aVKDKly+v5557Ltt8FotF48aNM02bOnWqDMOwy7tr1y6tW7fOmg4MDNR//vMfl9rz4osvKjw83Jo+cuSI/vzzT5fKuqt8+fJ6+umnXcqbeZ+Qru2jeSXzdlfQ29yUKVNMn/FDDz2kpk2bZlvOz89PH3zwgWna5MmTHW4vN4vhw4erePHi2ea74447FBISYk0725b++OMP07n0+eefV9WqVV1u05tvvmn93zAM072ht3L1WJFbjzzyiCmd+dyaW5mvfYsWLar33nvP5bK33367evbsaU3PmzdP6enpdvk2btxoOs4WK1ZMn3/+ec4a7GEXL140XZtZLBZ9+OGHLpXt27evmjdvbk0nJCTohx9+cLnuvn37qm7duq431g35dS/sTecAAAAAb3fhwgVTOiwszOXvfG5EhQoV0k8//aRy5cplmadGjRoaNGiQNZ2enq79+/erWrVqmj59utNrzAEDBqhmzZrWdHR0tE6ePOmZxuez9u3bu5W/f//+pvvEOXPmOPxutqAMGDDA+r9hGJoxY4ZL5f73v/+ZlqNv374KCAhwmPf999/X1atXrelvvvlGd911V7Z1tG3bVuPHj7emz5w5o++++86l9gEAAODmQGBnDq1bt07JycnW9N13363Q0FCXyoaFhalbt2551TS44YEHHnApn+0PWBaLRb169XKp7O23325Kx8bGOswXHR2tEydOWNMPPvig2z82ZQ782rNnj86dO+dWeXeULl1ad955p0t5fXx87H7gXbFihV2+jIwM/f7779Z006ZNTV92uCLzOpCkv/76y63yrurQoYN8fP7vEJo5iCyzzAGaHTt2VPny5U3L5KjcoUOHFBMTY01nDkjLLL/W14oVK0w/gvbr18+tOgoVKqQOHTpY02vXrlVGRoZLZW2DfZxp0KCBKX306FGXyxaUvFi+gvy88oPt/uBoH0pMTNT69eut6Y4dO6pp06YKCgqSdO1LV0fHoLVr1yopKSnLuq7bs2ePzpw5Y01XrFgxy7yOPProo6b0qlWrXC7rzUqXLm0X9O6M7Rfl33//vaebVODcOZe3adNGVapUsaZPnTqlvXv32uWzDWbu1auXSpQo4VIdhQoVsjsm5NX216tXL5eXPT+P35m3u1WrVmV5XZYfbD9L22ODM3fccYcqVKhgTZ8+fVr79u3zWNu8icViUZ8+fVzK6+vra7r2Pnv2rOmeLbOFCxea0u6eL+vVq6cyZcpY03l1zekpUVFRqlatWr7UVblyZVM6qwfb3HX+/Hlt3LjRmr7nnntMgbyuyHzte+XKFYdtsw1479+/v8vH2by2bt06paSkWNOtW7dWjRo1XC6fm2uQhx56yOW87sqve+HM54Bdu3Z5bNsEAAC4GdkGdnrLNXFe8aZOQG5GmX8fSktL06ZNmwqwNWb9+vUz/daTudMEZ6ZPn25KZw4Qzexm74gBAAAAeYvAzhzK/IOS5P4Tau7mR95o3LixS/luu+02U7py5cou/4hoWzY+Pt5hPtsfg13pxc9WxYoVTendu3e7PQ9XtW7d2qXeOq+z3eZt9yFJ2rFjh+kJR29eByEhIaZAlJUrV9oFv+3fv98UnHI98Ctz4JOjnj5tA9WyCpTKr/Xl6W0zPj5ex48fd6mcO3Vl/nJDklc99ZuVvFi+gvy88kO9evVUsmRJa9rRPrR69WprII+/v7/atGmjQoUKqU2bNk7LubrvbdiwwZTu0KGDWz0WtG3b1tS757Zt20xBGjeqJk2auLUemjVrpuDgYGt6zpw56tOnj3bs2JEXzSsQ7l7vtWvXzpR2dK603f7cCaaV7AOWMwdBe5K3Hr/vuOMOUz0dOnTQ7NmzlZqammd1OpKcnKzt27db04UKFVLr1q1dLu/j42MKwpfy7rMsaBEREXbX087k5HwZGBioWrVqud22zD3g5uV1tye40htsdjZu3KjXX39d3bp1U5UqVRQaGqpChQrJYrGYXra9XXvqYbPVq1ebeqbNr2tfb3oosyDPAZ7YhrKSX/fCmc8B6enp6tq1q77++mtTzzkAAAC45vLly6Z0YGBgAbUkf3hTJyA3o7x6ANATKlSoYLq32rt3r929l61Tp06ZRqWrXr26WrZs6TDvzd4RAwAAAPIWgZ05dPjwYVPa3SHJbG/gUDDCwsJcymf7tKWr5RyVtR169jrbH5769Olj9yNpdi/bIU9tn6r1JHe3edv8tvuQZL8OvvjiC7fXQZ06dUzzyMt1kPlmPy4uzm64z8yBYxUrVrT2kpT5B9WVK1faDQFpG3CW1Q+2+bW+bOtp2rSp2/XYDhnr6udiG5zhjO2Xi1nta94kL5avID+v/GCxWEzBcjt27NDZs2dNeTLvQ82bN7cehzPve456+sxcrlixYlkGFRw5csSUduVp/swKFy5sCiBKTk7W6dOn3ZqHN7L9gjY7AQEBevXVV03TZs+erXr16ql27doaOnSo5s6dq1OnTnmymfkqL86Vud3+6tevb0rn1Y8I3nr8fuWVV0zXZocOHVKfPn1UqlQpPfjgg5o4caL+/vvvPP+C/NSpU6aA7lq1asnf39+teeTXZ1nQ3NmWpJydLxMSEuTj4+P2+TJzDyPedK50xN1jdGZ//fWX6tevr2bNmum9997TokWLdPjwYcXFxSktLS3b8hcvXsxx3ZnZXuMMGzbM7c/s7rvvNs3D0ed28OBBUzonQYZ5JbfngCpVqqhYsWLW9NGjR03BslkJCgoyPVjjafl1L/zkk0+qdOnS1vSZM2c0ePBghYWFqWfPnpowYYI2bdqU78H+AAAA3ijzdaN07b7pZuZNnYDcKDIyMrRs2TK99NJL6ty5sypVqqQSJUrI19fX7nrddqSxvBxtLicGDhxoSmfXa+d3331n+l2nf//+Wea92TtiAAAAQN4isDOHbH+ccqcXmZzkR94ICAjI13KSsvzh7Pz58zmeZ1bysscrd7fhkJAQ03AWjn7gvdHWgW3ApW2gWOYgscwBZZl797t06ZI2b95sKrd8+XLr/3Xq1MkyoCG/1ldBfi55sa95E44lOZN53zMMwy4YOqt9L3O5f/75xxRMefnyZdO+aNurZmZxcXGmdE4CHWzL2M7zRpS5901XvfbaaxoyZIjd9N27d+uTTz5Rr169VLZsWdWqVUvPP/98tk/Le5vcXh86OlfmdvsLDQ01nY/zatvz1uN39erV9fPPP9ttrxcvXtSsWbP01FNPqX79+ipZsqR69+6tH3/8MU8CTTmOuC4325LkeHtKSEjIcoj2nPK2c6WtnByjJWnSpElq166d/v777xzX7al1nV/XOJkDAi0WS54GNLrLE8eOzOea9PR0u56YHMnp9uOq/PpsQ0NDNX/+fJUtW9Y0/erVq/r111/1wgsvqGnTpgoNDVW3bt309ddfeywwGQAA4EYTGhpqSnv7PU9ueVMnIDeCefPmqVq1aurUqZM++ugjLV26VLGxsbp06ZJLD8t623X2fffdZwpmnjlzptMRljIHflosFqe9cN7sHTEAAAAgbxHYmUNXrlwxpW1vyLJzsw9bAfflxY1sXvY25e42b7FYVKRIEWvadh+Sbrx10LZtWxUqVMiazhxMZhiGKUAzc3BZaGioaRj3zOV27txpCjazHS4xs/xaXzfa53KruxU+L9v9IvM+dOnSJW3ZssVh3gYNGpiCGTKXW7lypanXMWf7nu3xKyfndNsyrgRVeLvMx0NXWSwWTZo0Sb///rvTYaj37t2rTz/9VM2bN1fr1q3tAuK9VW6vDx2dK3O7/dmej2+Gbc9dd911l/755x8NGTJEQUFBDvPExcVpzpw5evjhh1WpUiX997//9WjAKceRgpUX50pvf6AkJ8fo5cuX66mnnjItm5+fn9q3b69XX31VX3zxhX7++WfNnz9fixcvNr3yQn5d42Tel4oWLWoKhi9oBXXsyMn24478vH5t0qSJdu7cqVdeecUuWOG6K1euaNGiRRo8eLAqVqyoUaNG0YsnAAC45dheK9mOmHOz8aZOQLzd66+/rnvvvdfhSDOu8vTDlrlVtGhRPfDAA9b0hQsXNH/+fId5t23bph07dljT7du3V6VKlbKc963QEQMAAADyjuOuqJAt2x9Drl696lb5m33YCrjPNvhj7NixLg//kRXbYbY9yd1t3jAM0xOojgIpbNfBQw89pEcffTRnDfz/ypUrl6vyzgQGBqpp06Zas2aNJGn16tVKSUmRv7+/3fDQtr17durUSdu2bZN0rafP1157TZLrw7BL+be+bOuZOnWqKlSokKt6bIePhefcCp9XjRo1VKFCBR07dkySubfclStXWofBCQoKUtOmTa3vWSwWdejQQT///LO13EMPPSTJvX3P9viVk3O6bRnb4a1uNXfeeafuvPNOHT58WH/++adWrFihVatW6cSJE3Z516xZo1atWum7774zfeHqja5everWZ2u7XTg6Vzra/tzpGdT2fHyrbnsVKlTQpEmT9NFHH2nJkiXWbS46Oto0lJZ07cer5557TitXrtSsWbPk6+ub6/o5jhQs23NlaGioZs2aVUCt8V4vvfSS6YfGu+++WxMnTsz2uiKvfqCz/dyGDh1qN7S6u6pUqWI3rVixYtaeMa9evaqMjAyvCe68WY8d+X0vHBoaqvfff19vv/22VqxYoeXLl2vlypXavHmzXQDn5cuXNXr0aC1ZskR//vmn2w9tAAAA3Khq1aplSl++fFkHDhxQtWrVCqhF8AbTp0/Xe++9Z5pWpEgRtWnTRk2bNlXFihVVsmRJFS5cWP7+/tY8p0+f1iOPPJLfzXXLgAED9M0331jT3377rXr16mWXz3aY9gEDBjid763QEQMAAADyDoGdOVSiRAlT+ty5c26Vz4sntHBjsx1Gr3LlyurcuXMBtSZ77m7zcXFxpptN231Isl8HJUqU8Op1IF0L/roe2Hn16lWtW7dO7dq1MwWaRUZG2g3317FjR40fP17StSCl5ORkFS5c2FTO19dX7dq1y7Lu/FpftvXUrl3bFCwH73KrfF4dOnTQjBkzJEkHDx7UkSNHVKlSJdM+1KZNG7sepjp27GgK7Lwu8/8lS5ZUvXr1sqw7JCTElM7JOd32GGo7z1tV5cqV9cQTT+iJJ56QJB06dEhLly7VnDlz9Oeff1rPIykpKerfv7+aNWumihUrFmSTnTp37pxbATO225Kjc6Wj7c+ddXDhwgXT+fhW3/YCAwPVs2dP9ezZU5IUHx+v1atXa8GCBfrxxx9Nwx7/8ssv+vDDDzVs2LBc18txpGCVKFFCfn5+1p6aExMTvf6aM7/t27fP+hCSJNWtW1dz5swx/TCXlbwaEs72Gqds2bJ58rmFhoZa933DMHTu3DmVKlXK4/XkhCeOHZnL+Pr6ekVgZ0HdC/v7+6tLly7q0qWLpGvHgvXr12vhwoX64YcfTA+YrFmzRi+//LK++OKLPG8XAACAN2jevLnpvkmSNm/eTGDnLSwlJUWvvvqqadqjjz6q999/P9uHjvfu3ZuXTfOINm3aqHLlytaeSBcuXKhz586Z7lfS0tL0ww8/WNOBgYHq3bu30/neCh0xAAAAIO94R7cTNyDbnj127tzpVvm///7bk83BTaBy5cqm9IEDBwqoJa5xd5vPPDSFZL+8jqZ5+zqQ7Hv1u97rX+be/xwN6Zx5GPekpCStXbtW6enpWrVqlTVPw4YNHQb1XJdf6+tG/FxuZbfK55XTfS/ztJiYGB0+fFjnzp2zGz7HYrFkWbft0DrR0dFutT05Odn0ZWbhwoVVunRpt+Zxq6hSpYoGDx6sRYsWKTo62nT9lZSUpM8//7wAW5e9vDhX5nb7s83vbKioW1FwcLC6deumzz//XEePHtWgQYNM73/88cceGSqtbNmypgC5PXv2KCUlxa158FnmnMViMa2vxMREhz0E38rWr19vSj/++OMuBXVK0j///JMXTcq3a5zq1aub0ps3b86TenIit+eAQ4cOmYZer1ixotNrnvziLdevRYoUUYcOHfTBBx8oJiZGb7zxhun9r7/+WvHx8QXSNgAAgPwWGBioRo0amab9+uuveVpnbq5N3R1hzNt547pYsWKFTp8+bU136dJFU6ZMcWkkmbx6ANCTLBaL+vfvb02npqbqxx9/NOX5/fffdebMGWu6d+/eDkfcycxRRwydO3fO1YuHewEAAG4dBHbmUFRUlCm9cuVKt8q7m/9mZTuknSd+KL9RdejQwZS2HRbY26xevdpuqFJnbLd5Rz0INm3a1PT04tq1a5WUlJTzRjrhqW2vRYsWKlKkiDW9dOlSuwBNR8Fl14dxz1xu69atpmE5HJXLLL/W1422bealzF+oeevxyts/L0/te7b7x9KlS3XmzBlTMImjfej6MO6Zyy1fvtzUjuz2vebNm5vSK1ascGs5/vrrL9Mwn40aNXI5WOZWVrduXX311VemaatXr3aY11uuL9y93st87pAcnytttz9393Hb/LbzuxHk17E4MDBQX331lSIiIqzTTp065ZGAI39/fzVs2NCaTklJyXJ7dsQwDK1YscI0zVs+S2/Z/7Jzq5wvcyrzj3WSVLNmTZfL5tW6zK/PrE2bNqb0woULPTr/3Hy2N+s5wBv3x0KFCuntt99W69atrdNSU1O1YcOGAmwVAABA/rrvvvtM6Tlz5uTpaHQBAQGmdGJiostlz5496+nmFChvXBe2DwD++9//drlsXj0A6Gn9+/c3fe9kO+z69OnTTenshmGXvOdBNgAAANyYCOzMoZYtW5qCMBYsWODyE2dnzpzx+I9DN6rAwEBT+mZ7qtIdTZs2NT1lt2zZMu3atasAW+TcmTNn9Mcff7iUNyMjQ999951pmqMhxv39/U298CUkJGjq1Km5a2gWPLXtFS5cWK1atbKmN27cqBUrVlh7cvHx8VH79u0dls0cPLZs2TLTUNCSfY+EtvJrfXXu3Fl+fn7W9MyZM/P0Czxvlnm78dbjlbd/Xp7a98LDw01DPy1fvlzLli2zBkeULFkyyyFpMu83Odn3atasaeph88iRI1q+fLnLbf/mm29MaUfHQziW+Xgr2Q9FfZ23XF/MnDnTFMTrzF9//aVDhw5Z02XKlHEYSGW7vcydO1eXLl1yqY7U1FTNmDHD6fxuBPl5LPbz81OzZs1M07La7txlu+6nTZvmctnFixfr6NGj1nTZsmVVo0YNj7Qrt7xl/8tO165dTenPPvusgFriWEGvR9tgQ1d7lE1OTrY7z3lK+fLlVbduXWv64MGDWrRokcfrsd02ZsyYYXr4Krdy89k2b97c9D3E6tWr3fpR0FuvQbz5XtjVaw8AAICb0RNPPGHqjTA5OVnjxo3Ls/qCg4NNadsHzpzZtGmTp5tToLxxXeTnA4AF9bBjlSpVTA93bd68Wbt375YkxcXF6bfffrO+V7FiRbuH1BzxxgfZAAAAcOMgsDOHSpQoYXpaMSkpSSNHjnSp7BtvvOH2UIs3q9DQUFP68OHDBdSSgleoUCENHTrUmjYMQ0888YTLASEF4fXXX3ep187Jkydr//791nSFChXUpUsXh3lfeeUVU3rkyJGKjY3NXUMd8OS2lzkILDU1VaNGjbKmGzVqlOVw6pkDOzdt2qR58+ZZ0/7+/qYvELKSH+urdOnS6tevnzWdkJCgp59+2qN13CgybzcxMTEF1xAnvP3zyqt978SJE6ZhuZ0Np24bVJ35y7QKFSpkGxxlsVj02GOPmaa98sorLh0PN27cqJkzZ5rm9fjjj2dbDtfYBlNkNeyQt1xfHD9+XJ9++mm2+QzD0KuvvmqaNnDgQIfbcGRkpFq2bGlNX7lyxeVr0E8++cR0joiIiNAdd9zhUllvkt/HYle3O3c99thjps/4+++/15YtW7Itl56ermHDhpmmedNxxFv2v+zce++9pgcENmzYoC+//LIAW2RW0OuxTJkyprSrPcqOGDHCrR8c3WV77Tt06FCXg9td1ahRI9N1eHx8vEevpXLz2ZYoUUL333+/NW0Yhl5++WWXyv78889at26dNR0UFKSHHnrI5brzkjffC+fVOQAAAOBGEBISYvcd2EcffeSRXswddX5SqVIlU3rbtm0uz2/WrFm5bpM38cZ1kdMHAE+fPq05c+a4VVdBPuw4cOBAU/p6L52zZs1ScnKydXq/fv2y/P45M2/viAEAAADejcDOXHj++edNF+2ff/65vv/+e6dlvv76a3399dd53bQbRp06dUzpX375pYBa4h2ef/55Uy9wq1ev1v333+/Wj5UJCQn69NNPNWXKlLxookl0dHS2w22sX79eL774omnaM888I19fX4f527ZtqzvvvNOaPnv2rLp06aI9e/a43K6MjAz973//swuSyaxSpUqmp42XLl2quLg4l+vIzLZ3v8w/fDsb0rl58+bWodTT0tJMQ5k0a9bMNMx6VvJrfb355pum9syaNUtPPPGEW0HqFy5c0Ntvv216qvVGk/mYde7cObthcL2FN39etsf9X3/9Ncc/2ud038tc7vTp06bAc1eespakp556SkWKFLGmt27dqieffNLp0+OxsbG6//77TXl69uypqlWrulTnzeaTTz7R559/7tYXsx988IEp3bhxY4f5PHmMz6033ngj2x5dX3rpJVOwTUBAgJ588kmn+TP79NNP7YaGsvXHH3/ojTfeME0bOnSoXQ8IN4KcHot3796tp556yq3e7TZt2mSaf4kSJVSlShWXyztTo0YN3XPPPdZ0RkaGevfurWPHjmVZxjAMPf7444qOjrZOCwwMdLq95Ddv2v+c8fX11X/+8x/TtOeff16TJ092az779u3TkCFDdPz4cU82z+58+fPPP3t0/tnJHEAuSRMnTsx235k0aZLGjx+fl83Sv/71L9O62bdvn+666y6dOHHC5XmkpqZq+vTpTnsaGjlypOle/4cfftDQoUNd7iXGtjfwzHJ7D/zCCy+Yjt3z5s3T22+/7bTM9u3b7QLAH3/8cbtegApSXt8Lx8fH61//+pdbP4jHxMSY9j0fHx81aNDA5fIAAAA3g1GjRikiIsKaTk9P17333qsdO3bkaH6pqal6+eWXHT48VbNmTdN3mosXL3ap9/xNmzZp7ty5OWqPt2rUqJEpPXfuXKWlpWVbbs6cOdq8eXOetCmnDwA+++yzpoBIVxTkw44PPPCAaTv8/vvvlZGRYffdW//+/V2an7d3xAAAAADvduP9kutFWrRoYXpa0TAM9evXT88995xpaETp2g8CTz31lIYMGSJJphvhW1nDhg1VsmRJa3rFihXq2LGjJk6cqIULF2rJkiWm182uePHimj17tgoVKmSd9uuvv6pOnTr68MMPs+yJ8ejRo/r555/1yCOPqFy5cnr++efttkFPu/7E6FdffaUuXbpo69atpvfj4uL0/vvvq0OHDqagnbp169oFetr69ttvFR4ebk3v3btXjRs31tChQxUdHe3wB9W4uDgtWbJEL7zwgiIiInTfffc5fXLYx8fHFPh18eJFNW/eXOPGjdO8efPstj1nAQlNmjRR8eLFHb7nLLjMWa+czsrZyo/1VaVKFbsfSL/66ivdfvvtmjx5ssOemQzD0MGDBzVjxgz16tVLFSpU0IgRI27op1Fte5q97777NHz4cM2ePVt//vmnaZvJPKRyfvPmz6tUqVKmIdL379+vFi1a6JNPPtH8+fPt9r2kpKQs59WxY0eXeuW05axXTlf3vQoVKuj99983Tfv666/VsWNHU5C2dO3LuilTpqhx48amY3NoaKipl9FbzeHDh/XMM8+oXLlyGjBggObOnauTJ086zLt9+3Y9+OCDpt4vfXx89OijjzrM78ljfG5UqlRJycnJ6tq1q0aPHq2zZ8+a3t+xY4d69Oihjz/+2DT9rbfesuuZIbNevXqpd+/e1rRhGBo4cKCefPJJu2PPyZMn9frrr+uee+4xBXe3bNlSzzzzTG4Wr8Dk9FicnJysiRMnqmbNmmrXrp3++9//aufOnQ572z179qw++ugjderUyfT+gAEDTMMg59YXX3xh6tn7yJEjatiwob755hslJCSY8q5fv17t27e3G7J9/PjxKleunMfalFvesv+54sEHH9QTTzxhTaempmrIkCHq1KmT5s+fb/cZXM8THR2tCRMmqE2bNqpVq5YmT57s8Z4F27dvb7onmD59unr16qVvvvlGixYtMq3DNWvWeLRuSapWrZpatGhhTV++fFlt27bV7Nmz7X5MjI6OVt++fa0POERGRnq8Pdf5+vrql19+MV17r1u3TnXr1tXIkSO1b98+h+VOnz6t+fPn64knnlD58uU1cOBA63B6jnTu3NnunuWTTz5R48aNNWfOHIfbxoEDB/TJJ5+oSZMm6ty5c5bzzu09cJMmTfTCCy+Ypo0YMUL333+/du7caZoeFxen8ePHq1WrVqYAyapVq2YbDJrf8vpeOCMjQz/88IMaNWqkqKgojRs3Tlu3bnX44FN8fLymTJmiFi1amNZb9+7d7X7MBgAAuNmVKFFCs2bNMl2nnTp1Su3atdOPP/7o1hDZK1euVJMmTfThhx86LOfr62vqxCAxMdFuxApbBw8eVJ8+fVwaSedGUqZMGTVs2NCaPnr0qN13kbY2bdqUpyN62D4AOHbsWLse7m29+eabmj17ttt1FeTDjsWKFTON2Hjs2DFNmjTJ9FB2ixYtsh31KTNv7ogBAAAAXs5Arly6dMlo2LChIcn0slgsRpUqVYyoqCijcuXKpveKFStmLFy40DRtwIABTutp166dKX92Ro4cacq/fPlyl5fJ3bpya8yYMXbrL6uXrcOHD+fpeswsc7l27dq5XG758uWmsiNHjsy2zI8//mgEBAQ4XAdly5Y16tevbzRt2tSoWbOmERIS4jCfK/W4Y+rUqab5f/7558btt99umlamTBmjSZMmRs2aNY1ChQrZtSkkJMSIjo52qb6///7bCA8Pd7hsxYsXN2rXrm00a9bMqFOnjlG2bFmH+bL7nFasWGFYLBaXtr3s9qHu3bvblSlcuLBx9epVp+XGjh3rsL5Vq1a5tJ7yc30ZhmF8+OGHho+Pj8Py4eHhRsOGDY2oqCijevXqRrFixRzmmzp1apbzz80+aruNOqsnp86fP2+ULFnSpW3G0T6Y38uX159XTn377bcuH/cPHz7sdF62x6Hry5adJ5980mF9sbGxLi9HRkaG0a9fP4fzCQsLMxo1amTUrl3bKFKkiN37RYoUMX7//XeX63LXgAED3FqPOSmXk/NbZs8//3yW665OnTpG8+bNjQYNGhglSpRwmG/48OFO5+/JY7yrbPfxZcuWGX5+fta0n5+fUb16daNJkyZG+fLlHbblzjvvNFJSUrKt6/z580b9+vUdziMiIsKIiooyqlat6vAYULlyZSMmJibbOipVqmQtU6lSJad5c3Pt6e71XE6Pxdu2bXOYp0iRIka1atWMqKgoIyoqyqhUqZLDbad69epGfHy8y8vlqvnz5xuFCxd22K7atWsbjRs3NkqVKuWw7Y8++qhLdeTm88mJ3O5/md9357rbMNw//qWkpBh9+vRx2DY/Pz+jatWqRlRUlNGwYUOjcuXKhr+/f47OVznx6KOPurQOHe2fnrguWrNmjcNr+qCgIKNhw4ZG48aNjdKlS5veCwwMNLZu3erWZ5iT7XPZsmVZ3geVLFnSqFu3rtGsWTMjMjLSCAsLc5gvu2NNampqltuGv7+/Ub16daNZs2ZG3bp1HZ6rnMnNPbBhGEZSUpLRuXNnh/nLlSvn9J7stttuM7Zs2ZLtOnbnHJCVnFyP5NW9cFxcXJafZZUqVYzGjRsbTZs2NapWrWr4+vra5QsLC3PrOhEAAOBmM23aNIffMURFRRkTJ040jhw54rDcvn37jA8//NBo0aJFtvcxhmHY/XYmyRg0aJBx/PhxU77z588bH3/8sREaGmpIMqpWrerWfciN8FvRF198YcpvsViM4cOHGxcuXDDlO378uPHWW29Zv4O0XRee+t0sJSXFdJ8gyahRo4bx559/GhkZGdZ8GRkZxpo1a0z3LJGRkW61yfa+0sfHxxg4cKDx7bffGosWLTIWL15sfW3evNmufG7vif/8809Tedt7lIkTJ7o1P8O4dq9ju23XqFHD+Oqrr4xTp07Z5c/IyDAOHDhgfPvtt8Z9991n/Xzz4vt6AAAAeC8/IVeCg4P1559/6q677jINb2AYhg4dOmTXa1JwcLDmzZtHj52ZvP7669q3b5++++67gm6K13jwwQdVvXp1Pfzww3a9zpw8eTLLHs2u8/X1zfOem4oWLaqFCxeqS5cu1t5uTp06pVOnTjnMX7p0af3222+qV6+eS/O//fbbtWXLFvXr109//PGH6b1Lly65NCRfxYoVnb7frl07ffLJJ3rppZdy3ctSx44d7Z6UbNGihWmoZkcc9Q5YtGhRNW/e3K3682N9SdKLL76oOnXqaNCgQXbb4dGjR7PtKbZw4cIqVapUtvV4q9DQUP3yyy964IEHdObMmYJuTra89fPq16+fdu7cqQ8++MCtp/od6dixo93QT670utmpUydNnDjRNK1atWqm3m+zY7FYNH36dJUpU0YffvihMjIyrO+dPXvWrnfG68qUKaPZs2dn2WPvrc7ZupOunePeeOMNjR492ul8PHmMz6kOHTpoxowZGjBggFJSUpSWlqb9+/dnmb9bt276+eefTb1gZCU0NFQrV67UAw88oMWLF5vei4mJUUxMjMNyUVFRmjdvnsqWLevWsngTTx+LExMTsx1iukWLFpo7d66KFSuW6/ps3X333frjjz/Up08f0/IkJiZq165dDsv4+vpq2LBhevfddz3eHk/whv3PVYUKFdKsWbPUuHFjjRo1SomJidb30tLSdPDgQR08eNDpPEqWLJntNV9OTJgwQUePHrXbx/NLy5YtNXnyZA0ePNj0OV65csXhcNYhISGaM2eOqVeZvNKhQwdt2rRJDz30kDZt2mR679y5c9n2GmOxWLI95/v5+WnmzJmqUaOGxo0bZ1oHKSkpTo/n2cntPXDhwoW1YMECPfbYY3bzOHHiRJZD01evXl2//vqratWqlaN680N+3wunpKRk29N+rVq1NG/ePLeuEwEAAG42AwYMUPHixTVgwADFx8dbp2/atMl6TR4aGqqwsDAVL15c58+f18mTJ02jeWWW1fcSd911l+655x7Nnz/fOm3q1KmaNm2aqlevrhIlSujChQs6dOiQ9bu4wMBA/fTTT2rcuLGnFtcrDB48WJMnT7befxmGobFjx2r8+PGqUaOGgoKCdPbsWdMw5WXKlNGUKVPUvn17j7enUKFC+uCDD9SnTx/rtH379qlLly4KCQlRlSpVlJ6ertjYWF24cMGap3Tp0po0aZLatm3rcl0NGzZUx44dtWzZMknXeuCfNm2a3Sgm0rXvIFasWJHj5XKkU6dOKl++vI4fPy5JplGlChcurL59+7o9zwcffFAnTpzQK6+8Yt129+3bpyFDhmjIkCEKDw9XyZIl5efnp4sXL+rUqVO6fPmyZxYIAAAANyyGYveAkiVLat26dRo3blyWN6O+vr66//77FR0dnSc3VDcyX19fzZgxQ6tXr9bTTz+tpk2bqmTJkipcuHBBN61ANW7cWLt27dK3336r5s2by9fX12n+woULq2PHjho/fryOHj2qIUOG5HkbK1SooE2bNumVV15RUFCQwzyBgYEaMmSIdu3apaioKLfmHxYWpt9//12rVq1S9+7dFRgY6DS/xWJRw4YNNXz4cP3999/69ttvs63j2Wef1e7du/XWW2+pY8eOKleunIoWLZrl8M5ZcRRI1rFjx2zLNWrUSCEhIaZprVu3dimox1Z+rC9JuvPOO3Xo0CF9+umnqlevXrbrKigoSHfffbe+/PJLnTx5Ut26dXN5mbxR27ZttWfPHn322Wfq3r27KleurGLFisnHxztPqd76eY0bN07bt2/Xyy+/rNatW6tUqVIKCAhwez453fc6dOhgty5cKWfLYrHo/fff19atW9WjRw+n565y5cppxIgR2r9/P0GdksaMGaOZM2fqkUcecSlQIigoSI888oi2bduWbVDndZ46xufGgw8+qI0bN+qOO+7IMk+VKlX0zTffaMGCBW4FhxUvXlx//vmn5syZo6ZNmzpdrrp162rq1Klav379DR3UeV1OjsX16tXTmjVr9Oqrr6px48by88v+GbeWLVvq22+/1Zo1a1S6dGlPLoJJu3btdODAAb3++utOA5ICAgJ07733atu2bV4b1HmdN+x/7hg2bJgOHz6sl19+2aWHXcqUKaNHHnlEc+bM0YkTJ/Jk+yhWrJj++OMP/f7773r00UfVoEEDhYaG5ug6MacGDBigVatWOf0BLiAgQI8++qj++eeffL3XrVq1qjZu3Khff/1VHTt2lL+/v9P8vr6+atGihcaMGaMDBw7oP//5T7Z1WCwW/ec//9Hu3bs1cOBAlShRwmn+0qVL6/HHH9fGjRuzbUtu74H9/f01Y8YM61Duzo5pVatW1YcffqidO3d6dVDndXlxL1yiRAlt27ZNo0aNUqtWrVxa1/Xq1dOnn36qv//+261hFgEAAG5W9957r6Kjo9WzZ0+H71+4cEF79+7Vxo0bdfDgQYdBnbfddps+/vhjrVq1Kst6pk+fbvdbgmEY2rdvnzZu3KgDBw5YA+NCQ0O1cOFCNWrUKBdL5p38/Pw0Z84cVa1a1TQ9LS1Nu3bt0saNG01BnRUrVtSSJUtUqVKlPGvTAw88oHfeecfu3j4uLk5btmzR9u3bTUGd4eHhWrJkSY4ekpoxY0aBfa4+Pj7q16+fw/d69uyZ7b1hVl588UUtXLjQ4XdzR48e1bZt27Rp0ybt37/fYVDnjd5xBgAAANxnMXLbVRZMMjIytHr1au3bt09nzpxR4cKFVaVKFbVp00YlS5Ys6ObhBnbp0iWtX79eJ06c0Llz55SamqpixYqpVKlSqlWrlmrWrJmjoChPSUpK0urVq7V7927Fx8crJCRElSpVUocOHVS0aFGP1JGammr9suLcuXNKSEhQYGCgQkJCVKNGDdWuXVvFixf3SF03g/xaX2fPntWGDRt06tQpnT9/XhkZGQoODlaZMmUUGRmp6tWr52sAApzj88pbV69e1erVqxUbG6tz585Zv2yrU6eOGjRoUNDN82rHjx/Xnj17dPjwYcXFxSk5OVlFixbVbbfdpjp16uj222/3+oc+2rdvr5UrV1rTtpfZx44d05o1axQbG6u0tDSVLVtWdevWVZMmTTxS/+nTp7V27VqdOnVKcXFxCg4OVunSpdWsWTOXAtVuNQkJCfrnn3908OBBnT59WgkJCfLz81Px4sVVpUoVNWzYUGFhYQXStu3bt+uff/7RmTNnlJycrLCwMIWHh6t169Yeu66CcwcOHND27dt19uxZxcXFWbeNihUrKjIy8pYcgSEmJkZr1qzRyZMnlZycrBIlSqhmzZpq2bJlrrbLUaNGmQL2V65c6VZPLtddvXpV69ev19GjR3X+/HklJiYqKChIJUuWVM2aNRUZGZntg0/ZSU9Pt/5IffbsWV29elVBQUEqX7686tSpo1q1ahVY8PLFixe1evVqnThxQufPn1dgYKBKly6tBg0aqGbNmgXSJk/Ji3vh5ORk7dq1SwcOHNDJkyd15coVWSwWBQcHKyIiQg0aNFD58uXzaIkAAABufNu3b9fkyZM1Z86cLEfxui4wMFBt27bVgAEDdO+997r0/U5CQoLGjh2rCRMm6MqVK3bv+/n56cEHH9S4ceOsD0hmvhbPrhfH7L7DccadejJbsWKFOnToYE2PHDlSo0aNyrbc+fPn9dZbb2nKlClKTk62e79IkSJ6/PHHNWbMGJUoUUIxMTGqXLmy9f0BAwY47Onyupysi0WLFum1115TdHS0w/eDg4M1ePBgjRgxQsWLF3e7TdelpqZq3rx5mjt3rqKjo3X8+HFduXJFaWlp1jyOPoNp06Zp0KBB1vTUqVM1cODAbOvLbM+ePYqMjLSbPn/+fN19991uzctWUlKSJk+erK+//lo7duxwus6DgoLUrl073XPPPerbt69dRyEAAAC4uRHYCQAAAHhAbn4UAIBb1fDhwzVu3DhrevPmzTfdEIoAAADAzezgwYPauXOnjh49qsuXL8swDJUoUUKhoaGqXbu26tSpk20v7FlJSUnRX3/9pf379+v8+fMKCAhQ1apV1a5du1suwC0hIUErV67U4cOHdfHiRRUtWlS1atVS27Ztc/0QW07t3r1bGzZs0JkzZ5SWlqbbbrtNkZGRat68ebajKuAaOmIAAACAMwR2AgAAAB5AYCcAuO/xxx/XlClTrOn9+/erWrVqBdgiAAAAAAAAAACAgudT0A0AAAAAAAC3pp07d1r/9/f3vyWHuQcAAAAAAAAAALBFYCcAAAAAAMh30dHR2rRpkzXdsGFD+fn5FWCLAAAAAAAAAAAAvAO/mAAAAAAAgDx35coVrV+/XleuXNHWrVv1xRdfKCMjw/r+Qw89VICtAwAAAAAAAAAA8B4EdgIAAAAAgDx34MAB3XHHHQ7fq1KligYPHpzPLQIAAAAAAAAAAPBODMUOAAAAAAAKTMWKFTV//nwVLVq0oJsCAAAAAAAAAADgFeix8xaVkZGhEydOqFixYrJYLAXdHAAAgBteenq6KR0fH19ALQEA73TlyhVJkp+fn0JCQhQZGam77rpLAwcOVNGiRTlu3sQMw9Dly5dVrlw5+fjwjDGQU3yfBwAAAAAA8gPf5wHewWIYhlHQjUD+O3bsmMLDwwu6GQAAAAAA4BZx9OhRVahQoaCbAdyw+D4PAAAAAADkJ77PAwoWPXbeoooVKybp2kE4ODi4gFsDAAAAAABuVvHx8QoPD7d+FwEgZ/g+DwAAAAAA5Ae+zwO8A4Gdt6jrwzUFBwfzRTAAAAAAAMhzDB0N5A7f5wEAAAAAgPzE93lAwfIp6AYAAAAAAAAAAAAAAAAAAADgGgI7AQAAAAAAAAAAAAAAAAAAvASBnQAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAkCOwEAAAAAAAAAAAAAAAAAALwEgZ0AAAAAAAAAAAAAAAAAAABegsBOAAAAAAAAAAAAAAAAAAAAL0FgJwAAAAAAAAAAAAAAAAAAgJcgsBMAAAAAAAAAAAAAAAAAAMBLENgJAAAAAAAAAAAAAAAAAADgJQjsBAAAAAAAAAAAAAAAAAAA8BIEdgIAAAAAAAAAAAAAAAAAAHgJAjsBAAAAAAAAAAAAAAAAAAC8BIGdAAAAAAAAAAAAAAAAAAAAXoLATgAAAAAAAAAAAAAAAAAAAC9BYCcAAAAAAAAAAAAAAAAAAICXILATAAAAAAAAAAAAAAAAAADASxDYCQAAAAAAAOCGdfbsWS1atEhjxoxRjx49VLZsWVksFutr2rRp+dKOU6dOady4cWrRooXKli2rgIAARUREqGvXrpo+fboSExPzpR0AAAAAAAAAbnx+Bd0AAAAAAAAAAHDXqVOn1Lx5cx05cqSgm6KZM2fqySef1KVLl0zTjxw5oiNHjuiPP/7Q2LFj9cMPP6hhw4YF1EoAAAAAAAAANwp67AQAAAAAAABww0lKSvKKoM4ZM2booYceMgV11qhRQ+3atVOlSpWs0/bs2aP27dtr165dBdFMAAAAAAAAADcQAjsBAAAAAAAA3NDCwsLUtWtXvfnmm5o3b16+1btjxw4NHjzYmq5Zs6Y2b96svXv3asWKFYqJidGff/6p0qVLS5Li4+PVvXt3JSUl5VsbAQAAAAAAANx4GIodAAAAAAAAwA0nNDRUs2fPVlRUlKlnzPz0xhtvKDk5WZJUsmRJrVy50hrEed0dd9yhpUuXqnHjxkpOTtahQ4f05Zdf6oUXXiiIJgMAAAAAAAC4AdBjJwAAAAAAAIAbTnBwsO6///4CC+rctWuXfvvtN2v67bfftgvqvK5OnToaOnSoNf3+++8rIyMjr5sIAAAAAAAA4AZFYCcAAAAAAAAAuGnOnDnW/4OCgvSvf/3Laf4hQ4ZY/z916pTWrVuXZ20DAAAAAAAAcGMjsBMAAAAAAAAA3LRgwQLr/61bt1ZQUJDT/FWqVFHNmjUdlgcAAAAAAACAzAjsBAAAAAAAAAA3GIahHTt2WNMtWrRwqVzmfNHR0R5vFwAAAAAAAICbA4GdAAAAAAAAAOCG2NhYJSQkWNNVq1Z1qVzmfLt37/Z4uwAAAAAAAADcHPwKugEAAAC4sUUMtx9CMmbs3QXQEgAAACB/HDlyxJSuWLGiS+Uy5zty5IgMw5DFYnGYNzk5WcnJydZ0fHx8DloKAAAAAADy2vGLiYpLSDFNCwn0V/kSRQqoRQBuBgR2AgAAAAAAAIAbbIMsixcv7lK54OBg6/8ZGRm6evWqAgMDHeZ97733NHr06Jw3EgAAAAAA5LnjFxPV+cOVSkxNN00vUshXS15qR3AngBwjsBMAAAAAAAAA3JB5GHZJCggIcKlckSLmH3MSEhKyDOx87bXX9OKLL1rT8fHxCg8Pd7OlAAAAAAAgL8UlpCgxNV0T+jZQtVJBkqQDZ65o6KztiktIIbATQI4R2AkAAAAAAAAAbkhNTTWl/fxc+5rVNl9KSkoWOaXChQurcOHC7jcOAAAAAADku2qlglS3vGsjegCAK3wKugEAAAAAAAAAcCMpWrSoKZ2UlORSOdt8WfXWCQAAAAAAAODWRmAnAAAAAAAAALghKCjIlE5MTHSp3NWrV53OBwAAAAAAAAAkAjsBAAAAAAAAwC0lS5Y0pU+ePOlSuVOnTln/L1asmAoVKuTRdgEAAAAAAAC4ORDYCQAAAAAAAABuqFGjhikdGxvrUrmjR49a/69Vq5ZH2wQAAAAAAADg5kFgJwAAAAAAAAC4ISgoSOHh4db09u3bXSq3bds26/+RkZGebhYAAAAAAACAmwSBnQAAAAAAAADgprZt21r/X716dbb5U1NTtWHDBoflAQAAAAAAACAzAjsBAAAAAAAAwE09e/a0/r97925Tb5yO/Prrr7p8+bIkycfHR927d8/T9gEAAAAAAAC4cRHYCQAAAAAAAABu6tatm8LCwqzpt99+O8u86enpGjt2rDV91113qVSpUnnaPgAAAAAAAAA3LgI7AQAAAAAAAOD/s1gs1tfAgQOzzBcYGKjXXnvNmp4zZ44mTJhgl88wDL388svavHmzdf7/+c9/PN1sAAAAAAAAADcRAjsBAAAAAAAA3JAGDx6sgIAAu5e7eXLq6aefVqtWrazpF154Qd27d9fMmTO1YsUKTZs2TW3btjUFfL700ktq2LChR+oHAAAAAAAAcHPyK+gGAAAAAAAAAEBOpKamKjk52WmetLQ0paWl5Un9/v7+mjt3rjp16qQdO3ZIkubPn6/58+c7zP/www9r3LhxedIWAAAAAAAAADcPeuwEAAAAAAAAgBwKCwvTxo0b9corr6h48eIO80RERGjKlCn6/vvv5ePDV7IAAAAAAAAAnKPHTgAAAAAAAAA3pGnTpmnatGkenadhGG6XCQgI0Pvvv68xY8ZoxYoViomJUVxcnEqXLq3IyEg1b95cFovFo+0EAAAAAAAAcPMisBMAAAAAAAAAPCAgIEBdu3Yt6GYAAAAAAAAAuMEx7g8AAAAAAAAAAAAAAAAAAICXILATAAAAAAAAAAAAAAAAAADASxDYCQAAAAAAAAAAAAAAAAAA4CUI7AQAAAAAAAAAAAAAAAAAAPASBHYCAAAAAAAAAAAAAAAAAAB4CQI7AQAAAAAAAAAAAAAAAAAAvASBnQAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAm/gm4AgBtTxPAFdtNixt5dAC0BAAAAAAAAAAAAAAAAgJsHPXYCAAAAAAAAAAAAAAAAAAB4CQI7AQAAAAAAAAAAAAAAAAAAvASBnQAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAkCOwEAAAAAAAAAAAAAAAAAALwEgZ0AAAAAAAAAAAAAAAAAAABewq+gGwAAAAAAAAAAAAAAAAAAN5OEK5e1aNFaHTt2TOfOnZOfn58qVKigJk2aqHr16h6t6/Lly1qzZo327dun+Ph4FSlSRJUqVVLLli1Vrly5XM07ISFBS5cu1aFDh5SSkqIKFSqoU6dOKl26dI7nOWPGDB08eFCS1KxZM9111125aiPyx/Hjx7Vu3TodOXJEiYmJCg4OVo0aNdS6dWsFBQUVaNvOnz+v1atX6+TJk7pw4YIKFy6sSpUqqVmzZgoPDy/QtuUUgZ0AAAAAAAAAAAAAAAAA4AHbt2zU6Z/eUusP/1ZaWprDPHXr1tUrr7yifv36yWKx5Liuw4cP66233tJPP/2klJQUu/ctFovatWun0aNHq23btm7NOz09Xf/5z380duxYXb161fSej4+P+vXrpw8//FC33XabW/ONjo7WoEGDlJ6eLn9/f+3YscOt8rj22ezcuVMbNmzQxo0btXHjRv3zzz/KyMiw5hk5cqRGjRrlkfpWrlypUaNGacWKFQ7f9/f3V9++fTVmzBhFRER4pE5XLVq0SG+//bbWr19vWv7MmjdvrjfeeEP33HOPW/NesWKFOnTokOO2VapUSTExMTkuz1DsAAAAAAAAAAAAAAAAAJALaWlp+ve//61+Pbso6fDWLIM6JWnnzp0aMGCAunbtqri4uBzV99NPP6lu3br67rvvHAZ1SpJhGFqxYoXat2+v4cOHyzAMl+c/cOBAvfXWW3ZBnZKUkZGh6dOnq02bNjp9+rRb7X722WeVnp4uSXrhhRdUo0YNt8rfyt5//321adNGwcHBatCggZ544glNmTJFO3bsyDKoMTcMw9CwYcPUvn37LIM6JSklJUUzZsxQ3bp19csvv3i8HY5cuXJFvXr1Urdu3bR27Vqny79+/Xp1795d/fv3V1JSUr60zxMI7AQAAAAAAAAAAAAAAACAHEpPT1fPnj315Zdf2r1Xrlw5NWnSRLVq1VKhQoVM7/3555+64447lJCQ4FZ9s2fP1kMPPWQXdBkWFqZGjRqpQoUKpp5ADcPQuHHj9OKLL7pcx6+//mpKR0ZGqmHDhqZl2L17twYNGuTyPL///nv99ddfkqTy5ctrxIgRLpeF9MMPP2j16tUOg23zwnPPPacPPvjANM1isSg8PFyNGjVSyZIlTe8lJCSob9++mjt3bp62KyEhQe3atXNYT6VKlRQVFaXq1avLx8ccGjljxgzdf//91sBib0dgJwAAAAAAAAAAAAAAAADk0H/ff1sLFy40TWt/R1f9/fffOn78uDZt2qTdu3fr7Nmz+vjjj1WsWDFrvi1btujf//63y3UdPHhQgwYNMvVQWL9+fS1btkxnzpzRli1bdPToUe3evVu9evUylZ0wYYLmzJnjdP6XLl0ypatUqaLo6Gjt2rVLW7du1bFjx3THHXdY31+0aJGWLl2abbuvXLmiYcOGWdPjx49XYGBgtuWQPR8fHxUpUsSj8/zpp5/02Wefmab17t1be/fuVWxsrLZs2aKzZ89qyZIlqlevnjVPenq6BgwYkKshyLPz+OOPa+vWraZpgwYN0sGDBxUTE6ONGzdq3759OnXqlEaMGCF/f39rvgULFmjMmDE5qrdfv35avHixy6/vv/8+V8vpl6vSAAAAAAAAAAAAAAAAAHCLSo07oWlTPjVNK9a4u/47dYbqli9uml68eHENHTpUbdu2VceOHa1BlN9++62effZZNWnSJNv6RowYYerhMyoqSkuWLFFwcLApX82aNfXzzz/rySef1FdffWWdPmzYMPXo0UN+fo7DxjL3gujr66u5c+eaAvdKlSqluXPnqlatWjp27Jgk6ZtvvlGnTp2ctnvMmDE6ceKEJKl9+/Z68MEHs11WOHa9V8qoqCg1bdpUjRs31rPPPqvp06d7ZP4pKSl69dVXTdOefPJJffHFF6aeYCWpU6dOWrVqlTp37qzNmzdLki5fvqyRI0d6rD2ZLV++XDNnzjRN+/DDDx32RhsWFqYxY8aoZcuW6tGjh1JTUyVdG9J+8ODBqlChglt1V6lSRZ07d855491Ej50AAAAAAAAAAAAAAAAAkAPxG+aYhnauXa+BQjo+7rRMo0aN9PHHH5umvfbaa9nW9c8//2jWrFnWtL+/v6ZPn24X1HmdxWLRJ598ourVq1unHTx4UFOnTs2yjrVr11r/79y5symo87rAwEA9+eST1vT14dWzsnfvXk2YMEGS5Ofnp//+979O88OxL7/8UqdPn1ZMTIxmz56tYcOGqX379qYeYD1hypQpph43q1evro8//tguqPO64sWLa/r06aaeMb///nvt2bPHo+2SpLFjx5rSPXv2dBjUmVnXrl1N+1dSUpJGjx7t8bZ5GoGdAAAAAAAAAAAAAAAAAJADiQc2mNKP/nuoLD6+2Zbr37+/wsPDreklS5bo8OHDTst88803piHYH3zwQUVGRjotExAQoOHDh5umff3111nmP3DggPX/Vq1aZZmvTZs21v+PHj2qpKSkLPM+//zz1t4Sn376adWtW9dpm+FYixYtVKpUqTyvx3b7eO211xQQEOC0TO3atdW3b19rOj093WkAcU5cuXJFy5YtM0174403XCr7wgsvqGjRotb0999/r6tXr3q0fZ5GYCcAAAAAAAAAAAAAAAAAuOnwwf1KT4izpn19fdW2UxeXyvr6+qpbt26maXPmzHFa5tdffzWlH3vsMZfq6tu3rwIDA63pTZs2WYdFt3V9eHhJKlOmTJbztH0vLi7OYb7//e9/+uOPPyRJpUuXviF6SryVHTt2TFu3brWmg4KC1KdPH5fK2m6P8+bN82jb1qxZo7S0NGu6bNmyioqKcqlsiRIlTMHIiYmJWrRokUfb52kEdgIAAAAAAAAAAAAAAACAm04eP2ZKV6tWTUWKFM0it7369eub0raBm5nt3bvX1JtmYGCgWrZs6VI9tnkNw9CCBQsc5vX1/b/eRjP3Dmor8/Dz0rUh1m0lJSWZhskeO3asihcv7lKbUTBst4tWrVqZgoKdadWqlalXzL1792r//v0ea1tsbKwpXa9ePbfKu7O/eQMCOwEAAAAAAAAAAAAAAADATZfiLpjSoaGhbpW/7bbbTOnt27dnmdf2vaZNmzoMpsyK7bDqWdUVEhJi/d82kC6zzO9ZLBaVKFHCLs+4ceOsw8u3aNFCAwYMcLm9KBi224WrwcPSteDepk2bOp1fbpw/f96Uzu3+tm3btly3KS8R2AkAAAAAAAAAAAAAAAAAbrL4mEOvbHuxzE5qaqopHR8fr+PHjzvMu3v3blO6du3abtVlm992fo7yLV26NMv5ZX4vMjJShQoVMr0fExOjcePGSZJ8fHz02WefyWKxuNVm5L/82s5ywsfD+9u+ffvcnodhGDp06JDWr1+vNWvWaPfu3YqLi3NrHq4isBMAAAAAAAAAAAAAAAAA3FS8RIgpfebMGbfKO8qfVSDc3r17Tenw8HC36rLNbzu/69q2bWv9f8OGDVq0aJFdnmPHjmnSpEnWdMeOHe3yvPjii0pMTJQkDR48WI0aNXKrvSgY+bWd5YRtD5253d+Sk5OtPcq6Yvr06SpZsqSqVq2qFi1aqHXr1qpdu7ZCQ0MVGRmpp59+Wv/8849bbXKGwE4AAAAAAAAAAAAAAAAAcFOFihGmdExMjC6cP+dy+c2bN9tNO336tMO8tkFpFSpUcLkeSSpfvrwpffbsWYf57r77blO6b9++mjx5suLi4nT16lUtWrRIHTp0UHx8vKRrw7A/+eSTpjKLFy/W3LlzJV0LxnvnnXfcamtesVgs+fK6kdluF7ndztwNvnSmSpUqpvTWrVuVkZHhcnl39jdHYmJidOHCBYfv7dmzR1988YVuv/12PfDAA1nmcweBnQAAAAAAAAAAAAAAAADgpvBKEfINMvci+Puvc1wqe+XKFc2fP9/h9KzyZxYYGOhiKx3nT01NVXJysl0+f39/U/ry5csaMmSIQkNDFRgYqG7duunAgQPW95999lnVqVPHNN/nnnvOmn7nnXd02223udVWFIzExES7oclzu51ltT3nRPPmzVWoUCFrOj4+XgsXLnSpbExMjNavX2833ZPtk64N1f7zzz+rYcOG2rVrV67mRWAnAAAAAAAAAAAAAAAAAORAkeotTOkpn09QRlL2wWLvvfeetdfLzFwN7AwICHCjlVKRIkVcrkuShg8fnu087733Xn3wwQemaRMmTNCePXskSY0aNdKQIUPsyv3999967733NGTIED322GMaNWqU1q1bl219yFuOtofcbmeeDJwsWrSo7rjjDtO0t956S6mpqdmWfeONNxz27ulK+2rUqKEXX3xR8+bN04EDBxQfH6/U1FSdOXNGq1ev1siRI1WmTBlTmdjYWHXr1s2tHkFt+eW4JAAAAAAAAAAAAAAAAADcwoKjeupq9CJr0NiZUycU8L93dfXpNpKKOywzY8YMjRs3zuF7iYmJDqcnJSWZ0rY9a2ancOHCLtclSa+99pratWunkSNHatOmTTIMw/petWrV9NJLL2nIkCHy8fm/fgVPnjyp//znP5KuDXv+2Wefmd4/e/asnnjiCesw7ZmNHj1abdu21bRp01S5cmW3ls1VixcvzpP53ixstzEp99uZs20sJ1566SVTL53btm3ToEGDNG3aNPn5OQ6FfPfdd/XDDz84fM9Z+yIiIrR8+XK1b9/e4fthYWEKCwtTq1atNHz4cA0dOlSTJk2yvn/kyBH9+9//1i+//OLCktkjsBMAAAAAAAAAAAAAAAAAcqBQSDk99vQLmvzfD63Tko78rfs6NteIN15X165dVa5cOSUkJGjr1q2aNGmSZs+eLela8GNwcLAuXbpkLRsUFOSwHtueE1NSUtxqp6Nh17PrjbFr167q2rWrzpw5o5iYGKWlpal8+fKqVKmSw/yvvPKKLl++LEnq37+/WrT4v95Mz58/r/bt2zsdnnrVqlVq06aN/vrrrzwJ7uzcubPH53kzcbQ9pKSkuNVrp+125m6Pn9np2LGjHn74YVOg5vfff6/o6Gi9+uqr6tChg0qVKqWLFy9q/fr1+uSTT7R06VJJ14JUfX19TcGcWe1v0rXAzoiICJfaFRAQoIkTJ6pIkSKaMGGCdfqcOXO0efNmNWnSxL0FFUOxAwAAAAAAAAAAAAAAAECOPf3y6+revbtp2oljR/XUU0+pcuXKKly4sEJDQ9W5c2drUKd0rZfKatWqmcqVKFHCYR22AWiOeld0xlHPhM6C2jIrVaqUmjZtqpYtW2YZ1Ll69Wp9//33kqTixYvb9Uj6zDPPWIM6g4KCNHHiRJ0/f16XL1/WzJkzFRYWJkk6fvy4Bg4caOohFPnD0faQ2+3M1W3MHZMmTVJUVJRp2s6dO9WvXz9VqFBB/v7+KlWqlHr06GEN6pSkyZMnq2jRoqZyWe1vOfXBBx/Y7dPfffddjuZFYCcAAAAAAAAAAAAAAAAA5JCvr6/mzp2rF154Qb6+vtnmL1SokN59912NGDFCV65cMb3namBnQkKCW220ze/n5+ex3hTT09P17LPPWtOjRo1S6dKlremdO3dq5syZ1vTMmTP1xBNPKDQ0VEFBQerbt68WLFhgXXerVq3Sn3/+6ZG2wXVFihSx235zu53lRWBnUFCQVq5cqYcfftjl/N9884369+/v8v6WU35+fnruuedM03K6LRPYCQAAAAAAAAAAAAAAAAC54Ovrq48++khzlq5TUL0uKlW6rF2ewMBA9e/fXxs3btRrr70m6doQ5ZnZ9vZ3XalSpUzpY8eOudW+48ePm9LXe8j0hEmTJmn79u2SpLp16+qZZ54xvT9jxgzr/61bt9bdd99tN4+oqCjdf//91vS0adM81j64zna7yO12ZrvdekqRIkX0/fffa8OGDXrooYdUsmRJuzyhoaH697//re3bt2vQoEFKSEgwDRVvsVhUpUoVj7etU6dOpvT+/ftz1AOtn6caBAAAAAAAAAAAAAAAAAC3sirVaui2u57T/Gdbq4RxWWfOnNHVq1dVtmxZhYeHy9/f35r37NmzOnfunDUdGBioyMhIh/OtWbOmKR0bG+tWu2zz16pVy63yWTl//rxGjBhhTf/3v/+Vn585JG3NmjXW/++5554s59WjRw/NmjVLkrR27VqPtC+zJUuWeHyejnTu3Dlf6skLNWvW1KlTp6zp2NhYNWvWzOXyebWdZaVp06b64YcflJGRodjYWJ09e1YpKSmqUKGCypcvb9oWd+3aZSpbo0YNBQcHe7xN4eHhpnRaWpri4uIUGhrq1nwI7AQAAAAAAAAAAAAAAAAAD6tQoYIqVKiQ5fs7duwwpRs0aJDlUO62AXK2QWrZ2b17t9P55dTrr7+uCxcuSJL69u2r9u3b2+XZv3+/9X/bANXMMge1xsbGKjk5WYULF/ZIOyXpjjvu8Ni8nMlJ74zeolatWlq5cqU17S3bWXZ8fHwUERGhiIiILPPY7m9NmjTJk7YUKlTIblpqaqrb82EodgAAAAAAAAAAAAAAAADIZwsWLDCl77rrrizzNmjQwJTetGmT0tLSXK4rc6+ZjuaXE1u2bNHXX38t6Vpvox9++KHDfBcvXrT+76yHRNv34uLict1GuMd2u3Cn59S0tDRt3LjR6fwKkjv7W25k7vFUujbk+2233eb2fAjsBAAAAAAAAAAAAAAAAIB8lJ6ertmzZ1vTvr6+GjRoUJb5a9WqpapVq1rTCQkJLgfdJSQkaN26dda0xWJxOiS6KwzD0LPPPquMjAxJ0ptvvqny5cs7zOvj838haomJiVnO0/a9zOWQP+6++25Teu3atUpISHCp7Jo1a3T16lVrukaNGqpRo4ZH25dT8fHxWrhwoTUdEhKi3r1750ldq1evNqXLli1rGhLeVWz9AAAAAAAAAAAAAAAAAJCPvvrqKx09etSa7tatm8qVK+e0TI8ePUzpKVOmuFTXrFmzdOXKFWu6SZMm2daVnenTp1uDRWvUqKEXX3wxy7whISHW/w8fPpxlPtv3SpQokas22jIMI19eN7Lw8HA1bNjQmr5y5Yp++uknl8rabo89e/b0aNty45133lFSUpI1/cgjjyggICBP6rJdD506dcrRfAjsBAAAAAAAAAAAAAAAAIB8cvDgQY0YMcKaLlSokMaOHZttuUcffVQWi8Wanjlzpnbv3u20TFJSkt28H3vsMTdbbBYfH6/hw4db05988on8/f2zzF+7dm3r/8uWLcsy35IlS6z/V69e3ek8kXdst4+xY8eagiId2b17t2bNmmVN+/j4aODAgXnRPLdt2LBBEyZMsKZDQkL05ptv5kld3333nVasWGGadu+99+ZoXgR2AgAAAAAAAAAAAAAAAEB2MtKlw39JO36+9jcjXZJ08vhR0xDUzuzevVudOnXS+fPnrdNeeeUVU/BjVurWras+ffpY0ykpKRowYIDi4+Md5jcMQ0OHDtX+/fut06pUqaJHH33UpbZmZeTIkTp9+rSka70ydu3a1Wn+du3aWf//7bfftGvXLrs8p06d0rRp0xyWQf4aPHiwKlasaE3v27dPL7zwQpa9kcbHx6t///5KSUmxTnv44Ydd2qYjIiJksVisr8zbQFYOHjyotLS07BdE14aHv+uuu0xtGzdunEqVKuW03MyZMzVnzhy3emD98ccf9fjjj5umNWjQQPfdd5/L88iMwE4AAAAAAAAAAAAAAAAAcGbXr9KEutL0e6RfHrv294drQZbL/1ykihUraujQodq0brUyUpPtiu/YsUPDhg1TgwYNdOTIEev0Fi1amHrvzM7bb7+tokWLWtObNm1S27Zt7XoJ3Ldvn+6//35NmjTJNH3s2LEqVKiQy/XZ2rVrlz777DNJUkBAgD7++ONsywwcOFC+vr6SpLS0NPXs2VM7duywvn/kyBH16NHDFKCa215Fb0ZxcXFasmSJw9fJkydNeQ8dOpRl3ri4OKf1+Pv72/XyOnHiRPXp08cUJCxd64G1TZs22rx5s3VaUFCQxowZk8ulzdqXX36pypUr6/XXX9fGjRuVmppqet8wDG3YsEFDhgxR27ZtTcvbq1cvu+BLR/bs2aPevXurRo0aeuONN7Ru3TolJCTY5UtJSdGyZcvUs2dPPfzww0pO/r99PyAgQF9++aWpl113+OWoFAAAAAAAAAAAAAAAAADcCnb9Kv3UX5JN730J5679PXdA58+f1yeffCJ98olk8dHdcyJUOuw2JSYm6uTJk6YeOq+LiorSb7/9poCAAJebUq1aNU2ZMkUPP/ywtTfB6OhodejQQWFhYapYsaLOnDmjY8eO2fU2+Oyzz+qBBx5wa9FtPfvss9beEl999VVVrlw52zLh4eF6/vnn9dFHH0mSDhw4oHr16ikyMlL+/v7auXOn0tPTrfn79Omj5s2b56qdN6Po6GjdcccdLuWdMWOGZsyY4fC95cuXq3379k7LP/TQQ/rrr7/05ZdfWqf9/PPP+uWXXxQeHq6wsDAdOXJE586dM5Xz8fHR1KlTXdoucuPYsWN677339N5778nf31+VK1dW8eLFdfnyZZ04cUKXLl2yK9OtWzd9//33bgVaHjhwQO+++67effdd+fj4qEKFCipRooSKFCmiS5cuKSYmxuEw9YUKFdL333+fq+2YwE4AAAAAAAAAAAAAAAAAcCQjXfr9VdkFdUr/N+3wSpvJGYqNOaTYmEMOZ2mxWPTYY49pwoQJCgwMdLtJDz74oAzD0GOPPabExETr9LNnz+rs2bMOy7z88st6//333a4rs9mzZ2vZsmWSrg2hPXz4cJfLvvPOO4qOjtbSpUut03bv3m2Xr2HDhpo4cWKu2gnP+Oyzz+x6ZTUMQ7GxsYqNjbXLX7RoUU2dOlX3339/fjZTKSkp2rt3b5bv+/n5adiwYRo9erT8/HIeLpmRkZHlsmdWo0YN/fDDD2rcuHGO65IYih0AAAAAAAAAAAAAAAAAHDuyVoo/4TRLVFlDA3p3VZkyZZzmK1y4sHr37q3169dr8uTJOQrqvO6hhx7Szp079fDDDzsdWv36MO0ffPBBjoeElqSrV6/qpZdesqY//vhjt3oaDQgI0Pz58/Xqq6+qcOHCdu/7+vpq8ODBWr58uUJCQnLcTniOj4+PPvroI+tw61nx9/fXv/71L+3cuVN9+vTJ83bdd999euCBB7LdTgIDAzVw4EDt2LFD77zzjltBnX369NFrr72mFi1aqEiRItnm9/PzU5s2bfTDDz9o586duQ7qlCSLYdvnLm4J8fHxKl68uC5duqTg4OCCbg5uQBHDF9hNixl7dwG0BABQ0DgnAAAAZ/gOAvAM9iUAAAAAAArIjp+lXx5z+NbOjAjdk/Ku5vu/rroPjJBuv1+L1kZrwIe/6PGGxRTkkypJCg0NVc2aNdWsWTMVLVrU402Mj4/X6tWrtX//fl2+fFkBAQGqWLGiWrVqpfLly7s9L0ffQURHR2vu3LmSri3Pc889l6v2LlmyRIcPH1ZGRoYqVKigzp07KywsLMfzRN47duyY1q5dq9jYWCUlJalYsWKqXr26WrduXSDfVxmGoT179mjXrl06duyYLl++LF9fX4WFhSkyMlJRUVHy9/fPdT3p6enau3evDh06pGPHjik+Pl4pKSkKCgpSSEiIKleurKioKJcCQN3BUOwAAAAAAAAAAAAAAAAA4EhQabfyhVeKUNHqzfTwoNaqW754Hjbs/wQHB6tbt255Wkf9+vVVv359j8wrODhYvXr18si8kH8qVKiQLz1yuspisSgyMlKRkZF5Wo+vr69q166t2rVr52k9thiKHQAAAAAAAAAAAAAAAAAcqdRSCi4nyckw5oGlruUDAA8hsBMAAAAAAAAAAAAAAAAAHPHxlbqO+/8J2+DO/59u+ey1fADgIQR2AgAAAAAAAAAAAAAAAEBWaveQ+nwrBZc1Tw8Mu/a3Srv8bxOAm5pfQTcAAAAAAAAAAAAAAAAAALxa7R5SrbulI2ulK6eloNKSXx3p83UF3TIANyECOwEAAAAAAAAAAAAAAAAgOz6+UuU2/5c+fqng2gLgpsZQ7AAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAkCOwEAAAAAAAAAAAAAAAAAALwEgZ0AAAAAAAAAAAAAAAAAAABegsBOAAAAAAAAAAAAAAAAAAAAL0FgJwAAAAAAAAAAAAAAAAAAgJcgsBMAAAAAAAAAAAAAAAAAAMBLENgJAAAAAAAAAAAAAAAAAADgJQjsBAAAAAAAAAAAAAAAAAAA8BIEdgIAAAAAAAAAAAAAAAAAAHgJAjsBAAAAAAAAAAAAAAAAAAC8BIGdAAAAAAAAAAAAAAAAAAAAXoLATgAAAAAAAAAAAAAAAAAAAC9BYCcAAAAAAAAAAAAAAAAAAICXILATAAAAAAAAAAAAAAAAAADASxDYCQAAAAAAAAAAAAAAAAAA4CUI7AQAAAAAAAAAAAAAAAAAAPASBHYCAAAAAAAAAAAAAAAAAAB4CQI7AQAAAAAAAAAAAAAAAAAAvASBnQAAAAAAAAAAAAAAAAAAAF6CwE4AAAAAAAAAAAAAAAAAAAAvQWAnAAAAAAAAAAAAAAAAAACAlyCwEwAAAAAAAAAAAAAAAAAAwEsQ2AkAAAAAAAAAAAAAAAAAAOAlCOwEAAAAAAAAAAAAAAAAAADwEgR2AgAAAAAAAAAAAAAAAAAAeAkCOwEAAAAAAAAAAAAAAAAAALwEgZ0AAAAAAAAAAAAAAAAAAABegsBOAAAAAAAAAAAAAAAAAAAAL+FX0A0AAAAAAAAAAAAAAAAAgBtZcnKytm3bpsVrtyh+4zZ99el6Va9QSqVKlVKjRo1UrVo1WSwWj9SVlpamDRs2aOfOnTp//rx8fX1VtmxZNW7cWHXq1MnVvNPT0yVJkydPVkpKikqVKqWWLVsqMjIyx/P866+/tHTpUklS6dKl9dRTT+Wqjcgfly9f1po1a7Rv3z7Fx8erSJEiqlSpklq2bKly5coVaNuSkpK0Zs0axcTE6OzZs/Lx8VGZMmXUoEED1atXr0Db5ikEdgIAAAAAAAAAAAAAAABADiSfOqDhz36rJQvnKTk52Tr9v8vN+cqXL6/HHntMzz//vEJDQ3NU15UrVzR27Fh9+eWXunDhgsM8NWvW1KuvvqqBAwe6HUj6yy+/6Pnnn5ckvfzyy6b3WrZsqYkTJ+r22293a55Xr17VI488otjYWEnS1KlT3SqPaw4dOqSNGzdqw4YN2rhxo7Zt26bExETr++3atdOKFSs8Utfhw4f11ltv6aefflJKSord+xaLRe3atdPo0aPVtm1bj9Tpql27dmnUqFH67bfflJSU5DBPRESEhg4dqqefflp+fjdueKTFMAyjoBuB/BcfH6/ixYvr0qVLCg4OLujm4AYUMXyB3bSYsXcXQEsAAAWNcwIAAHCG7yAAz2BfAgAAAACg4B2/mKi4hGuBbhkZGRr11puaO32iZGS4PI/SpUtr2rRp6tq1q1t179ixQz179tThw4ddyn/nnXdq1qxZKl68uEv5J0yYoBdeeMFpnmLFimnRokVq1aqVS/OUpBEjRujtt9+WJLVo0UJr1qzxWM+lN7tff/1VkyZN0saNG3Xu3DmneT0V2PnTTz9p0KBBunr1arZ5LRaLhg0bpvfeey9fPtO3335bI0eOVEaGa/tbo0aNNHfuXFWsWDGPW5Y3btyQVAAAAAAAAAAAAAAAAADIB8cvJqrzhyuVmHptqPLziz7Vlb//tMtXpEhRpQWVUq3yt+nq5Ys6dOiQMve7d/r0afXs2VP/+9//dNddd7lU9969e9WxY0e74L6goCBVqVJFiYmJiomJUWpqqvW9P/74Q3fddZeWLVumgIAAp/Nfu3atXnrpJdO08uXLq2zZstq/f78uXbok6drQ3H369NHOnTsVEhKSbbsPHTqkDz74QJLk4+Ojzz77jKBONyxbtkwLFy7Mt/pmz56thx56yC5wMiwsTOHh4Tpz5oyOHz9u3Z4Nw9C4ceOUnJysjz/+OE/b9sQTT+irr76ym16yZElVrFhRycnJOnTokKkX061bt6p9+/Zas2aNypYtm6ftyws+Bd0AAAAAAAAAAAAAAAAAAPBmcQkpSkxN14S+DfRc5fN2QZ21a9fWggULtHZ3rMo9+pl+mL9UBw4c0OnTpzV69Gj5+/tb86akpGjAgAGKi4vLtt60tDQ98MADpqDO0NBQTZ8+XRcuXFB0dLT27dunU6dO6Y033pCPz/+Fg61bt07Dhg3Lto5XX33VGsx3PQh0165d2rRpk06fPm2ax4kTJ/TRRx9lO09JGjp0qHV4+sGDB6tRo0YulUP2AgMDPTq/gwcPatCgQaagzvr162vZsmU6c+aMtmzZoqNHj2r37t3q1auXqeyECRM0Z84cj7Yns0mTJtkFdbZs2VJr1qyxtm3nzp06f/68pk2bptKlS1vzHT58WA899FCetS0vEdgJAAAAAAAAAAAAAAAAAC6oVipIUz/7wDStSZMm2rhxo7p16yY/P/MAymFhYXrrrbe0aNEi03tnz57VxIkTs63vm2++0Y4dO6zpkJAQ/fXXX+rfv78KFSpknR4aGqq3335bM2bMMJX/8ssvtX///iznv2/fPq1evdqavj5s+nWFCxfWuHHjdO+995ralJ1Fixbpt99+s7btnXfeybYMHAsNDdWdd96pN998U/PmzdPJkyf12WefebSOESNGKCEhwZqOiorSqlWr1KFDB1O+mjVr6ueff9aQIUNM04cNG6a0tDSPtkmSLl26pFdffdU0rVevXlq5cqVatmxp6gG2SJEiGjBggNavX6/w8HDr9JUrV+rnn3/2eNvyGoGdAAAAAAAAAAAAAAAAAOCCo0ditHPnTtO0L774ItseFDt27KjHHnvMNO164GNWUlJS7AItx48fr9q1a2dZ5uGHH9YjjzxiTaelpWnUqFFZ5v/rr7+s/wcHB6t///4O87388svW/0+cOKFDhw45bffzzz9vTb/zzju67bbbsswPxwYPHqwDBw7o/Pnz+v333/Wf//xHPXr0UJkyZTxazz///KNZs2ZZ0/7+/po+fbqCg4Md5rdYLPrkk09UvXp167SDBw9q6tSpHm2XdG3funTpkjVdoUIFTZs2zS6AOrOIiAhNnz7dNO3NN99Uenq6x9uXlwjsBAAAAAAAAAAAAAAAAAAXxBw0935ZoUIFRUVFuVS2d+/epvSBAwec5v/jjz909OhRazoiIkKDBg3Ktp5Ro0aZejKcPXu2KTgus3379ln/b9KkiQoXLuwwX7NmzUzDyWcuZ+vDDz+09hLaqFEju94d4Zo6deqoatWqeV7PN998YxqC/cEHH1RkZKTTMgEBARo+fLhp2tdff+3xts2bN8+Ufu6551SsWLFsy3Xo0EEtW7a0pvfu3atVq1Z5vH15icBOAAAAAAAAAAAAAAAAAHDBpYtxpnTmIZ+zU7FiRVP64sWLTvPbBrUNGjTIFLCZlapVq6pdu3bWdGpqqhYuXOgwb+Y2OOsJ0s/Pz9TrZlxcnMN8x48ftw67brFY9Nlnn8nHhxA1b/brr7+a0rY9y2alb9++pp5qN23apBMnTnisXQkJCdqyZYtpWo8ePVwu3717d1N6zpw5HmlXfmGvAQAAAAAAAAAAAAAAAAAXFLMZnjoxMdHlsrZ5S5Ys6TT/ggULTOkuXbq4XNcdd9xhSs+fP99hPl9fX+v/mXttdCTzUNZZDYX90ksvKSEhQZLUv39/tWjRwqX2omDs3bvX1HNsYGCgqadLZ2zzGoZht83mxokTJ5SWlmZNBwQEqEaNGi6Xr1+/viltG8Dq7QjsBAAAAAAAAAAAAAAAAAAX1Kx9uym9e/duayBjdjZu3GhKN23aNMu8p0+f1qlTp6zpwoULq1GjRi63s1WrVqb09u3bHeYLDQ21/h8bG5vl/BITE3Xu3DmH5a5buXKlZs2aJUkqXry4xo0b53J7UTBst4umTZtmGbTriKvbWU6cP3/elA4JCXGpx9rrMvcwK13bvi9cuOCRtuUHAjsBAAAAAAAAAAAAAAAAwAVlypU39VKYnJysTz/9NNtyycnJmjBhgmmasyGvd+/ebUpXq1ZN/v7+Lrezdu3apvSBAwdMvR9ed/vt/xeoumXLFl26dMnh/JYvX27q0bNevXqm99PT0/Xss89a06NGjVLp0qVdbi8Khu12ZrvdZMc2v+38csPHxxzamLnHWFekpqbaTfNk+/IagZ0AAAAAAAAAAAAAAAAA4KJx48aZgs7eeustTZ8+Pcv8Fy9e1P33328KKuvevbu6d++eZZm9e/ea0uHh4W61MSwsTAEBAdZ0SkqKDh8+bJevbdu21uHYk5OT9eGHH9rlSU1N1ZgxY6zpunXrKiwszJTn888/144dO6zvP/PMM261FwUjt9vZ/2PvzsPtnM7+gX935kmCSAyRhFDEUEqkFSppQilqrqFKUuNPvUVRSmtWNRZBi1CKKFq0r6GlhiQ0b4mZiimIiISIRKYj4/79kTf7zcl4pp1zEp/PdZ3LevZez73u4zr+eXyftRadv2i92lh0V9hJkyYtMay5NJ9++ulinwl2AgAAAAAAAAAArIJ22mmnXHfddaVjoefMmZMBAwakZ8+eufm6qzLj7eF55qnHc+edd+anP/1pNtpoozz00EOl+3fdddf86U9/WuYai4bS1l9//Wr3ud566y2zZpKsu+662XvvvUvX11xzTZJkzJgxmTVrVl566aXstddeefbZZ0tzjj/++MXqnnvuuaXra6+9tlrHeZdLnz59UigUyv4zZMiQ+v5Va6y2f2edOnWqdD1hwoRa97RwL02bNi1dz549O6+88kqV73/++ecX++yTTz6pk95WhPr/LwgAAAAAAAAAAGAlcvzxx2fTTTfNiSeemP/85z9JkhEjRmTEiBHzv39g8Xu6deuW008/Pcccc8xix0wvatq0aZWuW7duXe0eF71n0ZoLXH755Xn00UczY8aM0mdbbrnlEudut912OfbYYyt9duaZZ2by5MlJkoMPPjh9+vSpdq/Uj9r+nS06f/bs2Zk5c2aaN29e695atGiR7bffPsOHDy99dvfdd6dHjx7LvbdYLOaee+5Z7POl/TfQENmxEwAAAAAAAAAAoJr69u2bESNG5LTTTisdZ740Xbp0yWmnnZYf/vCHyw11JosH0BY+Vr2qWrZsucyaC2y00Ua57777lrvGJptskr/+9a+VduN87rnncuuttyaZH/Jb0lHuH3/8cX73u9/lv/7rvzJgwICcfvrpefDBBzNz5szq/krUsdr+nS36N7akmrWx7777Vrq+8cYb88EHHyz3vptvvjmjRo1a7POVKdhpx04AAAAAAAAAAIBquuGGG3LBBRdk3Lhxy5374Ycf5ic/+Ul+9atf5fLLL8+RRx65zPlffvllpetmzZpVu79Fd02sqKhY6tzdd989L730Un7+859XOjY+SdZaa60MGDAgZ599dtq2bVv6vFgs5r/+679SLBaTJL/61a8qHc09d+7cnH322bniiisye/bsSjUvv/zybLjhhhk0aFD69etX7d+tKq688spMmjSpLLUXtvXWW5d9jXKp7d/ZknbmXNbfWXUde+yxufDCCzN16tQk84OZe++9d/75z39m7bXXXuI9jz/+eE4++eQlfleXvZWbYCcAAAAAAAAAAEAVzZ49O4ceemjuu+++0mdrrrlm/uu//ivde/bJ6f/8NH87uV/WaT47zz//fG699db89a9/TbFYzOeff56jjjoqI0eOzOWXX77UNRbdOXHWrFnV7nPRHTGXtxvjZpttlsGDB6ddu3Z5+umnUywW06FDh3zta19b4o6kt9xyS+no+U022SSnnHJK6btisZjDDjtsicdhL/D+++9njz32yP33358999yzOr9alWy33XZ1XnNVU9u/syXtulqT3WWXpl27drnyyitz7LHHlj577bXXsuWWW+b000/PPvvsky5dumTWrFl5/fXX88c//jG33HJL5s6dmyRZffXVM3ny5NK9bdq0qbPeys1R7AAAAAAAAAAAAFV0/PHHVwp19uzZM//5z39y/vnnZ8tttk2jFm3StGnTrLvuuvn+97+f+++/P3/9618rBd6uuOKK0hHmS7JoAG3RnRWrYtHdCasTavv617+eb3/729lss82WGOqcPHlyzjrrrNL1NddcU2m3x5tuuqlSqPPUU0/NBx98kIqKivzrX/8qhS5nzZqV/v3759NPP61yb9Sd2v6dLWkHzLoOTx5zzDE5/vjjK3322Wef5fTTT8+mm26ali1bpl27dtlxxx1z0003lUKdRx555GK7wa6++up12ls5CXYCAAAAAAAAAABUwYjhT+eWW24pXXfs2DEPPfRQ1llnnWXet/fee+f666+v9NnPf/7zpR4NvWg4bvr06dXuddF76jJwd/bZZ2fChAlJkn322Se777576bs5c+bk/PPPL12fdtppueKKK9K1a9e0aNEivXr1yuOPP54uXbokSSZOnJirrrqqznqj6mr7d7bo/CZNmtTpjp0L/O53v8tll122xKPfF1UoFHLSSSflhhtuyLRp0yp9J9gJAAAAALCCDB8+PMcee2w233zztG3bNm3bts3mm2+eY489NsOHDy/r2lOmTMnvfve77LPPPtlggw3Spk2bNG/ePB07dkyvXr1y2mmn5fXXXy9rDwAAAMCKM/gPN1a6Pvnkk9OhQ4cq3TtgwIBssskmpeuJEyfm/vvvX+Lcjh07Vrr+6KOPqtlp8vHHHy+zZk29+uqr+f3vf59k/rHbi4Yy//nPf2bcuHFJkpYtW+acc85ZrMbqq6+eM888s3R922231UlvVE9t/87Gjh1b6bqq/y3UxM9//vO8++67Oemkk9KtW7fFvm/WrFn233//PPXUU7n66qvTtGnTTJw4sdKcjTfeuGz91bUm9d0AAAAAAEBNTJ8+PSeeeGL+8Ic/LPbdyJEjM3LkyAwaNChHHnlkBg4cmNatW9fp+n/605/yX//1X/n8888X+27ChAmZMGFC/ud//idXXnllBgwYkIEDB2a11Var0x4AAACAFadYLOa54cMqffb973+/yvc3atQoe+65Z95+++3SZ8OGDcthhx222NxNN9200vWHH35YrV4//fTTSsdqN2vWbIlhuJr46U9/Wjru+owzzsiGG25Y6ft//etfpXHv3r2X+jxk7733Lh2xPX78+Lz//vuL1aqNF154IZMmTaqzekuz3XbbZY011ij7OuVQ27+zRedvttlmte5pWdZff/1cffXVufrqqzN+/PiMHz8+U6dOzdprr53OnTunZcuWpbnFYjEjR46sdH+PHj3K2l9dEuwEAAAAAFY6c+fOzf7775/HHnus9FnLli2zxRZbpEmTJnnjjTcyZcqUJMkf/vCHjB07Ng8//HAaN25cJ+vfcMMNpf/xsED79u2z2WabpVmzZvnoo4/yzjvvlL677bbb8s477+Txxx8vy3FUAAAAQPnN+3Japv7v84YFqhtEXHT+ojseLrBoQG7UqFGZNWtWmjVrVqV1Fg20bbTRRmnSpPZRsT/96U8ZNmx+uHWDDTbIL37xi8XmLPxMZNHg4MLWW2+9tG3btvQM5+23367TYOepp56aoUOH1lm9pXnqqafSp0+fsq9TDov+nb3xxhvVun/Rv7NyBzsXts4662SdddZZ6vfvv/9+paPiO3XqtMz5DY2j2AEAAACAlc7ZZ59dKdR5zDHH5KOPPsqIESPyP//zP/n444/zq1/9qvT9o48+usRjv2pi1KhROfnkk0vX66yzTh544IFMmDAhzzzzTJ588sm8/fbbeeutt7LrrruW5v3rX//KJZdcUic9AAAAACtece7sxT6rbliyadOmla4X7Hy5qEVDazNnzswLL7xQ5XUW3jUzSbbZZpuqN7kU06ZNy89//vPS9VVXXbXEF1gnT55cGrdt23aZNRf+fkXsrklli/5djBgxInPmzKny/eX4O6srDz/8cKXr733ve/XUSc0IdgIAAAAAK5WxY8fmqquuKl0ffvjhuemmm7LmmmuWPmvdunUuvPDCSuHOq666Kh9//HGt1x80aFBmzpyZZP7/vPnHP/6RfffdN4VCodK8TTbZJA899FC233770mc33HBD5s2bV+seAAAAgBWvccvFjxSv7rOGRXfo7NChw1Ln7rnnnpWu//nPf1Z5nUXnVufI+KW56KKLSv3vtttu2XfffZc4r1Gj/4ukVVRULLPmwt8vfB8rxmabbZaNNtqodD19+vQMHz68SvdOnz49//M//1O6LhQK2Wuvveq8x5q6++67K10fffTR9dRJzfivAQAAAABYqQwcODBffvllkqRVq1a5+uqrlzr37LPPTufOnZPM/x8F11xzTa3Xf/rpp0vj3XffPVtvvfVS5zZr1iynn3566fqTTz7JqFGjat0DAAAAsOIVGjdNh7UrH+X85JNPVqvGE088Uel64VDdovbee+9K17feemuKxeJy1xg1alSlI8ibNm2aPfbYo1p9Lurtt98uvWjbrFmzDBw4cKlz11hjjdL4/fffX+q8KVOmZOLEiUu8ry4MGTIkxWKx7D8r6zHsCyz6d3bLLbdU6b577rkn06ZNK1336NEj6623Xp32VlP/+Mc/KgVUt9pqq3zzm9+sx46qT7ATAAAAAFip3H///aXxQQcdVGmnzkU1a9YsP/7xj0vXDzzwQK3XnzBhQmm85ZZbLnf+onMWvh8AAABYuXxzx50rXV999dVVPrp66NChlXY4TJJ+/fotdf5uu+2W9ddfv3T9wQcf5NZbb13uOuedd16lAOgBBxyQdu3aVanHpTnppJMya9asJMnPfvazbLLJJkudu/nmm5fGw4YNW+px84uGXLfYYota9UjNHHnkkZVOorn77rszcuTIZd7z5Zdf5pJLLqn02VFHHVWW/qrrs88+y09/+tNKn1155ZX11E3NCXYCAAAAACuNt956K++++27pevfdd1/uPd/73vdK43feeSdvv/12rXpo06ZNabzgf2gsy4Jj2xeo690nAAAAgDKZNzd5/+nktb8kY19Kkuy1/8GVprz++uv5yU9+knnz5i2z1Lvvvpsf/vCHlT772te+lh122GGp9zRv3jy//OUvK3122mmn5Y033ljqPXfddVfuvPPO0nXjxo1z/vnnL7O35fnb3/6Wf/zjH0mSTp065eyzz17m/N69e5fGEyZMyB/+8IfF5sybNy+XXXZZ6XrjjTduMLs9ftVsueWWOeigg0rXs2bNSv/+/TNlypQlzi8Wizn55JPzzjvvlD7r1q1bjjzyyOWuNWDAgBQKhdLPgAEDlnvPJ598ksmTJy93XpKMHTs23/3udys9P/zhD3+YXXfdtUr3NySCnQAAAADASuOVV16pdL2s//mxwLbbbptmzZottUZ19ezZszQeNmzYcucvfPTZWmutlU033bRW6wMAAAArwBv/nVy9ZfLHvZL7jkoeOilJsmOXJvnOd75TaeqgQYPSu3fvPPHEE4vt3jlx4sRceeWV6dGjRz7++ONK31188cVp3LjxMts46qijKu1kOWnSpHz729/O7bffXmmtzz//PGeffXYOP/zwSvcfd9xxy9xdc3m+/PLL/OxnPytdX3HFFWnduvUy79lpp50qrXnSSSdVOoFl+vTpOfroo/Pvf/+79FlD2e2xoXn88ceX+LNouHfSpElLnfvee+8td52LLroorVq1Kl2PGDEiO++8c4YMGVJp3ttvv50DDzwwN954Y6XPL7nkkjRt2rTmv+gyjBgxIuuvv36OOeaY/OMf/8jUqVMXmzNq1Kj8+te/Tvfu3fPSSy+VPt94440zcODAsvRVbk3quwEAAAAAgKpa+BioZs2apXPnzsu9Z8G8UaNGLVajJo477rgMGjQo8+bNy/PPP58//vGP6d+//xLnfvjhh/nNb35Tuj7llFPSqJH37QEAAKBBe+O/k3uPSFJc/Lt/npO7zv1Zen3wQd5///3Sx88880x22WWXtGrdJrNbrZUfPto+M6ZOznvvvVfpWPQFTj311Bx44IHLbaVp06b585//nJ122imff/55kvkhzv79++eEE07IRhttlIqKirz//vuZPXt2pXt79uyZK664onq/+yIuu+yy0u/Zp0+fHHLIIcu9p1Ao5Iorrsjee++dJKmoqMgBBxyQzp07Z+21186bb76ZadOmleZ369ZtsaOzma+qO02++uqrS5177rnn5rzzzlvm/RtvvHFuueWW/PCHPyz9vb7yyiv5zne+kw4dOqRLly759NNP89FHHy329/zTn/40P/jBD6rUZ01Nnz49N998c26++eYUCoV07do1a621VmbPnp3x48fnk08+Weyebt265bHHHkv79u3L2lu5eIIIAAAAAKw0Ro8eXRqvv/76KRQKVbqvS5cupfEHH3xQqx6+8Y1v5LLLLiutfeSRR+b444/PiBEjMn369MyePTvvv/9+rr322my//fYZP358kvnHPv385z+v1doAAABAmc2bm/zjjCwx1Pm/1nnh0gx96sn06dNnse9mTJ+W2RM+yGsvv5BRo0YtFoJr2rRpLrnkklx++eVVbql79+558skn07Vr10qfT5s2La+88krefvvtxUKdu+yySx599NG0bNmyyussavTo0bnkkkuSJE2aNMm1115b5Xu///3vL3aM/JgxY/L8889XCnWuscYa+fOf/7zcXUApv0MOOSSDBw9e7G9mwoQJeeGFFzJmzJjF/p5PO+20XHPNNSuyzRSLxXzwwQd5/vnn88orrywx1Ln33nvn2WefzYYbbrhCe6tLgp0AAAAAwEpjypQppXG7du2qfF/btm1L4yUd11Rdp556au6+++507do18+bNyw033JCePXumTZs2adasWbp165YTTzwxn376abp06ZLf/va3GTx4cJo0qdohSjNnzsyUKVMq/QAAAAArwOjhyZSPlzGhmEwZm87zxuSJJ57Ivffemz59+iz3hI527drl+OOPz2uvvZYzzjijyi+rLrD11lvntddey5lnnpk11lhjqfO+9rWvZdCgQXnsscey+uqrV2uNRZ1yyimpqKhIkpxwwgnZcsstq3X/RRddlFtvvTUdO3Zc4vd9+vTJ8OHDs+2229aqT+rOoYcemtdffz0//OEPl3m0+oJj2i+//PJq/y1X19Zbb53jjz9+sWDzoho3bpzddtstjz76aP72t79lrbXWKmtf5eYodgAAAABgpTF9+vTSuEWLFlW+b+GdBhauURsHHXRQunfvnuOOOy7/8z//s8Q5q622Wo499tgcfvjh1ar9m9/8Jueff35dtAkAAABUx7TFd/9b2rxGjRrlBz/4QX7wgx9k6tSpef755/P0C6/n6kdezo+2Xy9fW79j2rdvn69//evZfPPNlxv+XJ7VVlstF198cc4///w8++yzef311zNx4sQ0btw46667brbddttstdVWtVpjgS+++CJf//rXs9VWW6VQKOTkk0+uUZ0BAwbksMMOy7Bhw/LGG29k2rRp6dixY7797W9nk002qZNeV2WL7pC5InTr1i2DBw/O73//+zzzzDN55513MnXq1LRo0SJdunTJjjvumE6dOtWo9m233ZbbbrutWvd07tw5v/vd75IkY8eOzSuvvJIPPvggX3zxRebNm5d27drla1/7Wr75zW/WOszckAh2AgAAAAArjYWPFavq7peLzp01a1at+/j8889zwgkn5J577ik9YG/Xrl0233zztGjRIuPGjctbb72VqVOn5le/+lUuueSSDBw4MD/+8Y+rVP/MM8/MKaecUrqeMmVKOnfuXOu+AQAAgOVos3aN5q222mr5zne+kw6bbJs/fNYtx/50p2zZqeqnjVRH06ZNs9NOO2WnnXYqS/1k/nOOc889t05qNW3aNP369Uu/fv3qpB4rRtu2bbPHHnvUdxuVdOrUqcah0pWNYCcAAAAAsNJo1apVafzll19W+b6F57Zu3bpWPUyaNCm9e/fO66+/nmT+A+WBAwdm3333rbTzxkcffZSzzz47t912W6ZNm5Yjjzwyc+bMyTHHHLPcNZo3b57mzZvXqk8AAACgBrr2Stqul0wZl2RJuyUWkrad5s8DKJPa7e8LAAAAALACtWnTpjSuqKio8n0zZsxYYo2aOOmkk0qhzg4dOmT48OHZf//9FztObf3118+tt96aU089tdK9Y8aMqdX6AAAAQBk1apzsfun/XhSWPGf3S+bPAygTwU4AAAAAYKWx1lprlcbjxo2r8n3jx48vjdu3b1/j9ceMGZPBgweXrs8666x06dJlmfdceOGF6dixY5L5YdSbbrqpxusDAAAAK8DmeycH3Z60XXfx73a9YP73AGXkKHYAAAAAYKWx6aablsYTJ07MjBkzKh3PvjQL75K52Wab1Xj9p556KvPmzStd77338v9HTsuWLfPd7343d955Z5Jk2LBhNV4fAAAAWEE23zvZbM9k9PBk2idJxVrJ/dOTbr3ruzPgK8COnQAAAADASqN79+6Vrl9++eXl3jN27NhMmDBhqTWqY+zYsZWuO3fuXKX7Fp638O6hAAAAQAPWqHGy4beTrQ5MOn2jvrsBvkIEOwEAAACAlUbPnj3TvHnz0vUzzzyz3Huefvrp0rhFixbp2bNnjddfeO1k/tHqVTFjxozSuGXLljVeHwAAAABY9Ql2AgAAAAArjTZt2qRfv36l68GDBy/3noXn9OvXL61bt67x+uutt16l6+eff75K973wwgulcadOnWq8PgAAAACw6hPsBAAAAABWKgMGDCiNX3311Tz44INLnfviiy/m73//+xLvrYlvf/vbla6vueaa5d4zYsSISjuL9u7du1Y9AAAAAACrNsFOAAAAAGClcuCBB2brrbcuXR933HF58803F5s3bty4/OhHP8rcuXOTJNtss00OOOCAJdYcMmRICoVC6ee2225b4rxOnTpl1113LV3/93//d84555wUi8Ulzn/zzTfzgx/8oHTdokWL/PCHP1zu7wgAAAAAfHU1qe8GAAAAAACqo1Ao5Oabb87OO++cioqKjBs3Lt/85jdz/PHHZ+edd06TJk3y3HPP5brrrssnn3ySJGnZsmUGDRqUQqFQ6/WvuOKK7LDDDpkxY0aS5MILL8yDDz6YI444IltuuWVatGiRcePG5Z///GfuvPPOfPnll6V7f/WrX2X99devdQ8AAAAAwKpLsBMAAAAAWOn06NEjgwcPzmGHHZaKiopMmTIll156aS699NLF5rZs2TKDBw9Ojx496mTtr3/967nvvvtyyCGH5IsvvkiSvPzyy3n55ZeXed/Pfvaz/PKXv6yTHgAAAACAVZej2AEAAACAldJ+++2XF154If369VviTpyFQiG77LJLXnzxxey33351uvbuu++e1157Lcccc0xat269zLl9+vTJY489lt/+9rd12gMAAAAAsGqyYycAAAAAsNLq3r17Hn/88YwZMybDhw/P2LFjkySdOnVKr1690rlz5yrV6dOnT4rFYrXW7ty5c2666aYMHDgwL774Yt544418/vnnmTNnTtq1a5euXbumZ8+e6dixY7V/LwAAAADgq0uwEwAAAABY6XXu3DkHH3xwvazdokWL9OrVK7169aqX9QEAAACAVYuj2AEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAZCsBMAAAAAAAAAAACggRDsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIAQ7AQAAAAAAAAAAABoIwU4AAAAAAAAAAACABkKwEwAAAAAAAAAAAKCBEOwEAAAAAAAAAAAAaCAEOwEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAaiSX03AAAAAMD/2eAXDy/22QeX7FkPnQAAAAAAAPXBjp0AAAAAAAAAAAAADYRgJwAAAAAAAAAAAEAD4Sh2AAAAAAAAAABYSY2dXJFJ02fVdxurvHc/nVbfLQBfIYKdAAAAAAAAAACwEho7uSK7XDk0FbPn1ncrXwktmzbOGq2b1XcbwFeAYCcAAAAAAAAAAKyEJk2flYrZc3P1wdtk445t6rudVd4arZul0+ot67sN4CtAsBMAAAAAAAAAAFZiG3dsky07tavvNgCoI43quwEAAAAAAAAAAAAA5hPsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIAQ7AQAAAAAAAAAAABoIwU4AAAAAAAAAAACABkKwEwAAAAAAAAAAAKCBEOwEAAAAAAAAAAAAaCAEOwEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAZCsBMAAAAAAAAAAACggRDsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIAQ7AQAAAAAAAAAAABoIwU4AAAAAAAAAAACABkKwEwAAAAAAAAAAAKCBEOwEAAAAAAAAAAAAaCAEOwEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAZCsBMAAAAAAAAAAACggRDsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIAQ7AQAAAAAAAAAAABoIwU4AAAAAAAAAAACABkKwEwAAAAAAAAAAAKCBEOwEAAAAAAAAAAAAaCAEOwEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAZCsBMAAAAAAAAAAACggRDsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIAQ7AQAAAAAAAAAAABoIwU4AAAAAAAAAAACABkKwEwAAAAAAAAAAAKCBEOwEAAAAAAAAAAAAaCAEOwEAAAAAAAAAAAAaCMFOAAAAAAAAAAAAgAZCsBMAAAAAAAAAAACggRDsBAAAAAAAAAAAAGggBDsBAAAAAAAAAAAAGgjBTgAAAAAAAAAAAIAGQrATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIJqsyMUmTJiQF154IWPGjMkXX3yRioqKFIvFatc555xzytAdAAAAAAAAAAAAQP0qe7Bz3rx5GTRoUG666aa8/PLLdVJTsBMAAAAAAAAAAABYFZU12Pnhhx9m//33z0svvZQklXbnLBQK1a5XLBZrdB8AAAAAUHvvvvtuHnjggTz99NMZOXJkPv/883zxxRdJksceeyx9+/Zd7J5x48Zl9uzZSZKWLVumQ4cOK7RnAAAAAICVTdmCnRMnTky/fv3y3nvvlQKZhUKhFO6syRHsAAAAAMCK99577+XUU0/Ngw8+uMTne8t6Gfu8887LzTffnCTp0KFDxo4dm8aNG5e3YQAAAACAlVjZgp3nnHNORo0aVSnQuf7662f//ffPNttsk44dO6Z169blWh4AAAAAqAP33XdfjjrqqEydOnWxE3UWfpF7aU499dTcfPPNKRaLmTBhQh566KHss88+5W4bAAAAAGClVZZg54wZM3LLLbeUHuw2atQoF154Yc444wxv4wMAAADASuKRRx7JIYcckrlz55YCncViMeuss046d+6cESNGLLfGJptskh133DHPPPNMkuT+++8X7AQAAAAAWIZG5Sg6dOjQzJo1K8n8t/ZPP/30nHXWWUKdAAAAALCSmDBhQg499NBSqLNYLOYHP/hBXnnllXz88cd59tlnkyz7GPYFDjjggCTzQ6GPP/54WfsGAAAAAFjZlSXY+cEHHySZ/6C2cePGOeOMM8qxDAAAAABQJhdeeGGmTp1aur7ssstyzz33ZKuttqp2re985zul8fjx4/Phhx/WSY8AAAAAAKuisgQ7J02alGT+2/qbbLJJ2rVrV45lAAAAAIAymDdvXu68884UCoUUCoUceOCBOe2002pcb/PNN0+zZs1K1yNHjqyLNgEAAAAAVkllCXa2adNmiWMAAAAAoOH797//ncmTJ6dYLCZJfvWrX9WqXpMmTdKpU6fStR07AQAAAACWrizBzs0226w0/vTTT8uxBAAAAABQJu+8805p3LFjxxodv76o1VdfvTT+4osval0PAAAAAGBVVZZg584775zWrVunWCxm9OjRGT9+fDmWAQAAAADKYMKECUmSQqGQ9ddfv05qNmnSpDSeM2dOndQEAAAAAFgVlSXY2aJFixxzzDGl65tuuqkcywAAAAAAZdCo0f89Npw3b16d1Pz8889L4zXWWKNOagIAAAAArIrKEuxMkvPOOy9dunRJsVjMZZddlhdffLFcSwEAAAAAdahDhw5JkmKxWCen8cyYMSOjR49OoVCoVB8AAAAAgMWVLdjZtm3bPPLII1l77bUzY8aM7LbbbnnwwQfLtRwAAAAAUEc22GCD0nj8+PEZPXp0reo99dRTmTNnTorFYpJkm222qVU9AAAAAIBVWZNyFf7www/Tpk2b3H333TnqqKPy3nvvZd99903Pnj1z8MEHp0ePHunYsWNatGhR7dpdunQpQ8cAAAAAQJJ861vfSps2bTJ9+vQkyW233ZZzzz23xvWuuuqq0rhLly7p1q1brXsEAKBmxk6uyKTps+q7DQDqyLufTqvvFgAog7IFOzfYYIPS0UpJUigUUiwW89xzz+W5556rcd1CoZA5c+bURYsAAAAAwBI0bdo0u+++e/7yl78kSX7729+mf//+lXbyrKqbb745Tz75ZOlZ4UEHHVSXrQIAUA1jJ1dklyuHpmL23PpuBYA61LJp46zRull9twFAHSpbsHOBYrFYemi74J8LjlwCAAAAABqmc889N/fff3+KxWKmTp2a3XbbLY8++mi1wp033nhjTjrppNJL361atcppp51WvqYBAFimSdNnpWL23Fx98DbZuGOb+m4HgDqyRutm6bR6y/puA4A6VPZgZyLICQAAAAArmy222CLHH398rr/++hQKhbzzzjvZaqutcvLJJ+fwww/PJptsUmn+gpe6x48fnyeffDLXXXddnn322dKzwUKhkPPOOy8dOnRY4b8LAACVbdyxTbbs1K6+2wAAAJaibMHO/v37l6s0AAAAALACXH311XnnnXfy2GOPpVAoZPr06bn44otz8cUXp3Xr1kn+78Segw46KBUVFamoqCjdv+C7YrGYgw46yG6dAAAAAABVULZg56233lqu0gAAAADACtC4ceM88MAD+X//7//ljjvuKO3KWSwWM23atFJos1gsZuLEiZXuXXjucccdl2uvvXaF9w8AAAAAsDJqVN8NAAAAAAANV8uWLfPHP/4xf/rTn7LppptWOlp9wT8X/UnmBzo33njj/OlPf8rvf//7NGlStnfMAQAAAABWKZ6mAgAAAADLdfDBB+fggw/Oo48+mkceeSRPP/10Ro4cmZkzZ5bmNGnSJF27ds13vvOd7L777tl3333TqJF3ywEAAAAAqkOwEwAAAACost122y277bZb6XrGjBmZPHlyWrVqldVXX73+GgMAAAAAWEUIdgIAAAAANdaqVau0atWqvtsAAAAAAFhl1Fuwc8yYMfnwww8zadKkTJ06NauttlrWWGONdO3aNeuvv359tQUAAAAAAAAAAABQb1ZosPOpp57KTTfdlKeffjrjxo1b6rx11103vXv3zjHHHJM+ffqsuAYBAAAAgCTJiy++mG233ba+2wAAAAAA+MpptCIWef3117Pddttll112yb333puPP/44xWJxqT8ff/xx7r777vTr1y/bb799/vOf/6yINgEAAACA/9WjR498/etfz5VXXpnx48fXdzsAAAAAAF8ZZQ92/vGPf8z222+fl19+OcViMUlSKBRSKBSWOH/h74rFYl544YX06NEjt99+e7lbBQAAAAAW8p///Cenn356OnfunD322CP33ntvZs6cWd9tAQAAAACs0sp6FPsDDzyQo48+OnPnzi0FNheEOzt37pytt946a621Vlq3bp3p06fns88+yyuvvJIxY8YkSSngOXPmzBx11FFp165d9tlnn3K2DAAAAAAspFgsZu7cuXn00Ufz6KOPpm3btjn44INzxBFHpFevXvXdHgAAAADAKqdswc6JEyfmxz/+cSnUWSwW07Jly5x00kk58sgjs/HGGy/13lGjRuWWW27JwIEDU1FRkUKhkLlz52bAgAF599130759+3K1DQAAAAAk6d27d4YNG5YklU7Y+eKLLzJo0KAMGjQoG220Ufr375/DDz88Xbp0qc92AQAAAABWGWU7iv2CCy7IlClTSqHOrbbaKm+88UYuvvjiZYY6k2SjjTbKxRdfnP/85z/ZaqutSrt8TpkyJRdddFG5WgYAAAAA/tdTTz2V999/P+eff3423njj0jO6hUOe7777bs4555x069Ytffv2ze23357p06fXZ9sAAAAAACu9sgQ7i8Vi/vSnP5VCnV26dMmwYcPStWvXatXp2rVrhgwZkq5du5ZqDR48uBwtAwAAAACL6NKlS84+++y89dZb+de//pVjjz027dq1qxTyLBaLmTdvXoYOHZof//jHWWeddTJgwIA8+eST9dw9AAAAAMDKqSzBzueeey6fffZZisViCoVCrrzyyrRr165GtVZfffVcccUVpYfFEydOzHPPPVeX7QIAAAAAy7HDDjvkhhtuyPjx43PPPfdkzz33TOPGjZNU3sVz+vTpueOOO7Lrrruma9euOfvss/POO+/UZ+sAAAAAACuVsgQ7F35Q26ZNm+yzzz61qrf33ntntdVWK12//fbbtaoHAAAAANRMs2bN8oMf/CAPPvhgxo4dmyuvvDJbb731Eo9qHzNmTC6++OJsttlm6dWrV2666aZ88cUX9dk+AAAAAECDV5Zg56effppk/kPcDTbYIE2aNKlVvaZNm2aDDTZYrD4AAAAAUH86dOiQn/3sZ3nxxRfz6quv5pRTTsnaa6+9xJDns88+m+OPPz7rrrtufbYMAAAAANDglSXYOXfu3NJ4wXFMtbVwnXnz5tVJTQAAAACgbmy55Za54oor8tFHH+WRRx7JQQcdlObNm6dYLFYKeM6cObOeOwUAAAAAaNjKEuzs2LFjkvkPakePHl16Q7+mFtRZoEOHDrWqBwAAAACUR6NGjbL77rvn7rvvzvjx43PFFVekefPm9d0WAAAAAMBKoyzBzg033LA0njx5cp544ola1XviiScyadKkJdYHAAAAABqWYrGYxx57LD/5yU9yzjnn2KUTAAAAAKAampSj6A477JDVVlst06ZNS7FYzGmnnZYRI0akadOm1a41e/bs/PznPy9dt2nTJr169arLdgEAAACAOvDGG2/kj3/8YwYPHpxx48YlSaWj2AEAAAAAWL6y7NjZtGnT7L333qWHtq+99lr23nvvTJs2rVp1ZsyYkf322y+vvPJKkqRQKGTfffdNkyZlyaMCAAAAANX02WefZeDAgenRo0e22mqrXHHFFfn4449TLBaTzH+mVywWUywW861vfSu/+93v6rljAAAAAICGrSzBziS58MIL06xZsyT/d/RS9+7dc+utt2bGjBnLvHfGjBm57bbbstlmm+Xvf/976Y3+Zs2a5fzzzy9XywAAAABAFcyePTv33Xdf9tlnn3Tq1Ck/+9nP8uKLL1YKcybznwuuv/76Oeuss/LWW29l+PDhOe644+qzdQAAAACABq9sW19usMEGueSSS3LKKaeU3sofO3Zsjj766Jx44onZfvvt8/Wvfz1rrbVWWrdunenTp2fixIl55ZVXMmLEiMyYMaPSMU2FQiGXXnppNthgg3K1DAAAAAAsw7///e/cfvvtueeeezJ58uQkWeLOnK1atcoBBxyQ/v375zvf+Y6j2AEAAAAAqqGsZ5qffPLJmThxYn79619Xekt/+vTpGTp0aIYOHbrE+xZ9GJwkZ599dk488cRytgsAAAAALOLDDz/MHXfckdtvvz3vvvtuksrP7xZ+hte7d+/0798/Bx54YNq0aVNvPQMAAAAArMzKGuxM5h/J3rNnzxx77LH55JNPFns7f8FD3ySVdudc8Hb/2muvnUGDBmWvvfYqd6sAAAAAwP+69dZbc/vtt+fpp58uPatLKoc5i8ViNtpooxxxxBE54ogj0rVr13rpdfjw4bntttvyzDPP5KOPPkqSrL/++tlpp50yYMCA9OrVq+w9TJkyJX/9619z33335c0338zHH3+cWbNmpX379tlkk02y0047pW/fvtlxxx3TvHnzsvcDAAAAAKy8yh7sTJLvf//7ee+993LHHXfklltuyYsvvpi5c+cuNm/Bw+HGjRtnu+22y9FHH53DDjssLVu2XBFtAgAAAAD/66ijjqq0G+fCYc62bdvmoIMOSv/+/bPjjjvWW4/Tp0/PiSeemD/84Q+LfTdy5MiMHDkygwYNypFHHpmBAwemdevWZelj8ODB+dnPfpYJEyYs9t24ceMybty4DB06NL/+9a/z5z//OQceeGBZ+gAAAAAAVg0rJNiZJC1btsyxxx6bY489NtOnT8/zzz+f0aNHZ9KkSZk2bVratGmTNdZYI127dk2PHj3K9pAVAAAAAKi6BYHOQqGQXXfdNf37989+++2XFi1a1Gtfc+fOzf7775/HHnus9FnLli2zxRZbpEmTJnnjjTcyZcqUJMkf/vCHjB07Ng8//HAaN25cp32cdNJJGThwYKXPOnfunM6dO6dZs2b59NNP8/bbb2fOnDl1ui4AAAAAsOpaYcHOhbVu3Tq9e/euj6UBAAAAgCoqFovp3r17+vfvnx/96EdZb7316rulkrPPPrtSqPOYY47JJZdckjXXXDPJ/N08L7nkklx00UVJkkcffTTnnHNOfv3rX9dZD2eddVYp1FkoFNK/f/+cccYZ2WyzzSrNq6ioyFNPPZU777wzzZo1q7P1AQAAAIBVU70EOwEAAACAhu2EE05I//7906NHj/puZTFjx47NVVddVbo+/PDDc9NNN1Wa07p161x44YVJUgp3XnXVVTnhhBPqJKD6r3/9K5dcckmSpFGjRrntttty+OGHL3Fuy5Yts8cee2SPPfao9boAAAAAwKqvUX03AAAAAAA0PNdee22DDHUmycCBA/Pll18mSVq1apWrr756qXPPPvvsdO7cOcn8nTOvueaaWq9fLBZz7LHHplgsJklOO+20pYY6AQAAAACqS7ATAAAAAFip3H///aXxQQcdVDp+fUmaNWuWH//4x6XrBx54oNbrP/7443njjTeSJO3atcs555xT65oAAAAAAAsIdgIAAAAAK4233nor7777bul69913X+493/ve90rjd955J2+//Xaterj55ptL4wMOOCCtW7euVT0AAAAAgIU1qe4Nt99++2KfHXHEEVWaV1eWtB4AAAAAsOp75ZVXKl3vsMMOy71n2223TbNmzTJr1qxSjU022aTGPTz++OOlcd++fWtcBwAAAABgSaod7BwwYEAKhUKlz5YUtFzSvLoi2AkAAAAANfPhhx8u9lmXLl2qNK+uLGm9qho5cmRp3KxZs3Tu3Hm59yyYN2rUqMVqVNe7776bzz//vHT99a9/PUny2muv5cYbb8w///nPfPTRR2natGnWXXfd7LzzzjnssMOy884713hNAAAAAOCrpdrBzoUVi8XlhjeLxWJtligpFApVWg8AAAAAWLoNNtig0jO2QqGQOXPmLHdeXVnaelU1evTo0nj99devco9dunQpBTs/+OCDGq//6quvVrpeZ511ct555+Wiiy7K3LlzK333xRdf5M0338xNN92UvffeO7fffnvatWtX47UBAAAAgK+GGgU7qxrWrKtQZ13XAgAAAICvuvp4xlcXpkyZUhpXJyTZtm3b0njq1Kk1Xn/ixImVri+99NJceeWVSeaHVjfffPN07Ngxn376ad54443Sv7///u//zre//e0MHz48bdq0We46M2fOzMyZM0vXC//eAAAAAMCqrdrBzltvvbVO5wEAAAAAVNX06dNL4xYtWlT5vpYtWy6xRnV98cUXla4XhDp33XXX/P73v89GG21U+u69997L8ccfn8ceeyzJ/OPaTzjhhPzxj39c7jq/+c1vcv7559e4TwAAAABg5VXtYGf//v3rdB4AAAAAsOKs7M/3Zs+eXRo3aVL1x5sLz501a1aN1//yyy8X+6x37955+OGH07Rp00qfd+vWLQ8//HC++93v5qmnnkqS3HHHHTnzzDOz2WabLXOdM888M6ecckrpesqUKencuXON+wYAAAAAVh41OoodAAAAAFg5rewn8rRq1ao0XlLIcmkWntu6desar7+ke3/3u98tFupcoEmTJvn973+f7t27p1gsplgs5rbbbssll1yyzHWaN2+e5s2b17hPAAAAAGDl1ai+GwAAAAAAqKo2bdqUxhUVFVW+b8aMGUusUZv1k2TbbbfN5ptvvsx7Nt100/To0aN0PWzYsBqvDwAAAACs+gQ7AQAAAICVxlprrVUajxs3rsr3jR8/vjRu3759nayfzA92VsXC8957770arw8AAAAArPrKdhR73759S+Mrr7wy3/jGN2pc68UXX8xpp52WJCkUCnniiSdq3R8AAAAAsPLZdNNNS+OJEydmxowZlY5nX5oxY8aUxptttlmN1+/evXul66qGRBeeN2nSpBqvDwAAAACs+soW7BwyZEgKhUKS2j+onDRpUoYMGZIkpZoAAAAAQPlccMEFpfERRxyRDTbYoMa13n///dxxxx2l63POOafGtRYNVr788svp1avXMu8ZO3ZsJkyYsNQa1bHxxhunWbNmmTVrVpJk5syZVbrvyy+/LI1btGhR4/UBAAAAgFVf2YKdSVIsFgUxAQAAAGAldN5555We7e200061Cna+9957lerVJtjZs2fPNG/evBSofOaZZ5Yb7Hz66adL4xYtWqRnz541Xr9JkybZcccd89RTTyWZH1qtig8++KA0XnvttWu8PgAAAACw6mtUzuJCnXVj6tSpefDBB3Puuedmzz33zNprr51CoZBCoVDayRQAAAAA6lqxWGxw9dq0aZN+/fqVrgcPHrzcexae069fv7Ru3bpWPey///6l8bBhw5a7a+esWbMybNiw0vW3vvWtWq0PAAAAAKzayhrsrCtz5swpjZs0Kesmow3SE088kb333jsXXHBBHnnkkXz66af13RIAAAAAXwEN9cXtAQMGlMavvvpqHnzwwaXOffHFF/P3v/99iffW1MEHH5w2bdokSSZNmpQbb7xxmfMHDRqUzz77rHS9zz771LoHAAAAAGDVtVIEOydMmFAaL3hg+lXToUOH7L777vnVr36Vu+66q77bAQAAAIAqmzdvXmncqFHtH0keeOCB2XrrrUvXxx13XN58883F5o0bNy4/+tGPMnfu3CTJNttskwMOOGCJNYcMGVI6JadQKOS2225b6vodOnTIKaecUro+88wz8+STTy617hlnnFG67t69e/bbb79l/n4AAAAAwFfbSrH95YKHooVCIZ06darnbla873//+5V26Zw2bVo9dgMAAAAA1fPFF1+UxrU9Bj2Z/5zw5ptvzs4775yKioqMGzcu3/zmN3P88cdn5513TpMmTfLcc8/luuuuyyeffJIkadmyZQYNGlRnu5CeccYZ+fvf/54RI0ZkxowZ2XXXXXPYYYdl7733ztprr51PPvkkDz74YO68885SsLVFixa588476yTcCgAAAACsulZIsLMmD0srKiry/vvv5y9/+Utuv/32Uo2F38T/qmjcuHF9twAAAAAANfbCCy+UxmuttVad1OzRo0cGDx6cww47LBUVFZkyZUouvfTSXHrppYvNbdmyZQYPHpwePXrUydpJ0qpVqzz44IPZdddd89prr2XevHm54447cscddyxxftu2bXPvvfdm2223rbMeAAAAAIBVU61eDW/cuPFSf5KkWCymWCxml112WebcJf20adMmW221Vc4///zMmzcvxWIxSRxTBAAAAAArkWHDhuXGG28sHXG+5ZZb1lnt/fbbLy+88EL69eu3xJfLC4VCdtlll7z44otlea649tprZ8SIEfnlL3+Z9u3bL3FOkyZN8sMf/jAvvfRSdttttzrvAQAAAABY9dRqx84FYcu6mrckCx74FovFbLvtttlnn31qXGtJJkyYkOeffz4jRowo/XP8+PGl72+99dYMGDCgxvWHDx+e2267Lc8880w++uijJMn666+fnXbaKQMGDEivXr1q+ysAAAAAQI307du3SvNOPfXUrLHGGlWuWywWM2PGjHzwwQf57LPPSp8VCoU6Dzd27949jz/+eMaMGZPhw4dn7NixSZJOnTqlV69e6dy5c5Xq9OnTp0bPMZs3b56LLroo5557boYNG5b33nsvEyZMSNu2bdO1a9f07t07bdu2rXZdAAAAAOCrq9ZHsS8IXZbLgtp9+/bNHXfcUWfHko8fPz7f+ta3Mnr06Dqpt6jp06fnxBNPzB/+8IfFvhs5cmRGjhyZQYMG5cgjj8zAgQPTunXrsvQBAAAAAEszZMiQJe50ucCCZ3OvvvpqtWsv/MxwwRodO3bMD3/4w2rXqorOnTvn4IMPLkvtqmjatGn69euXfv361VsPAAAAAMCqoVbBzp133nmpD36HDh1a+m6rrbaq1hv9jRo1SuvWrbPmmmtmiy22yK677pptttmmNq0u5ssvvyxbqHPu3LnZf//989hjj5U+a9myZbbYYos0adIkb7zxRqZMmZIk+cMf/pCxY8fm4YcfrrPQKgAAAADUtwXPBovFYorFYtZaa63ce++9adeuXT13BgAAAADQsNUq2DlkyJClfteoUaPS+Le//W2Vj3WqDx06dMh2222XHj16ZPvtt6/1ce9nn312pVDnMccck0suuSRrrrlmkvm7eV5yySW56KKLkiSPPvpozjnnnPz617+u1boAAAAAUF1VOY2nuif2FAqFSi9uf/e7380RRxxRrZe/AQAAAAC+qmp9FPuyFIvFZR7lVJ/WXHPN/PnPf87222+frl271lndsWPH5qqrripdH3744bnpppsqzWndunUuvPDCJCmFO6+66qqccMIJWW+99eqsFwAAAABYlnnz5i31u0aNGpWe7f3zn/9s0C9uAwAAAACsSsoW7Dz33HNL427dupVrmRpr27ZtDjzwwDqvO3DgwHz55ZdJklatWuXqq69e6tyzzz47f/zjHzNmzJhUVFTkmmuuyaWXXlrnPQEAAABATTTkF7cBAAAAAFZVKyTY+VVy//33l8YHHXRQ6fj1JWnWrFl+/OMf54ILLkiSPPDAA4KdAAAAADQIO++8cynU6Qh1AAAAAIAVp6xHsX/VvPXWW3n33XdL17vvvvty7/ne975XCna+8847efvtt7PJJpuUrUcAAAAAqIohQ4bUdwsAAAAAAF9Jjeq7gVXJK6+8Uul6hx12WO492267bZo1a7bUGgAAAAAAAAAAAMBXhx0769DIkSNL42bNmqVz587LvWfBvFGjRi1WY2GfffZZaTx9+vTS+Isvvqj03ZprrplGjeR1AQAAAAAAAAAAYGVUtmDnkUceWZa6hUIht9xyS1lq19bo0aNL4/XXXz+FQqFK93Xp0qUU7Pzggw+WOKdDhw5L/HzfffetdP3+++9ngw02qNK6AAAAAAAAAAAAQMNStmDnbbfdVuVgY1UVi8UGHeycMmVKadyuXbsq39e2bdvSeOrUqXXa0wIzZ87MzJkzS9cL9woAAAAAVTVz5sy8/vrr+eyzzzJ58uRKz5yq6ogjjihDZwAAAAAAq4YGexR7sVisdF3XIdFyWPiI9BYtWlT5vpYtWy6xxsIW/fdRXb/5zW9y/vnn16oGAAAAAF9NM2bMyB133JFbb701L730UubMmVOreoKdAAAAAABLV9ZgZ23DiAvCnMVisda1VoTZs2eXxk2aVP1f7cJzZ82aVac9LXDmmWfmlFNOKV1PmTIlnTt3LstaAAAAAKw6hg4dmh/96Ef5+OOPk9T8mV+hUCidyAMAAAAAwNKVLdj5/vvvV/ueGTNmZMKECRkxYkTuueeePP/88ykUCtl4441zyy23pEuXLmXotO60atWqNP7yyy+rfN/Cc1u3bl2nPS3QvHnzNG/evCy1AQAAAFg1/eMf/8j3v//9zJs3b7FQ5sLj5Z2+s7K8uA0AAAAA0BCULdjZtWvXGt3XvXv37Lzzzjn11FNz//3355hjjsmoUaNy6KGH5vHHH89mm21Wx53WnTZt2pTGFRUVVb5vxowZS6wBAAAAAPVl3LhxOfTQQzN37txSULNbt275wQ9+kA033DDHHXdc6fOf//zn2WijjfL555/nP//5T4YOHZqPPvqo9P3mm2+eU045JY0bN6633wcAAAAAYGVR1qPYa2v//fdP586d06dPn3z88cfZY4898vLLL6dt27b13doSrbXWWqXxuHHjqnzf+PHjS+P27dvXaU8AAAAAUBNXXnllvvjii1I48+ijj87111+fpk2bJkmOO+640tzddtstffv2LV0Xi8X87W9/y2mnnZb33nsvI0eOzJ133pm//vWvDfbZHgAAAABAQ9GovhtYnu233z6nnXZakmT06NE599xz67mjpdt0001L44kTJ1baiXNZxowZUxo35B1JAQAAAPhqKBaLufXWW0uhzp49e+amm24qhTqXp1AoZN99980rr7ySXXbZJcViMUOHDs0BBxxQzrYBAAAAAFYJDT7YmST/7//9vyTzHygPGjSoWsecr0jdu3evdP3yyy8v956xY8dmwoQJS60BAAAAACva66+/nkmTJqVYLCZJzjrrrBrVad26df72t79l4403TrFYzJNPPpkbbrihLlsFAAAAAFjlrBTBznXXXTcbbrhhkqSioiLDhg2r546WrGfPnmnevHnp+plnnlnuPU8//XRp3KJFi/Ts2bMsvQEAAABAVb322mulcZMmTbLbbrstc/7cuXOX+l3Lli1z8cUXJ5n/4vbll19eN00CAAAAAKyiVopgZ5J06NChNH7zzTfrsZOla9OmTfr161e6Hjx48HLvWXhOv3790rp167L0BgAAAABVNXHixCTzj1TfcMMN06xZs8XmLDimPclyT9j5/ve/n1atWiVJPvjgg0rBUQAAAAAAKltpgp3Tpk0rjWfMmFGPnSzbgAEDSuNXX301Dz744FLnvvjii/n73/++xHsBAAAAoL5MnTq1NF5jjTWWOKd169alo9qnTJmyzHrNmzfPBhtsULp++eWXa90jAAAAAMCqaqUIdk6ePDlvv/12aReA1VdfvX4bWoYDDzwwW2+9den6uOOOW+IOo+PGjcuPfvSj0jFV22yzTQ444IAV1icAAAAALM3Cp8rMnj17iXNWW2210njMmDHLrdmmTZvSePz48bXoDgAAAABg1bZSBDsvu+yyzJkzp7QDwIYbblgndY855pi0aNFisZ/qzllYoVDIzTffnJYtWyaZH+D85je/mV/84hd55JFH8thjj+Wiiy7KN77xjYwcOTJJ0rJlywwaNKjS8VUAAAAAUF86dOhQGi9tN84uXbqUxq+88spya44bN640XvCyMwAAAAAAi2tS3w0sy7x583LZZZfl0ksvTaFQSLFYTPPmzdO7d+86qT979uzMnDlzmXPmzJmTOXPmVKtujx49Mnjw4Bx22GGpqKjIlClTcumll+bSSy9dbG7Lli0zePDg9OjRo1prAAAAAEC5dO/ePUlSLBYzZsyYzJs3L40aVX5HfOutt86zzz6bYrGYIUOGZM6cOWnSZMmPG0eOHJkxY8aUXmxu3759eX8BAAAAAICVWNmCncOGDavRfRUVFfnkk0/y0ksv5YEHHsiYMWNKO3UWCoUcddRRpd0wG7L99tsvL7zwQn7605/mySefLP0OCxQKhfTr1y/XXnttNttss3rqEgAAAAAWt/nmm6d58+aZOXNmZs2albfeeqsU9lzgO9/5Tm666aYkyYQJE/L73/8+P/3pTxerVSwW8/Of/7w0LhQK+frXv17+XwIAAAAAYCVVtmBnnz59an20+MKBzmKxmI022igXXHBBXbSXJLntttty22231Vm9RXXv3j2PP/54xowZk+HDh2fs2LFJkk6dOqVXr17p3Llz2dYGAAAAgJpq3rx5dthhhwwZMiRJ8s9//nOxYOfee++d1VZbLdOmTSuFNysqKnLcccelXbt2SZI333wzp59+eh555JHSM7511lkn22+//Yr+lQAAAAAAVhplP4p90Z0qq6pQKJQe9haLxXzjG9/I/fffnzXWWKOOOyy/zp075+CDD67vNgAAAACgyvbcc89SsPNvf/tbTjzxxErft2zZMmeddVbOPPPMFAqFzJo1K2eeeWZ++ctfpkOHDpk1a1YmTZpUmr9gt84zzjhjsWPdAQAAAAD4P2V9glrTUOeCexcEOn/3u9/lueeeS9euXeuwOwAAAABgaQ455JDSi9dDhgzJyJEjF5tz6qmn5jvf+U4ptFksFjN37tyMHz8+n3/+eaUTeZJkr732WiwgCgAAAABAZWXbsfPcc8+t9j2FQiEtWrRI27Zt07Vr12y77bZZe+21y9AdAAAAALAsnTp1yssvv5xZs2YlSdZaa63F5jRp0iQPP/xwjj/++Nx+++2lzxcEORe8vN2oUaMcf/zxueqqq1ZM8wAAAAAAK7EGFewEAAAAABqOrbbaarlzWrRokVtvvTUnn3xy7r333vz73//OJ598kmKxmHXWWSe9evXKj370o2y66aYroGMAAAAAgJVf2YKdAAAAAMBXx9Zbb52tt966vtsAAAAAAFjpNarvBgAAAAAAAAAAAACYT7ATAAAAAAAAAAAAoIEQ7AQAAAAAAAAAAABoIJqs6AWnTJmSf//733nuuefy/vvvZ/LkyZk2bVratGmT1VdfPRtuuGF69uyZb33rW2nbtu2Kbg8AAAAAAAAAAACg3qywYOeIESNyzTXX5P7778/MmTOXO7958+bZf//9c+KJJ6Znz54roEMAAAAAAAAAAACA+lX2YOf06dNz+umn58Ybb0yxWEyxWCx9VygUFpu/4Psvv/wyf/rTn3L33Xfn2GOPzWWXXZY2bdqUu10AAAAAWKX17du3XtcvFAp54okn6rUHAAAAAICGrKzBzkmTJmX33XfP888/n2KxmEKhkEKhUApvLhzyXNSC0Oe8efNy4403ZsSIEXnssceyxhprlLNlAAAAAFilDRkyZIkvXK8IC54RAgAAAACwdGULds6bNy977LFHRowYkSSlQGejRo3Sp0+f9OnTJ1tuuWXat2+f1q1bZ/r06Zk4cWJee+21DB06NEOHDs28efNK973wwgvZY489Mnz4cA9/AQAAAAAAAAAAgFVS2YKdV199dZ599tlSCLNYLOaQQw7JJZdcki5duiz1vv322y9J8uGHH+aMM87IPffcUwp3Pvfcc7nqqqtyyimnlKttAAAAAFjlLeskHQAAAAAA6lejchQtFov57W9/W+nY9auvvjp33XXXMkOdC+vSpUv+9Kc/5eqrry4d0bSgLgAAAABQM/PmzavXn7lz59b3vwIAAAAAgAatLMHO4cOH5+OPP04y/wj2H//4xznxxBNrVOvEE0/Mj3/841JAdNy4cfnXv/5VZ70CAAAAAAAAAAAANBRlCXa+/fbbSf7vSKdf/vKXtar3q1/9KklKx7q/9dZbtaoHAAAAAAAAAAAA0BCVJdg5fvz40rhr167ZcMMNa1Vvww03zAYbbFAKin766ae1qgcAAAAAAAAAAADQEJUl2NmiRYsk83fY7NChQ53UXLhO8+bN66QmAAAAAAAAAAAAQENSlmBnt27dSuOJEyfWSc2F6yxcHwAAAAAAAAAAAGBVUZZg57e//e00btw4xWIxH3zwQT766KNa1fvoo4/y/vvvJ0kaN26cb3/723XRJgAAAAAAAAAAAECD0qQcRddcc83st99++ctf/pJisZgrr7wyV111VY3rXX755SkWiykUCtlvv/2y5ppr1mG3AAAAAMCibr/99rLVPuKII8pWGwAAAABgZVeWYGcyP4z56KOPZtq0abn22mvTs2fPHHroodWuc9ddd+W6665LoVBI27Ztc/nll5ehWwAAAABgYQMGDEihUChLbcFOAAAAAIClK8tR7EnStWvX/PWvf03r1q0zb968HH744Tn55JMzefLkKt0/efLknHTSSTniiCNSLBbTpk2bPPDAA+nSpUu5WgYAAAAAFlEsFuvkZ0EtAAAAAACWrdo7dn744YdVnrvRRhvlnnvuyU9+8pOMHj061157bQYNGpQ999wzffr0yZZbbpn27dunVatWmTFjRj777LO8/vrrGTp0aB5++OF8+eWXKRaL2WCDDfK73/0u3bp1y4cffijcCQAAAAArQG2CmAvv9rlwuBMAAAAAgGWrdrBzgw02qNERTIVCIcViMRUVFbnvvvty3333LXP+gge9hUIho0ePzp577lm6njNnTrXXBwAAAACq7tZbb632PTNmzMiECRMyYsSIPPnkk6moqEihUMjGG2+cM844I02aVPtxJAAAAADAV06Nn6RW5w37BUHQRd/SX9b8RcOj3ugHAAAAgBWnf//+tbp/4sSJOf/883P99ddn1KhRGTx4cP72t79ltdVWq6MOAQAAAABWTY1WxCILjlpa+Kcu5wMAAAAADUv79u0zcODA3HjjjSkWixk6dGgOOOAAz/oAAAAAAJaj2jt21vZNfQAAAADgq+Poo4/OkCFDctddd+WJJ57I9ddfn//6r/+q77YAAAAAABqsagc7b7311nL0AQAAAACson7xi1/krrvuSrFYzG9+85uccMIJKRQK9d0WAAAAAECDtEKOYgcAAAAAvrq23HLLdOzYMUkyfvz4/Pvf/67njgAAAAAAGi7BTgAAAACg7NZff/3S+NVXX63HTgAAAAAAGjbBTgAAAACg7ObOnVsaf/755/XYCQAAAABAwybYCQAAAACU1ezZszNq1KgUCoUkSevWreu5IwAAAACAhkuwEwAAAAAoq7vuuivTpk1LsVhMkqy33nr13BEAAAAAQMMl2AkAAAAAlM3w4cNz8sknl3brLBQK6d27dz13BQAAAADQcDWp7g19+/atdF0oFPLEE08sd15dWdp6AAAAAED9mzlzZj755JO89NJLuffee3Pvvfdm7ty5SeY/29ttt93SoUOHeu4SAAAAAKDhqnawc8iQIaW364vFYmm8rHl1ZVnrAQAAAAB1p3HjxnVSZ8EzvWKxmFatWuWKK66ok7oAAAAAAKuqagc7AQAAAIBVX7FYrHWNQqFQCnW2adMmf/nLX9K9e/c66A4AAAAAYNXVqCY3FYvFKj3YXTCvrn4AAAAAgBWntqfnFIvFNGnSJAcddFBef/31fPe7362jzgAAAAAAVl3V3rFz3rx5dToPAAAAAGh4dt5552oHOwuFQlq0aJG2bduma9eu2XbbbbPLLrukffv2ZeoSAAAAAGDV4yh2AAAAAGAxQ4YMqe8WAAAAAAC+kmp0FDsAAAAAAAAAAAAAda8sO3bOnTs306dPL123bNkyTZs2LcdSVNP111+f66+/PnPnzq3vVgAAAAAAAAAAAIBFlGXHzj/+8Y9ZY401Sj9PP/10OZahBk444YS88cYbGTFiRH23AgAAAAAAAAAAACyiLMHOTz75JMViMcViMe3atUvfvn3LsQwAAAAAAAAAAADAKqUswc42bdokSQqFQrp27VqOJQAAAAAAAAAAAABWOU3KUXTdddctR1kAAAAAoJ7NmDEjH330UaZMmZKKiooUi8Vq19h5553L0BkAAAAAwKqhLMHO7t27J0mKxWLGjBlTjiUAAAAAgBXk9ddfzx/+8If8/e9/z7vvvpt58+bVuFahUMicOXPqsDsAAAAAgFVLWYKdW2yxRbbYYov85z//yaRJk/Lss8/mm9/8ZjmWAgAAAADKpKKiIieffHJuueWWFIvFGu3OCQAAAABA9TQqV+Fjjz22ND733HPLtQwAAAAAUAYVFRXZfffdc/PNN2fevHkpFospFAopFAr13RoAAAAAwCqtLDt2JslPfvKT3HvvvfnXv/6Vf/7znznttNNyxRVXlGs5AAAAAKAOnXvuuXn66adLYc4Fwc7tttsuW221Vdq3b59WrVrVd5sAAAAAAKucsgU7GzdunAcffDB77713nnnmmVx11VV57rnncsEFF6RPnz7lWhYAAAAAqKVp06bl2muvLQU6k6R///759a9/nfXWW6+euwMAAAAAWLWVLdh5wQUXJEl69+6dd955J5988kn+9a9/pV+/fll77bXTo0ePbLjhhmnbtm2aNm1ardrnnHNOOVoGAAAAAJI8+eSTmTlzZmm3zuOPPz7XXXddfbcFAAAAAPCVULZg53nnnZdCoVC6Xvjt/vHjx+fhhx+ucW3BTgAAAAAonw8++CBJUiwW07Rp01x00UX12xAAAAAAwFdI2YKdS7Jw0LMmisVirWsAAAAAAMs2ffr0JPOf52266aZZffXV67chAAAAAICvkLIGOxfs0AkAAAAArDw6dOhQGrdo0aIeOwEAAAAA+OopW7DzqaeeKldpAAAAAKCMttlmm9L4448/rr9GAAAAAAC+gsoW7Ozdu3e5SgMAAAAAZdSjR4907do1o0ePzrhx4zJy5Mh07969vtsCAAAAAPhKaFTfDQAAAAAADc+ZZ55ZGl988cX12AkAAAAAwFeLYCcAAAAAsJhjjz02e+yxR4rFYu66665ce+219d0SAAAAAMBXgmAnAAAAALBEf/nLX/K9730vxWIxJ598co444oiMGjWqvtsCAAAAAFilNSlX4caNGydJCoVCHnvssfTt27fGtZ544ol897vfLdWbM2dOnfQIAAAAACxdixYt8tBDD+XSSy/NhRdemMGDB+euu+7K1ltvnW233TYdOnRIixYtql33nHPOKUO3AAAAAACrhrIFO4vFYoOuBwAAAAAs37x589K2bdt07Ngxo0ePTrFYzEsvvZSXX365xjUFOwEAAAAAlq5swc5k/u6aAAAAAMDK6d13381+++2XN954I0ntn/cVi0XPDAEAAAAAlqOswU4AAAAAYOU0duzY9O7dO+PHj68UyHSyDgAAAABAea0Uwc5Zs2aVxs2bN6/HTgAAAADgq+HEE0/MuHHjUigUUigUUiwW071793z/+9/Plltumfbt26dVq1b13SYAAAAAwCpnpQh2fvjhh6XxaqutVo+dAAAAAMCqb8yYMfnrX/9aCnS2aNEiN954Yw4//PD6bg0AAAAAYJW3UgQ777333iRJoVBIt27d6rkbAAAAAFi1DRs2rHTkeqFQyFVXXSXUCQAAAACwgtQq2Dls2LAqzXvllVfSpEnVlyoWi5kxY0bef//93HfffRkyZEjpu+233766bQIAAAAA1fDRRx+Vxq1bt86RRx5Zj90AAAAAAHy11CrY2adPnxQKhaV+v+Ct/tNOO602y1Ry6KGH1lktAAAAAGBxLVu2TDJ/t86NN944TZs2reeOAAAAAAC+OurkKPYFAc6afr8sCwdHf/SjH2WHHXaocS0AAAAAYPk6depU3y0AAAAAAHxlNaptgdqENqtav3379rngggty6623lnUtAAAAACD5xje+kWT+s7nRo0eX/RkgAAAAAAD/p1Y7dp577rlL/e78888v7bb5ox/9KN26daty3UaNGqV169ZZc801s8UWW+Qb3/hGmjSpk81FAQAAAIDl6NatW3baaac888wzmTx5coYNG5bevXvXd1sAAAAAAF8JZQ12LtC/f//07du3NksBAAAAACvQmWeemT333DNJ8otf/CLPPPNMGjduXM9dAQAAAACs+mp9FPuyFItFxzQBAAAAwEroe9/7Xn7xi1+kWCzmueeey6GHHpqKior6bgsAAAAAYJVXtvPNn3rqqdJ46623LtcyAAAAAECZXHzxxVlzzTXzy1/+Mvfdd19eeumlnHnmmdl///2z+uqr13d7AAAAAACrpLIFO3v37l2u0gAAAABAmfXt27c07tixY8aOHZtRo0blmGOOybHHHpsNN9wwHTp0SIsWLapVt1Ao5IknnqjrdgEAAAAAVhllC3YCAAAAACuvIUOGpFAolK4XjIvFYorFYkaNGpX33nuvWjWLxWKlmgAAAAAALK7BBTsfffTRPPPMM/nss8+yxhprZLvttstee+2V5s2b13drAAAAAPCVJ5gJAAAAAFBeZQt2jh07No8++mjperfddkunTp2WOv+dd97JgQcemNdff32x79Zdd93cfPPN2X333cvSKwAAAACwuGKxWN8tAAAAAAB85ZQt2HndddflsssuS5K0a9cuhxxyyFLnfvrpp+ndu3c++eST0sPihY92+vjjj7P33nvn/vvvz1577VWulgEAAACA/zVv3rz6bgFglTZ2ckUmTZ9V320AXzHvfjqtvlsAAACqoGzBzr/97W8pFospFAo59NBD06pVq6XOPe200zJ+/PgUCoUUCoUUi8VKuwEUCoXMmTMnAwYMyNtvv50111yzXG0DAAAAAACU1djJFdnlyqGpmD23vlsBvoJaNm2cNVo3q+82AACAZShLsHPy5Ml56623SrtuLmuXzdGjR+euu+4qBTpbtmyZU089NTvuuGM+++yzDBw4MCNGjEiSTJo0KZdffnl+85vflKNtAAAAAACAsps0fVYqZs/N1Qdvk407tqnvdoCvmDVaN0un1VvWdxsAAMAylCXY+Z///KfSkeq9evVa6tzBgweXjnUqFAoZPHhw9t1339L3P/jBD7LjjjvmhRdeSLFYzJ133inYCQAAAAAArPQ27tgmW3ZqV99tAAAAAA1Mo3IUff/990vjddddN+3aLf2hxEMPPZRkfqhz6623rhTqTJJmzZrlwgsvLF1//PHHefvtt+u2YQAAAAAAAAAAAIAGoCzBzs8++yzJ/LDmWmuttdR506ZNy/PPP186sv3ggw9e4rxddtklLVq0KF2/+uqrddgtAAAAAAAAAAAAQMNQlmDnjBkzSuPWrVsvdd5zzz2XOXPmlI5t33333Zc4r0mTJunWrVvpevz48XXUKQAAAAAAAAAAAEDD0aQsRZv8X9mKioqlznv66adL47Zt22brrbde6ty2bduWxlOnTq1lhwAAAADAslxwwQVlq33OOeeUrTYAAAAAwMquLMHOdu3aJUmKxWLGjBmz1HlPPPFEkvlHtvfq1WuZNRcOiDZu3LgOugQAAAAAlua8885LoVAoS23BTgAAAACApSvLUewbb7xxafz555/nrbfeWmzOJ598kuHDh5ceDvfp02eZNSdOnFgaL7x7JwAAAADQsBSLxcV+FnwOAAAAAMCylSXYue2226ZRo0al0ObAgQMXm3Pddddl3rx5pYe5/fr1W2q9qVOnZuzYsaV6Xbp0KUPXAAAAAMDClhTQrMpPMv+UngU/C2oBAAAAALB8ZTmKfY011kjfvn3z+OOPJ0luuOGGrL322jn++OPTtGnT3Hnnnbn00ktTKBRSLBaz8cYbZ9ttt11qvRdffLHSA+Gvfe1r5WgbAAAAAPhfTz31VLXvmTFjRiZMmJARI0bkgQceyMcff5xCoZCNN944V1xxRdq1a1eGTgEAAAAAVi1lCXYmyRlnnJHHH3+8FN48//zzc/7555e+Xzioecoppyyz1kMPPVQar7766oKdAAAAAFBmvXv3rvG9RxxxRK666qoMHDgwv/zlLzNq1KicddZZ+ec//5l11123DrsEAAAAAFj1lOUo9mT+0eonnHBCisVipeOWFvws+Oxb3/pWjj766GXW+stf/lI6tmnHHXcsV8sAAAAAQB1p0qRJTjnllNx3331p1KhRRo4cmb322iuzZs2q87WGDx+eY489Nptvvnnatm2btm3bZvPNN8+xxx6b4cOH1/l6y/PFF19kvfXWq3Qc/YABA1Z4HwAAAADAyqlswc4kufbaa/PLX/4yTZo0Ke3QuUCxWMyuu+6a//7v/07jxo2XWuOhhx7K6NGjS/d/73vfK2fLAAAAAEAd2mOPPXL88cenWCzm5ZdfziWXXFJntadPn56jjjoqO+64YwYNGpSRI0dm6tSpmTp1akaOHJlBgwZlxx13zFFHHZXp06fX2brLc/rpp2fcuHErbD0AAAAAYNVStqPYF7jwwgtz/PHH529/+1vefvvtVFRUZL311suuu+6aHXbYYbn3/+Mf/8jWW29dut57773L2S4AAAAAUMdOPvnkXHfddSkWi7nmmmty5plnpmnTprWqOXfu3Oy///557LHHSp+1bNkyW2yxRZo0aZI33ngjU6ZMSZL84Q9/yNixY/Pwww8v8yXzuvD0009n0KBBZV0DAAAAAFi1lT3YmSTrrbdejj/++Brde91119VxNwAAAADAitStW7esv/76+eijjzJ58uT861//Sp8+fWpV8+yzz64U6jzmmGNyySWXZM0110wyfzfPSy65JBdddFGS5NFHH80555yTX//617Vad1lmzpyZY445JsViMR06dMi6666bV199tWzrAQAAAACrprIexQ4AAAAAkCTrrLNOafyf//ynVrXGjh2bq666qnR9+OGH56abbiqFOpOkdevWufDCC/OrX/2q9NlVV12Vjz/+uFZrL8tFF12Ut956K0ly5ZVXZo011ijbWgAAAADAqkuwEwAAAAAouy+//LI0/uKLL2pVa+DAgaV6rVq1ytVXX73UuWeffXY6d+6cJKmoqMg111xTq7WX5vXXX8+ll16aJOnbt28OP/zwsqwDAAAAAKz6BDsBAAAAgLKaMWNG3nnnnRQKhSRJu3btalXv/vvvL40POuigSjt1LqpZs2b58Y9/XLp+4IEHarX2ksybNy/HHHNMZs+enebNm+f3v/99na8BAAAAAHx1CHYCAAAAAGV1ww03ZObMmSkWi0lS2kGzJt566628++67pevdd999ufd873vfK43feeedvP322zVef0muv/76/Pvf/06SnHnmmdlkk03qtD4AAAAA8NUi2AkAAAAAlM3dd9+ds846q7RbZ+PGjdOnT58a13vllVcqXe+www7LvWfbbbdNs2bNllqjNsaMGZNf/vKXSZJNNtkkv/jFL+qsNgAAAADw1dSkujc0bty40nWhUMicOXOWO6+uLG09AAAAAKDufPjhhzW6r6KiIp988kleeuml3Hvvvfn3v/9d2qmzUCjkoIMOStu2bWvc18iRI0vjZs2aVWn3zwXzRo0atViN2vrJT36SqVOnJkl+//vfp3nz5nVWGwAAAAD4aqp2sHPBQ9i6mgcAAAAANDwbbLBBaZfN2igWiykUCikWi1lrrbVyySWX1Kre6NGjS+P111+/yj126dKlFOz84IMPatXDAvfcc08eeuihJMnhhx+evn371kndJJk5c2ZmzpxZup4yZUqd1QYAAAAAGrYaHcVeKBSq9MC0Lh78lqMWAAAAAFA1xWKxxj9JSqHOTp065R//+EfWX3/9WvWzcMCxXbt2Vb5v4V1CF+ywWRuTJk3KSSedlCRZc801c+WVV9a65sJ+85vfpF27dqWfquxMCgAAAACsGqq9Y+fOO+9cpZBlVecBAAAAAKumYrGYjh07ZsCAAfnlL3+Z1VZbrdY1p0+fXhq3aNGiyve1bNlyiTVq6tRTT80nn3ySJLnsssvSoUOHWtdc2JlnnplTTjmldD1lyhThTgAAAAD4iqh2sHPIkCF1Oo8V6/rrr8/111+fuXPn1ncrAAAANFAb/OLhxT774JI966EToD7179+/2vcUCoW0aNEibdu2TdeuXbPttttmu+22S5Mm1X4MuVSzZ88ujatTd+G5s2bNqlUPTz75ZG699dYkyU477ZQjjzyyVvWWpHnz5mnevHmd1wUAAAAAGr66e6LKSuGEE07ICSeckClTplTrqCoAAAAAvloWBBcbmlatWpXGX375ZZXvW3hu69ata7z+l19+meOOOy5J0rRp09xwww1OLgIAAAAA6lSj+m4AAAAAAKCq2rRpUxpXVFRU+b4ZM2YssUZ1nXfeeXn33XeTJKeddlq22GKLGtcCAAAAAFgSwU4AAAAAYKWx1lprlcbjxo2r8n3jx48vjdu3b1+jtceMGZMrr7wySbLhhhvm7LPPrlEdAAAAAIBlEewEAAAAAFYam266aWk8ceLESjtxLsuYMWNK480226xGa0+cODFz5sxJkrz//vtp1apVCoXCUn+GDh1auvePf/xjpe+GDBlSox4AAAAAgFVfk/puAAAAAABoeObMmZPhw4eXrjfeeOOst9561a4zduzYjBo1qnT97W9/O4VCocZ9de/evdL1yy+/nF69ei23hwkTJiy1BgAAAABAQ1LtYOeRRx5Zjj6qrFAo5JZbbqnXHgAAAABgVXf//ffn0EMPTZI0atQoI0eOrFGd6dOnp2/fvikWi0mSv/3tb9lrr71q3FfPnj3TvHnzzJw5M0nyzDPPLDfY+fTTT5fGLVq0SM+ePWu0dpMmTap1jPsXX3xR2uGzefPmadOmTem7pk2b1qgHAAAAAGDVV+1g52233VarN+pro1gsCnYCAAAAwApwyy23lMKYe+21VzbeeOMa1dlkk02yxx575KGHHirVrU2ws02bNunXr18eeeSRJMngwYNz+umnL/OewYMHl8b9+vVL69ata7T2lltumc8++6zK8/v06VM6jv2QQw7JbbfdVqN1AQAAAICvlkYrYpFisbjYT13OBwAAAADqzowZMzJs2LAUCoUUCoUccsghtar3wx/+sDR+4oknMnv27FrVGzBgQGn86quv5sEHH1zq3BdffDF///vfl3gvAAAAAEBDVKNg55KCl8v6SVJ6CLxgt8+azAcAAAAAyu/ll1/OzJkzS8/k+vXrV6t6C98/ffr0vPrqq7Wqd+CBB2brrbcuXR933HF58803F5s3bty4/OhHP8rcuXOTJNtss00OOOCAJdYcMmRIpWeSdtcEAAAAAOpLtY9if//996s1f+TIkfnJT36S0aNHp1gsplmzZtljjz3Sp0+fbLXVVmnfvn1at26d6dOnZ+LEiXn11VczdOjQPPLII5k1a1YKhUI23HDD/O53v8tmm21W3XYBAAAAgGp66623SuP11lsva621Vq3qdejQIeutt14+/vjjJMmbb76Z7bbbrsb1CoVCbr755uy8886pqKjIuHHj8s1vfjPHH398dt555zRp0iTPPfdcrrvuunzyySdJkpYtW2bQoEGlF8kBAAAAABqqagc7u3btWuW5Q4cOzSGHHJKpU6emWCzm6KOPzsUXX7zMB8Hf+c53ctJJJ2XChAk566yzcsstt+SDDz7IIYcckv/+7//Ot7/97eq2DAAAAABUw+eff55kfoCyY8eOdVJz7bXXLgU7J0yYUOt6PXr0yODBg3PYYYeloqIiU6ZMyaWXXppLL710sbktW7bM4MGD06NHj1qvCwAAAABQbjU6ir0qRo8enX322SdTpkxJktx000256aabqvx2f4cOHTJo0KDcdNNNSZIvvvgie++9dz788MNytQwAAAAAJJk1a1Zp3Lhx4zqpuXCdGTNm1EnN/fbbLy+88EL69eu3xJ04C4VCdtlll7z44ovZb7/96mRNAAAAAIByq/aOnVV1+umnZ8qUKSkUCjnuuONy9NFH16jO0UcfnRdeeCE33nhjpkyZktNPPz133313HXcLAAAAACzQvn37JEmxWMynn35aJzUX3qVz9dVXr5OaSdK9e/c8/vjjGTNmTIYPH56xY8cmSTp16pRevXqlc+fOVarTp0+fFIvFOusrSYYMGVKn9QAAAACAr4ayBDs///zz3H///aXrM844o1b1fvGLX+TGG29MsVjM/fffn88//zxrrrlmbdsEAAAAAJagQ4cOpfFHH32UTz/9tFZHsn/66af58MMPS7tqLly/rnTu3DkHH3xwndcFAAAAAFjRynIU+9NPP525c+emUChkgw02SNeuXWtVr2vXrtlwww2TJHPnzs3TTz9dF20CAAAAAEvQo0ePJPOPMi8Wi/nLX/5Sq3p//vOfUywWSztifv3rX691jwAAAAAAq6qyBDvfe++90nittdaqk5oL11m4PgAAAABQtzp37pyvfe1rSeYfx37RRRdlypQpNar1xRdf5Ne//nVpt86uXbtm0003rbNeAQAAAABWNWUJdn755ZdJ5j/0/eyzz+qk5sSJE0vjmTNn1klNAAAAAGDJ+vfvn2KxmEKhkE8++ST77LNPKioqqlWjoqIi++yzT8aPH1+qdcQRR5SpYwAAAACAVUNZgp3rrLNOaTx69Oh89NFHtar30Ucf5f333y+91d+xY8da1QMAAAAAlu2kk06qdIrOsGHDsu2222bo0KFVun/IkCH5xje+kaeffrr0XG/NNdfMqaeeWpZ+AQAAAABWFU3KUXSTTTZJkhQKhRSLxVxxxRW5+uqra1zv8ssvT7FYLNVcUB8AAAAAKI/WrVtn0KBBOeCAA1IsFlMsFvPWW2+lb9++2XLLLfO9730vPXr0SMeOHdOmTZtMmzYtn376aZ5//vn8/e9/z+uvv17apbNYLKZRo0YZNGhQVltttfr+1QBWuLGTKzJp+qzS9bufTqvHbgAAAICGrizBzl69emW99dbLuHHjUiwWc9111+Wb3/xmDj300GrXuuuuu3LdddeVHgCvu+662WmnncrQNQAAAACwsH322SeXXXZZTjvttNKum8ViMa+99lpef/31pd638EvaC8KdV155Zfbdd98V0TZAgzJ2ckV2uXJoKmbPrfR5y6aNs0brZvXUFQAAANCQlSXYWSgUcvLJJ+f0009PoVDIvHnzcvjhh+fZZ5/Neeedl9VXX325NSZPnpxzzz03119/fZKUHgCffPLJ5WgZAAAAAFiCU045Jd26dcuRRx6ZyZMnlwKeyf8FOBdWKBQqhUDXXHPN3Hbbbdlrr71WWM8ADcmk6bNSMXturj54m2zcsU3p8zVaN0un1VvWY2cAAABAQ1WWYGcy/4Hvn//854wYMaIU7rz22mszaNCg7LnnnunTp0+23HLLtG/fPq1atcqMGTPy2Wef5fXXX8/QoUPz8MMP58svvywFOpOkR48eOeWUU8rVMgAAAACwBPvuu2969eqVq6++OjfccEMmT5681LkLwp5rrrlmfvKTn+TEE0/MWmuttYI6BWi4Nu7YJlt2alffbQAAAAArgbIFOxs1apR//OMf2XXXXfPiiy+Wjl2qqKjIfffdl/vuu2+Z9y96XNM3vvGNPPLII2nUqFG5WgYAAAAAlqJjx465+OKLc/755+e5557L008/nVGjRuXzzz/P1KlT/3979x1lZXXuD/yZGRhAehGkKaAGhauiAl4xKM0uGHtCjEKwXCQxseAvkoiaopJoVAw3ikosV1MsqLHEqICKqGBDDQiioFQLvQxFmN8frpx4KMMMU857znw+a7nW2fvs/e5nyAkz8/A954369etHkyZNYt99942ePXtGt27dokaNSms/AgAAAADkrErtrDZu3DgmTZoUl19+edx5550REWm3YdqRf9+u6d9rzjvvvLjpppuifv36lVkuAAAAALATNWvWjCOOOCKOOOKITJcCAAAAAJCTKv3jL+vVqxe33357TJkyJc4666woLCwsMdQZ8XXos2bNmnHWWWfFK6+8EmPHjhXqBAAAAAAAAAAAAHJeld0L6bDDDos///nPsXLlynj11Vdj6tSpMXfu3FixYkWsWbMm6tatG40aNYoOHTpEt27dokePHtGwYcOqKg8AAAAAAAAAAAAg46os2PlvDRs2jOOOOy6OO+64qj4aAAAAAAAAAAAAINEq/VbsAAAAAAAAAAAAAJSOYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACSEYCcAAAAAAAAAAABAQgh2AgAAAAAAAAAAACREjUwXQNUaM2ZMjBkzJjZv3pzpUsqt3c+e2mZu3g0nZqASAAAA2DXb+90WACrDwhVFsXztxkyXUS3N+XxNpksAAAAAsoxgZzUzbNiwGDZsWKxatSoaNmyY6XIAAAAAAKhkC1cURb+bXoyiTdn/hv9sVadmQTSuW5jpMgAAAIAsIdgJAAAAAAA5bPnajVG0aXPcclaX2Kd5vUyXUy01rlsYrRvVyXQZAAAAQJYQ7AQAAAAAgGpgn+b14r9au5MTAAAAQNLlZ7oAAAAAAAAAAAAAAL4m2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEDUyXQAAAAAAQHlMmTIl7rnnnpg8eXIsWLAgIiLatGkT3/72t2PQoEHRo0ePCj9z3bp18eKLL8aECRPi7bffjg8++CCWLl0aeXl50bhx4+jcuXMcddRRMXjw4GjVqlWFnw8AAAAA5C7BTgAAAAAgK61duzYuvvjiGDdu3DbPzZw5M2bOnBl33nln/PCHP4zRo0dH3bp1y33mZ599FhdffHE8+eSTsW7duu2uKSoqikWLFsVzzz0X1157bVx++eVxzTXXRGFhYbnPBwAAAAByn2AnAAAAAJB1Nm/eHKeeemr885//TM3VqVMnOnfuHDVq1IgZM2bEqlWrIiJi3LhxsXDhwnjqqaeioKCgXOfOnz8//va3v6XN5eXlRYcOHWKPPfaIgoKC+PDDD2Px4sUREbFp06a4/vrr45133onHHntMuBMAAAAA2Kn8TBcAAAAAAFBWV111VVqo8/zzz48FCxbEtGnT4tVXX41FixbFL37xi9Tzzz77bIwcObLCzs/Ly4u+ffvGAw88EJ9//nnMmTMnJk+eHC+++GIsWrQoJk2aFJ06dUqtf+aZZ+Kqq66qsPMBAAAAgNwl2AkAAAAAZJWFCxfGzTffnBr/4Ac/iLFjx0aTJk1Sc3Xr1o1f/epXaeHOm2++ORYtWlSus/Pz8+O0006L999/P55//vkYOHBgNGvWbJt1Rx11VEyZMiUt3HnLLbfEZ599Vq7zAQAAAIDcJ9gJAAAAAGSV0aNHx/r16yMiYrfddotbbrllh2uvuuqqaNu2bUREFBUVxa233lqusw855JB4+OGH0wKbO9KwYcO0AOrGjRvjySefLNf5AAAAAEDuE+wEAAAAALLKo48+mnp85plnpn1S59YKCwtj8ODBqfH48eMrtbat9e3bN+rUqZMaf/DBB1V6PgAAAACQfQQ7AQAAAICsMWvWrJgzZ05qfNxxx+10z/HHH596/OGHH8bs2bMrpbbtKSgoiIYNG6bGq1atqrKzAQAAAIDsJNgJAAAAAGSN6dOnp40PP/zwne455JBDorCwcIfXqExFRUXx+eefp8bNmzevsrMBAAAAgOwk2AkAAAAAZI2ZM2emHhcWFkbbtm13umfrdd+8RmV7/PHHY8uWLanxf//3f1fZ2QAAAABAdhLsBAAAAACyxieffJJ63KZNm8jLyyvVvj333DP1eN68eRVd1nZ99dVXcd1116XGzZs3j759+1bJ2QAAAABA9qqR6QIAAAAAAEpr1apVqccNGzYs9b4GDRqkHq9evbpCa9qRG264Id57773U+Be/+EXUrl27VHs3bNgQGzZsSI2/+XUDAAAAALnNJ3YCAAAAAFlj7dq1qcelDUlGRNSpU2e716gszz33XFxzzTWpcY8ePeKiiy4q9f7rr78+GjZsmPqvNLecBwAAAAByg2AnAAAAAJA1Nm3alHpco0bpb0j0zbUbN26s0Jq29sEHH8R3v/vd2Lx5c0RENG7cOB588MEoKCgo9TWuvPLKWLlyZeq/+fPnV1a5AAAAAEDCuBU7AAAAAJA1dtttt9Tj9evXl3rfN9fWrVu3Qmv6pvnz58cxxxwTy5Yti4iv633yySdjr732KtN1atWqFbVqska0bQAAP7dJREFU1aqMEgEAAACAhPOJnQAAAABA1qhXr17qcVFRUan3rVu3brvXqEifffZZ9OvXL/XpmrVq1YrHHnssevToUSnnAQAAAAC5SbATAAAAAMgazZo1Sz1evHhxqfctWbIk9bhp06YVWlNExLJly+Loo4+O2bNnR8TXt37/61//GkcffXSFnwUAAAAA5DbBTgAAAAAga3Ts2DH1eOnSpWmfxFmSf3+KZkTEfvvtV6E1rVq1Ko499th47733IiIiPz8/7r///jj55JMr9BwAAAAAoHoQ7MwBTz75ZHTs2DH23XffuOuuuzJdDgAAAABUmv333z9t/M477+x0z8KFC+OLL77Y4TXKY+3atXHCCSfEG2+8EREReXl5cdddd8V3v/vdCjsDAAAAAKheBDuz3FdffRWXXnppTJgwId5+++343e9+F0uXLs10WQAAAABQKbp37x61atVKjSdPnrzTPS+//HLqce3ataN79+4VUsv69etjwIAB8corr6TmxowZE4MHD66Q6wMAAAAA1ZNgZ5abOnVqdO7cOVq3bh316tWL448/Pv75z39muiwAAAAAqBT16tWLvn37psYPPPDATvd8c03fvn2jbt265a5j06ZNcfrpp8eECRNSc7///e9j6NCh5b42AAAAAFC9CXaWYOHChXH22WdH06ZNo06dOnHAAQekbqlUEV566aXo379/tGrVKvLy8uKxxx7b7roxY8ZEu3btonbt2nHYYYfF1KlTU88tWrQoWrdunRq3bt06Fi5cWGE1AgAAAEDSDBo0KPX43Xffjb///e87XPvWW2/FM888s929u2rz5s0xcODAeOqpp1Jzv/nNb+KSSy4p97UBAAAAAAQ7d2D58uVxxBFHRM2aNeOZZ56JGTNmxE033RSNGzfe7vpXXnklNm3atM38jBkz4rPPPtvunrVr18ZBBx0UY8aM2WEdf/3rX+PSSy+Nq6++Ot5666046KCD4thjj43PP/98174wAAAAAMhyp59+ehx00EGp8YUXXhgffPDBNusWL14cZ599dmzevDkiIrp06RKnnXbadq85adKkyMvLS/13zz33bHddcXFxDBkyJB5++OHU3MiRI2PEiBHl+IoAAAAAAP6jRqYLSKpRo0ZF27Zt409/+lNqrn379ttdu2XLlhg2bFjsu+++8Ze//CUKCgoiImLWrFnRp0+fuPTSS+OKK67YZt/xxx8fxx9/fIl1/P73v4/zzz8/Bg8eHBERt99+ezz11FMxbty4+NnPfhatWrVK+4TOhQsXRvfu3cv89QIAAABAtsjLy4u77rorjjzyyCgqKorFixfHYYcdFkOHDo0jjzwyatSoEVOnTo0//OEPqTdd16lTJ+68887Iy8sr19kPPfRQ3Hvvvalx7dq14/XXX4/jjjuuVPsPPPDA+O1vf1uuGgAAAACA3CbYuQNPPPFEHHvssXHGGWfEiy++GK1bt46LLroozj///G3W5ufnx9NPPx1HHnlknHPOOXH//ffH3Llzo0+fPvGd73xnu6HO0ti4cWO8+eabceWVV6ad1a9fv3j11VcjIqJ79+7x/vvvx8KFC6Nhw4bxzDPPxFVXXbXDa44ZMybGjBmT+pQCIDu1+9lT28zNu+HEDFQCAAAAmdG1a9d44IEH4vvf/34UFRXFqlWrYtSoUTFq1Kht1tapUyceeOCB6Nq1a7nPXbduXdp4/fr18eyzz5Z6//r168tdAwAAAACQ29yKfQc+/vjj+OMf/xj77rtvPPvsszF06NC4+OKL096N/02tWrWKCRMmxOTJk2PgwIHRp0+f6NevX/zxj3/c5Rq+/PLL2Lx5c7Ro0SJtvkWLFrFkyZKIiKhRo0bcdNNN0bt37+jSpUtcdtll0bRp0x1ec9iwYTFjxoyYNm3aLtcFAAAAAElwyimnxJtvvhl9+/bd7idx5uXlRb9+/eKtt96KU045JQMVAgAAAACUnU/s3IEtW7ZE165d47rrrouIiIMPPjjef//9uP322+Pcc8/d7p4999wz7r///jjqqKOiQ4cOcffdd5f71k6lMWDAgBgwYEClnwMAAAAASbP//vvH888/H/Pnz48pU6bEwoULIyKidevW0aNHj2jbtm2prtOrV68oLi7e6bpBgwbFoEGDylMyAAAAAECJBDt3oGXLltGpU6e0uf333z8eeeSRHe757LPP4oILLoj+/fvHtGnT4pJLLonbbrttl2to1qxZFBQUxGeffbbNOXvssccuXxcAAAAAck3btm3jrLPOynQZAAAAAADl5lbsO3DEEUfErFmz0uZmz54de+2113bXf/nll9G3b9/Yf//949FHH40XXngh/vrXv8bll1++yzUUFhbGoYceGi+88EJqbsuWLfHCCy/E4YcfvsvXBQAAAAAAAAAAAJLJJ3buwCWXXBI9evSI6667Ls4888yYOnVqjB07NsaOHbvN2i1btsTxxx8fe+21V/z1r3+NGjVqRKdOneK5556LPn36ROvWreOSSy7ZZt+aNWtizpw5qfHcuXPjnXfeiSZNmsSee+4ZERGXXnppnHvuudG1a9fo3r173HLLLbF27doYPHhw5X3xAAAAAAAAAAAAQEYIdu5At27dYvz48XHllVfGL3/5y2jfvn3ccsst8f3vf3+btfn5+XHddddFz549o7CwMDV/0EEHxfPPPx+77777ds944403onfv3qnxpZdeGhER5557btxzzz0REXHWWWfFF198ESNHjowlS5ZEly5d4h//+Ee0aNGiAr9aAAAAAAAAAAAAIAkEO0tw0kknxUknnVSqtUcfffR25w8++OAd7unVq1cUFxfv9No/+tGP4kc/+lGp6gAAAAAAAAAAAACyV36mCwAAAAAAAAAAAADga4KdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAkh2AkAAAAAAAAAAACQEIKdAAAAAAAAAAAAAAlRI9MFAAAAAACQ+xauKIrlazdmuoxqac7nazJdAgAAAABlINgJAAAAAEClWriiKPrd9GIUbdqc6VKqrTo1C6Jx3cJMlwEAAABAKQh2AgAAAABQqZav3RhFmzbHLWd1iX2a18t0OdVS47qF0bpRnUyXAQAAAEApCHYCAAAAAFAl9mleL/6rdcNMlwEAAAAAiZaf6QIAAAAAAAAAAAAA+JpgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBCCHYCAAAAAAAAAAAAJIRgJwAAAAAAAAAAAEBC1Mh0AVStMWPGxJgxY2Lz5s2ZLgWoYO1+9tQ2c/NuODEDlQAAAAAAAAAAALvKJ3ZWM8OGDYsZM2bEtGnTMl0KAAAAAAAAAAAAsBXBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAALLelClT4oILLohOnTpFgwYNokGDBtGpU6e44IILYsqUKZV+/nvvvReXXnppHHjggdGkSZOoV69edOzYMb7//e/HP/7xj0o/HwAAAADIHTUyXQAAAAAAwK5au3ZtXHzxxTFu3Lhtnps5c2bMnDkz7rzzzvjhD38Yo0ePjrp161bo+V999VWMHDkyRo0aFVu2bEl7bvbs2TF79ux48MEH46STTopx48bF7rvvXqHnAwAAAAC5R7ATAAAAAMhKmzdvjlNPPTX++c9/pubq1KkTnTt3jho1asSMGTNi1apVERExbty4WLhwYTz11FNRUFBQYTVceOGFaaHSmjVrRqdOnaJevXrxwQcfxNKlSyMi4sknn4yjjz46XnnllQoPlwIAAAAAucWt2AEAAACArHTVVVelhTrPP//8WLBgQUybNi1effXVWLRoUfziF79IPf/ss8/GyJEjK+z8sWPHpoU6BwwYEHPnzo133nknJk+eHIsXL47bbrstatT4+v3106dPjwsuuKDCzgcAAAAAcpNgJwAAAACQdRYuXBg333xzavyDH/wgxo4dG02aNEnN1a1bN371q1+lhTtvvvnmWLRoUbnPX7duXVx99dWpca9eveLRRx+N1q1bp+Zq1qwZP/rRj+L2229Pzf35z3+Ot956q9znAwAAAAC5S7ATAAAAAMg6o0ePjvXr10dExG677Ra33HLLDtdeddVV0bZt24iIKCoqiltvvbXc5997772xZMmSiIjIy8uLP/7xjzu8xfuQIUPisMMOi4iI4uLiGDVqVLnPBwAAAAByl2AnAAAAAJB1Hn300dTjM888M+2TOrdWWFgYgwcPTo3Hjx9f7vMfeeSR1OOjjjoq9ttvvxLXX3jhhanHTz/9dGzYsKHcNQAAAAAAuUmwEwAAAADIKrNmzYo5c+akxscdd9xO9xx//PGpxx9++GHMnj17l89fs2ZNvPTSS7t8/po1a+LFF1/c5fMBAAAAgNwm2AkAAAAAZJXp06enjQ8//PCd7jnkkEOisLBwh9coixkzZsSmTZvKdP4ee+wR7dq1q5DzAQAAAIDcJtgJAAAAAGSVmTNnph4XFhZG27Ztd7pn63XfvEZ5zo+I2HvvvUu175vrynM+AAAAAJDbBDsBAAAAgKzyySefpB63adMm8vLySrVvzz33TD2eN29ehZxfo0aNaNmyZZWeDwAAAADkthqZLoDMKC4ujoiIVatWZbiSXbdlw7pt5rL568k2/vwza3t//tvjfxOgKvieAJB7/N1edarDz/b/rv3fvQioCN/8/0TDhg1Lva9Bgwapx6tXr66Q8+vXrx/5+aV7/3xZzt+wYUNs2LAhNV65cuU2Z2eTNatXxZYN62LN6lWxalXpgrgAAACQjbL9d2D9PEgGwc5q6t+N49LcpiqbNLwl0xVUb/78k8f/JkCm+PsHIPf4uz2zcuHPf/Xq1WUK4EFJ1q5dm3pcu3btUu+rU6fOdq+RxPOvv/76uPbaa7eZz/Z+3uG3ZLoCAAAAqBrZ/juwfh5klmBnNdWqVauYP39+1K9fv9S3qoIdWbVqVbRt2zbmz5+f9skTkOu89qmOvO6prrz2qa689qkIxcXFsXr16mjVqlWmSyGHbNq0KfW4Ro3Stzi/uXbjxo2JPv/KK6+MSy+9NDXesmVLLFu2LJo2baqfR7n5Hk915bVPdeW1T3XkdU915bVPRdDPg2QQ7Kym8vPzo02bNpkugxzToEEDPxxSLXntUx153VNdee1TXXntU17e2U9F22233VKP169fX+p931xbt27dRJ9fq1atqFWrVtpco0aNSn0WlIbv8VRXXvtUV177VEde91RXXvuUl34eZF5+pgsAAAAAACiLevXqpR4XFRWVet+6deu2e41sOx8AAAAAyG2CnQAAAABAVmnWrFnq8eLFi0u9b8mSJanHTZs2rZDz16xZE2vWrKnS8wEAAACA3CbYCZRbrVq14uqrr97m9mCQ67z2qY687qmuvPaprrz2gaTq2LFj6vHSpUvTPgmzJPPnz0893m+//Srk/IiITz/9tErPh/LyPZ7qymuf6sprn+rI657qymsfIHfkFRcXF2e6CAAAAACA0powYUL07ds3NX7llVeiR48eJe5ZuHBhtGnTJu0avXv33qXzP/7449h7771T4wceeCAGDhxY4p5NmzZFw4YNU7duHzduXAwePHiXzgcAAAAAcptP7AQAAAAAskr37t3TPn1k8uTJO93z8ssvpx7Xrl07unfvvsvnd+jQIS0kWprz33zzzVSoMyLiyCOP3OXzAQAAAIDcJtgJAAAAAGSVevXqpX1i5wMPPLDTPd9c07dv36hbt265ahgwYEDq8UMPPRQbN24s9fmdO3dO+8RPAAAAAIBvEuwEAAAAALLOoEGDUo/ffffd+Pvf/77DtW+99VY888wz291bEed/+eWXcccdd+xw7YIFC+Lee++t0PMBAAAAgNyVV1xcXJzpIgAAyB6zZs2K6dOnx4IFC2LdunVRp06daNGiRXzrW9+Kgw46KO2WmJDtNmzYEG+//XbMnDkzli9fHkVFRdGgQYNo3rx5HHLIIbHPPvtEXl5epsuEjFu/fn1MmTIlPvjgg1i+fHkUFhZGmzZt4rDDDosOHTpkujwgRxUXF8fBBx8c06dPj4iIli1bxoQJE2K//fZLW7d48eLo27dvzJw5MyIiunTpEm+99dZ2v4dPmjQpevfunRr/6U9/KjGEefLJJ8cTTzwREV9/iug//vGPOOKII9LWrFq1Kk466aTUreBbtmwZH330UdSpU6fsXzQAwC7Qz6M60c+D0tHPA0i+GpkuAMguxcXFMW/evHjvvfdiwYIFsWLFiqhVq1Y0btw49t133+jWrVvUrl0702UCUMFWr14dt912W9x1110xd+7cHa4rLCyM7t27x+mnnx4/+clPqrBCqFhvvvlm3HzzzfHwww/Hhg0bdriudevWMWTIkPjJT34STZo0qcIKoWQLFy6MqVOnxuuvvx5Tp06NN954I1avXp16fq+99op58+aV+5wvvvgirr322rjnnnti7dq1211z6KGHxlVXXRUnn3xyuc8D+Ka8vLy466674sgjj4yioqJYvHhxHHbYYTF06NA48sgjo0aNGjF16tT4wx/+EJ999llERNSpUyfuvPPOCvuH3FtvvTVeffXV+OKLL2LNmjXRt2/fGDJkSBxzzDFRr169ePfdd+O2225L/Qydn58fd9xxh1AnVUo/D6B60s+jutHPI9vp5wGwNZ/YCezU8uXL47HHHot//OMfMWHChPjyyy93uLZmzZpx4oknxk9/+tM46qijqrBKyIzvfe978Ze//CVtrqJ+sYKkePLJJ+O8885L/WN4abRo0SKWLFlSiVVB5diyZUuMGDEifve738WWLVtKva9FixZxzz33xHHHHVeJ1UHJXnnllbjpppvi9ddfj0WLFpW4tiJ+Xpk0aVKcccYZJf5+8E3nnHNO3HnnnVFYWFiucwG2Nn78+Pj+978fRUVFJa6rU6dOPPDAA3HKKafscE1ZP7EzImLKlCnRv3//WLZsWYnrCgoK4tZbb41hw4aVuA4qgn4elExPj1ynn0d1op9HNtPPA6Ak+ZkuAEi2YcOGxR577BE//OEP429/+9tOf8jbtGlTPPbYY9GrV68499xzY9WqVVVUKVS9v//979s0gCHX3HzzzTFgwIBtmsC1a9eODh06RPfu3eOAAw6IZs2aZahCqFgXXnhhjBo1apsm8G677RYHHHBAdO/ePfbee+9tPuXrs88+i5NPPjmeeeaZqiwX0kybNi3Gjx+/0yZwRZg8eXKccMIJ2/x+0KhRozj44IOjXbt2UVBQkPbcfffdF9/73vfC+0uBinbKKafEm2++GX379t3uJ3Hm5eVFv3794q233iox1LmrevToEe+++26cdtppUaPG9m+Q1L1793j55ZeFOqkS+nlQMj09cp1+HtWNfh7ZTD8PgJL4xE6gRF27do0333xzm/mCgoJo2bJltGjRIjZt2hSffPJJrFy5cpt13bt3jxdeeCHq1atXFeVClVm5cmV07tw5Fi5cuM1z3t1Prrj77rvjvPPOS5s7/vjj4+KLL47evXtHrVq10p5btGhRTJgwIR577LGYOnVqfPrpp1VZLpTbww8/HGeccUbaXKdOneJ3v/tdHHPMMWlBjS+++CL++Mc/xm9+85vYuHFjan733XePWbNmRePGjausbvi3W265JS655JLtPlevXr1Ys2ZNalyen1eWL18e//Vf/5XWcN5rr73i1ltvjQEDBqT+oWTBggXx61//Ou644460/TfddFNceumlu3Q2wM7Mnz8/pkyZkvpdrXXr1tGjR49o27ZtlZz/xRdfxEsvvRQLFiyIjRs3RqtWraJbt27xrW99q0rOhwj9PCiJnh65Tj+P6kY/j2ynnwdASQQ7gRJ9sxHcqFGjGDhwYJx44onRs2fPqF+/fmrd5s2b4+WXX46RI0fGyy+/nHaN0047LR5++OEqrRsq2wUXXBB33nlnRETUrVs31q5dm3pOE5hcMGfOnDjggANi/fr1EfH1rfnuvffe+N73vleq/cuXL9cII+sccMAB8f7776fGXbt2jUmTJkXdunV3uGfChAlx7LHHxldffZWau+666+LKK6+s1Fphe/7dCK5fv34ceuih0a1bt+jevXt069Yt5s6dm3Zr4fL8vDJixIi4/vrrU+P27dvH5MmTo1WrVttdf91118XPf/7z1Lhhw4Yxd+5c3ycAoJLo58GO6emRy/TzqI7088h2+nkAlESwEyhR165dY+nSpfGLX/wiBg4cGHXq1Clx/ebNm+Oiiy6KsWPHps1PmDAh7QdPyGaTJk2KPn36RHFxceTn58cNN9wQV1xxRep5TWByQZ8+fWLixImp8d/+9rdt3vkMueTjjz+OvffeO21u6tSp0a1bt53u/Z//+Z+0dzAffvjhMWXKlAqvEXbmo48+ig0bNsR+++0X+fn5ac9NmjSpQhrBX3zxRXTo0CHt0wKef/756Nu37w73FBcXR69eveKll15KzY0YMSJ+85vflPl8AGDn9PNg+/T0yHX6eVQ3+nnkAv08AEqSv/MlQHV27bXXxqxZs2LIkCE7bQJHfH1Lp//93/+Nrl27ps3fddddlVUiVKmioqI477zz4t/vi/jxj39cqiYBZJPHH388rQl8xhlnaAKT82bNmpU2btOmTan/fj/ttNPSxnPmzKmwuqAs9t577+jUqdM2TeCK9Je//CWtCXzkkUeW2ASOiMjLy4urr746bW7cuHHhfaYAUDn082BbenrkOv08qiP9PHKBfh4AJRHsBEp04oknRmFhYZn2FBQUpL3TOSLi2WefrciyIGOuuuqq+OijjyIiYs8994xf//rXGa4IKt7Wn9Ky9S/vkIuWLVuWNm7btm2p9+65555p4xUrVlRESZBIjz/+eNp4yJAhpdrXu3fvaN++fWq8ZMmSeO211yq0NgDga/p5sC09PXKdfh7VkX4elI5+HkD2EuwEKkXPnj3TxkuXLo1169ZlqBqoGNOmTYtbbrklNR4zZkzUq1cvcwVBJVi4cGHaP9516dIlOnfunMGKoGo0bNgwbVxUVFTqvVuvbdasWYXUBEmzZs2atNsvRUQcc8wxpdqbl5cX/fr1S5t78sknK6w2AKD89PPIVXp65Dr9PKor/TzYOf08gOwm2AlUisaNG28zt3LlygxUAhVj06ZNMWTIkNi8eXNEfH0rm5NOOinDVUHF+8c//pF6nUd8/Y5MqA66dOmSNp45c2asXbu2VHunTp2aNu7evXtFlQWJ8q9//Ss2bdqUGrdv3z722GOPUu8/4ogj0sbvvPNORZUGAFQA/TxykZ4e1YF+HtWVfh7snH4eQHYT7AQqxcKFC7eZa9q0aQYqgYpx/fXXx3vvvRcREY0aNYrRo0dnuCKoHNOmTUsbH3TQQanHb7/9dlx88cVx0EEHRePGjWO33XaLdu3axdFHHx033njjdv/uh2zRpk2b6NGjR2q8YcOGUv1dv2HDhrRPfoko/a1sINvMnDkzbdypU6cy7d96/dbXAwAySz+PXKSnR3Wgn0d1pZ8HO6efB5DdBDuBSvHyyy+njffaa68oLCzMUDVQPjNmzIjf/OY3qfGoUaPK9G42yCZbN4I7dOgQa9asiSFDhsQhhxwSt912W7z77ruxYsWKKCoqik8++SSef/75GD58eOy7774xYsSItHd/QjYZNWpU5Of/51ekkSNHxr333rvD9StWrIjTTz89rZnVv3//6N+/f6XWCZkya9astHHbtm3LtH/r9Z988kmsX7++3HUBABVDP49co6dHdaGfR3Wmnwcl088DyG41Ml0AkJvGjRuXNj7hhBMyVAmUz5YtW2LIkCGxcePGiIjo2bNnnH/++RmuCirPnDlz0sb5+flx5JFHxttvv73TvUVFRXH99dfHtGnT4tFHH4369etXVplQKb797W/HH/7whxg2bFgUFxfHV199FYMGDYoxY8bEqaeeGh07dow6derEl19+Ga+//no8+OCDsWzZstT+o48+Ov785z9n8CuAyvX555+njdu0aVOm/S1atIgaNWrEV199FRFf/5y1dOnSaN26dYXVCADsOv08comeHtWJfh7VmX4elEw/DyC7CXYCFe7pp5+Ol156KW1u0KBBmSkGymn06NHx2muvRUREYWFhjB07NvLy8jJcFVSOLVu2xOrVq9PmLr744lQTOC8vL0466aQ44YQTok2bNrF27dp4++234/77749Fixal9jz//PMxaNCgeOSRR6q0fqgIQ4cOjY4dO8bFF18c//rXvyLi60++2PrTL76pQ4cOccUVV8T555+f9gkBkGvWrFmTNq5bt26Z9ufl5UWdOnXSvtdsfU0AIDP088g1enpUF/p5oJ8HJdHPA8hufkoBKtSyZcviwgsvTJv7zne+E927d89QRbDr5s6dG7/4xS9S4yuvvDL222+/DFYElWvlypVRXFycNvfWW29FRETTpk3jxRdfjCeeeCL+53/+J0466aQ466yz4oYbbohZs2bFwIED0/Y9+uijcd9991VZ7VCR+vTpE9OmTYvLL788CgoKSly75557xuWXXx4DBw7UBCbnbd20rV27dpmvUadOnRKvCQBUPf08co2eHtWJfh58TT8Ptk8/DyC7+UkFqDBbtmyJs88+OxYsWJCaa9iwYYwePTqDVcGuu+CCC2Lt2rUREbHffvvFiBEjMlwRVK4d/TJeUFAQTz31VPTs2XO7z9erVy/uv//+OOaYY9Lmr7vuum0ay5ANbr/99th7773jxhtvjM2bN5e49tNPP42LLroo2rVrt82tKyHXrF+/Pm1cWFhY5mvUqlUrbVxUVFSumgCA8tHPIxfp6VGd6OfB1/TzYPv08wCym2AnUGGGDx8ezzzzTNrcHXfcEW3bts1QRbDr7r777nj++ecj4uvbDIwdO3aXftmBbLKjd2qed955cdhhh5W4Nz8/P/74xz+mvcN51qxZ8eKLL1ZojVCZNm3aFKeffnoMHTo0Fi9eHBERTZo0iZEjR8bUqVNj+fLlsXHjxli0aFE88cQTccopp6Ru5bds2bIYMmRIDB8+PJNfAlSqrb9PbNy4sczX2LBhQ4nXBACqln4euUZPj+pGP4/qTj8PSqafB5DdBDuBCjF69Oj4/e9/nzZ3xRVXxFlnnZWhimDXLV68OC6//PLU+LzzztvhO5shl9SrV2+78+eff36p9nfo0CH69euXNqcRTDYZOnRoPPLII6lx9+7d41//+ldce+210a1bt2jUqFHUrFkzWrZsGf37949HH300HnvssbRG1o033hh/+tOfMlE+VLqtv09s/Y7/0tj6Hf07+t4DAFQ+/TxyjZ4e1ZF+HtWdfh6UTD8PILsJdgLl9uCDD8ZPf/rTtLlBgwbFDTfckJmCoJyGDRsWK1asiIiIPfbYI377299mtiCoInXq1ImCgoK0ufr168fBBx9c6mscddRRaeM33nijQmqDyjZp0qS4++67U+PmzZvHk08+GXvssUeJ+wYMGBBjxoxJmxs+fLjb0ZCTtm7a/vv2lqVVXFysEQwACaGfRy7S06M60s+jOtPPg53TzwPIboKdQLk8+eSTce6550ZxcXFq7tRTT4277rordSsDyCYPPfRQjB8/PjW+9dZbo1GjRpkrCKpY8+bN08b77LNP2u2YdqZjx45p488//7xC6oLKNnr06LTxT3/609h9991LtXfQoEHxrW99KzVeunRpPProoxVaHyTB1t8jFixYUKb9n332WXz11VepcX5+fjRr1qxCagMASk8/j1ykp0d1pp9HdaWfBzunnweQ3QQ7gV02ceLEOOOMM9J+mDv66KPjz3/+8zbvEIVsMXz48NTjE088Mc4888wMVgNVb//9908bN2jQoEz7t16/fPnyctcEla24uDgmTJiQNte/f/9S78/Pz48TTzwxbe6ll16qkNogSbb+x75PP/20TPu3Xr/XXnul3foMAKh8+nnkKj09qjP9PKoj/TwoHf08gOwm2Ansktdffz0GDBgQ69evT8316NEjxo8fH4WFhRmsDMrn37drioh46qmnIi8vb6f/9e7dO+0an3zyyTZr3nnnnar9QmAXderUKW28YcOGMu3/5veFiIjddtut3DVBZVu+fHmsXLkyba59+/ZlusbW6xcuXFjuuiBp9ttvv7TxjBkzyrR/5syZJV4PAKhc+nnkMj09qjP9PKoj/TwoHf08gOwm2AmU2bvvvhvHH398rFmzJjV38MEHx9NPPx1169bNYGUAlNchhxySNv7ss8/KtH/rWzU1bdq03DVBZdveP3jUqFGjTNeoWbNm2njz5s3lqgmSqHPnzmmv9Xnz5sXixYtLvf+VV15JG3fp0qWiSgMAdkI/DyB36edRHennQeno5wFkN8FOoExmzZoVRx99dNqtOPbff/949tlno2HDhhmsDICKcOKJJ0Z+/n9+RJw7d24sW7as1PvffPPNtPHWt/mAJNreP1gsWrSoTNfY+h39u+++e7lqgiSqX79+HHnkkWlzzz33XKn2FhcXx/PPP582V5ZbpAEAu04/DyC36edRHennQeno5wFkt7K9bQWo1j755JPo169f2rs327dvH88995xfdsgZjz/+eGzatKlMe6ZPnx6XX355atyiRYv4v//7v7Q1++yzT4XUB5WtefPmccQRR8TLL7+cmnv00UfjvPPO2+ner776KsaPH58216tXr4ouESpcYWFhtGzZMu2dyhMmTIghQ4aU+hovvPBC2njvvfeusPogSQYMGJD2er/77rvjnHPO2em+iRMnxty5c1PjFi1axGGHHVYpNQIA/6GfR3Whp0d1pp9HdaSfB6WnnweQvQQ7gVJZvHhx9O3bNxYsWJCaa926dbzwwgvRunXrDFYGFeuoo44q856tb+9Ru3bt6NevX0WVBFXuwgsvTGsE/+53v4sf/OAHUatWrRL33XnnnbFkyZLUuEGDBnHsscdWWp1Qkfr27Zv2D3i33HJLnHvuuaW6hdOLL74Yr7766jbXg1z03e9+N0aMGBFr166NiIiXXnopJkyYEH369NnhnuLi4rj22mvT5gYPHpz2iTIAQMXTz6M60dOjutPPozrSz4PS0c8DyF7+1gV2atmyZXH00UfHRx99lJrbfffd47nnnov27dtnsDIAKsP3vve9OOCAA1Lj2bNnx4UXXhhbtmzZ4Z7XX389rrjiirS5iy66yG39yBpnn3122vj999+Piy66qMTXfUTEnDlzYuDAgWlz++67bxx++OEVXiMkQfPmzeNHP/pR2tx5551X4u3Orr/++njppZdS44YNG8bw4cMrrUYAQD8PoLrRz6M60s+D0tHPA8heecXFxcWZLgJIrtWrV0ffvn1j2rRpqblGjRrFxIkTo0uXLpkrDBJk0qRJ0bt379R4r732innz5mWuIKgAL7zwQhx99NHxzR8V+/XrFzfccEMceuihqbmVK1fG3XffHVdffXWsWbMmNf+tb30r3njjjahfv36V1g3l0adPn5g4cWLa3Le//e245ppr4qijjkp7t//SpUvjnnvuiV/96lexcuXKtD0PPfRQnH766VVSM2ztlVdeiaKiom3mS3ObyX9r1apVdOrUaYdnLFu2LDp37pz2qS577bVXjB49Ovr37x95eXkREbFgwYL49a9/HXfccUfa/t/+9rcawQBQifTzoHT09Mg1+nlUR/p55AL9PAB2RLATKFHv3r1j0qRJaXO//OUvd+lda4ceemg0bty4giqD5NAEJleNGjUqfvazn20zv8cee0SbNm1i7dq18dFHH8XGjRvTnm/atGlMnDgx7VMCIBssWbIkevToEXPnzt3muXr16kX79u2jTp06sXTp0vj4449je79KXXbZZXHjjTdWRbmwXe3atYtPPvmkXNc499xz45577ilxzUsvvRTHHntsrF+/Pm2+UaNG0b59+1ixYkV8+umnsXnz5rTnTz755Bg/fnyqWQwAVDz9PCgdPT1ykX4e1Y1+HrlAPw+AHRHsBEpUkT+gTZw4MXr16lVh14Ok0AQml912221x2WWXxaZNm0q1vmPHjvH3v/899t1330quDCrH/Pnz45xzztnmH8J3pmbNmvGrX/0qrrjiCg0uMqqqGsERERMmTIgzzjgjli1bVqrrDhw4MMaNGxe1atUqV30AQMn086B09PTIVfp5VDf6eWQ7/TwAdiQ/0wUAAJBcP/7xj+Pdd9+Ns846K2rWrLnDde3bt49bb7013n33XU1gslrbtm3jhRdeiL/97W/Rq1evyM8v+Vemhg0bxtChQ+O9996L//f//p8mMNVKnz59YsaMGTF06NDYbbfddrju4IMPjkceeSQeeOABTWAAAIBKpp9HdaOfB6WnnweQXXxiJ1Ai7/CHnfPufqqLVatWxZQpU+LDDz+MlStXRr169aJFixZxyCGHRMeOHTNdHlSK1atXxxtvvBEff/xxrFixItavXx8NGjSIpk2bxoEHHhidOnXaabMYqoOioqKYMmVKzJw5M1asWBGFhYXRunXrOOyww2KfffbJdHkAUK3o50Hp6OlRHejnUR3p50Hp6OcBJJ9gJwAAAAAAAAAAAEBCeCsKAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAAAAAAAAAAAAQEIIdgIAAAAAAAAAAAAkhGAnAMAOzJs3L/Ly8lL/DRo0qMT1vXr1SltfFitXrozf/e530bdv32jZsmXUqlUr7Vr33HPPDvd+9NFHMXz48OjWrVs0a9YsatSokbZ33rx5ZaqlopX1zxEAAAAAdoV+XsXQzwMAgMyrkekCAACqu0mTJsVpp50Wy5YtK/Pem2++OYYPHx6bN2+uhMoAAAAAgK3p5wEAAJVNsBMAIIPmzJkTJ510Uqxdu7bMex988MG49NJLK6EqAAAAAGB79PMAAICqINgJAJBBI0aMSGsCH3jggXHBBRdE+/bto7CwMDXfuXPntH1fffVVXH755Wlz/fv3j9NOOy1atmwZ+fn5qfk99tijXDVec801ce2116bGEydOjF69epXrmgAAAACQjfTzAACAqiDYCQCQIatWrYrHH388Ne7YsWO8/vrrUbt27Z3uff7552Px4sWp8TnnnBP33ntvpdQJAAAAAOjnAQAAVUewEwCggkyaNKlM6998883YuHFjanzOOeeUqgkcEfHqq6+mjS+88MIynV2V2rVrF8XFxZkuAwAAAADS6Odtn34eAABkXv7OlwAAUBlmz56dNt769kyVtRcAAAAAKDv9PAAAoKoIdgIAZMiKFSvSxg0aNKiSvQAAAABA2ennAQAAVUWwEwAgQ9avX582zsvLq5K9AAAAAEDZ6ecBAABVpUamCwAAqGpbtmyJKVOmxOzZs2PJkiVRu3bt6NChQ/Ts2TOaNm1aZXUUFxdnZG+2W7p0aUyZMiUWLlwYy5Yti2bNmkX37t2jS5cuO907Z86ceO2112LRokWRl5cXrVq1il69ekXr1q0rpLZZs2bF9OnT44svvoiVK1dGkyZNolWrVvHtb387mjRpUiFnAAAAAFQ3+nnZTT8PAADKTrATAKg2Nm/eHDfffHPcfPPNsWjRom2eLygoiFNPPTV++9vfRrt27cp8/V69esWLL76YGm/drJ03b160b99+h/t79+693fk//elPERExePDgHe7d0Tv8586du0tfy6RJk3ZYz47m/21nX/e5554b99xzzw737+jP8YMPPoiRI0fG448/Hhs3btxm38EHHxxjxoyJww8/fJvnJk6cGCNGjIjXXnttm+fy8vKif//+cdttt8Wee+5Z4te2PWvWrImbbrop7r333pg7d+521xQUFETPnj3jl7/8ZfTs2bPMZwAAAABUR/p5paefV3r6eQAAZAO3YgcAqoVly5ZFjx49Yvjw4dttAkd83Sh+6KGH4qCDDoqJEydWcYWU5PHHH49DDjkkHnrooe02gSMi3n777TjqqKNi/PjxafPXXntt9O3bd7tN4IivG81PPPFEHHbYYTFr1qwy1fXkk0/G3nvvHddcc80Om8ARX7+2Jk2aFEceeWRceOGF8dVXX5XpHAAAAIDqRj8vu+nnAQBA+Qh2AgA5b/Xq1XHMMcfE1KlT0+bz8vKiXbt20bVr17R3wa9atSpOPvnkmDlzZhVXyva88sorceaZZ0ZRUVFERNSuXTv233//6Nq1a+y+++5pazdt2hRnn312fPjhhxERccMNN8Q111yT+pSAhg0bxoEHHhhdunSJevXqpe1dsmRJnHrqqbFp06ZS1TV27Nj4zne+E59//nna/G677Rb7779/dO/ePfbZZ5/Iz8/fZt/pp59erW+/BQAAAFAS/bzspp8HAADl51bsAEDOGz58eLz55pupcV5eXgwbNiyGDx+edqueuXPnxqhRo+KOO+6I1atXx0UXXVShdeyxxx7x3HPPpcb33Xdf3H///anxjTfeGAcddNA2+zp37hwRkbb3sssui3fffTc1/uZzW5+5Kw466KDUNUtbZ2U5++yzY+PGjdGqVau47rrr4owzzojddtstIr5+d/5zzz0X559/fnz66acREbFu3boYMWJE/PSnP42f//znERHRrVu3uP7666NXr15RUFAQEREbNmyIcePGxSWXXBIbNmyIiIgZM2bE7bffHj/+8Y9LrOmFF16IoUOHxpYtW1Jz/fv3j8suuyyOOOKIqFHjPz9mL1u2LO6666749a9/HatXr46Irz+x4Le//W38v//3/yroTwkAAAAgd+jnlZ1+nn4eAAC5RbATAMhpr732WowdOzY1zsvLi/vuuy/OPvvsbda2b98+br/99jj00EPjggsuiHnz5lVoLbVr145+/fqlxpMnT057/tBDD41evXrtcH/Lli1Tjxs3bpz23DevWxEaN26cumZZ66xo8+bNi44dO8aECROiVatWac/l5eXFMcccE88991wceOCBqYbu+PHjY/r06bFly5Y4/fTT48EHH4yaNWum7a1Vq1YMHTo06tSpE4MHD07N33333SU2glesWBFnn312qgmcn58fd955Z/zwhz/c7vomTZrEFVdcESeddFL06tUrvvjii4iIGDlyZJx77rm73KwHAAAAyEX6ebtGP08/DwCA3OJW7ABATrv11lvTbpEzbNiw7TaBv+n888+P8847r7JLo5Rq1qwZf/vb37ZpAn/Tt771rbRm7ubNm+PDDz+MffbZJ+69995tmsDfdO6550bHjh1T4+nTp8fixYt3uP7222+PJUuWpMa/+c1vdtgE/qZOnTrFPffckxpv3Lgx/vCHP+x0HwAAAEB1op+X/fTzAACg/AQ7AYCctWLFihg/fnxqXLt27bj22mtLtfe6666LwsLCyiqNMjjjjDPiwAMP3Om6AQMGbDP3s5/9LHWbpx3Jy8vbZu/bb7+93bWbN2+O2267LTXec88947LLLttpbf92wgknxMEHH5waP/LII6XeCwAAAJDr9PNyg34eAACUn2AnAJCzXn311dStfCIiTjzxxGjSpEmp9u6+++5xwgknVFZplMEZZ5xRqnX/9V//lTbOy8uLU089tVR7DzjggLTxp59+ut1106dPj0WLFqXG3/3ud0v89IDtOeaYY1KPP/jgg/jyyy/LtB8AAAAgV+nn5Qb9PAAAKD/BTgAgZ02dOjVt3KtXrzLtL+t6Ksehhx5aqnVNmzZNG7dv3z4aN268S3tXrVq13XUvv/xy2rhr166luv437bnnnmnjmTNnlvkaAAAAALlIPy836OcBAED51ch0AQAAlWXu3Llp463fAb4zW7/rm8zYfffdS7Vu61s0lXbf9vYWFRVtd93WTdszzzyz1GfsyLJly8p9DQAAAIBcoJ+XG/TzAACg/HxiJwCQs1asWJE23vpd3DtT1vVUjtq1a1fpvoiI4uLi7c4vXbp0l6+5IytXrqzwawIAAABkI/283KCfBwAA5SfYCQDkrDVr1qSNt34X987UrVu3IsshB2z9jwsVYcuWLRV+TQAAAIBspJ9HRdPPAwAgW7kVOwCQs7Zu5K5bt65M+9euXVuR5ZADtv7HhBtuuCEOPfTQcl2zc+fO5doPAAAAkCv086ho+nkAAGQrwU4AIGc1atQobfzll1+WaX9l3KaH7NasWbO0cfv27aNfv34ZqgYAAAAgt+jnUdH08wAAyFZuxQ4A5KwOHTqkjd9///0y7X/33XcrshxyQPv27dPGc+bMyVAlAAAAALlHP4+Kpp8HAEC2EuwEAHJWt27d0sYvvvhimfaXdX2uys9P/5GxuLg4Q5VkXu/evdPGEyZMyFAlAAAAALlHP69i6Of9h34eAADZSrATAMhZPXr0iMLCwtT4qaeeimXLlpVq7+effx5PP/10ZZWWVerWrZs2XrduXYYqybzu3btH48aNU+MJEybEjBkzMlgRAAAAQO7Qz6sY+nn/oZ8HAEC2EuwEAHJWo0aN4pRTTkmN169fH1dffXWp9v785z+PjRs3VlZpWaVJkyZp47lz52aoksyrWbNm/PSnP02Ni4uL48ILL4xNmzZlrigAAACAHKGfVzH08/5DPw8AgGwl2AkA5LSf/OQnkZeXlxqPGTMmHnjggRL33HXXXXHXXXdVdmlZo3PnzmnjRx55JEOVJMNPfvKTaNGiRWo8efLkOP3002PlypWlvsbatWtj9OjRcffdd1dGiQAAAABZSz+v/PTz0unnAQCQjQQ7AYCcdvjhh8eQIUNS4+Li4vjBD34QF198ccyfPz9t7bx582Lo0KFxwQUXREREu3btqrLUxDr44IOjWbNmqfGkSZOiT58+cfvtt8fTTz8dzz//fNp/ua5hw4bx0EMPRc2aNVNzTzzxRHTu3Dluuumm+PTTT7e7b/78+fHwww/H2WefHa1atYqf/OQn27wGAQAAAKo7/bzy089Lp58HAEA2qpHpAgAAKttNN90Ub775Zrz99tsR8XUz+Lbbbos//OEP0b59+2jatGl8+eWXabckql+/fvzv//5vnHDCCZkqOzFq1qwZF198cYwcOTI1N3HixJg4ceJ21xcXF1dVaRnTs2fPuO+++2Lw4MGxfv36iIhYuHBhXH755XH55ZdHy5Yto3nz5lGrVq1YuXJlfP7557F8+fIMVw0AAACQHfTzykc/b1v6eQAAZBvBTgAg5zVo0CD++c9/xvHHHx9vvPFGar64uDg+/vjj+Pjjj7dZ//jjj3uH/zeMGDEiZs+eHf/3f/+X6VIS47vf/W7su+++MXDgwJg9e3bac4sXL47FixeXuL+goCBatWpVmSUCAAAAZCX9vPLTz9uWfh4AANnErdgBgGqhWbNm8eqrr8aoUaOiZcuW211TUFAQp59+ekyfPj169epVtQUmXEFBQdx///0xefLkGDZsWHTv3j2aNWsWtWrVynRpGXXooYfGjBkz4r777ov//u//joKCghLX16pVK/r06RM33nhjzJ8/P3WbMAAAAADS6eeVj37e9unnAQCQLfKKq8Nn6wMAfMOWLVti8uTJMXv27Pj888+jVq1a0aFDh+jZs2c0a9Ys0+WRxVauXBmvvfZaLFq0KL788svYtGlT1K9fP5o3bx777bdfdOzYMWrXrp3pMgEAAACyin4elUU/DwCApBLsBAAAAAAAAAAAAEgIt2IHAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICEEOwEAAAAAAAAAAAASAjBTgAAAAAAAAAAAICE+P9QFnvtsUqJSgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "es.plot_hist_and_cdf(\n", + " kbo_diff_time[\"diff_time_start\"],\n", + " None,\n", + " \"diff time between the two first points of the trajectories\",\n", + " \"diff time\",\n", + " \"distribution\",\n", + " None,\n", + " \"Cumulative\",\n", + " \"diff time\",\n", + " \"cumulative\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "kbo_name = kbo_class[(kbo_class[\"jd\"] >= Time(\"2020-09-04\").jd) & (kbo_class[\"jd\"] < Time(\"2020-09-05\").jd)][\"ssnamenr\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['2020-09-04 09:36:18.999', '2020-09-04 08:52:21.000',\n", + " '2020-09-16 11:39:19.996', '2020-09-16 11:38:40.001',\n", + " '2020-09-15 09:29:32.997', '2020-09-04 09:04:47.004',\n", + " '2020-09-15 10:08:14.004', '2020-09-04 08:09:17.001',\n", + " '2020-09-16 11:48:47.998'], dtype='\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
radecjdnidfidmagpsfsigmapsfcandidnot_updatedlast_assoc_date...ssnamenrassoc_tagast_nameast_numbersso_idsso_numbersso_namesso_typesso_classclass_alt
026.744931-1.2299362.459095e+061340118.0944230.0940161340498484515015021True2020-09-02...10546NNakanomakoto10546Nakanomakoto10546.0NakanomakotoAsteroidMB>InnerMB
123.50774812.3725242.459095e+061340118.9086970.1949761340495193815015001True2020-09-02...60351N2000 AG87603512000_AG8760351.02000 AG87AsteroidMB>InnerMB
226.591834-1.5494072.459097e+061342218.5940460.0880131342400214515015018True2020-09-04...136199NEris136199Eris136199.0ErisDwarf PlanetKBO>DetachedKBO
323.11368512.0831842.459097e+061342219.4116760.1965621342378323815015009True2020-09-04...44594N1999 OX3445941999_OX344594.01999 OX3AsteroidKBO>SDOKBO
\n", + "

4 rows × 22 columns

\n", + "" + ], + "text/plain": [ + " ra dec jd nid fid magpsf sigmapsf \\\n", + "0 26.744931 -1.229936 2.459095e+06 1340 1 18.094423 0.094016 \n", + "1 23.507748 12.372524 2.459095e+06 1340 1 18.908697 0.194976 \n", + "2 26.591834 -1.549407 2.459097e+06 1342 2 18.594046 0.088013 \n", + "3 23.113685 12.083184 2.459097e+06 1342 2 19.411676 0.196562 \n", + "\n", + " candid not_updated last_assoc_date ... ssnamenr assoc_tag \\\n", + "0 1340498484515015021 True 2020-09-02 ... 10546 N \n", + "1 1340495193815015001 True 2020-09-02 ... 60351 N \n", + "2 1342400214515015018 True 2020-09-04 ... 136199 N \n", + "3 1342378323815015009 True 2020-09-04 ... 44594 N \n", + "\n", + " ast_name ast_number sso_id sso_number sso_name \\\n", + "0 Nakanomakoto 10546 Nakanomakoto 10546.0 Nakanomakoto \n", + "1 2000 AG87 60351 2000_AG87 60351.0 2000 AG87 \n", + "2 Eris 136199 Eris 136199.0 Eris \n", + "3 1999 OX3 44594 1999_OX3 44594.0 1999 OX3 \n", + "\n", + " sso_type sso_class class_alt \n", + "0 Asteroid MB>Inner MB \n", + "1 Asteroid MB>Inner MB \n", + "2 Dwarf Planet KBO>Detached KBO \n", + "3 Asteroid KBO>SDO KBO \n", + "\n", + "[4 rows x 22 columns]" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merge_bft(kbo_first_night_assoc)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MB 45803\n", + "Phocaea 717\n", + "Mars-Crosser 658\n", + "Hungaria 620\n", + "Trojan 520\n", + "Cybele 239\n", + "Hilda 179\n", + "Apollo 74\n", + "Amor 53\n", + "Aten 4\n", + "KBO 2\n", + "Name: class_alt, dtype: int64" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bft_first_night = merge_bft(first_night)\n", + "bft_first_night[\"class_alt\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "48758 24532\n", + "48769 24638\n", + "Name: trajectory_id, dtype: int64" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bft_first_night[bft_first_night[\"class_alt\"] == \"KBO\"][\"trajectory_id\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "first_kbo_assoc = bft_first_night[bft_first_night[\"trajectory_id\"] == 24532]" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "coord_first_kbo = SkyCoord(first_kbo_assoc[\"ra\"].values, first_kbo_assoc[\"dec\"].values, unit=\"deg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$0^\\circ21{}^\\prime15.2665{}^{\\prime\\prime}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coord_first_kbo[0].separation(coord_first_kbo[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [], + "source": [ + "path_save_ff = \"../../save_ff_output_kbo_neo_issue/*\"" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "../../save_ff_output_kbo_neo_issue/2020-09-01\n", + "Empty DataFrame\n", + "Columns: [sso_id, trajectory_id, assoc_tag, class_alt]\n", + "Index: []\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-02\n", + "Empty DataFrame\n", + "Columns: [sso_id, trajectory_id, assoc_tag, class_alt]\n", + "Index: []\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-03\n", + "Empty DataFrame\n", + "Columns: [sso_id, trajectory_id, assoc_tag, class_alt]\n", + "Index: []\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-04\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "2 Eris 24532 N KBO\n", + "1 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-05\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "1 Eris 24532 N KBO\n", + "2 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-06\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "1 Eris 24532 N KBO\n", + "2 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-07\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "1 Eris 24532 N KBO\n", + "2 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-08\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "1 Eris 24532 N KBO\n", + "2 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-09\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 24532 N MB\n", + "1 Eris 24532 N KBO\n", + "2 2000_AG87 24638 N MB\n", + "3 1999_OX3 24638 N KBO\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-10\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "6 Eris 22715 A KBO\n", + "2 Nakanomakoto 24532 N MB\n", + "5 Eris 24532 N KBO\n", + "7 Eris 24532 A KBO\n", + "3 Nakanomakoto 24533 N MB\n", + "4 Nakanomakoto 24533 N MB\n", + "8 Eris 24533 A KBO\n", + "9 2000_AG87 24638 N MB\n", + "18 Charton 24638 A MB\n", + "13 1999_OX3 24638 N KBO\n", + "17 Charton 29285 A MB\n", + "14 1999_OX3 29285 N KBO\n", + "10 2000_AG87 29285 N MB\n", + "15 1999_OX3 29286 N KBO\n", + "11 2000_AG87 29286 N MB\n", + "19 1999_TS63 29286 A MB\n", + "16 1999_OX3 29287 N KBO\n", + "12 2000_AG87 29287 N MB\n", + "20 2001_OO58 29287 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-11\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "6 Eris 22715 A KBO\n", + "2 Nakanomakoto 24532 N MB\n", + "5 Eris 24532 N KBO\n", + "7 Eris 24532 A KBO\n", + "3 Nakanomakoto 24533 N MB\n", + "4 Nakanomakoto 24533 N MB\n", + "8 Eris 24533 A KBO\n", + "9 2000_AG87 24638 N MB\n", + "18 Charton 24638 A MB\n", + "13 1999_OX3 24638 N KBO\n", + "17 Charton 29285 A MB\n", + "14 1999_OX3 29285 N KBO\n", + "10 2000_AG87 29285 N MB\n", + "15 1999_OX3 29286 N KBO\n", + "11 2000_AG87 29286 N MB\n", + "19 1999_TS63 29286 A MB\n", + "16 1999_OX3 29287 N KBO\n", + "12 2000_AG87 29287 N MB\n", + "20 2001_OO58 29287 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-12\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "5 Eris 22715 A KBO\n", + "2 Nakanomakoto 24532 N MB\n", + "6 Eris 24532 N KBO\n", + "7 Eris 24532 A KBO\n", + "9 Eris 24532 A KBO\n", + "3 Nakanomakoto 24533 N MB\n", + "4 Nakanomakoto 24533 N MB\n", + "8 Eris 24533 A KBO\n", + "10 2000_AG87 24638 N MB\n", + "18 Charton 24638 A MB\n", + "14 1999_OX3 24638 N KBO\n", + "19 Charton 29285 A MB\n", + "15 1999_OX3 29285 N KBO\n", + "11 2000_AG87 29285 N MB\n", + "16 1999_OX3 29286 N KBO\n", + "12 2000_AG87 29286 N MB\n", + "21 1999_TS63 29286 A MB\n", + "20 1999_TS63 29286 A MB\n", + "17 1999_OX3 29287 N KBO\n", + "13 2000_AG87 29287 N MB\n", + "22 2001_OO58 29287 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-13\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "5 Eris 22715 A KBO\n", + "2 Nakanomakoto 24532 N MB\n", + "6 Eris 24532 N KBO\n", + "7 Eris 24532 A KBO\n", + "9 Eris 24532 A KBO\n", + "3 Nakanomakoto 24533 N MB\n", + "4 Nakanomakoto 24533 N MB\n", + "8 Eris 24533 A KBO\n", + "10 2000_AG87 24638 N MB\n", + "18 Charton 24638 A MB\n", + "14 1999_OX3 24638 N KBO\n", + "19 Charton 29285 A MB\n", + "15 1999_OX3 29285 N KBO\n", + "11 2000_AG87 29285 N MB\n", + "16 1999_OX3 29286 N KBO\n", + "12 2000_AG87 29286 N MB\n", + "21 1999_TS63 29286 A MB\n", + "20 1999_TS63 29286 A MB\n", + "17 1999_OX3 29287 N KBO\n", + "13 2000_AG87 29287 N MB\n", + "22 2001_OO58 29287 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-14\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "5 Eris 22715 A KBO\n", + "2 Nakanomakoto 24532 N MB\n", + "6 Eris 24532 N KBO\n", + "7 Eris 24532 A KBO\n", + "8 Eris 24532 A KBO\n", + "3 Nakanomakoto 24533 N MB\n", + "4 Nakanomakoto 24533 N MB\n", + "9 Eris 24533 A KBO\n", + "10 2000_AG87 24638 N MB\n", + "32 Charton 24638 A MB\n", + "26 Charton 24638 A MB\n", + "17 1999_OX3 24638 N KBO\n", + "27 Charton 29285 A MB\n", + "18 1999_OX3 29285 N KBO\n", + "44 1999_VK108 29285 A MB\n", + "11 2000_AG87 29285 N MB\n", + "12 2000_AG87 29286 N MB\n", + "19 1999_OX3 29286 N KBO\n", + "34 1999_TS63 29286 A MB\n", + "33 1999_TS63 29286 A MB\n", + "20 1999_OX3 29287 N KBO\n", + "35 2001_OO58 29287 A MB\n", + "13 2000_AG87 29287 N MB\n", + "14 2000_AG87 48190 N MB\n", + "21 1999_OX3 48190 N KBO\n", + "36 2001_OO58 48190 A MB\n", + "28 Charton 48190 A MB\n", + "39 4066_P-L 48353 N MB\n", + "38 4066_P-L 48353 N MB\n", + "24 1999_OX3 48353 A KBO\n", + "42 2002_PN38 48353 A MB\n", + "41 4066_P-L 48356 N MB\n", + "25 1999_OX3 48356 A KBO\n", + "43 2002_OU20 48356 A MB\n", + "40 4066_P-L 48356 N MB\n", + "15 2000_AG87 48396 N MB\n", + "22 1999_OX3 48396 N KBO\n", + "31 Charton 48396 A MB\n", + "29 Charton 48396 A MB\n", + "16 2000_AG87 48397 N MB\n", + "23 1999_OX3 48397 N KBO\n", + "37 2001_OO58 48397 A MB\n", + "30 Charton 48397 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-15\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "4 Eris 22715 A KBO\n", + "43 1999_GE6 22715 T MB\n", + "42 1999_GE6 22715 T MB\n", + "2 Nakanomakoto 24533 N MB\n", + "3 Nakanomakoto 24533 N MB\n", + "5 Eris 24533 A KBO\n", + "45 1999_GE6 24533 T MB\n", + "44 1999_GE6 24533 T MB\n", + "22 Charton 24638 A MB\n", + "13 1999_OX3 24638 N KBO\n", + "23 Charton 24638 A MB\n", + "6 2000_AG87 24638 N MB\n", + "14 1999_OX3 29285 N KBO\n", + "7 2000_AG87 29285 N MB\n", + "24 Charton 29285 A MB\n", + "29 1999_VK108 29285 A MB\n", + "30 1999_TS63 29286 A MB\n", + "15 1999_OX3 29286 N KBO\n", + "8 2000_AG87 29286 N MB\n", + "31 1999_TS63 29286 A MB\n", + "16 1999_OX3 29287 N KBO\n", + "33 2001_OO58 29287 A MB\n", + "32 1999_TS63 29287 A MB\n", + "9 2000_AG87 29287 N MB\n", + "34 2001_OO58 48190 A MB\n", + "25 Charton 48190 A MB\n", + "10 2000_AG87 48190 N MB\n", + "17 1999_OX3 48190 N KBO\n", + "40 2002_PN38 48353 A MB\n", + "36 4066_P-L 48353 N MB\n", + "46 2001_QU244 48353 A MB\n", + "18 1999_OX3 48353 A KBO\n", + "37 4066_P-L 48353 N MB\n", + "39 4066_P-L 48356 N MB\n", + "38 4066_P-L 48356 N MB\n", + "41 2002_OU20 48356 A MB\n", + "47 2001_QU244 48356 A MB\n", + "19 1999_OX3 48356 A KBO\n", + "27 Charton 48396 A MB\n", + "26 Charton 48396 A MB\n", + "20 1999_OX3 48396 N KBO\n", + "11 2000_AG87 48396 N MB\n", + "12 2000_AG87 48397 N MB\n", + "28 Charton 48397 A MB\n", + "21 1999_OX3 48397 N KBO\n", + "35 2001_OO58 48397 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-16\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "4 Eris 22715 A KBO\n", + "43 1999_GE6 22715 T MB\n", + "42 1999_GE6 22715 T MB\n", + "2 Nakanomakoto 24533 N MB\n", + "3 Nakanomakoto 24533 N MB\n", + "5 Eris 24533 A KBO\n", + "45 1999_GE6 24533 T MB\n", + "44 1999_GE6 24533 T MB\n", + "22 Charton 24638 A MB\n", + "13 1999_OX3 24638 N KBO\n", + "23 Charton 24638 A MB\n", + "6 2000_AG87 24638 N MB\n", + "14 1999_OX3 29285 N KBO\n", + "7 2000_AG87 29285 N MB\n", + "24 Charton 29285 A MB\n", + "29 1999_VK108 29285 A MB\n", + "30 1999_TS63 29286 A MB\n", + "15 1999_OX3 29286 N KBO\n", + "8 2000_AG87 29286 N MB\n", + "31 1999_TS63 29286 A MB\n", + "16 1999_OX3 29287 N KBO\n", + "33 2001_OO58 29287 A MB\n", + "32 1999_TS63 29287 A MB\n", + "9 2000_AG87 29287 N MB\n", + "34 2001_OO58 48190 A MB\n", + "25 Charton 48190 A MB\n", + "10 2000_AG87 48190 N MB\n", + "17 1999_OX3 48190 N KBO\n", + "40 2002_PN38 48353 A MB\n", + "36 4066_P-L 48353 N MB\n", + "46 2001_QU244 48353 A MB\n", + "18 1999_OX3 48353 A KBO\n", + "37 4066_P-L 48353 N MB\n", + "39 4066_P-L 48356 N MB\n", + "38 4066_P-L 48356 N MB\n", + "41 2002_OU20 48356 A MB\n", + "47 2001_QU244 48356 A MB\n", + "19 1999_OX3 48356 A KBO\n", + "27 Charton 48396 A MB\n", + "26 Charton 48396 A MB\n", + "20 1999_OX3 48396 N KBO\n", + "11 2000_AG87 48396 N MB\n", + "12 2000_AG87 48397 N MB\n", + "28 Charton 48397 A MB\n", + "21 1999_OX3 48397 N KBO\n", + "35 2001_OO58 48397 A MB\n", + "\n", + "\n", + "../../save_ff_output_kbo_neo_issue/2020-09-17\n", + " sso_id trajectory_id assoc_tag class_alt\n", + "0 Nakanomakoto 22715 N MB\n", + "1 Nakanomakoto 22715 N MB\n", + "4 Eris 22715 A KBO\n", + "6 1999_GE6 22715 T MB\n", + "7 1999_GE6 22715 T MB\n", + "2 Nakanomakoto 24533 N MB\n", + "3 Nakanomakoto 24533 N MB\n", + "5 Eris 24533 A KBO\n", + "8 1999_GE6 24533 T MB\n", + "9 1999_GE6 24533 T MB\n", + "23 1999_VK108 29285 A MB\n", + "20 1999_VK108 29285 A MB\n", + "13 1999_OX3 29285 N KBO\n", + "18 Charton 29285 A MB\n", + "10 2000_AG87 29285 N MB\n", + "14 1999_OX3 29286 N KBO\n", + "34 2000_GZ39 29286 A MB\n", + "24 1999_TS63 29286 A MB\n", + "11 2000_AG87 29286 N MB\n", + "25 1999_TS63 29286 A MB\n", + "26 4066_P-L 48353 N MB\n", + "27 4066_P-L 48353 N MB\n", + "30 2002_PN38 48353 A MB\n", + "31 2001_QU244 48353 A MB\n", + "15 1999_OX3 48353 A KBO\n", + "28 4066_P-L 48356 N MB\n", + "16 1999_OX3 48356 A KBO\n", + "29 4066_P-L 48356 N MB\n", + "32 2001_QU244 48356 A MB\n", + "33 2002_OU20 48356 A MB\n", + "21 1999_VK108 86980 A MB\n", + "22 1999_VK108 86980 A MB\n", + "17 1999_OX3 86980 N KBO\n", + "12 2000_AG87 86980 N MB\n", + "19 Charton 86980 A MB\n", + "35 2002_TX300 95725 N KBO\n", + "36 2002_TX300 95725 N KBO\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for path in np.sort(glob.glob(path_save_ff)):\n", + " print(path)\n", + " pdf_night = pd.read_parquet(f\"{path}/trajectory_df.parquet\")\n", + " kbo_first_night_assoc = pdf_night[pdf_night[\"trajectory_id\"].isin(pdf_night[pdf_night[\"ssnamenr\"].isin(kbo_name)][\"trajectory_id\"])]\n", + " print(merge_bft(kbo_first_night_assoc).sort_values(\"trajectory_id\")[[\"sso_id\", \"trajectory_id\", \"assoc_tag\", \"class_alt\"]])\n", + " print()\n", + " print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NEO analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/roman/anaconda3/envs/fink_fat_env/lib/python3.7/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " after removing the cwd from sys.path.\n" + ] + } + ], + "source": [ + "neo_class = [\"Apollo\", \"Amor\", \"Aten\"]\n", + "\n", + "neo_class = exp_with_bft[exp_with_bft[\"class_alt\"].isin(neo_class)]\n", + "neo_class[\"iso_time\"] = Time(neo_class[\"jd\"], format=\"jd\").iso" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "neo_names = neo_class[\"ssnamenr\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['2020-09-01 10:40:07.003', '2020-09-01 04:09:45.000',\n", + " '2020-09-17 12:03:25.001', '2020-09-02 05:29:10.003',\n", + " '2020-09-20 09:03:37.002', '2020-09-16 09:23:20.000',\n", + " '2020-09-15 10:10:57.999', '2020-09-01 09:16:10.998',\n", + " '2020-09-20 09:58:17.999', '2020-09-02 09:20:20.003',\n", + " '2020-09-02 09:27:08.001', '2020-09-01 09:20:59.997',\n", + " '2020-09-17 09:16:56.004', '2020-09-15 10:28:05.002',\n", + " '2020-09-18 11:40:40.996', '2020-09-15 07:04:30.996',\n", + " '2020-09-19 09:07:05.002', '2020-09-01 08:59:11.996',\n", + " '2020-09-15 10:19:49.999', '2020-09-18 08:04:10.998',\n", + " '2020-09-03 03:26:37.000', '2020-09-01 09:16:10.998',\n", + " '2020-09-03 10:06:06.002', '2020-09-17 07:40:58.999',\n", + " '2020-09-15 10:14:25.999', '2020-09-03 10:15:02.002',\n", + " '2020-09-16 11:07:38.004', '2020-09-12 09:28:30.003',\n", + " '2020-09-01 08:38:38.999', '2020-09-12 09:29:09.997',\n", + " '2020-09-04 03:51:05.999', '2020-09-01 11:06:39.001',\n", + " '2020-09-05 06:32:51.000', '2020-09-02 10:48:55.002',\n", + " '2020-09-04 09:36:18.999', '2020-09-16 11:50:49.001',\n", + " '2020-09-01 08:46:55.004', '2020-09-16 11:44:43.996',\n", + " '2020-09-16 09:17:46.003', '2020-09-21 08:08:44.998',\n", + " '2020-09-16 11:20:26.998', '2020-09-19 12:02:13.004',\n", + " '2020-09-02 08:17:09.004', '2020-09-10 09:42:51.998',\n", + " '2020-09-16 11:24:29.998', '2020-09-14 08:54:23.999',\n", + " '2020-09-15 07:12:04.000', '2020-09-02 03:46:29.001',\n", + " '2020-09-14 09:07:10.998', '2020-09-02 10:40:08.999',\n", + " '2020-09-16 11:09:38.998', '2020-09-16 11:10:59.998',\n", + " '2020-09-01 09:40:43.003', '2020-09-14 08:55:47.997',\n", + " '2020-09-01 11:42:36.996', '2020-09-15 07:03:51.002',\n", + " '2020-09-02 09:13:35.996', '2020-09-01 11:15:28.002',\n", + " '2020-09-16 11:38:40.001', '2020-09-01 09:21:41.996',\n", + " '2020-09-01 11:07:19.998', '2020-09-01 11:39:11.002',\n", + " '2020-09-01 09:12:07.998', '2020-09-14 08:57:55.999',\n", + " '2020-09-03 10:15:41.996', '2020-09-15 07:04:30.996',\n", + " '2020-09-16 11:43:22.996', '2020-09-01 10:31:53.996',\n", + " '2020-09-18 06:35:07.996', '2020-09-04 09:56:01.997',\n", + " '2020-09-01 11:24:59.003', '2020-09-01 09:09:27.000',\n", + " '2020-09-03 10:20:26.002', '2020-09-01 11:37:08.996',\n", + " '2020-09-02 09:11:16.002', '2020-09-02 05:19:01.004',\n", + " '2020-09-12 09:31:16.003', '2020-09-14 08:04:21.996',\n", + " '2020-09-02 10:48:55.002', '2020-09-12 10:21:44.997',\n", + " '2020-09-16 11:47:25.996', '2020-09-03 06:57:37.996',\n", + " '2020-09-02 10:40:08.999', '2020-09-17 11:57:00.996',\n", + " '2020-09-02 10:34:43.997', '2020-09-12 09:23:06.003',\n", + " '2020-09-20 12:04:47.997', '2020-09-02 09:09:09.996'], dtype='\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 traj_idsdiff_jdtagsnb_point
sso_id    
1978_UW4[19575 67276][0.0, 0.1192013998515904, 0.0]['I', 'I', 'I', 'I']4
1981_EA5[93100][]['N']1
1981_ED43[12998][]['A']1
1990_MF[22411 42220 93100 90149 90151][9.90163189964369, 0.08888890035450459, 0.9283912000246346, 0.0, 1.9438310000114143, 0.0]['N', 'I', 'I', 'N', 'N', 'N', 'N']7
1990_MU[1577][0.0424885000102222, 1.9832406998611987, 0.029374999925494194]['I', 'I', 'T', 'T']4
1990_SB[2651][0.011307800188660622, 2.903113500215113, 0.10226849978789687]['I', 'I', 'T', 'T']4
1990_SL11[88064 26059 48907][0.0, 1.96835649991408]['A', 'A', 'A']3
1991_EA1[66324][0.04236110020428896]['T', 'T']2
1992_PK1[26646][]['N']1
1992_PM2[23901][]['N']1
1992_PZ5[29023][]['N']1
1992_SK[48907 48904 88064 12998 48906 26059 48905 23901 23916 33571 26671][0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9331017998047173, 0.0, 1.0625694999471307, 0.0]['N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N']11
1992_TB[50144 51546 51547 38737 96135 96134 96137 96136][0.0, 0.0, 1.8914467999711633, 0.047893499955534935, 0.9772916999645531, 0.0, 0.0, 0.0]['N', 'N', 'N', 'I', 'I', 'N', 'N', 'N', 'N']9
1992_WO3[68698 26677][0.0]['A', 'A']2
1993_FL26[26059][]['A']1
1993_MF[36501 24817 88021 88022 24484 24490 20597 35154 20596 93147 93146 93140][0.0, 0.0, 0.0, 8.01796289999038, 0.0, 0.0, 0.0, 0.0, 2.9009491000324488, 0.0, 2.0896642999723554, 0.0]['N', 'N', 'N', 'N', 'A', 'A', 'A', 'A', 'A', 'N', 'N', 'N', 'N']13
1993_MG1[ 2775 12073][0.01284720003604889, 0.0121760000474751, 0.8992707999423146, 1.0313078998588026, 0.959340300410986, 0.0926966997794807]['I', 'I', 'I', 'N', 'N', 'A', 'A']7
1995_FY[23901][]['A']1
1995_YR1[51040 51021 97063 97069 90516][0.0, 2.945057900156826, 0.0, 0.0738425999879837]['N', 'N', 'N', 'N', 'N']5
1997_UR9[24490][]['A']1
1997_WU22[ 2775 12073 62034][0.0, 0.917060200124979, 0.023888899944722652]['A', 'A', 'I', 'I']4
1997_YC14[26627][]['N']1
1998_EP13[35154][]['N']1
1998_FC104[47249][]['A']1
1998_FH115[24817 88022][0.07836810033768415]['A', 'A']2
1998_OH[92876][]['N']1
1998_QG96[15913][]['A']1
1998_QH2[72052][0.042199100367724895]['I', 'I']2
1998_SB168[21741][]['A']1
1998_SY122[25098][]['A']1
1998_VG16[36824][0.058703700080513954, 1.9428587998263538]['I', 'I', 'A']3
1998_VR12[23558][]['N']1
1998_VZ6[67528][0.04236110020428896]['T', 'T']2
1998_WB21[67810][0.9578704000450671]['N', 'N']2
1998_WL18[23567 22881][0.0, 0.022673700004816055, 0.0, 1.974282399751246, 0.0]['T', 'T', 'T', 'T', 'A', 'A']6
1998_WQ5[39848][0.024606399703770876, 0.011608800385147333]['I', 'I', 'I']3
1999_AP10[53037][0.020555600058287382]['I', 'I']2
1999_CJ19[90151][]['N']1
1999_GE7[24490][]['N']1
1999_GZ35[84198][0.026238500140607357, 0.975509200245142]['I', 'I', 'A']3
1999_JJ134[19943][0.115393599960953]['I', 'I']2
1999_JJ20[46805][0.1192013998515904]['I', 'I']2
1999_JK60[23901][]['A']1
1999_JP22[23760][]['A']1
1999_OW3[35822 35821 35819 23568 47317 23567 47263 22881 35301 35303 35302 22882\n", + " 23571 23558 84197 84198][0.0, 0.0, 0.0, 0.0, 0.0, 0.04171299980953336, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9557407000102103, 0.0, 0.0, 11.011076400056481, 1.9832407999783754, 0.0, 0.03340280009433627, 0.0]['N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'A', 'T', 'T', 'T', 'T']20
1999_RL22[48904][]['A']1
1999_RO88[29008][]['A']1
1999_RP225[67529][0.04236110020428896]['T', 'T']2
1999_RV156[88064][]['A']1
1999_RW191[19271][]['I']1
1999_RZ195[23916][]['N']1
1999_SP19[33571][0.023831000085920095]['T', 'T']2
1999_SW2[93146][]['N']1
1999_TA175[26677][]['A']1
1999_TM25[94439][]['N']1
1999_UH38[48906][]['A']1
1999_UO4[47250 35217 47249][0.0, 0.0]['N', 'N', 'N']3
1999_VF7[23558][]['N']1
1999_VG83[36031 23913][2.0298494999296963]['A', 'A']2
1999_VW18[94435][]['N']1
1999_VX24[35154][]['N']1
1999_XG19[24484][]['N']1
1999_XU116[36501][]['A']1
1999_XU39[35301 35819][0.0]['A', 'A']2
1999_XZ41[21741 26646][5.955995399970561]['A', 'A']2
2000_AB190[33410 23776 28603][0.0, 4.999536999966949]['A', 'A', 'A']3
2000_BM3[66324 69582][2.970775400288403]['A', 'A']2
2000_CB57[68698 26677][0.0]['N', 'N']2
2000_DN52[68698][]['A']1
2000_DO66[48907][]['A']1
2000_EF28[36824][]['A']1
2000_EQ87[25109][]['N']1
2000_ER32[23913 36032 36031][0.0, 0.0]['N', 'N', 'N']3
2000_GT66[29008][]['A']1
2000_GW78[23568 22882][0.0]['A', 'A']2
2000_JB63[29023][6.0584259000606835]['N', 'A']2
2000_JP27[95222][]['N']1
2000_JZ26[95250][]['N']1
2000_NF5[30361][0.0365046001970768, 2.8793286997824907, 0.0452199000865221, 0.029374999925494194]['I', 'I', 'T', 'T', 'T']5
2000_OJ6[48905][]['A']1
2000_OR4[22411][]['N']1
2000_QE132[94580][]['N']1
2000_SC71[53267][0.020555600058287382, 1.979548600036651]['I', 'I', 'T']3
2000_SJ273[87640 87638][0.0, 1.9393402999266982, 0.0]['N', 'N', 'N', 'N']4
2000_TJ1[58820 79455][0.0009490000084042549, 2.0493055996485054, 0.00047450000420212746, 0.00836810003966093]['I', 'I', 'I', 'I', 'I']5
2000_VU35[23760 23776 33410 25098][0.0, 0.0, 0.1192013998515904]['N', 'N', 'N', 'N']4
2000_VY26[34619 35217][0.0]['A', 'A']2
2000_WZ38[23558][]['A']1
2000_XB18[26627][]['A']1
2000_XH44[88837][]['A']1
2000_XP18[28603][]['N']1
2000_XT27[26671][2.0321990000084043]['A', 'A']2
2000_YR21[88021][]['A']1
2000_YX51[28603][]['N']1
2001_DA41[67810][]['A']1
2001_DH52[35819 35301][0.0]['A', 'A']2
2001_DM64[23916][]['A']1
2001_EY10[69582 15913][0.0]['N', 'N']2
2001_FD42[23775][]['N']1
2001_FF29[23571][]['A']1
2001_HR18[24817 36501 88022 88021][0.0, 0.0, 0.0]['N', 'N', 'N', 'N']4
2001_HZ63[47249 35217 47250][0.0, 0.0]['N', 'N', 'N']3
2001_KY16[25109 23776 19575][10.07782409992069, 2.9431364997290075, 0.023356500081717968]['N', 'A', 'T', 'T']4
2001_NG11[93140][]['N']1
2001_QB120[25109 19550][0.0]['A', 'A']2
2001_QB149[22901 29008][0.0]['N', 'N']2
2001_QO5[88612][]['A']1
2001_SK9[42292 74243 74386][0.00047450000420212746, 2.91983800008893, 0.0018749996088445187, 0.01189810037612915, 0.0009259996004402637]['I', 'I', 'I', 'I', 'I', 'I']6
2001_SN289[87640 87638][0.06900459993630648]['A', 'A']2
2001_SW269[29023 36824 19271][3.0389468003995717, 0.0]['A', 'A', 'A']3
2001_TT41[48906][]['A']1
2001_TY191[48065][]['A']1
2002_CQ15[51040][]['N']1
2002_GU18[71118][]['N']1
2002_JE18[96137][]['N']1
2002_JQ59[71190][]['N']1
2002_PC130[39854][0.03302079997956753, 0.010659700259566307]['I', 'I', 'I']3
2002_RB105[22901][1.974282399751246]['A', 'A']2
2002_RV107[97351][]['N']1
2002_RW44[89220 89218][0.0]['N', 'N']2
2002_SR41[75477][0.025949000380933285]['I', 'I']2
2002_TN30[89220 89218][0.00047450000420212746]['N', 'N']2
2002_UJ32[51560 50182][0.0]['N', 'N']2
2002_UQ3[89123][1.964236100204289]['N', 'N']2
2002_YY[23571][1.0094328001141548]['A', 'A']2
2003_AP17[47249][]['A']1
2003_QQ69[51428][]['N']1
2003_RB10[33410][]['A']1
2003_RN10[893][0.021793899592012167, 0.05927090020850301]['I', 'I', 'I']3
2003_SF145[89616][]['N']1
2003_SH95[51546][]['N']1
2003_SL171[23916][]['A']1
2003_SM213[36031][]['A']1
2003_WA118[46805][]['A']1
2003_WH67[67527][0.04236110020428896]['T', 'T']2
2004_EW9[25610 62121][0.053518600296229124, 4.961886500008404, 0.052372700069099665, 4.911770899780095, 0.026712900027632713]['I', 'I', 'T', 'T', 'I', 'I']6
2004_RJ84[95739 94410 97121][0.01843750011175871, 1.9472453999333084]['N', 'N', 'N']3
2004_VP61[67276][0.029814799781888723]['T', 'T']2
2005_AH[92197][]['N']1
2005_AU7[51021][]['N']1
2005_EY51[19271][]['I']1
2005_SC206[19943][]['A']1
2005_SN25[56178][0.03627320006489754]['I', 'I']2
2005_TW91[51546][0.06900459993630648]['T', 'T']2
2006_AQ[68698 26677 51428][0.0, 14.008263899944723]['N', 'N', 'A']3
2006_BA280[92187 92195][1.936932799872011]['N', 'N']2
2006_BE68[96136][]['N']1
2006_KK47[50144][]['N']1
2006_KZ18[97069 90516][0.0]['N', 'N']2
2006_NM[2824][0.010474500246345997, 0.014537000097334385]['I', 'I', 'I']3
2006_QB168[84197][0.01262729987502098, 0.9983101999387145]['I', 'I', 'A']3
2006_SG33[51560 50182][0.047893499955534935]['N', 'N']2
2006_TR101[47250 47095][0.0]['A', 'A']2
2006_UA190[21740][]['A']1
2006_UJ268[96135][]['N']1
2007_BG49[71190 51560 50182][3.0189582998864353, 0.0]['N', 'A', 'A']3
2007_SM11[2824][]['A']1
2007_VA238[97063][]['N']1
2008_GD133[51547][]['N']1
2008_PV2[47095 47250][0.0]['A', 'A']2
2008_SS251[53295 53267][0.020555600058287382, 1.9163772999309003]['I', 'I', 'T']3
2008_WR58[92196][]['N']1
2010_KX104[22901][]['A']1
2010_XL33[95776][]['N']1
2010_XT45[88064 48907 48906 48904 12998 26059 48905 23913 36031 36032][0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8951620999723673, 0.0, 0.0]['N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N']10
2011_BK146[97121][]['N']1
2011_XZ1[25397][0.03936340007930994, 7.0764120002277195]['I', 'I', 'A']3
2012_SF51[71118 94439 94580 94435][3.0372917000204325, 0.0, 0.0]['N', 'N', 'N', 'N']4
2012_TV311[31004][]['A']1
3500_T-3[23571 22882 47317 35301 35302 35303 35819 35821 47263 35822 23568][1.9974536998197436, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]['N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N']11
4056_P-L[23913][]['A']1
4206_P-L[66324][]['N']1
4788_P-L[67528 67527 67529 58540][0.0, 0.0, 4.873530100099742, 0.048044000286608934, 0.029814799781888723]['A', 'A', 'A', 'I', 'I', 'I']6
Alinda[39411 57135 79900][0.04748849989846349, 0.9384606000967324, 0.03487269999459386, 1.9717244999483228, 0.01606479985639453, 0.04236110020428896, 0.015405099838972092]['I', 'I', 'I', 'I', 'I', 'I', 'I', 'I']8
Andrewleung[69582 15913][0.0]['N', 'N']2
Boynton[21740 21741 88612][0.0, 0.0]['A', 'A', 'A']3
Bronislawa[36032][]['A']1
Chigorin[92876][]['N']1
Cleobulus[29008 22901][0.0]['N', 'N']2
Climenhaga[23775][]['A']1
Eyjafjallajokull[67529 67527 67528][0.0, 0.0, 0.003865700215101242, 0.0, 0.0]['I', 'I', 'I', 'I', 'I', 'I']6
Fouchard[22882 23568][0.0]['A', 'A']2
Giannigalli[20596][0.08501160005107522]['I', 'I']2
Goodhue[47263 35822 47317 35303][0.0, 0.0, 0.0, 1.9634374999441206, 0.0, 0.11280089989304543, 0.0]['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A']8
Hephaistos[25098 33410 23776 23775 48065 19550 28603 19575 67276 23760 25109 46805\n", + " 61488][0.0, 0.0, 0.0, 1.999780099838972, 0.0, 0.1192013998515904, 0.0, 0.9578819000162184, 4.999536999966949, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.034097299911082, 0.9104629000648856, 0.023356500081717968]['N', 'N', 'N', 'N', 'I', 'I', 'I', 'I', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'I', 'I']19
Hermes[31004][0.0322569003328681]['I', 'I']2
Kamenka[36501 24817 88021 88022][0.06523150019347668, 0.0, 0.0]['A', 'A', 'A', 'A']4
Kobayashi[22411][0.06523150019347668, 1.9725579000078142]['T', 'T', 'A']3
Kristibutler[35821 35302][0.0, 1.9634374999441206, 0.0, 0.11280089989304543, 0.0]['A', 'A', 'T', 'T', 'T', 'T']6
Licandro[47095 34619][0.0, 0.14107639994472265, 0.0]['I', 'I', 'I', 'I']4
Mammuthus[33410][]['A']1
Martinuboh[20596 35154 20597 24484][0.0, 0.0, 0.0, 0.08888890035450459, 0.0, 0.0, 0.0]['T', 'T', 'T', 'T', 'T', 'T', 'T', 'T']8
Minos[47249 47095 34619 35217 47250 95250 95222][0.0, 0.0, 0.0, 0.0, 4.983669000212103, 0.0]['A', 'A', 'A', 'A', 'A', 'N', 'N']7
Mithra[19943 67810][2.9421989996917546, 0.023819500114768744]['A', 'T', 'T']3
Morpheus[92195 92197 92196 97351 92187][0.0, 0.0, 0.0, 1.936932799872011]['N', 'N', 'N', 'N', 'N']5
Olgapopova[24490][]['N']1
Pan_(Asteroid)[21741 21740 88612 26646 66324 15913 69582 26627 58869 89616][0.0, 0.0, 0.02165509993210435, 0.0, 0.0, 1.9424884002655745, 0.0, 0.9268865999765694, 0.0, 6.101435199845582, 0.0, 1.9419444003142416, 0.023634299635887146, 2.9485880001448095, 0.006863399874418974, 2.0272568999789655]['I', 'I', 'I', 'I', 'I', 'I', 'N', 'N', 'A', 'A', 'A', 'A', 'T', 'T', 'I', 'I', 'N']17
Peixinho[51428][]['N']1
Petekirkland[19271][0.10741900000721216]['T', 'T']2
Petit[88064 26059 48907 48906 12998 48904 48905][0.0, 0.03498840006068349, 0.0, 0.0, 0.0, 0.0]['A', 'A', 'A', 'A', 'A', 'A', 'A']7
Ponsen[23760][]['N']1
Rameau[24484][]['N']1
Ryugu[95776 80325][1.9717361996881664, 0.019976800307631493, 0.04149309964850545, 0.025949000380933285]['N', 'I', 'I', 'I', 'I']5
Seleucus[55199][0.0172453997656703]['I', 'I']2
Shakhovskoj[88837][0.013275399804115295, 0.06510420003905892]['I', 'I', 'I']3
Shaneludwig[33571][]['A']1
Smoluchowski[23558][]['A']1
Tensho-kan[20597][0.08501160005107522]['I', 'I']2
Viikinkoski[33571 26671][0.0]['N', 'N']2
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m.sort_values(\"jd\").groupby(\"sso_id\").agg(\n", + " traj_ids=(\"trajectory_id\", \"unique\"),\n", + " diff_jd=(\"jd\", lambda x: list(np.diff(x))),\n", + " tags=(\"assoc_tag\", list),\n", + " nb_point=(\"trajectory_id\", len)\n", + " ).style.format(precision=2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fink_fat_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/parameters_selection/run_ff_for_kbo_neo_issue.py b/notebook/parameters_selection/run_ff_for_kbo_neo_issue.py new file mode 100644 index 00000000..071d1ff8 --- /dev/null +++ b/notebook/parameters_selection/run_ff_for_kbo_neo_issue.py @@ -0,0 +1,42 @@ +import subprocess +import shutil + + +if __name__ == "__main__": + from datetime import date, timedelta + + start_date = date(2020, 9, 1) + end_date = date(2020, 10, 1) # perhaps date.now() + + delta = end_date - start_date # returns timedelta + + for i in range(delta.days + 1): + curr_date = start_date + timedelta(days=i) + + print(curr_date) + ff_assoc_command = f"fink_fat associations mpc --night {curr_date} --config ../fink_fat_experiments/kbo_neo_issue.conf --verbose" + ff_orbit_command = "fink_fat solve_orbit mpc local --config ../fink_fat_experiments/kbo_neo_issue.conf --verbose" + + results_assoc = subprocess.run( + ff_assoc_command, shell=True, universal_newlines=True, check=True + ) + + print() + print() + + results_orbit = subprocess.run( + ff_orbit_command, shell=True, universal_newlines=True, check=True + ) + + print("move data") + shutil.copytree( + "kbo_neo_issue_ff_output/mpc", f"save_ff_output_kbo_neo_issue/{curr_date}" + ) + + print() + print("--- stdout ---") + print(results_assoc.stdout) + print() + print(results_orbit.stdout) + print() + print()