-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlstm_text_gen_word2vec.py
144 lines (116 loc) · 4.27 KB
/
lstm_text_gen_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import print_function
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.datasets.data_utils import get_file
import numpy as np
import random, sys
import codecs
import pickle
import theano
import gensim
import pdb
'''
Using word2vec first to represent characters. This makes character representation
continuous.
Then use this representation in LSTM
'''
with open('/home/erlenda/.keras/datasets/tweets.pickle',mode='rb') as ff:
text=pickle.load(ff)
print('corpus length:', len(text))
text=text[:500000].lower()
#loading word2vec model
gs_model=gensim.models.Word2Vec.load('models/word2vec_model.model')
chars = set(text)
print(list(sorted(chars)))
print('total chars:', len(chars))
repDim=gs_model['e'].shape[0]
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# cut the text in semi-redundant sequences of maxlen characters
maxlen = 25
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i : i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
print(sentences[0])
print(next_chars[0])
print('\n'*5)
print(sentences[1])
print(next_chars[1])
print('\n'*5)
print(sentences[50])
print(next_chars[50])
print('Vectorization...:',len(sentences),maxlen)
X = np.zeros((len(sentences), maxlen, repDim), dtype=theano.config.floatX)
y = np.zeros((len(sentences), repDim), dtype=theano.config.floatX)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i,t,:]=gs_model[char]
#X[i, t, char_indices[char] = 1
#y[i, char_indices[next_chars[i]]] = 1
y[i, :] = gs_model[next_chars[i]]
sentences[i]=None
print(y[:5,:])
layerdims=512
# build the model: 2 stacked LSTM
print('Build model...')
model = Sequential()
model.add(LSTM(repDim, layerdims, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(layerdims, layerdims, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(layerdims, layerdims, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(layerdims, repDim))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
# helper function to sample an index from a probability array
# def sample(a, temperature=1.0):
# a = np.log(a)/temperature
# a = np.exp(a)/np.sum(np.exp(a))
# return np.argmax(np.random.multinomial(1,a,1))
## replacing sampling function - word2vec gives closeness to a specific character
# idea: sample based on nearest character.
import codecs
# train the model, output generated text after each iteration
for iteration in range(1, 60):
it1=iteration
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.1, 0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index : start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated+'\n'*5)
for iteration in range(1000):
x = np.zeros((1, maxlen, repDim))
for t, char in enumerate(sentence):
x[0, t, :] = gs_model[char]
preds = model.predict(x, verbose=0)[0]
#print(type(preds),preds)
next_chars=gs_model.most_similar(positive=[preds], topn=100)
distr=np.array([nc[1] for nc in next_chars])
distr=np.array([d*np.exp(diversity*iii) for iii,d in enumerate(distr)])
distr=distr/distr.sum()
mmax=np.argmax(np.random.multinomial(1,distr,1))
next_char=next_chars[mmax][0]
#print(next_char)
#next_index = sample(preds, diversity)
#next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
with codecs.open('generated_'+str(it1)+'_'+str(diversity)+'.txt',mode='w',encoding='utf-8') as ff:
ff.write(generated)
print()