-
Notifications
You must be signed in to change notification settings - Fork 0
/
diff_extract.m
executable file
·188 lines (172 loc) · 7.84 KB
/
diff_extract.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
function [theta, nmeas, err] = diff_extract(image_matrix, centre, OID, ringwidth, ...
minradius, maxradius, pix_convert, background);
%diff_extract extracts the radial diffraction pattern from image_matrix
%with centre at centre. OID is the object - image distance.
%Equally spaced rings (each ring has width ringwidth) are integrated about
%the centre to get the radial diffraction pattern.
%centre is a 2-vector. 1st element contains x value of centre point. 2nd
%element contains y value of centre point. Both values are in centimeters
%Ringwidth is a scalar representing the width of each ring (in centimeters)
%Minradius is a scalar represesnting the minimum extent of the diffraction
%pattern (in centimeters) this is typically defined by the size of the beam
%stop
%Maxradius is a scalar representing the maximum extent of the diffraction
%pattern (in centimeters)
%OID is the object - image distance expressed in centimeters
%pix_convert is the ratio of pixels to centimeters (pixels/cm)
%background is the average background level
%theta is an array of angles (in radians)
%nmeas is the integrated sum of pixel brightness in each ring
% bwrois contains ROIs selected by user to be excluded
global num_roi bwrois
%Maximum pixel value in image.
maxpixel = 65535;
%Create double version of the image matrix. Need to add 1 for accurate
%conversion (see Matlab Help files - 8-Bit and 16-Bit indexed images)
%Divide by maxpixel to normalize.
%Below line if background is highest value
image_double = background - (double(image_matrix) + 1);
%Below line if background is smallest value
%image_double = (double(image_matrix) + 1) - background;
%image_double = -(65535 - image_double);
%Locate pixel locations of relevant points
xcentre_pix = centre(1) * pix_convert;
ycentre_pix = centre(2) * pix_convert;
xmax = size(image_double,2);
ymax = size(image_double,1);
xmin_pix = max([floor(xcentre_pix - maxradius * pix_convert),1]);
xmax_pix = min([ceil(xcentre_pix + maxradius * pix_convert),xmax]);
ymin_pix = max([floor(ycentre_pix - maxradius * pix_convert),1]);
ymax_pix = min([ceil(ycentre_pix + maxradius * pix_convert),ymax]);
%Setup rings, theta, nmeas vectors
%rings vector contains maximum radius of each ring (in cm)
%theta vector is the central angle of each ring (in degrees)
numrings = round((maxradius - minradius)/ringwidth);
rings = linspace(minradius + ringwidth, maxradius, numrings);
theta = atan((rings - ringwidth/2)/OID) * 180 / pi; % Theta in degrees
%nmeas = zeros(1,numrings);
%err = zeros(1,numrings);
pixelsperring = zeros(1,numrings);
excludemat = excludeROIs(image_matrix,bwrois);
excludemat = excludemat(ymin_pix:ymax_pix,xmin_pix:xmax_pix);
%Truncate the image to only the diffraction pattern
id_trunc = image_double(ymin_pix:ymax_pix,xmin_pix:xmax_pix);
xmax_pix = xmax_pix - xmin_pix + 1;
xcentre_pix = xcentre_pix - xmin_pix + 1;
xmin_pix = 1;
ymax_pix = ymax_pix - ymin_pix + 1;
ycentre_pix = ycentre_pix - ymin_pix + 1;
ymin_pix = 1;
risq = (rings * pix_convert).^2;
% BELOW SECTION VECTORIZES THE CIRCULAR AVERAGING TO IMPROVE SPEED
% Attempt alternate method to perform computation, construct the problem in
% vectorized form, remove loops if possible
% Construct matrices containing the x and y coordinates for each point in
% the image
xpixels = ones(ymax_pix-ymin_pix+1,1) * linspace(xmin_pix,xmax_pix,xmax_pix-xmin_pix+1);
ypixels = linspace(ymin_pix,ymax_pix,ymax_pix-ymin_pix+1)' * ones(1,xmax_pix-xmin_pix+1);
% Compute matrix containing distance (in pixels) from centre to each point
rdist = sqrt((xpixels - xcentre_pix).^2 + (ypixels - ycentre_pix).^2);
% Determine which elements less than minimum or greater than maximum distance
rlarge = rdist > maxradius*pix_convert;
rsmall = rdist < minradius*pix_convert;
validr = (not(rlarge)) .* (not(rsmall));
% Reshape the distance and image vectors, exclude the invalid distance
% entries The nonzeros function MUST retain the ordering of
% the elements in order for this to work properly. Otherwise, have to
% reshape the arrays manually then exclude the zero elements.
% Also exclude any regions that were selected as ROIs
minpix = min(min(id_trunc));
maxpix = max(max(id_trunc));
if(minpix <= 0 && maxpix > 0)
id_trunc_shift = id_trunc - minpix + 1;
else
id_trunc_shift = id_trunc;
end
rdistvalid = nonzeros(rdist .* validr .* excludemat);
id_trunc_valid = nonzeros(id_trunc_shift .* validr .* excludemat) + minpix - 1;
% % Attempt to calculate ring pattern without using loops (vectorized)
% % This results in arrays that are too large for Matlab to handle
% numpix = numel(id_trunc_valid);
% rdist_mat = rdistvalid * ones(1,numrings);
% id_trunc_mat = id_trunc_valid * ones(1,numrings);
% minring_rad = pix_convert * ones(numpix,1) * linspace(minradius,maxradius-ringwidth,numrings);
% maxring_rad = minring_rad + (ringwidth*pix_convert);
% %maxring_rad = pix_convert * ones(numpix,1) * linspace(minradius+ringwidth,maxradius,numrings);
% ringindices = rdist_mat >= minring_rad;
% ringindices = ringindices .* (rdist_mat < maxring_rad);
% idring = id_trunc_mat .* ringindices;
% nmeas = mean(idring);
% err = std(idring);
% loop through each rings and calculate
nmeas = [];
err = [];
rmax = minradius .* pix_convert;
for(i=1:numrings)
rmin = rmax;
rmax = rmin + (ringwidth .* pix_convert);
%rmin = (rings(i) - ringwidth) .* pix_convert;
%rmax = rings(i) .* pix_convert;
ringindices = rdistvalid < rmax;
ringindices = ringindices .* (rdistvalid > rmin);
% ringindices = rdistvalid > rmin .* rdistvalid < rmax;
idring = nonzeros(id_trunc_valid .* ringindices);
nmeas = [nmeas, mean(idring)];
err = [err, std(idring)/sqrt(size(idring,1))];
end
% END VECTORIZED VERSION
% BELOW SECTION USES MULTIPLE LOOPS TO CALCULATE AVERAGES PIXEL BY PIXEL
%
%
% %Loop through each pixel in the ROI, add brightness of each pixel into the
% %appropriate ring.
% for xi= xmin_pix:xmax_pix
% for yi = ymin_pix:ymax_pix
% rsq = (xi-xcentre_pix).^2 + (yi-ycentre_pix).^2; % rsq in pixels squared
% if rsq <= (maxradius * pix_convert).^2 && rsq >= (minradius * pix_convert).^2
% for ri = numrings-1:-1:1
% %risq = (rings(ri) * pix_convert).^2;
% if rsq > risq(ri)
% nmeas(ri+1) = nmeas(ri+1) + id_trunc(yi,xi);
% pixelsperring(ri+1) = pixelsperring(ri+1) + 1;
% break
% end
% %This check will catch the innermost ring (skipped
% %otherwise)
% if ri == 1
% nmeas(ri) = nmeas(ri) + id_trunc(yi,xi);
% pixelsperring(ri) = pixelsperring(ri) + 1;
% end
% end
% end
% end
% end
%
% %Calculate average brightness of pixels in each ring
% nmeas = nmeas ./ pixelsperring;
%
% %Run through loop second time to calculate variance
% for xi= xmin_pix:xmax_pix
% for yi = ymin_pix:ymax_pix
% rsq = (xi-xcentre_pix).^2 + (yi-ycentre_pix).^2; % rsq in pixels squared
% if rsq <= (maxradius * pix_convert).^2 && rsq >= (minradius * pix_convert).^2
% for ri = numrings-1:-1:1
% %risq = (rings(ri) * pix_convert).^2;
% if rsq > risq(ri)
% err(ri+1) = err(ri+1) + (id_trunc(yi,xi) - nmeas(ri+1)).^2;
% break
% end
% %This check will catch the innermost ring (skipped
% %otherwise)
% if ri == 1
% err(ri) = err(ri) + (id_trunc(yi,xi) - nmeas(ri)).^2;
% end
% end
% end
% end
% end
%
% % Calculate standard deviation of the mean
% err = sqrt(err ./ ((pixelsperring - 1) .* pixelsperring));
%
% END LOOPING VERSION